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Preface

During recent decades, metamaterials have revolutionized the way waves are

controlled in the broad field of wave physics due to the extraordinary physical

properties they present. Their locally resonant structure, introducing deep

subwavelength band gaps, regions of frequencies where propagation is forbidden,

among other properties, have motivated a plethora of applications not available up to

now and creating an inflection point in the material science conception. In particular,

acoustic metamaterials have shown extraordinary functionalities giving rise to

breakthroughs. In many cases, they are able to replace traditional treatments in

practical situations due to the better performances in targeted and tunable frequency

ranges with strongly reduced dimensions. Acoustic and mechanical metamaterials

themselves represent a scientific breakthrough with respect to the conventional

treatments for noise, vibrations and radiofrequency problems.

Precursors of such metamaterials are the periodic media. Wave propagation in

periodic media has been exploited in the field of wave physics revolutionizing the

way of controlling waves in several branches of physics and technology. The secret

of these materials lies in their structuring, the origin of peculiar effects like negative

refraction or the spatial filtering, explaining, for example, the structural color in

nature such as butterfly wings have. Today, these materials count as part of the class

of photonic crystals for light or phononic crystals for elastic and acoustic waves with

particular dispersion relation. It has been shown that periodic distributions of

scatterers embedded in a host medium can be used in the design of effective media in

the low frequency regime. When the wavelength, λ, is big compared to the separation

between the scatterers, a, (long wavelength regime), homogenization theories can be

applied and as a result, this periodic medium behaves as an effective homogeneous

medium. If the scatterers are resonators, the effective properties can present

extraordinary properties around the resonance frequency, and in this case, the
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material becomes a metamaterial. However, in the diffraction regime, the periodic

structures present bandgaps at wavelengths of the order of the periodicity of the

structure. Among other potential applications, in acoustics these systems have

motivated tunable frequency filters, beam forming devices, waveguides, wave traps

and slow wave systems. In this regime, these materials are strongly anisotropic,

presenting an angular dependence of its scattering properties.

During the summer school Metagenierie 2017, organized by the GdR

(Groupement de recherche) Meta, the principles of acoustic metamaterials and their

possible engineer/industrial applications were discussed with main goal of creating a

training course with different steps of the learning procedure: global state of the art,

principles and fundamentals and applications. This book is devoted to gathering all the

discussions and provides a training book with a large overview on the field of acoustic

metamaterials through its nine chapters. The book is divided into three parts:

– Part 1: Overview of the Current Research in Acoustic Metamaterials

– Part 2: Principles and Fundamentals of Acoustic Metamaterials

– Part 3: Applications of Acoustic Metamaterials

Part 1, Chapters 1–3, highlights the properties of the locally resonant structures

with deep subwavelength bandgaps, and how the viscothermal losses can affect the

physical properties. Chapter 1 shows the recent advances in the study of the presence

of losses in double-negative metamaterial; Chapter 2 focuses on the use of deep

subwavelength bandgaps to attenuate seismic waves; and finally, Chapter 3 shows

how we can make use of both viscothermal losses and slow sound phenomena to

create perfect absorbers as well as metadiffusers with deep subwavelength structures.

Part 2, Chapters 4–6, provides the principles and fundamentals of the basic

theoretical frameworks to deal with metamaterials and periodic structures. Chapter 4

discusses the homogenization theory for 3D structures in the time domain; Chapter 5

shows the fundamentals of the plane wave expansion method to calculate the

dispersion relation of periodic media; and finally, Chapter 6 shows a complete

introduction to the multiple scattering theory in order to deal with the finite size

effects of periodic structures.

Part 3, Chapters 7–9, shows a broad overview of the industrial applications of

metamaterials and periodic media. Chapter 7 shows a review of the acoustic

metamaterials for the industrial applications of audible sound; Chapter 8 shows also

an extensive review of the possible radiofrequency applications of acoustic

metamaterials for radiofrequency applications; and finally, Chapter 9 shows the

possibilities of acoustic metamaterials for underwater applications.
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1

Visco-thermal Effects in Acoustic
Metamaterials Based on Local

Resonances

1.1. Introduction

Acoustic metamaterials are man-made composite structures whose acoustic

properties are new in comparison with that of the components used in their

construction. Recent review articles have reported the many fascinating devices

based on their extraordinary properties [CUM 16, MA 16, HAB 16]. Among them,

acoustic cloaking and negative refraction are phenomena that are currently used to

develop devices like noise shelters, acoustic imaging with subwavelength resolution,

focusing devices and many others. On the one hand, acoustic cloaking is obtained

thanks to the possibility of engineering artificial structures behaving like acoustic

materials with an effective anisotropic dynamical mass density [CUM 07, TOR 08].

Later, it was demonstrated that cloaking is also possible with structures with an

effective anisotropic bulk modulus, having simultaneously an effective isotropic

dynamical mass. On the other hand, negative refraction arises because of the

possibility of engineering structures whose effective acoustic parameters (i.e. mass

density and bulk modulus) are both negative. Metamaterials with double-negative

parameters can be obtained by tailoring structures that have both monopole and

dipole resonances [LI 04]. In addition, negative refraction has been also

demonstrated using space-coiling acoustic metamaterials [KOC 49, LIA 12, XIE 13]

and hyperbolic materials [GAR 14].

The effect of losses in acoustic metamaterials has been scarcely tackled though

dissipation seems to play a fundamental role in explaining the degradation of the

Chapter written by José SÁNCHEZ-DEHESA and Vicente CUTANDA HENRÍQUEZ.
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predicted performance in many manufactured structures. As a typical example, let

us mention the case of three-dimensional labyrinthine acoustic metamaterials

characterized by Frenzel et al. [FRE 13], who found a significant amount of losses

that led them to propose these structures for subwavelength broadband all-angle

acoustic absorbers. A recent study by Molerón et al. [MOL 16] demonstrated that the

actual response of these structures with subwavelength slits in air strongly depends

on the viscothermal losses. Previously, it was shown that slow sound propagation

observed in waveguides with side resonators was produced by viscothermal

dissipation [THE 14]. For the case of metamaterials based on local resonances, the

authors claimed the expected double-negative behavior in two specifically designed

structures was unobservable, due to the strong influence of viscothermal effects

[FOK 11, GRA 13].

This chapter is devoted to study the contribution of viscothermal effects in some

specific acoustic metamaterials. Particularly, in those whose negative effective

parameters are a consequence of embedded resonances in the building units. First, we

briefly report the different approaches developed in order to study viscothermal

losses in environments where their expected contribution is relevant. The finite

element method (FEM) and the boundary element method (BEM) can be used when

explaining the properties of artificial structures with corrugated surfaces where

viscothermal losses are relevant, like the ones analyzed here. We have selected the

BEM as the more adequate to study the metamaterial samples based on local

resonances and therefore we explain this method with some detail in section 1.2.1.

Then, in section 1.3, the BEM is applied to comprehensively study the case of a

single-negative metamaterial. This quasi-two-dimensional metamaterial structure is

made of a two-dimensional (2D) waveguide with a square distribution of drilled

holes [GRA 12] and effectively behaves as a material with negative bulk modulus as

the one introduced by Fang et al. [FAN 06]. It will be shown that the viscothermal

losses, although relevant, do not destroy the observation of the negative modulus

theoretically predicted. However, this is not the conclusion obtained for the case

studied in section 1.4, where the quasi-2D metamaterial has cylindrical inclusions

with a periodically corrugated surface and was designed to show double-negative

behavior. For this double-negative metamaterial, the viscothermal losses play a

paramount importance and its contribution completely destroys the expected

behavior, giving support to the experimental data [CUT 17b]. Anyway, we have to

stress that the effect of viscothermal losses has been studied for two specific cases

and cannot be directly extrapolated to all cases. However, the results are indicative of

the type of issues that researchers should consider during the process of designing

metamaterials based on embedded resonances.
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1.2. Viscothermal effects: numerical methods

Viscous and thermal losses of acoustic waves are only relevant in two cases:

i) propagation over long distances, such as large rooms and outdoor acoustics; and ii)

a very thin boundary layer of fluid over the domain boundaries. We are not concerned

here with case i), which can easily be treated by suitably modifying the existing

physical descriptions (e.g. with propagation loss constants). In case ii), viscous and

thermal boundary layers have similar thicknesses, ranging from a few micrometers at

high frequencies to a fraction of a millimeter at lower frequencies, in the audible

range. The viscous and thermal boundary layers arise due to i) the difficulty of the

fluid particles to slide over the boundary, and ii) the strong heat exchange between

fluid and solid boundary, respectively [PIE 81, MOR 68].

Boundary losses due to viscothermal effects can be accounted for as a boundary

impedance in large setups such as rooms [CRE 82]. Such approach is, however,

limited for small (in relation to the thickness of the boundary layers) or intricate

setups. When the boundary layers fill a significant part, or all, of the volume of the

domain, losses can be very relevant. This is the case, for example, of microphones,

hearing aids and acoustic couplers. In the case of metamaterials, the effect of

viscothermal losses can be very relevant even for cases of a relatively large scale, as

will be shown later in this chapter.

Viscothermal losses can be represented by analytical models, such as in the

classical solution to a narrow cylindrical tube [RAY 94]. Other authors provide

similar solutions, also limited to particular geometries [STI 91, BRU 87]. These

solutions are often used in the metamaterial literature. However, their geometrical

limitations restrict their range of applicability to simplified versions of

quarter-wavelength and Helmholtz resonators.

The BEM with viscothermal losses is used in the test cases shown in the

following sections of this chapter. This is a numerical method with no limiting

hypotheses other than linearity and absence of flow. The viscothermal

implementation of the finite element method (FEM) is another numerical

implementation with no geometrical restrictions, which was used in [CUT 17a] to

validate BEM metamaterial models. The BEM with losses is chosen here because it

has been found more computationally manageable for the metamaterial cases studied.

The FEM and BEM with losses are briefly described in the following sections.

1.2.1. Finite element method with losses

The FEM implementation with viscous and thermal losses is available in the

commercial software COMSOL. It was initially proposed by Malinen et al.
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[MAL 04], which is achieved by direct discretization of the full linearized

Navier–Stokes equations. The equations solved are the momentum, continuity and

energy equations,

iωρ0v = ∇ ·
(
−pI + μ

(∇v +∇vT
)−

(
2

3
μ− η

)
(∇ · v) I

)
+ F [1.1]

iωρ+ ρ0∇ · v = 0 [1.2]

iωρ0CpT = −∇ · (−λ∇T ) + iωα0T0p [1.3]

ρ = ρ0 (βT p− α0T ) [1.4]

The acoustic variables are: particle velocity v, pressure p and temperature T . F
is a volume force acting on the fluid. The parameters of air are expressed as: ρ0 the

static density, T0 the equilibrium temperature, μ the coefficient of viscosity, η the

bulk viscosity, Cp the heat capacity at constant pressure, λ thermal conductivity, α0

coefficient of thermal expansion and βT isothermal compressibility.

Equations [1.1]–[1.4] are solved by transforming the equations into weak form,

as is usually done in FEM. This results in a system of equations having pressure,

particle velocity and temperature as variables. Five degrees of freedom are introduced

per node, meaning that the system will be five times larger as compared to the lossless

counterpart for the same mesh. In addition, the boundary layers over the boundaries

need to be meshed with sufficient detail, further increasing the size of the calculation.

1.2.2. Boundary element method with losses

The BEM implementation with losses is based on the Kirchhoff decomposition of

the Navier–Stokes equations [PIE 81, BRU 89],

(Δ + k2a)pa = 0 [1.5]

(Δ + k2h)ph = 0 [1.6]

(Δ + k2v)�vv = �0 , with ∇ · �vv = 0 [1.7]

where harmonic time dependence eiωt is omitted. The indexes (a,h,v) indicate the

so-called acoustic, thermal and viscous modes, represented by equations [1.5], [1.6]
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and [1.7] respectively. The modes can be treated independently in the acoustic domain

and linked through the boundary conditions. The total pressure can be obtained as the

sum p = pa + ph of the acoustic and thermal components (there is not a viscous

pressure), while the particle velocity has contributions from the three modes as �v =
�va + �vh + �vv .

k2a =
k2

1 + ik(	v + [γ − 1)	h]− k2	h(γ − 1)(	h − 	v)
[1.8]

k2h =
−ik

1− ik(γ − 1)(	h − 	v)
[1.9]

k2v = − iρ0ck

μ
, [1.10]

The three wavenumbers ka, kh and kv in equations [1.8], [1.9] and [1.10] depend

on the lossless wavenumber k and the physical properties of the fluid: ρ0 is the static

density of air, c is the speed of sound, k is the adiabatic wavenumber and γ is the

ratio of specific heat at constant pressure and specific heat at constant volume Cp/Cv .

The viscous and thermal characteristic lengths are 	v = (η + 4/3μ)/ρ0c and 	h =
λ/(ρ0cCp), where λ is the thermal conductivity, μ is the coefficient of viscosity and η
is the bulk viscosity or second viscosity [BRU 89].

Equation [1.5] is a wave equation, while equations [1.6] and [1.7] are diffusion

equations. Equation [1.7] is a vector equation and can be split into its three

components, giving a total of five equations with five unknowns: pa, ph and the three

components of �vv . The modes in equations [1.5], [1.6] and [1.7] can be linked

through the boundary conditions

T = Ta + Th = τapa + τhph = 0, [1.11]

�vboundary = �va + �vh + �vv = φa∇pa + φh∇ph + �vv. [1.12]

Equation [1.11] states that the temperature T , with acoustic and thermal

components Ta and Th, remains constant at the boundary, leading to a condition that

links the thermal and acoustic pressures pa and ph. Equation [1.12] ensures that the

total particle velocity, expressed as the sum of acoustic, thermal and viscous

contributions, matches the boundary velocity in any direction. The parameters τa, τh,

φa and φh depend, like the wavenumbers in equations [1.5], [1.6] and [1.7], on
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physical constants and the frequency. The velocity calculation, equation [1.12], is a

vector equation, which can be split for convenience into normal and tangential

components,

�vboundary,n = φa
∂pa
∂n

+ φh
∂ph
∂n

+ �vv,n, [1.13]

�vboundary,t = φa∇tpa + φh∇tph + �vv,t. [1.14]

The BEM implementation with losses starts by discretizing equations [1.5], [1.6]

and [1.7] independently. These equations are formally equivalent to the lossless

harmonic Helmholtz equation, and therefore the discretization follows the same

procedure as in the lossless BEM, i.e. converting the Helmholtz equation into its

integral form [WU 00, JUH 93],

C(P )p(P ) =

ˆ
S

[
∂G(Q)

∂n
p(Q)− ∂p(Q)

∂n
G(Q)

]
dS + pI(P ), [1.15]

where p is the sound pressure, G is the Green’s function, and P and Q are points in the

domain and on the surface respectively. C(P ) is a geometrical constant and pI(P ) is

the incident pressure, if present. The boundary is then divided into surface elements,

and equation [1.15] is discretized as

Ap−B
∂p

∂n
+ pI = 0. [1.16]

Given a set of boundary conditions, equation [1.16] can be solved for obtaining

the pressure and normal particle velocity at the boundary. The acoustic magnitudes

in the domain are subsequently obtained from the surface solution by re-applying the

discretized Helmholtz integral equation. By following this procedure, the harmonic

equations, equations [1.5], [1.6] and [1.7] of the Kirchhoff decomposition, can be

discretized as

Aapa −Ba
∂pa

∂n
+ pI = 0, [1.17]

Ahph −Bh
∂ph

∂n
= 0, [1.18]

Av�vv −Bv
∂�vv

∂n
= �0 , with ∇ · �vv = 0. [1.19]

The coupling boundary conditions in equations [1.11] and [1.12] and the null

divergence of the viscous velocity in equation [1.19] are used in the coupling of

equations [1.17], [1.18] and [1.19]. This coupling is better achieved if the velocity
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boundary condition is split, as shown in equations [1.13] and [1.14], into components

that are locally normal and tangential to the boundary. Coordinate transformations

between the node-based local reference system (normal and tangential vectors n, t1
and t2) and the global Cartesian reference (x, y, z) are therefore needed. The

resulting system of equations for obtaining the acoustic component of the pressure on

the boundary is

[
φaB

−1
a Aa − φhB

−1
h Ah

τa
τh

+
[
N11 ◦ (B−1

v Av)
]−1(

φa − τa
τh

φh

)([
N12 ◦ (B−1

v Av)
] ∂

∂t1

+
[
N13 ◦ (B−1

v Av)
] ∂

∂t2
+Δt

)]
pa =

�vboundary,n +
[
N11 ◦ (B−1

v Av)
]−1

[[
N12 ◦ (B−1

v Av)
]
+

∂

∂t1

]
�vboundary,t1

+
[
N11 ◦ (B−1

v Av)
]−1

[[
N13 ◦ (B−1

v Av)
]
+

∂

∂t2

]
�vboundary,t2 − φaB

−1
a pI .[1.20]

The “◦” operator in equation [1.20] is the Hadamard matrix product, and the

constant matrices N11, N12 and N13 are obtained as

N11 = nxn
T
x + nyn

T
y + nzn

T
z ,

N12 = nxt
T
1,x + nyt

T
1,y + nzt

T
1,z, [1.21]

N13 = nxt
T
2,x + nyt

T
2,y + nzt

T
2,z,

where the right-hand sides contain products of the (x, y, z) components of the node-

based normal and tangential vectors n, t1 and t2.

Equation [1.20] relates the prescribed normal and tangential velocities on the

boundary (�vboundary,n, �vboundary,t1 and �vboundary,t2) and the incident pressure pI

with the boundary pressures associated with the acoustic mode pa. After solving this

system, it is possible to derive the remaining magnitudes on the boundary (ph, �vv)

and on the domain [STI 91, CUT 13].

The implementation is based on the research software OpenBEM, which solves the

Helmholtz wave equation using the direct collocation technique [CUT 10]. In BEM,

only the domain boundary is meshed, saving degrees of freedom as compared with

other numerical methods like the FEM. Three sets of coefficient matrices are used

(Aa, Ba, Ah, Bh, Av , Bv) corresponding to the three modes: acoustic, thermal and
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viscous. The thermal and viscous coefficient matrices are, as a result of the evanescent

nature of the viscous and thermal effects, sparse matrices. However, the remaining

acoustic mode matrix is fully populated, and all of them are frequency dependent. As

compared with FEM, the BEM with losses – although still computationally heavy –

can be more efficient for intricate geometries that are on the limit of what is achievable,

as is the case of the metamaterial examples in this chapter.

New versions of the BEM with losses have been proposed recently that overcome

implementation issues arising from the ∂
∂t1

, ∂
∂t2

and Δt operators in equation [1.20]

[CUT 18, AND 18]. These operators are the tangential derivatives and the tangential

Laplacian respectively.

1.3. Viscothermal effects in metamaterials with negative bulk modulus

The seminal demonstration of a dynamical bulk modulus with negative value was

performed by Fang et al. [FAN 06], who used a one-dimensional (1D) water channel

with an array of Helmholtz resonators.

They found that the measured effective bulk modulus can be fitted to the following

frequency-dependent expression:

B−1
eff = E−1

o

[
1− Fω2

0

ω2 − ω2
0 + iΓω

]
, [1.22]

where F is a geometrical factor, ω0 is the resonant angular frequency of the resonator

and Γ is the dissipation loss in the resonating Helmholtz elements. The loss term was

determined by a procedure in which the calculated transmission profile was fitted to

the transmitted spectral dip, giving a value of Γ = 2π × 400 Hz. A few years later, an

equivalent quasi-two-dimensional structure was studied in airborne sound with

similar conclusions [GAR 12]. The structure consisted of a square array of

cylindrical boreholes with equal radii (R) and depths (L) drilled in a flat rigid surface.

The theoretical profile fitted to the experimental data provided a value for the losses

Γ = 2π × 3.4 Hz. This value is extremely small in comparison with that obtained

using an 1D water waveguide with Helmholtz resonators.

To verify such small amount of losses, we have performed numerical simulations

using the BEM implementation described above. The boundary mesh is constructed

using the Gmsh meshing software [GEU 09]. The quadratic six-node elements are

represented in Figure 1.1. The dimensions of the structure correspond to what was

studied in [GAR 12]. The distance between vertical holes (lattice constant) is 30 cm.

They are drilled in an infinite 2D waveguide, which is assumed to carry an incident

plane wave. This condition is reproduced in the finite structure shown in Figure 1.1 by
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placing a moving piston on the emitting end. In addition, a boundary impedance of ρc
is defined at both emitting and receiving ends.

Figure 1.1. Schematic view of the modeling of an acoustic
metamaterial with effective bulk modulus negative. The BEM

mesh used consists of 2352 elements and contains 4706 nodes

Following the experimental setup, reflectance and transmittance are calculated

from the acoustic pressures (P1, P2, P3) recorded at three different positions (x1, x2,

x3) inside the waveguide; two at the emitting end, in front of the sample, and one at

the receiving end, behind the sample. The positions are, respectively, –15.07 cm,

–13.9 cm and 15.07 cm, measured from the sample center. The expressions for the

reflection and transmission coefficients are:

r(ω) =
P2e

−ik0x1 − P1e
−ik0x2

P1eik0x2 − P2eik0x1
, [1.23]

t(ω) =
P3

P2

e−ik0x2 − r(ω)eik0x2

e−ik0x3
e−ik0D, [1.24]

where k0 is the wavenumber in air and D is the effective thickness of the metamaterial,

which has been determined by considering that the surfaces are located at a half of the

distance of the layer separation. From the expressions above, it is possible to obtain

the reflectance R(ω) = |r(ω)|2 and transmittance T (ω) = |t(ω)|2. In addition, the

energy balance can be applied to obtain the absorptance A(ω) = 1− T (ω)−R(ω).
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Figure 1.2. Reflectance R(ω) and transmittance T (ω) of the single-negative acoustic
metamaterial shown in Figure 1.1. The curves correspond to calculations with no
viscothermal losses (black line), and with losses at two different scales: full (blue
line) and reduced to one-fourth (red line). The frequencies are given in reduced units
to represent all the spectra in a single plot. For a color version of this figure, see
www.iste.co.uk/romero/metamaterials.zip

Figures 1.2 and 1.3 show the reflectance, transmittance and absorptance spectra

calculated for the single-negative metamaterial under study. The calculations have

been performed with no losses and with viscothermal losses, the latter at two

different scales: full and reduced to one-fourth. The reasoning behind the scaling is

that viscous and thermal losses do not scale in the same way as the lossless

magnitudes. The absorptance for the structure without losses is not shown in Figure

1.3; its value is zero, with the precision of the calculation for all the frequencies,

proving that the balance of energy is correct in the calculations. The behavior of the

lossless structures does not change with the scale; the results are just shifted in

frequency. However, viscous and thermal boundary layers, as mentioned in section

1.2, have thicknesses that vary as f− 1
2 .

Results in Figure 1.2 support the previous simulations, based on the

mode-matching technique and the measured data reported in [GAR 12] (see its

Figure 1.4). Thus, the calculated spectra with no losses exhibit Fabry–Perot (FP)
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peaks (in the transmittance) and troughs (in the reflectance), which are a result of the

finite thickness of the metamaterial. Then, a stop band develops in the frequency

region (gray strip) where the effective bulk modulus takes negative values and,

therefore, the phase velocity is imaginary. When losses are considered, our

calculation shows that the FP peaks in the transmittance were strongly reduced and

even disappeared when they were experimentally observed. Similar behavior is

observed in the reflectance spectra, where the minima defining the FP resonances

practically disappear; only the first minimum is kept at both structures. Both the

reflectance and transmittance calculated profiles reproduce fairly well the

experimental data shown in Figure 4 of [GAR 12], corresponding to the larger

dimension. The reason explaining the strong reduction in the transmittance as the

frequency is approaching to the bandgap is the corresponding decreasing of the group

velocity, which produces an enhancement of the relatively small viscothermal losses.

Figure 1.3. Calculated spectra for the absorptance, A(ω), of the metamaterial shown
in Figure 1.1. Both curves correspond to calculations with viscothermal losses but using
structures with two different dimensions. Results obtained with the lattice period a = 30
cm (blue line) correspond to the sample studied in [GAR 12], while results obtained with
a = 7.5 cm (red line) correspond to a scaled-down structure to one-fourth of the original
dimensions. Frequencies are given in reduced units to represent both spectra in one
plot. For a color version of this figure, see www.iste.co.uk/romero/metamaterials.zip
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It is shown in Figure 1.3 that the absorptance has two maxima: one in the region

where the FP resonances are excited and another, located at about 0.096 reduced

units, where the imaginary component of the effective modulus has a maximum.

Thus, for this single-negative metamaterial, we can conclude that losses due to FP

resonances are more efficient in dissipating the incoming energy than that produced

by the monopole resonances that provoke the negative bulk modulus. This is not the

case for the double-negative structures as explained in section 1.4.

Figure 1.4. Schematic view of the structure studied in [GRA 13] as an
acoustic metamaterial with double-negative parameters. The BEM

mesh consists of 4810 elements and contains 9616 nodes

Regarding the dissipation loss Γ in the resonant elements, we have followed the

standard described in previous works [FAN 06, GAR 12]. When no losses are

considered, the fitting of Beff obtained from our BEM simulations to the profile in

equation [1.22] gives Γ ≈ 2π × 0.022. This value is smaller than confidence bounds

and therefore it can be considered zero within the numerical tolerance of the BEM

algorithm, as can be expected from the physical description. When losses are

considered, Γ ≈ 2π × 15.6, for the full structure, it indicates that our simulation

overestimated in about an order of magnitude the experimental data. For the structure

scaled down to one-fourth, Γ ≈ 2π × 127.3, about an order of magnitude larger. This

last result might lead to the conclusion that losses can be mitigated in metamaterials

by using samples with larger dimensions. As we will discuss below, this is not the
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case for a certain type of double-negative metamaterials, where an increase in their

dimensions does not guarantee a significant decrease in the absorption.

1.4. Viscothermal effects in metamaterials with double-negative
parameters

Metamaterials with negative mass density were earlier demonstrated using

structures made of metallic spheres embedded in an epoxy matrix [LIU 00]. A few

years later, the same group showed that an elastic membrane also provides a dipole

resonance, producing a negative effective dynamical mass [YAN 08]. In a further

advance, a composite medium consisting of a periodic array of interspaced

membranes and side holes was introduced to show that double-negative mediums can

be engineered [LEE 10]. In parallel, the demonstration that a 2D array of cylindrical

holes behaves like a metamaterial with an effective bulk modulus negative [GAR 12]

was soon accompanied by a theoretical proposal in which the negative mass density

was simultaneously obtained by adding a specifically designed cylindrical inclusion

[GRA 12]. However, its practical implementation was unable to demonstrate the

double-negative behavior [GRA 13]. It is shown below that viscothermal losses is the

reason justifying the disappearing of the expected property.

The double-negative metamaterial structure was simulated in [GRA 13] using an

FEM implementation with linear elements. The BEM boundary mesh used here is

shown in Figure 1.4 and it is constructed with quadratic triangular surface elements,

which adapt better to the curved features of the structure than their linear versions.

Figure 1.5 shows the transmittance spectra calculated for the two cases of

interest, with no losses (black line) and with viscothermal losses (blue line). The

experimental data reported in [GRA 13] (symbols) is also depicted for comparison.

When no losses are considered, note that the calculated spectrum exhibits FP peaks

not only in the regions where the acoustic parameters are positive (i.e. below

2.33 kHz and above 3.7 kHz) but also in the regions where both parameters are

negative, corresponding to the narrow frequency band from 2.33 kHz to 2.44 kHz. In

both cases, the phase velocities are positive. On the contrary, for the single-negative

regions, the transmittance is zero since the waves are evanescent. The FP peaks of the

simulation with losses corresponding to the low- and high-frequency passbands are

strongly attenuated due to viscothermal dissipation, and the resulting spectrum is in

fair agreement with the experimental data. In addition, note that FP peaks

corresponding to the double-negative passband completely disappear as a result of

the losses. This calculation leads us to conclude that the disappearance of the

double-negative band in the experimental spectrum is a consequence of viscothermal

losses, which are strongly enhanced by the low group velocity in the band.
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Figure 1.5. Transmittance spectra (T ) obtained for the double-negative metamaterial
shown in Figure 1.4. Results corresponding to BEM simulations with no losses (black
line) are compared with those including viscothermal losses (blue line). The symbols
represent the experimental data. The gray strips indicate frequency regions with
the single-negative behavior. The region in between the strips corresponds to the
double-negative band, which is shown in the inset. For a color version of this figure,
see www.iste.co.uk/romero/metamaterials.zip

In order to further discuss this effect, Figure 1.6 shows the frequency dependence

on the calculated absorptance. It is derived from the corresponding results for the

reflectance and the transmittance, which are also displayed in the figure. It is

observed that the absorptance has maxima at frequencies corresponding to the FP

peaks in the transmittance. Moreover, below the first bandgap, the absorptance

increases when approaching to the border of the band. We associate such increasing

with the corresponding decreasing of the group velocity, which approaches to zero

near the edge of the band. In other words, we should expect an enhancement of

viscothermal losses when the propagating wave has a low velocity. This conclusion

also applies to the double-negative band, whose dispersion relation is almost flat and,

therefore, where the group velocity has extremely low values [CUT 17b]. In fact, the

dissipation losses have paramount importance in the double-negative band since they

produce a total suppression of the transmitted signal (dashed line in the lower panel).

This extraordinary dissipation can be explained in terms of the monopole and dipole
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resonances, simultaneously excited at the positions of the metamaterial building

units. The excited resonances produce large oscillations of the pressure amplitude in

the resonators and at the positions of the scatterers whose boundaries contain sharp

corners and kinks. The strong viscothermal losses induced by these types of

resonators and scatterers are even enhanced by the extraordinary small group

velocity, which completely dissipates the energy of the transmitted wave inside the

metamaterial slab.

Figure 1.6. Frequency dependence on the absorptance (A) of the double-negative
metamaterial shown in Figure 1.4. Results corresponding to reflectance (R) and the
transmittance (T , dashed) are also displayed for comparison. The region between
gray strips defines the double-negative band. For a color version of this figure, see
www.iste.co.uk/romero/metamaterials.zip

To obtain a better physical insight of the phenomena discussed above, we have

performed series of BEM simulations studying the transmission along the

metamaterial slab at several frequencies. Particularly, we have comprehensively

analyzed frequencies corresponding to FP resonances where the effects of losses are

greatly enhanced. Two representative examples, corresponding to the frequencies

indicated by arrows in Figure 1.6, are reported below.

Figures 1.7(a) and 1.7(b) present snapshots of a sound wave with frequency

1675 Hz propagating along the double-negative metamaterial structure shown in

Figure 1.4. This frequency corresponds to a FP peak within the first passband; it is
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defined by the left arrow in Figure 1.4. The black dots give the pressure values along

the 2D waveguide. For a given position x, the dots represent different values of the

pressure in the corresponding y-z plane; for example, inside the air cavities of the

metamaterial or on the scattering units. The comparison of both plots indicates that

the behavior of the propagating wave is basically the same for both cases, the main

difference being a moderate reduction of the pressure levels in the structure when

viscothermal losses are considered. According to Figure 1.6, about 4% of the

impinging energy is reflected and about 34% finally arrives to the end of the

metamaterial. Therefore, about 62% is dissipated by the structure due to viscothermal

losses.

Figure 1.7. Calculated pressure (in Pa) of a sound wave with frequency 1675 Hz that
propagates along the structure shown in Figure 1.4. Results are obtained using a BEM
implementation by considering: (a) no losses and (b) with viscothermal losses. The
yellow zone defines the limits of the metamaterial slab. The horizontal dashed lines are
guides for the eye, indicating the level of zero pressure

The propagating behavior of a wave with frequency 2380 Hz is shown in Figures

1.8(a) and 1.8(b). This frequency, indicated by the right arrow in Figure 1.4, belongs

to the narrow double-negative band. In comparison with the results obtained for the

frequency belonging to the double-positive band, two main differences are

noticeable. First, in the case of no losses, the pressure values inside the air cavities

increase significantly due to the simultaneous excitation of the monopole and dipole

resonances. And second, in the case of losses, it is observed that dissipation effects
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suppress the traveling wave in just a couple of metamaterial rows. As previously

discussed, this dramatic attenuation is a consequence of the viscothermal losses

locally produced in the metamaterial units, which are strongly enhanced by the

extremely low group velocity of the propagating wave.

Figure 1.8. Calculated pressure (in Pa) of a sound wave with frequency 2380 Hz that
propagates along the structure shown in Figure 1.4. Results are obtained using a BEM
implementation by considering: (a) no losses and (b) with viscothermal losses. Note
the different vertical scaling. The yellow zone defines the limits of the metamaterial
slab. The horizontal dashed lines are guides for the eye, indicating the level of zero
pressure

A course of action for avoiding the suppression of the transmitted signal for

waves belonging to the double-negative band could be increasing the dimensions of

the structure by scaling it up. It was previously shown that the single-negative

structure studied in section 1.3 exhibited a lower absorptance with increasing

dimensions of the sample. In addition, this behavior was practically independent of

the frequency. This is particularly true for frequencies in the passbands, where the

transmitted signal could be recovered by increasing the scale factor. For the

double-negative material, an easy calculation indicates that the viscous boundary

layer, δv , and the thermal boundary layer, δκ, are only 2.3% and 2.7%, respectively,

of the minimum separation between building units in the metamaterial slab (1.8 mm).

We can further reduce the thickness of the boundary layers in relation to the smallest

separation between scatterers by simply applying a scale factor to all the dimensions.
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To this end, BEM simulations are conducted for slabs with scale factors from 1 to 20,

corresponding to effective lengths of the metamaterial slab from D = 127.5 mm to

D = 2.55 m. In the case of no loss, the calculated profiles of the transmittance

spectra are the same at any scale, but are shifted in frequency by the corresponding

scale factor. However, when the viscothermal effects are included, the spectra do not

scale in the same way due to the frequency dependence on the viscous and thermal

boundary layers, which are inversely proportional to
√
f .

Figure 1.9. Behavior of the transmittance (T), reflectance (R) and absorptance (A) as
a funcion of the scale factor applied to the double-negative metamaterial shown in
Figure 1.4. BEM simulations with viscothermal losses (blue lines) are compared with
that obtained without losses (black lines). The left panels correspond to the frequency
1675 Hz, inside the first double-positive passband. The right panels corresponds to
the frequency 2380 Hz, inside the double-negative band. The symbols define the
separated contribution of viscous (circles) and thermal (triangles) losses. For the
frequency 1675 Hz, corresponding to a FP peak, the case of no losses gives T = 1,
R = 0 and A = 0, which are not shown in the plot

Figure 1.9 reports the transmittance, reflectance and absorptance as a function of

the scale factor applied to the structure shown in Figure 1.4. They are calculated at

the two frequencies of interest here, 1675 Hz and 2388 Hz, corresponding to FP

peaks inside the double-positive and double-negative passbands, respectively.
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This figure also shows the corresponding results when only viscous losses (triangles)

or thermal losses (circles) are considered. Two different behaviors are clearly

observed. For the FP peak corresponding to 1675 Hz, the scale factor plays a

fundamental role in order to reduce the absorptance due to losses; lower dissipation

is obtained for larger sample dimensions. Consequently, the transmitted signal is

greatly enhanced. It is also observed that viscous losses are the main cause of

dissipation taking place in the structure. For the frequency of 2380 Hz, inside the

double-negative band, it is shown that the absorption decreases very slowly; in fact,

when the dimension increases in a factor of 20, the absorptance only decreases by

9%. The values of the transmittance also indicate that practically a 100% of the

energy entering in the metamaterial is dissipated by viscothermal losses.

In summary, we have comprehensively studied the viscothermal effects on two

different quasi-2D metamaterial structures. Results have been reported using a BEM

numerical implementation of the problem including viscothermal losses, giving

results similar to an FEM implementation but with lower computational effort. For

the structure showing negative effective modulus [GAR 12], we have demonstrated

that the influence of losses is small and is lower than that measured in other

structures based on lattices of Helmholtz resonators embedded in water. Although the

results are not strictly comparable, the structures analyzed, consisting of monopole

resonances in drilled holes, seem to be appropriate to reduce the amount of losses.

The single-negative behavior is reproduced even in the presence of losses. For the

structure designed to exhibit effective bulk modulus and effective dynamical density

both negative [GRA 12, GRA 13], we have shown that the presence of losses makes

the observation of the properties associated with the double negativity unfeasible. In

addition, we have determined that viscous losses is the main factor explaining the

dissipation within this rigid material. Our simulations support the experimental

findings, which showed the absence of any of the expected properties [GRA 13]. For

this type of designed structures, the viscothermal losses are greatly enhanced due to

the large pressure oscillation associated with the excitation of the monopole and

dipole resonances, together with the extremely small group velocities of the traveling

waves with frequencies within the double-negative band. It is proposed that any

artificial structure aimed at having double-negative behavior should be designed

taking into account viscothermal losses.
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2

Locally Resonant Metamaterials
for Plate Waves: the Respective

Role of Compressional Versus
Flexural Resonances of a Dense

Forest of Vertical Rods

Recent experimental and numerical studies have shown that at the geophysics

scale, locally resonant metamaterials have potential future applications to seismic

engineering. To pursue investigations in geophysics with media that are mostly

unknown and heterogeneous, more understanding is needed in terms of the

interactions between surface waves with different polarization and the various types

of resonance of a unit cell of a metamaterial. Benefiting from an analog experiment at

the laboratory scale, this chapter revisits the interactions between plate Lamb waves

and a cluster of long vertical rods – with easy-to-identify compressional and flexural

resonances – attached to it. Through densely sampled spatial measurements,

particular attention is paid to the analysis of the complex wavefield that results from

this combination of resonances, on the dominant Lamb wave mode in the plate.

2.1. Introduction

Locally resonant metamaterials derive their effective properties from

hybridization between their resonant unit cells and the incoming wave

[ACH 13, CHR 12, COW 11, FAN 06, GUE 07, LEM 11, LEM 13, LER 09, LIU 00,

PSA 02, RUP 14]. This phenomenon is well understood for waves that propagate

in media where the unit cells respect the symmetry of the incident field
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[PEN 99, SMI 00]. However, in many systems, such as a set of vertical rods that

interact with plate waves, or a pine tree forest that interacts with surface seismic

waves, several modes with orthogonal symmetries can coexist at any given

frequency, while the resonant unit cells themselves can support different types of

resonance [RUP 15, RUP 17].

In this chapter, we revisit metamaterial physics at the mesoscopic scale. At the

seismic scale, recent studies have demonstrated that trees can behave as seismic

resonators with flexural and compressional resonances, whereby a forest of trees

represents a seismic-scale candidate for a locally resonant metamaterial for surface

waves [BRÛ 14, COL 14, COL 16a, COL 16b, COL 16c, ROU 18]. Spatial sampling

in the METAFORET experimental configuration (for details, see: https://metaforet.

osug.fr/) was performed with a dense array of geophones in and around a pine forest

with a typical scale of the order of 100 m (Figure 2.1(a)). Mostly surface waves

were excited by a vibrometer, with controlled and programmable source signals

with horizontal and vertical polarizations that coupled with both flexural and

compressional resonances. The goal of the experiment was to establish a link

between seismic-relevant scales and microscale and mesoscale studies that pioneered

the development of metamaterial physics in optics and acoustics. The main results of

the METAFORET experiment were the presence of frequency bandgaps for Rayleigh

waves associated with compressional and flexural resonances of the trees, which

confirmed the strong influence that a dense collection of trees can have on the

propagation of seismic waves [ROU 18].

However, the seismic experiment also indicated the need to better understand the

respective roles of these resonances on the wavefield pattern in the context of

metamaterial physics. We thus proceed by analogy in the current chapter, going back

to the case at the laboratory scale, as a dense set of vertical rods attached to a plate

with typical length now of the order of 1 m (Figure 2.1(b)). In the context of a locally

resonant metamaterial, the plate-plus-rod system allows the study of the respective

roles of flexural and compressional resonances on the hybridization of the plate

waves, as these resonances induce a break in the orthogonality between the Lamb

wave modes of the free plate.

The chapter is organized as follows. Section 2.2 describes the experimental set-up

at the laboratory scale. In section 2.3, the field pattern issued from point-like sources

located either inside or outside the metamaterial is analyzed and discussed in the

framework of a simplified theoretical approach, where only one type of Lamb waves

in the plate and one type of resonance of the rods (i.e. compressional resonance) are

considered. The complete wavefield pattern is discussed in section 2.3, and the role

of flexural resonances of the rods is magnified through different examples.

https://metaforet.osug.fr/
https://metaforet.osug.fr/
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Figure 2.1. Examples of locally resonant metamaterials at different scales for
seismo-elastic waves. (a) Seismic deployment (yellow dot) at the interface between
a free field and a dense pine tree forest. (b) Squared area of a random arrangement of
vertical metallic rods glued to a thin aluminum plate. (c) Mechanical similitudes of the
unit resonant cell for both systems, with their respective frequency bands of interest.
For a color version of this figure, see www.iste.co.uk/romero/metamaterials.zip

2.2. Experimental configuration of the metamaterial at the laboratory
scale

Throughout this study, analogy is made between the METAFORET seismic

experiment and this laboratory scale experiment, as a “forest” of 61 cm long, 6 mm

diameter vertical rods attached to a thin metallic plate (Figure 2.1; for a more general

description, see Roux et al. [ROU 17]). Unlike the seismic configuration, the rods

and plate are made of the same material, which provides perfect coupling for wave

propagation. At low frequencies (< 10 kHz), the 6 mm width plate supports two

types of waves known as the symmetric and anti-symmetric modes, as S0 and A0

[ROY 00]. In practice, the A0 waves are mostly vertically polarized and can be

characterized by out-of-plane (vertical) displacement, while in-plane (horizontal)
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displacements in the plate are described by the S0 waves. A few point-like piezo

sources located either inside or outside the metamaterial are attached to one side of

the plate, and these mostly excite A0 Lamb waves. The spatial arrangement of the

rods is random, and the average distance d between rods is such that 10 < d/λ < 4,

where λ is the A0 wavelength in the plate over the frequency band of interest.

With this experimental configuration, only the out-of-plane wavefield can be

measured on the plate, through a motorized laser vibrometer that covers a large

surface inside and outside the metamaterial area, as schematically shown in

Figure 2.2. The received signals are highly dispersed because of reverberation at the

plate boundaries. Attenuation in the metallic plate is low for the A0 waves. The

billiard-table shape of the plate makes the field spatially random after a few

reverberations from the plate boundaries. As will be shown later, these reverberations

are of great importance for both array analysis and frequency–time analysis of the

received signals in the metamaterial.

This laboratory scale configuration allows us to carefully study the roles of the

flexural and compressional resonances inside the forest of rods for the out-of-plane

wavefield measured on the plate surface. In the [1 kHz, 10 kHz] frequency

bandwidth, the wave propagation in the complex plate-plus-rod system deals with S0

and A0 modes in the free plate and two types of resonance – flexural and

compressional resonances – that should mostly couple with the S0 and A0 waves,

respectively.

In parallel with the experimental work, numerical simulations performed with

three-dimensional elastic finite-element code in the plate-plus-rod metamaterial

confirm that when a vertical force with out-of-plane polarization excites the 6 mm

width metallic plate, there is almost no energy in the S0 mode [COL 14]. This means

that to a first approximation, the potential conversion of the excited A0 waves to S0

modes upon scattering of the resonating beams can be neglected in this plate-plus-rod

configuration.

We expect things to be very different with a thinner (i.e. more flexible) plate, where

both in-plane and out-of-plane wavefield components can be excited through bending

and flexural moments at the interface between the plate and the rods. In such a case,

both flexural and compressional resonances can modify the bandgap structure, which

would require the addition of the in-plane component to the theoretical approach, as

described by Colquitt et al. [COL 17].

In Figure 2.2(i), the spatially averaged Fourier spectra measured both outside and

inside the disordered metamaterial reveal two wide bandgaps, which start at 2 kHz

and 6 kHz. Rupin et al. [RUP 14] showed that the shape and intensity of the bandgaps

are independent of the random organization of the rods. As expected, when calculated

in the passband, the spectral intensity of the reverberated fields is similar inside and

outside the metamaterial.
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Figure 2.2. Experimental set-up at the laboratory scale. A piezo-electric point-like
source (a) generates A0 Lamb waves in the aluminum plate. The particle velocity
(b) is measured using an out-of-plane laser Doppler velocimeter (c) attached to a
PC-controlled (d) motorized robot arm (e). The spatial cover of the robot onto the
plate is shown in red (f). The metamaterial (g) is made of 100 vertical rods glued
to the opposite side of the plate (black square). The Fourier analysis of the strongly
reverberated wavefield (h) measured on the plate surface either inside (in blue) or
outside (in red) the forest of rods shows both wide frequency passbands and stopbands
where no energy penetrates inside the metamaterial (i). For a color version of this
figure, see www.iste.co.uk/romero/metamaterials.zip

2.3. Interpretation of dispersion curve restricted to the rod
compressional resonances

Taking advantage of the spatially uniform two-dimensional sampling of the

wavefield in the metamaterial region, the effective properties of the wave propagation

of the A0 Lamb waves inside the metamaterial were described by Rupin et al.
[RUP 14] in the following way. Considering successive time windows associated
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with long-term reverberations, and when filtered in a small bandwidth, the averaged

spatial Fourier transforms of the field recorded inside the metamaterial revealed a

circle, which confirms the equi-distribution of the wave components for all possible

azimuthal directions. At each frequency, the circle radius gives an accurate measure

of the effective velocity inside the metamaterial, from which the dispersion curve can

be plotted (for more details, see Figure 6.6 in Roux et al. [ROU 17]).

In the present study, we proceed differently. We calculate the ensemble-averaged

two-point correlation function C(ω, dr) at pulsation ω, and for all possible receiving

points separated by distance dr inside the metamaterial. The two-point correlation

functions are calculated between points −→r and −→r +d−→r inside the metamaterial area:

CT (ω, d
−→r ) = 〈ΨT (ω,

−→r )Ψ∗
T (ω,

−→r + d−→r )〉−→r
〈| ΨT (ω,

−→r ) |2〉−→r
, [2.1]

where ΨT (ω,
−→r ) is the field measured from the laser vibrometer at pulsation ω for

a finite-duration recorded window of duration ΔT , starting at time T . We then take

advantage of the equi-distribution of the spatial wavefield inside the ergodic cavity-

like plate, by averaging the two-point correlation over all azimuth θ:

CT (ω, d
−→r ) = 〈CT (ω, d

−→r )〉θ. [2.2]

Finally, we also benefit from the long-term reverberation of the wavefield inside the

plate to select as many time windows T as are available, each of which is interpreted

as a different source realization for the two-point correlation function:

C(ω, d−→r ) = 〈CT (ω, d
−→r )〉T . [2.3]

Thus, the ensemble-averaged two-point correlation function results from three

different averaging process: (1) from the set of positions (x, y) of all of the receiving

points inside the metamaterial from which inter-distances dr are calculated; (2) from

a set of five piezo-sources located outside the metamaterial area; and (3) from the

long reverberation time T of the strongly reverberated wavefield inside the cavity. In

practice, we choose ΔT = 10 ms, which is small compared to the total reverberation

time of the cavity (> 250 ms), and T expands from 10 ms (for the wave mixing to be

sufficient) to 250 ms (where ambient noise starts to dominate).

The real part of the two-point correlation function C(ω, dr) is plotted in

Figure 2.3(a) at frequency f = 5000 Hz, and for all frequencies inside and outside

the metamaterial in Figure 2.3(b, c). In Figure 2.3(b), the normalization coefficient

calculated for the denominator of equation [2.1] is plotted (black line) from the
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averaged intensity measured from all receiving points inside the metamaterial. This

explains why it reaches higher values in the passband (where the wavefield

propagates inside the metamaterial) than in the stopband (where almost no energy

penetrates into the metamaterial).

Figure 2.3. (a) Real part of the averaged two-point correlation function (normalized)
measured at 5 kHz for all of the receiver pairs located inside the metamaterial region
(blue). The modeled plate Green’s function is plotted in red. (b) Averaged two-point
correlation versus frequency measured inside the metamaterial (c) and outside the
metamaterial. The black line in (b) corresponds to the averaged intensity versus
frequency measured inside the metamaterial. For a color version of this figure, see
www.iste.co.uk/romero/metamaterials.zip
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We then model C(ω, dr) calculated in the passbands with the two-dimensional

Green’s function for an infinite plate G0(ω, dr) defined from the Bessel and Hankel

functions of the second kind [FAH 04] as:

C(ω, dr) ∝ G0(ω, dr) = H
(2)
0 (kBdr)− i

2

π
K0(kBdr), [2.4]

where keff = ω/ceff is the effective propagating wavenumber of the A0 waves with

effective velocity ceff = �(ceff ) + i�(ceff ). In practice, �(ceff ) corresponds to

the effective velocity for wave propagation, and �(ceff ) is linked to the scattering

attenuation (as the intrinsic attenuation is negligible here), and provides a

measurement of the elastic mean free path
| ceff |2
ω�(ceff ) , which is classically defined in

a multiple scattering field theory as the attenuation of the coherent wavefield

[DER 01a, DER 01b]. In Figure 2.4(a), the wave propagation properties in the

passband of the metamaterial are summarized as a single dispersion curve (blue dots)

computed as k̃eff = �(keff ) = ω�(ceff )
| ceff |2 . The dispersion relations of the A0 Lamb

mode calculated with the same procedure outside the metamaterial area are

superimposed for comparison (purple dots). The mean free path l in the passband

(not shown) is much larger than the effective wavelength, as k̃eff l � 1 , which

confirms that no scattering attenuation pollutes the wavefield in this frequency band.

In recent years, we have developed an analytical approach to describe the physics

properties of multi-resonant metamaterials for Lamb waves propagating in plates (see

[WIL 15]). This theoretical approach neglects the in-plane wavefield component

(which cannot be measured by the laser vibrometer) and the flexural resonance of the

rods. The metamaterial consists of a 10 × 10 uniform, periodic array of long rods

attached to the surface of a plate that forms the substrate in which anti-symmetric A0

Lamb waves are excited. It was then shown that the A0 Lamb wave propagation

through the metamaterial can be accurately modeled using a simplified approach that

replaces the two-dimensional array with an one-dimensional beam with a linear array

of 10 rods. The wave propagation problem is solved rigorously for this

one-dimensional system by formulating a scattering matrix at a single rod, found

from the boundary conditions at the rod/beam interface, and including both

evanescent and propagating waves in the beam. To predict the transmission through

the linear array of rods, this scattering matrix is used to set up an eigenvalue problem,

along with the boundary conditions between the adjacent unit cells. The eigenvalues

are determined exactly, and then they are approximated to a long wavelength

expansion to determine the simple expression for the effective wavenumber keff :

keff = kp

[
Mb

M

tan(kbLb)

kbLb
+ 1

]1/4
. [2.5]
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In equation [2.5], kp is the A0 wavenumber in the free plate, Mb is the total mass

of a rod, and M is the mass of the L × L plate area, where L = 2 cm corresponds

to the averaged inter-rod distance, with Mb/M = 8.02 in the present configuration.

Finally, the rod length is Lb = 61 cm, and we have kb = ω/cb with cb defined as

the non-dispersive wave velocity in the rod, calculated from Young’s modulus Eb and

density ρb, such that cb = 5055 m.s−1.

The dispersion relation shows bending and anti-bending branches that are modeled

through a tangential dependence on the rod length. Both the rod length and the additive

mass on the plate drive the hybridization effect of this locally resonant metamaterial.

Figure 2.4. Frequency–wavenumber representation of the plate-plus-rod system.
(a) The dispersion curves are obtained for a source outside the metamaterial, and
are computed from the averaged two-point correlation function inside (blue dots) and
outside (gray dots) the metamaterial region. Theoretical results are represented with
solid purple (passband) and yellow (stopband) lines. (b) The attenuation inside the
second bandgap is computed from a source located within the metamaterial region.
The inset shows the real part of the wavefield at frequency f = 6400 Hz for every
receiver, as a function of the distance to the source. For a color version of this figure,
see www.iste.co.uk/romero/metamaterials.zip

In Figure 2.4(a), the modeled dispersion relation (purple line) is compared to the

experimental dispersion curve (blue dots) inside the metamaterial, as calculated from
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C(ω, dr), with excellent agreement demonstrated. When the set of multi-resonant

rods is restricted to compressional vibrations that have similar polarizations as the A0

Lamb wave out-of-plane displacements in the plate, this produces two wide stopbands

in the frequency domain from 0 kHz to 10 kHz. Note that the stopband and passband

boundaries depend on the minima and maxima of the rod impedance (Figure 2.5(c)),

calculated as a vertical force on the plate, as shown by Williams et al. [WIL 15]:

Zb = −iρbAbcb tan(kbLb) [2.6]

where Ab is the cross-section of one rod.

To confirm this result, the rod response is measured at the tip of a single rod that

is attached to the plate but isolated from the metamaterial (Figure 2.5(a)). One

accelerometer is attached at the tip of the rod to measure the vertical displacement of

the field inside the rod (black arrow). The flexural motion of the rod is measured

using a laser vibrometer that is horizontally directed towards the rod tip (red arrow).

A set of three accelerometers are glued to the plate at the bottom of the rod to

deconvolve the plate motion from the rod response.

When excited by a piezo source attached to the plate in the far field, the rod

response shows both low-Q compressional resonances measured from the vertical

motion captured at the accelerometer, and high-Q flexural resonances measured from

the horizontal motion recorded by the laser vibrometer (Figure 2.5(b)). COMSOL

simulation was performed for a single rod attached to the free plate, and this provides

the modal deformation both along the rod and on the plate at three frequencies close

to the flexural or compressional resonances (Figure 2.5(d–f)). Two observations can

be made from these numerical simulations. First, the modal deformations of the

single rod in Figure 2.5(e, f) are in agreement with the forced free-impedance

calculations (equation [2.6]) obtained in the framework of the theoretical approach

(Figure 2.5(c)) led by Williams et al. [WIL 15], which confirms the point-like normal

force behavior of each rod of the metamaterial on the plate at these frequencies.

Second, the plate deformation is maximal at a frequency close to the start of the

passband (i.e. compressional resonance; Figure 2.5(e)) and minimal at a frequency

close to the start of the stopband (i.e. compressional anti-resonance; Figure 2.5(f)).

When generalized to the metamaterial behavior, the plate would appear to be

clamped (i.e. no displacement) at the start of the bandgap, and on the contrary, the

plate would be allowed to move freely (i.e. maximum displacement) at the start of the

passband. Again, this is in agreement with the general wave phenomena observed

with the plate-plus-rod system.
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Figure 2.5. Impedance and mechanical coupling of a single rod attached to the plate.
(a) Instrumentation of a single rod for longitudinal (black arrow) and flexural (red
arrow) motion. (b) Spectrum motion of a single rod, the out-of-plan motion is shown
in black and the in-plan motion in red. (c) Driving point impedance calculation at the
base of a single rod attached to the plate, when the rod displacement is limited to
longitudinal (vertical) motion. (d–f) Bloch-waves polarization obtained from COMSOL
simulation for a single rod attached to a plate, and extracted at different frequencies
close to the compressional or flexural resonances. For a color version of this figure,
see www.iste.co.uk/romero/metamaterials.zip

When compared to the dispersion curve in Figure 2.4, we observe that the

bandgap starts almost at the anti-resonance and ends almost at the resonance of the

rod impedance, as expected from equation [2.5]. The “almost” here is determined by

the distance between the beams (or more precisely, the average square root of the

mean surface occupied by a beam in the metamaterial) and the mass of the beam Mb,

through the Mb/M ratio in equation [2.5]. At the anti-resonance (Figure 2.5(e)), the
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plate appears to be clamped by the collection of rods, and no motion is allowed in

the metamaterial region, which defines the start of the bandgap. On the contrary, the

plate motion induced by the bar is maximal at the resonance (Figure 2.5(d)), which

means that the metamaterial no longer prevents the propagation of A0 Lamb waves in

the plate.

In a second step, the piezo source is placed at the center of the metamaterial to

better understand and characterize the wave propagation in the frequency bandgap

(Figure 2.6(a)). As shown in Figure 2.1, for a source outside the metamaterial, the

average spectral intensity is computed over the whole frequency bandwidth for the

source inside (Figure 2.6(b)). In the stopbands, the spectral intensity is now higher

inside the metamaterial. Note also the presence of spectral peaks in the stopbands

that correspond to the flexural resonances of the rods, the importance of which in the

complete description of the plate-plus-rod system will be discussed in section 2.4.

Figure 2.6. Radiated field from the source inside the metamaterial (black square)
together with where the energy averaging is performed (blue, red circles). (b) The
averaged energy inside the metamaterial region (blue) and the averaged energy
transmitted outside the metamaterial region (red). For a color version of this figure,
see www.iste.co.uk/romero/metamaterials.zip

In Figure 2.7, the field pattern is plotted at frequency f = 6400 Hz (inside the

stopband, but distant from flexural resonance) when the source is located either

outside or inside the metamaterial. For the source located outside the metamaterial

(Figure 2.7(a)), the spatially uniform speckle pattern carries the footprint of the

wavefield reverberation in the finite-size plate, and as expected, no field penetrates

inside the metamaterial.
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Figure 2.7. Spatial representation of the Fourier transform (real part) of the wavefield
at f = 6400 Hz. The spatial sampling in the x and y directions is 8 mm, and the source
is located outside the metamaterial (black square). (b) As for (a), with the source inside
the metamaterial. (c) New experiment restricted to the metamaterial region (red dashed
square in (b)) with a source at the same position and a spatial sampling in the x and
y directions of 4 mm. The source behaves as a monopole in the stopband. For a color
version of this figure, see www.iste.co.uk/romero/metamaterials.zip

This confirms the isotropic behavior of the metamaterial with a random distribution

of rods at the subwavelength scale. When the source is located inside the metamaterial

(Figure 2.7(b)), the wavefield intensity is trapped around the source position in r0 as

an evanescent wave, and as confirmed from the spectral intensity in Figure 2.6(b),

no energy escapes from the metamaterial. A new experiment was performed with a

finer spatial sampling, as in Figure 2.7(a, b) (Δx = Δy = 8 mm in Figure 2.7(a, b);

Δx = Δy = 4 mm in Figure 2.7(c)) on a zone restricted to the metamaterial area

(Figure 2.7(c)).

In Figure 2.4(c), the real part of the wavefield is plotted as a function of the

distance to the source in r0 at frequency f = 6400 Hz. In the absence of

reverberation, this function is modeled as the two-dimensional Green’s function for

the plate, as calculated previously (equation [2.4]), with dr =| −→r − −→r 0 |. As

evanescent waves dominate the wavefield around the source, we now have k̃eff l ∼ 1,

which means that the attenuation length inside the metamaterial is larger than the

wavelength of the propagating waves. In practice, Williams et al. [WIL 15] predicted
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from their theoretical approach that k̃eff =| �(keff) |=| �(keff ) | in the stopband,

which is confirmed by our experimental results obtained with a source inside the

metamaterial (Figure 2.4(b)). Note, however, that the presence of flexural frequencies

disrupts the match of the experimental wavenumber results for k̃eff with the

theoretical approach limited to A0 Lamb waves interacting with compressional

resonances.

2.4. The role played by flexural resonances of the rods

As the main physical properties of the locally resonant metamaterial have been

explained from the coupling of the vertically polarized A0 waves and compressional

resonances in the rod, what might be the role of the flexural resonances in the

complete description of the plate-plus-rod complex wave system? To define this, the

same experiment was performed with a plate of width h = 2 mm (instead of

h = 6 mm previously), with a finite bandwidth approach limited to the first bandgap

between 0.5 kHz and 5 kHz (Figure 2.8). As the plate stiffness varies as h3, the

wavefield on the 2 mm plate is expected to be more sensitive to bending motions

induced by the vertical rods on the plate [ROU 17, RUP 15]. This effect is clearly

observed for the dispersion curve k̃eff measured inside the forest of rods attached to

this plate with lower stiffness (Figure 2.8(b)). Sub-bending and sub-anti-bending

branches are observed in the previously defined passbands (< 2 kHz, >4 kHz) at

each flexural resonance of the rod, which means that the flexural motion of the rods

can no longer be omitted from the interpretation of the dispersion curve. In a similar

way, we also observe that flexural resonances lead to transmission bands inside the

main bandgap, which means that waves can both penetrate and escape from the

metamaterial region using the coupled in-plane/out-of-plane bending motion induced

at the points where the rods are attached to the plate (Figure 2.5(d)).

