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To the memory of Prof. Masanori Hangyo



Preface

“Metamaterial” is the generic name to call structured materials whose sizes are
smaller than the wavelengths of our interest. So, they are approximately smaller
than 1 lm for optical frequencies and smaller than 1 cm for microwaves. In the
early stage of the metamaterials research, people were mainly interested in mate-
rializing the negative refractive index, for which many new and fascinating elec-
tromagnetic phenomena were expected. Later, more diverse applications were
found by using these structured materials. So, they are called metamaterials even
when their effective refractive index is not negative.

This book describes the novel and fundamental aspects of metamaterials that
were developed in the last several years. It is organized as follows. In Chap. 1, the
basic idea of metamaterials, that is, the designing of the refractive index, is
described. Chapters 2–5 are devoted to metamaterials in optical frequencies. Both
top-down (lithography) and bottom-up (self-assembly) techniques are explained in
detail, since the precise fabrication of the specimens is a big task in these fre-
quencies. Their particular features like selective thermal emission and its applica-
tion to CO2 gas sensing are shown. Chapters 6–8 deal with terahertz metamaterials,
for which the specimen fabrication is relatively easy compared with optical meta-
materials, so very precise design and production of various components for tera-
hertz spectroscopy have been achieved. The active control of the terahertz
metamaterials made of semiconductors is also described. Chapters 9–11 are devoted
to microwave metamaterials, where three unique achievements are presented:
Metamaterials with the negative refractive index, dynamic metamaterials based on
the discharge plasma, and the meta-atoms emulating quantum phenomena like
electromagnetically induced transparency. Chapters 12–15 deal with chiral and
non-reciprocal metamaterials. After two chapters that give the framework for the
theoretical treatment of the general chiral media and their surface waves, two
particular classes of non-reciprocal specimens and their performance are presented:
Single chiral metamolecules under a magnetic field and magnetized microstrip
lines. Finally, another new feature of periodic metamaterials, that is, the Dirac cone
formation in the dispersion relation, is described in Chap. 16.
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Many topics described in this book are based on the achievements of the
research project Electromagnetic Metamaterials organized by MEXT (Ministry of
Education, Culture, Sports, Science and Technology), Japan, in which more than 50
professors of universities and researchers of national institutes participated. Prof.
Masanori Hangyo of Osaka University was Head Investigator of the project, who
also organized the annual Japan–Korea Metamaterials Forum from 2011, which
was extended to the A3 (Japan, Korea, and China) Metamaterials Forum later.
These project and forums contributed much to the development of metamaterials
research. It was our grief that he passed away in October 2014. We deeply thank
Prof. Hangyo for his leadership and great efforts in the promotion of the meta-
materials and terahertz science.

Tsukuba, Japan Kazuaki Sakoda
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Chapter 1
Modern Insights into Macroscopic
Electromagnetic Fields

Kazuaki Sakoda

Abstract A new definition of refractive index is introduced to describe the idea of
metamaterials. Their fundamental properties and some of their early investigations
are explained. In addition, a basic problem of the macroscopic electromagnetic field
is raised regarding the development of metamaterials in optical frequencies.

1.1 Introduction

What is refractive index? This question may sound strange, since it is well known
that the refractive index (n) is a material constant, which describes the refraction of
light according to Snell’s law. It is given by

n = √
(relative permittivity) × (relative permeability), (1.1)

which is also well known. However, many researchers have been involved in an-
swering this question for over fifteen years. The reason is that metamaterials, which
will be described in the following chapters, have considerably changed the idea of
the refractive index. They have raised a modern problem of macroscopic electro-
magnetic fields as well and materialized strange optical phenomena that people had
never imagined.

1.2 Microscopic and Macroscopic Electromagnetic Fields

We denote the permittivity and permeability of free space by ε0 and μ0, respectively.
Then the relative permittivity (ε) and relative permeability (μ) relate the electric field
(E) to the electric displacement (D), and the magnetic field (H) to the magnetic flux
density (B):

K. Sakoda (B)
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e-mail: sakoda.kazuaki@nims.go.jp

© Springer Nature Singapore Pte Ltd. 2019
K. Sakoda (ed.), Electromagnetic Metamaterials, Springer Series
in Materials Science 287, https://doi.org/10.1007/978-981-13-8649-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8649-7_1&domain=pdf
mailto:sakoda.kazuaki@nims.go.jp
https://doi.org/10.1007/978-981-13-8649-7_1


2 K. Sakoda

D = εε0E, (1.2)

B = μμ0H. (1.3)

These four vector quantities are electromagnetic fields averaged over a scale that is
smaller than the wavelength of our interest and larger than atoms and molecules,
which are called macroscopic electromagnetic fields. On the other hand, the electric
field in the vicinity of an atomic nuclei, for example, can be very large. However, the
microscopic electromagnetic field of this kind is not an object that is dealt with by
the permittivity, permeability, or refractive index. These material constants, which
can be obtained by measurements, accurately describe the electromagnetic wave
propagation in matter.