These two effects are illustrated for the experimental results given in Figures 2.9

and 2.10. The wavefield at frequency f = 6700 Hz inside one stopband is shown in

Figure 2.9(a, b) for two separate experiments with point-like sources located inside

the metamaterial. In Figure 2.9(b), the source is located at the same position as in

Figure 2.7(c). Compared to Figure 2.7(c), where only local evanescent waves were

observed, the presence of a flexural resonance frequency of the rods at f = 6700 Hz

(see Figure 2.5(b)) completely modifies the wavefield pattern. First, the wavefield is

no longer trapped inside the metamaterial, and we observe some energy leakage

outside the metamaterial, as expected from the averaged spectral density shown in

Figure 2.6(b). Second, the wavefield around the source behaves as a dipole instead of

a monople, as previously observed for the bandgap only 300 Hz away (Figure 2.7

(b, c)). This dipolar pattern is in agreement with the flexural deformation of the rods

that is excited by evanescent waves emitted by the source inside the metamaterial that

favor a bending motion of the plate (Figure 2.5(d)).
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Figure 2.8. Influence of plate stiffness on the coupling between the rods and the plate
at flexural resonances. (a) Dispersion curve obtained experimentally with h = 6 mm
wide plate. (b) As for (a), with an h = 2 mm wide plate on a restricted part of the
frequency spectrum (red dashed square in (a)). For the thinner plate, the plate-plus-
rod system shows a stronger interaction with the flexural resonances of the rods,
inside and outside the frequency bandgaps. For a color version of this figure, see
www.iste.co.uk/romero/metamaterials.zip

No interpretation of the shape of the dipole can be given at this stage, as this

probably depends on the local (but random) organization of the rods around the local

source. Note that this dipolar pattern can be observed at each flexural resonance

frequency of the rods inside the stopband. In other words, since the out-of-plane A0

type mode is forbidden inside the metamaterial, the low-amplitude flexural waves

locally excited by evanescent waves at the rod/plate interface can now be observed

with an obvious propagation from rod to rod that finally results in a leakage outside

the metamaterial region.

A similar effect is shown in Figure 2.10. The source is either located inside or

outside the metamaterial (as in Figure 2.7), and we choose to display the wavefield at

f = 6125 Hz, which corresponds to the start of the stopband (expected at

f0 = 6190 Hz according to the theoretical prediction of Williams et al. [WIL 15]).

The wavefield intensity should be very low at this frequency, as attenuation

dominates in this frequency band (Figure 2.4(b)) and the plate behaves as if it is

clamped by the rod anti-resonance (Figure 2.5(e)). However, as there is one flexural

resonance frequency of the rods nearby (Figure 2.5(b)), some of the energy still
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penetrates into the metamaterial and traverses it from one side to the other. As shown

in Figure 2.10(a), the energy flux into the metamaterial appears to be transported

from rod to rod through evanescent waves generated at the rod/plate interface. Note,

however, that these trapped waves are not observed approximately f = 2050 Hz at

the start of the first stopband, where there is no flexural resonance frequency.

Figure 2.9. Spatial representation of the Fourier transform (real part) of the wavefield
at f = 6700 Hz. (a) The wavefield pattern shows energy leakage in a stopband
through one flexural resonance. The source is located inside the metamaterial (black
square) and the spatial sampling in the x and y directions is 8 mm. (b) New experiment
restricted to the metamaterial region (red dashed square in (b)) with better spatial
sampling (4 mm). The source behaves as a dipole at the flexural resonance of the
rods. For a color version of this figure, see www.iste.co.uk/romero/metamaterials.zip

When the source is located inside the metamaterial, exactly the same field pattern

is measured (Figure 2.10(b)), which confirms that this localized mode can exist

independent of the source excitation. In the past, similar localized modes have been

observed for microwaves scattered by dense and random distributions of

local dielectric scatterers [LAU 07, MOR 07]. These results appear to constitute

the unambiguous signature of the existence of strongly localized modes in

two-dimensional locally resonant metamaterials.
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Figure 2.10. Spatial representation of the Fourier transform (real part) of the wavefield
at f = 6125 Hz. The wavefield pattern demonstrates energy leakage at the edge
of a stopband at f = 6125 Hz for a source located either outside (a) or inside
(b) the metamaterial. Note that the localized mode shape inside the metamaterial (black
square) is independent of the source location. For a color version of this figure, see
www.iste.co.uk/romero/metamaterials.zip

Finally, in Figure 2.11, we investigate the time-domain effects related to the

different quality factors of the flexural and compressional resonances of the rods. As

shown in Figure 2.11(b) (green), compressional resonances have low Q-factors,

which mean that they re-inject the energy that they capture on short time scales.

Indeed, compressional resonances correspond to a vertical velocity in the rod that

easily couples with the vertically polarized A0 Lamb mode in the plate. On the

contrary, flexural resonances show high Q-factors (Figure 2.11(c), green), which

means that flexural vibrations are trapped in the rod for longer times before this

energy is fully radiated back into the plate. Time–frequency analysis of the signals

recorded inside the metamaterial confirms these results. The spectrogram in Figure

2.11(a) shows, for example, that at late recording times, there is still higher wavefield

intensity around flexural resonances. Moreover, when the dispersion curve is

calculated for a finite duration time window in the early part of the recordings, we

retrieve the dispersion curve associated with compressional resonances, as described

in Figure 2.4(a). However, when the dispersion curve is computed from the same

time window shifted to a later reverberation time, the role of the flexural resonances
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becomes dominant, in agreement with the theoretical predictions from Colquitt et al.
[COL 17] for a full-elastic plate-plus-rod system (Figure 2.5(b, c), blue and red

dotted lines).

Figure 2.11. Frequency–time dependence showing the rod resonance contributions
to the wavefield. (a) Spectrogram of a signal recorded inside the metamaterial
region. (b) Spatial Fourier transform of the wavefield at an early time of propagation
(blue colored time window 1 in (a)). The blue dotted line is the predicted
dispersion relation for the out-of-plane polarization. (c) Spatial Fourier transform
of the wavefield for the late reverberation time (red colored time window 2 in
(a)). The red dotted line is the predicted dispersion relation for the in-plane
polarization. The associated compressional or flexural motions of the rods are
shown in green and are superimposed on the selected time windows, together with
relevant examples of modal deformation. For a color version of this figure, see
www.iste.co.uk/romero/metamaterials.zip

This frequency–time analysis helps to separate the effects due to compressional

resonances from those due to flexural ones. For example, approximately f = 6125
Hz, the energy leakage inside the metamaterial (Figure 2.10(a)) mostly appears after

100 ms of propagation, which represents the time needed to load the high quality

factor of the flexural resonance. On the contrary, the monopole created by the source

inside the metamaterial at approximately 6400 Hz (Figure 2.7(b)) is instantaneous,

and so it should be associated with the low quality factor compressional resonance.
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2.5. Conclusion

In this chapter, we have experimentally revisited the multimodal interactions of an

aluminum beam “forest” glued on a thin elastic plate. This multi-resonant medium is

a laboratory scale analog of a real forest, which can behave as a seismic metamaterial.

For both systems, the resonant cell supports compressional or flexural resonant modes,

which interact differently on the wave substrate. Studying the laboratory system gives

some clues to the mechanical signature of such a system.

For longitudinal resonances, the driving point impedance of a single rod dictates

the homogenized behavior of the aluminum forest. The bandgap and the highly

dispersive curve inside the passband are the two main features of this metasurface.

Using different source locations inside and outside the rod forest helps to quantify

these effects. On top of this behavior, the high quality factor flexural resonances add

some disturbances, like bandgap leakage with outlandish spatial distribution of the

energy.

Finally, the time dependence of the system is studied through short window

analysis of the reverberating coda. Directly related to the quality factor of each

resonance, we have shown that the hybridization of the flexural waves inside the

metamaterial evolves over space and time.
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3

Slow Sound and Critical Coupling
to Design Deep Subwavelength

Acoustic Metamaterials for Perfect
Absorption and Efficient Diffusion

The control of both the absorption and the diffusion of sound constitutes two

prominent research lines in audible acoustics. The acoustic absorbers and diffusers

developed up to now are efficient in the high frequency range with sizes comparable

to the wavelength of the working frequency. On the contrary, in the low frequency

regime, huge dimensions leading to oversized treatments and high manufacture costs

arise. In this chapter, we discuss acoustic metamaterials showing efficient absorption

and diffusion at low frequencies with a deep subwavelength size. On the one hand,

by exploiting the slow sound effect, the resonance frequencies of the system can be

shifted down to the low frequency range and the phase shift of the reflection

coefficient can be perfectly tuned. On the other hand, the critical coupling conditions

are introduced to achieve a perfect impedance matching allowing perfect absorption

conditions. We will show in detail both an ultra-thin absorber and ultra-thin diffusers

working in the low frequency regime.

3.1. Introduction

Acoustics metamaterials have recently revolutionized the field of acoustics and

mechanics due to their extraordinary functionalities giving rise to breakthroughs in

the material design strategy. Common wall treatments are made of flat panels with

poor efficiency at low frequencies to attenuate, absorb or diffuse acoustic waves.
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In order to be efficient at low frequencies, we have to solve a complex problem:

reducing the geometric dimensions of the structure while increasing the density of

states at low frequencies and finding the good conditions to match or tune the

acoustic impedance.

Acoustic metamaterials have been proposed as a successful approach for

increasing the density of states at low frequencies with reduced dimensions.

Recently, several possibilities based on these systems have been used to design sound

absorbing structures or efficient diffusers which can simultaneously present

subwavelength dimensions and very good efficiency. On the one hand, the design of

subwavelength structures can be achieved by using different strategies. One of them

consists of using space-coiling structures [CAI 14, LI 16]. Another way is to use

subwavelength resonators as membranes [YAN 08, MEI 12] or Helmholtz resonators

(HRs) [MER 15, ACH 16]. Recently, a new type of subwavelength metamaterial

based on the concept of slow sound propagation has been used for the same purpose

[GRO 15, GRO 16]. This last type of metamaterial makes use of its strong dispersion

for generating slow sound conditions inside the material [THE 14] and, therefore,

drastically decreasing working frequency. Hence, the structure thickness becomes

deeply subwavelength. On the other hand, the impedance matching of such open,

lossy and resonant structures can be achieved by the well-known critical coupling

condition [ROM 16b, JIM 17b, JIM 18, BLI 08]. These open systems, at the resonant

frequency, are characterized by both the leakage rate of energy (i.e. the coupling of

the resonant elements with the propagating medium) and the intrinsic losses of the

resonator. The balance between the leakage and the losses activates the condition of

critical coupling, trapping the energy around the resonant elements and generating a

maximum of energy absorption. In the case of transmission systems, degenerate

critically coupled resonators with symmetric and antisymmetric resonances should

be used to perfectly absorb the incoming energy by trapping the energy in the

resonant element, i.e. without reflection or transmission [PIP 14, YAN 15]. In the

case of a purely reflecting system, either symmetric or antisymmetric resonances that

are critically coupled can be used to obtain perfect absorption of energy by a perfect

trapping of energy around the resonators [MA 14, ROM 16a].

In this chapter, we discuss two types of acoustic metamaterial, both based on slow

sound and critical coupling conditions, showing efficient absorption

[JIM 16a, JIM 17d, JIM 17c] and diffusion [JIM 17a] at low frequencies with a deep

subwavelength size. In both cases, the system will consist of a 2D flat panel

composed of a periodic distribution of slits loaded by a finite array of HR. By

exploiting the slow sound effect, the resonance frequencies of the system can be

shifted down to the low frequency range and the phase shift of the reflection

coefficient can be perfectly tuned. On the contrary, the critical coupling conditions

are introduced to achieve a perfect impedance matching allowing perfect absorption

conditions. We will show in detail both an ultra-thin absorber and ultra-thin diffusers

both working in the low frequency regime.
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3.2. Building block of the acoustic metamaterial: finite slit loaded with
Helmholtz resonators

We consider a 2D flat panel composed of a periodic distribution of slits of width

h separated a distance d and distributed in the x1 direction as shown in Figure 3.1(a).

Each slit is loaded by a finite array of M Helmholtz resonators (HRs) separated with

lattice constant (distance between HRs) a. The HRs considered in this work can be

either 2D (Figure 3.1(b)), made of a combination of slits with a squared cross-sectional

neck and a cavity with length and width dimensions ln and wn, lc and wc respectively;

or 3D (Figure 3.1(c)), made of square cross-sectional tubes, with neck and cavity

widths wn and wc, and lengths ln and lc respectively. The system made by the slit

with the loaded HRs (Figure 3.1(d)) is considered as the building block of the acoustic

metamaterial described in this chapter.
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Figure 3.1. (a) Conceptual view of the thin panel placed on a rigid wall with three
layers of 2D Helmholtz resonators. (b) and (c) Conceptual views of 2D and 3D HRs
respectively. (d) Scheme of the unit cell of the panel composed of a set of N Helmholtz
resonators. Symmetry boundary conditions are applied at boundaries Γx1=d and Γx1=0
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3.2.1. Theoretical modeling: transfer-matrix method

The transfer matrix is used to relate the sound pressures and normal acoustic

particle velocities at the beginning and at the end of each unit cell. The transfer

matrix of the n-th unit cell, Tn, of length L, extending from x2 = 0 to x2 = L is

written as

[
Pn

V n

]
y=0

= Tn

[
Pn

V n

]
y=L

=

[
Tn
11 Tn

12

Tn
21 Tn

22

] [
Pn

V n

]
y=L

. [3.1]

For an identical set of M resonators, the transfer matrix Tn is written as

Tn =

[
Tn
11 Tn

12

Tn
21 Tn

22

]
= Mn

Δlslit
(Mn

sM
n
HRM

n
s )

M
.

Here, the transfer matrix for each lattice step in the n-th slit, Mn
s , is written as

Mn
s =

⎡
⎢⎢⎣

cos
(
kns

a

2

)
iZn

s sin
(
kns

a

2

)
i

Zn
s

sin
(
kns

a

2

)
cos

(
kns

a

2

)
⎤
⎥⎥⎦ , [3.2]

where the slit characteristic impedance is written as Zn
s =

√
κn
s ρ

n
s /S

n
s and Sn

s is equal

to hn in the 2D HRs and equal to hn a in the 3D HRs. The resonators are introduced

as punctual scatters by a transfer matrix Mn
HR as

Mn
HR =

[
1 0

1/Zn
HR 1

]
, [3.3]

and the radiation correction of the n-th slit to the free space as

Mn
Δlslit

=

[
1 Zn

Δlslit
0 1

]
, [3.4]

with the characteristic radiation impedance of the n-th slit Zn
Δlslit

= −iωΔlnslit
ρ0/φ

n
t S0, where S0 is equal to d for 2D and equal to d a for 3D, ρ0 is the air density

and Δlnslit is the proper end correction that will be described later.
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The reflection coefficient of the rigidly backed slit can be directly calculated from

the elements of the matrix Tn as

Rn =
Tn
11 − Z0T

n
21

Tn
11 + Z0Tn

21

. [3.5]

with Z0 = ρ0c0/S0, and finally the absorption as αn = 1− |Rn|2.

Finally, the effective parameters of each slit can be obtained from the transfer-

matrix elements as follows:

kneff =
1

L
cos−1

(
Tn
11 + Tn

22

2

)
, Zn

eff =

√
Tn
12

Tn
21

. [3.6]

In the case of different HRs, the total transfer matrix of the whole system can be

obtained by the product of the transfer matrices of each layer of the material. Thus,

the total transfer-matrix method of the system is given by

Tn =

[
Tn
11 Tn

12

Tn
21 Tn

22

]
= Mn

Δlslit

M∏
m=1

(Mn
sM

n,m
HR Mn

s ) .

where the matrix Mn,m
HR is calculated for each m resonator in each n slit.

3.2.1.1. Viscothermal losses model

The viscothermal losses in the system are considered in both the HRs and in the

slits by using its effective complex and frequency-dependent parameters. Considering

that only plane waves propagate inside the metamaterial, the effective parameters of

the ducts that conform 2D resonators and the slits of width w are given by [STI 91]:

ρeff = ρ0

[
1− tanh

(
w
2 Gρ

)
w
2 Gρ

]−1

, [3.7]

κeff = κ0

[
1 + (γ − 1)

tanh
(
w
2 Gκ

)
w
2 Gκ

]−1

, [3.8]

with Gρ =
√

iωρ0/η and Gκ =
√
iωPrρ0/η, and where γ is the specific heat ratio

of air, P0 is the atmospheric pressure, Pr is the Prandtl number, η is the dynamic

viscosity, ρ0 is the air density and κ0 = γP0 is the air bulk modulus. The effective

parameters of the n-th main slit, ρns and κn
s , are obtained by setting w = hn in

equations [3.7–3.8]. The viscothermal losses inside the two-dimensional resonators

neck and cavity are modeled in the same way by these effective parameters, ρn,mn ,
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κn,m
n and ρn,mc , κn,m

c respectively, by setting w = wn,m
n and w = wn,m

c for the m-th

resonator located at the n-th slit.

In the case of 3D HRs, the propagation in a rectangular cross-sectional tube can

be described by its complex and frequency-dependent density and bulk modulus, and

considering that plane waves propagate inside can be expressed as [STI 91]:

ρt = − ρ0a
2b2

4G2
ρ

∑
k∈N

∑
m∈N

[
α2
kβ

2
mα2

k + β2
m −G2

ρ

]−1 , [3.9]

κt =
κ0

γ +
4(γ−1)G2

κ

a2b2

∑
k∈N

∑
m∈N

[α2
kβ

2
mα2

k + β2
m −G2

κ]
−1

, [3.10]

with the constants αk = 2(k+1/2)π/a and βm = 2(m+1/2)π/b, and the dimensions

of the duct a and b being either the neck, a = b = wn or the cavity, a = b = wc of the

HRs.

3.2.1.2. Resonator impedance and end corrections

Using the effective parameters for the neck and cavity elements given by

equations [3.7–3.8], the impedance of a Helmholtz resonator, including a length

correction due to the radiation can be written as [THE 14]:

Zn,m
HR = −ı

cncc − ZnknΔlcnsc/Zc − Znsnsc/Zc

sncc/Zn − knΔlsnsc/Zc + cnsc/Zc
, [3.11]

where cn = cos(knln), cc = cos(kclc), sn = sin(knln), sc = sin(kclc) in which note

superscripts were omitted for the sake of simplicity. ln,mn and ln,mc are the neck and

cavity lengths, kn,mn and kn,mc are the effective wavenumbers, Zn,m
n and Zn,m

c are the

effective characteristic impedance in the neck and cavities respectively, and Δln,m

is the correction length for the HRs. These correction lengths are deduced from the

addition of two correction lengths Δln,m = Δln,m1 +Δln,m2 as

Δln,m1 = 0.41

[
1− 1.35

wn,m
n

wn,m
c

+ 0.31

(
wn,m

n

wn,m
c

)3
]
wn,m

n , [3.12]

Δln,m2 = 0.41
[
1− 0.235

wn,m
n

wn
s

− 1.32

(
wn,m

n

wn
s

)2

+ 1.54

(
wn,m

n

wn
s

)3

− 0.86

(
wn,m

n

wn
s

)4 ]
wn,m

n . [3.13]
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The first length correction, Δln,m1 , is due to pressure radiation at the discontinuity

from the neck duct to the cavity of the Helmholtz resonator [KER 87], while the

second correction, Δln,m2 , comes from the radiation at the discontinuity from

the neck to the principal waveguide [DUB 99]. This correction only depends on the

radius of the waveguides, so it becomes important when the duct length is

comparable to the radius, i.e. for small neck lengths and for frequencies where

kn,mn wn,m
n � 1.

Another important end correction comes from the radiation from the slits to the

free air. The radiation correction for a periodic distribution of slits can be expressed

as [MEC 08]:

Δlnslit = hnσn
∞∑

n=1

sin2 (nπσn)

(nπσn)3
. [3.14]

with σn = hn/d. Note for 0.1 ≤ σn ≤ 0.7, this expression reduces to Δlnslit ≈
−√

2 ln [sinπσn/2] /π.
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Figure 3.2. (a) and (b) Real and imaginary parts of the dispersion relation calculated by
the TMM for a metamaterial with parameters h = 1.2 mm, a = 1.2 cm, wn = a/6, wc =
a/2, d = 7 cm, ln = d/3 and lc = d−h−ln. Blue lines represent the lossless case, while
red lines represent the lossy case. Black dotted lines represent the dispersion relation
of the main slit without HRs. (c) Phase speed calculated by TMM for the lossless case
(blue) and including thermo-viscous losses (red). For a color version of this figure, see
www.iste.co.uk/romero/metamaterials.zip
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3.2.2. Infinite main slit: dispersion relation and slow sound effect

We first consider the dispersion properties inside the unit cell. In order to do that

we consider a unit cell made of an infinite number of resonators with periodicity a. In

this case, by applying periodic boundary conditions in a single periodicity of the unit

cell, we can evaluate the dispersion relation inside the main slit with the presence of

the resonators. Figure 3.2(a) and (b) show the real and imaginary parts of the

dispersion relation calculated by the TMM for both the lossless and lossy cases. The

first feature of this dispersion relation is that a bandgap can be observed above the

resonant frequency of the HRs, fHR. Below the resonance frequency of the HRs, a

dispersive band is observed and the wavenumber is increased with respect to the

wavenumber in air. Note also that the maximum wavenumber inside the slit is limited

by the discreteness to the value kmax = πN/L, as shown by the TMM calculations

(dashed blue curve in Figure 3.2(b)). Interestingly, the imaginary part of this

dispersion relation in the lossy case becomes important around the resonance

frequency even in the case where the real part of the dispersion relation is not in the

bandgap. However, the losses are less important when we are far from the resonant

frequency of the HRs, fHR.

Figure 3.2(c) shows the real part of the phase velocity in the slit, calculated both in

the lossless and lossy cases. In this regime, slow sound conditions are produced due

to the strong dispersion introduced by the resonators. In the lossless case, zero phase

velocity can be observed for frequencies just below fHR. In the lossy case, the losses

limit the minimum value of the group velocity [THE 14]; however, in our system, slow

sound velocity can be achieved in the dispersive band below fHR. The average sound

speed in the low frequency range is much lower (50 m/s) than the speed of sound in

air (black dotted line in the main slit).

3.2.3. Finite slits

In reality, the unit cells used in the analyzed acoustic metamaterials will be of finite

size, therefore, in general we will use the scattering matrix of the unit cells in order to

study the scattering properties of the system. In particular, in the problems analyzed in

this chapter, i.e. in the reflection problems, the reflection coefficient which represents

the scattering coefficient of the system is of particular interest. In this section, we

show the different possibilities for tuning this reflection coefficient with finite unit

cells.
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3.2.3.1. Managing the amplitude of the reflection coefficient: critical coupling
condition

In the complex frequency plane, the reflection coefficient has pairs of zeros and

poles that are complex conjugates one from another in the lossless case. In the

exp(−ıωt) sign convention, the zeros are located in the positive imaginary plane.

The imaginary part of the complex frequency of the poles of the reflection coefficient

represents the energy leakage of the system into the free space [ROM 16a]. Once the

intrinsic losses are introduced in the system, the zeros of the reflection coefficient

move downwards to the real frequency axis [ROM 16b]. For a given frequency, if the

intrinsic losses perfectly balance the energy leakage of the system, a zero of the

reflection coefficient is exactly located on the real frequency axis and therefore

perfect absorption, α = 1 − |R|2 = 1, can be obtained. This condition is known as

the critical coupling [ROM 16a, ROM 16b, BLI 08, PIP 14, YAN 15, MA 14].
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Figure 3.3. (a) Absorption of a panel made of N = 3 resonators calculated by the
TMM. The dashed-dotted line marks the resonant frequency of the HRs. (b) Complex
frequency planes of the reflection coefficient calculated by TMM where fr and fi are
the real and imaginary parts of the complex frequency respectively. For a color version
of this figure, see www.iste.co.uk/romero/metamaterials.zip

Figure 3.3(a) shows the absorption predicted by the TMM when the geometry of

the system has been tuned to introduce the exact amount of intrinsic losses that exactly

compensates the energy leakage of the system at 275 Hz for N = 3. In this situation,

as shown in Figure 3.3(b), the lower frequency zero is located on the real axis, leading

to a peak of perfect absorption. In addition, as we have N = 3 resonators, two other

secondary peaks of absorption are observed at higher frequencies, for example 442 Hz

and 471 Hz. Their corresponding zeros are located close to the real axis and, although

the critical coupling condition is not exactly fulfilled, high absorption values can be

observed at these frequencies. By using these concepts of slow sound and critical

coupling, we theoretically and experimentally show in section 3.3 the possibilities of

an acoustic metamaterial panel with deep subwavelength thickness for perfect and

omnidirectional absorption.
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3.2.3.2. Managing the phase of the reflection coefficient

Figure 3.4(a) shows the dispersion relations inside two different slits, n = 1 and

n = 2, obtained by using HRs with the geometrical parameters listed in Table 3.2. Far

from the resonance frequency, at the frequency marked by the symbols in Figure 3.4(a)

and (b), the effect of losses is negligible as seen in the previous section 3.2.2. If now

we consider a finite slit made of M = 2 resonators, due to the different slow sound

velocity in the different slit, the phase of the reflection coefficient of each slit can

be easily tuned by modifying the properties of the HRs. The phase of the reflection

coefficient produced by each finite slit is shown in Figure 3.4(c). We can see that for

some frequencies, the phase of the reflection coefficient of both slits (blue and red

lines) is strongly modified when compared to the reflection phase of a slit without

HRs (dashed line). At 2 kHz, the first slit (red curve) reacts inverting the phase of

the incoming wave, while for the second slit (blue curve), this occurs at 3.2 kHz.
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In this way, by tuning the geometry of the unit cell, a specific phase profile can be

tailored, while the total thickness of the panel can be greatly reduced when compared

with a quarter wavelength resonator of length L. By using these features, we will

show in section 3.4 that the phase profile of Schroeder diffusers can be mimicked by

a subwavelength metadiffuser in a given frequency band. Therefore, by tuning the

geometry of a metadiffuser, we can maximize sound diffusion in a broad frequency

band for room acoustics applications using a deep subwavelength panel.

3.3. Ultra-thin acoustic metamaterial absorbers

3.3.1. Monochromatic frequency absorber

In section 3.2.3.1, the critical coupling conditions have been used to design a

perfect absorber for a thickness of L = 3a = λ/34.5. In this section, we will go

further and, by using an optimization method (sequential quadratic programming

(SQP) method [POW 78]), the geometry of the system will be tuned in order to

minimize the thickness of the material, providing structures with perfect absorption

and deep subwavelength dimensions.

The TMM was used in the optimization to consider the discreteness effects on

the reflection coefficient. The resulting structure from the optimization procedure is

shown in Figure 3.5(a): a sample with a single layer of resonators, N = 1 with

h = 2.63 mm, d = 14.9 cm, a = L = d/13 = 1.1 cm, wn = 2.25 mm, wc = 4.98
mm, ln = 2.31 cm and lc = 12.33 cm. The width of the impedance tube used for

measurements, d, makes it possible to fit 13 resonators in the transversal dimension as

shown Figure 3.5(a). The sample was built using stereolithography techniques using

a photosensitive epoxy polymer (Accura 60®, 3D Systems Corporation, Rock Hill,

SC 29730, USA), where the acoustic properties of the solid phase are ρ0 = 1210
kg/m3, c0 = [1570, 1690] m/s. The structure presents a peak of perfect absorption

at f = 338.5 Hz (different from that of the HR, fHR = 370 Hz) with a thickness

L = λ/88.

Figure 3.5(b) shows the absorption coefficient at normal incidence calculated

with the TMM, predicted numerically by FEM and measured experimentally. At

f = 338.5 Hz, perfect absorption can be observed. The maximum absorption

measured experimentally was α = 0.97, as shown in the inset of Figure 3.5(b). This

small discrepancy between the measurements and the models can be caused by

experimental reasons including the non-perfect fitting of the slit on the impedance

tube and the excitation of plate modes of the solid medium that composes the

metamaterial.
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Figure 3.5. (a) Photograph of the experimental setup with a vertical unit cell,
N = 1, in the interior of the impedance tube. The translucent resin makes
it possible to see the array of HRs. Picture shows the tube open, but it was
closed for the experiments. (b) Absorption of the system measured experimentally
(crosses), calculated by the transfer-matrix method (continuous blue) and finite element
method (circles). (c) Representation of the reflection coefficient in the complex
frequency plane for the optimized sample. Each line shows the trajectory of its
zero by changing a geometry parameter. For a color version of this figure, see
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On the contrary, Figure 3.5(c) shows the corresponding reflection coefficient in

the complex frequency plane. The color map corresponds to the case in which the

critical coupling condition is fulfilled, i.e. the zero of the reflection coefficient is

exactly located on the real frequency axis. As long as the intrinsic losses depend on

the geometry of the resonators and the thickness of the slits, we also represent in

Figure 3.5(c) the trajectory of this zero as the geometry of the system is modified.

The crossing of the trajectories with the real frequency axis implies that perfect

absorption can be achieved with this system at this particular frequency. It can be
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seen that the trajectories linked to the resonators’ geometry, wn, wc, ln have a strong

effect in the real part of the complex frequency of the zero, as they modify the HRs’

resonant frequency. In the case of ln, due to the geometric constraint d ≥ h+ ln + lc,

increasing the length of the neck also implies the reduction in the cavity and the

trajectory of the zero is twisted. The trajectory of the slit thickness, h, shows that the

intrinsic losses are excessively increased for very narrow slits and the critical

coupling condition cannot be fulfilled. For very wide slits, the geometrical constraints

also imply the reduction in the size of the resonators and therefore the resonant

frequency is increased. Finally, the trajectory linked to the lattice size, a, shows how

the depth of the slit, L = Na, is mainly linked to the intrinsic losses of the system:

the peak absorption frequency is almost independent of a, it mostly depends on the

resonator resonant frequency. Moreover, as the slow sound conditions are caused by

the local resonance of the HRs, the periodicity of the array of HRs is not a necessary

condition for these perfect absorbing panels. However, considering periodicity allows

us to design and tune the system using the present analytical methods.

Finally, Figure 3.6 shows the absorption of the metamaterial panel as a function of

the angle of incidence. It can be observed that almost perfect absorption is obtained for

a broad range of angles, being α > 0.90 for incident waves with θ < 60◦. The inset

of Figure 3.5 shows the absorption in diffuse field [COX 09] calculated as αdiff =

2
´ π/2
0

α(θ) cos(θ) sin(θ)dθ where, at the working frequency, it reaches a value of

αdiff = 0.93, showing the quasi-omnidirectional behavior of the absorption in this

subwavelength structure.
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of incidence calculated by the transfer-matrix method

(continuous blue). The inset shows the absorption
coefficient in diffuse field as a function of frequency
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3.3.2. Rainbow-trapping absorber

Perfect acoustic absorption has been reported in the previous section by means of

rigidly backed subwavelength structures by using slow sound and HRs. The interest

now is focused on developing perfect and broadband absorption. When the system is

not rigidly backed and transmission is allowed, obtaining perfect absorption becomes

challenging because the scattering matrix of the system presents two different

eigenvalues. In order to obtain perfect absorption, both eigenvalues must vanish at

the same frequency [MER 15]. This implies that symmetric and antisymmetric

modes must be simultaneously critically coupled at a given frequency [PIP 14].

When the eigenvalues are both zero but at different frequencies, then the system

cannot present perfect absorption, but quasi-perfect absorption can be achieved by

approaching the symmetric and antisymmetric modes using strong dispersion

[JIM 17d]. Perfect acoustic absorption in transmission problems can be obtained by

using degenerate resonators, exciting a monopolar and a dipolar mode at the same

frequency [YAN 15]. Using elastic membranes decorated with designed patterns of

rigid platelets [MEI 12], very selective low-frequency perfect absorption can be

observed. Another strategy consists of using asymmetric graded materials, e.g.

chirped layered porous structures [JIM 16b], but these structures’ lack of

subwavelength resonances and therefore their thickness is of the order of half of the

incoming wavelength. A final configuration to achieve perfect absorption in

transmission consists of breaking the symmetry of the structure by making use of

double-interacting resonators, after which perfect absorption was observed in

waveguides at a particular frequency [MER 15].

In this section, we address the problem of perfect and broadband acoustic

absorption using deep subwavelength structures in non-rigidly backed panels by

extending the results shown in the previous section. To do so, we design panels

composed of monopolar resonators with graded dimensions, namely

rainbow-trapping absorbers, as shown in Figure 3.7(a). The rainbow-trapping

phenomenon, i.e. the localization of energy due to a gradual reduction of the group

velocity in graded structures, has been observed in optics [TSA 07], acoustics

[ZHU 13, ROM 13] and elastodynamics [COL 16]. However, losses were not

accounted for and therefore absorption was not studied in these works. In the present

configuration, a set of graded HRs are used, allowing one to reduce, in addition to the

thickness of the panels, the dimension of the unit cell to the deep subwavelength

regime. In particular, the structures are composed of a rigid panel, of thickness L,

periodically perforated with series of identical waveguides of variable square

cross-section loaded by an array of N HRs of different dimensions, as shown in

Figure 3.7(a and b). Each waveguide is therefore divided into N segments of length

a[n], width h
[n]
1 and height h

[n]
3 . The HRs are located in the middle of each waveguide

section. The rainbow-trapping absorber (RTA) was composed of N = 9 HRs for the

experimental tests, as shown in Figure 3.7(b). The geometrical parameters of both
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structures were tuned using optimization methods (sequential quadratic programming

(SQP) [POW 78]). In the case of the rainbow-trapping absorber, the cost function

was εRTA =
´ fN
f1

|R−|2 + |T |2df , i.e. to maximize the absorption in a broad

frequency bandwidth, which was chosen from f1 = 300 to fN = 1000 Hz. In the

case of the RTA, the length of the panel was constrained to L = 11.3 cm, i.e. a panel

10 times thinner than the wavelength at 300 Hz. The geometrical parameters for the

RTA (N = 9), measured experimentally, corresponding to Figure 3.7(b), are listed in

Table 3.1. The total structure thickness is L =
∑

a[n] = 113 mm, and its height and

the width of the unit cell are d3 = 48.7 mm and d1 = 14.6 mm respectively.

The idea here is to create a frequency-cascade of bandgaps and critically coupled

resonators in order to generate a rainbow-trapping effect. The process is as follows:

first, we tune the deepest resonator (n = 1) in the waveguide to reduce the

transmission above a frequency f1; second, a second resonator with slightly higher

resonance frequency, f2, is placed in the preceding segment of the waveguide. The

geometry of this resonator and the section of the waveguide are tuned to impedance

match the system at this frequency. Therefore, the reflection vanishes and a peak of

perfect absorption is achieved in the same way as in the previous section. Note that

the latter HR also reduces the transmission at even higher frequencies. Thus the

process can be repeated by extending the waveguide with more segments, each one

with a tuned HR with a resonance frequency higher than the preceding one.

Following this process, a rainbow-trapping absorber is designed using N = 9
resonators. Due to machine precision of the available 3D printing system (the

minimum step was 0.1 mm), the optimal RTA cannot be accurately manufactured.

The main limitation is related to the loss of accuracy of the diameters of the small

necks that compose the HRs. Under this technological constraint, we design an RTA

using N = 9 HRs and quantizing the dimensions of all the geometrical elements that

compose the structure to the machine precision. The manufactured sample is shown

in Figure 3.7(b) and the quantized geometrical parameters are listed in Table 3.1.

Figure 3.7(c–d) show the absorption, reflection and transmission of the device

calculated with the TMM, FEM and measured experimentally. Note that both

reflection and transmission coefficients are plotted in terms of amplitude and not in

terms of energy in order to emphasize the fact that the transmission does not vanish

apart from the perfect absorption frequency band. The deepest resonator (n = 1)
presents a resonance frequency of f1 = fgap = 259 Hz, causing the transmission to

drop. A set of nine resonators were tuned following the process previously described,

with increasing resonance frequencies ranging from 330 to 917 Hz. As a result of the

frequency-cascade process, the impedance of the structure in the working frequency

range is matched with the exterior medium while the transmission vanishes. As a

result, the RTA presents a flat and quasi-perfect absorption coefficient in this

frequency range (see Figure 3.7(c)). Excellent agreement is found between the TMM
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predictions and FEM simulations, while good agreement is observed between the

experimental measurements and both models. It can be observed that at low

frequencies, there are small differences between the measurements and the models.

These disagreements are mainly caused by imperfections in the sample

manufacturing, by imperfect fitting of the structure to the impedance tube, by the

possible evanescent coupling between adjacent waveguides and adjacent HRs, and/or

by the limitations of the viscothermal model used at the joints between waveguide

sections.
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Figure 3.7. (a) Conceptual view of a rainbow-trapping absorber (RTA) with N =
8 HRs. Scheme showing the geometrical variables for RTA. (b) Photograph of
the sample containing 10 × 3 unit cells. (c) Absorption obtained by using the
TMM (continuous line), FEM simulations (circles) and measured experimentally
(dotted line). (d) Corresponding reflection (red curves) and transmission (blue
curves) coefficients in amplitude. For a color version of this figure, see
www.iste.co.uk/romero/metamaterials.zip
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n a[n] (mm) h
[n]
3 (mm) h

[n]
1 (mm) l

[n]
n (mm) l

[n]
c (mm) w

[n]
n (mm) w

[n]
c,1 (mm) w

[n]
c,2 (mm)

9 7.9 25.6 14.0 1.1 21.4 1.2 14.0 7.2

8 9.5 24.2 14.0 1.0 22.8 1.2 14.0 9.0

7 11.0 22.8 14.0 1.7 23.6 1.4 14.0 10.6

6 12.6 21.6 14.0 0.7 25.9 1.0 14.0 12.0

5 14.1 20.2 14.0 1.5 26.5 1.2 14.0 13.6

4 15.7 18.8 14.0 1.1 28.3 1.0 14.0 15.2

3 17.3 17.4 14.0 1.6 29.2 1.0 14.0 16.8

2 18.8 16.0 14.0 1.1 31.2 0.8 14.0 18.4

1 6.4 1.0 1.0 3.0 44.7 0.6 14.0 5.6

Table 3.1. Geometrical parameters for the RTA (N = 9).
Table reproduced from [JIM 17c]

3.4. Metadiffusers

The far-field polar pressure distribution can characterize the performance of a

diffuser. For a finite panel of side 2b, the far-field polar pressure distribution, ps(θ),
of a locally reacting reflecting surface with a spatially dependent reflection

coefficient, R(x), can be calculated using the Fraunhofer integral as [COX 94]

ps(θ) =

ˆ b

−b

R(x)ejk0x sin θdx, [3.15]

where θ is the polar angle and k0 is the wavenumber in air. Note that the scattered

pressure in the far-field is essentially a Fourier transform of the reflected field along

the surface. Therefore, structures whose reflection coefficient distributions present a

uniform magnitude Fourier transform with good sound diffusion properties [SCH 75].

The diffusion coefficient [ISO 12], dφ, is estimated from a polar response as

δφ =

(
π́

−π

Is(θ)dθ

)2

−
π́

−π

Is(θ)
2dθ

π́

−π

Is(θ)2dθ

, [3.16]

where Is(θ) is the polar scattering intensity for a wave with incident angle φ. This

coefficient is normalized to that of a plane reflector, δflat, to eliminate the effect of the

finite size of the structure as δn = (δφ − δflat)/(1− δflat).

Based on the principles introduced in the section 3.2.3.2, we now present novel

deep subwavelength diffusers based on acoustic metamaterials with deep

subwavelength dimensions. The system works as follows: first, we consider a rigid
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panel of finite length with a set of N slits; second, we modify the dispersion relations

inside each slit by loading one of their walls with a set of HRs. The sound

propagation in each slit becomes strongly dispersive and the sound speed inside it,

cp, can be drastically reduced. Each slit behaves effectively as a deep subwavelength

resonator and, therefore, the effective depth of the slits can be strongly reduced as

L = cp/4f holds. By tuning the geometry of the HRs and the thickness of the slits,

the dispersion relations inside each slit can be modified. As a result, the phase of the

reflection coefficient can be tailored along the surface, for example to those of a

Schroeder phase grating diffuser. Furthermore, by tuning the thermo-viscous losses,

which are inherent in the HRs and in the narrow slits, the leakage of the structure can

be compensated by the intrinsic losses of the system and perfect absorption can be

obtained. Thus, the magnitude of the reflection coefficient can be also tuned, and the

behavior of the slits ranges from perfect reflectors to perfect absorbers. Perfect

absorbing slits allow the design of ternary sequence diffusers [COX 06] for low

frequencies.

3.4.1. Quadratic residue metadiffusers

The first numerical sequence mimicked is the one used in quadratic residue

diffusers (QRD). The sequence is given by sn = n2modN , where mod is the least

non-negative remainder of the prime number N . If the phase grating diffuser is based

on quarter wavelength resonators (wells), the depth of the wells is given by

Ln = snλ0/2N , where λ0 is the design wavelength. Here, we use optimization

methods, for example sequential quadratic programming [POW 78], to tune the

geometry of the metamaterial so the spatially dependent reflection coefficient

matched between the QR-metadiffuser and the QRD only at 2000 Hz. A QRD with

N = 5 QRD, a total thickness of L = 27.4 cm and side Nd = 35 cm was designed

for a frequency of 500 Hz. Due to the small lateral size of the panel, the response was

evaluated at 2000 Hz considering six repetitions of the unit cell in order to clearly

generate the characteristic N diffraction grating lobes of the QRD in the far-field.

Figure 3.8(a–b) shows the phase and magnitude of the reflection coefficient along the

surface the ideal QRD and a QR-metadiffuser of L = 2 cm thickness and M = 2
HRs of same lateral dimensions. The geometrical parameters for the metadiffuser are

listed in Table 3.2 and a scheme of the panel is shown in Figure 3.8(c). Perfect

agreement is found between the reflection coefficients of the QR-metadiffuser and

the target phase grating QRD. Figure 3.8(g) shows the far-field calculation at 2000

Hz using equation [3.15] for both structures. Excellent agreement is obtained

between the polar responses using the TMM. To validate the design, a full-wave

numerical solution using the finite element method (FEM) and accounting for the

thermo-viscous losses is also provided. The FEM numerical solution agrees with the

theoretical prediction, although small discrepancies can be observed. They are caused

first because the radiation corrections used in the TMM are only approximate and,

second, because the evanescent coupling between near slits in the TMM is not

considered while it is implicitly included in the FEM simulations. The near-field
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pressure distributions are shown in Figure 3.8(d–f) for the QR-metadiffuser, the QRD

and a reference flat surface of the same width, respectively. Excellent agreement is

observed between both diffusers, where it is clear how the field is scattered in other

directions rather than specular. The presented QR-metadiffuser is 17.1 times thinner

than the QRD (34 times smaller than the QRD design wavelength (500 Hz) and

8.5 times smaller than the evaluation wavelength (2000 Hz)).
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Figure 3.8. (a) Phase and (b) magnitude of the spatially dependent reflection
coefficient of a QRD (black line) and the QR-metadiffuser (red dotted line). (c)
Scaled scheme of the QR-metadiffuser with N = 5 and M = 2. (d) Near-field
pressure distribution at 2 kHz of QR-metadiffuser with thickness L = 2 cm, (e)
phase grating QRD of thickness L = 27.4 cm and (f) flat plane reflector. (g) Far-
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same width of the diffusers (continuous red). For a color version of this figure, see
www.iste.co.uk/romero/metamaterials.zip
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n sn h (mm) ln (mm) lc (mm) wn (mm) wc (mm)

1 1.0 14.7 13.0 16.4 6.2 9.0

2 4.0 30.9 9.1 4.3 3.5 9.0

3 4.0 30.9 9.1 4.3 3.5 9.0

4 1.0 15.7 13.3 17.0 6.3 9.0

5 0.0 20.3 18.0 20.7 3.2 9.0

Table 3.2. Geometrical parameters of the QR-metadiffuser.
Table reproduced from [JIM 17a]

3.4.2. Broadband optimal metadiffusers

To design a metadiffuser useful for room acoustics, its diffusion must be broad in

frequency. Thus, we extended the bandwidth of the optimization procedure, where

the cost function to minimize was ε = 1 − ´ fhigh

flow
δndf . In particular, we look for

deep subwavelength thickness metadiffusers that present maximum normalized

diffusion coefficient in the frequency range from flow = 250 Hz to fhigh = 2000 Hz.

Here, we used a set of N = 11 slits separated by d = 12 cm, and constrained the

thickness of the panel to L = 3 cm. The obtained geometrical parameters are listed in

Table 3.3. Here, we used square cross-sectional HRs. Figure 3.9(a) shows the scheme

of the metadiffuser with the retrieved geometry. First, the polar responses at two

frequencies 300 and 2000 Hz are shown in Figure 3.9(b and c). The maximization of

the diffusion coefficient implies that the polar responses are uniform. In addition, we

show the angular dependence of the near field at shorter distances, for example at 1

and 5 m. Due to the lateral dimension of the structure, which is 1.32 m,

equation [3.15] is not accurate at distances much shorter than the Rayleigh distance.

However, although the near field does not exactly follow the polar distribution given

by equation [3.15], the structure scatters the waves uniformly in broad range of

angles when compared with a flat plane of the same dimensions. Figure 3.9(d–g)

show the frequency-dependent polar responses in the far field for a reference flat

plane with the same width as the metadiffuser, a thick QRD with a design frequency

of 250 Hz (LQRD = 56 cm), a thin QRD with the same thickness of the metadiffuser

LQRD,thin = 3 cm and the optimized metadiffuser, respectively. Here, we calculated

the polar responses using six repetitions of the panel to clearly observe the diffraction

grating lobes. First, the scattering of the thin QRD, Figure 3.9(e), is almost the same

as a flat plane, Figure 3.9(d). It only starts to scatter waves at different angles above 2

kHz. Second, the deep wells that compose the thick QRD, Figure 3.9(f), resonate

near their quarter-wavelength resonances at lower frequencies and, therefore, the
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reflection coefficient follows the QR sequence and the panel scatters sound waves

into oblique angles. Finally, the optimized metadiffuser, Figure 3.9(g), also shows

strong grating lobes, but, in addition, at medium and high frequencies, energy is

spread in other directions at low frequencies, for example between 250 and 500 Hz.

n 1 2 3 4 5 6 7 8 9 10 11

h (mm) 5.7 4.9 7.7 82.9 48.4 74.9 20.0 6.6 76.2 29.5 7.6

ln (mm) 16.3 7.3 37.1 0.0 35.3 22.1 14.7 0.1 0.0 0.1 4.8

lc (mm) 97.1 106.8 74.2 36.0 35.3 22.1 84.3 112.2 42.7 89.4 106.5

wn (mm) 6.7 6.5 10.0 29.0 29.0 29.0 14.0 9.5 29.0 27.6 6.2

wc (mm) 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0

Table 3.3. Geometrical parameters used for the broadband
metadiffuser using N different slits. Table reproduced from [JIM 17a]

The normalized diffusion coefficient shown in Figure 3.9(h) quantifies this

behavior. It is observed that over the optimized range, the diffusion coefficient of the

metadiffuser takes values with a mean value of about δn = 0.65, with peaks of

δn = 0.9. When compared to the thick QRD, its frequency band is extended to one

octave below. The corresponding absorption is shown in Figure 3.9(f). Here, the wide

slits that form the QRD produce almost no losses, while the thermo-viscous losses

produced in the narrow ducts that comprise the ultra-thin metamaterial lead to some

peaks of absorption at the resonance of the cavities. These losses can be reduced if

the thickness of the panel is increased, but here we presented a structure whose

thickness is 46 times smaller than the wavelength. It is worth noting here that the size

of some of neck of the resonators is almost the same as their cavities, as can

be observed in Figure 3.9(a). In these cases, the resonator acts as a coiled QWR and

the losses in these wide ducts are decreased. The resonance frequency of these QWR

is higher than the corresponding HRs, contributing to the high frequency diffusion,

while, in contrast, the HRs introduce spatial changes on the reflection coefficient at

low frequencies. Moreover, the position of the low frequency absorption peaks can be

engineered to solve other typical problems in room acoustics, as placing them at the

resonant modes of small control rooms to produce a flatter spectral response or

reduce sound coloration in the reverberation. This can be achieved using

multi-objective optimization techniques.
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Figure 3.9. (a) Scheme of the analyzed metadiffuser. (b) and (c) show the polar
responses at two frequencies, 300 and 2000 Hz respectively. Far-field polar response
as a function of the frequency for (d) reference flat plane, (e) N = 11 QRD
panel with a total thickness of 3 cm, (f) QRD panel with a total thickness of
56 cm and (g) an optimized metadiffuser thickness of 3 cm. (h) Normalized diffusion
coefficient or the 3 cm QRD (dashed black), 32 cm QRD (dashed-dotted red)
and optimized metadiffuser using the TMM (blue) integrated in third of octaves.
The third octave integration is shown in thick lines according to ISO 17497-2:2012
[ISO 12]. (i) Corresponding absorption. For a color version of this figure, see
www.iste.co.uk/romero/metamaterials.zip

3.5. Conclusions

Realistic panels for sound perfect absorption and diffusion with subwavelength

sizes are designed in this chapter with simple structures made of bricks with

Helmholtz resonators. The theoretical modeling based on the transfer-matrix method

considering the viscothermal losses has been described in detail. Two examples of

perfect absorbers and metadiffusers have been described.

Perfect absorption of sound is achieved at 338.5 Hz with a panel thickness of

L = λ/88 = 1.1 cm and without added porous material. It is worth noting here that

the total panel size in the vertical dimension is also subwavelength

d = λ/6.5 = 14.5 cm. The subwavelength feature of the presented structure provides
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perfect absorption for a wide range of incident angles. This almost omnidirectional

sound absorber can be used in practical applications where the omnidirectional

feature is mandatory. These promising results have been used to study different

configurations producing broadband perfect absorption with deep subwavelength

structures, named rainbow-trapping absorbers. We reported flat and perfect

absorption over a frequency range covering from 300 to 1000 Hz, i.e. almost two

octaves, using a rainbow-trapping absorber (RTA) composed of nine resonators and

10 times smaller than the wavelength at 300 Hz (11.3 cm).

Metadiffusers, a novel design of locally reacting surfaces with tailored acoustic

scattering, were also presented. The propagation inside the metamaterial presents

strong dispersion and the sound speed can be significantly reduced so that each slit

effectively behaves as a deep subwavelength resonator. Thus, by tuning the material

geometry, the dispersion of acoustic waves in the slits is modified and the spatially

dependent reflection coefficient can be tailored to specific functions with a uniform

magnitude Fourier transform. In these conditions, the grating lobes produced by a

periodic arrangement of the panel all have the same energy. The acoustic energy can

be scattered in other directions than specular. It was also shown that the structures

can be optimized to work in a broad frequency range covering three octaves. In

particular, we presented a diffuser of 3 cm thickness working from 250 to 2000 Hz,

demonstrating the potential of the metadiffusers to be used in critical listening

environments due to their deep subwavelength nature: the thickness of the panels was

1/46 to 1/20 times the design wavelength, i.e. between about a twentieth and a tenth

of the thickness of traditional designs. In the context of smart building design and

sustainability, metadiffusers can be used to save space and to produce lightweight

materials, improving the performance of the acoustic solutions using less resources.

Moreover, the proposed designs have the potential to meet the aesthetic requirements

that are mandatory for modern auditoria design.

3.6. Acknowledgments

This work is based on work from COST Action DENORMS – CA15125,

supported by COST (European Cooperation in Science and Technology). The

authors acknowledge financial support from the Metaudible Project no.

ANR-13-BS09-0003, cofounded by ANR and FRAE.

3.7. References

[ACH 16] ACHILLEOS V., RICHOUX O., THEOCHARIS G., “Coherent perfect absorption

induced by the nonlinearity of a Helmholtz resonator”, Journal of the Acoustical Society
of America, vol. 140, no. 1, 2016.



70 Fundamentals and Applications of Acoustic Metamaterials

[BLI 08] BLIOKH K.Y., BLIOKH Y.P., FREILIKHER V et al. “Unusual resonators:

Plasmonics, metamaterials, and random media”, Reviews of Modern Physics, vol. 80, no. 4,

p. 1201, 2008.

[CAI 14] CAI X., GUO Q., HU G. et al., “Ultrathin low-frequency sound absorbing panels

based on coplanar spiral tubes or coplanar Helmholtz resonators”, Applied Physics Letters,

vol. 105, no. 12, p. 121901, 2014.

[COL 16] COLOMBI A., COLQUITT D., ROUX P. et al., “A seismic metamaterial: The

resonant metawedge”, Scientific Reports, vol. 6, 2016.

[COX 94] COX T.J., LAM Y., “Prediction and evaluation of the scattering from quadratic

residue diffusers”, Journal of the Acoustical Society of America, vol. 95, no. 1, pp. 297–

305, 1994.

[COX 06] COX T.J., ANGUS J.A., D’ANTONIO P., “Ternary and quadriphase sequence

diffusers”, Journal of the Acoustical Society of America, vol. 119, no. 1, pp. 310–319, 2006.

[COX 09] COX T.J., D’ANTONIO P., Acoustic Absorbers and Diffusers: Theory, Design and
Application, CRC Press, Boca Raton, 2009.

[DUB 99] DUBOS V., KERGOMARD J., KHETTABI A. et al., “Theory of sound propagation

in a duct with a branched tube using modal decomposition”, Acta Acustica United With
Acustica, vol. 85, no. 2, pp. 153–169, 1999.

[GRO 15] GROBY J.-P., HUAND W., LARDEAU A. et al., “The use of slow sound to design

simple sound absorbing materials”, Journal of Applied Physics, vol. 117, no. 124903, 2015.

[GRO 16] GROBY J.-P., POMMIER R., AURÉGAN Y., “Use of slow sound to design perfect

and broadband passive sound absorbing materials”, Journal of the Acoustical Society of
America, vol. 139, no. 4, pp. 1660–1671, 2016.

[ISO 12] ISO 17497–2:2012, Acoustics – Sound-scattering properties of surfaces – Part

2: Measurement of the directional diffusion coefficient in a free field, ISO standard,

International Organization for Standardization, Geneva, Switzerland, 2012.

[JIM 16a] JIMÉNEZ N., HUANG W., ROMERO-GARCÍA V. et al., “Ultra-thin metamaterial

for perfect and quasi-omnidirectional sound absorption”, Applied Physics Letters, vol. 109,

no. 121902, 2016.

[JIM 16b] JIMÉNEZ N., ROMERO-GARCÍA V., CEBRECOS A. et al., “Broadband quasi

perfect absorption using chirped multi-layer porous materials”, AIP Advances, vol. 6,

no. 12, p. 121605, 2016.

[JIM 17a] JIMÉNEZ N., COX T.J., ROMERO-GARCÍA V. et al., “Metadiffusers: Deep-

subwavelength sound diffusers”, Scientific Reports, no. 7, p. 5389, 2017.

[JIM 17b] JIMÉNEZ N., GROBY J.-P., PAGNEUX V. et al., “Iridescent perfect absorption

in critically-coupled acoustic metamaterials using the transfer matrix method”, Applied
Sciences, vol. 7, no. 6, p. 618, 2017.

[JIM 17c] JIMÉNEZ N., ROMERO-GARCÍA V., PAGNEUX V. et al., “Rainbow-trapping

absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels

with transmission”, Scientific Reports, no. 7, p. 135595, 2017.



Slow Sound and Critical Coupling to Design Deep Subwavelength Acoustic Metamaterials 71

[JIM 17d] JIMÉNEZ N., ROMERO-GARCÍA V., PAGNEUX V. et al., “Quasiperfect absorption

by subwavelength acoustic panels in transmission using accumulation of resonances due to

slow sound”, Physical Review B, vol. 95, p. 014205, 2017.

[JIM 18] JIMÉNEZ N., ROMERO-GARCÍA V., GROBY J.-P., “Perfect absorption of sound

by Rigidly-Backed High-Porous materials”, Acta Acustica United with Acustica, vol. 104,

no. 3, pp. 396–409, 2018.

[KER 87] KERGOMARD J., GARCIA A., “Simple discontinuities in acoustic waveguides at

low frequencies: Critical analysis and formulae”, Journal of Sound and Vibration, vol. 114,

no. 3, pp. 465–479, 1987.

[LI 16] LI Y., ASSOUAR B.M., “Acoustic metasurface-based perfect absorber with deep

subwavelength thickness”, Applied Physics Letters, vol. 108, no. 6, p. 063502, 2016.

[MA 14] MA G., YANG M., XIAO S. et al., “Acoustic metasurface with hybrid resonances”,

Nature Materials, vol. 13, no. 9, pp. 873–878, 2014.

[MEC 08] MECHEL F.P., Formulas of Acoustics, 2nd edition, Springer Science & Business

Media, Springer-Verlag, Berlin, Heidelberg, 2008.

[MEI 12] MEI J., MA G., YANG M. et al., “Dark acoustic metamaterials as super absorbers

for low-frequency sound”, Nature Communications, vol. 3, p. 756, 2012.

[MER 15] MERKEL A., THEOCHARIS G., RICHOUX O. et al., “Control of acoustic

absorption in one-dimensional scattering by resonant scatterers”, Applied Physics Letters,

vol. 107, no. 24, p. 244102, 2015.

[PIP 14] PIPER J.R., LIU V., FAN S., “Total absorption by degenerate critical coupling”,

Applied Physics Letters, vol. 104, no. 25, p. 251110, 2014.

[POW 78] POWELL M.J., “A fast algorithm for nonlinearly constrained optimization

calculations”, Numerical Analysis, pp. 144–157, 1978.

[ROM 13] ROMERO-GARCÍA V., PICÓ R., CEBRECOS A. et al., “Enhancement of sound in

chirped sonic crystals”, Applied Physics Letters, vol. 102, no. 9, p. 091906, 2013.

[ROM 16a] ROMERO-GARCÍA V., THEOCHARIS G., RICHOUX O. et al., “Perfect and

broadband acoustic absorption by critically coupled sub-wavelength resonators”, Scientific
Reports, vol. 6, p. 19519, 2016.

[ROM 16b] ROMERO-GARCÍA V., THEOCHARIS G., RICHOUX O. et al., “Use of complex

frequency plane to design broadband and sub-wavelength absorbers”, Journal of the
Acoustical Society of America, vol. 139, no. 6, p. 3395, 2016.

[SCH 75] SCHRÖDER M.R., “Diffuse sound reflection by maximum- length sequences”,

Journal of the Acoustical Society of America, vol. 57, no. 1, pp. 149–150, 1975.

[STI 91] STINSON M.R., “The propagation of plane sound waves in narrow and wide circular

tubes, and generalization to uniform tubes of arbitrary cross-sectional shape”, Journal of
the Acoustical Society of America, vol. 89, no. 2, pp. 550–558, 1991.

[THE 14] THEOCHARIS G., RICHOUX O., ROMERO-GARCÍA V. et al., “Limits of slow sound

propagation and transparency in lossy, locally resonant periodic structures”, New Journal
of Physics, vol. 16, no. 9, p. 093017, 2014.



72 Fundamentals and Applications of Acoustic Metamaterials

[TSA 07] TSAKMAKIDIS K.L., BOARDMAN A.D., HESS O., “Trapped rainbow storage of

light in metamaterials”, Nature, vol. 450, no. 7168, pp. 397–401, 2007.

[YAN 08] YANG Z., MEI J., YANG M. et al., “Membrane-type acoustic metamaterial with

negative dynamic mass”, Physical Review Letters, vol. 101, no. 20, p. 204301, 2008.

[YAN 15] YANG M., MENG C., FU C. et al., “Subwavelength total acoustic absorption with

degenerate resonators”, Physical Review Letters, vol. 107, no. 10, p. 104104, 2015.

[ZHU 13] ZHU J., CHEN Y., ZHU X. et al., “Acoustic rainbow trapping”, Scientific Reports,

vol. 3, 2013.



PART 2

Principles and Fundamentals

of Acoustic Metamaterials

Fundamentals and Applications of Acoustic Metamaterials: From Seismic to Radio Frequency, 

First Edition. Edited by Vicente Romero-García and Anne-Christine Hladky-Hennion. 
© ISTE Ltd 2019. Published by ISTE Ltd and John Wiley & Sons, Inc. 





4

Homogenization of Thin 3D Periodic
Structures in the Time Domain – Effective

Boundary and Jump Conditions

This chapter focuses on the derivation of effective models for the propagation of

acoustic waves in the presence of structures that are periodic at a subwavelength

scale and that have in addition a subwavelength thickness. In the context of acoustics,

we consider the most usual case of rigid inclusions in a fluid matrix, typically air or

water. We focus on two typical cases. The first, termed structured wall, corresponds

to a set of periodic inclusions in the vicinity of a rigid wall or in contact with it, for

instance, a rough surface (with periodic roughnesses). The second, termed structured
film, corresponds to one layer or a few layers of periodically distributed inclusions.

Because of the small thickness of the structure, the classical methods of the

homogenization theory cannot be used. Classically, the homogenization aims to

describe the overall behavior of the wave propagating in the bulk of a periodic

structure, and the analysis is performed far from its boundaries. It results that the

periodically heterogeneous character of the medium at a small scale can be averaged

resulting in an effective homogeneous medium. When the structure is reduced in

thickness to one or few inclusions, the “far from boundaries” does not exist and the

periodicity of the heterogeneity cannot be exploited across the structure, since it has

been lost. In other words, there is no “propagation” through the inclusions; rather,

local scattering effects affect the wave propagation in the surrounding fluid. These

effects are often referred to as boundary layer effects, since they are confined near the

wall or the film; they correspond to the layers where the evanescent field can be

strong, while it vanishes when moving far away from the structure. To account for

the loss in periodicity in one direction, and for the associated boundary layer effects,

two approaches are possible. In the first, so-called boundary layer correctors are

Chapter written by Agnès MAUREL, Kim PHAM and Jean-Jacques MARIGO.
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introduced which depend on the small scale along the structure and vanish

exponentially far from it; these correctors are added to the homogenized solution that

depends on the large scale only. The second approach considers a solution that is

valid in the vicinity of the structure (hence depending on the small scale), which has

to match the homogenized solution that is valid far from the structure. In both cases,

the solution depending on the small scale aims to provide averaged information.

In the context of the waves, the first derivation of effective jump conditions is due

to Sanchez-Hubert and Sanchez-Palencia in 1982 [SAN 82]. This work focused on

the scattering of acoustic waves by a set of holes perforating a rigid wall of zero

thickness. Therefore, such approaches have been applied in the context of

electromagnetic, elastic/seismic and acoustic waves. To avoid a long introduction, the

table below summarizes some (most) of these contributions. We distinguish the

context of waves and the chosen approach (boundary layer correctors versus matched

solutions, although both are equivalent).

Boundary correctors Matched solutions

Electro- [DEL 91]∗, [ABB 95],[ABB 96], [AMM 99], [DEL 10]∗, [ASL 11],

magnetism [HOL 00a]∗, [HOL 00b]∗, [DEL 12]∗, [TOU 12], [DEL 13]∗,

[PRO 03], [POI 06], [HOL 16]∗ [DEL 15]∗, [HEW 16], [MAU 16],

[MAR 16c], [GAL 17]

Elasto- [BOU 06]∗, [BOU 15]∗, [SCH 16]∗ [CAP 13]∗, [MAR 17], [PHA 17]

dynamics

Acoustics [LUK 09], [TLE 09], [ROH 09], [BON 04], [BON 05], [CLA 13],

[ROH 10], [BEN 15], [SCH 17] [BEN 13], [MAR 16a], [MAR 16b],

[CHA 16], [POP 16], [MER 17]

In the context of electromagnetic and elastic waves, we indicate by a star ∗ the

works which account for the additional complexity of dealing with the (polarized)

Maxwell equations or Navier equations. Eventually, we also mention works focusing

on the numerical implementation of effective conditions in the harmonic regime

[BON 04, BON 05, DEL 10, BEN 12, MAR 16b, RIV 17] and in the time domain

[CAP 13, LOM 17], and works presenting experimental inspections of the effective

conditions [GAO 16, SCH 17, GAL 17]. Our list of references may appear short, but

we restricted it to (i) studies performed in the dynamic case, thus omitting the large

amount of literature dedicated to the static one, and (ii) works focusing on effective

conditions for structured surfaces or interfaces, thus omitting the even larger amount

of literature dedicated to effective conditions across homogeneous interfaces. If we

have missed additional references, we wish to apologize.
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Main results and motivations

We consider acoustic waves propagating in a fluid in the presence of a set of rigid

inclusions in three dimensions. With p the pressure and u the velocity, the acoustic

propagation is governed by linearized Euler equations:

{
χ
∂p

∂t
+ divu = 0, ρ

∂u

∂t
= −∇p,

u · n|Γ = 0,
[4.1]

where Γ denotes the boundaries between the fluid and the rigid inclusions (and n the

local normal vector to these boundaries); ρ and χ denote the mass density and the

isentropic compressibility of the fluid. The time is t and the space is associated with

the coordinate x = (x1, x2, x3), with (e1, e2, e3) being the associated unit vectors.

The structure contains a set of rigid inclusions periodically located in the (x2, x3)-
plane, with spacings h2 and h3 being of the same order of magnitude. Besides, the

resulting two-dimensional array has a typical thickness e along x1 of the same order

of magnitude as h2 and h3. In the low-frequency regime, the typical array spacing

h =
√
h1h2 is much smaller than the typical wavelength 1/k imposed by the source

(k is the typical wavenumber). We can establish the following effective conditions

corresponding to the configurations reported in Figure 4.1, specifically:

(a) Effective boundary condition for a structured rigid wall:

uef

1 = hϕ
∂uef

1

∂x1
+ hAαβ

∂uef

α

∂xβ
,

with three coefficients to be calculated A22, A33 and A23 = A32.

(b) Effective jump conditions for a structured film:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[pef] = hBi
∂pef

∂xi
,

[uef

1] = hϕ
∂uef

1

∂x1
+ hCiα

∂uef

i

∂xα
.

with six coefficients to be calculated B1, B2, B3, C22, C33, C23,

(with C23 = C32, C12 = B2, C13 = B3),

[4.2]

and where we denote

i, j = 1, 2, 3, and α, β = 2, 3,
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(this convention for Latin and Greek indices is kept throughout the chapter), and

repeated indices mean summation. The effective conditions involve several

coefficients: the scalar ϕ, the vector B and the tensors A and C, which we will define

in the following. Eventually, in the jump conditions, we define the jumps and the

mean values of any field f that is discontinuous across the equivalent interface using

f+ and f− its limits on the both sides and

[f ] = f+ − f−, f =
1

2

(
f− + f+

)
.

x1

x2

x3

x1

x2

x3

effective jump conditions

x1

x2

x3

effective boundary conditionNeumann boundary condition

x1

x2

x3

(a)

(b)

Figure 4.1. (a) Structured wall composed of an array of rigid inclusions
over a rigid wall. (b) Structured film in a surrounding fluid. In both cases,
the arrow indicates the homogenization process leading to an effective
boundary condition for (a) and effective jump conditions for (b), see [4.2]

We have said that the effective boundary condition in equations [4.2] requires the

calculation of three parameters and the effective jump conditions require the

calculation of six parameters. These parameters are deduced from static elementary
problems (see forthcoming equations [4.11] and [4.21]), which correspond to simple

problems of potential flows through or along the structure, driven by a unit velocity

along ei far from it. Eventually, we will see in the concluding remarks that fewer

parameters are involved for simple geometries of the inclusions.
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Closely related references

Such configurations have been studied in several references. For structured walls,

the two-dimensional case has been considered in [TLE 09] for polarized

electromagnetic waves over a conducting wall (which is the electromagnetic

counterpart of a rigid wall) covered by a thin dielectric layer containing perfectly

conducting inclusions. The case of rough surfaces has been studied in [TOU 12] for

polarized electromagnetic waves over roughnesses with double periodicity, and in

[MAR 16a] for acoustic waves over rectangular grooves. The three-dimensional case

has been considered by Holloway and Kuester for Maxwell equations

[HOL 00a, HOL 00b]. For the structured films: in [SAN 82], the case of a rigid wall

perforated by holes was considered, with a particular focus on critical cases

appearing for specific scalings of the array spacing and hole diameter. The two- and

three-dimensional cases were considered in this reference. In the two-dimensional

case, the configuration of zero-thickness conducting strips (invariant in one direction)

has been analyzed in [DEL 91] for the Maxwell equation. The same geometry has

been considered in [BON 04, BON 05] for acoustic waves. The case of arrays of

rigid/perfectly conducting inclusions have been discussed in [MAU 16, MAR 16a,

MAR 16c]. The same configuration has been considered in [HOL 16] for Maxwell

equations. Eventually, the study in [BEN 13] (a perforated wall) is particular in this

list since it is assumed that h = O(1), while e → 0 is the small parameter.

Summary

This chapter is organized as follows:

In section 4.1, we set the different ingredients needed to conduct the asymptotic

analysis; this starts with the definition of a small parameter ε, which is used to

differentiate between the rapid variations of the evanescent field and the slow

variations of the propagating field. In the matched asymptotic expansion technique,

two different expansions of the solution (termed outer and inner expansions) are

sought which are valid far and close to the inclusions. The corresponding outer and

inner problems are complemented using matching conditions, which tell us that the

two solutions coincide in some intermediate region.

The procedure is then straightforward. The expansions are plugged in

equations [4.1] resulting in two hierarchies of problems (outer and inner) at each

order in ε, which are linked through the matching conditions. In sections 4.2 and 4.3,

they are solved up to O(ε2), providing the desired effective boundary condition and

effective jump conditions, respectively.

In section 4.4 we inspect the equation of energy conservation in the effective

problems. This is of particular interest if we have in mind a numerical
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implementation in the time domain; indeed, the problem has to be associated with a

positive energy supported by the effective surface, or by the effective interface, in

order to avoid numerical instabilities.

We aim to give a simple presentation of the two-scale matched asymptotic

analysis. The calculations are detailed and hopefully easy to follow. Hence, there are

no prerequisites except possibly some patience.

4.1. The asymptotic analysis – two scale expansions and matching
conditions

4.1.1. Two scales and two regions

The asymptotic analysis starts with the definition of a small parameter ε. In our

case, it is a measure h of the spacing, and the smallness is measured in comparison to

the typical wavelength 1/k imposed by the source. The structuration is two

dimensional, with spacings h2 along e2 and h3 along e3, and it has a typical

thickness e. We consider that (h2, h3, e) are of the same order of magnitude; hence,

without loss of generality, we set

ε = h =
√
h2h3 � 1, e = O(ε), k = O(1).

Owing to this separation of the scales, we define two systems of coordinates: the

macroscopic scale x which is associated with the scale of the wavelength, and the

microscopic scale y which is associated with the scale of the structuration, with

y =
x

ε
,

and y aims to disappear in the homogenized problem. Typically, the coordinate x
allows us to move over long distances along the structure in the (x2, x3)-plane and

to move far away from it in the x1-direction. In the vicinity of the inclusions, once

x′ = (x2, x3) has fixed a given inclusion, y describes small displacements around

it (Figure 4.2). This is why, although x and y are linked, they will be considered as

independent coordinates (until we remember that they are linked). This is also why

y′ = (y2, y3) is bounded in

Y(y1) ⊂ Y∞ = {y2 ∈ (0, h2/h), y3 ∈ (0, h3/h)} ,

with Y(y1) containing the fluid only. We can consider that y1 is unbounded,

specifically y1 ∈ (0,+∞) for the structured wall and y1 ∈ (−∞,+∞) for the

structured film, and we can anticipate that we will have to specify something when y1
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goes to infinity. It follows that in y coordinate, the problem is set on a strip Y∞ and

in practice, we can also consider

(a) : Y(ym1 ) = {y1 ∈ (0, ym1 ),y′ ∈ Y(y1)}, Y = lim
ym
1 →+∞

Y(ym1 ),

(b) : Y(ym1 ) = {y1 ∈ (−ym1 , ym1 ),y′ ∈ Y(y1)}, Y = lim
ym
1 →+∞

Y(ym1 ),

and we denote by V(ym1 ) the volume of Y(ym1 ) and by S(y1) the surface of Y(y1).
Note that by construction S(y1) = 1 if no inclusion intersects Y(y1).

x1

x2

y2

y1

x′

y

Figure 4.2. The two systems of coordinate in the vicinity of the inclusions (here
shown in 2D). The macroscopic coordinate x′ = (x2, x3) allows for long-distance
displacements along the inclusions; once a given inclusion has been fixed,
y = (y1, y2, y3) describes short-distance displacement around it

4.1.2. The hierarchies of equations in the inner and outer regions

Now, we can define two regions and the expansions of the fields in these regions.

The outer region is the one where only the propagating wave exists, that is, far

enough from the structure to consider that the evanescent field is negligible. This

field vanishes exponentially with a spatial decay of the order of ε, hence the outer

region corresponds to |x1| 	 ε. There, only the macroscopic coordinate is needed;

accordingly, the pressure and velocity are expanded in the form

Outer region:

{
p = p0(x, t) + εp1(x, t) + · · · ,
u = u0(x, t) + εu1(x, t) + · · · . [4.3]

The inner region corresponds to the region in the vicinity of the inclusions and

it has an extent much smaller than the typical wavelength, |x1| � 1/k. There, to

account for the evanescent field, the coordinate y is needed and, as previously said, x′

is kept as an additional coordinate to account for long-distance displacements along

the structure. Thus, the expansions are sought in the form

Inner region:

{
p = q0(y,x′, t) + εq1(y,x′, t) + · · · ,
u = v0(y,x′, t) + εv1(y,x′, t) + · · · . [4.4]
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As a result, the differential operator reads differently in the two regions, with

{
in the outer region: ∇ → ∇x,

in the inner region: ∇ → ∇x′ +
1

ε
∇y.

[4.5]

In the following, the expansions [4.3] and [4.4] will be plugged into equations [4.1]

using equations [4.5], and a hierarchy of equations will be obtained by identifying the

terms with the same power of ε (in the inner and outer regions). Specifically, we obtain

that linearized Euler equations apply for the outer terms at each order, namely

χ
∂pn

∂t
+ divxu

n = 0, ρ
∂un

∂t
= −∇xp

n, n = 0, 1, · · · , [4.6]

but the boundary conditions on the rigid inclusions (and on the rigid wall) do not apply

since the outer terms are only valid far from the structure. Next, in the inner region,

the hierarchy of equations is read as

⎧⎨
⎩

divyv
0 = 0, ∇yq

0 = 0,

χ
∂qn

∂t
+ divxv

n + divyv
n+1 = 0, ρ

∂vn

∂t
= −∇xq

n −∇yq
n+1, n = 0, 1, · · · .

[4.7]

As in the classical homogenization, the hierarchy of equations in the inner problem

starts with ∇yq
0 = 0, whence q0 does not depend on y. This simple result is given

for free and it is essential to enter serenely in the resolution of the equations, order

by order.

4.1.3. The matching conditions

At this stage, the inner and outer problems have to be complemented by boundary

conditions. Indeed, as y1 is unbounded when moving away from the inclusions, there

are missing boundary conditions for |y1| → +∞. Reversely, in the outer region,

boundary conditions when approaching the structure are missing; those are precisely

the conditions that we are looking for. These conditions are provided simultaneously

by the so-called matching conditions, which tell us that the outer and inner solutions

coincide in an intermediate region. To get an idea, this intermediate region can be

seen as the region where x1 ∼ O(
√
ε) → 0 in the outer problem, yielding

y1 = x1/ε ∼ O(1/
√
ε) → +∞ in the inner problem. Using x1 = εy1 in [4.3], and

re-expanding in power of ε, provides the matching conditions at the order 1:

p0(0±,x′, t) = lim
y1→±∞ q0(y,x′, t), u0(0±,x′, t) = lim

y1→±∞v0(y,x′, t), [4.8]
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and at the order 2:⎧⎪⎪⎨
⎪⎪⎩

p1(0±,x′, t) = lim
y1→±∞

(
q1(y,x′, t)− y1

∂p0

∂x1
(0±,x′, t)

)
,

u1(0±,x′, t) = lim
y1→±∞

(
v1(y,x′, t)− y1

∂u0

∂x1
(0±,x′, t)

)
.

[4.9]

It is worth noting that the relations above already tell us that, far from the structure,

(i) the inner fields (q0,v0) do not depend on y′ anymore, which is quite intuitive, and

(ii) the fields (q1,v1) have a linear dependence in y1, which is less intuitive.

4.2. Effective boundary condition on a structured rigid wall

We start with the case of a structured wall, that is, for inclusions located in the

vicinity of a rigid wall, or in contact with it (Figure 4.3). We can establish the effective

boundary condition on an equivalent, or effective, surface Σe; see [4.2]. As previously

said, in the outer region above and far away for the inclusions, [4.6] applies for each

term of [4.3]. In the inner region, we can use [4.7] along with [4.4]; note that the

matching conditions apply for y1 → +∞ only, while the presence of the rigid wall

imposes a vanishing normal velocity at y1 = −e/h.

y3
y2

y1

Y
1

e

h

h3h2

e
x1

x2

x3
Y(y1)0

0

Σe

Figure 4.3. A structured rigid wall: array of inclusions in the vicinity of a
rigid wall. The elementary cell Y contains single inclusions in

y coordinate, with y1 ∈ (−e/h,+∞) (with h =
√
h1h2)
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4.2.1. A trivial boundary condition at the order 1

We start with [4.7] at the leading order. As already said, ∇yq
0 = 0 tells us that q0

does not depend on y, whence

q0 = p0(0,x′, t),

from the matching condition [4.8]. Next, integrating the relation divyv
0 = 0 over Y

leaves us with

0 =

ˆ
Y

divyv
0(y,x′, t)dy =

ˆ
Y(+∞)

v01(+∞,y′,x′, t)dy′ = u0
1(0,x

′, t), [4.10]

u0
1(0,x

′, t) = 0,

where we used (i) the Neumann boundary conditions on the rigid inclusions and on

the rigid wall and (ii) the matching condition [4.8] for v0. At the dominant order, only

the rigid wall is seen by the wave and we need to go to the next order to capture the

boundary layer effects due to the presence of the inclusions.

4.2.2. A less trivial boundary condition at the order 2

We already know that q0(x′, t) = p0(0,x′, t) is independent of y, and from [4.7],

the resolution at the second order starts with the problem on (q1,v0). Specifically

from [4.7], we have

(S)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

In Y : divyv
0 = 0, ρ

∂v0

∂t
= −∇yq

1 −∇x′p0(0,x′, t),

b.c.: v0 · n|Γ = 0, and v01 = 0, at y1 = −e/h,

q1,v0 y′-periodic,

lim
y1→+∞ ρ

∂

∂t
v0 = −∇x′p0(0,x′, t).

The boundary conditions, with vanishing normal velocity on the rigid inclusions

and on the wall, are supplemented by the conditions of y′-periodicity and by the

matching condition [4.8] for v0, which ensures that the above problem (S) is well

posed. It is worth noting that we wrote the matching condition accounting for (i) the
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condition u0
1(0,x

′, t) = 0 that we have obtained previously and (ii) the relation

ρ∂tu
0
α = −∂xαp

0 from [4.6].

It can be noticed that the relation divyv
0 = 0 has been used twice. In the preceding

section, we used it once integrated over Y , which has provided the boundary condition

for u0
1. Here it is used again in a strong form. This is the game, when conducting

the analysis, between getting averaged information (over Y), which is at the end the

information that is sought, and getting information on the local behavior of the inner

terms which encapsulate the boundary layer effects.

The system (S) is set on (q1,v0) in y coordinate (and time t) where x′ appears

as a parameter. This means that, although ∇x′p0(0,x′, t) is unknown, it plays the

role of an external forcing in (S). Moreover, as (S) holds for any ∇x′p0(0,x′, t),
we can invoke the linearity of the problem with respect to ∂xαp

0(0,x′, t), and set the

following decompositions:

(D)

⎧⎪⎨
⎪⎩

q1(y,x, t) =
∂p0

∂xα
(0,x′, t)Qα(y) + 〈q1〉(x′, t),

ρ
∂v0

∂t
(y,x, t) = − ∂p0

∂xα
(0,x′, t)∇y (Qα(y) + yα) ,

where Qα(y), of zero mean over Y (denoted 〈Qα〉), are solutions of the elementary

problems:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

In Y : ΔyQα = 0,

b.c.: ∇y(Qα + yα) · n|Γ = 0, and
∂Qα

∂y1
= 0, at y1 = −e/h,

Qα,∇yQα y′-periodic,

lim
y1→+∞∇Qα = 0.

[4.11]

The invoked “linearity” means that, once the Qα satisfies the elementary

problems, (q1,v0) satisfies (S) for any ∇x′p0(0,x′, t). For instance, the problem on

Q2 is obtained by setting, in (S), q1 = Q2 for ∂x2p
0(0,x′, t) = 1 and

∂x3p
0(0,x′, t) = 0. The interest in solving the elementary problems rather than (S)

is obvious. Indeed, (S) is a time-dependent problem which has to be solved for

specific source and radiation conditions (since p0 and its spatial derivatives have to

be determined). On the contrary, the elementary problems are static problems which

depend only on the microstructure. As such, (i) they can be solved more easily than
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the initial problem and (ii) they can be solved once and for all independently of the

specific scattering problem that will be considered afterwards.

We can observe that, once the elementary problems have been solved, they

provide the effective parameters, which enter in the effective boundary conditions. In

the present case, we are looking for a boundary condition on u1
1(0,x

′, t) (we already

know that u0
1(0,x

′, t) = 0). To that aim, we integrate over Y(ym1 ) the time derivative

version of the equation of mass conservation in [4.7] for n = 0, namely

ρ
∂

∂t

ˆ
Y(ym

1 )

(
χ
∂p0

∂t
(0,x′, t) + divx′v0 + divyv

1

)
dy = 0, [4.12]

where we again used that q0(x′, t) = p0(0,x′, t). This step is the second iteration

of the averaging process, which we have already done in the preceding section by

integrating the relation divyv
0 = 0. It is here slightly more involved (and as such

it will provide a slightly less trivial condition). Let us calculate each of the above

integrals.

– The first integral involves a term that is independent of y, whence

ρ
∂

∂t

ˆ
Y(ym

1 )

χ
∂p0

∂t
(0,x′, t)dy = Δxp

0(0,x′, t)V(ym1 ), [4.13]

where we used [4.6] for n = 0, and with V(ym1 ) being the volume of Y(ym1 )
(obviously V(ym1 ) diverges for ym1 → +∞).

– The second integral in [4.12] is calculated owing to the decomposition of v0 in

(D) and we get

ρ
∂

∂t

ˆ
Y(ym

1 )

divx′v0dy = − ∂2p0

∂xα∂xβ
(0,x′, t)

ˆ
Y(ym

1 )

∂Qα

∂yβ
dy

−Δx′p0(0,x′, t)V(ym1 ).

[4.14]

– Eventually, the third integral is evaluated owing to the matching condition [4.9]

for v1 in the limit of large ym1 , and leaves us with

ρ
∂

∂t

ˆ
Y(ym

1 )

divyv
1dy ∼

ym
1 →+∞

ρ
∂

∂t

ˆ
Y(ym

1 )

(
u1
1(0,x

′, t) + ym1
∂u0

1

∂x1
(0,x′, t)

)
dy′,

∼
ym
1 →+∞

ρ
∂

∂t

(
u1
1(0,x

′, t) + ym1
∂u0

1

∂x1
(0,x′, t)

)
. [4.15]
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With our choice of the origin at a distance e/h above the rigid wall (in y
coordinate), we have V(ym1 ) = ym1 + ϕ, with

ϕ the volume of the fluid for y1 ∈ (−e/h, 0), (and 0 ≤ ϕ ≤ e/h),

whence ϕ = e/h− Vinc, with Vinc being the actual volume of the inclusion rescaled by

h2. Gathering the three integrals above, the terms linear in ym1 cancel, which leaves us

with

ρ
∂u1

1

∂t
(0,x′, t) = −ϕ

∂2p0

∂x2
1

(0,x′, t)−Aαβ
∂2p0

∂xα∂xβ
(0,x′, t), [4.16]

and eventually with

u1
1(0,x

′, t) = ϕ
∂u0

1

∂x1
(0,x′, t) +Aαβ

∂u0
α

∂xβ
(0,x′, t), [4.17]

where

Aαβ = −
ˆ
Y

∂Qα

∂yβ
dy. [4.18]

It is worth noting that Aαβ is finite since ∇yQα vanishes when y1 → +∞ (it

vanishes exponentially).

REMARK 4.1.– The expression of V(ym1 ) in [4.14]–[4.15] depends on the choice of

the origin y1 = 0 with respect to the position of the actual wall. In any case, V(ym1 )
can be written as V(ym1 ) = ym1 + η, with η a constant. We can see that a positive

value of η is suitable when the energy is considered (see section 4.4) and our choice

of the origin with η = ϕ ensures that the inclusion is entirely comprised in

y1 = (−e/h, 0).
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4.2.3. Construction of a unique problem

The hierarchy of problems on (p0,u0) and (p1,u1) can be solved iteratively. In

the present case, the problem on (p0,u0) corresponds to the problem of scattering

over a rigid wall on its own (but shifted to a new position). Once the solution (p0,u0)
has been calculated for a given source and appropriate radiation conditions, it can be

used to feed the problem on (p1,u1), being that of the scattering over a wall with

boundary condition [4.17] being dependent on u0. It is more convenient, for several

reasons that we cannot detail here, to build a unique problem on (pef,uef) such that pef

and uef admit the same expansions as (p0+εp1) and (u0+εu1) up to O(ε2), hence the

same expansions as p and u up to O(ε2). This unique problem on (pef,uef) is such that

(pef,uef) satisfies the linearized Euler equation in the fluid and the effective boundary

condition

uef

1(0,x
′, t) = hϕ

∂uef

1

∂x1
(0,x′, t) + hAαβ

∂uef

α

∂xβ
(0,x′, t),

which was announced in [4.2]. This is because, denoting ua = u0+εu1 (with ε = h),

we have from [4.17] that

ua
1(0,x

′, t) = hϕ
∂(ua

1 − εu1
1)

∂x1
(0,x′, t) + hAαβ

∂(ua
α − εu1

α)

∂xβ
(0,x′, t)

= hϕ
∂ua

1

∂x1
(0,x′, t) + hAαβ

∂ua
α

∂xβ
(0,x′, t) +O(ε2),

and obviously, pa = p0 + εp1 and ua satisfy linearized Euler equations.

4.3. Effective jump conditions across a structured film

We now move on to the case where the thin structure is surrounded by the fluid

(Figure 4.4). In this case, we are looking for an effective problem in which the whole

structure has been replaced by effective transmission, or jump, conditions.

As discussed previously, equations [4.6] apply at each order in the outer regions

above and below the inclusions (and far enough from them) and equations [4.7] apply

in the inner region. The difference is that the condition of vanishing normal velocity

on the rigid wall is replaced by matching conditions at y1 → −∞ given by [4.8]–[4.9].
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Figure 4.4. A structured film: array of inclusions in a surrounding fluid.
The elementary cell contains a single inclusion

in y-coordinate, with y1 ∈ (−∞,+∞)

4.3.1. Jump conditions at the order 1

As in the preceding section, we start with ∇yq
0 = 0, hence

q0(x′, t) = p0(0±,x′, t). [4.19]

Next, integrating over Y the relation divyv
0 = 0 leaves us with

0 =

ˆ
Y(+∞)

v01(y,x
′, t) dy′ −

ˆ
Y(−∞)

v01(y,x
′, t) dy′

= u0
1(0

+,x′, t)− u0
1(0

−,x′, t).

It follows that the jump conditions read as

[
p0
]
(0)

=
[
u0
1

]
(0)

= 0, [4.20]

which means that the array is not seen by the wave and the usual continuities of the

pressure and of the normal velocity apply at the dominant order.
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4.3.2. Jump conditions at the order 2

To conduct the analysis at the second order, we start with the problem on (q1,v0),
which is slightly modified with respect to its alter ego (S); it reads as

(s)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

In Y : divyv
0 = 0, ρ

∂v0

∂t
= −∇yq

1 −∇x′p0(0,x′, t),

b.c.: v0 · n|Γ = 0, q1,v0 y’-periodic,

lim
y1→±∞ ρ

∂

∂t
v0 = −∇xp

0(0,x′, t).

We have used that ∇xp
0 is continuous at x1 = 0 from the preceding section, since

(i) ∂x1p
0 = −ρ∂tu

0
1 is continuous at x1 = 0 because u0

1 is continuous at x1 = 0, and

(ii) ∇x′p0 is continuous because p0(0,x′, t) is continuous. The system (s) is linear

with respect to ∂xip
0(0,x′, t) and we use the decomposition

(d)

⎧⎪⎨
⎪⎩

q1(y,x′, t) =
∂p0

∂xi
(0,x′, t)Qi(y) + 〈q1〉(x′, t),

ρ
∂v0

∂t
(y,x′, t) = −∂p0

∂xi
(0,x′, t)∇yQi(y)−∇x′p0(0,x′, t),

where the elementary solutions Qi, of zero average, are solutions of the elementary

problems:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

In Y : ΔyQ1 = 0,

b.c.: ∇yQ1 · n|Γ = 0, Q1,∇yQ1 y’-periodic,

lim
y1→±∞∇yQ1 = e1,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

In Y : ΔyQα = 0,

b.c.: ∇y (Qα + yα) · n|Γ = 0, Qα,∇yQα y’-periodic,

lim
y1→±∞∇yQα = 0.

[4.21]
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Again, as soon as the Qi are solutions of the elementary problems, (q1,v0) are

solutions of (s) for any ∇xp
0(0,x′, t). Moreover, and as already stressed, the

elementary problems are simple static problems which depend only on the

considered microstructure.

In the previous section, a boundary condition on u1
1 was sought; here, we want to

derive jumps in p1 and u1
1 (we already know that p0 and u0

1 have zero jumps). Owing

to the matching conditions [4.9] for p1, along with the decomposition (d), the jump in

the pressure simply follows from the limits Qi when y1 → ±∞. The limits of the Qi

are known from the limits of their gradients up to constants; specifically from [4.21]

they read as

Q1 ∼
y→±∞ y1 +B±

1 , Qα ∼
y→±∞ B±

α ,

and the values of the B±
i are known once the elementary problems have been solved.

It is easy to see that the term linear in y1 in the matching condition [4.9] for p1 is

compensated by the term linear in Q1 when y1 → ±∞, and we obtain that

⎧⎪⎪⎨
⎪⎪⎩

p1(0−,x′, t) = B−
1

∂p0

∂x1
(0,x′, t) +B−

α

∂p0

∂xα
(0,x′, t) + 〈q1〉(x′, t),

p1(0+,x′, t) = B+
1

∂p0

∂x1
(0,x′, t) +B+

α

∂p0

∂xα
(0,x′, t) + 〈q1〉(x′, t).

The jump in p1 immediately follows, of the form

[
p1
]
(0)

= B̂i
∂p0

∂xi
(0,x′, t), [4.22]

with

B̂i = B+
i −B−

i .

We still have to determine the jump in u1
1, and to do so we integrate over Y the

relation χ∂tp
0(0,x′, t) + divx′v0 + divyv

1 = 0 from [4.7], once differentiated with

respect to time t; see [4.12] (and here, only the definition of Y has changed). We find
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three integrals which have essentially the same forms as in the preceding section and

for the same reasons; see [4.13]–[4.15]. Specifically:

– The first integral is given by

ρ
∂

∂t

ˆ
Y(ym

1 )

χ
∂p0

∂t
(0,x′, t)dy = Δxp

0(0,x′, t)V(ym1 ),

and V(ym1 ) = 2ym1 − Vinc still diverges when ym1 → +∞. In the following, and to

draw a parallel with the case of a structured wall, we use Vinc = e/h− ϕ; this will be

helpful when the final jumps are specified.

– The second integral is calculated owing to the decomposition of v0 in (d), and

thus it involves a term in ∂x1p
0
|x1=0 which was zero in the preceding section, namely

ρ
∂

∂t

ˆ
Y(ym

1 )

divx′v0dy = − ∂2p0

∂xα∂xi
(0,x′, t)

ˆ
Y(ym

1 )

∂Qi

∂yα
dy

−Δx′p0(0,x′, t)V(ym1 ).

– The third integral is evaluated owing to the matching conditions [4.9] at

y1 = ±ym1 in the limit of large ym1 , which leaves us with

ρ
∂

∂t

ˆ
Y(ym

1 )

divyv
1dy ∼

ym
1 →+∞

ρ
∂

∂t

ˆ
Y(ym

1 )

(
u1
1 + ym1

∂u0
1

∂x1

)
|x1=0+

− ρ
∂

∂t

ˆ
Y(−ym

1 )

(
u1
1 − ym1

∂u0
1

∂x1

)
|x1=0−

∼
ym
1 →+∞

ρ
∂

∂t

([
u1
1

]
(0)

+ 2ym1
∂u0

1

∂x1
(0,x′, t)

)
.

It is worth noting that we made use of the continuity of ∂x1u
0
1 at x1 = 0; this

continuity is given by the conservation of the momentum in [4.7], with ∂x1u
0
1 =

−∂xαu
0
α − χ∂tp

0 (and both ∂xαu
0
α and ∂tp

0 are continuous). Gathering the three

integrals yields the jump condition on u1
1 of the form

ρ
∂

∂t

[
u1
1

]
(0)

= −ρ
∂

∂t

( e

h
− ϕ

) ∂u0
1

∂x1
(0,x′, t) +

∂2p0

∂xi∂xα
(0,x′, t)

ˆ
Y

∂Qi

∂yα
dy,

which can be rewritten, omitting the time derivative, as

[
u1
1

]
(0)

= −
( e

h
− ϕ

) ∂u0
1

∂x1
(0,x′, t) + Ciα

∂u0
i

∂xα
(0,x′, t), [4.23]
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where

Ciα = −
ˆ
Y

∂Qi

∂yα
(y)dy. [4.24]

REMARK 4.2.– In [4.23], the coefficient −(e/h − ϕ) associated with ∂x1u
0
1(0,x

′, t)
is negative since (e/h− ϕ) represents the (rescaled) volume of the inclusion. We will
see below that this jump condition has to be slightly modified, or better said, can
be slightly modified in order to obtain jump conditions with the suitable property of
positive energy.

4.3.3. An alternative form of the effective jump conditions on a unique
problem

In the previous section, we wrote the effective boundary condition on a surface

Σe at a distance e of the actual rigid plane (in x coordinate). Here we do a similar

choice by writing the jumps across an enlarged interface of non-zero thickness (up to

now they have been expressed across a zero-thickness interface at x1 = 0). In both

cases, these choices will be discussed in the last part of this chapter, where the energy

conservation in the homogenized problems will be considered. For the time being,

we just decide to write the jumps between x1 = −e and x1 = 0. To begin with, we

consider pa = p0 + εp1, and its values at both sides of the enlarged interface⎧⎪⎪⎨
⎪⎪⎩

pa(−e,x′, t) = p0(−e,x′, t) + εp1(−e,x′, t)

= p0(0,x′, t) + ε

(
− e

h

∂p0

∂x1
(0,x′, t) + p1(0−,x′, t)

)
+O(ε2),

pa(0+,x′, t) = p0(0,x′, t) + εp1(0+,x′, t),

by using a Taylor expansion of p0(−e,x′, t) and of p1(−e,x′, t) in the vicinity of

x1 = 0− (and remember that ε = h). For x1 ∈ (−e, 0), both fields are continuous,

such that the Taylor expansions are valid. It follows that the new jump [pa] becomes

[pa] = pa(0+,x′, t)− pa(−e,x′, t) = ε

([
p1
]
(0)

+
e

h

∂p0

∂x1
(0,x′, t)

)
+O(ε2)

= ε

(
B̂i

∂p0

∂xi
(0,x′, t) +

e

h

∂p0

∂x1
(0,x′, t)

)
+O(ε2), [4.25]

where we used that p0 is continuous from [4.19] and where
[
p1
]
(0)

is given by [4.22].

We also define the mean value of pa on the interface by

pa =
1

2

(
pa(−e,x′, t) + pa(0+,x′, t)

)
= p0 + εp1. [4.26]
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For now, it is sufficient to use that

ε
∂p0

∂xi
(0,x′, t) = ε

∂pa

∂xi
+O(ε2), [4.27]

which is obvious, along with [4.25], to get

[pa] = ε

(
B̂i

∂pa

∂xi
+

e

h

∂pa

∂x1

)
+O(ε2).

The same applies for ua = u0 + εu1, resulting in an additional term

εe/h∂x1u
0
1(0,x

′, t) in the jumps of u1
1 (the calculation is similar and

straightforward).

Now, we consider (pef,uef) satisfying the linearized Euler equation for

x1 ∈ (−∞,−e) ∪ (0,+∞) and the jump conditions

[pef] = εBi
∂pef

∂xi
, [uef

1] = ε

(
ϕ
∂uef

1

∂x1
+ Ciα

∂uef

i

∂xα

)
,

given in [4.2], and with

B1 = B̂1 + e/h, and Bα = B̂α

(in [4.22]) and Ciα in [4.24]. It is easy to see that pef and uef admit the same expansions

as pa and ua up to O(ε2), hence the same expansions as p and u up to O(ε2).

4.4. Considerations on the equation of energy conservation

In this section, we inspect the equation of energy conservation in the

homogenized problem. We consider a bounded domain Ω which we can see as a

computational domain where the effective problems are solved (Figure 4.5). The

boundary ∂Ω contains the physical boundary Σ with the exterior; in the case (a), it

also contains Σe where the effective boundary condition applies, and in the case (b),
it contains Γe = Γe

+ ∪ Γe
−, across which the jump conditions apply. Hence,

∂Ω = Σ ∪ Σe and ∂Ω = Σ ∪ Γe
+ ∪ Γe

−, respectively.
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Figure 4.5. Conservation of the energy in the effective problems. The conservation
of energy is written in a bounded domain Ω, the boundary of which interrogates the
effective conditions, on Σe for a structured wall (case (a)) and across Γe = Γe

+ ∪ Γe
−

for a structured film (case (b))

The equation of energy conservation is obtained from linearized Euler equations

[4.1] by multiplying the equation of mass conservation by p and the equation of

momentum conservation by u and by summing and integrating over Ω. We get the

classical equation of energy conservation of the form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d

dt

ˆ
Ω

E dy +Φ = 0,

with E =
1

2

(
χp2 + ρu2

)
the acoustic energy,

and Φ =

ˆ
∂Ω

pu · n ds the flux of the Poynting vector.

[4.28]

In general, the material boundaries of ∂Ω (a rigid wall or a material interface) do

not contribute to Φ, and only the ingoing and outgoing fluxes across Σ have to be

accounted for; hence, in the absence of such fluxes (e.g. Σ is a rigid wall), the

acoustic energy is conserved in Ω. In the effective problems, the boundaries Σe or

Γe
± contribute to the fluxes, and we term these contributions Φef; this is because the

effective condition on Σe has non-vanishing u · n and non-vanishing p, and the fluxes

through Γe
± are not equilibrated because of the effective jumps. It is meaningful to

show that the effective problems are associated with energies which, in the absence

of fluxes across Σ, are conserved. To show this, Φef has to be written as the time

derivative of an effective energy E ef supported by Σe or Γe. Besides, E ef has to be

positive. Loosely speaking, this ensures that, in the absence of fluxes through Σ, the
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total energy (E + E ef) is conserved in time, without possible time variations of E
compensated by opposite time variations of E ef, which would foster numerical (and

unphysical) instabilities. We can see that Φef takes the following forms:

Φef =
d

dt
E ef, with:

(a) Effective energy supported by Σe:

E ef =
h

2

ˆ
Σe

(
ϕχp2 + ρ

(
A2u

2
2 +A3u

2
3 − 2A23u2u3

))
dx′,

(b) Effective energy supported by Γe:

E ef =
h

2

ˆ
Γe

(
ϕχp2 + ρB1u1

2 + ρ
(
C2 u2

2 + C3 u3
2 − 2C23u2 u3

))
dx′,

[4.29]

where we defined Aα = ϕ − Aαα and Cα = ϕ − Cαα. Hence, E ef ≥ 0 if, for (a):
Aα ≥ 0, A2A3 −A2

23 ≥ 0 and for (b): B1 ≥ 0, Cα ≥ 0, C2C3 − C2
23 ≥ 0.

In [4.29], we have omitted to specify that we are working with the effective fields

and we have used (pef,uef) → (p,u) for simplicity; we can keep this notation in this

section.

4.4.1. Energy E ef supported by the effective surface Σe

With n the normal exterior to ∂Ω in [4.28], it is easy to see that the flux on Σe

reads as

Φef = −
ˆ
Σe

p(0,x′, t)u1(0,x
′, t)dx′, [4.30]

and accounting for the boundary condition in [4.2], we get

Φef = −h

ˆ
Σe

p

(
ϕ
∂u1

∂x1
+Aαβ

∂uα

∂xβ

)
dx′. [4.31]
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We consider the two contributions in the above integral.

• Φef

1 = −hϕ

ˆ
Σe

p
∂u1

∂x1
dx′ = hϕ

ˆ
Σe

p

(
χ
∂p

∂t
+

∂uα

∂xα

)
dx′

= h
ϕχ

2

d

dt

ˆ
Σe

p2dx′ − hϕ

ˆ
Σe

∂p

∂xα
uαdx′ + b.t.

=
hϕ

2

d

dt

ˆ
Σe

(
χp2 + ρ uα

2
)

dx′ + b.t.,

where we first used the relation divu + χ∂tp = 0, and after an integration by part of

p∂xαuα, we used that ∂xαp = −ρ∂tuα. It is worth noting that the integration by parts

makes boundary terms (b.t.) appear at both extremities of Σe; they are disregarded

here.

• Φef

2 = −hAαβ

ˆ
Σe

p
∂uα

∂xβ
dx′ = −ρ hAαβ

ˆ
Σe

∂uβ

∂t
uαdx′ + b.t.,

using the same relations as for the first contributions. Eventually, with A23 = A32 (see

[A1.1] in Appendix 1), Φef = Φef

1 +Φef

2 can be written as stated in [4.29].

4.4.2. Energy E ef supported by the effective interface Γe

This case is similar to the previous one, now with

Φef = −
ˆ
Γe

[pu1] dx′ = −
ˆ
Γe

([p]u1 + p [u1]) dx′, [4.32]

hence, from [4.2],

Φef = −h

ˆ
Γe

(
Bi

∂p

∂xi
u1 + p

(
ϕ
∂u1

∂x1
+ Ciα

∂ui

∂xα

))
dx′. [4.33]

Again, we consider each term in the above integral, namely

• Φef

1 = −hBi

ˆ
Γe

∂p

∂xi
u1 = ρ

hB1

2

d

dt

ˆ
Γe

u1
2 − hBα

ˆ
Γe

∂p

∂xα
u1.

The first term for i = 1 makes the time derivative of u1
2 since ∂x1p = −ρ∂tu1.

For the time being, the second term in Bα is left as it is.

• Φef

2 = −hϕ

ˆ
Γe

p
∂u1

∂x1
= hϕ

ˆ
Γe

p

(
χ
∂p

∂t
+

∂uα

∂xα

)

= h
ϕχ

2

d

dt

ˆ
Γe

p2 − hϕ

ˆ
Γe

∂p

∂xα
uα + b.t.

=
hϕ

2

d

dt

ˆ
Γe

(
χp2 + ρ uα

2
)
+ b.t.,
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where we used that divu + χ∂tp = 0, then an integration by part of p∂xαuα, and

eventually that ∂xαp = −ρ∂tuα.

• Φef

3 = −hCiα

ˆ
Γe

p
∂ui

∂xα
= −hC1α

ˆ
Γe

p
∂u1

∂xα
− hCαβ

ˆ
Γe

p
∂uα

∂xβ

= hC1α

ˆ
Γe

∂p

∂xα
u1 − ρ hCαβ

ˆ
Γe

∂uβ

∂t
uα.

We see that the first terms in C1α compensate the terms in Bα in Φef

1 (since C1α =
Bα, see [A1.2]). Gathering all the terms leaves us with the form announced in [4.29].

4.4.3. Positiveness of the effective energies

As previously mentioned, to show that E ef ≥ 0 in [4.29](b), we have to show that

B1 ≥ 0 , Cα = ϕ − Cαα ≥ 0 and C2C3 − C2
23 ≥ 0 (and in (a), the demonstration

for (Aα, A23) is the similar). It is worth noting that in this context, ϕ has a fuzzy

definition: it represented the volume fraction of the fluid in some vicinity of the

inclusions dictated by effective thickness e, and the latter is chosen arbitrarily.

However, with ϕ = e/h−Vinc (and Vinc the volume of an inclusion), we have imposed

that e is larger than the actual dimension, say e1, along x1 of the inclusions in order

to ensure that ϕ ≥ 0. Our guess is that setting e = e1 is sufficient to ensure that

E ef ≥ 0. In this case, we will prove below that (i) B1 ≥ 0 and (ii) for any reals

(a2, a3), a
2
2C2 + a23C

2
3 − 2a2a3C23 ≥ 0 (the quadratic form is positive, which is

equivalent to the conditions Cα ≥ 0 and C2C3 − C2
23 ≥ 0).

4.4.3.1. Property (i) – B1 ≥ 0

With ΔQ1 = 0, we have that

0 =

ˆ
Y
QΔQ1dy = −

ˆ
Y
∇Q · ∇(Q1 − y1) dy −

ˆ
Y

∂Q

∂y1
dy +

ˆ
∂Y

Q∇Q1 · n ds

for any Q, termed admissible field, such as Q is continuous and ∇Q → 0 when

|y1| → ∞. The last integral over ∂Y equals (Q(+∞) − Q(−∞)) since ∇Q1 · n
vanishes on Γ, on the periodic boundaries and it has only non-zero contributions on

Y(±∞), where ∇Q1 · n = ±1. We denote B(Q) = (Q(+∞,y′) − Q(−∞,y′));
hence we have for any admissible field Q that

0 =

ˆ
Y
∇Q · ∇(Q1 − y1)dy +

ˆ
Y

∂Q

∂y1
dy −B(Q), [4.34]
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which applies for Q = Q1− y1 (and B(Q) = B̂1 = B1− e/h), but this does not help

us to show that B1 ≥ 0). However, this tells us that (Q1 − y1) satisfies the Dirichlet

principle, specifically

E(Q1 − y1) ≤ E(Q), with E(Q) =

ˆ
Y

(
1

2
|∇Q|2 +

ˆ
Y

∂Q

∂y1

)
dy −B(Q), [4.35]

for any admissible field Q. To find a bound for B1, it is now sufficient to (i) calculate

E(Q1 − y1) and (ii) choose a field Q and its associated E(Q).

– Expression of E(Q1 − y1): applying [4.34] to Q = (Q1 − y1), we get that

ˆ
Y
|∇(Q1 − y1)|2dy +

ˆ
Y

∂(Q1 − y1)

∂y1
dy −

(
B1 − e

h

)
= 0.

Next, evaluating 0 =
´
Y y1ΔQ1dy, it is straightforward to show that

ˆ
Y

∂(Q1 − y1)

∂y1
dy = Vinc.

Reporting the above results in [4.34] leaves us with

E(Q1 − y1) =
1

2

(
Vinc +

e

h
−B1

)
. [4.36]

– Energy of a particular admissible field: we choose Q depending on y1 only, with

Q(y) =

⎧⎨
⎩

0, y1 ∈ (−∞,−e/h),
b(hy1/e+ 1), y1 ∈ (−e/h, 0),
b, y1 ∈ (0,+∞),

hence |∇Q| = ∂y1Q = bh/e in (−e/h, 0) (zero otherwise), and B(Q) = b in [4.34].

At this stage, b is a free parameter. With (e/h− Vinc) = ϕ the volume of the subset of

Y comprised in y1 ∈ (−e/h, 0), it is easy to see that the minimum of E(Q) is reached

for b = eVinc/hϕ and

minE(Q) = −1

2

V2
inc

ϕ
. [4.37]

It is now sufficient to write that E(Q1 − y1) ≤ E(Q) to find that

B1 ≥ e2

h2ϕ
, [4.38]

which shows that B1 ≥ 0.
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4.4.3.2. Property (ii) – for any reals (a2, a2), a22C2 + a23C3 − 2a2a3C23 ≥ 0

To establish this property, we introduce the field Q defined as

Q(y) = a2Q2(y) + a3Q3(y), [4.39]

and the associated field U as

U = ∇ (Q(y) + a2y2 + a3y3), [4.40]

which, from [4.21], satisfies divU = 0, U · n|Γ = 0 and lim
y1→±∞U = a2e2 + a3e3.

The Thomson variational principle tells us that U satisfies

E∗(U) ≤ E∗(V), E∗(V) =
1

2

ˆ
Y
|V − (a2e2 + a3e3) |2, [4.41]

for any admissible velocity field V that is divergence-free and that satisfies V ·n|∂Y =
U · n|∂Y . As previously, it is now sufficient to (i) calculate E∗(U) and (ii) choose a

field V and its associated E∗(V).

– Expression of E∗(U): with Cαβ =
´
Y ∇Qα · ∇Qβ dy (see [4.24] and [A1.1])

and E∗(U) =
´
Y |∇Q|2dy, we obtain

E∗(U) =
1

2

⎡
⎢⎣ϕ(a22 + a23)−

(
a22C2 + a23C3 − 2a2a3C23

)︸ ︷︷ ︸
Q.F.

⎤
⎥⎦ , [4.42]

since Cα = (ϕ− Cαα), and we recover our quadratic form Q.F..

– Energy of a particular admissible field: to ensure that V satisfies V·n|Γ = 0 (and

the inclusions are in (−e/h, 0)) and lim
y1→±∞V = a2e2 + a3e3, a trivial admissible

field is V(y) = 0 for y1 ∈ (−e/h, 0), and V = a2e2 + a3e3 otherwise. We get

E∗(V) =
ϕ

2
(a22 + a23),

and it immediately follows that the quadratic form

(
a22C2 + a23C3 − 2a2a3C23

) ≥ 0 [4.43]

is positive.
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4.5. Concluding remarks

We have presented a two-scale homogenization to encapsulate the effect of rigid

inclusions in the vicinity of a rigid wall (case (a)) or forming a structured film (case

(b)) in effective conditions. These effective conditions avoid dealing with the small

scale of the inclusions in the actual problems, their effects being encapsulated in

effective parameters. The interest of such approaches is twofold. On the one hand,

the effective problems are much simpler than the actual ones precisely because the

small scale has disappeared; they are much easier to solve numerically and in some

cases, explicit solutions are available. The gain in the numerical cost increases when

the size of the microstructure decreases, and it is even more important when the

numerical implementation of the effective problems is considered in the transient

regime. On the other hand, the effective conditions are obtained using a deductive

approach; this means that the form of the effective conditions is not postulated

a priori. As such, the number of parameters entering in the effective conditions is

reduced to its minimum and more importantly the values of these parameters are

known and they depend only the shape of the microstructure.

In the case of rigid inclusions reported in this chapter, we have shown that (a) for

a structured wall, only four parameters are necessary, among which three have to be

calculated numerically from two elementary problems, and (b) for a structured film,

eight parameters are necessary, among which seven are deduced from three elementary

problems. Besides, in practice, further simplifications arise for particular shapes of

inclusions, which produce particular forms of the elementary solutions Qi. It is worth

noting that we can get insight into the form of the Qi remarking that Q1 and (Qα+yα)
correspond to the velocity potentials for a perfect fluid flowing across or along the

array of inclusions with a unitary velocity at y1 → ±∞ along e1 and eα respectively.

The simplest cases are as follows:

– The inclusions have a symmetry, say y3 → −y3. Then Q1, Q2 are even and

Q3 is odd (up to a constant) with respect to y3, resulting in (a) A23 = 0 and

(b) B3 = C23 = 0.

– The inclusions have zero thickness along y1, typically a perforated wall. Then,

Q2 = Q3 = 0 (the elementary problems correspond to a fluid flowing in the

(y2, y3)-plane without being perturbed by the inclusions). Then, we have for (a)
A22 = A33 = A23 = 0 and for (b) B2 = B3 = C22 = C33 = C23 = 0.

– In the 2D case, the inclusion is infinite along y3. Then ∂
∂y3

= 0, from which

Q3 = 0 (since n3 = 0), resulting in (a) A23 = A33 = 0, and (b) B3 = C23 =
C33 = 0.
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5

The Plane Wave Expansion Method

The plane wave expansion (PWE) method allows the calculation of dispersion

curves (i.e. the relation linking the frequency to the wave number for any propagating

mode) of periodic structures made of, for example, elastic materials such as phononic

crystals. The method is presented with many details in the case of bulk phononic

crystals (i.e. structures of infinite extent) and its advantages and drawbacks are

discussed. It is also shown that it can be used for analyzing the evanescence of waves

inside the phononic band gaps and for drawing the equifrequency contours of any

periodic structure.

5.1. Introduction

Propagation of elastic waves in composite materials exhibiting a periodic

structure constitutes a very old topic in physics. We can mention the work, among

others, of Lord Rayleigh in 1887, where the author showed the existence of band

gaps in periodically stratified media [RAY 87]. However, since the beginning of the

1990s and the pioneering works of M. M. Sigalas et al. [SIG 92] and M.S.

Kushwaha et al. [KUS 93] on phononic crystals, this topic received a renewed

interest. These artificial composite materials whose physical characteristics (density,

elastic moduli...) are periodic functions of the position have been proven to exhibit

very peculiar propagation properties such as frequency band gaps, negative refraction

and self-collimation phenomena, [DEY 13] among others. Studies of the propagation

of elastic waves in periodic structures require solving, with a high level of accuracy,

the equations of propagation of elastic waves. Different theoretical tools were then

proposed. We can mention the PWE method, the finite difference time domain

(FDTD) method, the multiple scattering (MS) method and the finite element (FE)

method, [DEY 13] as different examples.

Chapter written by Jérôme VASSEUR.

Fundamentals and Applications of Acoustic Metamaterials: From Seismic to Radio Frequency, 

First Edition. Edited by Vicente Romero-García and Anne-Christine Hladky-Hennion. 
© ISTE Ltd 2019. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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In the first part of this chapter, considering very simple periodic structures such as

one-dimensional infinite atomic when chains, we recall briefly the concepts that are

necessary for studying when more complex periodic structures such as the phononic

crystals – namely the unit cell, the direct lattice, the reciprocal lattice, the Brillouin

zones, the dispersion curves and the band gaps. The second part of the chapter focuses

on the PWE method. Starting from the equations of propagation of elastic waves in an

homogeneous elastic material, the basic principles of the PWE method are presented

and application of this method to two-dimensional periodic structures is reported with

many details. Limitations of the PWE method are discussed. Finally, it is shown that

the method can be used for analyzing the evanescence of waves inside the phononic

band gaps and for drawing the equifrequency surfaces of periodic structures.

5.2. One-dimensional atomic chains

5.2.1. One-dimensional atomic chain with one atom by unit cell

We consider first a very simple periodic structure, namely an infinite

one-dimensional linear chain of atoms of identical mass m, connected by springs

with constant stiffness β and oriented along the x direction. The equilibrium position

of atom n is xn,eq = na, where a is the distance between two adjacent atoms in their

equilibrium position. Atoms are assumed free to move slightly around their

respective equilibrium position. Their position, at any date t, is given as

xn(t) = na + un(t) with |un(t)| << |xn(t)| and un = xn − xn,eq is the

displacement of the nth atom from the equilibrium position. In that case, the unit cell

(see Figure 5.1) that can be repeated along direction x with periodicity a contains

only one atom and the lattice spacing a defines the periodicity of the chain along the

x axis. Newton’s second law applied to atom n considering interaction between first

neighbors gives

m
∂2un

∂t2
= −β(un − un−1) + β(un+1 − un) = β(un+1 + un−1 − 2un). [5.1]

Seeking solutions of equation [5.1] in the form of sinusoidal propagating waves of

amplitude U0 such as un(t) = U0e
i(kna−ωt), where k is the wave number and ω the

circular frequency, equation [5.1] becomes

−mω2 = β(eika + e−ika − 2) = 2β(cos(ka)− 1) = −4β sin2
(
ka

2

)
. [5.2]
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Figure 5.1. Schematic illustration of the infinite atomic
chain made of identical atoms of mass m with a lattice

parameter a. β is the stiffness of the spring linking atoms

We deduce from equation [5.2] the dispersion relation of the atomic chain, i.e. the

relation linking the circular frequency ω to the wave number k in the form

ω(k) =

√
4β

m
| sin

(
ka

2

)
|. [5.3]

Figure 5.2. (a) Dispersion relation of the infinite atomic chain made of identical
atoms (see Figure 5.1). The green and red boxes represent the first Brillouin
zone and the irreducible Brillouin zone, respectively. (b) Dispersion relation
plotted in the irreducible Brillouin zone. For a color version of this figure, see
www.iste.co.uk/romero/metamaterials.zip

Figure 5.2(a) shows the dispersion relation ω(k). We note that | sin (ka2 )| being a

π-periodic function,

| sin
(
ka

2

)
| = | sin

(
ka

2
+ π

)
| = | sin

(
a

2
(k +

2π

a
)

)
|, [5.4]
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ω(k) is then a periodic function of k with periodicity G = 2π
a and ω(k+nG) = ω(k),

where n is an integer. We deduce that a propagating mode of wave number k and a

mode with wave number (k+G) are exactly the same mode. The periodicity G = 2π
a

in the wave number space is associated with the “reciprocal lattice” of the chain, while

the lattice parameter a characterizes its “direct lattice”.

Due to the periodicity of the dispersion relation in the reciprocal space, the useful

information concerning the vibration modes that can propagate in the chain is

contained in the waves with wave numbers lying between the limits −π/a and +π/a.

This range of wave numbers centered on k = 0 is named the first Brillouin zone of

the reciprocal lattice. Therefore, the dispersion relation is also symmetric with

respect of the plane k = 0 and we may restrict the study to the irreducible Brillouin
zone, i.e. the domain of wave numbers ranging from 0 to +π/a (see Figure 5.2-(b)).

5.2.2. One-dimensional atomic chain with two atoms by unit cell

We can now take a closer look at a more complicated structure : an infinite

one-dimensional linear chain with two atoms of different masses in the unit cell (see

Figure 5.3). The lattice parameter is 2a and all the springs are supposed to have the

same stiffness β. Atoms of mass m1 and m2 are named even and odd atoms and

are labeled with integers 2n and 2n + 1, respectively. With the same assumptions as

that of section 5.2.1, we can write the equations of motion for even and odd atoms in

the form

⎧⎪⎪⎨
⎪⎪⎩

m1
∂2u2n

∂t2 = −β(u2n − u2n−1) + β(u2n+1 − u2n)
= β(u2n+1 + u2n−1 − 2u2n),

m2
∂2u2n+1

∂t2 = −β(u2n+1 − u2n) + β(u2n+2 − u2n+1)
= β(u2n+2 + u2n − 2u2n+1).

[5.5]

Figure 5.3. Schematic illustration of the infinite atomic chain made of
two atoms of masses m1 and m2 in the unit cell with a lattice

parameter 2a. β is the stiffness of the spring linking atoms
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Seeking solutions of equation [5.5] in the form

{
u2n(t) = Aei(k(2n)a−ωt),

u2n+1(t) = Bei(k(2n+1)a−ωt),
[5.6]

where A and B are amplitude terms, we obtain a set of two equations that can be

recast in the following matrix form:

(
(2β −m1ω

2) −2β cos(ka)
2β cos(ka) −(2β −m2ω

2)

)(
A
B

)
=

(
0
0

)
. [5.7]

Equation [5.7] admits non-trivial solutions if the determinant of the matrix

vanishes. This gives

ω4 − 2β

(
m1 +m2

m1m2

)
+

4β2 sin2(ka)

m1m2
= 0, [5.8]

and we deduce

ω(k) =

√√√√
β

(
m1 +m2

m1m2

)[
1±

√
1− 4

m1m2 sin
2(ka)

(m1 +m2)2

]
. [5.9]

Consequently, equation [5.8] admits two real solutions ω−(k) and ω+(k) that are

periodic in wave number, k, with a period of +π/a, and the first Brillouin zone

corresponds to the wave numbers varying between −π/2a and +π/2a. We note that

because the unit cell in the direct lattice of the chain is twice larger than that of the

monoatomic chain, the first Brillouin zone is twice smaller. Figure 5.4 shows the

behavior of the dispersion relations plotted in the irreducible Brillouin zone

(k between 0 and +π/2a) as a function of the ratio m2/m1 greater than or equal to

1. We can observe that for m2 = m1, we can recover the dispersion relation of the

infinite monoatomic chain, but the band is folded in a smaller irreducible Brillouin

zone. Moreover, for increasing mass ratio, a band gap appears at the edge of the

irreducible Brillouin zone, and higher is the mass ratio, larger is the band gap.