We learn their definition and properties in this way and believe that the problem of
the macroscopic electromagnetic field is settled. However, modern technologies can
fabricate artificial structures whose sizes are smaller than the optical wavelengths
although they are larger than atoms and molecules. In the case of microwaves whose
wavelengths are from millimeters to centimeters, the fabrication of artificial struc-
tures smaller than the wavelengths is easy. Then, how much is the refractive index
that describes the macroscopic field in this case? Can we define the permittivity and
permeability appropriately? These considerations lead us to the idea that the refrac-
tive index, which has been regarded as a genuinematerial constant, may be a quantity
that we can design.

1.3 Metamaterials

Nowadays,metamaterial denotes in a wide sense a structure or an assembly of struc-
tures that are larger than atoms and molecules but smaller than the wavelengths of
electromagnetic waves of our interest. In a narrow sense, it denotes a structure or an
assembly of structures that materialize extraordinary optical phenomena such as neg-
ative refraction and cloaking and that are larger than atoms andmolecules but smaller
than the wavelengths of electromagnetic waves of our interest. Because we usually
utilize electromagnetic resonance states to materialize these extraordinary optical
phenomena, metamaterials in a narrow sense are fabricated by metallic materials in
most cases.

In the early stage of the investigation of metamaterials, it attracted a considerable
attention to materialize negative refractive indices with split-ring resonators and
metallic wires [1]. When both the permittivity and permeability are negative, the
refractive index is also negative. If we regard the permittivity and permeability as
real negative numbers in (1.1), the refractive indexmay look positive, since the inside
of the square root is positive as a product of two negative quantities. However, the
permittivity and permeability always have an imaginary part to some extent due to
energy loss. If we carefully trace the argument of the refractive index in the complex
plane, we can find that the real part of the refractive index is negative.
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Whenwe compare with the ordinary refraction (n > 0, Fig. 1.1a), the propagation
direction of the refracted wave for negative n (Fig. 1.1b) is on the opposite side of
the normal line of the interface of two media. In this case, we may wonder whether
the wave vector (k) component parallel to the interface is conserved. Actually, the
wave vector and Poynting’s vector (E × H) are directed oppositely for n < 0, so the
parallel component of the wave vector is conserved. In ordinary positive n materials,
E, H, and k compose a right-hand system, whereas they compose a left-hand system
in negative n materials. For this reason, metamaterials with negative n are often
called left-handed materials.

The negative refraction was demonstrated with split-ring resonators (μ < 0) and
metallic wires (ε < 0) in the microwave frequencies [2]. When the negative refrac-
tive index is obtained, we can materialize flat board lenses as Fig. 1.1c shows. By
designing the spatial variation of the refractive index, it was demonstrated that the
incident wave can propagate while avoiding an obstacle (Fig. 1.1d) [3]. If we ob-
serve from the backside of the obstacle, the incident wave looks as if it came straight
through. This strange phenomenon is called cloaking.

In the case of periodicmetamaterials, if wemake two dispersion curves degenerate
in the center (Γ point) of the Brillouin zone by adjusting their structures, we can
materialize an isotropic linear dispersion relation, which is called a Dirac cone. The
vertex of the Dirac cone is called the Dirac point, where the refractive index is
equal to zero. This phenomenon was discovered by the transmission line theory for
microwaves [4]. Later, a general proof was given by the k · p perturbation and group
theory [5, 6].

1.4 Modern Problems of Macroscopic Fields

Let us go back to our first question, “What is the refractive index?”. In the case of
microwaves, the size of metamaterials is of the order of 100 µm to 1 mm, which is
different from the sizes of atoms andmolecules by several orders ofmagnitude. So,we
can define the refractive index in the usual sense and can calculate the electromagnetic
wave propagation by using its spatial variation. On the other hand, we may regard
metamaterials as artificial atoms and introduce another refractive index by averaging
the electromagnetic field over the scale of 100 µm to 1 mm. This definition of the
refractive index was useful to predict the above-mentioned new phenomena.