In this section, concepts of main importance such as the unit cell, the direct lattice

and the reciprocal lattice have been defined for very simple 1D periodic structures.

Such concepts can be generalized to much more complicated periodic structures such

as the phononic crystals. We suggest to readers of this chapter to consult some solid-

state physics text books such as references [ASH 76, KIT 04], where complete report

on these concepts of crystallography are available.
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Figure 5.4. Dispersion relations of the infinite atomic chain made of two atoms
of masses m1 and m2 in the unit cell with a lattice parameter 2a plotted in
the irreducible Brillouin zone for (a) m2 = m1, (b) m2 = 2m1 and (c) m2 =
10m1. Circular frequencies ω1, ω2 and ω3 are equal to

√
2β/m2,

√
2β/m1 and√

2β(m1 +m2)/m1m2, respectively

5.3. The plane wave expansion method

5.3.1. Plane wave expansion method for bulk phononic crystals

5.3.1.1. Equations of propagation of elastic waves in heterogeneous materials

We consider an heterogeneous elastic medium of infinite extent along the

three spatial directions (x1, x2, x3), made of constituent materials with specific

crystallographic symmetry (isotropic, cubic, ...). The Cartesian coordinates system

refers to an orthonormal basis (O, �e1, �e2, �e3). At every point, �r, the medium is

characterized by the material parameters, namely the mass density ρ(�r) and the

elastic moduli Cijk�(�r). The elements of the stress tensor Tij and those of the strain

tensor Sk� are related through Hooke’s law [ROY 99]

Tij(�r) =
∑
kl

Cijk�(�r)Sk�(�r), [5.10]

where each index, i, j, k, � varies between 1 and 3. We can note that in this relation

the stress and the strain tensors are of rank 2 with 32 = 9 elements, while the tensor of

elastic moduli is of rank 4 with 34 = 81 elements. Constituent materials are assumed

to be linear materials (limit of small strains) and the elements of the strain tensor are

expressed as Sk�(�r) = 1
2

(
∂uk(�r)
∂x�

+ ∂u�(�r)
∂xk

)
, where ui(�r), i = 1, 2, 3 refers to the

components of the displacement vector �u in (x1, x2, x3) cartesian coordinates system.

The elements of the elastic moduli tensor Cijk� must satisfy Cijk� = Cjik� because
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Tij = Tji and Cijk� = Cij�k because Sk� = S�k and thermodynamic laws impose

Cijk� = Ck�ij [ROY 99]. Then, in terms of displacements, Hooke’s law is written as

Tij(�r) =
1

2

∑
kl

Cijk�(�r)
∂uk(�r)

∂x�
+

1

2

∑
kl

Cijk�
∂u�(�r)

∂xk
[5.11]

=
1

2

∑
kl

Cijk�(�r)
∂uk(�r)

∂x�
+

1

2

∑
kl

Cij�k
∂u�(�r)

∂xk
,

and since Cijk� = Cij�k, the two summations on the right are equal, so that

Tij(�r) =
∑
k�

Cijk�(�r)
∂uk(�r)

∂x�
. [5.12]

In the absence of external forces, Newton’s second law gives the equations of

motion as follows:

ρ(�r)
∂2ui(�r)

∂t2
=
∑
j

∂Tij(�r)

∂xj
=
∑
j

∂

∂xj

[∑
k�

Cijk�(�r)
∂uk(�r)

∂x�

]
. [5.13]

The tensor of elastic moduli contains, a priori, 81 elements, but due to the

symmetries of this tensor (Cijk� = Cjik�, Cijk� = Cij�k, Cijk� = Ck�ij ), this

number reduces to 21 and Hooke’s law can be rewritten in the following matrix form:

⎛
⎜⎜⎜⎜⎜⎜⎝

T11

T22

T33

T23

T31

T12

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

C1111 C1122 C1133 C1123 C1131 C1112

C1122 C2222 C2233 C2223 C2231 C2212

C1133 C2233 C3333 C3323 C3331 C3312

C1123 C2223 C3323 C2323 C2331 C2312

C1131 C2231 C3331 C2331 C3131 C3112

C1112 C2212 C3312 C2312 C3112 C1212

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

S11

S22

S33

2S23

2S31

2S12

⎞
⎟⎟⎟⎟⎟⎟⎠

. [5.14]

This latter equation can be rewritten using the Voigt notation : a pair of indices ij
is replaced by a single index m as follows:

(11) ↔ 1,

(22) ↔ 2,

(33) ↔ 3,

(23) or (32) ↔ 4, [5.15]

(31) or (13) ↔ 5,

(12) or (21) ↔ 6,
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and equation [5.14] becomes

⎛
⎜⎜⎜⎜⎜⎜⎝

T1

T2

T3

T4

T5

T6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

S1

S2

S3

2S4

2S5

2S6

⎞
⎟⎟⎟⎟⎟⎟⎠

. [5.16]

In the particular case of constituent materials of cubic crystallographic symmetry,

only three independent elastic moduli C11, C12 and C44 are involved and Hooke’s law

is written in the matrix form⎛
⎜⎜⎜⎜⎜⎜⎝

T1

T2

T3

T4

T5

T6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

S1

S2

S3

2S4

2S5

2S6

⎞
⎟⎟⎟⎟⎟⎟⎠

. [5.17]

The case of isotropic material can be considered as a particular case of cubic

material imposing C12 = C11 − 2C44 and only two independent elastic moduli C11

and C44 are necessary to describe the elastic behaviour of the material.

In what follows, we will limit ourselves to constituent materials of cubic

crystallographic symmetry and combining equations [5.13] and [5.17], we can write

the equation of motion in this case as follows:

ρ
∂2u1

∂t2
=

∂T11

∂x1
+

∂T12

∂x2
+

∂T13

∂x3

=
∂

∂x1

(
C11S1 + C12(S2 + S3)

)
+

∂

∂x2
(C44.2S6) +

∂

∂x3
(C44.2S5)

=
∂

∂x1

[
C11

∂u1

∂x1
+ C12

(∂u2

∂x2
+

∂u3

∂x3

)]

+
∂

∂x2

[
C44

(∂u1

∂x2
+

∂u2

∂x1

)]
+

∂

∂x3

[
C44

(∂u1

∂x3
+

∂u3

∂x1

)]
, [5.18]
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ρ
∂2u2

∂t2
=

∂T21

∂x1
+

∂T22

∂x2
+

∂T23

∂x3

=
∂

∂x1

[
C44

(∂u1

∂x2
+

∂u2

∂x1

)]
+

∂

∂x2

[
C11

∂u2

∂x2
+ C12

(∂u1

∂x1
+

∂u3

∂x3

)]
[5.19]

+
∂

∂x3

[
C44

(∂u2

∂x3
+

∂u3

∂x2

)]
,

and

ρ
∂2u3

∂t2
=

∂T31

∂x1
+

∂T32

∂x2
+

∂T33

∂x3

=
∂

∂x1

[
C44

(∂u1

∂x3
+

∂u3

∂x1

)]
+

∂

∂x2

[
C44

(∂u2

∂x3
+

∂u3

∂x2

)]
[5.20]

+
∂

∂x3

[
C11

∂u3

∂x3
+ C12

(∂u1

∂x1
+

∂u2

∂x2

)]
.

In equations [5.18], [5.19] and [5.20], for the sake of simplification, dependence

of ρ, ui and Cmn on �r has been omitted. Equations [5.18], [5.19] and [5.20] show

that the equations of propagation of elastic waves in a heterogeneous elastic material

of infinite extent are three coupled differential equations of order 2. In the case where

the inhomogeneities are distributed periodically in space as in phononic crystals, these

three coupled equations can be solved using the plane wave expansion (PWE) method.

5.3.1.2. Basic principles of the PWE method for bulk phononic crystals

We consider a 3D periodic structure for which the direct lattice (DL), of specific

geometry, is characterized by its unit cell (UC). The reciprocal lattice (RL) vectors

[ASH 76, KIT 04] are �G(G1, G2, G3) with respect to the orthonormal basis

(O, �e1, �e2, �e3). We search for sinusoidally time-varying solutions of the equations of

propagation in the form �u(�r, t) = �u(�r)e−iωt, where ω is the circular frequency. Due

to the periodicity of the structure, the Bloch–Floquet theorem states that �u(�r) can be

written in the form

�u(�r) = ei
�K.�r �U �K(�r), [5.21]

where �K(K1,K2,K3) is the Bloch wave vector and �U �K(�r) has the periodicity of the

direct lattice. Then �U �K(�r) can be developed in Fourier series as

�U �K(�r) =
∑
�G′

�U �K( �G′)ei �G
′.�r where �G′ ∈ (RL) [5.22]
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and

�u(�r, t) = e−iωt
∑
�G′

�U �K( �G′)ei( �G
′+ �K).�r. [5.23]

The material parameters, mass density ρ(�r) and elastic moduli Cmn(�r), are

periodic functions of the position, i.e. ρ(�r + �R) = ρ(�r) and Cmn(�r + �R) = Cmn(�r),

where �R ∈ (DL), which can be expanded in Fourier series so that

η(�r) =
∑
�G′′

η( �G′′)ei �G′′.�r, [5.24]

where �G′′ ∈ (RL) and η ≡ ρ or Cmn. Note that the Fourier coefficients η( �G′′) in

equation [5.24] are defined as

η( �G′′) =
1

V(U.C.)

˚
(U.C.)

η(�r)e−i �G′′.�rd3�r, [5.25]

where the integral is performed on the volume V(U.C.) of the (U.C) of the direct lattice.

Inserting equations [5.23] and [5.24] in equations [5.18], [5.19] and [5.20] gives

the Fourier transform of the equations of motion. For example, doing these

substitutions in the left-hand side of equation [5.18], we obtain

ρ(�r)
∂2u1(�r)

∂t2
= −ω2ei(

�K.�r−ωt)
∑
�G′, �G′′

ρ( �G′′)U1, �K( �G′)ei( �G
′+ �G′′).�r [5.26]

where U1, �K is the component of �U �K along �e1. Proceeding in the same way, in the first

term of the right-hand side of equation [5.18] gives

∂

∂x1

[
C11(�r)

∂u1(�r)

∂x1

]

= e−iωt ∂

∂x1

[ ∑
�G′, �G′′

C11( �G′′)ei �G′′.�r[i(K1 +G′
1)].e

i( �K+ �G′).�rU1, �K( �G′)
]

= e−iωt ∂

∂x1

[ ∑
�G′, �G′′

C11( �G′′)[i(K1 +G′
1)].e

i( �K+ �G′+ �G′′).�rU1, �K( �G′)
]

= −ei(
�K.�r−ωt)

[ ∑
�G′, �G′′

C11( �G′′)[(K1 +G′
1)(K1 +G′

1 +G′′
1)].e

i( �G′+ �G′′).�r

.U1, �K( �G′)
]

[5.27]
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and so on for the other terms of the right-hand side of equation [5.18]. Finally, the

Fourier transform of equation [5.18] is written as

− ω2ei(
�K.�r−ωt)

∑
�G′, �G′′

ρ( �G′′)U1, �K( �G′)ei( �G
′+ �G′′).�r

= −ei(
�K.�r−ωt).

∑
�G′, �G′′

ei(
�G′+ �G′′).�r

{[
C11( �G′′)(K1 +G′

1)(K1 +G′
1 +G′′

1)

+ C44[( �G′′)
[
(K2 +G′

2)(K2 +G′
2 +G′′

2)

+ (K3 +G′
3)(K3 +G′

3 +G′′
3)
]]

U1, �K( �G′)

+

[
C12( �G′′)(K2 +G′

2)(K1 +G′
1 +G′′

1)

+ C44( �G′′)(K1 +G′
1)(K2 +G′

2 +G′′
2)

]
U2, �K( �G′)

+

[
C12( �G′′)(K3 +G′

3)(K1 +G′
1 +G′′

1)

+ C44( �G′′)(K1 +G′
1)(K3 +G′

3 +G′′
3)
]
U3, �K( �G′)

}
. [5.28]

After simplification by −ei(
�K.�r−ωt), multiplying both sides of equation [5.28] by

e−i �G.�r, where �G ∈ (RL), gives terms of the form ei(
�G′+ �G′′−�G).�r. Because

1

V(U.C.)

˚
(U.C.)

ei(
�G′+ �G′′−�G).�rd3�r = δ( �G′+ �G′′−�G),�0

=

{
1 if �G′ + �G′′ − �G = �O

0 if �G′ + �G′′ − �G �= �O
[5.29]
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integration over V(U.C.) of equation [5.28] gives

ω2
∑
�G′

ρ( �G− �G′)U1, �K( �G′) =
∑
�G′

{[
C11( �G− �G′)(K1 +G′

1).(K1 +G1)

+ C44[( �G− �G′)(K2 +G′
2)(K2 +G2) + (K3 +G′

3)(K3 +G3)
]]

.U1, �K( �G′)

+
[
C12( �G− �G′)(K2 +G′

2)(K1 +G1)

+ C44(�G− �G′)(K1 +G′
1)(K2 +G2)

]
.U2, �K( �G′)

+
[
C12( �G− �G′)(K3 +G′

3)(K1 +G1)

+ C44(�G− �G′)(K1 +G′
1)(K3 +G3)

]
.U3, �K( �G′)

}
. [5.30]

Indeed, equation [5.29] imposes to keep only the terms in equation [5.28] such that
�G′′ = �G− �G′.

Applying the same algebra for equations [5.19] and [5.20], we obtain that the

Fourier transforms of the equations of propagation form a set of three coupled

equations given as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω2
∑
�G′

B
(11)
�G, �G′U1, �K( �G′) = [5.31a]

=
∑
�G′

{
A

(11)
�G,�G′U1, �K( �G′) +A

(12)
�G,�G′U2, �K( �G′) +A

(13)
�G, �G′U3, �K( �G′),

}

ω2
∑
�G′

B
(22)
�G, �G′U2, �K( �G′) = [5.31b]

=
∑
�G′

{
A

(21)
�G,�G′U1, �K( �G′) +A

(22)
�G,�G′U2, �K( �G′) +A

(23)
�G, �G′U3, �K( �G′),

}

ω2
∑
�G′

B
(33)
�G, �G′U3, �K( �G′) = [5.31c]

=
∑
�G′

{
A

(31)
�G,�G′U1, �K( �G′) +A

(32)
�G,�G′U2, �K( �G′) +A

(33)
�G, �G′U3, �K( �G′),

}
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where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B
(11)
�G, �G′ = B

(22)
�G,�G′ = B

(33)
�G, �G′ = ρ( �G− �G′), [5.32a]

A
(11)
�G, �G′ = C11(�G− �G′)(G1 +K1)(G

′
1 +K1) + [5.32b]

+C44(�G− �G′)
[
(G2 +K2)(G

′
2 +K2) + (G3 +K3)(G

′
3 +K3)

]
,

A
(12)
�G, �G′ = C12(�G− �G′)(G1 +K1)(G

′
2 +K2) + [5.32c]

+C44(�G− �G′)(G′
1 +K1)(G2 +K2),

A
(13)
�G, �G′ = C12(�G− �G′)(G1 +K1)(G

′
3 +K3) + [5.32d]

+C44(�G− �G′)(G′
1 +K1)(G3 +K3),

A
(21)
�G, �G′ = C12(�G− �G′)(G′

1 +K1)(G2 +K2) + [5.32e]

+C44(�G− �G′)(G′
2 +K2)(G1 +K1),

A
(22)
�G, �G′ = C11(�G− �G′)(G2 +K2)(G

′
2 +K2) + [5.32f]

+C44(�G− �G′)
[
(G1 +K1)(G

′
1 +K1) + (G3 +K3)(G

′
3 +K3)

]
,

A
(23)
�G, �G′ = C12(�G− �G′)(G2 +K2)(G

′
3 +K3) + [5.32g]

+C44(�G− �G′)(G′
2 +K2)(G3 +K3),

A
(31)
�G, �G′ = C12(�G− �G′)(G′

1 +K1)(G3 +K3) + [5.32h]

+C44(�G− �G′)(G1 +K1)(G
′
3 +K3),

A
(32)
�G, �G′ = C12(�G− �G′)(G′

2 +K2)(G3 +K3) + [5.32i]

+C44(�G− �G′)(G2 +K2)(G
′
3 +K3),

A
(33)
�G, �G′ = C11(�G− �G′)(G3 +K3)(G

′
3 +K3) + [5.32j]

+C44(�G− �G′)
[
(G1 +K1)(G

′
1 +K1) + (G2 +K2)(G

′
2 +K2)

]
.
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Equation [5.31] can be recast in the following matrix form:

ω2

⎛
⎜⎜⎝

B
(11)
�G, �G′ 0 0

0 B
(22)
�G,�G′ 0

0 0 B
(33)
�G,�G′

⎞
⎟⎟⎠
⎛
⎜⎝

U1, �K( �G′)
U2, �K( �G′)
U3, �K( �G′)

⎞
⎟⎠

=

⎛
⎜⎜⎝

A
(11)
�G,�G′ A

(12)
�G, �G′ A

(13)
�G, �G′

A
(21)
�G,�G′ A

(22)
�G, �G′ A

(23)
�G, �G′

A
(31)
�G,�G′ A

(32)
�G, �G′ A

(33)
�G, �G′

⎞
⎟⎟⎠
⎛
⎜⎝

U1, �K( �G′)
U2, �K( �G′)
U3, �K( �G′)

⎞
⎟⎠ [5.33]

or

ω2←→B �U =
←→
A �U [5.34]

where
←→
A and

←→
B are square matrices and �U a vector whose sizes depend on the

number of reciprocal lattice vectors taken into account in the Fourier series. The

numerical resolution of this generalized eigenvalue equation is performed for a fixed

value of the wave vector �K = (K1,K2,K3) and for �K describing the contour of the

irreducible Brillouin zone of the array of inclusions. Then we obtain a set of

eigenfrequencies ω( �K).

Equation [5.33] is general and constitutes the basis equation for applying the

PWE method to the calculation of the dispersion curves of a three-dimensional

periodic structure with a specific geometry. For lower dimensions, this master
equation can be simplified, cancelling some components of the wave vectors and of

the reciprocal lattice vectors. This is the object of the next part in which we will

consider the particular case of bulk two-dimensional phononic crystals.

5.3.1.3. PWE method for bulk two-dimensional phononic crystals

A bulk two-dimensional phononic crystal consists of a two-dimensional array of

parallel cylindrical scatterers (of specific cross section : circular, square, elliptical,

hexagonal ...) made of an elastic material A embedded in an elastic matrix B (see

Figure 5.5). Materials A and B are supposed to be of cubic crystallographic symmetry.

Due to the infinite length of the cylinders along the x3 axis, there exists an

invariance by translation along x3 and the material parameters (density and elastic

moduli) and the displacement field does not depend on x3. This forces us to consider

that G3 and G′
3 vanishes in the equation [5.31]. Moreover, we can limit the
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propagation of waves to the transverse plane (x1Ox2) and this imposes K3 = O. As

a matter of fact in equation [5.32], terms A
(13)
�G, �G′ , A

(23)
�G,�G′ , A

(31)
�G, �G′ and A

(32)
�G, �G′ vanish and

equation [5.33] becomes

ω2

⎛
⎜⎜⎝

B
(11)
�G, �G′ 0 0

0 B
(22)
�G,�G′ 0

0 0 B
(33)
�G,�G′

⎞
⎟⎟⎠
⎛
⎜⎝

U1, �K( �G′)
U2, �K( �G′)
U3, �K( �G′)

⎞
⎟⎠

=

⎛
⎜⎜⎝

A
(11)
�G,�G′ A

(12)
�G, �G′ 0

A
(21)
�G,�G′ A

(22)
�G, �G′ 0

0 0 A
(33)
�G, �G′

⎞
⎟⎟⎠
⎛
⎜⎝

U1, �K( �G′)
U2, �K( �G′)
U3, �K( �G′)

⎞
⎟⎠ , [5.35]

Figure 5.5. Left panel: Two-dimensional phononic crystal made of a square array
(lattice parameter a) of circular cylinders A of radius R embedded in a matrix B. The
cylinders are oriented along the x3 axis and are assumed infinite along this direction.
The structure is periodic along x1 and x2; Right panel: Cross section in the transverse
(x1, 0, x2) plane of the 2D phononic crystal
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where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B
(11)
�G, �G′ = B

(22)
�G,�G′ = B

(33)
�G, �G′ = ρ( �G− �G′), [5.36a]

A
(11)
�G, �G′ = C11(�G− �G′)(G1 +K1)(G

′
1 +K1) + [5.36b]

+C44(�G− �G′)(G2 +K2)(G
′
2 +K2),

A
(12)
�G, �G′ = C12(�G− �G′)(G1 +K1)(G

′
2 +K2) + [5.36c]

+C44(�G− �G′)(G′
1 +K1)(G2 +K2),

A
(21)
�G, �G′ = C12(�G− �G′)(G′

1 +K1)(G2 +K2) + [5.36d]

+C44(�G− �G′)(G′
2 +K2)(G1 +K1),

A
(22)
�G, �G′ = C11(�G− �G′)(G2 +K2)(G

′
2 +K2) + [5.36e]

+C44(�G− �G′)(G1 +K1)(G
′
1 +K1),

A
(33)
�G, �G′ = C44(�G− �G′)

[
(G1 +K1)(G

′
1 +K1) + [5.36f]

+(G2 +K2)(G
′
2 +K2)

]
.

Equation [5.35] involves super-diagonal matrices and can be separated into two

independent matrix equations:

ω2

⎛
⎝B

(11)
�G,�G′ 0

0 B
(22)
�G,�G′

⎞
⎠(

U1, �K( �G′)
U2, �K( �G′)

)
=

⎛
⎝A

(11)
�G, �G′ A

(12)
�G, �G′

A
(21)
�G, �G′ A

(22)
�G, �G′

⎞
⎠(

U1, �K( �G′)
U2, �K( �G′)

)
, [5.37]

and

ω2
∑
�G′

B
(33)
�G,�G′U3, �K( �G′) =

∑
�G′

A
(33)
�G, �G′ .U3, �K( �G′). [5.38]

Equations [5.37] and [5.38] show that propagation modes in the 2D bulk phononic

crystal decouple. Equation [5.37] corresponds to modes polarized in the transverse

plane (x1Ox2) (often named XY modes) while equation [5.38] characterizes modes

(often named Z modes) with a displacement field oriented along the x3 direction.
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Equations [5.36] involve the Fourier coefficients ρ(�G − �G′) and

Cmn( �G − �G′), with (mn) ≡ (11), (44) and (12) defined by equations [5.25]. For

two-dimensional phononic crystals, equations [5.25] must be rewritten as

η( �G− �G′) =
1

Σ(U.C.)

¨
(U.C.)

η(�r)e−i(�G−�G′).�rd2�r, η ≡ ρ or Cmn, [5.39]

where Σ(U.C.) is the area of the two-dimensional unit cell in the (x1Ox2) plane and

η(�G− �G′) =
1

Σ(U.C.)

¨
(A(UC))

ηA.e
−i(�G−�G′).�rd2�r

+
1

Σ(U.C.)

¨
(B(UC))

ηB .e
−i(�G−�G′).�rd2�r, [5.40]

where the integrals are performed on the areas filled by materials A and B inside the

(UC), and ηA (resp. ηB) denotes the value of parameter η for material A (resp. B).

Equation [5.40] can be rewritten as

η( �G− �G′) =
1

Σ(U.C.)

¨
(A(UC))

ηA.e
−i(�G−�G′).�rd2�r

− 1

Σ(U.C.)

¨
(A(UC))

ηB .e
−i(�G−�G′).�rd2�r

+
1

Σ(U.C.)

¨
(A(UC))

ηB .e
−i(�G−�G′).�rd2�r

+
1

Σ(U.C.)

¨
(B(UC))

ηB .e
−i(�G−�G′).�rd2�r

= (ηA − ηB)
{ 1

Σ(U.C.)

¨
(A(UC))

e−i(�G−�G′).�rd2�r
}

+ ηB

{ 1

Σ(U.C.)

¨
(UC)

e−i(�G−�G′).�rd2�r
}
. [5.41]

Because

1

Σ(U.C.)

¨
(UC)

e−i(�G−�G′).�rd2�r = δ(�G−�G′),�0 =

{
1 if ( �G− �G′) = �O

0 if ( �G− �G′) �= �O
[5.42]

and defining the quantity F (�G− �G′) as

F (�G− �G′) =
1

Σ(U.C.)

¨
(A(UC))

e−i(�G−�G′).�rd2�r, [5.43]
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Equation [5.40] becomes

η( �G− �G′) = (ηA − ηB).F (�G− �G′) + ηB .δ(�G−�G′),�0 , [5.44]

where F (�G − �G′) is the structure factor that depends on the geometry of the cross

section of the cylindrical inclusion.

Figure 5.6. Unit cell in the transverse plane (x10x2) of the
two-dimensional phononic crystal made of a square array of cylinders

of circular cross section. The area of the unit cell is a2

For example, if we consider inclusions of circular cross section (see Figure 5.6),

the structure factor can be calculated using polar coordinates (r, θ) as

F (�G− �G′) =
1

Σ(U.C.)

¨
(A(UC))

e−i(�G−�G′).�rd2�r

=
1

a2

ˆ R

0

ˆ 2π

0

e−i|�G−�G′|r cos θr.dr.dθ =
1

a2

ˆ R

0

2πrdrJ0(| �G− �G′|r)

=
2π

(a2| �G− �G′|2)

ˆ |�G−�G′|R

0

(| �G− �G′|r)J0(| �G− �G′|r)d(| �G− �G′|r)

=
2π

(a2| �G− �G′|2) (|
�G− �G′|R)J1(| �G− �G′|R) = f

2J1(| �G− �G′|R)

| �G− �G′|R ,

[5.45]
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where f =
πR2

a2
(0 ≤ f ≤ π

4
) is the filling factor of inclusions (i.e. the ratio between

the area of the cross section of the cylinder and the surface of the unit cell) and J0
and J1 are Bessel’s functions of the first kind of orders 0 and 1, respectively. When

(�G− �G′) = �0,

F (�0) =
1

Σ(U.C.)

¨
(A(UC))

d2�r =
πR2

a2
= f, [5.46]

and we can rewrite equation [5.44] as

η( �G− �G′) =
{
fηA + (1− f)ηB = η if (�G− �G′) = �O

(ηA − ηB).F ( �G− �G′) if (�G− �G′) �= �O
. [5.47]

where η is an average value on the unit cell of parameter η.

The structure factor depends on the reciprocal lattice vectors and on the geometry

of the inclusions. We may consider the cross section of other geometries and for

cylinders of square cross section of side length �, for example,

F (�G− �G′) =
1

Σ(U.C.)

¨
(A(UC))

e−i(�G−�G′).�rd2�r

=
1

a2

ˆ + �
2

− �
2

e−i(G1−G′
1).x1dx1.

ˆ + �
2

− �
2

e−i(G2−G′
2).x2dx2

= f.
[ sin [(G1 −G′

1)
�
2

]
(G1 −G′

1)
�
2

]
.
[ sin [(G2 −G′

2)
�
2

]
(G2 −G′

2)
�
2

]
. [5.48]

Other authors have considered elliptical or hexagonal [WAN 07] cross sections

and analytical expressions of the structure factor can be derived in these cases.

However, for much more complicated geometry, calculation of the structure factor

can be performed numerically via a numerical resolution of the surface integral

involved in equation [5.43], but computational time will be increased significantly.

On the other hand, cylindrical inclusions made of different materials (for example,

made of concentric cylindrical slabs) can be considered. This requires us to rewrite

equation [5.41] properly and take into account this peculiar geometry.
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Equation [5.38] governs the Z modes propagating in the bulk 2D phononic crystal

and can be rewritten as

ω2
∑
�G′

ρ( �G− �G′)U3, �K( �G′)

=
∑
�G′

C44( �G− �G′)
[
(G1+K1)(G

′
1+K1)+(G2+K2)(G

′
2+K2)

]
U3, �K( �G′).

[5.49]

If in equation [5.49], we single out the term �G = �G′ in the summation, then this

equation can be recast as

ω2
{
ρ(�0)U3, �K(�G) +

∑
�G′ �=�G

ρ( �G− �G′)U3, �K( �G′)
}

= C44(�0)
[
(G1 +K1)(G1 +K1) + (G2 +K2)(G2 +K2)

]
U3, �K( �G)

+
∑
�G′ �=�G

C44(�G− �G′)
[
(G1+K1)(G

′
1+K1)+(G2+K2)(G

′
2+K2)

]
U3, �K( �G′)

[5.50]

and

ω2
{
ρU3, �K(�G) + (ρA − ρB)

∑
�G′ �=�G

F (�G− �G′)U3, �K( �G′)
}

= C44( �G+ �K)2.U3, �K( �G)

+ (C44A − C44B)
∑
�G′ �=�G

F ( �G− �G′)
[
(G1 +K1)(G

′
1 +K1)

+ (G2 +K2)(G
′
2 +K2)

]
U3, �K( �G′). [5.51]

Considering the dimensionless vectors �g = a
2π

�G, �g′ = a
2π

�G′ and �k = a
2π

�K,

equation [5.51] becomes

ω2ρ
{
U3,�k(�g) +

(ρA − ρB)

ρ

∑
�g′ �=�g

F (�g − �g′)U3,�k(
�g′)
}
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= C44(
2π

a
)2
{
(�g + �k)2.U3,�k(�g)

+
(C44A − C44B)

C44

∑
�g′ �=�g

F (�g − �g′)(�g + �k)(�g′ + �k)U3,�k(
�g′)
}

[5.52]

that can be rewritten as

Ω2
{
U3,�k(�g) + Δρ

∑
�g′ �=�g

F (�g − �g′)U3,�k(
�g′)
}

= (�g + �k)2.U3,�k(�g)

+ ΔC44

∑
�g′ �=�g

F (�g − �g′)(�g + �k)(�g′ + �k)U3,�k(
�g′) [5.53]

where

Ω =
ω

( 2πa )
√

C44

ρ

, ΔC44 =
(C44A − C44B)

C44

, and Δρ =
(ρA − ρB)

ρ

are dimensionless quantities. The same transformations can be done for equation

[5.37] governing the XY modes of propagation. Equation [5.53] shows that it is

convenient to compute the dimensionless frequency Ω versus the dimensionless

Bloch wave vector �k. For example, in the case of a square array of cylindrical

inclusions, the 2D dimensionless vectors �g (resp. �g′) are �g = ��e1 + m�e2 (resp.

�g′ = �′ �e1 + m′ �e2), where � and m (resp. �′ and m′) are integers (see [VAS 94]). In

the course of the numerical resolution of equations [5.37] and [5.38], we consider

−MT ≤ (�, �′) ≤ +MT and −MT ≤ (m,m′) ≤ +MT where MT is a positive

integer, i.e. (2MT + 1)2 �g or �g′ vectors are taken into account in the truncated

Fourier series. This gives (2MT + 1)2 (resp. 2(2MT + 1)2) real eigenfrequencies

for the Z modes (resp. the XY modes) for a given reduced wave vector �k describing

the principal directions of propagation in the irreducible Brillouin zone (at point Γ,

X and M of the irreducible Brillouin zone of the square array, �k is �kΓ = (0, 0),
�kX = ( 12 , 0) and �kM = ( 12 ,

1
2 ), respectively [VAS 94]). Solving for equation [5.53]

needs to resolve a generalized eigen values problem for each value of �k. The size of

the matrices involved in this problem and then the choice of the values of the integer

MT is of crucial importance for insuring the convergency of the Fourier series and

consequently to optimize the precision on the numerical values of the eigen

frequencies Ω. This will be discussed in the next section.
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5.3.2. Limits of the PWE method

The PWE method constitutes a useful tool for calculating band structures of

phononic crystals. It is relatively easy to implement the method numerically and the

main difficulty lies in correctly writing the matrices involved in the generalized

eigenvalues problem to solve. There exists many numerical codes (in Fortran and C

languages, in Matlab software, etc.) of band structure calculations based on the PWE

method that are freely available on the Internet (many of them were developed for

photonic crystals, but they can be easily transposed to phononic crystals). The

method is general in the sense that it can be applied for 1D, 2D and 3D structures,

with inclusions of different shapes distributed on arrays of various geometries.

Inclusions and matrix can be made of materials of much more complicated

crystallographic symmetry than the isotropic or the cubic ones [LIN 11]. Moreover,

not only passive elastic constituent materials, but also active ones such as

piezoelectric [WIL 02] or magneto-elastic [BOU 12] materials may be taken into

account. However, the method presents some limits linked with convergency

problems of the truncated Fourier series and the choice of constitutive materials.

5.3.2.1. Convergency of the truncated Fourier series

As already mentioned at the end of section 5.3.1.3, while the Fourier series are

assumed infinite theoretically, a finite number of reciprocal lattice vectors must be

taken into account in the course of the numerical calculations. We analyze here the

effect of this truncation of the series on the calculated eigen values. For that, we

consider the particular case of a phononic crystal made of very contrasted constituent

materials, namely a square array of steel cylinders embedded in an epoxy matrix for a

filling factor of inclusions f = 0.55. One limits the study to the Z modes of

propagation defined by equation [5.53]. Figure 5.7 presents the first 10 bands of these

band structures. These are calculated along the principal directions of propagation of

the irreducible Brillouin zone for different values of the integer MT , – namely for

MT = 6, 8, 10 and 12. While the overall shape of the band structure remains almost

the same, we observe that the location in frequency of some bands (for Ω around 0.2,

0.45 and 1.0 for examples) is strongly influenced by the value of MT , this effect

being larger for Ω. This slow convergency results mainly from the difficulty to

reproduce accurately a strongly discontinuous function such as the density or an

elastic modulus as a summation of a finite number of sinusoidal continuous functions

[SÖZ 92]. This is often referred to as the “Gibbs phenomenon” and can be clearly

viewed in Figure 5.8, where the function

ρtruncated(�r) =
∑

|�G|≤Gmax

ρ( �G)ei
�G.�r [5.54]
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(with Gmax =
2π

a

√
MT 2 +MT 2 =

2π

a
.MT

√
2) has been plotted for different

numbers of reciprocal lattice vectors (i.e. for MT = 6, 8, 10 and 12). We observe that

whatever the value of MT , the function ρtruncated is rather different from ρ(�r).

Figure 5.7. Z modes band structure for a square array of steel circular cylinders
embedded in an epoxy matrix for MT = 6 (a), MT = 8 (b), MT = 10 (c), and
MT = 12 (d). ρA = 7780 kg.m−3, C44,A = 8.1.1010 N.m−2, ρB = 1142 kg.m−3,
C44,B = 0.148.1010 N.m−2 and f = 0.55. The inset represents the square Brillouin
zone

Then when using the PWE method, it is necessary to fix a value of MT allowing

a good compromise between convergency and calculation time. Convergency of the

truncated Fourier series is of main importance when considering very different

constituent materials such as steel and epoxy. In this case, a value of MT at least

equal to 10 is necessary for obtaining acceptable values of the eigenfrequencies.

Some authors have proposed alternative scheme aiming at speeding up the

convergency of the PWE algorithm ([CAO 04] and Chapter 11 of [DEY 13]).
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Figure 5.8. ρ(�r) (black) and ρ(�r)truncated with MT = 6 (green), MT = 8 (red), MT =
10 (blue), MT = 12 (cyan) for a square array of steel cylinders embedded in an epoxy
matrix along the path x1 = x2 in the unit cell (see Figure 5.6); f = 0.55. For a color
version of this figure, see www.iste.co.uk/romero/metamaterials.zip

5.3.2.2. Choice of the materials

In the preceding sections, it was assumed that all the constituent materials are

purely elastic solids. However, we may consider phononic crystals made of materials

of different nature, for example, a fluid (liquid or gas) and a solid and we can

question the reliability of the PWE method in this case. Let us consider a 2D

phononic crystal made of hollow cylinders drilled in a solid matrix and filled with a

liquid. We may intuitively modelize the fluid as an isotropic “solid” material with

C44 = 0, because a transverse vibration does not exist inside a liquid. However, the

PWE method still assumes a finite non-vanishing displacement amplitude for this

transverse mode in the cylinders and considering C44 = 0 in the fluid will introduce

numerical instabilities in the PWE code. As a matter of example, we report in

Figure 5.9 the XY modes band structure of a square array of hollow cylinders drilled

in an aluminum matrix and filled with liquid mercury. Liquid mercury was modeled

as a solid isotropic material with C44 = 0, values of ρ and C11 being those of real
mercury. PWE calculations reveal the existence of flat bands, which number

increases when the number of reciprocal lattice vectors taken into account in the
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Fourier series increases, and bands without clear physical meaning. The absence of

these modes in the band structure which were worked out using another method of

calculation (for example, the finite element method via the COMSOL software where

solid material and fluid constituent are modeled with their real elastic

characteristics – two elastic moduli for the solid and the compressibility modulus for

the fluid) shows unambiguously that the PWE additional modes are fictitious

[TAN 00]. Z. Hou et al. [HOU 06] argued that these fictitious modes result from an

incorrect use of the Bloch theorem in the application of the PWE method in such

mixed solid/fluid phononic crystals. Note that the boundary conditions between the

solid and the liquid are strictly satisfied in the finite element calculations, while the

PWE method does not take into account these conditions.

Figure 5.9. XY band structure along the ΓX direction of the irreducible Brillouin zone
of a square array of hollow cylinders drilled in an aluminum matrix and filled with
liquid mercury for f = 0.4; black dots: PWE calculations where mercury has been
considered as an isotropic solid with C44 = 0 and MT = 8, red dots : finite element
results where mercury has been considered as a real fluid. The PWE method leads to
unphysical modes in this case and fails to predict accurately the propagating modes
in the mixed fluid/solid 2D structure. ρA = 13600 kg.m−3, C11, A = 2.86 1010 N.m−2,
ρB = 2700 kg.m−3, C44, B = 2.61 1010 N.m−2, C11, B = 11.09 1010 N.m−2. For a
color version of this figure, see www.iste.co.uk/romero/metamaterials.zip
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Figure 5.10. XY band structure along the ΓX direction of the irreducible Brillouin zone
of a square array of hollow circular cylinders drilled in an aluminum matrix for f = 0.4;
(a) PWE calculations where the medium inside the cylinders is air with C44 = 0, C11 =
1.49 105N.m−2, ρ = 1.3 kg.m−3 and MT = 6; (b) PWE calculations where the medium
inside the cylinders is the LIM with C11 = C44 = 106 N.m−2, ρ = 10−4 kg.m−3 and
MT = 6; (c) Finite elements method (see text for details)

Moreover, phononic crystals made of holes drilled in a solid matrix present many

advantages because they can be manufactured quite easily. For the reasons reported

previously, if we model air inside the cylinders as a solid material with vanishing

C44, we obtain fictitious flat bands in the band structure as it is depicted in

Figure 5.10(a) where the XY band structure for a square array of holes drilled in an

aluminum matrix is reported. However, it was shown [VAS 08] that for an accurate

use of the PWE method in this case, it is preferable to replace air inside the cylinders

by vacuum and to model vacuum as a pseudo-solid material with very low elastic
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moduli and density. Indeed, modeling vacuum by a material with vanishing density

and elastic moduli leads to unphysical solutions to the eigenvalue problem. For the

sake of simplicity, this low impedance medium (LIM) was supposed elastically

isotropic and was characterized by a longitudinal speed of sound C�, and a

transversal speed of sound Ct or equivalently by two elastic moduli, C11 = ρ.C�
2

and C44 = ρCt
2. The choice of the values of these parameters is governed by the

boundary condition between any solid material and a vacuum. Indeed, we know that

this interface must be free of stress and this requires that C11 = 0 and C44 = 0
rigorously in a vacuum. Then, using the LIM to model the vacuum in the PWE

computations, the nonvanishing values of these parameters must be as small as

possible and we considered that the ratio between the elastic moduli of the LIM and

those of any other solid material constituting the phononic crystal must approach

zero. We imposed C� and Ct to be much larger than the speeds of sound in usual

solid materials, in order to limit propagation of acoustic waves to the solid. Large

speeds of sound and small elastic moduli impose a choice of a very low mass

density for the LIM. More specifically, we choose ρ = 10−4 kg.m−3 and

C� = Ct = 105 m.s−1, i.e. the acoustic impedances of the LIM are equal to

10 kg.m−2.s−1. With these values, C11 = C44 = 106 N.m−2 and the elastic

constants of the LIM are approximately 104 times lower than those of any usual solid

material that are typically of the order of 1010 N.m−2. The values we have chosen for

C11 and C44 are a compromise to achieve satisfactory convergence of the PWE

method and still satisfy boundary conditions. C11 and C44 were assumed the same

for convenience. Figure 5.10(b) presents the same band structure as in Figure 5.10(a)

but the medium inside the hollow cylinders is modeled with the LIM. We observe

that the flat bands that appeared in Figure 5.10(a) are removed. The results obtained

with the finite element method, where only the space occupied by the aluminum

matrix has been discretized, reported in Figure 5.10(c), show a very good agreement

with those of Figure 5.10(b). This shows that the PWE method is suitable for

calculating the band structure of phononic crystals made of holes drilled inside a

solid matrix provided the medium inside the holes is replaced by the LIM.

Many experimental works were dealing with phononic crystals, often named as

sonic crystals, where solid inclusions are surrounding with air. Again considering air

as a solid with C44 = 0 leads to unphysical results. Nevertheless, due to the huge

contrast between the physical characteristics of the solid and those of air, the solid

inclusions can be assumed infinitely hard with a high density and high elastic moduli.

This implies that the sound does not penetrate such inclusions, and hence the

propagation of acoustic waves is predominant in air in which only longitudinal waves

can propagate. The periodic structure made of rigid inclusions in air can then be
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considered as an inhomogeneous fluid and the equation of propagation of

longitudinal acoustic waves in such medium [KUS 98a] is written as

− 1

C11(�r)

∂2p(�r, t)

∂t2
= − ω2

C11(�r)
p(�r) = �∇.

( 1

ρ(�r)
�∇p(�r, t)

)
[5.55]

where p(�r, t) = eiωtp(�r) is the acoustic pressure field inside the heterogeneous fluid.

In a periodic fluid medium, equation [5.55] can be Fourier transformed to give

ω2
∑
�G′

C−1
11 ( �G− �G′)p �K( �G′) =

∑
�G′

ρ−1( �G− �G′)
[
(G1 +K1)(G

′
1 +K1)+

+ (G2 +K2)(G
′
2 +K2) + (G3 +K3)(G

′
3 +K3)

]
p �K( �G′). [5.56]

We note that in the case of a 2D array of rigid cylindrical inclusions surrounded by

air (i.e. for G3 = G′
3 = K3 = 0), equation [5.56] becomes

ω2
∑
�G′

C−1
11 ( �G− �G′)p �K( �G′) =

∑
�G′

ρ−1( �G− �G′)
[
(G1 +K1)(G

′
1 +K1)

+ (G2 +K2)(G
′
2 +K2)

]
p �K( �G′) [5.57]

and it is fully analog to the equation of propagation of Z modes in an elastic solid 2D

phononic crystal (provided ρ, C44 and U3, �K in equation [5.49] play the roles of C−1
11 ,

ρ−1 and p�k in equation [5.57]). Considering these analogies and using a numerical

code written for the Z modes, it is very easy to calculate the band structure reported in

Figure 5.11 for a square array of steel cylinders in air. Due to the existence of a large

acoustic stop band in the audible frequency range, application of these sonic crystals

as sound barriers was largely investigated by many authors [GOF 03, PEI 16].

The reliability of the assumption of infinitely rigid inclusions when the matrix of

the phononic crystal is made of air was validated (see Figure 2 of reference [VAS 09]).

We may note that this assumption leads to unreliable results in most of the cases (array

of inclusions, filling factor of inclusions, etc.) when considering a fluid matrix whose

physical characteristics are larger than that of air, such as water. We can also remark

that equation [5.56] can be used for calculating band structures of phononic crystals

composed of only fluid constituents such as periodic arrays of air inclusions in water

[KUS 98a, KUS 98b].
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Figure 5.11. PWE band structure of a square array of circular steel cylinders placed
in air with a = 2.7 cm and R = 1.29 cm. PWE calculations were done considering the
assumption of infinitely rigid solid inclusions and with MT = 10. Notes the existence
of a large absolute stop band in the audible frequency range

5.3.3. Modified PWE method for complex band structures

In classical PWE expansion methods (see section 5.3.1.2), we calculate a set of

real eigenfrequencies ω( �K) for a specific wave vector �K. That means that only

propagating modes with a real wave vector can be deduced from the ω( �K) PWE

method. Then a modified PWE method has been proposed that allows the calculation

of not only the propagating modes, but also the evanescent modes

[ROM 10a, ROM 10b]. The wave vector for evanescent waves possesses a non

vanishing imaginary part. We have seen previously that the Fourier transform of the

equation of propagation of elastic waves in a phononic crystal leads to the resolution

of a generalized eigenvalue equation in the form ω2←→B �U =
←→
A �U .
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The matrix elements of
←→
A and

←→
B involve terms depending on the components of

the wave vector �K. It is always possible to rewrite matrix
←→
A as←→

A = Kα
2←→A1 + Kα

←→
A2 +

←→
A3, where Kα is one of the components of the wave

vector, and
←→
A1,

←→
A2 and

←→
A3 are matrices of the same size as

←→
A . The generalized

eigenvalue equation ω2←→B �U =
←→
A �U may be recast as Kα

2←→A1
�U =

(ω2←→B −Kα
←→
A2 −←→

A3). �U and we can write

Kα

(←→
I

←→
0←→

0
←→
A1

)(
�U

Kα
�U
)

=

(
0

←→
I

ω2←→B −←→
A3 −←→

A2

)(
�U

Kα
�U
)
, [5.58]

where
←→
I is the identity matrix. Equation [5.58] is nothing else than a generalized

eigenvalue equation, where the eigenvalues are the component Kα of the wave

vector. For a specific value of the circular frequency ω, we calculate a set of complex

eigenvalues Kα. The size of the matrices occurring on the left and right sides of

equation [5.58] is twice that of matrices
←→
A and

←→
B . We may illustrate these general

ideas by considering the peculiar case of the Z elastic modes propagating in a bulk

2D phononic crystal made of a square array of lattice parameter a, of cylindrical

inclusions embedded in a solid matrix. If we assume that K3 = 0, then these modes

are given by equation [5.53], where ω depends on the two variables K1 and K2.

Consider the propagation of elastic waves along the ΓX direction of the irreducible

Brillouin zone for which K2 = 0 and 0 ≤ Re(K1) ≤ π
a .

Equation [5.53] gives

ω2
∑
�G′

ρ( �G− �G′)U3, �K( �G′)

=
∑
�G′

C44( �G− �G′)
[
(G1 +K1)(G

′
1 +K1) +G2.G

′
2

]
.U3, �K( �G′) [5.59]

and this can be rewritten as

K1
2
∑
�G′

C44(�G− �G′).U3, �K( �G′)

=
∑
�G′

{
ω2ρ( �G− �G′)− (G1G

′
1 +G2G

′
2)C44( �G− �G′)

}
U3, �K( �G′)

−K1

∑
�G′

(G1 +G′
1)C44( �G− �G′).U3, �K( �G′) [5.60]
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or in matrix form

K1

(←→
I

←→
0←→

0
←→
A1

)(
�U

K1
�U
)

=

(
0

←→
I

ω2←→B −←→
A3 −←→

A2

)(
�U

K1
�U
)
, [5.61]

where⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

B�G, �G′ = ρ( �G− �G′), [5.62a]

A1 �G,�G′ = C44(�G− �G′), [5.62b]

A2 �G,�G′ = C44(�G− �G′)(G1 +G′
1), [5.62c]

A3 �G,�G′ = C44(�G− �G′).(G1G
′
1 +G2G

′
2). [5.62d]

The same transformations of the Fourier transformed equations of propagation

can be done easily for XY propagation modes. Numerical resolution of equation

[5.61] gives 2N (if N × N is the size of matrices
←→
A and

←→
B ) complex values of

K1 = Re{K1} − iIm{K1} for any value of ω. Eigenvalues belonging to the

irreducible Brillouin zone and corresponding to waves with a vanishing amplitude

when x1 → ∞ may be taken into account, i.e., 0 ≤ Re{K1} ≤ π
a and Im{K1} ≥ 0.

Figure 5.12 presents the band structures calculated by both ω( �K) and �K(ω)

methods. This figure shows the ability of the �K(ω) method to calculate the

evanescent modes. Of particular interest is the existence of additional bands (see

right panel of Figure 5.12 for Ω ≈ 1.1) not predicted by the classical ω( �K) method

(red dots). These vibrational modes are characterized by a nonvanishing Im{K1}.
�K(ω) method requires to consider only one component of the wave vector �K as

eigenvalue. That needs to keep fixed the other component or to write a linear relation

between them. For example, along the ΓM direction in the irreducible Brillouin zone

of the square array, we can write K1 = K2 and consider K1 as the eigenvalue. In the

same way, we can deal with any direction of propagation and not only with the

high-symmetry directions. Plotting all the values of K1 and K2 corresponding to a

specific frequency leads to the equifrequency contour (EFC) of the phononic crystal.

For example, in Figure 5.13(c) the EFC’s calculated at two different frequencies are

presented for a triangular array of steel cylinders embedded in epoxy (see Figure

5.13(a)) for which the XY band structure is also given in Figure 5.13(b). We note the

perfect circular shape of these EFCs, indicating that this phononic crystal may

present peculiar refraction properties [CRO 11]. Moreover, the �K(ω) PWE method

allows to take into account elastic moduli depending on the frequency and should be

applied for calculating the band structures of phononic crystals made of viscoelastic

materials [MOI 11].
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Figure 5.12. Z modes band structure along the ΓX direction (K2 = 0) of the
irreducible Brillouin zone for a square array of circular holes drilled in a Silicon matrix:
Red dots: ω( �K) method; black dots: �K(ω) method. For a color version of this figure,
see www.iste.co.uk/romero/metamaterials.zip

Figure 5.13. (a) Cross section of the triangular array of circular steel cylinders in
epoxy (a = 2.84 mm, R = 1 mm); (b) ω( �K) band structure for the XY modes; the
inset represents the hexagonal Brillouin zone (c) �K(ω) PWE equifrequency contours
at 780 kHz (thick solid line) and at 800 kHz (thin solid line)
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5.4. Conclusion

We have reported with many details on the PWE method, which is nowadays a

useful and pedagogical tool when searching to compute the dispersion curves of

periodic structures such as phononic crystals. The method is quite easy to implement,

but presents some limitations regarding the convergency of the Fourier series and the

choice of the constituent materials. The method is reliable in the case of phononic

crystals made of solid or fluid components, but is not for most of the mixed structures

where a fluid component is associated with a solid one. In these cases, other means of

calculation such as the finite difference time domain method or the finite element

method must be preferred. Nevertheless, we have proposed tricks for accurately

dealing with structures made of holes drilled in a solid matrix or constituted of solid

inclusions surrounded with air. The classical PWE method can also be extended for

analyzing the evanescence of waves inside the band gaps and for calculating the

equifrequency surfaces of any periodic structure.
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6

Introduction to Multiple
Scattering Theory

Multiple scattering theory is now an important class of theoretical and

computational techniques in the study of photonic, phononic and sonic crystals and

related problems. In this chapter, we present the development of this theory and apply

it to different simple two-dimensional problems of increasing complexity, from the

scattering of acoustic waves by a cluster of impervious obstacles to the scattering of

plane acoustic waves by stacks of clusters of periodic arrangement and the

calculation of band diagrams. We also provide all the necessary recipes to efficiently

implement this method.

6.1. Introduction

Multiple scattering theory most probably originated from Lord Rayleigh

[RAY 92] when he studied potential flow through a cubic periodic arrangement of

identical circular cylinders. This method, also sometimes called the Rayleigh

multipole method, has since been widely developed in different fields of wave

physics, from electromagnetism to water waves and acoustics, notably thanks to the

rapid development of photonic, phononic and sonic crystals. These crystals usually

consist of periodic arrangements of scatterers, most of the time simple shapes such as

circular cross-sectional cylinders or spheres, embedded in a dielectric, elastic or fluid

medium. Methods that are strongly adapted to particular scattering geometries or

profiles are therefore quite advantageous, because they provide highly accurate

results with relatively short computation times. Among these methods, multiple

scattering theory has been particularly successful. The efficiency of the method is

apparent in the application of an ingenious field identity relating the regular field in
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the vicinity of any scatterer to fields radiated by scatterers and external sources, and

the use of lattice sums in the case of periodic systems [BOT 03]. Multiple scattering

is a huge subject with a huge literature. For example, the reader can refer to

[MAR 06, BOT 03] for further details or to [TOR 17] for an online course.

The aim of this chapter is not to provide an exhaustive review of the possible

applications of this method in acoustics [TOU 00], but rather to provide the basic

theoretical elements so the reader can understand and implement this method.

Homogenization procedures arising from multiple scattering theory are out of the

scope of the present chapter. This method will be developed in detail to solve the

scattering problem of acoustic waves by simple two-dimensional configurations

consisting of the possibly periodic arrangement of impervious circular

cross-sectional cylinders. From this simple example, multiple scattering theory can

be derived for more complicated cases involving resonant elements [SCH 18], elastic

[SAI 05, WU 08], porous [GRO 08b] or poroelastic [WEI 16, ALE 16] materials, as

well as for three-dimensional configurations. This chapter is organized as follows: in

section 6.2, basic notions and principles of the theory are presented. The procedure to

solve the scattering problem by a cluster of cylindrical obstacles is then presented in

section 6.3. Orthogonality relations which enable this problem to be solved,

application of the boundary conditions yielding to the scattering matrix and Graf’s

addition theorem are presented. In particular, the scattering problem of a plane wave

and a wave radiated by a line source by a cluster are solved. The scattering of plane

waves by a periodic row of obstacles is then presented in section 6.4. While the

central role of the Schlömilch series is emphasized for the calculation of the

scattering coefficient in the direct space, the link with Bloch waves in the Cartesian

coordinate system is clearly established. In section 6.5, scattering by a stack of

periodic cluster is presented via the Transfer-Matrix method as well as band diagram

calculation. Finally, an example of a sonic crystal is provided in section 6.6, before

concluding this chapter. Special attention is paid to clearly stating the domain of

validity of every field representation required.

6.2. Statement of the problem

6.2.1. Notion of multiple scattering

When an obstacle finds itself in the propagation path of a sound wave, part of the

sound is deflected from its original course [LAN 87, MOR 68] as shown in

Figure 6.1(a): the sound is said to be scattered by the obstacle. This phenomenon is

referred to as single sound scattering: apart from the undisturbed field that would

exist in the absence of the obstacle, another wavefield, called the scattered field, is

emitted in all directions from the obstacle. The actual wavefield that is observed
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outside the obstacle is therefore the superposition of both the undisturbed and

scattered fields, which are interfering with one another.

When many obstacles find themselves in the propagation path of the sound wave,

the sound is scattered by every obstacle: this is called multiple sound scattering, see

Figure 6.1(b). Besides the undisturbed field that would exist in the absence of the

obstacles, scattered fields spread out from every obstacle. However, the obstacles are

in mutual interactions: each of them is submitted not only to the undisturbed field, but

also to the fields scattered from all the other obstacles. Multiple scattering theory aims

at the complete and exact description of these cross interactions.

Figure 6.1. Illustration of (a) single scattering and (b) multiple
scattering. pun is the undisturbed field and psc is the scattered field

6.2.2. Helmholtz equation and boundary conditions

Sound propagation in the presence of the number N of bounded obstacles arranged

in the homogeneous and isotropic propagative medium Ω is studied. Each obstacle is

identified by an integer j ∈ �1,N � and given the name Ωj . The interface of the

obstacle Ωj with the medium Ω is denoted Γj , with the outward normal vector nj .

The position, shape and rheology of each obstacle are supposed to be known, as well

as the boundary conditions applied at their surface Γj . The analysis is performed in

the linear time-harmonic regime at frequencies ω/2π and complex notations are used.

The pressure p e−iωt and particle velocity ve−iωt in the medium Ω are governed by

the following equations of mass and momentum conservation:

div(v) = iωp/K and − iωρv = −grad(p) in Ω, [6.1]

where ρ and K are the density and bulk modulus of the propagative medium Ω. This

latter can be made of any fluid or fluid-like materials. For instance, it can be air under

ambient conditions, in which case ρ = 1.213 kg.m−3 and K = γP0, where γ = 1.4
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is the adiabatic constant and P0 = 1.013 × 105 Pa is the atmospheric pressure.

Another example is the case where Ω is made of air-saturated porous material with a

rigid frame, in which case ρ and K are effective frequency-dependent and

complex-valued parameters that account for viscous and thermal effects in the

micropores [LEV 77, SAN 80]. In any case, combining the equations [6.1] of mass

and momentum conservation, the following relation is derived, that is, the Helmholtz
equation:

Δ(p) + k2p = 0 in Ω, [6.2]

where Δ(·) = div(grad(·)) is the Laplacian operator and k = ω/c is the

wavenumber, with c =
√

K/ρ being the sound speed in Ω. To close the problem,

equation [6.2] must be supplemented with boundary conditions at the surface Γj of

the obstacles. Here, the obstacles are supposed to be motionless and impervious to

particles in Ω. It implies that the normal component of the particle velocity v must be

zero at each surface Γj , that is, v ·nj = 0 at Γj for j ∈ �1,N �. Using the equation of

momentum conservation in equation [6.1], it can be written in the following form,

called a boundary condition of the Neumann type:

∀j ∈ �1,N �, grad(p) · nj = 0 at Γj . [6.3]

Other types of boundary conditions could have been considered, for instance, the

obstacles could have been permeable to sound waves, as will be described in section

6.3.8, but the simplest case of Neumann boundary conditions given in equation [6.3]

will be considered to begin with. In fact, the Helmholtz equation [6.2] and Neumann

boundary conditions [6.3] can be found in many domains of physics, such as

electromagnetism or optics. As a result, multiple scattering theory is not restricted to

acoustics.

6.2.3. Undisturbed field, scattered fields and radiation condition

As explained in section 6.2.1, the field p that appears in the Helmholtz equation

[6.2] and the boundary conditions [6.3] is the actual pressure in the medium Ω, which

consists of the sum between the undisturbed field pun and the total scattered field

psc. This latter consists itself of the superposition of the fields psc
j scattered by every

obstacle Ωj . Mathematically, the field p hence reads:

p(x) = pun(x) + psc(x) where psc(x) =
∑

j∈�1,N �

psc
j (x), [6.4]
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where x is the position vector with respect to a given coordinate system (O,x). Since

pun(x) is the wavefield that would exist in the absence of obstacles, it satisfies the

Helmholtz equation [6.2], and due to linearity, so does each scattered field psc
j (x). In

fact, the scattered field psc
j (x) is emitted by the obstacle Ωj in response to pun(x) so

that the sum in equation [6.4] satisfies the boundary conditions [6.3]. The field psc
j (x)

corresponds to waves propagating outward from the obstacle Ωj , and vanishing at

some distance away from it. To describe this feature, psc
j (x) is supposed to satisfy the

following relation, called the Sommerfeld radiation condition:

(rj)
d

(
∂psc

j

∂rj
− ikpsc

j

)
→ 0 as rj → ∞, [6.5]

where rj is the distance between a point in space and the center Oj of the obstacle

Ωj , while d = 1 or d = 1/2 for three-dimensional (3-D) or two-dimensional (2-D)

problems respectively. Roughly speaking, equation [6.5] means that psc
j decays away

from the obstacle Ωj as 1/rj in 3-D problems and as 1/
√
rj in 2-D problems.

6.2.4. Wavefunctions in multiple scattering theory

Central to multiple scattering theory is the question of the coordinate system to

describe both the wavefields and the shape of the obstacles. Indeed, the theory relies

on the mathematical ability to define a local coordinate system (Oj , rj) attached to

each obstacle Ωj in which:

1) two independent families (ψn) and (ζn) of elementary solutions to the

Helmholtz equation with separated variables can be defined;

2) the elementary solutions (ψn) represent outgoing waves from the obstacle and

satisfy the Sommerfeld radiation condition;

3) the elementary solutions (ζn) are regular in the vicinity of the obstacle;

4) the boundary Γj of the obstacle Ωj coincides with a line of constant value of one

coordinate, while orthogonality conditions are satisfied by (ψn) and (ζn) regarding

their dependence on the other coordinates.

The solutions (ψn) and (ζn) are called wavefunctions. The outgoing

wavefunctions (ψn) are used as a functional basis to expand the scattered field psc
j in

the form:

psc
j (rj) =

∑
n

Aj
nψn(rj), [6.6]
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where the complex amplitudes Aj
n are called the scattering coefficients of the obstacle

Ωj . At the same time, the regular wavefunctions (ζn) are used to expand, at least in

the vicinity of the obstacle Ωj , the undisturbed field pun and the fields psc
i�=j scattered

by all the inclusions Ωi other than Ωj :

pun(rj) =
∑
n

Unζn(rj) and psc
i�=j(rj) =

∑
n

Bi�=j
n ζn(rj), [6.7]

where Un are coefficients derived from the knowledge of the undisturbed field, and

Bi�=j
n are amplitudes which depend on the scattering coefficients Ai�=j

n of the obstacle

Ωi �=j . The relation between the coefficients Bi�=j
n and the scattering coefficients Ai�=j

n

are derived from addition theorems [BAT 53, ABR 64]. Finally, taking advantage of

the adapted shape of the obstacles and using the orthogonality conditions satisfied by

(ψn) and (ζn), the boundary conditions at Γj are applied to provide a linear system of

equations to be solved for the scattering coefficients Aj
n.

It should be noted here that the condition of separated variables leads to some

restrictions on the admissible shapes of the obstacles which can be studied by the

multiple scattering theory. Indeed, solutions of the Helmholtz equation with

separated variables and adapted to bounded obstacles can be derived in only two

kinds of 2-D coordinate systems and four kinds of 3-D coordinate systems

[MAR 06]. The admissible shapes for the obstacles corresponding to these

coordinate systems are circles and ellipses in 2-D, and four kinds of spheres and

ellipsoids in 3-D. In the following, multiple scattering theory is applied to circular

boundaries in 2-D problems, but its underlying principles remain applicable to the

other geometries.

6.3. Scattering of sound by a cluster of cylindrical obstacles

In this section, multiple sound scattering by a cluster Ωcl composed of N
cylindrical obstacles Ωj with j ∈ �1;N � is studied (see Figure 6.2). The axes of the

cylinders Ωj are all parallel and oriented along the direction defined by the unit

vector ez . Only sound propagation in the plane P = (O, ex, ey) orthogonal to the

axes of the obstacles is considered, where O is the origin of the Cartesian coordinate

system (ex, ey) and ex ∧ ey = ez . Consequently, for obstacles sufficiently long, the

wavefield can be assumed invariant under any translation along ez and the problem

can be tackled in the 2-D plane P , where each cylinder Ωj is supposed to have a

circular cross-section with the radius aj and its center Oj located by the position

vector xj =
−−→
OOj .
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Figure 6.2. Cluster of N cylindrical scatterers
with circular cross-sections

6.3.1. Cylindrical wavefunctions in polar coordinate systems

The local coordinate system (Oj , rj) is attached to the obstacle Ωj , wherein rj =−−−→
OjM is the position vector of the point M ∈ P as shown in Figure 6.2. Here, polar

coordinates rj = (rj , θj) are used, such that rj = |rj | is the distance between the

points Oj and M , and θj is the polar angle of rj counted from ex. Hence, the boundary

Γj of the obstacle Ωj is defined by the line of constant value rj = aj , with the normal

vector nj = rj/aj for points rj at Γj . Furthermore, the Helmholtz equation [6.2] takes

the following form when expressing the Laplacian operator with the polar coordinates

(rj , θj):

∂2p

∂r2j
+

1

rj

∂p

∂rj
+

1

r2j

∂2p

∂θ2j
+ k2p = 0 in Ω. [6.8]

To determine the wavefunctions ψn and ζn, solutions in the form of separated

variables p(rj) = f(θj)g(rj) are studied, where f(θj) and g(rj) are scalar functions.

Substitution of this expression into equation [6.8] leads to:

r2j
g(rj)

∂2g(rj)

∂rj
+

rj
g(rj)

∂g(rj)

∂rj
+ k2r2j = − 1

f(θj)

∂2f(θj)

∂θ2j
. [6.9]

The left-hand side of equation [6.9] depends only on the polar coordinate rj , while

its right-hand side depends only on the polar coordinate θj . Hence, both sides are

equal to the same constant, which is called the separation constant and is denoted

α2. Depending on the value of this constant, the functions f and g can be different

and they are re-named fα(θj) and gα(rj) to emphasize their dependence on α. Using

equation [6.9], the functions fα(θj) and gα(rj) satisfy the differential equations:

∂2fα
∂θ2j

+ α2fα = 0, and
∂2gα
∂rj

+
1

rj

∂gα
∂rj

+

(
k2 − α2

r2j

)
gα = 0. [6.10]
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The general solution of the differential equation satisfied by fα(θj) takes the

form of exponential functions e±iαθj . However, any point M ∈ P having the polar

coordinates (rj , θj) coincides with the points having the polar coordinates

(rj , θj + 2πn) where n ∈ Z is an integer. Since the wavefield is uniquely defined at

each point of the plane P , the relation fα(θj) = fα(θj + 2πn) must hold for any

integer n ∈ Z. It means that fα(θj) is 2π-periodic, which implies that the separation

constant can only take integer values α = n ∈ Z, that is, fα(θj) = fn(θj) = einθj

with n ∈ Z.

The differential equation [6.10] satisfied by gα with α = n ∈ Z is called the

Bessel equation of integer order n ∈ Z. Any solution of this equation can be written

as the linear combination of two independent particular solutions called the Bessel
functions of the first and second kind, and denoted Jn(krj) and Yn(krj) respectively.

The Bessel functions can be seen as decaying standing waves, as testified by their

following asymptotic limits as krj → ∞, where φn = nπ/2 + π/4:

Jn(krj) →
√

2/π

krj
cos (krj − φn) and Yn(krj) →

√
2/π

krj
sin (krj − φn) . [6.11]

Like complex exponential functions are formed from sine and cosine functions,

the Hankel functions H(1)
n (krj) = Jn(krj) + iYn(krj) and H(2)

n (krj) =
Jn(krj)− iYn(krj) of the first and second kind and of order n are defined. As linear

combinations of Bessel functions, the Hankel functions satisfy the Bessel equation,

and using equation [6.11], their asymptotic limits as krj → ∞ read:

H(1)
n (krj) →

√
2/π

krj
ei(krj−φn) and H(2)

n (krj) →
√

2/π

(krj)
e−i(krj−φn). [6.12]

Equation [6.12] shows that Hankel functions are propagating waves with

H(1)
n (krj) being outgoing waves and H(2)

n (krj) incoming waves when using the time

convention e−iωt. Among many mathematical properties satisfied by the Bessel and

Hankel functions [BAT 53, ABR 64], the Bessel functions Jn(krj) are found to be

regular as rj → 0, while Yn(krj), H(1)
n (krj) and H(2)

n (krj) are singular as rj → 0.

These properties lead us to define the cylindrical wavefunctions in the forms:

∀n ∈ Z, ψn(rj) = H(1)
n (krj)e

inθj and ζn(rj) = Jn(krj)e
inθj , [6.13]

which satisfy all the requirements announced in section 6.2.4. Indeed, they are

independent solutions of the Helmholtz equation with separated variables; the

wavefunctions ψn(rj) represent outgoing waves from the obstacle Ωj and satisfy the

Sommerfeld radiation condition [6.5]; the wavefunctions ζn(rj) are regular as

rj → 0; the boundary Γj of the obstacle Ωj coincides with the line of constant value
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rj = aj ; and the following orthogonality condition holds regarding their dependence

on θj :

∀ (m, n) ∈ Z
2,

ˆ 2π

0

eimθjeinθj dθj = 2π δ(m+ n), [6.14]

where δ is the Kronecker delta with δ(m+ n) = 1 if m+ n = 0 while δ(m+ n) = 0
otherwise. To simplify notations here and in the following, the Hankel function of the

first kind and order n will be denoted Hn(krj) instead of H(1)
n (krj).

6.3.2. Scattering coefficients and addition theorem

Following the method presented in section 6.2.4, the field scattered by each

obstacle of the cluster Ωcl is now expanded on the functional basis of the outgoing

cylindrical wavefunctions. In particular, the fields psc
j and psc

i scattered by the two

different obstacles Ωj and Ωi with i �= j are expanded in the form:

psc
j (rj) =

∑
n∈Z

Aj
nψn(rj) and psc

i (ri) =
∑
m∈Z

Ai
mψm(ri). [6.15]

Note in equation [6.15] that different letters (m,n) ∈ Z
2 have been used to index

the scattering coefficients and wavefunctions related to Ωj and Ωi, but it has no

influence on the result. To apply the boundary conditions at the surface Γj(rj = aj)
of the obstacle Ωj , the field psc

i must be expressed in the polar coordinate system

(Oj , rj) attached to the obstacle Ωj . To do so, the position vector ri is written as

ri = rji + rj where rji =
−−−→
OiOj has the polar coordinates rji = (rji , θ

j
i ) in the

coordinate system (Oi, ri), with rji being the distance between the Oi and Oj , and θji
being the angle between the vector

−−−→
OiOj and the vector ex (see Figure 6.3). Then,

Graf’s addition theorem [BAT 53, ABR 64] is used, which states that outgoing

wavefunctions ψm(ri) can be expanded on outgoing or regular wavefunctions

ψn(rj) or ζn(rj) depending on the distance rj :

ψm(ri) = ψm(rji + rj) =

⎧⎪⎪⎨
⎪⎪⎩

∑
n∈Z

ψm−n(r
j
i ) ζn(rj) if |rj | < |rji |,∑

n∈Z

ζm−n(r
j
i )ψn(rj) if |rj | > |rji |.

[6.16]

It is worth noting here that since the obstacles have finite non-zero radii ai, the

application of Graf’s addition theorem [6.16] will be avoided in the domain |rji−ai| ≤
|rj | ≤ |rji + ai|, where the presence of the obstacle Ωi prevents the use of cylindrical

wavefunctions ζn(rj) and ψn(rj) centered at Ωj to describe wavefields [FEL 94].

Therefore, the only field expression that is valid in the whole domain Ω is the one
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provided in equation [6.15]. This expression will be preferred to evaluate the field in

the whole domain Ω.

Figure 6.3. Application of Graf’s addition theorem in the case of two
circular cross-sectional obstacles and a line source

Beside their dependence on the wavenumber k, the coefficients ψm−n(r
j
i ) and

ζm−n(r
j
i ) in equation [6.16] depend only on the relative position of the centers Oi and

Oj of the obstacles. To apply the boundary conditions at Γj(rj = aj), the expansion

for |rj | < |rji | in equation [6.16] is used. Substituting that expression into [6.15], the

scattered field psc
i reads as follows in the coordinate system (Oj , rj) for points such

that rj ∈ [aj , r
j
i − ai]:

psc
i (rj) =

∑
n∈Z

∑
m∈Z

Cj,i
nm Ai

mζn(rj) with Cj,i
nm = ψm−n(r

j
i ). [6.17]

Finally, it is supposed (for the time being) that, at least in the vicinity of the

obstacle Ωj , the undisturbed field pun can be expanded on the functional basis of the

regular wavefunctions ζn(rj):

pun(rj) =
∑
n

U j
n ζn(rj) for aj ≤ rj < rlimj , [6.18]

where rlimj is the limit distance from Oj up to which the expansion in equation [6.18]

holds. The coefficients U j
n and the limit distance rlimj actually depend on the nature

of the undisturbed field, and their expression will be given in the cases of the incident

plane wave and the line source excitation in sections 6.3.5 and 6.3.6 respectively.
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6.3.3. Application of boundary conditions

Now that the undisturbed field and the scattered fields have been expressed in

the polar coordinate system (Oj , rj) attached to the obstacle Ωj by means of the

cylindrical wavefunctions, the boundary condition [6.3] at the surface Γj(rj = aj)
can be applied. Substitution of equation [6.4] into the boundary condition [6.3] yields

the following relation:

∀j ∈ �1;N �, ∀rj ∈ Γj ,
∂

∂rj

⎡
⎣pun(rj) + psc

j (rj) +
∑
i�=j

psc
i (rj)

⎤
⎦ = 0. [6.19]

Here, the distinction is made between the field psc
j scattered by Ωj and the external

field pext
j to which Ωj is submitted. This latter consists of the undisturbed field pun and

of the fields psc
i scattered by all the obstacles Ωi�=j other than Ωj . Using the expansions

of the fields psc
i and pun given in equations [6.17] and [6.18], the external field pext

j

reads as follows when expressed in the polar coordinate system (Oj , rj) for points in

the vicinity of Ωj :

∀j ∈ �1;N �, pext
j (rj) = pun(rj) +

∑
i�=j

psc
i (rj) =

∑
n∈Z

Ej
n ζn(rj), [6.20]

where

Ej
n = U j

n +
∑
i�=j

∑
m∈Z

Cj,i
nm Ai

m. [6.21]

Now, using the expansions of the fields psc
j and pext

j given in equations [6.15] and

[6.20], the boundary condition [6.19] becomes:

∀j ∈ �1;N �, ∀rj ∈ Γj ,
∑
n∈Z

{
Aj

n

∂ψn(rj)

∂rj
+ Ej

n

∂ζn(rj)

∂rj

}
= 0. [6.22]

The expression of the cylindrical wavefunctions ψn(rj) and ζn(rj) given in

equation [6.13] is substituted into equation [6.22] to provide the following equation:

∀j ∈ �1;N �, ∀θj ,
∑
n∈Z

k
{
Aj

nH′
n(kaj) + Ej

nJ′n(kaj)
}
einθj = 0. [6.23]

Here, J′n and H′
n are the derivatives of functions Jn and Hn with respect to their

total argument. In particular, the properties of Bessel and Hankel functions [BAT 53,

ABR 64] lead to:

H′
n = (Hn−1 − Hn+1) /2 and J′n = (Jn−1 − Jn+1) /2. [6.24]
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Finally, using the orthogonality of the exponential functions as described by

equation [6.14], the term between braces in equation [6.23] is found to be zero for all

order n ∈ Z:

∀j ∈ �1;N �, ∀n ∈ Z, Aj
nH′

n(kaj) + Ej
nJ′n(kaj) = 0. [6.25]

After division by H′
n(kaj), equation [6.25] can be re-written in the form:

∀j ∈ �1;N �, ∀n ∈ Z, Aj
n = Dj

n Ej
n, with Dj

n = − J′n(kaj)
H′

n(kaj)
. [6.26]

Here, the coefficients Dj
n make the link between the external field coefficients Ej

n

and the scattering coefficients Aj
n of the obstacle Ωj . The coefficients Dj

n are actually

dictated by the boundary conditions applied at the interface Γj and read as

equation [6.26] in the case of impervious obstacles. For comparison, their expression

in the case of permeable obstacles will be given in section 6.3.8.

6.3.4. Matrix formulation

Equations [6.26] and [6.21] represent an algebraic system with an infinite number

of equations to solve for the scattering coefficients Aj
n forced by the coefficients U j

n

prescribed by the undisturbed field. This system can be re-written in a matrix form

more suitable for computation. To do so, the (infinite) vectors Aj and U j containing

the scattering coefficients Aj
n and forcing coefficients U j

n are defined:

Aj = {. . . , Aj
n−1, A

j
n, A

j
n+1, . . .}T , [6.27a]

U j = {. . . , U j
n−1, U

j
n, U

j
n+1, . . .}T , [6.27b]

where T denotes the transposition. The diagonal matrix [Dj ] with coefficients Dj
n and

the matrix [Cj,i] with coefficients Cj,i
nm are also defined:

[Dj ] = diagn∈Z

{Dj
n

}
, and [Cj,i]nm = Cj,i

nm = ψm−n(r
j
i ). [6.28]

With those notations, equations [6.26] and [6.21] can be re-written as follows:

∀j ∈ �1;N �, Aj = [Dj ]Ej where Ej = U j +
∑
i�=j

[Cj,i]Ai. [6.29]
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The matrix [Dj ] linking the vector of scattering coefficients Aj to the vector Ej of

external excitation is called the single scattering matrix of the obstacle Ωj . Equation

[6.29] results in a system of N vectorial equations. They can be gathered in one single

vectorial equation by defining the global vectors of scattering and forcing coefficients:

A =
{
A1, . . . , Aj , . . . , AN

}T

, U =
{
U1, . . . , U j , . . . , UN

}T

, [6.30]

the global identity matrix [I] and the single scattering matrix [D]:

[I] =

⎡
⎣Id O O
O Id O
O O Id

⎤
⎦ and [D] =

⎡
⎣[D1] O O

O [Dj ] O

O O [DN ]

⎤
⎦ , [6.31]

and the following matrix [C] of coupling between the obstacles:

C =

⎡
⎢⎢⎢⎢⎢⎣

O C1,2 C1,3 · · · C1,N

C2,1 O C2,3 · · · C2,N
... Cj,j−1 O Cj,j+1

...

CN−1,1 · · · CN−1,N−2 O CN−1,N

CN ,1 CN ,2 · · · CN ,N−1 O

⎤
⎥⎥⎥⎥⎥⎦ , [6.32]

where Id and O in equations [6.31] and [6.32] are the identity and null matrices having

the same size as [Dj ] and [Cj,i]. Since [C] is not diagonal, every scattering coefficient

of every obstacle is coupled to any other scattering coefficient of any other obstacle.

With those notations, equation [6.29] can be re-written as follows:

[I]A = [D]E where E = U + [C]A. [6.33]

Solving for the scattering coefficients A in equation [6.33] leads to:

A = [M]U with [M] =
[
[I]− [D][C]

]−1

[D], [6.34]

where the matrix M is called the multiple scattering matrix of the cluster. It is

interesting to note that M does not depend on the nature of the undisturbed field.

However, it requires the inversion of the matrix [I] − [D][C], which is usually

performed numerically. Consequently, the infinite sums in equations [6.15], [6.17]

and [6.18] must be truncated to n,m ∈ �−M ;M� where M is a finite integer. Only

convergence studies can confirm that a sufficient number M of wavefunctions have
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been considered to assess the fields, but the following numerical recipe can be used

as an estimate [BAR 90] in the case of impervious obstacles:

M = floor
(
kamax + 4.05(kamax)

1/3
)
+ 10 with amax = max

j∈�1;N �
(aj). [6.35]

Finally, equation [6.34] shows that once the forcing coefficients U are determined,

the scattering coefficients in A can be computed. In sections. 6.3.5 and 6.3.6, the

forcing coefficients U are hence derived for the incident plane wave and the line source

excitation respectively.

6.3.5. Forcing coefficients in the case of an incident plane wave

If the undisturbed field is a plane wave with unitary amplitude and wave vector k
in the plane P , it reads as follows in the Cartesian coordinate system (O, ex, ey):

pun(x) = eik·x with k = kxex + kyey and x = xex + yey. [6.36]

For the undisturbed field to satisfy the Helmholtz equation, the relation

k2x + k2y = k2 must hold. Consequently, they can be written in the form

kx = k cos(ϑ) and ky = k sin(ϑ), where the angle ϑ characterizes the direction of

propagation of the incident wave. In addition, the position vector is written as

x = xj + rj with rj = rj cos(θj)ex + rj sin(θj)ey . As a result, equation [6.36]

becomes:

pun = eik·xj eikrj{cos(θj) cos(ϑ)+sin(θj) sin(ϑ)} = eik·xj eikrj cos(θj−ϑ), [6.37]

where eik·xj plays the role of a complex amplitude which depends on the position xj

of the obstacle Ωj in the global Cartesian coordinate system. Now, the Jacobi–Anger
expansion [BAT 53, ABR 64] is used to expand the term eikrj cos(θj−ϑ) on the Bessel

functions:

eikrj cos(θj−ϑ) =
∑
n∈Z

inJn(krj)e
in(θj−ϑ) =

∑
n∈Z

ine−inϑζn(rj). [6.38]

Substitution of equation [6.38] into [6.37] leads to the following expansion of the

undisturbed field on the regular wavefunctions ζn(rj) in the polar coordinate system

(Oj , rj) attached to the obstacle Ωj :

pun(rj) = ei{k·xj+krj cos(θj−ϑ)} =
∑
n∈Z

U j
nζn(rj) with U j

n = inei(k·xj−nϑ). [6.39]



Introduction to Multiple Scattering Theory 157

Moreover, the expansion [6.39] remains valid for any points such that rj ≥ aj ,

which means that the limit distance of validity for the expansion [6.39] is rlimj = ∞.

6.3.6. Forcing coefficients in the case of a line source

Another type of undisturbed field which is useful in practice is the case of the

line source. In our 2-D problem, it consists of the field created by a source S located

at the point Os in the plane P as shown in Figure 6.3. The polar coordinate system

(Os, rs) attached to the source is defined, with coordinates rs = (rs, θs). Denoting

xs =
−−→
OOs the position vector of the source in the Cartesian coordinate system (O,x),

the undisturbed field satisfies the following Helmholtz equation and reads as follows:

Δ(pun) + k2pun = δ(x− xs) ⇒ pun(rs) =
1

4i
H0(krs) =

ψ0(rs)

4i
, [6.40]

where δ(x−xs) is the Dirac function which is equal to 1 if x = xs but to 0 otherwise.

The position vector rs is written as rs = rjs+rj where rjs =
−−−→
OsOj has the coordinates

rjs = (rjs, θ
j
s) in the polar coordinate system (Os, rs), with rjs being the distance

between the source Os and the center Oj , and θjs being the angle between
−−−→
OsOj and

ex. Now, using Graf’s addition theorem [6.16], the undisturbed field is expressed in

the polar coordinate system (Oj , rj) attached to the obstacle Ωj in the form:

pun =
1

4i
ψ0(r

j
s + rj) =

⎧⎪⎨
⎪⎩

1
4i

∑
n∈Z

ψ0−n(r
j
s) ζn(rj) if rj < rjs,

1
4i

∑
n∈Z

ζ0−n(r
j
s)ψn(rj) if rj > rjs.

[6.41]

To apply the boundary conditions at the surface Γj(rj = aj), only the expansion

for rj < rjs is relevant, which means that the undisturbed field is expanded as follows

in the vicinity of the obstacle Ωj with the limit distance of validity rlimj = rjs:

pun =
H0(krs)

4i
=
∑
n∈Z

U j
nζn(rj) with U j

n =
ψ0−n(r

j
s)

4i
for rj < rjs. [6.42]

The excitation of a cluster of cylindrical obstacles by a line source is of particular

physical interest, because the field that is calculated is nothing but the Green’s

function of the system. This Green’s function can be then used to solve the inverse

problem [GRO 08a] consisting of locating and characterizing defects in the cluster or

to evaluate the density of state [ASA 03].
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6.3.7. Total scattered field and actual pressure

Once the forcing coefficients U j
n are determined from the undisturbed field, and

the scattering coefficients Aj
n are computed according to equation [6.34], the total

scattered field psc and the actual field p = pun + psc can be evaluated at any point in

space. Combining equations [6.4] and [6.15], the scattered field psc can be calculated

as follows by combining field representation in multiple polar coordinate systems

(Oj , rj):

psc(x) =
∑

j∈�1,N �

psc
j (rj) with psc

j (rj) =
∑
n∈Z

Aj
nψn(rj) [6.43]

where, for all j ∈ �1,N �, the position vector reads x = xj + rj . This field

representation is the only one that is valid in the whole domain Ω. To express psc(x)
in one single coordinate system, Graf’s addition theorem [6.16] must be used, but

attention must be paid to the domain of validity of the field representations. To

illustrate this, the barycenter Ocl of the cluster is defined, with the position vector :

xcl =
∑

j∈�1;N �

Sj

Scl

xj with Sj = πa2j and Scl =
∑

j∈�1;N �

Sj , [6.44]

where Sj is the surface area of the Ωj cross-section, while Scl is the total surface area

occupied by the cluster. Then, the polar coordinate system (Ocl, rcl) is attached to the

cluster barycenter, wherein the center Oj of the obstacle Ωj has the position vector

rjcl =
−−−→
OclOj . Using Graf’s addition theorem [6.16] for points outside the cluster, that

is, for |rcl| ≥ rmin
cl where rmin

cl = maxj(|rjcl| + aj), the field scattered by all the

obstacles of the cluster in the domain |rcl| ≥ rmin
cl can be written in the form:

psc(rcl) =
∑

j∈�1;N �

∑
m∈Z

Aj
mψm(rjcl + rcl) =

∑
n∈Z

Acl
nψn(rcl), for |rc| ≥ rmin

c , [6.45]

where the scattering coefficients Acl
n of the overall cluster read:

Acl
n =

∑
j∈�1;N �

∑
m∈Z

Aj
mζm−n(r

j
cl). [6.46]

As a result, for position vectors |rcl| ≥ rmin
cl outside the cluster, this latter can be

treated as an overall structured obstacle, the scattering coefficients of which depend

on those from all the obstacles it contains. This procedure is in particular adopted to

derive effective parameters of clusters at low frequencies [BER 80, TOR 06].
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6.3.8. Permeable obstacles

It is worth mentioning here that equation [6.29], or equivalently equation [6.34],

encapsulates the whole multiple scattering problem and is not limited to the case of

impervious obstacles. Indeed, changing the nature of one or more obstacles Ωj would

only require the re-definition of their associated matrix [Dj ] of single scattering.

To illustrate this idea, the obstacle Ωj is supposed to be made of homogeneous and

isotropic material with the (effective) bulk modulus Kj and density ρj . The obstacle

Ωj being then penetrable to sound, the pressure field pin
j develops inside it and must

satisfy the Helmholtz equation [6.2] with the wavenumber kj = ω/cj , where cj =√
Kj/ρj is the sound speed in Ωj . Since pin

j must be regular over the domain Ωj , it is

expanded on the functional basis of regular cylindrical wavefunctions only, which is

called the Rayleigh hypothesis:

pin
j =

∑
n∈Z

Xj
n ζ

j
n(rj) with ζjn(rj) = Jn(kjrj)e

inθj , [6.47]

where Xj
n are complex coefficients. The Neumann boundary condition [6.3] at the

surface Γj is then replaced by the following conditions of continuity for the pressure

and the normal component of the particle velocity:

∀rj ∈ Γj , pin
j = (psc

j + pext
j ) and

1

ρj

∂pin
j

∂rj
=

1

ρ

∂(psc
j + pext

j )

∂rj
[6.48]

where the field psc
j scattered by Ωj and the external field pext

j to which Ωj is submitted

are given in equations [6.15] and [6.20]. Following the same procedure as that

presented in section 6.3.3, application of the boundary conditions [6.48] with the

field representations in equations [6.47], [6.15] and [6.20] yields:

∀n ∈ Z, Xj
n Jn(kjaj) = Aj

nHn(kaj) + Ej
nJn(kaj), [6.49a]

∀n ∈ Z,
kj
ρj

Xj
n J′n(kjaj) =

k

ρ

{
Aj

nH′
n(kaj) + Ej

nJ′n(kaj)
}
. [6.49b]

Solving for Aj
n and Xj

n in equation [6.49] provides:

Aj
n = Ďj

nEj
n with Ďj

n =
−J′n(kaj)Jn(kjaj) + σjJn(kaj)J

′
n(kjaj)

H′
n(kaj)Jn(kjaj)− σjHn(kaj)J

′
n(kjaj)

,

[6.50a]

Xj
n = Θj

nEj
n with Θj

n =
Jn(kaj)H

′
n(kaj)− J′n(kaj)Hn(kaj)

H′
n(kaj)Jn(kjaj)− σjHn(kaj)J

′
n(kjaj)

, [6.50b]
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where σj = (ρc)/(ρjcj) is the ratio between the impedance ρc in the medium Ω and

that ρjcj in the obstacle Ωj . The relation Aj
n = Ďj

nEj
n in equation [6.50a] is similar

to that obtained for impervious obstacles in equation [6.26], with in particular

Ďj
n → Dj

n as σj → 0. Consequently, the procedure described in section 6.3.4 can

also be applied in the case of permeable obstacles, replacing Dj
n by Ďj

n. It is worth

noting that, once again, the resulting single scattering matrix would be diagonal for

permeable obstacles. Although this is often the case, it is important to note that

structured obstacles can be designed so that single scattering matrices are not

diagonal, which formally does not change anything in the procedure described in

section 6.3.4. This is, for example, the case of Helmholtz or split-ring resonators

[KRY 11, SCH 18].

6.4. Scattering of sound by a periodic row of obstacles: the single
grating array

When many identical obstacles are equally spaced along the direction ex, the

idealization of such an array as an infinite periodic row can be pertinent. In this

section, sound scattering by a single grating array of cylindrical obstacles with

circular cross-sections in the plane P is studied. It consists of the �-periodic

repetition, along the direction ex, of the cluster Ωcl composed of N obstacles (see

Figure 6.4). The qth repetition of the cluster is denoted Ωq
cl, where q ∈ Z, while

obstacles in the cluster Ωq
cl are indexed by j ∈ �1;N � and named Ωj,q . Due to the

�-periodicity, the obstacles Ωj,q have their radius aj independent from q, and their

center Oj,q located at the following points in the Cartesian coordinate system

(O, ex, ey):

xj,q = xj + q�ex with q ∈ Z and xj = xj ex + yj ey, [6.51]

where xj is the position of the center Oj,0 in the reference cluster Ω0
cl. To simplify

notations in what follows, the convention Ωj = Ωj,0 and Oj = Oj,0 is adopted.

In addition, the origin O of the Cartesian Coordinate system is chosen so that the

obstacles Ωj in the reference cluster Ω0
cl are included in the domain x ∈ [−�/2; �/2],

that is, |xj |+ aj < �/2 for all j ∈ �1;N �, while the barycenter O0
cl of the cluster Ω0

cl

belongs to the axis (O, ex). In all this section, the incident field pinc is supposed to be a

plane wave of unitary amplitude propagating with the wave vector k = kxex + kyey:

pinc(x) = eik·x = eikxx+ikyy. [6.52]
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Figure 6.4. �-periodic repetition of a cluster composed of N obstacles

6.4.1. Quasi-periodicity

Using the principle of superposition, the actual field p is written as the sum

between the undisturbed field pun = pinc and the field psc scattered by the array, this

latter being the sum of the fields psc
j,q scattered by all the obstacles Ωj,q in the array:

p(x) = pun(x) + psc(x) with psc(x) =
∑

j∈�1;N �

∑
q∈Z

psc
j,q(x). [6.53]

The local coordinate system (Oj,q, rj,q) with polar coordinates rj,q = (rj,q, θj,q)
is then attached to each obstacle Ωj,q and the scattered field psc

j,q is expanded on the

outgoing cylindrical wavefunctions ψn(rj,q) in the form:

∀j ∈ �1;N �, ∀q ∈ Z, psc
j,q(rj,q) =

∑
n∈Z

Aj,q
n ψn(rj,q), [6.54]

where Aj,q
n are the scattering coefficients of Ωj,q. To reduce the number of scattering

coefficients to determine, the periodicity of the array is now exploited. This is only

possible, however, if the undisturbed field which forces the scattered fields preserves

somehow this periodicity. This is the case of plane waves, for which quasi-periodicity
conditions can be used, as explained hereafter.

The fact that the undisturbed field in equation [6.52] is a plane wave entails the

phase shift eikx� between two consecutive clusters Ωq
cl and Ωq+1

cl of the array. As a

result, the scattering coefficients inherit this property in the form Aj,q+1
n = Aj,q

n eikx�,
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so that the scattering coefficients Aj,q
n of the obstacle Ωj,q can be derived from those

of the obstacle Ωj in the reference cluster Ω0
cl as follows:

∀j ∈ �1;N �, ∀q ∈ Z, Aj,q
n = Aj

ne
iqkx� where Aj

n = Aj,0
n . [6.55]

Equation [6.55] is called the quasi-periodicity condition. As a result, it is sufficient

in equation [6.54] to determine the scattering coefficients Aj
n for the obstacles Ωj in

the reference cluster Ω0
cl to solve the problem. Indeed, combining equations [6.53] to

[6.55], the actual field can be calculated according to:

p = pun +
∑

j∈�1;N �

∑
q∈Z

psc
j,q with psc

j,q(rj,q) =
∑
n∈Z

Aj
ne

iqkx�ψn(rj,q). [6.56]

6.4.2. Lattice sums and scattering coefficients of the array

To apply the boundary conditions at the surface Γj of the obstacles Ωj , the field

p in equation [6.56] is expanded on cylindrical wavefunctions expressed in the polar

coordinate system (Oj , rj) where rj = rj,0. The distinction is made in equation [6.56]

between the field psc
j,0 scattered by the obstacle Ωj in the reference cluster Ω0

cl, and the

external field pext
j,0 to which Ωj is submitted. In addition, the following contributions to

the external field pext
j,0 are identified: (i) the undisturbed field pun; (ii) the intra-cluster

external field pintra
j,0 made of the fields psc

i�=j,0 scattered by the obstacles Ωi�=j located

in the reference cluster Ω0
cl apart from Ωj ; and (iii) the exo-cluster external field pexo

j,0

made of the fields psc
i,q �=0 scattered by the obstacles Ωq �=0

i located in the clusters Ωq �=0
cl

other than the reference cluster Ω0
cl. Mathematically, it reads:

p = psc
j,0 + pext

j,0 with pext
j,0 = pun + pintra

j,0 + pexo
j,0 [6.57]

where

pintra
j,0 =

∑
i �=j

psc
i,0 and pexo

j,0 =
∑

i∈�1;N �

∑
q �=0

psc
i,q. [6.58]

Now, the fields are expressed in the polar coordinate system attached to Ωj . Using

equation [6.39], the undisturbed field is expanded on the regular wavefunctions

ζn(rj) as:

pun(rj) =
∑
n∈Z

U j
nζn(rj) with U j

n = inei(k·xj−nϑ), [6.59]
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while Graf’s addition theorem [6.16] is used to expand the outgoing wavefunctions

ψm(ri,q) on the regular wavefunctions ζn(rj), where i, j ∈ �1;N �:

ψm(ri,q) = ψm(rj,0i,q + rj)

=
∑
n∈Z

ψm−n(r
j,0
i,q ) ζn(rj) for |rj | < min

i
|rj,0i,q − ai|, [6.60]

where rj,0i,q =
−−−−−→
Oi,qOj,0. Using equation [6.60], the following relations hold close to

Ωj :

∀i �= j, psc
i,0(rj) =

∑
n∈Z

∑
m∈Z

Cj,i
nmAi

m ζn(rj), [6.61a]

∀i ∈ �1;N �,
∑
q �=0

psc
i,q(rj) =

∑
n∈Z

∑
m∈Z

Sj,i
nmAi

m ζn(rj), [6.61b]

where:

Cj,i
nm = ψm−n(r

j,0
i,0) and Sj,i

nm =
∑

q∈Z,q �=0

eiqkx�ψm−n(r
j,0
i,q ). [6.62]

Here, Cj,i
nm are the coupling coefficients between obstacles Ωj and Ωi�=j in the

reference cluster Ω0
cl, and take the same form as the coupling coefficients in

equation [6.17] holding for the cluster in the unbounded space. On the contrary, the

coefficients Sj,i
nm in equation [6.62] are called lattice sums and account for the

contribution of the fields scattered by the obstacles Ωi,q located in all the exo-clusters

Ωq �=0
cl to the near field close to Ωj . In particular, the term Sj,j

nm that refers to the

periodic replicates of obstacle Ωj in all cells other than the reference cell is often

called the Schlömich series1. Here, the choice has been made to distinguish between

intra-cluster and exo-cluster interactions, resulting in the coupling coefficients Cj,i
nm

and Sj,i
nm as defined in equation [6.62], but other field partitions can be adopted in the

literature. In particular, conventions defining absolute lattice sums Ŝj,j
nm = Sj,j

nm, and

relative lattice sums Ŝj,i
nm = Cj,i

nm + Sj,i
nm for i �= j are often adopted in the literature

1 The sum can be reduced to q ≤ 1 due to symmetry in lattice sums. It is worth mentioning

that lattice sums are slowly converging in non-dissipative media, in which fields scattered from

obstacles even very far from the reference cluster can be significant. That requires accounting

for many clusters when truncating the sum in equation [6.62] to
∑

q∈�−Q;Q�,q �=0. However,

mathematical procedures to efficiently evaluate the lattice sums can be found in the literature

[TWE 61, MCP 00, LIN 06].
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[BOT 00, BOT 03, GRO 11]. Nevertheless, the substitution of equation [6.61] into

[6.58] provides:

pintra
j,0 (rj) =

∑
i�=j

∑
n∈Z

∑
m∈Z

Cj,i
nmAi

m ζn(rj), [6.63a]

pexo
j,0(rj) =

∑
i∈�1;N �

∑
n∈Z

∑
m∈Z

Sj,i
nmAi

m ζn(rj). [6.63b]

Combining equations [6.57], [6.59] and [6.63], the external field pext
j,0 is found in

the form:

pext
j,0(rj) =

∑
n∈Z

Ej
nζn(rj), [6.64a]

with Ej
n = U j

n +
∑
i�=j

∑
m∈Z

Cj,i
nmAi

m +
∑

i∈�1;N �

∑
m∈Z

Sj,i
nmAi

m. [6.64b]

Equation [6.64a] is similar to equation [6.20] for the isolated cluster. Hence, the

procedure to apply the boundary conditions at Γj by means of the single scattering

matrices is formally the same as for the isolated cluster, whether the obstacles are

impervious as in section 6.3.3 or permeable to sound as in section 6.3.8. Using the

similar matrix formulation as in section 6.3.4, without specifying the nature

(impervious or permeable) of the obstacles, the final problem can be written in the

form:

[I]A = [D]E where E = U + [C]A+ [S]A. [6.65]

Here, [I] is the identity matrix; [D] is the matrix of single scattering for the

obstacles in the reference cluster Ω0
cl; the vector A contains the scattering coefficients

Aj
n (unknowns of the problem); the vectors E and U contains the coefficients Ej

n and

U j
n of the external and undisturbed fields; [C] is the matrix of coupling between

obstacles in the reference cluster Ω0
cl (intra-cluster interactions) and takes the same

form as in equation [6.32] for the isolated cluster; and the matrix [S] accounts for the

coupling between the obstacles in the reference cluster Ω0
cl and those in all the other

clusters Ωq �=0
cl of the array (exo-cluster interactions). In particular, it reads as follows,

where conversely to C, its block-diagonal terms are not O:

S =

⎡
⎢⎣
S1,1 · · · S1,N

... Sj,i
...

SN ,1 · · · SN ,N

⎤
⎥⎦ , with

[
Sj,i

]
nm

= Sj,i
nm. [6.66]
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Solving for A in equation [6.65] leads to:

A = [M∞]U with [M∞] =
[
[I]− [D] ([C] + [S])

]−1

[D], [6.67]

where [M∞] is the multiple scattering matrix of the array and relates the vector A of

scattering coefficients for the obstacles in the reference cluster Ω0
cl to the vector U of

forcing coefficients inherited from the plane wave excitation.

From a computational point of view, the infinite sums over the angular modes are

truncated as explained in equation [6.35], while the lattice sum that runs over the

spatial repetition of the cluster is evaluated independently [TWE 61, MCP 00]. Please

note once again that the only field representation that is valid in the whole domain Ω
is the one provided in equation [6.56], which implies that the field is represented in

the direct, i.e. spatial, domain. Nevertheless, because of the periodicity of the structure

and its geometrical features that fit Cartesian coordinate system, field representation

in the reciprocal, i.e. wavenumber, domain can be preferred.

6.4.3. Emergence of Bloch’s waves and Wood’s anomaly

When the undisturbed field strikes the array, it is expected that some waves are

reflected back while others are transmitted through it. Using equation [6.57], the

pressure field can be computed at any point and the reflected and transmitted fields

can be identified numerically. However, summing the fields scattered from all the

obstacles at many points can be very demanding from the computational point of

view, and provides no insight into the collective behavior of the obstacles submitted

to the undisturbed field. Here, the field psc scattered by the array is expanded on

plane waves in both half-spaces Ω+ and Ω− located above and below the array

(grating), that is, at points such that y > y+ and y < y− respectively, where

y+ = maxj(yj + aj) and y− = minj(yj − aj) (see Figure 6.4). Not all wave vectors

are admissible for such plane waves. Using the Bloch–Floquet analysis

[FLO 83, BLO 28], only the discrete set of wavevectors kνxex ± kνyey is admissible,

due to the �-periodicity of the array and to the wavenumber kx prescribed by the

undisturbed field in the direction ex, where:

∀ν ∈ Z, kνx = kx +
2πν

�
and kνy =

√
k2 − (kνx)

2 with Re(kνy ) ≥ 0. [6.68]

Consequently, the scattered field psc is expanded on plane waves as follows:

psc(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

∑
ν∈Z

E+
ν eikν

xxeikν
yy if y > y+,∑

ν∈Z

E−
ν eikν

xxe−ikν
yy if y < y−,

[6.69]
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where E±
ν are the complex amplitudes of the outgoing plane waves radiated from

the array in the free half-spaces Ω±. These plane waves with wavenumbers given by

equation [6.68] are called Bloch waves. The present issue is now to find the relation

between the Bloch wave amplitudes E±
ν and the scattering coefficients Aj

n calculated

in equation [6.67]. This is done by means of the Green–Kirchhoff integral theorem
where a 2-D �-periodic Green function is used. The derivation is somewhat tedious

and is provided in detail in Appendix 2 at the end of this chapter. It provides the Bloch

wave amplitudes in the form:

E±
ν =

∑
j∈�1;N �

∑
m∈Z

K±,j
ν,m Aj

m, [6.70a]

with K±,j
ν,m =

2(−i)me±imϑν

kνy�
e−i(kν

xxj±kν
yyj), [6.70b]

where it is recalled that angle ϑν is such that kνx = k cos(ϑν) and kνy = k sin(ϑν).
Using equation [6.69], the actual field is found in the form:

p(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

∑
ν∈Z

{T 0
ν eikν

yy}eikν
xx if y > y+,∑

ν∈Z

{δ(ν)eik0
yy +R0

ν e
−ikν

yy}eikν
xx if y < y−,

[6.71]

where the incident field δ(ν)e−ik0
yyeikν

xx represents the undisturbed field in the free

half-space Ω−(y < y−), while coefficients R0
ν = E−

ν and T 0
ν = δ(ν) + E+

ν are the

reflection and transmission coefficients from the single grating array with reference

plane at y = 0. It is worth mentioning here the contribution of the undisturbed field

to the transmission coefficient at the fundamental Bloch mode ν = 0, that is, T 0
0 =

1 + E+
0 , while higher Bloch modes ν �= 0 stem only from the field scattered by the

array itself, that is, T 0
ν = E+

ν for ν �= 0.

Finally, it is important to note here that the Bloch wave expansion of the scattered

field psc with Bloch wave amplitudes given in equation [6.70] is not valid at every

frequency. Indeed, coefficient K±,j
ν,m in equation [6.70b] is singular whenever kνy = 0.

Using equation [6.68], it happens at the frequencies ωW
ν given by:

ωW
ν =

2πνc/�

±1− cos(θ)
, for ν ∈ Z. [6.72]

For instance, at normal incidence, θ = π/2, the lowest frequency at which K±,j
ν,m

becomes singular is ωW
1 = 2πc/�, that is, when the wavelength of the incident wave

is equal to the lattice size �. At that frequency, the reflected and transmitted waves

remain localized in the vicinity of the array, and propagate along the grating in the

direction ±ex (not demonstrated here). In other words, the field is made of evanescent
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waves which are guided by the array. This phenomenon is called the Wood anomaly
[WOO 02, CUT 44].

From a computational point of view, the associated singularity is usually avoided

by adding a small imaginary part to k in the vicinity of the Wood anomaly. The infinite

sums in equations [6.69] and [6.71] must be truncated to ν ∈ �−N−, N+� with

N± = floor (3k ∓ kx) + 10, [6.73]

to ensure their convergence.

6.4.4. Interaction of the array with a plane boundary

The ability in equation [6.69] to describe the scattered field psc in terms of Bloch

waves opens the possibility of studying the interaction between the single grating array

with a plane boundary Γb parallel to the grating (see Figure 6.5). Here, the plane

boundary Γb is supposed to be located at y = b, with b > y+ being the distance

between the boundary Γb and the line y = 0 along which the array is arranged. The

boundary Γb is also supposed to be impervious to particles in Ω, so that v · ey = 0 at

y = b.

Figure 6.5. �-period cluster composed of N obstacles
placed against a rigid flat boundary

In the absence of the array, the incident field pinc = eikxx+ikyy is reflected from

the plane boundary Γb(y = b) into the field eikxx−iky(y−2b), so that the undisturbed

field reads:

pun(x, y) =
{
eikyy + e−iky(y−2b)

}
eikxx such that

∂pun

∂y
= 0 at Γb. [6.74]

In response to the undisturbed field, the obstacles in the array radiate the field:

psc(x) =
∑

j∈�1;N �

∑
q∈Z

psc
j,q(x) with psc

j,q(rj,q) =
∑
n∈Z

Aj
ne

iqkx�ψn(rj,q), [6.75]



168 Fundamentals and Applications of Acoustic Metamaterials

where the scattering coefficients Aj
n of the obstacles in the reference cluster Ω0

cl are to

be determined. Interferences between the scattered fields psc
j,q give rise to Bloch waves,

and the scattered field psc can be re-written as in equation [6.69]:

psc(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

∑
ν∈Z

E+
ν eikν

xx+ikν
yy if y ∈ [y+, b],∑

ν∈Z

E−
ν eikν

xx−ikν
yy if y < y−,

[6.76]

where the Bloch wave amplitudes E+
ν are given in equation [6.70]. However, due to

the presence of the plane boundary Γb, each Bloch wave E+
ν eikν

xx+ikν
yy emitted from

the array is reflected back from Γb(y = b), which radiates the field:

psc
Γ (x, y) =

∑
ν∈Z

E+
ν ei2kν

ybeikν
xx−ikν

yy so that
∂(psc + psc

Γ )

∂y
= 0 at Γb. [6.77]

Now, the obstacle Ωj in the reference cluster Ω0
cl is submitted to the undisturbed

field pun given in equation [6.74], to the intra- and exo-cluster fields pintra
j,0 and pexo

j,0

given in equation [6.58], and to the field psc
Γ scattered back from the plane boundary

Γb. To apply the boundary conditions at the surface Γj of Ωj , all of these fields are

expanded on regular wavefunctions ζn(rj) in the vicinity of Ωj . Using the Jacobi–

Anger expansion detailed in section 6.3.5, the following relation is derived:

eikν
xx±ikν

yy =
∑
n∈Z

Lj,±
n,ν ζn(rj) with Lj,±

n,ν = (i)ne∓inϑν

eikν
xxj±ikν

yyj . [6.78]

Quite interestingly, the coefficients K±,j
ν,m in equation [6.70b] and Lj,±

m,ν in

equation [6.78] satisfy the relation K±,j
ν,mLj,±

m,ν = 2/(kνy�). The substitution of

equation [6.78] into the expressions of the undisturbed field pun and back-scattered

field psc
Γ in equations [6.74] and [6.77], while using equation [6.70a] leads to the

following expansions:

pun(rj) =
∑
m∈Z

U j
nζn(rj) with U j

n = Lj,+
n,0 + ei2kybLj,−

n,0 , [6.79a]

and psc
Γ (rj) =

∑
i∈�1;N �

∑
n∈Z

∑
m∈Z

Bj,i
n,m Ai

m ζn(rj), [6.79b]

with Bj,i
n,m =

∑
ν∈Z

Lj,−
n,νK

+,i
ν,mei2kν

yb. [6.79c]
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Finally, the expansion of the intra- and exo-cluster fields pintra
j,0 and pexo

j,0 are provided

by equation [6.64a], which results in the following external field pext
j,0(rj) close to Ωj :

pext
j,0(rj) =

∑
n∈Z

Ej
nζn(rj), with [6.80a]

Ej
n = U j

n +
∑
i �=j

∑
m∈Z

Cj,i
nmAi

m +
∑

i∈�1;N �

∑
m∈Z

(Sj,i
nm + Bj,i

n,m)Ai
m. [6.80b]

Application of the boundary conditions at surface Γj then proceeds as usual, and

leads to the following problem, written here in its matrix formulation (procedure and

notations introduced in sections 6.3.4 and 6.4.2):

[I]A = [D]E where E = U + [C]A+ [S]A+ [B]A, [6.81]

where the following matrix [B] accounts for the coupling between the obstacles in the

reference cluster Ω0
cl and the fields back-scattered from the plane boundary Γb:

B =

⎡
⎢⎣
B1,1 · · · B1,N

... Bj,i
...

BN ,1 · · · BN ,N

⎤
⎥⎦ , with

[
Bj,i

]
nm

= Bj,i
nm. [6.82]

Once the scattering coefficients are calculated from equation [6.81], the actual field

p = pun + psc + psc
Γ can be computed. This example showed that in the presence of

the plane interface Γb, the undisturbed field is not reduced to the incident field, and

the obstacles are submitted to the fields scattered back from Γb. In fact, the plane

boundary Γb acts as an obstacle on its own, with (Bloch) plane waves playing the

role of the wavefunctions adapted to its shape. Although Γb has been considered here

impervious, the approach to account for the interactions between the single grating

array and the plane boundary remains general, and the procedure can be extended to

the cases of an admittance surface or an interface between two media, for instance.

6.5. Scattering of sound by a multi-grating array

In this section, the cluster Ωcl with N obstacles in it is repeated �x-periodically

in the direction ex to produce a row, and the resulting row is repeated Ny times with

the center-to-center spacing �y in the direction ey (see Figure 6.6). Barycenters of the

clusters are therefore located at the following points:

x
(q,g)
cl = q�xex + g�yey with q ∈ Z, and g ∈ �0, Ny − 1�. [6.83]
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Figure 6.6. (a) Multi-grating �-periodic cluster composed
of N obstacles and (b) single grating Δg

The cluster at the point x
(q,g)
cl is denoted Ω

(q,g)
cl while the obstacles in Ω

(q,g)
cl are

denoted Ω(j,q,g) with j ∈ �1,N �. The center O(j,q,g) of the obstacle Ω(j,q,g) is

located at the point x(j,q,g) = xj + q�xex + g�yey , where xj = xjex + yjey is the

position of O(j,0,0). The radius of obstacle Ω(j,q,g) is denoted aj , and the lattice sizes

�x and �y are supposed to satisfy �x/2 > maxj(|xj | + aj) and

�y/2 > maxj(|yj | + aj). To study the scattering of the incident plane wave

pinc(x) = eikxx+iky(y−�y/2) by such the multi-grating array, super clusters

Ωq
cl
 =

⋃{
Ω

(q,g)
cl |g ∈ �0, Ny − 1�

}
could be defined, and the results from section

6.4 applied to the single grating of super clusters [GRO 08b, GRO 11]. However, it

would result in Ny × N obstacles in the super cluster, which could require heavy

computations, especially when Ny is large. In this section, another approach to the

problem is presented. It relies on the transfer matrix formulation for the single

grating array (one row), and the association of these transfer matrices to derive the

reflected and transmitted fields from the multi-grating array. Another approach relies

on the scattering matrix formulation [BOT 00], which is in essence relatively similar

but the scattering matrix multiplication might be somewhat tedious.

6.5.1. Transfer matrix formulation for the single grating

Here, the single grating Δg =
⋃{

Ω
(q,g)
cl |q ∈ Z

}
is extracted from the multi-

grating array and isolated (see Figure 6.6). It is submitted simultaneously to the two

incident fields p̂+g and p̂−g propagating from below and above the grating:

p̂+g =
∑
ν∈Z

F+
g,ν eikν

xx+ikν
y(y−ξg) in y < y−g , [6.84a]

p̂−g =
∑
ν∈Z

F−
g,ν eikν

xx−ikν
y(y−ξg+1) in y > y+g , [6.84b]
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where y+g = g�y +maxj(yj + aj) and y−g = g�y +minj(yj − aj) delimit domains

for Bloch wave expansion outside the grating, F±
g,ν are complex amplitudes, and ξg =

g�y − �y/2 define fictive boundaries at y = ξg between gratings Δg+1 and Δg in the

multi-grating array. In response to the incident fields, grating Δg produces the fields:

p+g =
∑
μ∈Z

G+
g,μ eikμ

xx+ikμ
y (y−ξg+1) in y > y+g , [6.85a]

p−g =
∑
μ∈Z

G−
g,μ eikμ

xx−ikμ
y (y−ξg) in y < y−g . [6.85b]

To determine the amplitudes G±
g,μ, the results from section 6.4 are used. The

obstacle Ω(j,0,g) in the reference cluster (q = 0) of the grating Δg produces the

scattered field psc
(j,0,g) in response to the external field pext

(j,0,g) to which it is

submitted, where pext
(j,0,g) is the superposition of the undisturbed field pun = p̂+g + p̂−g ,

the intra-cluster external field pintra
(j,0,g) and the exo-cluster field pexo

(j,0,g). In the vicinity

of Ω(j,0,g) and in the polar coordinate system (O(j,0,g), r(j,0,g)) attached to Ω(j,0,g),

they take the form:

psc
(j,0,g)(r(j,0,g)) =

∑
n∈Z

A(j,0,g)
n ψn(r(j,0,g)), [6.86a]

pun(r(j,0,g)) =
∑
n∈Z

U (j,0,g)
n ζn(r(j,0,g)), [6.86b]

pintra
(j,0,g)(r(j,0,g)) =

∑
i�=j

∑
n∈Z

∑
m∈Z

Cj,i
nmA(i,0,g)

m ζn(r(j,0,g)), [6.86c]

pexo
(j,0,g)(r(j,0,g)) =

∑
i∈�1;N �

∑
n∈Z

∑
m∈Z

Sj,i
nmA(i,0,g)

m ζn(r(j,0,g)), [6.86d]

where intra-cluster coupling coefficients Cj,i
nm and lattice sums Sj,i

nm are independent of

the index g of the grating Δg (since they involve the relative positions of the obstacles

in the grating) and read as follows, with r
(j,0,g)
(i,q,g) =

−−−−−−−−−−→
O(i,q,g)O(j,0,g):

Cj,i
nm = ψm−n(r

(j,0,g)
(i,0,g)) and Sj,i

nm =
∑

q∈Z,q �=0

eiqkx�xψm−n(r
(j,0,g)
(i,q,g)). [6.87]

In particular, equation [6.86b] is derived from the Jacobi–Anger expansion [6.78]

of the undisturbed field pun = p̂+g + p̂−g extended to the whole space y ∈]−∞,+∞[.
Using equation [6.85], it leads to:

U (j,0,g)
n =

∑
ν∈Z

[Lj,+
n,νF

+
g,ν + Lj,−

n,νF
−
g,ν

]
, [6.88a]

with Lj,±
n,ν = (i)ne∓inϑν

eikν
xxj±ikν

y(yj∓�y/2). [6.88b]
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It is important here to note that coefficients Lj,±
n,ν in equation [6.88b] do not

depend on the index g of the grating Δg extracted. Finally, using the matrix

formulation introduced in section 6.4.2, application of the boundary conditions at the

surface of each obstacle Ω(j,0,g) in the reference cluster (q = 0) of the grating Δg

leads to:

Ag = [M∞]Ug with [M∞] =
[
[I]− [D] ([C] + [S])

]−1

[D], [6.89]

where the multiple scattering matrix [M∞] is independent of the index g of the row

Δg extracted, and where vectors Ag and Ug contain the scattering coefficients A
(j,0,g)
n

and forcing coefficients U
(j,0,g)
n respectively. Now using the results from section 6.4.3,

the field psc
g scattered from the grating Δg is expanded on Bloch waves as follows:

psc
g =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
μ∈Z

[ ∑
j∈�1;N �

∑
m∈Z

K+,j
μ,m A(j,0,g)

m

]
eikμ

xx+ikμ
y (y−ξg+1) if y ≥ y+g ,∑

μ∈Z

[ ∑
j∈�1;N �

∑
m∈Z

K−,j
μ,m A(j,0,g)

m

]
eikμ

xx−ikμ
y (y−ξg) if y ≤ y−g ,

[6.90]

where coefficients K±,j
μ,m are independent of the index g of the grating Δg and read:

K±,j
μ,m =

2(−i)me±imϑμ

kμy �x
e−i(kμ

xxj±kν
y(yj∓�y/2)). [6.91]

Now, the total field p in both half-spaces y > y+g and y < y−g is recomposed as:

p =

{
p̂+g + p̂−g + psc

g = p̂−g + p+g if y ≥ y+g ,

p̂+g + p̂−g + psc
g = p̂+g + p−g if y ≤ y−g ,

[6.92]

which provides the expression of the fields p±g in the form:

p+g = p̂+g (y > y+g ) + psc
g (y > y+g ) and p−g = p̂−g (y < y−g ) + psc

g (y < y−g ). [6.93]

Substitution of equations [6.84], [6.85] and [6.90] into [6.93] while using

orthogonality of the Bloch waves (see equation [A2.15] in Appendix 2), yields:

∀μ ∈ Z, G±
g,μ = F±

g,μe
ikμ

y �y +
∑

j∈�1;N �

∑
m∈Z

K±,j
μ,m A(j,0,g)

m [6.94]
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Vectors F±
g and G

±
g with amplitudes F±

g,ν and G±
g,μ as components are defined:

F
±
g = {. . . F±

g,ν−1, F
±
g,ν , F

±
g,ν+1, }T , [6.95a]

G
±
g = {. . . G±

g,μ−1, G
±
g,μ, G

±
g,μ+1, }T , [6.95b]

and the following matrices [K±] and [L±] are formed:

[K±] =

⎡
⎢⎢⎣
K±,1

μ−1 . . . K±,N
μ−1

K±,1
μ K±,j

μ K±,N
μ

K±,1
μ+1 . . . K±,N

μ+1

⎤
⎥⎥⎦ , [L±] =

⎡
⎢⎢⎢⎣
L1,±

ν−1 L1,±
ν L1,±

ν+1

... Lj,±
ν

...

LN ,±
ν−1 LN ,±

ν LN ,±
ν+1

⎤
⎥⎥⎥⎦ , [6.96]

where line vector K±,j
μ and column vector Lj,±

ν read:

K±,j
μ =

{
. . .K±,j

μ,m−1, K±,j
μ,m, K±,j

μ,m+1,
}
, [6.97a]

Lj,±
ν =

{
. . .Lj,±

n−1,ν , Lj,±
n,ν , Lj,±

n+1,ν ,
}T

. [6.97b]

Finally, the following diagonal matrix [ϕ] is defined as follows:

[ϕ] = diagμ∈Z
(eikμ

y �y ). [6.98]

With those notations, and recalling the structure of the vectors Ag and Ug in

equations [6.30] and [6.27], it is possible to write equations [6.88a] and [6.94] in the

form:

Ug = [L+].F+
g + [L−].F−

g , and G
±
g = [ϕ].F±

g + [K±].Ag. [6.99]

Now combining equations [6.89] and [6.99], the following relations hold:

G
+
g =

[
T +
]
F
+
g +

[
R+
]
F
−
g and G

−
g =

[
R−]

F
+
g +

[
T −]

F
−
g , [6.100]

where the generalized matrices [T ±] of transmission and [R±] of reflection read:

[
T ±] = [ϕ] + [K±]. [M∞] .[L±] and

[
R±] = [K±]. [M∞] [L∓]. [6.101]

Matrices [T ±] and [R±] are independent of the index g of the single grating Δg .

Knowing the incident Bloch waves impinging the grating Δg, equation [6.100]

makes it possible to calculate the amplitudes of the Bloch waves reflected from and

transmitted through Δg . As shown in the next section, combinations of matrices

[T ±] and [R±] according to the Transfer-Matrix Method open the possibility of

deriving the Bloch waves reflected from and transmitted through the multi-grating

array.
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6.5.2. Sound scattering by the multi-grating array

To derive the fields reflected from and transmitted through the multi-grating array,

fictive boundaries Γg located at y = ξg for g ∈ �0, Ny� are defined, where Γg is the

interface between gratings Δg and Δg+1 for g ∈ �1, Ny − 1�, while Γ0 and ΓNy are

the lower and upper boundaries of the overall multi-grating array, see Figure 6.6 (b).