In the case of metamaterials in the optical frequencies, however, our question
is more serious. The size of the metamaterials is of the order of 100 nm to 1 µm,
and it is becoming smaller as nanotechnologies become more advanced. So, it will
become difficult to draw a clear line between the sizes of atoms and metamaterials.
Then, many basic questions will arise: What refractive index should we use? Can we
define the refractive index appropriately? Are permittivity and permeabilitymutually
independent? Metamaterials not only have big potential to materialize novel optical
phenomena and fascinating applications but also raise these fundamental questions
in optical physics.
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Fig. 1.1 Refraction for a a
positive refractive index and
b a negative refractive index.
c Flat board lens by a
metamaterial with n = −1. d
Cloaking. The incident wave
propagates while avoiding an
obstacle

(a) n > 0 

1

2

(b) n < 0

1

2

D L

(c)

Focus

Light source

L

D

(d)
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Chapter 2
Fabrication Techniques
for Three-Dimensional Optical
Metamaterials

Takuo Tanaka

Abstract Metamaterials have attracted much attention because they can provide
unexemplified and favorable functionalities and applications in optics and related
fields such as negative refractive index, perfect lenses, cloaking, perfect light
absorbers, and so on. Because optical metamaterials are artificial sub-wavelength
structures, their advancement strongly depends on the development of micro- and
nanofabrication techniques. In particular, in spite of the recent progress of these
fabrication technologies, the realization of three-dimensional (3D) metamaterials is
still one of the big challenges. In this chapter, the recent progress in the fabrication
technologies of 3D optical metamaterials is reviewed and discussed.

2.1 Introduction

The beginning of this century was the cusp of “metamaterials” [1]. Metamaterials
are man-made materials composed of array of tiny metal or dielectric resonant ele-
ments, which are sometimes referred to as “meta-atom.” Since meta-atoms are usu-
ally designed to be sub-wavelength structure, metamaterials work as quasi-materials
and this is why they are called meta-“materials” not meta-“structures.” The most
important purpose of engineering metamaterials is to gain emancipated control of
light waves using the unexemplified optical properties, phenomena, and functional-
ities that arise from their structures. Figure 2.1 shows a typical structure of metama-
terial that consists of split-ring resonator array integrated into a host material.

A perfect lensing effect realized by negative-index materials is one of such
unprecedented functionalities, and metamaterials have attracted increasing interest
as promising candidates for controlling the value of the index of refraction to be neg-
ative [2]. It is well known that the refractive index of a material is described by the
product of the square root of the relative permittivity and the square root of the relative
permeability. Because almost all natural substances lose their magnetic responses to
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Fig. 2.1 Schematic of optical metamaterials

the magnetic components of the light and their permeability becomes unity in the
optical frequency region, negative-index materials are never found in nature. Recent
progress in the creation of optical magnetism by metamaterials realizes novel optical
components and phenomena that were previously believed to be unrealizable [3].
In addition to negative-index metamaterials, a wide variety of potential applications
have been predicted and demonstrated in the past decade, such as optical cloaking,
perfect light absorption, dispersion control, and so on [4].

One of the trends in this research fields is increasing the working frequency of
metamaterials, which began in the microwave frequency region around 2.4 GHz,
to the visible light regions [5]. Since many efforts have been made by researchers
in theoretical studies for realizing optical metamaterials, we have already known
what kinds of materials and resonant structures are appropriate for realizing opti-
cal metamaterials. Moreover, the recent development of micro- and nanofabrication
technologies has brought such ideas to reality, having a huge impact in awide range of
optics and photonics fields [6–8]. However, the realization of true three-dimensional
(3D) optical metamaterials is still a challenge, because the current fabrication tech-
nologies, such as photolithography and electron beam (EB) lithography, are no more
than two-dimensional (2D) patterning techniques and they cannot be applied for fab-
rication of 3D micro-/nanostructures [9]. In this chapter, we will start to discuss the
fundamentals of the 3D metamaterials for modifying the permeability in the optical
frequency region clarifying the appropriate material and shape of their structures.
After that, we will focus on recent progress of the fabrication techniques for 3D opti-
cal metamaterials [10]. Some of the fabrication techniques have been summarized
and reviewed in our previous review article [11], but we added several self-organized
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and self-assembled techniques as possible candidates for future mass production of
metamaterials.

2.2 Structure of Optical Metamaterials

In this section, we will discuss the metamaterial structure for modifying magnetic
permeability of the materials in the visible light region and clarify the suitable mate-
rials and structures for permeability-controlled optical metamaterials [6–8].