Below the inner boundary Γg where g ∈ �1, Ny − 1�, that is, from the point of

view of the grating Δg for y ∈]y+g , ξg+1], the actual pressure p finds the following

expansion according to section 6.5.1:

p =
∑
ν∈Z

[
F−
g,ν e−ikν

y (y−ξg+1) +G+
g,ν eikν

y(y−ξg+1)
]
eikν

xx. [6.102]

Similarly, above the inner boundary Γg , that is, from the point of view of the

grating Δg+1 for y ∈ [ξg+1, y
−
g+1[, the actual pressure p finds the following expansion:

p =
∑
ν∈Z

[
F+
g+1,ν eikν

y (y−ξg+1) +G−
g+1,ν e −ikν

y(y−ξg+1)
]
eikν

xx. [6.103]

At the boundary Γg , that is, for y = ξg, both expansions in equations [6.102] and

[6.103] must match. Considering the continuity of the pressure and that of the normal

component of the velocity at Γg , while using the orthogonality of the Bloch waves,

the following interface conditions are derived:

F
−
g = G

−
g+1 and G

+
g = F

+
g+1. [6.104]

In addition, using equation [6.100] and intuitive matrix notations, the following

relations hold:(
F
−
g

G
+
g

)
=

[
O Id[
T +
] [

R+
]](F+

g

F
−
g

)
,

(
G

−
g

F
+
g

)
=

[[
R−] [T −]
Id O

](
F
+
g

F
−
g

)
, [6.105]

where O and Id are null and identity matrices having the same size as [T ±] and [R±].
Equations [6.104] and [6.105] are combined to provide the recurrence relation:

(
G

−
g+1

F
+
g+1

)
= [TM]

(
G

−
g

F
+
g

)
, [6.106]

where the transfer matrix TM is given by:

[TM] =

[
O Id[
T +
] [

R+
]] · [[R−] [T −]

Id O

]−1

. [6.107]
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Equation [6.106] defines a geometrical series, which leads to:

∀g ∈ �0, Ny�,

(
G

−
g

F
+
g

)
=

[
[TM]

(g)
GG

[TM]
(g)
GF

[TM]
(g)
FG

[TM]
(g)
FF

](
G

−
0

F
+
0

)
, [6.108]

where [TM]g denoting the transfer matrix [TM] multiplied by itself g times with the

convention that [TM]0 is the identity matrix:

[
[TM]

(g)
GG

[TM]
(g)
GF

[TM]
(g)
FG

[TM]
(g)
FF

]
= [TM]

g
. [6.109]

In addition, the actual field reads as follows outside the multi-grating array:

p =
∑
ν∈Z

[
Rν e−ikν

y(y−ξ0) + δ(ν)eikν
y (y−ξ0)

]
eikν

xx for y ≤ ξ0, [6.110a]

p =
∑
ν∈Z

[
Tνe

ikν
y(y−ξNy )

]
eikν

xx for y ≥ ξNy , [6.110b]

where Rν and Tν are the reflection and transmission coefficients from the

multi-grating array. Identification of the coefficients leads to:

G
−
0 = R, F

+
0 = I, G

−
Ny

= O, F
+
Ny

= T, [6.111]

where vectors R, I, T and O have the components Rν = Rν for the reflection

coefficients, Iν = δ(ν) for the incident field, Tν = Tν for the transmission

coefficients and Oν = 0 since no incident field is impinging the array from above in

the present example. Then, application of equation [6.109] with g = Ny while using

equation [6.111] provides the reflection and transmission coefficients in the form:

R =

[[
[TM]

(Ny)
GG

]−1 [
[TM]

(Ny)
GF

]]
I, [6.112a]

T =

[[
[TM]

(Ny)
FG

] [
[TM]

(Ny)
GG

]−1 [
[TM]

(Ny)
GF

]
+
[
[TM]

(Ny)
FF

]]
I. [6.112b]

Once the reflection and transmission coefficients are known, the vectors G
−
g and

F
+
g can be derived for each row Δq of the array, and the scattering coefficients of

each obstacle can be derived using relations presented in section 6.5.1. This last step,

however, is rarely performed, since the significant data usually remains the reflection

and transmission coefficients when comparing the model to experimental results.
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In order to provide a more complete overview of the possibility offered by the

multiple scattering method and notably through its Cartesian counterpart, it should be

noted that multiple scattering method enables the calculation of the scattering

coefficient of a cluster grating when excited by a line source. This requires the

Wannier function [WAN 37] for which a large literature exists.

6.5.3. Band diagram calculation

The transfer-matrix method presented in section 6.5.2 offers the possibility of

deriving the dispersion relation in a medium Ω entirely paved with the cluster Ωcl,

that is, when Ny = ∞. To do so, the wavenumber kx = k cos(θ) in the direction ex
is supposed to be prescribed by a fictitious incident wave having the fixed angle of

incidence θ, and the wavenumber keff
y in the direction ey is looked for, so that the

following condition of quasi-periodicity in the direction ey is satisfied:

(
G

−
g+1

F
+
g+1

)
= eikeff

y �y

(
G

−
g

F
+
g

)
. [6.113]

The quasi-periodicity condition [6.113] is combined with the transfer-matrix

relation in equation [6.106] to provide:

[TM]

(
G

−
g

F
+
g

)
= η

(
G

−
g

F
+
g

)
, with η = eikeff

y �y . [6.114]

In other words, η is the eigenvalue of the transfer matrix TM. The resolution of

the eigenvalue problem [6.114] leads to the discrete set of solutions ηκ indexed by

the positive integer κ, and the admissible wavenumbers read keff
y,κ = −iLn(ηκ)/�y .

This procedure is performed at many frequencies ω so as to reconstruct the dispersion

relation providing the wavenumber keff
y,κ as a function of ω. The overall admissible

wavenumber kBκ =
√
(kx)2 + (keff

y,κ)
2 can also be calculated.

The band diagram of fully periodic arrangement can also be evaluated thanks to

the scattering matrix formulation [BOT 01] or to the 2D dimensional periodic

Green’s function [POU 00] relying on similar features as Appendix 2, but most of

these methods imply the solution of the complex roots of complex dispersion

relation. When compared to the usual plane wave expansion method

[KUS 93, VAS 02, VAS 17], which provides real frequency/real wavenumber

dispersion relation via an eigenvalue problem but is restricted to media of identical

type (e.g. fluid obstacles in fluid matrix), methods based on multiple scattering theory

make it possible to deal with media of different types and provide complex

wavenumber/real frequency dispersion relation. Moreover, these former classes of

method make it possible to deal with any dissipative media, while the extended plane
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wave expansion [HSU 05, LAU 09, ROM 10a, ROM 10b], which also provide

complex wavenumber/real frequency dispersion relation is restricted to low

dissipative media. Nevertheless, all methods based on multiple scattering theory

provide equifrequency surfaces and the complex wavenumbers have to be sorted

afterwards.

6.6. Application to sonic crystals

As an example of application, a 7-layer finite-depth sonic crystal composed of

a = 3.5 cm in radii circular cylinders arranged on a � = 10 cm cubic lattice is

considered when solicited at normal incidence (see Figure 6.7(a)). The surrounding

material is air and no viscothermal losses are considered. Therefore, the different

scatterers are considered impervious. Viscothermal losses could have been accounted

for either in the form of a more advanced version of the multiple scattering theory

based on linearized Navier–Stokes equations and involving the acoustic, entropic and

vortex potentials or more simply using impedance boundary conditions if the viscous

and thermal skin depths of two adjacent obstacles do not overlap [DUC 07].

The considered finite-depth sonic crystal is either of finite lateral extend

comprising 10 rows or of infinite lateral extend. The band diagram for such a sonic

crystal, when considered of infinite depth as calculated with the plane wave
expansion method, is provided in Figure 6.7(b), while the complex wavenumber/real

frequency band diagram along the ΓX direction as calculated with the method

presented in section 6.5.3 is plotted against the results of the PWE calculation in

Figure 6.7(c). Of particular interest is the fact that the method based on multiple

scattering theory provides complex a wavenumber, therefore showing the purely

imaginary nature of the wavenumber in bandgaps. The structure possesses a full

bandgap around 2000 Hz, i.e. no wave can propagate in the structure in all the

directions, and two bandgaps centered at 1500 Hz and above 2750 Hz along the ΓX
direction in the frequency band considered. This frequency band stand is far below

the Wood anomaly which arises at ≈ 3400 Hz. Therefore, only the specularly

reflected and transmitted field can propagate above and below the crystal. The

reflected and transmitted fields calculated in the central region at a distance � above

and below the finite lateral extend sonic crystal with the procedure described in

section 6.3 are plotted in Figure 6.7(d) and (e). While low amplitude transmitted and

large amplitude reflected fields might be noted inside the bandgaps, the diffraction by

the edge of the finite lateral extend sonic crystal completely blurs the signal

highlighting the use of the Pointing vector or averaging the field over a couple of

periods along the lateral dimension in order to exhibit the bandgaps. The diffraction

effects are also noticeable from the amplitude of these fields which are larger than 1,

while the amplitude of the incident field is unitary. In the opposite, the reflected and
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transmitted coefficients as calculated for the infinite lateral extend sonic crystal

(Figure 6.7(f) and (g)) clearly exhibit low transmission associated with high

reflection within the bandgaps. The sonic crystal being of finite depth (7-layers), six

Fabry–Perot resonances can be clearly seen below the first bandgap.
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Figure 6.7. (a) The 7-layer finite-depth sonic crystal composed of a = 3.5 cm in
radius circular cylinder arranged on a � = 10 cm cubic lattice. (b) Band diagram of
the corresponding sonic crystal when considered of infinite depth as calculated with
the PWE and (c) as calculated along the ΓX direction using the method described in
section 6.5.3. (d) Reflected and (e) transmitted fields calculated in the central region at
a distance � above and below a finte lateral extend (10 rows) sonic crystal. (f) Reflection
and (g) transmission coefficients of an infinite lateral extend sonic crystal

This example clearly highlights the efficiency of the multiple scattering theory to

physically analyze the acoustic response of both finite and infinite periodic structures.
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6.7. Conclusion

This chapter has presented the basic theoretical elements of multiple scattering

theory in simple two-dimensional examples of increasing complexity. Emphases

have been placed on the domain of validity of specific field representations and

recipes have been given at each step for practical implementation. As indicated in the

introduction, more complicated configurations can be modeled with multiple

scattering theory, following identical procedure. This technique is now a valuable

part of the toolkit for studies of photonic, phononic and sonic crystals. They provide

highly accurate and efficient computational methods due to their use of rapidly

convergent field expansions adapted to the particular geometry. The only remaining

problem yields a highly dense arrangement of obstacles, the modeling of which

requires a large number of terms for the different sums involved to converge. The

next milestones for multiple scattering are its extensive use in 3D problems,

problems involving elliptic obstacles, and configuration excited by a line source.

While some work has already been undertaken in these area, the regular use of

multiple scattering theory to solve these problems has still to be promoted. A huge

challenge that multiple scattering theory has to face is its efficient application to the

modeling of resonant systems as Helmholtz resonators [SCH 18], the geometry of

which usually does not fit its application criteria and the modeling of which involves

a non-diagonal scattering matrix in order to cope with the rapid development of

metamaterials. Multiple scattering theory is a very efficient computational tool for

crystals and metamaterials.
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7

Acoustic Metamaterials for
Industrial Applications

7.1. Introduction

Noise reduction is a major societal challenge that has emerged in the last decade.

Every industrial field uses some acoustic solutions, but they usually suffer from a

lack of efficiency, particularly at low frequencies. This is due to various constraints

that do not allow us to use the most optimal materials in terms of thickness, mass or

mechanic or acoustic parameters. At the same time, metamaterials have gained

increasing interest from the scientific community because of their extraordinary

properties. In acoustics, these metamaterials seem to be a very promising alternative

to traditional solutions, in particular for their very good subwavelength behavior.

Even though research in this field is very dynamic, technology is still at the state of

concept and the connection with the industry is recent. Today, there is growing

demand for thin materials in industries for noise absorption or insulation, and we

would like to highlight some study results that seem interesting from this point of

view.

7.2. Industrial context

The scientific literature on acoustic metamaterials is very extensive and shows

strong and advanced behavior. However, the laboratory configuration used in most

papers is idealized and the conclusions are not necessarily transferable when they are

used as such in real application. This implies that metamaterials should be developed

using finite-size materials, to control low-frequency noises (between 50 and 500 Hz)

with smaller thicknesses. Finding a feasible, affordable metamaterial that could satisfy

all these features is a very challenging task and we would like to give some examples

of works that could be developed in this way.

Chapter written by Clément LAGARRIGUE and Damien LECOQ.
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This study is conducted from the perspective of industries that manufacture

complex products with acoustic properties (in many cases, acoustics is just a

secondary feature). In this way, two of the most common acoustic features will be

discussed here, which are the acoustic correction made by absorbing materials (to

reduce noises inside an enclosure), and the transmission loss case, made by

insulating materials, to reduce noises outside. Other metamaterial properties such as

double negative refraction, cloaking or wave-guiding will not be discussed here. In

this context, metamaterials will be evaluated in the same way as classic acoustic

materials in the industry, which means only on the frequency band [50 4000] Hz,

usually, for a diffuse field and for finite dimensions. These constraints are widely

used, and they correspond to normalized measurement protocols to qualify industrial

materials. We choose to compare all solutions with only a couple of parameters on

each case. For the absorption case, we will analyze only the absorption coefficient,

usually obtained by:

α = 1− |R|2 [7.1]

with R the reflection coefficient of waves at the interface between the incident field

and the material. α is usually obtained in a reverberant room via the ISO standard

354:2003 [ISO 03].

For the isolation case, we analyze the transmission loss obtained by:

STL = 10 log10

∣
∣
∣
∣

Wi

Wt

∣
∣
∣
∣

[7.2]

with Wi the power of the incident wave coming towards the device and Wt the power

of the transmitted wave through the device. This is measured by placing the material

between two rooms (usually two reverberant rooms, or one reverberant and one

anechoic) according to several ISO standards, for example NF EN ISO 10140-1, NF

EN ISO 10140-2 and NF EN ISO 717-1 for France. These standards also allow us to

calculate the insertion loss Rw(C;Ctr) widely used in the industry, which gives a

weighted value in dB for the transmission loss of a material.

We also compare the working frequency band to the thickness of the material.

This gives information on the efficiency of the technology in terms of subwavelength

behavior. This is obtained by:

Λ =
λ

h
[7.3]

with λ the wavelength in air obtained for the low-frequency boundary and h the

thickness of the material.
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Engineers and researchers who develop metamaterials and carry out the transfer of

technology, should keep these aspects in mind in order to use the same nomenclature

as the industrial manufacturers.

7.3. Absorption case

One way to do acoustic absorption in the audible frequency range is to use

open-cell porous materials. They are efficient for frequencies above the so-called

quarter-wavelength resonance, where acoustic energy can be dissipated by viscous

and thermal effects inside the pores. Below this frequency, they are not efficient at all

and the usual way to overcome this difficulty is to use multilayers [JIN 16, CHE 16].

A good multilayered absorbing material has an impedance close to air, to minimize

the reflecting waves and be lossy enough to attenuate them inside. Obtaining efficient

materials at low frequencies with a good impedance mismatch is difficult. One

possible solution is to combine several materials, each having one of the properties;

however, this combination generally results in a drastic increase in the thickness of

the material.

Finding optimal material configurations is not trivial and several studies show

how to optimize them [TAN 06] with a recent special effort on periodic layered

materials, which excite grating phenomena and create multi-angle broadband perfect

absorption in the low frequency range [JIM 16b]. Multilayered material can also

involve microperforated plates to create a mass-spring-like resonance at low

frequency. This is efficient to treat low-frequency bands, but deteriorates the

absorption coefficient at higher frequencies (Figure 7.1). Many studies show how to

enlarge this band [WAN 11, JUN 07, SAK 10], but to our knowledge no device has

shown perfect absorption over the frequency band (50–4000 Hz).

An alternative way to get closer to the perfect device has emerged with the study

of heterogeneous materials, in particular with the work on double porosity material

[OLN 03, BOU 98] in which the absorption coefficient is enhanced by the resonance

of the microstructure, excited through the macropores. This is also close to a newly

emerging material family, called metaporous materials, where the macroporosity can

be replaced by inclusions (see Figure 7.2).

This takes advantage of the strong attenuation of the porous media in the high

frequency range, coupled with low frequency properties linked to the grating or

eventually local resonances. This study was initiated by V. Tournal et al. [TOU 04],

considering the transmission through a rigid framed porous media with randomly

arranged small-sized inclusions. They exhibit a decrease in sound transmission for

some configurations (after 2 kHz for inclusion radius R = 0.8 mm). This leads to

configurations using a periodic set of rigid inclusions embedded in a rigid porous

plate and backed with a perfectly rigid wall [GRO 09, GRO 11]. A very interesting
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property of these configurations is the excitation of a local mode below the

quarter-wavelength resonance of the plate, which enhances the absorption coefficient

and allows us to obtain a perfect absorption (see Figure 7.3).

Figure 7.1. Comparison between three classical solutions. A porous layer (melamine-
like foam) of 2 cm thickness (rigidly backed) (black line), a multilayer composed of
two different porous materials (melamine-like and glasswool-like foam) and an air gap
(thickness H = 2 cm for each layer) (blue line), and a 2 cm thick porous layer with a
perforated plate of thickness 1 mm and porosity = 5% (red line). For a color version of
this figure, see www.iste.co.uk/romero/metamaterials.zip

Figure 7.2. Cross-sectional plane view of a metaporous material made
of porous layers with embedded rigid scatterers [GRO 11]
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Figure 7.3. Absorption coefficient of a H = 2 cm thick porous sheet of Fireflex foam
backed by a rigid plate without inclusion embedded (dashed line) and with a R =
7.5 mm radius circular cylinder embedded per spatial period d = 2 cm (solid line),
when the configuration is excited at normal incidence. Rigid backing at the bottom
of the cell. The snapshot in the bottom-right corner is the pressure field at the first
resonance (2674 Hz) [GRO 11]

This mode, also called trapped mode, acts like a wave guide, locating the acoustic

pressure inside the porous plate, between the inclusions and the rigid wall. It is

dependent on the dimensions of the configuration and on the parameters of the

porous media. This is interesting, because it involves only few scatterers per unit cell

and can have decent performances for plate thicknesses of few centimeters at 1 kHz.

The main drawback is a strong decrease at a higher frequency where the Bragg

interference reflects almost all the waves. Depending on the periodicity of the

inclusions, this can happen in the frequency band of interest (50–4000Hz).

Boutin et al. and Groby et al. [BOU 13, GRO 15] brought the concept even

further by using locally resonant elements to add low-frequency behavior and

minimize the Bragg interferences. This is the philosophy of the reference [LAG 13b],

where the study starts with the case of a split-ring (SR) resonator embedded

periodically in a rigid-backed porous plate. The aim is to find configurations that

show high absorption over a large frequency band, only with 2 cm of porous

thickness. Due to the geometry, the problem is considered 2D with the porous matrix

considered as an equivalent fluid (Johnson–Champoux–Allard model
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[JOH 87, CHA 91]) and the inclusions perfectly rigid. In the normal case (for

example, a split-ring resonator with the opening in front of the incident wave), three

types of phenomena can be noticed. The former two are similar to those observed for

the rigid inclusions; the acoustic energy is still trapped between the inclusions and

the rigid backing and Bragg’s interferences are also noticeable at higher frequencies.

The third phenomenon is the SR resonance, which enhances the absorption

coefficient by trapping the sound energy inside the scatterer (Figure 7.4). In free

field, the SR resonance frequency depends only on the inner radius and the opening

dimensions. However, in the porous plate, the rigid backing can modify this

resonance frequency. This happens when the opening is close to the rigid backing,

modifying the radiation impedance of the SR and decreasing the resonance

frequency. By mixing several inclusions with different resonant frequencies, it is

possible to keep the absorption coefficient high between 1500 and 3500 Hz

(H = λ/11) with a quite simple geometry and with only 2 cm of the porous material.

Figure 7.4. Simulated absorption coefficient of a H = 2 cm thick porous sheet
of melamine backed by a rigid plate without inclusion embedded (−×−) and with
a R = 7.5 mm radius split-rings (solid line), when the configuration is excited at
normal incidence (incident wave coming from the bottom). Rigid backing on the top
of the cell [LAG 13b]. The upper panels show the picture of the sample as well
as two schematic views. The insets a, b and c show the snapshots at particular
frequencies shown in the absorption spectrum. For a color version of this figure, see
www.iste.co.uk/romero/metamaterials.zip
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To go further, [LAG 16] shows non-trivial configurations obtained by using

optimization algorithms. The final structures still present a thickness of porous

material H = 2 cm. The optimized unit cell is made of several resonators, composing

a supercell (see the insets in Figure 7.5). In a first attempt, by only using supercells

made of two split-ring resonators, optimizing for having the broadest band of

absorption, the results are much better than those obtained previously. In particular,

by adding more resonant element to the same supercell, for example in the rigid

backing, the absorption could be enhanced, as shown in Figure 7.5. This was

computed for an industrial proof of concept, where the metaporous material is glued

against a corrugated plate. The corrugation can be used here as resonant back cavity

in addition to the split-rings. It results in a nearly perfect absorption between 1500

and 7000 Hz.

Figure 7.5. Simulated absorption coefficient of a H = 2 cm thick porous sheet
of melamine backed by a corrugated plate on the top of the cell without inclusion
embedded (black dashed line) and with optimized geometry composed of 2D Helmholtz
resonators and back cavities (solid line). The gray solid line is an equivalent
homogeneous foam for an equivalent thickness including the foam plate and the back
cavities [LAG 16]. The normal incident wave comes from the bottom of the insets a, b,
c and d. For a color version of this figure, see www.iste.co.uk/romero/metamaterials.zip
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This concept has two limits: the first is the frequency band below 1500 Hz, where

the absorption is not enhanced, and the second is the skeleton motion of the porous

matrix that is not taken into account. The first issue is due to the geometry limit of the

resonators. To decrease the resonance frequency, the resonators must have radii larger

than the thickness plate. A way to solve this issue is to consider other geometries of

resonators [YAN 15a] or to consider 3D resonators, like spheres, or more closely to

this concept, perforated cylindrical tubes forming 3D Helmholtz resonators [GRO 15].

In this case, the resonance of the resonator can be lowered, but its efficiency is highly

dependent on its aspect ratio and it can be difficult to obtain α = 1 at low frequencies

with a small-radius tube-shaped Helmholtz resonator (Figure 7.6).
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Figure 7.6. Simulated and experimental absorption coefficient of a H = 2
cm thick porous sheet of melamine backed by a rigid plate, without inclusion
embedded (blue line), with Helmholtz resonators measured in a square section
impedance tube (black line) and with the Helmholtz resonator simulated with the
finite element method (red line) [GRO 15]. For a color version of this figure, see
www.iste.co.uk/romero/metamaterials.zip

The second limit is more of an industrial consideration. In the experimental case,

the motion of the skeleton could be not negligible and can change the results, in

particular when the sample takes part of a complex product that is excited with both

acoustics and vibrations. The large scale of the industrial sample also involves long

tubes, which could be put in motion. This is why it is important to consider the

porous matrix as a poroelastic material and to take into account the skeleton motion,

as in [WEI 16], where the case of elastic inclusions embedded in poroelastic
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melamine is studied. It shows the resonance of elastic shells of radius 8 mm at

500 Hz (see Figure 7.7) for a 2 cm thick melamine plate (H = λ/34). The same

optimization study could be done with this configuration to achieve an optimized

poroelastic sample, using elastic shells in addition to resonant inclusions that could

show interesting enhancement below 1000 Hz.

Figure 7.7. Simulated absorption coefficient of a H = 2 cm thick porous
sheet of melamine backed by a rigid plate with different losses taken into
account without inclusion embedded and with elastic shell inclusion for radius
a = 8 mm (black line) [WEI 16]. For a color version of this figure, see
www.iste.co.uk/romero/metamaterials.zip

Rather than tuning the local resonances and Bragg’s interferences, another way to

create a broadband acoustic absorber is to play with the material physical properties.

This can be achieved, for example, by controlling the sound velocity inside the

material. With a low sound velocity, the wavelengths are small and so it is possible to

use smaller resonators to absorb low-frequency noises. An example is shown in

[YAN 16], where a partitioned 3 cm thick porous plate exhibits broadband

absorption. Each partition can be considered as a local resonator, as well as an

effective medium with effective parameters, including an effective velocity. This

velocity is very different compared to a homogeneous porous plate and allows

resonances at low frequencies. The broadband absorption can be achieved not only
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by partitioning the porous media with constant partitions, but also by creating a

gradient of resonances where each effective layer can be efficient for a given

frequency (see Figure 7.8). This results in a good absorption band between 1500 and

4000 Hz (H = λ/8) and this device shows tunable potential to achieve even lower

frequency performances by optimizing the geometry. It would be interesting to see

how this device behaves in an industrial experimental environment, in particular for

diffuse fields.

Figure 7.8. a) Diagram of the metaporous plate. b) Snapshot of the particle velocity
at P1 = 1430 Hz. c) The simulated absorption coefficient of a H = 3 cm
thick porous sheet backed by a rigid plate without inclusion embedded (black line)
and with partitions (blue lines) [YAN 16]. For a color version of this figure, see
www.iste.co.uk/romero/metamaterials.zip

On the same principle, another device shows perfect absorption over the band

300–1000 Hz for 10 cm thickness (H = λ/13) [JIM 16b, JIM 17] and is efficient in

diffuse fields. A remarkable fact is that this device is only made of resonators (see
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Figure 7.9) and does not use porous material to add dissipation. By just tailoring the

geometry of the structure, the sound velocity can be tuned and the system can be

critically coupled (impedance matched), achieving resonant systems that can absorb

a low frequency for extremely small sizes (2.6 cm at 300 Hz, H = λ/40) or even

more [JIM 16a] with a 1.1 cm thick panel, 338 Hz (H = λ/88). Unlike other

materials, this one works alone, without the need for a rigid wall to ensure zero

transmission. The treated acoustic waves remain localized in the material, which

makes it possible to obtain a zero reflection and transmission coefficient. In other

words, this is a very good candidate for insulation applications too.

Figure 7.9. (a) Photograph of the sample containing 10 × 3 unit cells. (b) Absorption
obtained by using the TMM (solid line), by using FEM simulations (circles) and
measured experimentally (dotted line). (c) Corresponding reflection (red curves) and
transmission (blue curves) coefficients in amplitude [JIM 17]. For a color version of this
figure, see www.iste.co.uk/romero/metamaterials.zip

7.4. Transmission case

High transmission loss is usually achieved by using stiff and heavy materials.

Two setups are widely used: homogeneous material panel or multilayered panels and

in particular, double walls. The first one needs to have a high Young modulus and

density (like concrete, for example), but this results in very heavy structures, which is

not allowed in many cases. The second one exhibits bad low-frequency performances

linked to the so-called mass-air-mass, or breathing frequency. This phenomenon is

extremely strong and very difficult to attenuate. In this section, we will mention some
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setup examples that can be used to substitute the regular walls/panels or that can be

added inside the double panel to enhance the acoustic insulation.

Figure 7.10. (a) Performance of an acoustic barrier; (b) An example
of a Sonic Crystal Acoustic Screen (SCAS) [SÁN 15]

The most popular metamaterial device for transmission loss applications is the

phononic crystal (see Figure 7.10), where Bragg’s interferences create bandgaps. One

of the most famous examples shows a bandgap in a cubic crystal made of rubber

and lead spheres [LIU 00, SHE 03], showing subwavelength bandgaps compared to,

for example, the sonic crystals, made of rigid cylinders in air. The frequency band

of the bandgap of sonic crystals depends on the periodicity (in general λ/2) and on

the filling fraction (between 0.4 and 0.6) [PHA 06]. These conditions imply (very)

big scatterers and large periodicity to obtain low-frequency bandgaps. Even with a

large sonic crystal, Bragg’s interference bandgap does not cover all the frequency

bands (50–4000 Hz), and the challenge is to create crystals with multiple bandgaps to

enlarge the band of low transmission.
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Figure 7.11. Theoretical simulations: a) attenuation maps for 310 Hz,
and 800 Hz, and b) attenuation spectrum (0 deg incidence) measured

1 m behind the end of the SCAS [SÁN 15]. For a color version of
this figure, see www.iste.co.uk/romero/metamaterials.zip

Recent studies have shown locally multi-resonant sonic crystals [LAG 13a,

KRY 11, ELF 11] with low-frequency bandgap due to resonant scatterers that cover a

larger band, but the transmission outside the bandgap is still perfect. This is a real

drawback when we consider industrial applications. Sonic crystal seems to only be

suitable as a traffic noise barrier (too thick for an indoor application), but at the

moment they act more like a bandpass filter. Psycho-acoustic studies should be

interesting to see if those filtered noises can create an interesting acoustical

environment or if they are unpleasant. Nevertheless, a sonic crystal barrier passed the

certification for an outdoor acoustic screen [SÁN 15] and showed a significant

attenuation between 500 and 2500 Hz, with an index of acoustic absorption

DLR = 20 dB, which corresponds to the B2 category (see Figure 7.11). This has
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been made possible thanks to the use of multiphysical scatterers, composed of

acoustic resonators (split-rings) coated with a combination of perforated plate and

porous material [ROM 11, ROM 12]. A careful design of this kind of barriers can be

achieved in order to build an efficient non-continuous barrier instead of the classical

barriers for industrial application. Even though the crystal is quite thick (76 cm), it is

suitable for aesthetic reasons in some town planning design.

For an indoor application, the membrane-type metamaterial seems to be very

promising. The main advantage seems to be the good efficiency at a decent low

frequency range for very thin membranes (usually less than 1 mm). This kind of

metamaterial is usually a panel made of periodically arranged short-scale membranes

that can act like resonators. It is also possible to control their resonance frequency by

adding a mass at the center to create a mass-spring resonator [YAN 10, YAN 13].

The panel exhibits a maximum of transmission loss at the resonance frequency (see

Figure 7.12) and by stacking multiple panels with different resonance frequencies, it

is possible to obtain low transmission on all the frequency bands of interest (sound

transmission loss (STL) around 40 dB from 50 to 4000 with a stack of four panels,

about 1 cm thick). In comparison, a classic 10 cm thick double panel wall made of

Gypsum and glass wool can have an STL between 40 and 58 dB Rw. It basically

depends on the mass law and admits weaknesses at certain frequencies, as in the low

frequency range with the mass-air-mass resonance [FAH 07]).

Figure 7.12. The sound transmission loss (STL) spectra of two nominally identical
single-layer samples (red and green curves), together with the STL spectrum measured
from the stacking of the two samples (blue curve). The purple curve is the STL
spectrum of a broadband shield consisting of four single-layer panels [YAN 10]. For
a color version of this figure, see www.iste.co.uk/romero/metamaterials.zip
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Figure 7.13. Picture of the membranes inside an impedance tube. (a)–(c) indicate the
reflexion, transmission, and absorption coefficients for the coupled membranes. Almost
perfect absorption, reaching 99.2%, is seen at 285.6 Hz. The solid lines are from theory
and the circles are from the experiments [YAN 15b]

One of the main challenges of membrane-type metamaterials is obtaining a high

efficiency of the membranes to overcome the mass or mass resonance and/or the mass

law system. Nevertheless, it is shown that this kind of resonant device cannot reach

100% efficiency when they are used alone for transmission purposes. Pr. Ping Sheng’s

team are studying a method to obtain perfect absorption with membranes [YAN 15b],

and 100% efficiency is only possible if two types of different resonators are coupled.

As is shown in this work, a perfect absorption is obtained for a degenerate resonator,

made of a simultaneous monopolar and dipolar resonator which is critically coupled

(Figure 7.13). If this kind of critically coupled degenerated resonator can be developed

to fit in a membrane panel, this metamaterial could be a serious substitute for a double

panel.

The low-frequency behavior of the membrane seems to be an interesting feature

that is visible on every study on small-scale membranes and allows the STL to be high

before the first resonance frequency [YAN 13, NAI 10], whereas a mass law system

begins at 0. This can be explained by a negative density induced by the membranes

before the first resonance. The slope and the gain depend on both the dimensions

and the characteristics of the membrane. The boundary conditions also play a crucial

role in the membrane efficiency because it is important to create perfectly clamped

boundary conditions on every membrane in order to obtain the exact numerical results.

If the structure holding the membranes is not perfectly rigid, it can allow flexion and

degrade the low-frequency behavior of the membrane metamaterial. This can cause a

serious problem when the membrane metamaterial is used for large-scale application

because the structure could allow low-frequency modes below the first frequency and

the negative density would vanish [ANG 16]. If the holding structure is rigid enough,
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the membrane metamaterial shows excellent experimental results in diffuse fields and

can even be used inside a double panel structure [ANG 17] (+8 to 14 dB over several

frequency bands from 200 to 800 Hz in comparison with the standard double panel).

Vibro-acoustic metamaterial panels could also be a good candidate for transmission

loss and can be developed for simple or double panel materials. They are based on

the same resonance principle as the other metamaterials, but the resonant device uses

the vibration to attenuate acoustic radiation [CLA 16]. This is possible by clamping

a mass-spring-like resonator array directly on the panel to create bandgaps. This is

very interesting from an industrial point of view because the wavelengths inside the

panel are shorter than those in the air, which means that the resonant devices are also

smaller. This principle has been tested on a real size and real condition double panel

in diffuse field and shows the result of +4 dB Rw (Figure 7.14), which represents an

enhancement of +4 to +10 dB over the frequency band 50 to 500 Hz [HAL 17].

Figure 7.14. Experimental TL in diffuse field for a vibro-acoustic
metamaterial fixed against an inner face of a double panel wall [HAL 17]
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7.5. Concluding remarks

In this chapter, we wanted to highlight some studies among the existing literature.

We restricted the review to audible acoustics and we discussed only a couple of

different materials for the sake of clarity, but obviously, a number of other

metamaterials are also very promising. Two different types of applications have been

studied here, absorption and isolation metamaterials, both presenting subwavelength

behavior due to the grating and local resonances. The low frequency aspect and the

tunability of the whole structure are relevant for an industrial context, but

technological barriers still exist. Metamaterials designers will deal with finite sample

sizes and imperfect boundary conditions which will decrease their efficiency. In the

case of acoustic treatment of a rigid plate (or double panel) for insulation, the plate

modes play an important role in the frequency response and need to be taken into

account in the simulations, but they are only visible for finite sizes. Furthermore,

metamaterials have to be designed for diffuse fields for the industry, but a real diffuse

field cannot be obtained with periodic simulations (one unit cell simulated with the

Bloch–Floquet condition, for example) because a diffuse field is by definition a

summation of the same amplitude waves with random angles and random phases

uniformly distributed over the whole panel. A periodic condition will create a

periodic field that does not satisfy the diffuse field condition. At the same time,

finding finite-size and thin metamaterials with large absolute bandgap could be

challenging, but the use of locally resonant scatterers can partially solve the problem.

In general, they are not dependent on the source incidence and can admit small sizes

for subwavelength behavior. This explains the renewal of study on Helmholtz

resonator and on embedded resonator metamaterials. In this way, a recent trend

shows new metamaterials with very smart design printed in 3D that show even better

results. Even though the cost of such materials has drastically decreased over the past

five years, will it one day be economically viable enough to compete with other

solutions? The problem is, 3D printers cannot produce extra-large materials for now

and it is very difficult to find a way to produce them with a standard industrial

process. The ratio between acoustic efficiency and cost needs to be in accordance

with the targeted market, and so important work has to be done to transfer the

metamaterials from prototype to industrial product. This has to be done jointly

between research/academic partners and the industry.
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8

Elastic Metamaterials for
Radiofrequency Applications

Micro-electromechanical components harnessing the propagation of elastic waves

at frequencies in the GHz range have become ubiquitous in radio frequency (RF)

systems. The most popular of these systems are mobile phones, initially developed

for human-to-human communication with the first GSM phones in the late 1990s.

Successive generations of communication systems have since then evolved towards

an increasing amount of machine-to-machine data exchange. The fifth generation of

mobile communication system (5G), whose deployment is expected in the 2020s, is

heralded as the one delivering broadband Internet access to every wirelessly

connected device. In such purely electrical systems, elastic wave resonant cavities

have successfully established a niche in providing miniature, low loss, and fully

passive resonators, which are used as frequency selection components in electronic

circuits. Such elements are building blocks of low-loss band-pass filters, which in

turn are key elements of the analog stages of radiofrequency transceivers, whose

function is to select only the relevant portions of the radio spectrum and maintain

noise levels for radio receivers to extremely low levels in order to ensure a high

sensitivity.

This requirement for ever-increasing filtering capabilities over the tiniest possible

fingerprint has quite naturally led the phononic crystal research community to pay

some interest to a potential transposition of the concepts related to phononic crystals,

or, to a lower extent, to elastic metamaterials one radio frequencies. The

demonstrations in the audible or ultrasonic range of filters, waveguides or even

multiplexers suggest the possibility of implementing advanced signal processing

functionalities over phononic chips, mirroring similar developments in photonics.

This process was significantly made easier by the already acute understanding of
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dispersion engineering and Bragg band gaps in one-dimensional structures by RF

filter designers. The use of periodical structures in electro-acoustic devices had a

long and fruitful history already. To quote but a few examples, surface acoustic wave

(SAW) transducers and reflectors rely on periodical arrays of metal electrodes

fulfilling the Bragg condition and the mature solidly mounted bulk acoustic wave

resonators (SMR) use a stack of alternating layers of materials with contrasting

elastic constant and mass densities to confine bulk waves in a piezoelectric thin film.

The question was then to demonstrate the existence of two-dimensional and

three-dimensional band gaps in the radiofrequency range, and investigate how the

specific features of these hypersonic phononic crystals – as an increasing part of the

community dubbed them – could lead to a significant conceptual and technological

breakthrough that would make it possible to reach performances far beyond of the

highly robust, firmly established high-frequency SAW and bulk acoustic wave

(BAW) devices. Once this objective was established, works were undertaken to

investigate elastic wave propagation features at a fundamental level (such as

hypersonic crystals) plus proposed structures mimicking the operation of

conventional radiofrequency devices used in RF electronics or in photonics, with the

open goal to develop the field of phononics. Over time, this hype dissipated until the

idea of phononic structures spread through the micro-electromechanical systems

(MEMS) community, which is now proposing more practical use of the associated

concepts as building blocks for their components. Following this resurgence, this

field of higher-frequency phononics is re-evaluated in the numerous disciplines of

physics and engineering fundamentally concerned with controlling small-wavelength

elastic waves, or even phonons, in any potentially vibrating structures. This

encompasses NEMS, optomechanics, microfluidics, thermal transport, or even

quantum information.

This chapter proposes to go through the rather brief history of hypersonic

phononic crystals, emphasizing attempts to apply the related concept to

radiofrequency applications. As a starting point, section 8.1 will highlight the

characteristics of elastic waves propagating at frequencies in the GHz range and

account how these distinctive features have contributed to their undeniable success in

wireless telecommunication applications. Then, section 8.2 will discuss the

peculiarities of the fabrication of micron-sized structures and will shed light on the

technological breakthroughs, which have been necessary to realize the first

hypersonic phononic crystals. Elaborating on the specificities of these hypersonic

crystals, section 8.3 will present early works taking inspiration from photonics or

from the microwave world and will discuss why a direct transposition of these

concepts to elastic wave RF components does not prove profitable. In contrast,

section 8.4 will present examples of adoption of phononic crystals by the MEMS or

the photonics community, where these structures bring an added value compared to
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more established building blocks. Finally, a short conclusion will discuss the

perspectives towards potentially interesting applications of hypersonic metamaterials.

8.1. Hypersonic elastic waves and their applications

Hypersound, sometimes also referred to as microsound, can be defined as elastic

waves propagating at frequencies ranging from a few hundreds of MHz to a few tens

of GHz, although a definite agreement on the exact frequency limits of this rather

recently introduced regime has yet to be reached. In this frequency range,

propagation of acoustic waves in fluids such as water, or air over significant distances

(i.e. more than several micrometers) becomes difficult due to viscous losses.

Hypersonic wave propagation is therefore usually restricted to solid media or to very

confined microfluidic cavities. Typical wavelengths are then in the range of a few

tens of micrometers down to some hundreds of nanometers. At this scale, material

defects such as grain boundaries, dislocations or even interface roughness remain

usually small enough to prevent the scattering or diffusion phenomena encountered

for thermal phonons at THz frequencies. Hypersonic waves can thus propagate over

fairly large distances, and their mathematical and physical description remains within

the frame of the classical theory of elastic wave propagation in solids [CUF 12],

meaning that interactions with the quasi-particles of the propagating medium can be

neglected.

As shown in Figure 8.1, the frequency range for hypersound coincides with the

part of the electromagnetic spectrum used for most radio transmissions. Operation of

these systems in the MHz to GHz range is motivated by the fact that electromagnetic

waves exhibit rather long propagation distances in free air (up to a few kilometers) at

these frequencies, as the absorption by gases in the atmosphere remains relatively

low. While the lower end of the spectrum, in the 100–400 MHz range, is mostly used

for broadcasting signals such as frequency modulated (FM) radio or television

signals, the 400 MHz–3.5 GHz range is now almost fully exploited for mobile

communication systems, with some specific applications such as military, sensor

systems or even microwave ovens interspersed in between the allocated frequency

regions. In this range, radio signal carrier frequencies are high enough to ensure that

relative bandwidths remain large enough to offer wireless communication systems

satisfying data rates.

If electromagnetic (EM) waves are obviously unmatched as an information

carrier, the basic law stating that the characteristic dimension of a filter is comparable

to the carrier wavelength prohibits the integration of EM filters in hand-held devices.

As hypersonic waves exhibit wavelengths smaller by a factor of 105 than

electromagnetic waves with the same frequencies, it has early been suggested that a

significant size reduction could be achieved for some signal processing devices by

manipulating elastic waves in solids, instead of electromagnetic waves. From the
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1970s to the 1990s, a large host of surface acoustic wave components such as

resonators, filters, delay lines and identification tags were first demonstrated and then

came into mass production to propose miniaturized analog electronic signal

processing devices [MOR 07]. Nowadays, most of these components have been

replaced by numerical data processing systems, due to progress in high-speed

computing circuits. Yet, the sensitivity requirements of the current

telecommunication standards impose being able to sample high-frequency signals

with enough resolution to be able to detect a weak useful signal received from a base

station positioned kilometers away from the receiver. This would not be disturbed by

strong interferers and may be located in close proximity to the mobile phone. This

operation can certainly be achieved by numerical signal processing, at the expense,

however, of electrical power consumption. Such a trade-off is clearly not acceptable

for implementation in mobile handsets and radio signals are, therefore, still processed

by analog circuits that filter the RF signal before amplifying and frequency

down-convert it before digitizing. Modern data transmission circuits hence remain

dependent on analog band-pass filters made of miniature acoustic resonators, and

their number is even increasing as the radiofrequency spectrum becomes increasingly

fragmented. Options such as carrier aggregation1 or multiple-in-multiple-out

(MIMO) antennas capable of performing electromagnetic beam-forming2, which will

both be deployed in the fifth generation of mobile communications will even require

a further increase in the number of acoustic components in a radiofrequency

front-end [YOL 17].

Figure 8.1. Domains for acoustic and electromagnetic
waves and comparison of their respective frequency and
wavelength scales . For a color version of this figure, see

www.iste.co.uk/romero/metamaterials.zip

1 Splitting the RF signal bandwidth over several carrier frequencies for a more efficient usage

of the fragmented spectrum.

2 Enabling spatial filtering and, therefore, allowing simultaneous usage of the same portion of

the spectrum by multiple users at different positions with respect to the same base station.
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Replacing the propagation of electromagnetic waves by elastic waves, however,

requires an efficient way to transduce an electrical signal into acoustic waves and

vice versa. Perhaps the most efficient and, incidentally, the first transduction

mechanism historically used is piezoelectricity: a voltage carrying a signal can be

transformed into strain exhibiting the same time dependence through the converse

piezoelectric effect; this produces an elastic wave that propagates in the piezoelectric

material and gets manipulated by the geometrical features of the device. The

generated wave usually propagates up to a set of receiving electrodes where the stress

fields generated by the wave cause, due to the direct piezoelectric effect, the

appearance of time-varying electrical charges, that is, of a current transporting the

processed signal. Electrostatic, electrostrictive or magnetostrictive transduction

mechanisms are sometimes also used, but these are usually weaker effects and

require bias voltages or magnetic fields to operate, while piezoelectric devices remain

fully passive. The simplest application of this concept is a delay line, illustrated in

Figure 8.2: two bulk acoustic wave transducers made of zinc oxide (ZnO)

piezoelectric films sandwiched between two electrodes are used, respectively, to

launch and detect elastic waves. In between, the propagation medium is a sapphire

rod (Al2O3) whose function is only to allow for a propagation distance long enough

to delay the transmitted signal compared to a direct transmission of an electric signal.

Most delay lines used in signal processing circuits, such as early radar systems or

even analog television receivers, make use of surface acoustic waves (SAWs). SAWs

correspond to vibrations guided along the surface of a semi-infinite substrate with an

amplitude decaying exponentially away from the surface. Depending on the

considered propagating half-space, waves with different characteristics (velocities,

polarizations, etc.) can be encountered. Rayleigh waves are probably the most

well-known form of surface waves. These sagittally polarized, dispersion-less and

theoretically loss-less waves (provided, of course that the substrate itself does not

exhibit significant intrinsic losses or structural defects) have been in use since the

1960s. The main advantage of surface waves is their intrinsic sensitivity to whatever

occurs at the surface of the substrate. This basically means that it is possible to access

and control directly the wave propagation path using planar structures. A key element

in the development of SAW devices is the invention of the so-called interdigital
transducer (IDT) by White and Voltmer in 1965 [WHI 65] and their association with

high-quality single crystal bulk substrates that allowed easily generating and using

cheap lithography techniques inherited from the microelectronics industry, which

will be described in further detail in section 8.2.1. Interdigital transducers consist of a

periodical arrangement of metal electrodes, alternately connected to two bus bars

used to convey an electrical potential. A basic surface-wave delay line is illustrated in

Figure 8.2(b).
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(a) (b)

Figure 8.2. Example of delay lines: (a) bulk acoustic wave delay line
and (b) surface acoustic wave delay line. Reprinted from

[WHI 65], with the permission of AIP Publishing

For a given material, elastic wave propagation mode and structure, we define an

electromechanical coupling factor, which corresponds to the ratio of power

transferred from one domain (electrical or mechanical) to the other during one wave

period. At most, this coefficient can reach 90% in high-performance piezoelectric

ceramics [YAM 08]. Material losses of such ceramics are however prohibitive when

operating at frequencies higher than a few MHz, hence preventing their use in RF

communication devices. Single-crystal materials, such as quartz, lithium niobate or

lithium tantalate, are a more well-suited alternative. In principle, electromechanical

coupling factors of the order of 50% can be reached for lithium niobate or lithium

tantalate, but the combination of substrate orientation and propagation mode suited

for practical applications usually limits the coupling factors to below 10% [DEF 01].

This means that only a similar fraction of the signal can be efficiently processed and

transformed back at the output of the signal processing component, leading to

components exhibiting insertion losses in excess of 20 dB. Such a situation can not

be tolerated as modern telecommunication systems require very weak signals to be

processed with minimal attenuation (current filters used in the mobile phone industry

require 1 dB loss only, 2 dB maximum). To overcome the limitation imposed by the

relatively small electromechanical coupling factor, structures have been made

resonant: since only a fraction of the power can be transduced during one wave

period, power is accumulated over many periods up to the point of equilibrating the

power inputs with losses within the resonant structure. In the case of surface waves,

resonators can be obtained by encompassing an interdigital transducer in between

two reflectors, simply built by depositing another periodical array of metal strips,

usually referred to as reflective grating, as shown in Figure 8.3(a). Efficient reflection

occurs when the pitch of the grating equals half the wavelength, that is, at the Bragg

condition. The reflection coefficient per strip is, however, quite low (usually in the

range of 1–4%), as reflection occurs because of the association of a strong

modulation of the electrical boundary conditions with a weak perturbation of the

mechanical conditions. Thus, SAW reflectors are usually made of close to 100
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short-circuited electrodes. In the case of BAW resonators, relying on a thickness

mode resonance, the most simple structure (although when it comes to

microfabrication, things get more complex) is to form a freestanding membrane of

piezoelectric material, since the air/solid interface provides a nearly perfect reflector.

Hence, such a structure, shown in Figure 8.3(b), is now referred to as a film bulk
acoustic resonator (FBAR). Due to structural strength concerns, an alternative

structure relying on positioning the piezoelectric film atop an acoustic

one-dimensional Bragg mirror, as sketched in Figure 8.3(c), is also industrially

employed, and is referred to as solidly mounted resonator (SMR). Despite

continuous work on more exotic structures, the industrial landscape for RF elastic

wave devices is now almost fully filled with these SAW or BAW resonators only, and

this situation has settled to this state since the early 2000s, with only incremental

improvement since then.

(a) (b)

(c)

Figure 8.3. Main resonator types used in the RF filter industry:
(a) SAW resonator, (b) FBAR and (c) SMR.

8.2. Hypersonic crystals

When the first experimental demonstrations of the occurrence of phononic band

gaps were reported in the late 1990s for audible frequencies, it became quite clear that

the concept could be applied to perform advanced signal processing. The first articles

reported in the literature obviously dealt with structures operating in the sonic or

ultrasonic regime because of their relative ease of fabrication, hence echoing the early

days of photonic crystals in the microwave regime. As stated in the introduction, the

so-called hypersonic regime refers to operating frequencies in the range of 100 MHz

to a few GHz. In solids, this leads to characteristic dimensions of the order of the

micrometer. The transposition of the phononic crystal concept to higher frequencies,

where applications are potentially numerous, then has to overcome technological

issues inherent to patterning at the micron scale. In addition, practical implementation
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calls for compact and efficient devices, ideally based on the preferred solution for the

realization of acoustic-based RF wireless devices – exploiting the piezoelectric effect

observable in well-chosen substrate. A typical hypersonic crystal could therefore be:

– a micron-scale device;

– an electromechanical device, with an electrical to mechanical transduction (and

conversely) ideally induced by piezoelectricity;

– a device able to perform a specific function (a resonator, a band-pass filter, etc.);

– a device that could be fabricated using large-scale processes.

In summary, an RF phononic device is a micro-electromechanical system

(MEMS).

The most natural way to produce phononic crystals in this length scale is therefore

to rely on classical cleanroom technologies, as is the case for conventional RF electro-

acoustic devices. The difficulties that are to be faced are then similar: as a general rule,

MEMS design is as strongly driven by the functions and operations it should fulfill as

it is by the constraints and tolerances imposed by the manufacturing process.

In this section, we will briefly introduce some typical microfabrication techniques

that have proved relevant for phononic crystal fabrication. We will then find how a

hypersonic crystal design can be tied to the associated technological constraints. The

last part of this section will then give practical examples reported in the literature of

phononic crystals exhibiting frequency band gaps in the sub-GHz to GHz frequency

range.

8.2.1. Micron-scale fabrication

8.2.1.1. A short note on MEMS fabrication processes

MEMS technology directly derives from the technological processes developed for

the microelectronics industry. Yet, while integrated circuits (IC) are essentially planar

devices making use of a limited number of materials, MEMS devices usually make

use of whatever materials and geometries required to achieve the desired functionality.

This leads to what can be considered as a major strength, as well as one of the main

complications of the MEMS technology: the possibility to put together a variety of

processes and materials to create very versatile devices exhibiting a potentially rich

physics. This is at the expense, however, of a certain amount of predictability in the

fabrication process and on the device operation. It could be said that the main key

for a successful manufacturing of a MEMS device lies in an awareness of what can
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be achieved in the context of a robust and repeatable process to find the better trade-

off between ideal design and actual fabrication, (including the inevitable uncertainties

related to some material properties).

There exists a very wide variety of microfabrication processes. This chapter does

not aim at covering them in detail: specific resources will fulfill this function in a

much better and more exhaustive manner. Here are no standard fabrication for MEMS

devices, and this assertion is all the more true in the case of phononic crystals, as

phononic devices are at a very early stage. Still, we will try here to give a rough idea

of some of the technologies that may be involved.

As we mentioned earlier in this chapter, the MEMS technology finds its roots in the

planar processes used in the microelectronics industry. Here as well, as for integrated

circuits, the idea is to find simple, large-scale fabrication processes for devices with

features that are bound to made ever smaller over time. A MEMS fabrication process

can be described as the implementation of a sequence of basics steps, combined and

potentially repeated many times over a substrate.

A MEMS fabrication process involves two main process families. The first relates

to the so-called front-end, that is, to cleanroom-related process steps; the second to the

back-end, that is, to the packaging of the fabricated device.

The substrate is ideally a commercial wafer, that is, a thin, polished slice of a

specific material with a diameter of a few inches, up to 400 mm, for the currently

most advanced nanoelectronics fabrication lines. The most conventional wafer

dimensions are 300 mm for nanoelectronics, 200 mm for power electronics or silicon

MEMS and 100 mm for more exotic substrate materials (typically the piezoelectric

materials used in the SAW industry), with a recent trend for the latter to increase

diameters towards 150 mm. Silicon obviously dominates the MEMS technological

world, a significant number of reliable processes having been developed over the

years on this semiconducting substrate in the context of microelectronics. Yet, it is

not the preferred material for electro-acoustic devices that require piezoelectricity. In

the surface acoustic wave industry, single-crystal piezoelectric substrates such as

quartz, lithium niobate or lithium tantalate dominate the market. Single-crystal

materials are usually grown from an ultrapure material source through the so-called

Czochralski method, although other efficient means of artificial synthesis have been

developed over the years. Quartz, for instance, is grown using hydrothermal methods

proposed in 1905, that have been gradually improved over the years. This has

allowed the synthesis and mass production of artificial crystals exhibiting the same

properties as natural crystals as early as the 1970s. These processes lead to boules
that are subsequently sliced along precisely defined crystal orientations and then

surface-polished.

The key aspect of the front-end fabrication flow lies in the possibility to transfer a

desired pattern onto this substrate at the micron scale. This pattern transfer may occur
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by direct milling of the substrate, but as a much more general rule, pattern transfer

is achieved indirectly by means of surrogate layers that can be easily shaped and

subsequently removed (in other words, sacrificed) after transferring the pattern onto

the wafer.

(a) Resist coating (b) Alignment (c) Exposure

(d) Development (e) Etching (f) Stripping

Figure 8.4. Generic process sequence for photolithography. For a color
version of this figure, see www.iste.co.uk/romero/metamaterials.zip

Lithography is the generic process used to shape such surrogate layers. This

process is a direct inheritance of the techniques used in the printing industry in the

19th century. In MEMS fabrication processes, its principle is to apply the following

steps to a substrate, illustrated in Figure 8.4:

1) Resist coating: the substrate is coated with a polymer film, called a resist. This

coating is made thin (100 nm–10 μm) and highly uniform by spreading it over the

whole sample area by centrifugation. Variations of these techniques involve spraying

a mist of photoresist over the wafer – which is particularly an efficient means to obtain

a coating made of a particularly low-viscosity photoresist (known as spray coating);

dipping the substrate in a highly viscous photoresist, therefore leaving usually a thick

coating (known as dip coating) or laminating a solid polymer film over the substrate.

This last technique is particularly useful when the wafer already contains mobile

microstructures that could be destroyed by the surface tension forces brought by any

liquid coming in contact with them. After coating, the photoresist is left drying for a

few minutes on a hot plate to evaporate excess solvents and leave an almost solid film.

2) Alignment: the coated substrate is then aligned with a so-called photomask,

which is usually a transparent [MAD 02] quartz (or some low-thermal-expansion

glass) plate covered by a thin sheet of chromium, patterned in the shape of the structure
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we want to transfer to the substrate (or sometimes in the shape of the inverse image

of these structures). The substrate is positioned under the mask, so that mask patterns,

which will be ultimately photolithographically reproduced, are aligned over already

existing structures on the substrate: the first pattern transferred to a wafer usually

includes a set of alignment marks that are used as a reference for subsequent process

steps. The most advanced lithography tools benefit from automated alignment, which

relies on machine pattern recognition and offer positioning precisions (registrations)

typically in the 100–300 nm range.

3) Exposure: the substrate and the mask are then irradiated. In contact lithography,

the photomask is put in direct contact with the wafer using a contact aligner. This is a

rather inexpensive and very mature technology that allows reaching resolution below

1 μm. This is well within the requirements of most MEMS fabrication processes, but

clearly below the requirements of modern SAW devices. The industrial alternative is

then to use projection lithography, more precisely stepper lithography that presents

the advantage of reducing mask wear by avoiding direct contact with the substrate

and that allows, in the case of stepper lithography, us to reduce the projected mask

pattern using a highly complex high-resolution lens system, hence allowing us to both

reduce the constraints on mask fabrication and reach much higher resolution (down

to 250 nm). In all cases, the chromium patterns shadow the UV irradiation, while

in non-protected areas, the irradiation triggers chemical reactions in the resist that

locally change its chemical properties. The simplest irradiation source is a light bulb,

although ultraviolet (UV) light is preferred for its shorter wavelength and therefore

smaller diffraction limit. Advanced lithography relies on deep-ultraviolet (deep-UV)

light sources. As an alternative for very-high-resolution features, we can mention

the possibility to use electron-beam lithography, based on electron irradiation of an

appropriate resist. This last technique is mask-less, with a highly focused electron

beam (down to nanometer size) being moved across the sample and alternatively

switched on or off to directly draw patterns without the need to supply a mask. The

drawback is the long time needed to perform a high-resolution scan over a full wafer,

compared to an illumination of the whole area at once. Therefore, it is only employed

for the most size-critical process steps, such as drawing nanometer-size transistor gates

in advanced nanoelectronics.

4) Development: the substrate is then bathed in a chemical solution capable

of dissolving the resist that has been chemically modified during the previous

exposure step. This leaves the non-irradiated areas unaffected, causing a transfer of

the chromium patterns on the photoresist film. The photoresist is then chemically

stabilized by a second baking at a larger temperature than the drying step.

5) Pattern transfer: the pattern hosted by the photoresist is then transferred on the

wafer, for example, by etching. The substrate is subjected to a chemical or physical

process capable of etching the material exposed at the surface of the substrate, in the

regions not protected by the photoresist patterns. This process may be a dissolution of

the material by a chemical reaction occurring in liquid phase (so-called wet etching) or
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sometimes in gaseous phase. Common techniques involve also some ion bombardment

(gathered under the term dry etching), where the kinetic energy of accelerated ions is

used to eject matter from the surface. Ion etching techniques are often assisted by some

chemical reactions occurring on the surface between highly reactive ionized species

formed in the plasma and the materials located on the substrate. This technique is

therefore known as reactive ion etching. In both cases, the photoresist can act as a

protection for parts of the substrate, so that patterns that were located on the mask are

ultimately transferred on the substrate.

6) Stripping: after etching, the photoresist patterns are removed by a chemical

dissolution of the polymer, leaving a substrate ready for restarting the next

photolithography cycle.

The cumulation of material deposition steps, lithography and etching, makes up

close to 90% of a MEMS integration process. Performing them in sequence can

produce relatively complex three-dimensional structures while using mostly planar

techniques. The strength of these techniques is that they are applied on a full

substrate at a time, while the objects fabricated can be extremely small, so that a

large number of them can be fabricated collectively. Hence, cleanroom processes are

referred to as very-large-scale integration (VLSI). As an illustration, BAW filters

typically occupy an area smaller than 1 mm2, while fabricated on 200 mm diameter

silicon substrates. A single fabrication sequence can therefore simultaneously

produce more than 25,000 individual components per wafer.

8.2.1.2. Design rules

Despite their versatility, cleanroom fabrication processes do not allow every

geometry to be produced. Therefore, the design of micron-sized structures such as

phononic crystals has to always respect design rules, which dictate what can be

fabricated and often impose limitations to the type of structures we would like to

fabricate.

Design rules for micron-scale phononic structures, such as holey phononic

crystals, originate from the two fabrication process conditions we covered in the

previous section:

1) photolithography processes, as precise as they may have become when one

considers large-scale integration of nanoelectronic circuits, always face a resolution

limit. Even though the latest equipment are nowadays capable of generating

nanometer-scale features using electronic beam writing or deep-UV immersion

scanners, such tools cannot (yet) be considered as mainstream for phononic

applications, as their cost remains prohibitive for anything else than advanced

microelectronics, not to mention about academic laboratories. Therefore, it is

more reasonable considering working with less expensive equipment, which offer

resolutions dictated by the diffraction limit of UV or deep-UV, – that is, in the range
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of 250 nm in the most favorable case. Additionally, the selectivity of the etching

processes (that is, the ratio between the removal rate of the material we want to

etch and the removal rate of the photoresist mask) requires that in order to form

features with thicknesses or depth in the micron range, a photoresist coating of

the same order of magnitude becomes necessary. Generally, the ultimate resolution

that can be achieved with a photoresist mask is roughly in the same range as the

photoresist thickness. This means that phononic crystal geometries have to exhibit

smallest dimensions in the range of 1–2 μm: this smallest dimension has to apply to

individual scatterers or to the spacing between them.

2) etching processes provide smooth and vertical sidewalls in only a few very

specific cases: silicon or silicon dioxide. When considering the patterning of

piezoelectric materials, such as lithium niobate or aluminum nitride, reactive ion

etching usually leaves sidewalls in the range of 80 degrees, as shown in Figure 8.5(a),

sometimes even less. Small-diameter holes may therefore be limited in depth, as they

form a cone that would close before reaching the desired depth. This usually adds

additional constraints on the depth that can be achieved.

(a) (b)

Figure 8.5. Illustration of a phononic crystal made of an array of holes embedded in a
solid matrix: (a) limitation in sidewall angle revealed by a scanning electron microscope
image of an actual hole obtained after etching holes in an AlN film and (b) indications
of critical process dimensions

Given the fact that the opening of phononic band gaps usually requires relatively

large filling fractions [REI 11], the limiting factor is usually the spacing between two

neighboring scatterers, which must remain large enough to comply with design rules.

Translated in terms of dimensions for the example of a square lattice made of holes

etched in a solid matrix, shown in Figure 8.5(b), photolithography processes impose
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minimum values to the radius r of holes and to the spacing a−2r between neighboring

holes. For this reason, phononic band gaps are usually limited to frequencies below

1 GHz. Switching to higher-order band gaps may be a solution to move towards higher

frequencies, but at the expense of relative width.

8.2.2. Experimental demonstrations of hypersonic band gaps

Despite the technological difficulty to fabricate phononic crystals exhibiting large

band gaps at GHz frequencies, several demonstrations have been successfully

achieved. Following some early works on the characterization of one-dimensional

structures such as semiconductor superlattices or one-dimensional phononic

structures [BAR 98, DHA 00, OZG 01], the true starting point for two-dimensional

phononic structures is the work of Gorishnyy et al. in 2005 [GOR 05]. For the first

time, a periodic structure made of a triangular lattice of holes with a filling ratio of up

to 39% directly formed in photoresist coated on glass was fabricated and its band

diagram was experimentally determined by Brillouin light spectroscopy. This was

evidently seen in the 2 GHz region, as well as folding of modes at the edge of the

Brillouin zone.

Subsequent to this experiment, demonstrations of phononic crystals compatible

with the major types of elastic wave resonators have been proposed. In section 8.2.2.1,

we will describe phononic crystals fabricated on bulk monocrystalline substrates and

compatible with surface acoustic waves devices. Then, we will detail in section 8.2.2.2

crystals realized on freestanding membranes, the so-called phononic crystal slabs.

These are compatible with many MEMS processes and especially with Lamb wave

resonators, a kind of resonator that has still to find an industrial application, but which

is extensively studied in the academic world. Finally, section 8.2.2.3 will focus on the

few examples of phononic crystals for bulk waves and discuss the difficulty related

with integrating a phononic crystal suitable for a BAW device.

8.2.2.1. Phononic crystals for surface acoustic waves

The combination of surface acoustic waves and piezoelectric single crystal solids

such as quartz, lithium tantalate (LiTaO3) or lithium niobate (LiNbO3), among others,

occupies a prominent position in the field of wireless telecommunications and signal

processing. Single crystal substrates indeed offer piezoelectric and electromechanical

coupling properties that remain unmatched by the currently available piezoelectric

thin films. The theoretical demonstration by Wu et al. of the capability of a two-

dimensional phononic crystal to open band gaps for surface acoustic waves [WU 05a]

offered, therefore, particularly rich applicative prospects, while constituting a very

good field for more fundamental investigations.

The very appealing properties of single-crystal substrates are, however, most of

the time counter-balanced by the difficulty of processing these materials, which are
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quite often complex oxides using standard micromachining technologies. Fabrication

then stands as a challenge, while design is not made any easier. The strong anisotropy

of acoustic wave propagation inherent to piezoelectric materials, combined with the

quasi-systematic mixing of shear and longitudinal polarizations, puts tighter

constraints on the geometrical parameters of the periodical structure itself

[WU 04, LAU 05].

The first experimental demonstration of complete band gaps for surface acoustic

waves propagating on lithium niobate substrates was performed by Benchabane et al.
[BEN 06]. The phononic crystal consisted of a square array of 9 μm diameter air

holes with a period of 10 μm. With such dimensions, the band gap extended from

203 to 226 MHz. Its existence has been characterized in transmission by using sets of

interdigitated transducers (IDT) in delay line configuration. Two sets of delay lines

were measured: a set of classical lines, acting as reference to calibrate the limited

electric transmission of the setup, and a set of lines in which the phononic crystal was

inserted, as shown in Figure 8.6. The comparison of the measured transmission

(defined as the ratio between the output power measured on the receiving IDT and

the incident electrical power applied to the emitting IDT) in Figure 8.6(b) for the

reference (dashed) and for the delay lines with the crystal (thick continuous lines)

reveals that in the low-frequency side, the crystal does not strongly perturb the

transmission. Within the band gap, marked as the gray region, the transmission

between the two transducers drops considerably, proving its existence. This

experiment paved the way for a fully electrical characterization of high-frequency

phononic crystals, and its scheme remained for long a reference set-up reused in

further studies.

The most conventional fabrication technique for the etching of the array of holes

in lithium niobate is reactive ion etching, using sulfur hexafluoride (SF6) as the gas

providing reactive species (F− ions) [BEN 06]. Due to the high chemical stability of

lithium niobate and the non-volatility at process temperature of some of the reaction’s

by-products (LiF in particular), the etching process has to operate mostly in a

ballistic regime where material removal is achieved through the transfer of kinetic

energy to the surface of the sample, rather than through chemical reactions. Even in

such conditions, the etch rate was only 50 nm/min (as a comparison, silicon etch

rates can be as high as 50 μm/min). This meant that several hours were necessary to

etch holes 10 μm deep. Photoresist masks are not capable of withstanding such long

exposure to a high-energy ion bombardment. Therefore, the etching process had to be

made more complex, by using a 1 μm electroplated nickel mask. However, even in

such conditions, the holes obtained proved conical rather than cylindrical, with a

sidewall slope of about 17% for 10 μm diameter holes, as visible in the inset of

Figure 8.6(a).
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(a)

(b)

Figure 8.6. Surface acoustic wave delay line for probing a phononic crystal made of
square lattice of holes in lithium niobate: (a) scanning electron microscopy image
of the fabricated device and sketch of the experimental setup and (b) electrical
measurements of several delay lines (solid: including the phononic crystal; dashed:
without phononic crystal) to cover the frequency range surrounding the band gap
(in gray) [BEN 06]
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Several other techniques were tried to improve the etching process, especially

electron irradiation [ASS 08]. The principle consists in writing patterns using an

electron beam as in e-beam lithography, but this time without photoresist. Instead,

the electronic charges accumulated on the surface force a local inversion of the

ferroelectric domains in lithium niobate and make the material sensitive to chemical

etching by pure hydrofluoric (HF) acid. The process durations proved, however, to be

similar to reactive ion etching, and the holes proved also conical, with a sidewall

slope of 12%. Finally, the shape of the scatterers seemed to be difficult to control, as

electrostatic forces tend to spread the electrons apart from each other at the surface of

the insulating lithium niobate.

Due to the difficulty to etch holes in single-crystal piezoelectric materials, work

has been also devoted to form phononic crystals for surface acoustic waves on silicon

substrates, in order to benefit from the easier processing of this material, which is the

reference substrate for microfabrication. Wu et al. proposed to excite surface waves

on silicon substrates using a thin film of piezoelectric zinc oxide (ZnO) deposited on

top of a silicon substrate and positioned at the level of the emission and reception

transducers [WU 05b]. Using a technique known as deep reactive ion etching,

particularly efficient at etching high-aspect-ratio holes in silicon substrates, they

managed to form a phononic crystal with holes 80 μm deep for a diameter of only

3.5 μm. This paper proposed also an improvement of the measurement set-up: in

[BEN 06], eight delay lines with different IDT periods were needed in order to cover

the full phononic band gap as well as frequencies in its vicinity, as shown in Figure

8.6(b). The transducers used in [WU 05b] were slanted in order to simultaneously

excite several wavelengths and therefore to directly cover a wide frequency range

with a single delay line, although it resulted in a decrease in the overall electrical

transmission.

One particular feature of the interaction of a surface wave with a phononic crystal

is visible in Figure 8.6(b): after the band gap, the transmission of acoustic waves is not

necessarily recovered. For a phononic crystal made of holes periodically arranged in

a piezoelectric substrate, optical heterodyne interferometry reveals a strong scattering

of the surface wave as the crystal acts as a diffraction grating [KOK 07]. The strongest

contribution to the attenuation, however, occurs when the surface wave dispersion

crosses the so-called sound line, – that is, becomes faster than the slowest bulk wave

and is therefore no more guided at the surface. It is also supposed that the finite depth

and the conic shape of the holes enhances the coupling to bulk waves.

Aside from phononic crystals exhibiting band gaps arising from Bragg scattering,

resonant metamaterials in which local resonances open hypersonic band gaps have

been more recently investigated [LIU 14]. For guided waves, this idea can be seen as

an extension to sub-wavelength scatterers of the well-known principle of mass

loading, which consists in affecting the dispersion relation of surface elastic waves

by creating corrugations or by manufacturing high-aspect-ratio structures on the

surface of the substrate hosting the propagation [AUL 76, MAY 91, SOC 12], with
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the aim, in particular, to slow down the propagation. It has, for example, been

shown that phononic crystals made of thick metal pillars deposited on a

homogeneous surface could exhibit hybridization gaps caused by local resonances of

the pillars, in addition to the Bragg band gaps caused by the periodicity of the array

[KHE 10a, ACH 11, YUD 16]. Interestingly, this ensures a way to open a band gap,

or several, below the sound line, as shown in Figure 8.7(a). A first experimental

demonstration in the GHz frequency range used aluminum pillars formed on a silicon

substrate [GRA 12]. With 100 nm thick pillars having a radius of 95 nm, disposed in

a square array of 500 nm period, the band structure has been determined by surface

Brillouin light scattering and evidenced band gaps around 5 GHz, as shown in

Figure 8.7(b).

(a)

(b)

Figure 8.7. Band gap for surface acoustic waves obtained through the coupling with
local resonances of pillars: (a) theoretical calculation [KHE 10a] and (b) experimental
measurement using surface Brillouin light scattering. Reprinted from [GRA 12], with
the permission of the American Physical Society
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Local resonances have also been used to investigate contact resonance effects in

granular materials [BOE 13, HIR 16, ELI 16], for instance, in the case of

micron-sized polystyrene spheres adhered to a substrate as shown in Figure 8.8(a).

These last experiments, performed through optical excitation and interferometric

optical measurements, allowed the authors to determine the attenuation of surface

acoustic waves propagating in a glass substrate as a function of frequency and proved

the existence of an attenuation peak at the resonance frequency of the Hertzian

contact, as shown in Figure 8.8(b).

(a) (b)

Figure 8.8. Resonant metamaterial for surface acoustic waves made of polystyrene
micro-spheres adhered on a glass substrate: (a) optical micrograph and (b)
measurement of the attenuation for Rayleigh waves propagating through a 170 μm
strip of micro-spheres. Reprinted from [ELI 16], with the permission of AIP Publishing

Despite the possibility of relying on resonant band gaps, of effectively designing

Bragg band gaps lying below the sound line [YUD 12] or of annular patterns

supporting local resonances to reduce coupling to other modes [ASH 17], some

authors considered that surface acoustic wave phononic crystals lacked vertical

confinement. They proposed therefore to switch to thin plates offering a vertical

confinement preventing radiation in a substrate. Such crystals inserted in a vertically

limited medium were soon called phononic crystal slabs.

8.2.2.2. Phononic crystal slabs

Propagation of waves in slabs calls for the study of phononic crystals for plate

waves. As early as 2006, that is immediately after the theoretical demonstration of

the existence of phononic crystals exhibiting stop bands for surface waves, Hsu et al.
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calculated the dispersion curves for Lamb waves propagating in thin plates containing

a periodic array of cylindrical inclusions [HSU 06, HSU 07b]. They demonstrated that

the consideration of traction-free surfaces delimiting the slab significantly modifies the

band structure compared to a bulk crystal, as they derive from the dispersion curves

for Lamb of plate waves. Nevertheless, they demonstrated that band gaps could still

be obtained, for relatively large filling fractions.

First experimental demonstrations of phononic crystal for plate waves were

performed the same year by two independent groups. Hsiao et al. considered a slab

made of epoxy encompassing steel spheres disposed in a square lattice [HSI 07].

With the spheres having 4 mm diameter, a complete phononic band gap opened

around 300 kHz. Acoustic waves were excited using an emission transducer and were

coupled to the slab by a prism, while an interferometric measurement scheme was

employed. Closer to the hypersonic range, Olsson et al. [OLS 07] fabricated a

micron-sized crystal made of a square lattice of cylindrical tungsten (W) scatterers

(lattice parameter: 45 μm; radius, 14.4 μm) embedded in a silicon dioxide membrane

(4 μm thick). This combination of materials was chosen for compatibility with the

industrial fabrication of the interconnects in integrated circuits. As for SAW

phononic crystals, a completely integrated measurement setup was fabricated along

with the crystal: transmission of Lamb waves through the crystal was measured by a

delay line made of an aluminum nitride (AlN) transducer formed on top of the silicon

dioxide membrane, as shown in Figure 8.9(a). Electrical measurements, reproduced

in Figure 8.9(b), reveal in this case a stop band ranging from 59 to 76 MHz.

(a) (b)

Figure 8.9. Phononic crystal for Lamb waves: (a) scanning electron microscopy (SEM)
image of the crystal made of tungsten scatterers embedded in a silicon dioxide
membrane inserted between two AlN transducers and (b) electrical measurements of
the transmission, revealing a band gap around 70 MHz. Reprinted from [ELK 08], with
the permission of AIP Publishing
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Following this first demonstration, other groups proposed different combinations

of materials and crystal structures to increase the band gap center frequency and its

width, the goal being ultimately to reach frequencies used for telecommunication

applications (400–3,500 MHz). Mohammadi et al. obtained an attenuation band

ranging from 119 to 150 MHz (i.e. a 23% relative bandwidth) using a crystal made of

cylindrical holes disposed as an hexagonal lattice (lattice parameter, 15 μm; radius,

6.4 μm) on a 15 μm thick silicon membrane [MOH 08]. Here, the reduction in lattice

parameter is responsible for the higher-frequency range, while the move to an

hexagonal lattice and the increase of the filling fraction of the scatterers promote a

wider stop band. Soliman et al. managed to obtain a significant attenuation of the

acoustic transmission between 1 and 1.8 GHz by realizing a crystal with even more

aggressive dimensions: 0.65 μm diameter tungsten scatterers were disposed in a

square lattice with a 2.5 μm period inside a 1.15 μm thick silicon membrane

[SOL 10b].

An alternative approach is to embed the phononic crystal in a material exhibiting

a large sound velocity, such as aluminum nitride (AlN). This material being also

piezoelectric, the phononic crystal can be integrated directly along transducers, in a

way similar to earlier works on surface waves. With a phononic crystal slab realized

in a silicon dioxide/aluminum nitride membrane, Gorisse et al. demonstrated an

attenuation band for Lamb waves ranging from 600 to 950 MHz [GOR 11] using a

square array of almost cylindrical holes. Simultaneously, Kuo et al. obtained an

attenuation band for Lamb waves ranging from 850 MHz to 1.2 GHz, using a square

array of “X”-shaped holes (lattice parameter, 5 μm; thickness, 1 μm; 4.2 × 0.75 μm

arms) formed also in an AlN membrane [KUO 11].

As for surface acoustic waves, locally-resonant phononic crystals were also

proposed, relying on pillar structures formed at the surface of a plate to open a band

gap [HSU 07a]. First works considering “thin” plates (with respect to the

wavelength) demonstrated that the local resonances of the pillars interact with the

modes of the plate, which manifests by the opening of band gaps [PEN 08]. Thin

circular plates periodically disposed within the main, thicker, plate, shown in Figure

8.10, were also proposed and exhibited a slow mode corresponding to the flexural

mode of individual thin plates [SUN 10]. In both cases, this usually opens a stop

band at a frequency below the Bragg band gap, although the band gap location is

essentially conditioned by the resonant frequency of the scatterers. Hence, such

structures are not directly suited for obtaining band gaps at frequencies compatible

with RF applications.

A particularity of phononic slabs is that they are realized on elastic plate, which

supports the propagation of a host of modes: symmetric and antisymmetric Lamb

waves as well as shear horizontal plate waves. This produces a much more complex

band structure than three-dimensional phononic crystals or than phononic crystals for

surface waves. For this reason, the interaction of a phononic crystal with transducers



228 Fundamentals and Applications of Acoustic Metamaterials

is more complex than in the case of phononic crystals for surface waves. This is, for

example, illustrated in Figure 8.11(a), which shows the measured electrical

transmission of a Lamb wave delay line used to probe a phononic crystal. A

significant transmission attenuation is visible between 600 and 900 MHz, while the

theoretical band gap is only expected to extend from 776 to 828 MHz [GOR 11].

Clearly, in the process of converting the Lamb waves into Bloch modes of the crystal

and conversely at the output of the crystal, a large part of the acoustic power

generated by the emitter transducer is lost. While this is expected inside the band

gap, as only evanescent Bloch modes may transfer power through the crystal, it is

fairly unexpected outside of the stop band. A first explanation for this is that the AlN

or ZnO transducers used to excite or to detect waves are only capable of exciting

symmetrical Lamb waves. As such, Bloch modes with shear horizontal polarization,

identified in Figure 8.11(b) (left), are not expected to be excited [SOL 10b, KUO 11].

Additionally, even some Bloch modes with out-of-plane transverse or with

longitudinal polarization may not be excited if their mode shape is orthogonal to the

polarization of the incident or transmitted Lamb waves [GOR 11]. Such modes are

then called “deaf bands” [HSI 07]. Finally, some flat bands, such as the ones labeled

“b” and “c” in Figure 8.11(a), may be so localized that they do not generate strong

peaks in transmission spectra. This extended attenuation range compared to the sheer

phononic band gap proves highly beneficial in most applications, where phononic

crystals are expected to act as reflectors. Therefore, phononic crystal slabs faced

more interest than phononic crystals for surface waves and were rapidly adopted by

the MEMS community as will become evident in section 8.3.2.

Figure 8.10. Square lattice phononic crystal plate made of periodic
membranes: (a) schematic of the unit cell, (b) photograph of the

fabricated sample and (c) cross-section of the unit cell. Reprinted
from [SUN 10], with the permission of AIP Publishing
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(a)

(b)

Figure 8.11. SiO2/AlN-based phononic crystal slab: (a) electrical transmission of a set
of Lamb wave delay lines with (continuous red curve) or without (blue dashed lines)
phononic crystal inserted between transducers. The theoretical band gap position is
highlighted in yellow. (b) Band structure for the phononic crystal: (left) determination of
the polarization of Bloch modes and (right) identification of deaf bands. Reprinted from
[GOR 11], with the permission of AIP Publishing. For a color version of this figure, see
www.iste.co.uk/romero/metamaterials.zip
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8.2.2.3. Phononic crystals for bulk acoustic waves

Despite extensive work on phononic crystals for surface acoustic wave or plate

waves, no notable reports of phononic crystals that could benefit bulk acoustic wave

resonators have been published, although this technology is now the second standard

for elastic wave RF components behind SAW filters and is certainly more mature than

the field of Lamb wave devices.

With regards to bulk acoustic wave devices, Bragg mirrors have been proposed as

early as 1965 [NEW 65] to isolate a piezoelectric resonant cavity from its

surroundings. With the advent of thin-film bulk acoustic resonators, this idea has

been extensively developed in the solidly mounted resonator (SMR) technology.

Mirrors used nowadays in this technology differ from simple quarter-wavelength

stack of materials. They are usually optimized to provide a stop band for all vertically

propagating wave polarizations, in order to reduce any possible leakage of acoustic

power out of the resonant cavity, – even the marginal-thickness shear waves

generated by mode conversions during reflection of the main thickness-extensional

mode at the edges of the resonator electrodes [MAR 05]. While they are designed

only for vertically propagating waves, they also prove efficient for waves propagating

in the lateral direction, which usually act as parasitic modes for bulk wave resonators

[TAL 06]. They have therefore even been proposed to provide a vertical confinement

for waves guided in a piezoelectric film [KHE 08, KON 10, TAK 16], as will be more

detailed in section 8.4.2. Such one-dimensional structures are, however, not

considered as being phononic crystals or elastic metamaterials.

Phononic crystals capable of opening a band gap at the frequencies where bulk

waves are exploited could hold the promise of extreme three-dimensional

confinement of waves in BAW resonators and, therefore, boost quality factors beyond

their actual levels. However, opening a band gap at their frequencies of operation,

that is, between 1.5 and 3.5 GHz, proves difficult: as discussed in sections 8.2.1.2

and 8.2.2.2, micro-fabrication techniques allow the formation of phononic crystals

with band gaps reaching frequencies up to 1 GHz. More aggressive dimensions could

theoretically increase the range of frequencies achievable, by increasing the

frequencies at which the Bragg condition related to the spacial periodicity of the

phononic crystal, or the Mie scattering related to the dimensions of the scatterers,

occurs [OLS 09]. As an example, phononic crystals made of cylindrical holes

disposed in a square lattice within a silicon matrix were studied in [OSE 18]. A

lattice parameter of 940 nm and a filling fraction of 76% were necessary to open a

band gap extending between 2 and 3 GHz. Such a high-filling fraction is critical to

decreasing the frequency of the band gap from several GHz down to 2 GHz. It leads,

however, to almost unrealistic spacing between adjacent holes (15 nm) and is,

therefore, impossible to implement in practical applications.
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One of the only effective structures reported to date relied on an industrial process

for integrated circuit manufacturing [BAR 15]: a phononic crystal was realized using

the metal interconnects between transistors, made of 165 nm copper stripes separated

by 85 nm, embedded in a low-permittivity solid dielectric (SiOCH) material. Due to

the high miniaturization, the calculation of the band structure, shown in

Figure 8.12(b), reveals the opening of a band gap extending from 2.54 to 6.35 GHz.

Obtaining such fine dimensions has been, however, only made possible by the huge

research and engineering efforts that the nanoelectronics industry deployed over

decades to continuously keep the pace on miniaturization of integrated circuits

imposed by Moore’s law. Therefore, the patterning of these materials is

well-established and optimized to form sub-micron features. Forming sub-micron

size piezoelectric structures, which would be mandatory for collocating a

high-frequency hypersonic crystal with a bulk wave resonator, still remains an

extremely challenging task.

Figure 8.12. Phononic crystal made of CMOS interconnects, realized using transistor
metal interconnections (courtesy Hybrid MEMS Research Group at Purdue University:
https://engineering.purdue.edu/hybridmems/). For a color version of this figure, see
www.iste.co.uk/romero/metamaterials.zip

A second issue is that the stack of materials (piezoelectric film, electrodes,

passivation, Bragg mirror layers, etc.) of BAW resonators is already optimized for the

main functionality of the filter. Therefore, phononic crystals have to be tailored for

such a complex set of materials and have to offer wave confinement without affecting
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in any other mean the stringent performances of the device. As a result, hypersonic

crystals suitable for bulk wave applications is still an open investigation topic.

8.3. Phononics for RF signal processing

After early works aimed to demonstrate the ability to push phononic crystals to

the hypersonic range and to overcome microfabrication challenges related to their

actual implementation, at least for surface or plate waves, research groups have started

focusing on applications that could benefit from this new concept.

The major characteristic of phononic crystals is their ability to open a phononic

band gap, which forbids the propagation of acoustic waves regardless of their

direction. This called from the very early stages of research on this topic for

envisioning a tight confinement of waves in geometrically defined structures. Taking

inspiration from the microwave world and from photonics, researchers proposed two

different classes of functions benefiting from this confinement: waveguides in which

phononic crystal constrains waves to follow a very specific path, or resonant cavities,

which are regions completely surrounded by a phononic crystal and, therefore,

almost fully isolated from their surrounding.

8.3.1. Phononic waveguides

Any defect inserted in an otherwise perfect crystal adds one or several branches

to the band structure. In particular, removing a full row of scatterers in a phononic

crystal has the consequence of enabling defect modes localized in the row. A slightly

different view is to state that waves can be trapped in the defect row, but cannot escape

if their frequency falls within the band gap of the crystal surrounding the defect. This

property is at the basis of light guidance in photonic crystals. Taking this inspiration,

Kafesaki et al. [KAF 00] theoretically proved that defect modes obtained by removing

a row of scatterers in a phononic crystal, can carry acoustic power through the crystal.

Interestingly, near-perfect transmission is obtained, making the defect line act as an

efficient waveguide. Unlike photonic waveguides, the defect modes may be of shear or

longitudinal polarizations and may interact with each other. This opens sub-band gaps,

which may cause transmission drops in the waveguide at specific frequencies within

the guiding band gap. Such a mechanism is not only tied to conventional phononic

crystals, but has been also theoretically demonstrated in a locally-resonant phononic
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plates [OUD 10]. This last case is particularly interesting as, since local resonances

may open a band gap at frequencies lower than the Bragg regime, the waveguide may

remain single-mode, even for relatively large waveguide width (for example, obtained

by removing three lines of local resonators, as shown in Figure 8.13).

Figure 8.13. Waveguide formed in a resonant phononic crystal slab: (a) band structure
and transmission coefficient of a supercell made of 13 rubber pillars on an epoxy plate.
(b) Band structure of a supercell representing the waveguide structure obtained by
removing three pillars from the previous structure. (c) Displacement amplitude of the
defect mode plotted for different wavenumbers, at positions indicated by red cycles in
(b). Reprinted from [OUD 10], with the permission of AIP Publishing. For a color version
of this figure, see www.iste.co.uk/romero/metamaterials.zip

Slightly later, Khelif et al. [KHE 02] took this time analogy from microwave

transmission lines. They demonstrated that the addition of lateral branches, called

stubs, to a main transmission line causes interferences between the main wave

propagating in the transmission line and the wave that has propagated into the stub,

and has been reflected by the end of this usually short line. Hence, depending on the
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length of the stub, this forces locally a node or an antinode, which generates features

in the transmission spectrum such as transmission zeros at specific frequencies. This

can be thought as the ultrasonic equivalent of a Helmholtz resonator for audible

sound. A similar behavior was theoretically demonstrated in [KHE 02] for a stubbed

phononic waveguide in the case of a scalar wave propagating in water with a crystal

consisting of periodical solid scatterers. Figure 8.14(a) shows how an acoustic wave

reflects from the end of the stub and interacts destructively with the incoming wave

field. It was especially shown that the length or the width of the stub significantly

affects the number and frequency of transmission zeros, as indicated in

Figure 8.14(b), which shows a transmission spectrum calculated for stubs having

different widths.

(a) (b)

Figure 8.14. Stubbed phononic crystal waveguide [KHE 02]: (a) calculated field
amplitude at the frequency at which the stub causes a transmission zero and (b)
calculated transmission coefficient as a function of frequency for a stub width of one
(solid line) or two (dashed line) unit cells

Further expansions of these concepts were investigated, this time also

experimentally, to propose more complex functions. For example, Pennec et al.
[PEN 05] used two cavities, formed by the removal of a scatterer in the phononic

crystal, to couple together two waveguides, as sketched in Figure 8.15. The coupling

was facilitated by stubs extending out of the waveguides towards the cavities. At the

resonance of the cavity mode, waves propagating through one of the guides could be

redirected towards the second waveguide, hence promoting a demultiplexing

function.
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Figure 8.15. (a) Coupling between two stubbed waveguides through resonant cavities
made of two vacancies in the phononic crystal. (b) Calculated transmission spectrum
at ports 2, 3 and 4 for an input excitation at port 1. (c) Calculated fields at 283 kHz,
corresponding to the frequency where the transmission drops at the level of ports 2
and 3, while it is enhanced at port 4. (d) Calculated fields at 286 kHz, where the
transmission drops at ports 2 and 4, and is enhanced at port 3. Reprinted from [PEN
05], with the permission of AIP Publishing. For a color version of this figure, see
www.iste.co.uk/romero/metamaterials.zip

Guidance by a line defect waveguide was experimentally demonstrated in 2004

[KHE 04], by forming a waveguide by removing rods from a periodic

two-dimensional lattice of steel cylinders immersed in water. In this series of

experiments, it was proved that the complete band gap is capable of forcing waves to

travel across sharp bends. In 2007, Hsiao et al. focused on a solid phononic crystal

slab [HSI 07]. They fabricated a phononic crystal structure made of steel spheres

embedded in an epoxy matrix, already mentioned in section 8.2.2.2. Interferometric

measurements of the wave amplitude revealed an attenuation of approximately
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–45 dB for the wave transmitted through the six-period-long waveguide, which has to

be compared with an attenuation of about –60 dB for the phononic crystal itself, and

about –30 dB for the epoxy slab alone. These values proved to be strongly

frequency-dependent and not uniform in the frequency range of the phononic band

gap due to the complex band structure of the waveguide. Additionally, the additional

15 dB attenuation compared to the sole epoxy medium was too high for practical

applications. As such loss rates were not observed in early experiments in water, they

are likely to originate from coupling losses at the entrance or the exit of the

waveguide, where mode conversions exist between the Lamb or plate waves of

the slab and the modes of the crystal or conversely, as well as from intrinsic losses of

the defect modes themselves.

All these demonstrations were performed in the 100–500 kHz range, therefore far

below the radiofrequency range. Waveguiding of surface modes at a frequency close

to 1 GHz was only demonstrated in 2015, by Benchabane et al. [BEN 15]. This

demonstration required forming a square lattice (2.1 μm period) of holes (1.9 μm

diameter, 2.5 μm deep) in a lithium niobate substrate, which opens a band gap

ranging from 650 to 950 MHz. Surface waves were excited by chirped transducers

capable of exciting waves from 630 to 1.3 GHz, which were fabricated by

electron-beam lithography to ensure a sufficiently fine resolution of the metal

electrodes. Propagation of waves was imaged by laser scanning interferometry and

revealed that a single-line defect effectively guides, within the band gap, waves in a

micron-size guide. As for low-frequency experiments, an attenuation of 10 dB was

measured between the entrance and the exit of the waveguide, also attributed to the

modal mismatch between the incident and transmitted waves and the guided mode.

Despite an effective waveguiding behavior and the possibility to implement sharp

bends, propagation losses exhibited by phononic waveguides remain too large for

practical applications by at least an order of magnitude. Clearly, one of the main

issues pertains to the matching of defect modes to the incident waves in order to

transfer nearly all the power inside the guide. A second critical point is to reduce

propagation loss in the waveguide itself. While these remain still open issues, the

focus of the community has shifted towards another use of localized defect modes:

resonant cavities.

8.3.2. Phononic crystal cavities

When defects consist in the removal of a single scatterer, or a group of scatterers,

in a perfect phononic crystal exhibiting a complete band gap, they give rise to a

highly localized mode and, therefore, to a strong confinement of waves inside and in

the close vicinity of the defect. Khelif et al. investigated this experimentally, with an

ultrasonic phononic crystal, made of a square array of steel cylinders immersed in

water [KHE 03]. They proved that the cavity formed by the removal of a single
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scatterer leads to the appearance of a sharp transmission peak within the phononic

band gap otherwise characterized by a low-transmission (–20 dB) region, as shown in

Figure 8.16(a). When several, reasonably spaced cavities are formed, mode splitting

between the coupled cavities brings up several transmission peaks.

Eventually, they demonstrated that when a sufficient number of cavities are

disposed in-line, the number of split modes becomes sufficient to form a transmission

band contained inside the band gap. In Figure 8.16(b), this transmission band extends

roughly from 275 to 305 kHz [KHE 03]. This provides another mechanism to

implement a waveguide, other than forming an extended line defect. In subsequent

work, the same authors replaced cavities formed by the removal of a scatterer by

inserting a line defect, that is, a spacing between two lines of unit cells of the crystal,

in the direction perpendicular to the considered wave propagation direction

[KHE 10b]. The band gap of the crystal ensures that waves are confined in this

spacing and that the coupling between other line defects is evanescent. Such

waveguides also exhibit a filtering behavior, since transmission through the set of

resonators can only occur in the vicinity of the resonance frequency of individual

cavities.

(a) (b)

Figure 8.16. Transmission spectra for waves propagating in a
steel/water phononic crystal in which several defects have been formed
[KHE 03]: (a) single-defect cavities and couplings between two defects

and (b) array of defects coupled to form a transmission band
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Another type of resonant cavities is Fabry–Perot-like resonators, consisting in a

free propagation path inserted in between two phononic crystals. Mohammadi et al.
[MOH 09] introduced them in phononic crystal slabs. With the set-up shown in

Figure 8.17(a), they measured the transmission through the Fabry–Perot cavity and

revealed the resonant modes they support. An example of such a measurement is

shown in Figure 8.17(b). Sun et al. [SUN 09] demonstrated that the resonant modes

of phononic crystal slab Fabry–Perot cavities are in fact conventional Lamb modes of

the matrix slab. As they cannot couple to any mode in the phononic crystal in the

frequency range of the phononic band gap, they are trapped in a resonant cavity,

forming a resonance whose displacement amplitude and quality factor are only

limited by the effective transmission coefficient of the phononic crystal and the

quantity of power leakage out of the cavity they allow. As shown in Figure 8.17(b),

Mohammadi et al. measured quality factors (defined as the ratio between the

transmission peak center frequency and its –3 dB bandwidth) of 6,300 at a frequency

of 126 MHz, with a phononic crystal extending over three periods [MOH 09]. This

may not seem an outstanding figure of merit for silicon micro-resonators, but could

be certainly improved with longer phononic crystals providing better insulation.

Experimental data provided in [MOH 09] reveal however that, although quality

factors improve with the number of crystal periods, the transmission through the

Fabry–Perot resonator decreases. This is indeed expected, as better isolation from the

environment makes the probing of highly confined modes more difficult from an

external source.

(a) (b)

Figure 8.17. Phononic crystal slab Fabry–Perot resonators: (a) scanning electron
microscopy image of a Lamb-wave delay line used to characterize the resonant cavity
and (b) electrical measurement of the fundamental cavity mode falling in the phononic
band gap. Reprinted from [MOH 09], with the permission of AIP Publishing
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To benefit from potentially high-quality factors while still being able to efficiently

excite and detect the highly confined modes of Fabry–Perot cavities, Wu et al.
proposed to directly insert the transducers inside the cavity. To demonstrate this idea,

they inserted a ZnO/Si surface acoustic wave delay line inside a phononic

Fabry–Perot cavity formed by etching a square array of cylindrical holes in the

silicon substrate [WU 09], as sketched in Figure 8.18(a). In this configuration,

instead of exciting propagating surface waves, the interdigitated transducer excites

the low loss cavity modes, leading to a boost in the transmission coefficient of the

delay lines by 7 dB, as revealed by Figure 8.18(b). Additionally, the phononic crystal

provides a much more compact reflector than the conventional electrode gratings

used in the surface wave filters industry. This comes, however, with the appearance

parasitic dips visible in the electric transmission, caused by the multiple cavity of

modes, which are also excited by the interdigitated transducers.

(a) (b)

Figure 8.18. Insertion of transducers directly inside a Fabry–Perot cavity: (a) sketch of
the resonator inserted in between two phononic crystals acting as reflector structures
and (b) electric response of the resonator with the phononic crystal reflectors (solid
line) or with conventional short-circuited electrode reflectors (dashed line). Reprinted
from [WU 09], with the permission of AIP Publishing. For a color version of this figure,
see www.iste.co.uk/romero/metamaterials.zip

Taking a similar scheme, Mohammadi et al. [MOH 11] inserted a single

transducer inside a phononic crystal slab Fabry–Perot cavity, as shown in

Figure 8.19(a), and obtained similar quality factors to their earlier experiments with

transducers positioned outside of the cavity [MOH 09]. In the case of phononic

crystal slabs, the phononic crystal does not provide a better or more compact

confinement to Lamb wave devices than the conventional membrane edges

delimiting the resonant cavity employed in a majority of works, visible in

Figure 8.20. It offers, however, a way of maintaining suspended membranes attached
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to the substrate by a support, which prevents the leakage of waves from the

membrane to the surrounding medium, hence limiting anchor losses faced when

employing solid tethers. This idea received a large interest from the MEMS

community and will be further developed in section 8.4.1.

(a) (b)

Figure 8.19. Phononic crystal employed as a reflector delimiting the resonant cavity of
a Lamb wave resonator: (a) scanning electron microscopy image of the fabricated
device and (b) electrical measurement of the resonator response. Reprinted from
[MOH 11], Copyright 2011, with permission from Elsevier

Figure 8.20. Conventional Lamb wave resonator with a resonant cavity
delimited by a straight ending of the propagation medium. Reprinted

from [ZHU 19]. Copyright 2019, with permission from Elsevier

Before that, for the sake of completeness, we briefly describe similar attempts to

replace the short-circuited electrode gratings conventionally used as reflectors for

surface acoustic wave resonators by phononic crystals. These were reported after the

first works on Lamb wave resonators. Liu et al. demonstrated a phononic crystal for

Love waves guided in a silica film on top of a quartz substrate and used it as a
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reflector [LIU 14]. Their structure, as well as an example of electric response are

shown in Figure 8.21. The experimental quality factors were however almost one

order of magnitude lower than what was obtained for Lamb wave resonators using

phononic crystals as reflectors. The first explanation for this was the extremely high

sensitivity of the quality factor to the positioning of the crystal with respect to the

electrodes, to ensure that electrodes are optimally positioned for the excitation of one

specific mode of the relatively large cavity. The second point was the coupling of the

Love waves with bulk waves of the substrate, due to the finite depth of the holes used

as scatterers. Elaborating on this, Wang et al. noted that such an effect occurs

primarily when waves excited by the transducer impinge the phononic crystal: mode

conversion between the Love wave (in their case, guided in a GaN layer on a

sapphire substrate) and Bloch modes causes a significant excitation of bulk waves

radiating in the substrate [WAN 15]. To overcome this fact, they implemented a

smooth transition between the free propagation medium and the phononic crystal,

taking the form of a crystal starting with a gradient of scatterers diameter in the

propagation direction. This way, they managed to obtain a quality factor of 880 for a

resonator surrounded by a graded phononic crystal, compared to a quality factor of

248 for a sharp crystal. The drawback is, however, a loss in electromechanical

coupling factor with the practical extension of the resonant cavity out of the

transducer. This is due to the fact that transduction does not take place in the whole

cavity, thus decreasing its efficiency. Additionally, even though this gradual matching

of the crystal to the cavity improves quality factors, they still remain lower that what

can be conventionally obtained using conventional short-circuited electrode

reflectors. As for Lamb wave resonators, the benefit lies, however, in the reduced

footprint offered by the very compact phononic crystal.

Figure 8.21. Love wave resonator using a phononic crystal as a reflector: (a) sketch of
the resonator structure and (b) electrical response close to the resonance. Reprinted
from [LIU 14]. Copyright 2014, The Authors. Published under Creative Commons(CC
BY 4.0) license (https://creativecommons.org/licenses/by/4.0/). For a color version of
this figure, see www.iste.co.uk/romero/metamaterials.zip
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8.4. Practical applications of phononic crystals

Clearly, the initial expectations for phononic crystals in the 2000s, driven by the

possibility to guide waves along phononic channels and to manipulate them using

resonant cavities or stubs, are not living up to the expectations of the RF

telecommunication systems community. Potentially practical implementation are

mostly limited to their use as building blocks of resonator structures: mostly as very

compact reflectors. Even so, their added value may be questioned, as

well-established, simpler and at least effective reflector structures are already

employed by the resonator community. Niche applications for phononic crystals

however remain, notably in the field of MEMS resonators, SAW devices and in

relation with photonics, which we detail in this section.

8.4.1. Phononics for MEMS resonators

As highlighted in section 8.3.2, phononic crystals do not perform more effectively

than conventional reflector structures for acoustic resonators. This is especially true

for Lamb wave (also referred to as contour mode) resonators that rely on ending

abruptly the resonant cavity with a solid/air interface to implement a perfect reflector.

Such resonators, implemented as suspended membranes, need mechanical supports

to remain attached to the substrate. These anchors may provide a path for acoustic

leakage out of the resonators. This is where Sorenson et al. proposed to replace the

usually straight tethers supporting the resonator body, an example of which is

depicted in Figure 8.20, by a phononic crystal whose band gap falls around the

resonance frequency of the resonator in order to confine acoustic waves in the

resonant cavity. A first version of such a crystal is a line of ring-shaped resonant

structures, an example of which is shown in Figure 8.22(a) [SOR 11]. With such

anchors, the quality factor of the resonator considered in [QIN 16] increases from

2,660, in the case where straight tethers are employed, to 6,250. This comes,

however, at the expense of adding small parasitic resonances at the edges of the

phononic band gap. Using instead a gourd-shaped periodic structure, shown in

Figure 8.23(a), which geometrically differs less from a conventional straight tether,

Wu et al. obtained a reduced quality factor improvement (from 1,304 for a straight

tether to 1,893 for the gourd-shaped phononic crystal tethered resonator, as visible in

Figure 8.23(b)). They managed, to even remove some parasitic resonances that could

be noted on measurements of resonators with straight tethers [WU 16].

For appropriate designs, the achievable quality factor increase can therefore be

significant and proves the effectiveness of phononic crystal tethers to suppress anchor

losses. Yet, more conventional methods have already demonstrated a similar

efficiency. The easiest and most straightforward method is to design straight tethers
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with a length corresponding to a quarter wavelength. Considering electrostatically

actuated length extensional resonators, Jansen et al. have thoroughly investigated the

dependence of the quality factor of the resonator on the length of the support tethers

[JAN 11]. They demonstrated that the quality factor of a suspended MEMS resonator

can increase from 3,000 to 19,000 with a proper design of straight tethers, hence

showing that there is no absolute need to involve more fragile and complex designs

as phononic tethers.

(a) (b)

Figure 8.22. Lamb wave resonator with a phononic crystal tether based on a line of
ring resonators (a) and implact of the type of tether on the measured quality factor(b).
Reprinted from [ZHU 19]. Copyright 2019, with permission from Elsevier. For a color
version of this figure, see www.iste.co.uk/romero/metamaterials.zip

(a) (b)

Figure 8.23. Lamb wave resonator with gourd-shape phononic crystal tethers: (a)
optical microscope picture; (b) measurement of a resonator (red continuous line) and
comparison with a reference structure with a conventional tether (blue dashed line).
Reprinted from [WU 16], with the permission of AIP Publishing. For a color version of
this figure, see www.iste.co.uk/romero/metamaterials.zip
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Tu et al. have in addition demonstrated that periodic arrays of holes and while they

efficiently decrease anchor losses, they may also increase the amount of thermoelastic

damping by one order of magnitude [TU 12]. This is probably do to with an increase in

the coupling of shear deformations to compression of the matrix material. In the case

of a Lamé mode resonator, this increased thermoelastic damping manages to replace

anchor losses as the dominant loss mechanism.

There is, however, one point for which phononic crystal anchors provide a clear

added-value: heat dissipation. Campanella et al. have investigated the behavior of

Lamb wave resonators whose resonant cavity is limited by a phononic crystal and

compared it to that of a conventional resonator delimited by a solid/air interface.

When applying relatively high electrical input power, the resonators delimited by a

phononic crystal revealed lower temperature increase than conventional ones.

Assuming that the phononic crystal does not impact the dependence of the resonance

frequency on temperature (which is caused by thermal expansion of the whole

structure, as well as by the dependence of the elastic constants on temperature) the

results in reduced frequency shifts due to temperature dependence of the resonance

frequency [CAM 14] and, therefore, in a better frequency stability. This is very likely

caused by the fact that the crystal, although filled with many holes, provides an

additional path for heat dissipation compared to the abrupt ending of the resonator

structure. The drawback is, however, reduced linearity, possibly attributed to the

increased thermoelastic damping mentioned earlier.

As a conclusion, using phononic crystals as reflectors or as tethers for MEMS

resonators is clearly not more effective than well-designed conventional tethers or

air/solid interface reflectors. On the contrary, it may even increase the amount of

thermoelastic damping compared to a fully solid structure. However, in some specific

cases, it may provide a path for heat dissipation, which may find some interest if

thermal stability is the major criterion sought.

8.4.2. Phononics for surface acoustic wave resonators

As we have seen in section 8.3.2, the initial attempts to replace the shorted

electrode reflectors commonly employed in SAW resonators did not reveal a major

gain in quality factors or in electromechanical coupling factors. Given also the fact,

as discussed in section 8.2.2.1, that fabricating these crystals in piezoelectric

substrates drastically complicates the otherwise simple fabrication process for SAW

devices, it seems very unlikely that this approach finds application in the SAW filter

industry unless phononic crystals manage bringing about a genuine technological or

conceptual breakthrough.

It cannot, however, be denied that the SAW industry nowadays faces

technological challenges linked to the inevitable increase in the required operation
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frequency of filters. The major limitation in the operation frequency of SAW devices

is the resolution of the interdigitated electrodes required to excite these waves, as the

electrodes already exhibit submicron dimensions at frequencies higher than 1 GHz.

This is a direct consequence from the relatively low propagation velocities of surface

waves. Current standards at 2.45 GHz already call for finger dimensions lying

straight at the limit of steppers used up to at least a few years back in the SAW

industry, that is, 350 nm. The new resolution limit of 250 nm, – set by more recent

lower-cost projection lithography affordable by others than the IC industry, – is about

to be reached. Such dimensions raise considerable reliability concerns as the electric

fields developing across sub-micron gaps reach rapidly extremely large values, which

limits the power-handling capabilities of SAW devices. Therefore, the SAW filter

community has been actively investigating other types of waves with higher phase

velocities in the last four decades [HAG 72, TAN 07, CHI 10]. A solution is to

deposit a thin piezoelectric film on top of a high-velocity substrate such as silicon,

sapphire or diamond. In such structures, surface modes benefit from an increase in

phase velocity due to the large stiffness of the substrate, seen through the evanescent

tail of the mode. Truly guided modes, – confined mostly in the piezoelectric film

through total internal reflection and exhibiting considerably large phase velocities, –

are often overlooked, as they usually suffer from lower electromechanical coupling

factors.

Elaborating on this, Khelif et al. [KHE 08] proposed to completely guide waves

in the piezoelectric film by relying on the confinement brought by an acoustic Bragg

mirror. Taking the example of a tungsten/aluminum multilayer, they theoretically

demonstrated that such a 1D phononic crystal can open an omnidirectional band gap

and can therefore prohibit any radiation of waves towards the substrate in the

frequency band of interest. Adding a piezoelectric film on top of the superlattice

produces defect modes localized in the film, which acts as an effective waveguide. In

such conditions, they proved that resonances can be obtained at 5.5 GHz for

interdigitated electrode periods of 1.2 μm. Such a structure is reasonably achievable

both in terms of electrodes dimensions and in the fabrication of the superlattice,

which only requires the deposition of six films on a substrate, a technological process

that remains simpler than the processes in use by the RF BAW industry.

A similar idea was further considered by Koné et al. [KON 10], although their

Bragg mirror did not necessarily open an omnidirectional band gap. Provided that the

transmission of waves from the piezoelectric film to the substrate remains low

enough (typically below –25 dB, as seen in Figure 8.24(a)) for waves mixing

longitudinal and shear polarization at a wavelength compatible with the period of the

interdigitated transducer, the mirror fulfills its role and can efficiently trap waves in

the piezoelectric film, as seen on the displacement distribution shown in

Figure 8.24(b). In such conditions, the guided waves operate very close to Lamb

waves and can, therefore, exhibit very large phase velocities. In [KON 10], a
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resonance frequency of 1.83 GHz was reached using a mode similar to the S1 Lamb

mode in a piezoelectric plate, for an electrode period of 8.4 μm.

(a)

(b) (c)

Figure 8.24. Resonators exploiting waves guided in an aluminum nitride film on top of
an SiN/SiOC Bragg mirror: (a) transmission coefficient for longitudinal and shear waves
of the Bragg reflector, (b) sketch of the layer stack and of the vertical displacement
field versus depth of the mode of interest and (c) electric response (inset, a scanning
electron microscopy image of the resonator) of the resonator (solid) along with the
simulated response (dashed). Reprinted from [KON 10], with the permission of AIP
Publishing

Despite reaching high frequencies, the resonators obtained in these initial works

suffered from relatively low electromechanical coupling factors (respectively 0.75%

and 2%). This made them inappropriate for the synthesis of front-end filters. The

reason for such low electromechanical coupling factors originated from the fact that

Lamb waves in aluminum nitride, which was considered as the piezoelectric film in

these two works, exhibit naturally relatively weak electromechanical coupling factor.

This material performs better for bulk wave resonators. For this reason, Takai et al.
[TAK 16] investigated the use of lithium tantalate as the piezoelectric material, since

it benefits from increased piezoelectric properties compared to aluminum nitride.
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This material cannot be readily deposited, but a thin single-crystal film of LiTaO3

can be transferred on a supporting substrate as an alternative. Takai et al. used this

technology to transfer such a film on top of a Bragg mirror made of silicon dioxide

and aluminum nitride or silicon nitride, to fabricate resonators and filters operating at

1.9 GHz. The low intrinsic losses of lithium tantalate, added to the high confinement

of waves brought by the acoustic reflector, provided quality factors close to 4,000,

that is, three times larger than conventional SAW devices fabricated on a bulk lithium

tantalate substrate. Moreover, inserting silicon dioxide in the resonator, – a material

that, unlike nearly any other, – has the extremely interesting property of having a

stiffness increasing with temperature, offers some significant compensation of the

frequency drifts with temperature. The cumulation of these three important

parameters for the synthesis of high-performance filters has caused this solution to be

dubbed “incredibly high-performance SAW” (IHP-SAW) and made it currently a hot

topic in the filter community.

Still, one-dimensional superlattices, or Bragg mirrors, cannot be fully related to

phononics. The literature, however, features some higher-dimensional examples of

particularly well-suited applications of phononic crystals to SAW resonators. One

elegant approach has been proposed by Solal et al. [SOL 10a] to solve the issue

related to parasitic resonances appearing in SAW resonators due to diffraction effects

in the electrode gratings and causing lateral standing waves, which perturb the

electric response of resonators. These phenomena degrade the quality factor of these

components, which translates into additional transmission losses for a filter. To

prevent their formation, the authors propose to add a second periodicity to the initial

one inherited from the periodic electrode strips. This takes the form of tungsten plugs

added periodically on top of the interdigitated electrodes of resonators, as sketched in

Figure 8.25(a). This two-dimensional periodic structure opens a band gap, which

then prevents the propagation of waves in the direction perpendicular to the expected

surface waves, and as such improves the quality factor of SAW resonators. With a

very close approach, Yantchev and Plessky [YAN 13] considered acoustic diffraction,

not only inside the electrode gratings as a source of loss in SAW resonators, but also

towards the outside of the resonators. These sources of leakage arise from the natural

diffraction occurring due to the finite length of the electrodes, as well as because at

their ends the electrodes face the opposite bus bar, so that the local electric field

perpendicular to the expected propagation direction causes the excitation of laterally

propagating waves. To prevent these losses, they also propose to add plugs over the

bus bars of the SAW resonators. Their work has so far only remained theoretical, and

for the moment, industrial SAW filters do not seem to embed phononic structures for

parasitic resonances suppression.
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Figure 8.25. Phononic crystal made of W plugs positioned on
top of the electrodes of a SAW resonator for the suppression of lateral

wave diffraction in interdigitated transducers. Reprinted from
[YAN 13], with the permission of AIP Publishing

8.4.3. Phononics for photonics

As a last field of application, a striking feature of Figure 8.1 is that hypersonic

waves exhibit the same wavelengths as optical waves. Optical communications are

another way to transmit data in addition to air propagation. The fact that

radiofrequency acoustic waves share the same wavelengths as optical waves, and can

therefore interact at the wavelength level, offers one way of manipulating optical

waves with radiofrequency signals.

Interaction of light with elastic waves, however, occurs irrespective of the

commensurability of their respective wavelength. The most widespread component

illustrating this is the acousto-optical modulator: the strain produced by an elastic

wave causes periodic variations of the refractive index of the medium that affects the

propagation of optical waves, usually by acting like a time-dependent diffraction

grating. Because these perturbations occur at regular intervals they cause a

modulation of the optical signal and are widely used in acousto-optic modulators.

Commercial acousto-optical modulators are based on interactions occurring in a bulk

substrate, with a transduction piezoelectric layer usually separated from the

propagation medium [XU 92]. Attempts to transpose the concept of these devices to

integrated optical systems have been reported in the literature. The proposed

integrated modulators rely on surface acoustic waves to provide the necessary strain,

due to their ease of fabrication and the natural confinement of strain close to the

surface of the substrates where optical waveguides can be easily implemented. If

diffraction efficiencies close to one could be reached [TSA 13], efficiency of the

acousto-optical coupling is, however, relatively low and requires very long
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interaction length and high input acoustic power to achieve satisfying performances.

The concepts and capabilities offered by the advent of photonic and phononic

crystals appeared as potential ways to circumvent these limitations. Tailoring the

dispersion properties of optical waves with photonic crystals has, for instance, led to

the concept of slow light, when the group velocity of optical waves can be strongly

decreased by the bending of dispersion curves close to the edges of the photonic band

gap. This calls for largely increased interaction times with the perturbation source,

either electro-optic [ROU 06, BRO 08] or acousto-optic [RUS 03, LIM 05, COU 10].

Even stronger interaction is expected when the interaction between elastic strains and

electromagnetic fields is exacerbated by a simultaneous confinement of the acoustic

and optical waves in a phononic/photonic waveguide or cavity. This fact was first

observed in one-dimensional superlattices [TRI 02], and then doserved in specifically

designed photonic crystal fibers [KAN 09] or cavities [FUH 11]. It has then

motivated the research for crystals simultaneously exhibiting band gaps for optical

and elastic waves, also dubbed phoxonic crystals.

Maldolvan and Thomas theoretically demonstrated that complete photonic and

phononic band gaps can open in infinite two-dimensional square or hexagonal

lattices of holes [MAL 06a]. They also showed that such crystals could be used to

provide simultaneous confinement of elastic and optical waves in cavities

[MAL 06b]. Later, Pennec et al. [PEN 10] and Mohammadi et al. [MOH 10]

demonstrated that this is also possible in silicon slabs drilled with circular air holes

forming a honeycomb lattice for high filling fractions. They demonstrated that other

arrangements lead to gaps only valid for some specific polarizations of light. El

Hassouani et al. demonstrated that arrays of silicon pillars formed on top of a silicon

dioxide slab, and on their side, can exhibit complete phoxonic band gaps for any type

of lattice [ELH 10].

The field enhancement expected by a joint confinement of light and sound also

opens appealing perspectives in the fast expanding field of optomechanics.

Optomechanics is based on the use and enhancement of the interaction between

optical radiation-pressure forces and mechanical motion. This interaction was

initially exploited to achieve ground-state cooling for ions in ultracold atom

experiments and has since then shown its potential for coherent control of the

mechanical motion of micro- or nanoscale objects with relatively large masses, hence

setting an exciting playground for, among others, the realization of table top quantum

experiments [ASP 14]. In some cases, radiation-pressure forces can be seen as a

relevant way to replace the conventional piezoelectric or electrostatic transduction for

nanostructures, since these schemes do not scale favorably when dimensions become

smaller, while optical forces become significant for low-mass objects. This, –

associated with the intrinsic contactless nature of this transduction scheme, in the

sense that no electrodes are required at the level of the resonator, – makes it

particularly suited to ultrasensitive mechanical sensing [KRA 12]. As a now fairly
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standard scheme for such an experiment, Li et al. excited the vibration of a

freestanding clamped–clamped silicon beam using the electromagnetic radiation

forces generated by its proximity with an optical waveguide and probed the

displacement of this resonator through an evanescent coupling between the optical

waveguide and the nano-beam [LI 08]. One of the first applications of this readout

scheme is optical modulation: the displacements of the resonator induced by the

optical forces induces a time-varying geometrical configuration, which in turn

translates in tuning the photonic circuits [ROS 09]. Conversely through the interplay

of the mechanical nonlinearities, – which are naturally strong in nanoscale

mechanical structures, – the optical forces can oppose in some configuration the

motion of the mechanical structure and quench it. This allows us to counteract the

natural motion of a nano-mechanical structure caused by the thermal phonon bath,

and is therefore called optical cooling [ARC 06].

All these applications require high-quality factor, mechanical and optical

structures to convert the relatively weak forces into large displacements, or to benefit

from a naturally weak coupling to the thermal phonon bath [FON 10]. Such

high-quality factors are achieved by a proper choice of material with low damping

(silicon, or strained silicon nitride [FON 10]), as well as with a beam structure

capable of offering a strong localization for the optical and mechanical modes. This

is where phoxonic crystals come into play. In [EIC 09], the crystal takes the form of a

one-dimensional crystal with a ladder shape, obtained by etching almost rectangular

holes along the length of a silicon nano-beam. Several designs combining phononic

crystal-based acoustic shielding and one- and two-dimensional optomechanical

cavities were then proposed and implemented [SAF 10, CHA 12]. More recent

structures rely now on a combination of strain engineering and mechanical

decoupling from the surroundings of the resonator [GHA 18, FED 19]. Engineering

strain consists in tapering the nano-beam to concentrate stress up to the material yield

strength in the region where waves will be localized. When in high tension, the

material is made stiffer, which strongly decreases its mechanical damping.

Mechanical decoupling is achieved by adding a phononic crystal to suppress anchor

losses, as was proposed for MEMS resonators. To accommodate for the dispersion

induced by the tapering of the beam, the phoxonic crystal, – taking the form of stubs

added to the edges of the beam, – is also tapered, as shown in Figure 8.26. Such an

exquisite arrangement manages to provide elastic modes with quality factor times

frequency products in the range of 1015 Hz at room temperature, which is an order of

magnitude higher than the best electromechanical resonators reported to date. The

perspectives opened by such high-quality factors are resonators with extremely long

phonon coherence time. Also a sufficiently low number of thermal phonons reveal

quantum elastic effects in relatively large mechanical objects without the need to go

towards cryogenic temperatures.
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Figure 8.26. Nano-mechanical beam resonator benefiting
from strain engineering and from a phononic crystal to increase the

phonon coherence time. Reprinted from [FED 19]. Copyright 2019, with
the permission of the American Physical Society

From a shorter-term perspective, optomechanical systems have proved relevant

for the realization of radiofrequency signal processing devices, given the intrinsic

information transfer occurring between the optical and the RF or microwave domains

in such physical systems. A practical implementation to the field of information and

communication technologies however requires a higher level of integration that can

be reached by integrating an electrical or piezoelectrical actuation scheme to the

opto-mechanical system in order to drive the mechanical motion through external,

stronger, coherent RF driving fields. These optomechanical on-chip devices have

received growing interest over the past few years, and tend to integrate a rising

number of functionalities and degrees of freedom for both the RF and the optical

regimes [WIN 11, BOC 13, XIO 13]. If a complete integration of simultaneous

photonic and phononic crystals or cavities in such systems is still to be

unambiguously demonstrated, then strategies based on the association of a photonic

nanobeam with a phononic waveguide have been used to show that both optical and

mechanical excitation and readout of the RF signal could be achieved [BAL 16].

Interestingly, the proposed architecture integrates interdigitated transducers operating

at 2.4 GHz, a configuration that brings the proposed device closer to more classical

piezoelectric RF components and paves the way to an integrated circuitry supporting

traveling elastic waves. This broadens the already wide avenues opened by recent

developments in nano-opto-electromechanical systems [MID 18]. Whether elastic

metamaterials will be considered as presenting enough added-value to be integrated

in already complex systems is still an open discussion.

8.5. Perspectives

The applications of phononic crystals, or more generally of elastic metamaterials,

to radiofrequency applications is a perfect example of adoption of a new technology

following the hype cycle developed by the research and advisory firm Gartner

[GAR 16].

Starting with early works on phononic crystals as a technology trigger, initial

expectations were the possibility of introducing phononic chips built upon phononic
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waveguide circuits. The ambition was to achieve complex functions devoted to wave

manipulations, which would outperform RF electronics with a tremendous level of

miniaturization. Early developments led in the early 2000s demonstrated the

possibility of implementing phononic crystals operating in the hypersonic regime and

compatible with already existing acoustic resonator structures such as SAW or BAW

devices. The confidence grew when waveguides, stubbed structures and resonant

cavities were demonstrated, until reaching a peak of inflated expectations in the early

2010s. It however soon became evident that the specifications that could be expected

from phononic structures were far behind the needs of RF communications systems,

which were already pushing mature technologies such as SAW or BAW devices to

extremes. Waveguides suffered from utterly large losses; reflectors, although

compact, did not provide a better confinement than existing solutions and even

induced more complexity and caused additional design concerns. Even the adoption

of phononic crystals as replacement for resonator anchors by the MEMS community

did, generally speaking, not fulfill expectations. The trough of disillusionment was

reached.

There are some clues that the slope of enlightenment may be the current state for

radiofrequency elastic metamaterials, although one can only look backwards to

evaluate a position on a hype cycle a posteriori. As discussed in section 8.4.2, some

applications are still under investigation for SAW devices: the current interest in

incredibly high-performance SAW filters may be a sign, although these devices have

not yet entered in mass production as promised in the end of 2016 [TAK 16].

We can also briefly mention some ongoing works for integration of mechanical

resonators within integrated circuits [BAR 15], with the goal of delivering

miniaturized timing functions directly at the core of circuits, or to provide

mechanical signal processing, which could lower power consumption compared to

the same functions achieved using transistors. Such mechanical devices, being

solidly embedded inside the interconnection structures of transistors, would have to

rely on hypersonic crystals such as the ones described in Figure 8.12(a). More

generally, the field of acoustoelectronics, – that is the manipulation of electrons by

acoustic waves propagating in semiconductor materials, or the perturbation of

transistors (e.g. the modulation of their gate voltage) by a radiofrequency wave – is

also currently a growing field of interest.

The fields of phoxonics or optomechanics described in section 8.4.3 are also full

of promises. Such structures could benefit optical telecommunications, as well as

high-sensitivity sensors and quantum information processing. Mechanical

confinement has proved to be a necessary ingredient of these optomechanical

systems and may provide an application field for elastic metamaterials. In addition to

actuation through radiation-pressure forces, the recent reports of optomechanical
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platforms involving coherent elastic wave source in the GHz range have triggered

some interest in the community of quantum electromechanics. Inspired by the use of

surface acoustic wave devices in semiconductor physics as charge and spin

carriers [HER 11, MCN 11], the field of circuit quantum electrodynamics (CQED),

defined as the solid-state equivalent of QED, has started adopting SAW [GUS 14]

and BAW [CHU 17] devices as the source of the mechanical motion to be coupled

with superconducting qubits. In this context, operating at GHz frequencies and with

mechanical cavities with high quality factors is key, which may revive interest for

hypersonic phononic cavities.
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9

Acoustic Metamaterials and
Underwater Acoustics Applications

9.1. Materials for underwater acoustics: what applications?

Electromagnetic waves propagate poorly underwater, unlike acoustic waves which

can be observed at long distance from the emitter, depending on source level and

frequency. The development of the first sonar systems together with submarines about

one century ago has initiated an extensive use of underwater sound by navies mainly

in relation to underwater warfare. More recently, the increasing worldwide demand

of energy and natural resources and the globalization of the economy have led to a

steady increase of maritime traffic and industrial anthropogenic activity at sea. The

growing concern of the scientific community regarding the impact of underwater

sound on marine life incites policy makers and stakeholders of the maritime domain to

mitigate their impact through appropriate measures. In that context, acoustic materials

for different applications are presented below:

– reduction of noise radiated from underwater vehicles;

– reduction of acoustic target strength of underwater vehicles;

– integration of acoustic detection systems;

– underwater acoustics environmental issues

9.1.1. Reduction of noise radiated from underwater vehicles

Most underwater vehicles or submarines are equipped with machinery items and

with propellers, which produce noise and vibration, radiating underwater sound
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waves throughout the hull or directly if the noisy equipment is outside the hull. The

sound emission, which is continuous through time, is higher at low frequencies and

can propagate underwater at long distances, producing a sound field that can be

detected by an adverse passive sonar, as shown in Figure 9.2. The noise emission is

characterized by the radiated noise level, a quantity expressed in dB re 1 μPa2 as a

function of frequency, back-propagated at 1 meter.

In order to reduce the risk to be detected by an adverse passive sonar system, a

requirement of importance for naval submarines is that the radiated noise level must

not exceed a limit value agreed between the supplier and the customer, generally

expressed in the form of a curve dependent on frequency. With the objective to fulfill

the requirements, measures are taken at design by using intrinsically silent machinery

equipment items, by reducing the transfer functions to the hull, thanks to elastic

devices and mounts, and by designing silent propellers. An additional possibility is

the use of external acoustic decoupling coatings, which allow significantly reducing

the radiation efficiency of the radiated hull. The coating, generally a few centimeters

thick with a low acoustic impedance, is schematically presented in Figure 9.1,

affecting the transfer path numbers 1 (vibratory) and 3 (airborne). The frequency

range of interest is from a very low frequency up to a few tens of kHz.

Figure 9.1. Reduction of hull-radiated noise using
an acoustic decoupling coating
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Figure 9.2. Detection of an underwater
vehicle by a passive sonar system

9.1.2. Reduction of acoustic target strength of underwater vehicles

Another threat for underwater vehicles is low-frequency active sonars. The sonar

emits powerful sound waves, in the form of short pulses, which propagate undersea.

A sufficiently large submerged structure will generate an echo, characterized by the

acoustic target strength (ratio of the backscattered energy and the incident energy),

likely to be detected by the receiving antenna and processor of the sonar system

(Figure 9.3). The target can also be an underwater object such as a mine. The

frequencies of interest are generally from a few kHz up to 100 kHz, but new systems

tend to use lower frequencies in order to increase their detection range.

Figure 9.3. Detection of an underwater
vehicle by an active sonar system

Target strength mainly depends on the size, shape and acoustic reflectivity of

external surfaces, as well as on the direction of incoming waves. A first type of

solution aiming to reduce target strength is the adaptation of the external shape, in

conjunction with acoustic deflectors or screens, but this is not always feasible.

Therefore, another possibility is the use of anechoic coatings, allowing the reduction

of the outer hull by absorbing the incoming wave, as shown in Figure 9.4.
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Figure 9.4. Absorption of an incident wave using an anechoic coating

9.1.3. Integration of acoustic detection systems

Ships and submarines are often fitted with acoustic systems for sensing the

environment, detecting other underwater objects or for navigation aid. Acoustic

materials or coatings are involved in the systems’ integration in order to improve the

acoustic response of the hydrophones (underwater acoustic sensors) or to protect the

acoustic arrays from noise emitted by the ship (called self-noise). Some examples are

illustrated in Figure 9.5:

– (left) for civilian applications, the hull of research vessels is equipped with

different acoustic sensors requiring careful integration, possibly involving acoustic

materials;

– (right) anechoic coatings are installed in order to eliminate reflected waves that

could disturb the array response.

9.1.4. Underwater acoustics environmental issues

A growing matter of concern in the scientific community is the underwater noise

pollution related to anthropogenic activity and its adverse impact on marine life.

The European Community adopted in 2008 the MSFD (Marine Strategy Framework

Directive), requiring the Member States to take appropriate measures in order to

achieve a good environmental status by 2020 [EUR 08]. Among different forms of

pollution, the introduction of energy, including underwater noise, has been taken into



Acoustic Metamaterials and Underwater Acoustics Applications 267

account. In fact, most marine animals use sound for their biological functioning, such

as finding prey or underwater communication. Two main cases must be considered:

– high level impulsive sound emissions that may lead to injuries or auditory

troubles. This is the case in particular for active sonar pulses, underwater air guns used

for oil and gas prospection at sea and marine pile driving (e.g. during the installation

of offshore wind farms);

– lower level, but continuous, noise emissions. Except if the marine animals

are very close to the sound source, these will not produce injuries. However, the

inadequate soundscape leads to auditory masking or behavior changes, leading in the

long term to negative effects. This is the case for noise footprints related to commercial

ship traffic and marine renewable energy systems in operation.

Figure 9.5. Materials for the integration of acoustic sensors (left:
research vessel; right: submarine bow section). For a color version of

this figure, see www.iste.co.uk/romero/metamaterials.zip

The frequency range of interest can be large, but the major concern is for low

frequencies, typically lower than a few kHz. Some research or technology

developments have addressed the mitigation of underwater noise. For example,

regarding pile driving noise, the classical mitigation solution being the use of bubble

curtains, alternative solutions using networks of rubber foam spheres or underwater

resonators have been considered. An example of such a solution is presented in

Figure 9.6.

Another important source of underwater noise is commercial shipping. Noise

footprint mitigation solutions and strategies have been studied in the scope of a

recent collaborative project [AUD 17]. A possible option is the installation of

decoupling coatings on the ship hull.
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Figure 9.6. Reduction of underwater noise emissions from pile driving
using networks of rubber foam spheres (left: interaction of an acoustic

wave with a sphere; middle: presentation in a workshop; right:
preparation of deployment at sea). From Kuhn et al. [KUH 13])

9.2. Definitions and characterization

9.2.1. General

Acoustic materials can have one or several of the following features:

– homogeneous: physical properties are the same within the material. On the

contrary, layered or composite materials are heterogeneous;

– isotropic: the acoustical properties are independent from the direction. Again,

composite layered materials are anisotropic;

– linear: the properties are independent of the intensity or level of excitation;

– dissipative: when a sound wave propagates inside the material, there is energy

loss and the amplitude of the wave decays along the path;

– dispersive: the wave speed of sound is frequency-dependent.

An isotropic homogeneous material is characterized by the volumetric mass

and two sound speeds (longitudinal and transverse). If the material is dissipative,

in the case of harmonic excitation, then the sound speed is represented by a

complex-valued quantity. A phononic crystal is an inhomogeneous medium formed

by a periodic arrangement of inclusions in a host medium (fluid or solid). When

varying frequency, a dispersive behavior appears, represented by the dispersion curve.

Stop-bands, related to Bragg wave interference effects, correspond to frequencies

where there is no long-range coherent propagation in the periodic material.
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Metamaterials are artificial composites whose acoustic properties are uncommon

in comparison to natural materials or their components. For example, they exhibit

negative volumetric mass and/or sound speed or very high losses in some frequency

ranges. There are two main differences with phononic crystals:

– the effects can occur at low frequencies (i.e. the thickness of the material or

coating can be small in comparison to the wavelength);

– the distribution of inclusions can be either random or periodic, whereas phononic

crystals are necessarily periodic.

9.2.2. The acoustic cloak concept

The concept of an “acoustic cloak”, which has been reported many times in the

literature, should not be confused with the concept of a metamaterial. As shown in

Figure 9.7, the objective of the acoustic cloak concept is to achieve perfect stealth

by diverting the scattered acoustic field from the target. The incoming wave does not

penetrate the target, but its path is modified in such a way that it is trapped inside the

cloak and reconstituted at the back. Two theories can be used to design such a coating:

transformational acoustics and scattering cancellation.

Figure 9.7. Illustration of the acoustic cloak concept

Transformation acoustics is based on a theory where the geometrical coordinates

are modified in a domain surrounding the object in order to force the waves to split

on it instead of interacting. The acoustics properties of the invisibility cloak domain
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(density, speed of sound) are selected in order to allow the penetration of the

incoming waves and the deviation of the wave path along their propagation. As

shown in Figure 9.8, in the original theory, the density and sound speeds inside the

cloak correspond to non-dissipative heterogeneous and anisotropic materials, with

increasing values when the distance to the surface of the object decreases [CUM 07].

Figure 9.8. Acoustic cloaking using transformation acoustics. From
[CUM 07]. For a color version of this figure, see

www.iste.co.uk/romero/metamaterials.zip

The second approach is acoustic cloaking based on scattering cancellation. The

target is surrounded by small secondary objects or structures whose acoustic fields,

combined with the target echo of the main body, produce an overall null scattered far

field. An example of application [SÁN 14] with simulations and laboratory

experiments is shown in Figure 9.9.

In summary, to obtain the desired cloaking effect, the physical properties of the

coating must be uncommon, thus requiring the use of special materials. In principle,

acoustic metamaterials represent a technological solution to realize the constitutive

materials in the cloak. However, our industry viewpoint is that the perfect cloak

concept is not mature enough to be considered for practical applications in

underwater acoustics. To date, although some authors claim otherwise, the theoretical

and experimental works have led to thick coatings and/or narrowband efficiency. For

that reason, in this chapter, we will focus on metamaterials themselves and not on the

cloak concept.
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Figure 9.9. Acoustic cloaking using scattering cancellation. From
García-Chocano et al. [GAR 11]. For a color version of this figure, see

www.iste.co.uk/romero/metamaterials.zip

9.2.3. Determination of performances of underwater acoustic materials
and coatings

Let us consider here the case of a submarine, which is the most demanding

regarding performance and integration issues. First, as illustrated in Figure 9.10,

depending on the needs, acoustic coatings can be installed on different parts of the

hull: rigid pressure hull, bridge fin, bridge casing, aft and bow frameworks

[AUD 11].

Figure 9.10. Illustration of a submarine external hull with different areas

Note that the supporting structure is not necessarily the pressure hull. For example,

the skin of the bridge fin is often made with composite material such as GRP (glass-

reinforced plastic), which is acoustically semi-transparent and not rigid.
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Second, there are many non-acoustic requirements from the naval architects and

the shipyards in order to practically integrate the coatings on a hull:

– limited thickness, generally no more than a few centimeters;

– limited density;

– sufficient thermal conductivity;

– limited static compressibility when submarine is diving;

– fire resistance;

– resistance to seawater environment;

– compatibility with gluing process.

Depending on the type of coating (anechoic, decoupling) and its zone of

integrations, the relevant parameters for acoustic performance will be one of the

following (Figure 9.11):

– decoupling efficiency or attenuation;

– reflection and/or transmission coefficient;

– anechoic coefficient (rigid backing).

Figure 9.11. Determination of acoustic performance of
hull coatings. For a color version of this figure, see

www.iste.co.uk/romero/metamaterials.zip

The coefficients depend on frequency and incidence angle. They are

non-dimensional and generally expressed in decibels. Characterization is usually

done in acoustic tanks with measurement on test panels of size 1 m × 1 m

(Figure 9.12).

Some recent work was done to improve the measurement techniques. Also,

because it is not possible to directly obtain the decoupling and anechoic coefficients,
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the measurement can be done with only the immersed coating, and a post-processing

technique is used to obtain the information of interest [AUD 12].

Figure 9.12. Measurement of test panels of acoustic materials in a
water tank. Example of the facility at ISEN, Lille

9.3. Overview of current technology

The following is an overview of different media and materials in relation to

underwater acoustics:

– fluids (water, seawater, some types of oil) are isotropic and have little dissipation

and dispersion;

– gas (air or other gases) can be present in seawater in the form of bubbles, or

encapsulated in other materials such as elastomers. In both cases, they have a strong

acoustical effect. For example, a bubble curtain can produce large attenuation of the

underwater acoustic propagation;

– metals (e.g. the hull of a ship) are isotropic and have little dissipation and

dispersion;

– structural composite materials such as GRP (glass-reinforced plastics) are

anisotropic and present a relatively small dispersion and dissipation;

– elastomers, which are often used for waterproofing or encapsulating transducers,

are generally homogeneous (or considered as such) and isotropic. They are strongly

dispersive and dissipative for transversal (or shear waves) but not for longitudinal

waves. In fact, the longitudinal speed of elastomers’ sound is close to that of water,

and as a consequence, they behave as a transparent medium for the interaction
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with underwater sound waves. Also, they do not have any significant attenuation

or absorption performance if not combined with other materials or inclusions.

Consequently, the availability of anechoic and decoupling materials for underwater

acoustics requires a special design. Two classical concepts are introduced below: the

micro-inclusion technology and the alberich-type coatings.

9.3.1. Micro-inclusion-type acoustic coatings

The principle of micro-inclusion technology consists of introducing some air or

gas content in an elastomer matrix in the form of micro-cavities or micro-balloons

with soft walls (size typically a few tens of μm). Also, other inclusions such as

carbon black or minerals can be added to adjust density or to comply with some

non-acoustic requirements. Although other elastomers can be used, polyurethanes are

commonly used thanks to their versatility and the possibility to mold pieces without

needing special thermal or high-pressure treatments. The volume ratio of air or gas is

generally a few percent for anechoic coatings and 10% or more for decoupling ones.

Once finished, the coating takes the form of tiles that can be installed on ship hulls

following a gluing process. When needed, it is possible to design coatings with

several layers of micro-inclusion materials (see Figure 9.13). Each layer is a

heterogeneous, isotropic, dispersive and dissipative medium. However, for the

frequency ranges of interest here, the material can be modeled as an equivalent

homogeneous material, because the inclusions are very small compared to the

wavelength and below resonance [KUS 74]. Therefore, this type of material cannot

be considered as part of the category of metamaterials. In particular, there is a

low-frequency limit related to thickness/wavenumber. Also, it should be noted that

when submitted to hydrostatic pressure, the apparent volume ratio of air or gas

diminishes, and consequently the composite’s acoustic properties will evolve

[BER 10].

Figure 9.13. Acoustic coating technology
using micro-inclusion materials
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The acoustic performances of a coating using that technology depend mainly on:

– the number of layers and their thickness;

– the acoustic characteristics of each layer, more particularly the density and the

complex celerity of longitudinal waves (which depend on frequency and temperature).

Prediction of performance and design can be done using analytical models:

– evaluation of the effective parameters of the micro-inclusion materials using

quasi-static homogenization models mentioned previously;

– propagation of plane waves in a multilayer medium with planar interfaces.

The modeling principle and an example of simulation results are shown in

Figure 9.14.

Figure 9.14. Prediction of acoustic properties of a single-layer or multilayer
micro-inclusion coating (right, numbers 1–4 correspond to different designs, with
designs 3 and 4 having anechoic performances). For a color version of this figure,
see www.iste.co.uk/romero/metamaterials.zip

9.3.2. Alberich-type acoustic coatings

As micro-inclusion materials behave like homogeneous materials, their acoustic

performances are directly linked to the reduced frequency, which is proportional to

the ratio of thickness to the speed of sound in the material. Thus, it is, for example,

difficult to design efficient anechoic materials at low frequencies. An alternative

concept is the Alberich-type acoustic coating. The name comes from the historical

rubber coating installed on a German submarine during World War II (Figure 9.15

(left)), which was designed with lattices of resonant cavities of appropriate diameters
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corresponding to frequencies to be absorbed. This type of coating generally consists

of a periodic arrangement of air cavities molded in an elastomer or rubber matrix.

With that concept, it is possible to design both decoupling and anechoic coatings,

with possibly improved performances, exploiting resonant phenomena. However, due

to the resonant behavior, some limitations may appear regarding the frequency

bandwidth of efficiency. In addition, similarly to the micro-inclusion technology, the

performances are dependent on hydrostatic pressure because of the presence of voids

or air inclusions.

Figure 9.15. Alberich-type acoustic coating technology

Prediction of the acoustic performances of this type of coating can be done using

the finite element method, by modeling a unit cell of the periodic structure. The first

development of the numerical method was done in the framework of the ATILA code

[HLA 91].

9.4. Examples of research in underwater acoustics metamaterials

A lot of research is currently being done worldwide, and as it is not possible to

give a complete overview, we will focus here on some work done in France, including

early research back in the 1990s.

9.4.1. Compliant tube gratings

The concept was introduced in the United States (and also studied in the Soviet

Union) as a solution for submarine flank array acoustic barriers, in order to reduce

noise coming from the hull to the array. It consists of a periodic array of resonant flat

empty tubes made with metal or composite material. If properly designed, the tubes

can withstand hydrostatic pressure up to a certain limit, without significant change in

the acoustic performances. Theoretical models were developed using a semi-analytical

approach: the partial domain method [RAD 82]. During my PhD thesis, I developed

predictive models using both the previous method and the multiple-scattering theories
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[AUD 89]. Note that the multiple-scattering theories can also deal with non-periodic

arrangements. Results, checked for comparison with experimental results, show that

there is a low transmission coefficient around some resonant frequencies of the tubes’

cross-section (Figure 9.16).

Figure 9.16. Compliant tube grating – theory and experiment

In order to improve the bandwidth associated with low transmission coefficients,

it is possible to use several layers of tubes with different cross-sections. Figure 9.17

shows the result obtained using a bi-layer compliant tube grating, the tubes in the

second layer being homothetic by a factor of 2 [AUD 91]. Also, regarding integration

issues, the tube gratings can be embedded as a whole in a viscoelastic layer.

Figure 9.17. Bi-layer compliant tube grating
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9.4.2. Metamaterials formed with a periodic arrangement of inclusions
in a viscoelastic matrix

A first type that can considered to belong to the acoustic metamaterials category

is the Alberich coating, already introduced in the previous section. In the scope of the

development of the ATILA code for the modeling of periodic materials, different

studies were carried out to optimize their performances or to compare with

experimental results. As an example, Figure 9.18 presents the case of a coating

formed with air cavities (in the form of short cylinders) in a layer of polyurethane,

arranged periodically in two directions [HLA 91]. A strong attenuation is obtained in

a certain frequency band, which is relatively narrow because of the resonant

behavior. We observe as well a good comparison between experiment and prediction

using the numerical model, provided we have a good knowledge of the

characteristics of the matrix.

Figure 9.18. Alberich material – test case and comparison with finite
element method model. From [HLA 91]

Recently, a thesis has revisited the concept of resonant inclusions in a

viscoelastic matrix, considering multilayer structures including periodic arrangements

of inclusions [MÉR 15]. A first objective was to develop a method allowing the

determination of dispersion curves in a periodic material modeled by finite elements,

taking into account losses in the matrix. Two methods were developed, giving

consistent results, with an example in Figure 9.19:

– the “Bianco–Parodi” method, using the comparison of two fictive samples with

different numbers of layers;

– the “transfer function” method, which uses a single elementary cell; it is

more computationally time-consuming but provides more information (all solutions,

including transverse equivalent wave speed).
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Figure 9.19. Determination of effective speed of sound in periodic acoustic
metamaterials modeled by the finite elements (left: principle of the two methods; right:
transmission coefficient and dispersion curve). From [MÉR 15].For a color version of
this figure, see www.iste.co.uk/romero/metamaterials.zip

Parametric studies were carried out by varying the number of layers and the losses
in the matrix for two cases: pores and steel rods (Figure 9.20, left). When the damping
coefficient increases, it is more difficult to relate the stop bands and pass bands with
the curves of reflection and the transmission coefficient according to the frequency,
especially in the case of pores. One sample with one layer of steel rods embedded
in a polyurethane matrix was tested in a water tank under the form of a test panel
(Figure 9.20, right) and a good agreement was obtained with numerical prediction.

Figure 9.20. Periodic gratings of cylindrical pores or steel rods
embedded in a viscoelastic layer (left: influence of matrix losses on the

acoustic performance; right: test sample). From [MÉR 15]

Furthermore, parametric studies with a larger number of layers showed that it was
possible to obtain a low transmission coefficient in a wide frequency with rigid
scatterers, which is a configuration insensitive to hydrostatic pressure.
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The performance could be enhanced using an “edge effect”, i.e. by using rods of

greater diameter for the two extreme layers. Other results were obtained by using

“core-shell” inclusions (in such cases the inclusion is formed by the rod surrounded

by a layer of material with stiffness smaller than that of the matrix). See Figure 9.21.

Figure 9.21. Parametric study on metamaterials made with periodic
arrangements of inclusions (top: concept with rigid inclusions and edge

effect; bottom: core–shell inclusions). From [MÉR 15]

9.4.3. Metamaterials formed with a random distribution of inclusions in
a viscoelastic matrix

Another possibility to alter the wave propagation in a material and to obtain

metamaterial effects is to incorporate a random distribution of inclusions in a

viscoelastic matrix. Different authors have developed predictive models using the

multiple scattering theory, assuming that the inclusions are spherical. The first step is

to determine the effective parameters (speed of sound and density) as a function of

frequency. Then, the reflection and transmission coefficients of a finite thickness

layer of the composite material immersed in water can be computed using an

analytical model.

A first attempt was made in the 1990s, where air inclusions were actually molded

into viscoelastic layers [AUD 94]. An inversion technique was used to estimate the
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effective speed of sound from the experimental results, and compared to models such

as Waterman’s [WAT 61]. The results, shown in Figure 9.22, confirmed the large

variation of speed of sound in relation to the local resonances of the inclusions.

However, a significant deviation was found between theory and experiment for a

periodic configuration, and indeed, in that case, a finite element model is more

suitable.

Figure 9.22. Estimation of effective speed of sound of
a viscoelastic layer containing distributions of

spherical air inclusions. From [AUD 94]

The subject was also theoretically and experimentally treated in a thesis [LEP 13a],

considering both acoustically soft and hard spherical inclusions (polystyrene foam

and lead, respectively) incorporated into different polymer matrices. The samples and

inclusions were small, but as the experiments are done at ultrasonic frequencies, it

was possible to observe the local resonances. An example of theoretical results for

the effective speed of sound and density of the composites is shown in Figure 9.23.

An interpretation of the phenomena observed is:

– in the case of soft inclusions: a dominant effect of monopole resonances leading

to strong variations in the effective speed of sound and small variations in density;

– in the case of heavy inclusions: dominant effect of dipole resonances (or inertia

behavior) leading to a significant variation in effective density and a small variation in

speed of sound.

Of course, the importance of the phenomena is greater when the concentration of

inclusions in the matrix is greater.
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Figure 9.23. Theoretical effective speed of sound in composites formed
by resonant spherical inclusions randomly distributed in a polymer

matrix (left: soft inclusions; right: massic inclusions); the dashed lines
correspond to a greater concentration. From [LEP 13a]

In Figure 9.24, it is shown that the use of core-shell inclusions (i.e. an inclusion

formed of a high density core in a layer of soft material), can also give interesting

acoustical effects, for example, a negative effective density [LEP 13b]. Here, the

results are only theoretical (no samples were made for experiments), in contrast to

the previous case.

Figure 9.24. Theoretical effective acoustic properties of a composite
material with random distribution of core–shell inclusions in a polymer

matrix, for increasing values of the concentration Φ

From a technological point of view, a key aspect is the availability of inclusions

with adequate and well-controlled characteristics. For that purpose, recent work has
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focused on the use of a special process to realize porous silicon material with the

possibility of tuning the acoustic properties [BA 16].

9.5. Challenges and perspectives

Despite the fact that hull acoustic coatings have already been used for some

decades, there are still needs to be addressed, depending on the application:

– coatings for ship acoustic discretion and stealth:

- anechoism at low and very low frequencies,

- decoupling at low and very low frequencies,

- trade-off between acoustic performances and resistance/stability to

hydrostatic pressure;

– underwater detection systems: multipurpose materials optimized for sonar array

integration;

– civilian applications:

- commercial ships and marine renewable energy systems: low-cost decoupling

coatings,

- acoustic materials for very deep waters.

Note also that the marine environment induces technological constraints, therefore:

– the choice of base materials must be done carefully;

– the transposition of solutions from airborne acoustics is not relevant or at least

not straightforward.

Metamaterial-like concepts have been studied for a long time, but have recently

gained a “hot topic” status. The emergence of new concepts of metamaterials, with

new types of inclusions and arrangements in a matrix, allows us to open perspectives

for solutions of applications in underwater acoustics with better performances:

– efficiency with low thickness-to-wavelength ratio;

– exploitation of stop-bands, super-resonant effects, negative dynamic density

and/or wavenumber;

– new types of inclusions and/or optimum repartition in one or several layers.
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However, together with the optimization of design, the practical realization of

these new concepts, in compliance with the environmental constraints of underwater

acoustics, and the experimental verification of the performances require more

research and development effort.
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Appendix 1

Homogenization of Thin 3D Periodic
Structures in the Time Domain – Effective

Boundary and Jump Conditions

A1.1. Properties of the effective coefficients (Aαβ , Cαβ) and (Bα, C1α)

We will see some relations between the effective coefficients. The demonstration

of these relations is given for a structured film (the case of a structure on or in the

vicinity of a rigid layer simply follows).

A1.1.1. A23 = A32 and Aαα ≥ 0 (the same for Cαβ)

Below, we will prove that:

Aαβ = Aβα =

ˆ
Y
∇Qα · ∇Qβdy. [A1.1]

To do so, it is sufficient to evaluate

0 =

ˆ
Y
QαΔ(Qβ + yβ)

= −
ˆ
Y
∇Qα · ∇Qβdy −

ˆ
Y

∂Qα

∂yβ
dy +

ˆ
∂Y

Qα∇(Qβ + yβ) · n ds.

The last integral over ∂Y vanishes on Γ and on the rigid wall, on the periodic

boundaries along y2 and y3 by periodicity, and also on Y(+ym1 ) when ym1 → +∞

Chapter written by Agnès MAUREL, Kim PHAM and Jean-Jacques MARIGO.
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since n = e1 and ∇Qβ → 0. This makes it possible to conclude that A23 = A32 and

that for α = β, A22 and A33 are positive.

The same applies for Cαβ where the last integral on ∂Y vanishes for the same

reasons as in the case of a wall, but now we use that ∇(Qβ + yβ) ·n vanishes on both

Y(±ym1 ) when ym1 → +∞ since n = ±e1 and ∇Qβ → 0.

A1.1.2. Bα = −C1α, α = 2, 3

We will establish that:

Bα = −C1α =

ˆ
Y
∇Q1 · ∇Qαdy. [A1.2]

To do so, it is sufficient to evaluate the above integral using

0 =

ˆ
Y
QαΔQ1 = −

ˆ
Y
∇Q1 · ∇Qαdy +

ˆ
∂Y

Qα ∇Q1 · n ds.

The last integral vanishes on Γ and on the lateral boundaries in the y2 and y3
directions by periodicity. We remain with the two integrals over Y(ym1 ) (where

∇Q1 · n = 1 in the limit of large |ym1 |) and over Y(−ym1 ) (where ∇Q1 · n = −1). It

follows that the last integral reduces precisely to Bα, which proves the first equality

in [A1.2]. Next, we consider the integral

0 =

ˆ
Y
Q1Δ(Qα + yα) = −

ˆ
Y
∇Q1 · ∇Qαdy

−
ˆ
Y

∂Q1

∂yα
+

ˆ
∂Y

Q1 ∇(Qα + yα) · n ds.

The last integral vanishes on Γ and on the periodic boundaries, and also on

Y(±ym1 ), where n = ±e1 with ∇Qα → 0. This proves the second equality in [A1.2].
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Introduction to the Multiple Scattering
Theory: Green-Kirchhoff Integral

and Bloch Wave Amplitudes

Here, the 2-D �-periodic Green function G�
xs
(x) is defined. It consists of the

wavefield created at the point x by the �-periodic arrangement of line sources located

at the points xs,q = xs + q�ex in the plane P , with q ∈ Z. The point

xs = xsex + ysey is supposed to be above or below the reference cluster Ω0
cl,

i.e. xs ∈ [−�/2; �/2] and ys > y+ or ys < y−. Two consecutive sources are

supposed to display the phase shift e−ikx�, so that the field G�
xs
(x) satisfies:

div(grad(G�
xs
)) + k2G�

xs
(x) =

∑
q∈Z

δ(x− xs,q)e
−ikxq�, [A2.1]

where δ(x − xs,q) = 1 if x = xs,q but δ(x − xs,q) = 0 otherwise. On the contrary,

the scattered field psc satisfies the Helmholtz equation:

div(grad(psc)) + k2psc = 0. [A2.2]

Multiplying equation [A2.2] by G�
xs

and equation [A2.1] by psc provides the two

equations:

G�
xs

div(grad(psc)) + k2pscG�
xs

= 0, [A2.3a]

pscdiv(grad(G�
xs
)) + k2pscG�

xs
= psc

∑
q∈Z

δ(x− xs,q)e
−ikxq�. [A2.3b]
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Subtracting equation [A2.3a] from [A2.3b] yields:

L(psc,G�
xs
) = psc

∑
q∈Z

δ(x− xs,q)e
−ikxq�, [A2.4a]

with L(psc,G�
xs
) = pscdiv(grad(G�

xs
))− G�

xs
div(grad(psc)). [A2.4b]

Using the differential identity udiv(g) = div(ug)−grad(u) ·g where u is a scalar

field and g is a vector field, equation [A2.4b] becomes:

L(psc,G�
xs
) = div

[
pscgrad(G�

xs
))− G�

xs
grad(psc)

]
. [A2.5]

Equation [A2.4a] is integrated over the volume V = [−�/2; �/2]× [−h;h], where

h > max {|y+|, |y−|, |ys|}; see Figure 6.4. It leads to:

ˆ
V
L(psc,G�

xs
) dV =

ˆ
V
psc(x)

∑
q∈Z

δ(x− xs,q)e
−ikxq� dV. [A2.6]

Since only the source xs = xs,0 belongs to V , the following relation holds:

ˆ
V
psc(x)

∑
q∈Z

δ(x− xs − q�ex)e
−ikxq� dV = psc(xs). [A2.7]

Substituting equations [A2.5] and [A2.7] into [A2.6] and applying the divergence

theorem, the following relation, called the Green–Kirchhoff Integral Theorem, is

derived:

psc(xs) =

ˆ
∂V

[
pscgrad(G�

xs
))− G�

xs
grad(psc)

] · nV dV, [A2.8]

where ∂V is the boundary of V while nV is its outward normal vector. Since the

integrand in equation [A2.8] is �-periodic, it takes identical values at the boundaries

x = ±�/2 of the volume V , while nV = ±ex changes sign. Then, integrals over the

boundaries x = ±�/2 of V cancel one another out in equation [A2.8], which becomes:

psc(xs) = Π+
h +Π−

h +
∑

j∈�1;N �

Πj , [A2.9a]

with Π±
h = ±

ˆ
Γ±
h

[
pscgrad(G�

xs
))− G�

xs
grad(psc)

] · ey dx [A2.9b]

and Πj = −
ˆ
Γj

[
pscgrad(G�

xs
))− G�

xs
grad(psc)

] · nj dx, [A2.9c]
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where Γ±
h are the boundaries of V at y = ±h and Γj is the boundary of obstacle Ωj

with outward normal vector nj . To calculate these integrals, the analytical expression

of the Green function G�
xs

is now required. To determine the value of Π±
h , the Green

function G�
xs

is written in the Cartesian coordinate system (O, ex, ey) by expanding

the Dirac comb on the right-hand side of equation [A2.1] in its Fourier series:

∑
q∈Z

δ(x− xs − q�ex)e
−ikxq� =

δ(y − ys)

�

∑
μ∈Z

e−ikμ
x (x−xs), [A2.10]

where kμx = kx + 2πμ/�. The periodic Green function is sought in the form:

G�
xs
(x, y) =

∑
μ∈Z

Ĝμ(y)e
−ikμ

x (x−xs) [A2.11]

and the substitution of [A2.10] and [A2.11] into [A2.1] provides:

∂2Ĝμ

∂y2
+ (kμy )

2Ĝμ =
δ(y − ys)

�
⇒ Ĝμ(y) =

eikμ
y |y−ys|

2ikμy �
for kμy �= 0, [A2.12]

where (kμy )
2 = k2 − (kμx)

2. Equation [A2.12] is substituted into [A2.11] to provide

the Green function G�
xs

in the Cartesian coordinate system (O,x) in the form of

plane waves radiated from the line y = ys, along which the sources are arranged

periodically:

G�
xs
(x, y) =

∑
μ∈Z

1

2ikμy �
e−ikμ

x (x−xs)+ikμ
y |y−ys|. [A2.13]

The calculation of Π±
h in equation [A2.9b] with G�

xs
and psc in equations

[A2.13] and [6.69] yields:

Π+
h = 0 and Π−

h = 0, [A2.14]

where the following orthogonality relation has been used:

ˆ x=�/2

x=−�/2

ei(kν
x−kμ

x )x dx =

ˆ x=�/2

x=−�/2

ei
2π(ν−μ)

� x dx = �δ(ν − μ). [A2.15]

Equation [A2.14] means that the scattered field psc in equation [A2.9a] stems only

from integrals Πj over the surface Γj of the obstacles, and not from integrals Π±
h over
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the fictive and arbitrary boundaries at y = ±h. To calculate Πj , the Green function G�
xs

is expressed as the superposition of the cylindrical waves emitted from each source:

G�
xs

=
∑
q∈Z

1

4i
ψ0(rs,q)e

−ikxq� with rs,q = x− xs,q. [A2.16]

Graf’s addition theorem [6.16] is applied to provide:

ψ0(rs,q) = ψ0(r
j,0
s,q + rj) =

∑
m∈Z

ψ0−m(rj,0s,q)ζm(rj) for |rj | < |rj,0s,q|, [A2.17]

where rj,0s,q = xj,0 − xs,q and rj = x − xj,0. The condition |rj | < |rj,0s,q| is satisfied

here, since the integration point x belongs to Γj when calculating Πj , while sources at

xs,q are further away from Oj . Substitution of equation [A2.17] into [A2.16] provides:

G�
xs
(rj) =

1

4i

∑
q∈Z

∑
m∈Z

ψ−m(rj,0s,q) ζm(rj) e
−ikxq�. [A2.18]

In addition, section 6.4.2 provided the scattered field in the vicinity of Ωj in the

form:

psc(rj) =
∑
n∈Z

Aj
nψn(rj) + (Ej

n − U j
n)ζn(rj). [A2.19]

The calculation of Πj in equation [A2.9c] with G�
xs

and psc in equations [A2.18]

and [A2.19] yields:

Πj =
∑
q∈Z

∑
n∈Z

(−1)nAj
n ψn(r

j,0
s,q) e

−ikxq� =
∑
q∈Z

∑
n∈Z

Aj
n ψn(r

s,0
j,q ) e

ikxq�, [A2.20]

with rs,0j,q = xs,0 − xj,q, and where the orthogonality relation [6.14] has been used, as

well as the following properties1 of the Bessel and Hankel functions:

J−n(kaj)J
′
n(kaj)− J′−n(kaj)Jn(kaj) = 0 since J−n = (−1)nJn, [A2.21a]

J−n(kaj)H
′
n(kaj)− J′−n(kaj)Hn(kaj) = 2i(−1)n/(πkaj). [A2.21b]

Equation [A2.20] shows that Πj is the field scattered by all the obstacles Ωj,q∈Z.

The Green function G�
xs

is now written in yet another form, which hybridizes

Cartesian coordinates for the field point xs and polar coordinates for the integration

1 Equation [A2.21b] is the Wronskian between Bessel and Hankel functions.
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point x. Following the same procedure as in section 6.3.5, the plane waves

e−ikμ
xx±ikμ

y y in equation [A2.13] are written as:

e−ikμ
xx±ikμ

y y = e−ikμ
xxj±ikμ

y yj e−ikrj cos(θj−ϑμ), [A2.22]

where (rj , θj) are polar coordinates of x in the coordinate system (Oj , rj) while ϑμ

is such that kμx = k cos(ϑμ) and kμy = k sin(ϑμ). Then, the Jacobi–Anger expansion

[6.38] is used to provide the following expansion on regular wavefunctions:

e−ikμ
xx±ikμ

y y = e−ikμ
xxj±ikμ

y yj

∑
m∈Z

(−i)me±imϑμ

ζm(rj). [A2.23]

Substitution of equation [A2.23] into [A2.13] yields:

G�
xs
(rj) =

∑
μ∈Z

eikμ
x (xs−xj)−εikμ

y (ys−yj)

2ikμy �

∑
m∈Z

(−i)meεimϑμ

ζm(rj), [A2.24]

where ε = +1 if y > ys, i.e. if rj sin(θj) > (ys − yj), while ε = −1 if y < ys,

i.e. if rj sin(θj) < (ys − yj). The calculation of Πj in equation [A2.9c] with G�
xs

and psc in equations [A2.24] and [A2.19] yields the following relation when using the

orthogonality relation [6.14] and the properties in equation [A2.21]:

Πj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
μ∈Z

(∑
m∈Z

K+
μ,m Aj

m

)
eikμ

x (xs−xj)+ikμ
y (ys−yj) if ys > yj + aj ,

∑
μ∈Z

(∑
m∈Z

K−
μ,m Aj

m

)
eikμ

x (xs−xj)−ikμ
y (ys−yj) if ys < yj − aj ,

[A2.25]

where

K±
μ,m = 2(−i)me±imϑμ

/(kμy �). [A2.26]

Comparison of both expressions [A2.20] and [A2.25] found for the integral Πj

shows that the field scattered by all the obstacles Ωj,q∈Z can be expanded for

|ys − yj | > aj on outgoing Bloch waves which seem to be radiated from the line

y = yj along which the center Oj,q of the obstacles Ωj,q∈Z are aligned.





 

List of Authors

Christian AUDOLY 
Naval Group Research 
Technopole de la Mer 
Ollioules 
France 

Sarah BENCHABANE 
CNRS, UMR 6174  
Institut FEMTO-ST  
University of Burgundy – Franche-
Comté 
Besançon 
France 

Vicente CUTANDA HENRÍQUEZ 
Center for Acoustic-Mechanical 
Micro Systems 
Technical University of Denmark 
Kongens Lyngby 
Denmark 

Jean-Philippe GROBY 
CNRS, UMR 6613 – LAUM 
Le Mans 
France 

 

Anne-Christine HLADKY-HENNION 
CNRS, UMR 8520 – IEMN 
Lille 
France 

Noé JIMÉNEZ 
Instituto de Instrumentación para 
Imagen Molecular 
Spanish National Research Council 
Valencia 
Spain 

Clément LAGARRIGUE 
MetAcoustic 
Le Mans 
France 

Damien LECOQ 
MetAcoustic 
Le Mans 
France 

Martin LOTT 
CNRS, UMR 5275 – ISTerre 
University of Grenoble Alpes 
France 

 

Fundamentals and Applications of Acoustic Metamaterials: From Seismic to Radio Frequency, 

First Edition. Edited by Vicente Romero-García and Anne-Christine Hladky-Hennion. 
© ISTE Ltd 2019. Published by ISTE Ltd and John Wiley & Sons, Inc. 



298     Fundamentals and Applications of Acoustic Metamaterials 

Jean-Jacques MARIGO 
CNRS, UMR 7649 – LMS 
Ecole Polytechnique 
Palaiseau 
France 

Agnès MAUREL 
CNRS, UMR 7587  
Institut Langevin 
ESPCI ParisTech 
Paris 
France 

Kim PHAM 
CNRS, UMR 9219 – IMSIA 
ENSTA ParisTech 
and 
EDF, CEA 
University of Paris-Saclay 
Palaiseau 
France 

Alexandre REINHARDT 
University of Grenoble Alpes 
CEA, LETI  
Grenoble 
France 

 

 

 

 

 

 

 

 

Vicente ROMERO-GARCÍA 
CNRS, UMR 6613 – LAUM 
Le Mans 
France 

Philippe ROUX 
CNRS, UMR 5275 – ISTerre 
University of Grenoble Alpes 
France 

José SÁNCHEZ-DEHESA 
Wave Phenomena Group 
Electronic Engineering Department 
Polytechnic University of Valencia 
Spain 

Logan SCHWAN 
CNRS, UMR 6613 – LAUM 
Le Mans 
France 

Jérôme VASSEUR 
CNRS, UMR 8520 – IEMN 
Cité Scientifique 
Villeneuve d’Ascq 
France 



Index

A, B

absorption
broadband, 60, 69, 187, 191, 193
perfect, 47, 48, 55, 57–61, 64, 68, 69

acoustic
cloak, 269–271
coating, 264–267, 269–276, 278, 283

Alberich-type, 274–276, 278
asymptotic analysis, 79, 80
atomic chain, 108–112
audible acoustics, 47, 187, 200
Bessel functions, 150, 153, 156
boundary

element method (BEM), 4–6, 8–11,
14–21

layer corrections, 75, 76
layer effects, 75, 84, 85

bulk acoustic wave (BAW), 208, 212, 213,
218, 220, 230, 231, 245, 252, 253

C, D, E

clusters of scatterers, 143, 149
compliant tube grating, 276, 277
critical coupling, 47, 48, 55, 57, 58, 69
crystallography, 112, 114, 120, 128
deep subwavelength diffuser, 63
dispersion relation, 109–112
double-negative parameters, 1, 4, 14–21
effective model, 75
elastic plate, 28, 42, 43

F, G, H

finite element method (FEM), 4, 5
Fourier analysis, 115–118, 120, 123,

127–129, 131, 134, 135, 137, 139
geophysics, 25
Helmholtz

equation, 145–150, 156, 157, 159
resonator, 48, 49, 68

homogenization theory, 75

I, L, M

impedance matching, 47, 48, 61
Lamb waves, 25, 26, 28, 29, 32, 34, 36, 38,

41
localization, 250
locally resonant, 25–27, 33, 38, 40
matching conditions, 79, 80, 82–84, 86, 88,

91, 92
mesoscopic scale, 26
metaporous, 187, 188, 191, 194
micro-electromechanical systems, 207,

208, 214
multiple scattering theory, 143

N, P, R

Navier-Stokes equations, 6
negative

bulk modulus, 4, 10, 14
effective parameters, 4, 15, 21

Neumann boundary condition, 146, 159

Fundamentals and Applications of Acoustic Metamaterials: From Seismic to Radio Frequency, 

First Edition. Edited by Vicente Romero-García and Anne-Christine Hladky-Hennion. 
© ISTE Ltd 2019. Published by ISTE Ltd and John Wiley & Sons, Inc. 



300 Fundamentals and Applications of Acoustic Metamaterials

noise reduction, 185, 186
periodic

arrangements, 143, 144, 160, 170, 176
medium, 107, 134

permeable obstacles, 146, 154, 159, 160,
164

phononic crystals, 107, 108, 111, 112, 115,
120–124, 126, 128, 130–137, 139, 207,
208, 213–215, 218–245, 248–252
hypersonic, 208
slab, 220, 225, 227–229, 233, 235,

238, 239
waveguide, 234

phononics, 208, 232, 242, 244, 247, 248
plane wave

expansion (PWE), 107, 112
extended, 139

radiofrequency applications, 207
Rayleigh multipole method, 143
see also multiple scattering theory
resonance

compressional, 25, 26, 28, 29, 34, 35,
38, 41–43

flexural, 25, 26, 28, 32, 34–36, 38–43
local, 1, 4

reciprocal space, 108, 110, 111, 115, 120,
125, 128–130

reduction of underwater noise, 263, 264,
276

resonant inclusions, 193

S, U, V, W

scattering coefficients, 144, 148, 151, 154,
155, 156, 158, 161, 162, 164–166, 168,
169, 172, 175, 176

seismic engineering, 25
slow sound, 47, 48, 54–56, 60
Sommerfield radiation condition, 146, 147,

150
sonic crystal, 133, 134, 196, 197
subwavelength scale, 75
surface acoustic wave (SAW), 208,

210–213, 215, 217, 220–227, 230, 239,
240, 242, 244, 245, 247, 248, 252, 253

ultra-thin absorber, 47, 48, 57
underwater

applications, 263
vehicle, 263, 265

viscoelastic matrix, 278, 280
viscothermal losses, 4, 5, 12, 13, 15–21,

51, 68
waveguiding, 236



Other titles from  

 

in 

Waves 

2019 
DAHOO Pierre-Richard, LAKHLIFI Azzedine 
Infrared Spectroscopy of Triatomics for Space Observation 
(Infrared Spectroscopy Set – Volume 2) 

RÉVEILLAC Jean-Michel  
Electronic Music Machines: The New Musical Instruments  

2018 
SAKHO Ibrahima 
Screening Constant by Unit Nuclear Charge Method: Description and 
Application to the Photoionization of Atomic Systems 

2017 
DAHOO Pierre-Richard, LAKHLIFI Azzedine 
Infrared Spectroscopy of Diatomics for Space Observation  
(Infrared Spectroscopy Set – Volume 1) 

PARET Dominique, HUON Jean-Paul 
Secure Connected Objects  



PARET Dominque, SIBONY Serge  
Musical Techniques: Frequencies and Harmony 

RÉVEILLAC Jean-Michel  
Analog and Digital Sound Processing  

STAEBLER Patrick 
Human Exposure to Electromagnetic Fields 

2016 
ANSELMET Fabien, MATTEI Pierre-Olivier 
Acoustics, Aeroacoustics and Vibrations 

BAUDRAND Henri, TITAOUINE Mohammed, RAVEU Nathalie 
The Wave Concept in Electromagnetism and Circuits: Theory and 
Applications 

PARET Dominique  
Antennas Designs for NFC Devices 

PARET Dominique 
Design Constraints for NFC Devices 

WIART Joe  
Radio-Frequency Human Exposure Assessment 

2015 
PICART Pascal  
New Techniques in Digital Holography 

2014 
APPRIOU Alain 
Uncertainty Theories and Multisensor Data Fusion 

JARRY Pierre, BENEAT Jacques N. 
RF and Microwave Electromagnetism 

LAHEURTE Jean-Marc 
UHF RFID Technologies for Identification and Traceability 



SAVAUX Vincent, LOUËT Yves  
MMSE-based Algorithm for Joint Signal Detection, Channel and Noise 
Variance Estimation for OFDM Systems 

THOMAS Jean-Hugh, YAAKOUBI Nourdin  
New Sensors and Processing Chain 

TING Michael 
Molecular Imaging in Nano MRI 

VALIÈRE Jean-Christophe 
Acoustic Particle Velocity Measurements using Laser: Principles, Signal 
Processing and Applications 

VANBÉSIEN Olivier, CENTENO Emmanuel 
Dispersion Engineering for Integrated Nanophotonics 

2013 
BENMAMMAR Badr, AMRAOUI Asma 
Radio Resource Allocation and Dynamic Spectrum Access 

BOURLIER Christophe, PINEL Nicolas, KUBICKÉ Gildas 
Method of Moments for 2D Scattering Problems: Basic Concepts and 
Applications 

GOURE Jean-Pierre 
Optics in Instruments: Applications in Biology and Medicine 

LAZAROV Andon, KOSTADINOV Todor Pavlov 
Bistatic SAR/GISAR/FISAR Theory Algorithms and Program 
Implementation 

LHEURETTE Eric 
Metamaterials and Wave Control 

PINEL Nicolas, BOURLIER Christophe 
Electromagnetic Wave Scattering from Random Rough Surfaces: Asymptotic 
Models 

SHINOHARA Naoki 
Wireless Power Transfer via Radiowaves 



TERRE Michel, PISCHELLA Mylène, VIVIER Emmanuelle 
Wireless Telecommunication Systems 

2012 
LALAUZE René  
Chemical Sensors and Biosensors  

LE MENN Marc  
Instrumentation and Metrology in Oceanography 

LI Jun-chang, PICART Pascal 
Digital Holography 

2011 
BECHERRAWY Tamer 
Mechanical and Electromagnetic Vibrations and Waves 

BESNIER Philippe, DÉMOULIN Bernard 
Electromagnetic Reverberation Chambers 

GOURE Jean-Pierre 
Optics in Instruments 

GROUS Ammar 
Applied Metrology for Manufacturing Engineering 

LE CHEVALIER François, LESSELIER Dominique, STARAJ Robert 
Non-standard Antennas 

2010 
BEGAUD Xavier 
Ultra Wide Band Antennas 

MARAGE Jean-Paul, MORI Yvon 
Sonar and Underwater Acoustics 



2009 
BOUDRIOUA Azzedine 
Photonic Waveguides 

BRUNEAU Michel, POTEL Catherine 
Materials and Acoustics Handbook 

DE FORNEL Frédérique, FAVENNEC Pierre-Noël 
Measurements using Optic and RF Waves 

FRENCH COLLEGE OF METROLOGY  
Transverse Disciplines in Metrology 

2008 
FILIPPI Paul J.T. 
Vibrations and Acoustic Radiation of Thin Structures 

LALAUZE René 
Physical Chemistry of Solid-Gas Interfaces 

2007 
KUNDU Tribikram 
Advanced Ultrasonic Methods for Material and Structure Inspection 

PLACKO Dominique 
Fundamentals of Instrumentation and Measurement 

RIPKA Pavel, TIPEK Alois 
Modern Sensors Handbook 

2006 
BALAGEAS Daniel et al. 
Structural Health Monitoring 

BOUCHET Olivier et al. 
Free-Space Optics 

BRUNEAU Michel, SCELO Thomas 
Fundamentals of Acoustics 



FRENCH COLLEGE OF METROLOGY 
Metrology in Industry 

GUILLAUME Philippe 
Music and Acoustics 

GUYADER Jean-Louis 
Vibration in Continuous Media 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.






	Cover
	Half-Title Page
	Title Page
	Copyright Page
	Contents
	Preface
	PART 1: Overview of the Current Research in Acoustic Metamaterials
	1. Visco-thermal Effects in Acoustic Metamaterials Based on Local Resonances
	1.1. Introduction
	1.2. Viscothermal effects: numerical methods
	1.2.1. Finite element method with losses
	1.2.2. Boundary element method with losses

	1.3. Viscothermal effects in metamaterials with negative bulk modulus
	1.4. Viscothermal effects in metamaterials with double-negative parameters
	1.5. Acknowledgments
	1.6. References

	2. Locally Resonant Metamaterials for Plate Waves: the Respective Role of Compressional Versus Flexural Resonances of a Dense Forest of Vertical Rods
	2.1. Introduction
	2.2. Experimental configuration of the metamaterial at the laboratory scale
	2.3. Interpretation of dispersion curve restricted to the rod compressional resonances
	2.4. The role played by flexural resonances of the rods
	2.5. Conclusion
	2.6. References

	3. Slow Sound and Critical Coupling to Design Deep Subwavelength Acoustic Metamaterials for Perfect Absorption and Efficient Diffusion
	3.1. Introduction
	3.2. Building block of the acoustic metamaterial: finite slit loaded with Helmholtz resonators
	3.2.1. Theoretical modeling: transfer-matrix method
	3.2.2. Infinite main slit: dispersion relation and slow sound effect
	3.2.3. Finite slits

	3.3. Ultra-thin acoustic metamaterial absorbers 
	3.3.1. Monochromatic frequency absorber
	3.3.2. Rainbow-trapping absorber

	3.4. Metadiffusers
	3.4.1. Quadratic residue metadiffusers
	3.4.2. Broadband optimal metadiffusers

	3.5. Conclusions
	3.6. Acknowledgments
	3.7. References


	PART 2: Principles and Fundamentals of Acoustic Metamaterials
	4. Homogenization of Thin 3D Periodic Structures in the Time Domain – Effective Boundary and Jump Conditions
	4.1. The asymptotic analysis – two scale expansions and matching conditions 
	4.1.1. Two scales and two regions
	4.1.2. The hierarchies of equations in the inner and outer regions
	4.1.3. The matching conditions

	4.2. Effective boundary condition on a structured rigid wall
	4.2.1. A trivial boundary condition at the order 1
	4.2.2. A less trivial boundary condition at the order 2
	4.2.3. Construction of a unique problem

	4.3. Effective jump conditions across a structured film
	4.3.1. Jump conditions at the order 1
	4.3.2. Jump conditions at the order 2
	4.3.3. An alternative form of the effective jump conditions on a unique problem

	4.4. Considerations on the equation of energy conservation
	4.4.1. Energy εef supported by the effective surface Σe
	4.4.2. Energy εef supported by the effective interface Гe
	4.4.3. Positiveness of the effective energies

	4.5. Concluding remarks
	4.6. References

	5. The Plane Wave Expansion Method
	5.1. Introduction
	5.2. One-dimensional atomic chains
	5.2.1. One-dimensional atomic chain with one atom by unit cell
	5.2.2. One-dimensional atomic chain with two atoms by unit cell

	5.3. The plane wave expansion method 
	5.3.1. Plane wave expansion method for bulk phononic crystals
	5.3.2. Limits of the PWE method
	5.3.3. Modified PWE method for complex band structures

	5.4. Conclusion
	5.5. Acknowledgments
	5.6. References

	6. Introduction to Multiple Scattering Theory
	6.1. Introduction
	6.2. Statement of the problem 
	6.2.1. Notion of multiple scattering
	6.2.2. Helmholtz equation and boundary conditions
	6.2.3. Undisturbed field, scattered fields and radiation condition
	6.2.4. Wavefunctions in multiple scattering theory

	6.3. Scattering of sound by a cluster of cylindrical obstacles
	6.3.1. Cylindrical wavefunctions in polar coordinate systems
	6.3.2. Scattering coefficients and addition theorem
	6.3.3. Application of boundary conditions
	6.3.4. Matrix formulation
	6.3.5. Forcing coefficients in the case of an incident plane wave
	6.3.6. Forcing coefficients in the case of a line source
	6.3.7. Total scattered field and actual pressure
	6.3.8. Permeable obstacles

	6.4. Scattering of sound by a periodic row of obstacles: the single grating array
	6.4.1. Quasi-periodicity
	6.4.2. Lattice sums and scattering coefficients of the array
	6.4.3. Emergence of Bloch’s waves and Wood’s anomaly
	6.4.4. Interaction of the array with a plane boundary

	6.5. Scattering of sound by a multi-grating array
	6.5.1. Transfer matrix formulation for the single grating
	6.5.2. Sound scattering by the multi-grating array
	6.5.3. Band diagram calculation

	6.6. Application to sonic crystals
	6.7. Conclusion
	6.8. Acknowledgments
	6.9. References


	PART 3: Applications of Acoustic Metamaterials
	7. Acoustic Metamaterials for Industrial Applications
	7.1. Introduction
	7.2. Industrial context
	7.3. Absorption case
	7.4. Transmission case
	7.5. Concluding remarks
	7.6. References

	8. Elastic Metamaterials for Radiofrequency Applications
	8.1. Hypersonic elastic waves and their applications
	8.2. Hypersonic crystals
	8.2.1. Micron-scale fabrication
	8.2.2. Experimental demonstrations of hypersonic band gaps

	8.3. Phononics for RF signal processing
	8.3.1. Phononic waveguides
	8.3.2. Phononic crystal cavities

	8.4. Practical applications of phononic crystals
	8.4.1. Phononics for MEMS resonators
	8.4.2. Phononics for surface acoustic wave resonators
	8.4.3. Phononics for photonics

	8.5. Perspectives
	8.6. References

	9. Acoustic Metamaterials and Underwater Acoustics Applications
	9.1. Materials for underwater acoustics: what applications?
	9.1.1. Reduction of noise radiated from underwater vehicles
	9.1.2. Reduction of acoustic target strength of underwater vehicles
	9.1.3. Integration of acoustic detection systems
	9.1.4. Underwater acoustics environmental issues

	9.2. Definitions and characterization 
	9.2.1. General
	9.2.2. The acoustic cloak concept
	9.2.3. Determination of performances of underwater acoustic materials and coatings

	9.3. Overview of current technology
	9.3.1. Micro-inclusion-type acoustic coatings
	9.3.2. Alberich-type acoustic coatings

	9.4. Examples of research in underwater acoustics metamaterials
	9.4.1. Compliant tube gratings
	9.4.2. Metamaterials formed with a periodic arrangement of inclusions in a viscoelastic matrix
	9.4.3. Metamaterials formed with a random distribution of inclusions in a viscoelastic matrix

	9.5. Challenges and perspectives
	9.6. References


	Appendices
	Appendix 1: Homogenization of Thin 3D Periodic Structures in the Time Domain – Effective Boundary and Jump Conditions
	A1.1. Properties of the effective coefficients (Aαβ, Cαβ) and (Bα, C1α)
	A1.1.1. A23 = A32 and Aαα ≥ 0 (the same for Cαβ)
	A1.1.2. Bα = −C1α, α = 2, 3


	Appendix 2: Introduction to the Multiple Scattering Theory: Green-Kirchhoff Integral and Bloch Wave Amplitudes

	List of Authors
	Index
	Other titles from iSTE in Waves
	EULA


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /AdobeSansMM
    /AdobeSerifMM
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 350
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 350
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 350
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages false
  /MonoImageFilter /None
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG ()
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /AdobeSansMM
    /AdobeSerifMM
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Subsample
  /ColorImageResolution 350
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Subsample
  /GrayImageResolution 350
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 350
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG ()
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