2.2.1 Dispersion Properties of Gold, Silver, and Copper

In the microwave frequency region (300 M–300 GHz), almost all rare metals such
as gold, silver, copper, and so on can be treated as a perfect conductor. This makes
it rather easy to discuss their electromagnetic/optical properties. However, in the
optical frequency region (about 1–1000 THz), they are not perfect conductor and
we need to take care of the dispersion properties of these to use them as materials
for metamaterials. So, we would like to start to describe the dispersion properties of
metals from THz to ultraviolet (UV) covering the entire visible light region. To do it,
we introduced the internal impedance for a unit length and a unit width of the plane
conductor (Zs(ω)) that is described as

Zs(ω) = 1

σ(ω)
∫ T
0

exp[ik(ω)z]+exp[ik(ω)(T−z)]
1+exp[ik(ω)T ] dz

= Rs(ω) + i Xs(ω), (2.1)

k(ω) = ω

√

ε0μ0

[

1+ i
σ(ω)

ωε0

]

, (2.2)

σ(ω) = ω2
pε0

γ − iω
, (2.3)

where σ(ω) is conductivity of metal, σ(ω)/(ε0ω) in (2.2), and it represents the con-
duction characteristics of metal, and the real and imaginary parts of Zs(ω) are the
surface resistivity Rs and the internal reactance Xs, respectively. The integration in
the dominator of (2.1) indicates the total current flow through the cross section of
the conductor.

Figure 2.2 shows the calculation results of Zs(ω) for gold, silver, and copper.
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Fig. 2.2 Dispersion
properties of the internal
impedances for a unit length
and a unit width of the plate
of gold (Au), silver (Ag), and
copper (Cu)

2.2.2 Dispersion Properties of Split-Ring Resonators

Figure 2.3 shows the calculation model of metamaterial using split-ring resonators
(SRRs), which is proposed by Pendry [12]. In Fig. 2.3, r is the radius of the ring, w
is the width of the ring, g is the gap distance between two rings of SRR, a is the unit
cell dimension in the x–y plane, and l is the distance between adjacent planes of the
SRRs along the z-axis.

Based on the dispersive properties of metals described by (2.1), the frequency
dependence of the magnetic responses of the metallic SRRs in the optical frequency
region was calculated, and the effective permeability (μeff) of the SRRs was derived
as

μe f f = μe f f + iμe f f = 1− Fω2

ω2 − 1
CL + i Z(ω)ω

L

, (2.4)

where C and L are the geometrical capacitance and inductance, and F and Z(ω) are
the filling factor and the ring metal impedance defined by

F = πr2

a2
, (2.5)

Fig. 2.3 Calculation model
of optical metamaterials
using split-ring resonators
(SRRs)
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Fig. 2.4 Dispersion of μeff
by the resonant interaction
between SRR and magnetic
component of the light

C = 2πr

3
ε0εr

K
[(
1− t2

)1/2]

K(t)
, (2.6)

t = g

2w + g
, (2.7)

L = μ0πr2

l
, (2.8)

Z(ω) = 2πr Zs(ω)

w
, (2.9)

respectively. K[] of (2.6) is the complete elliptic integral of the first kind. For calcu-
lating the geometrical capacitance, Gupta’s formula was used to estimate the capac-
itance coming from the distance between two rings per unit length [13].

By using (2.1) and (2.4) and the empirical values of the plasma frequency (ωp)
and the damping constants (γ of silver, gold, and copper (ωp = 14.0 × 1015 s−1 and
γ = 32.3 × 1012 s−1 for silver, ωp = 13.8 × 1015 s−1 and γ = 107.5 × 1012 s−1 for
gold, andωp = 13.4× 1015 s−1 and γ= 144.9× 1012 s−1 for copper)), the frequency
dispersions of μeff from 100 THz to 800 THz were calculated [14].

At the resonant frequency of the SRR, μeff swings positively and negatively as
shown in Fig. 2.4. We defined the change of μeff as the difference between max μeff

and min μeff. We calculated the dispersion properties μeff of single ring SRR with
four cuts consisting of Au, Ag, or Cu, and plotted the calculation results in Fig. 2.5.
From these results, it was found that a three-dimensional SRRs array made of silver
gives a strong magnetic response in the visible light frequency region. As also shown
in Fig. 2.5, silver SRRs exhibitμeff changes exceeding 2.0 in the entire visible range,
which means μeff can become a negative value, while the responses of gold and
copper SRRs are less than 2.0 in the visible frequency region.

Table 2.1 shows the design strategy of the optical metamaterials that can reveal the
magnetic response. In the frequency region less than 100 THz, to realize a relatively
low resonant frequency and a low resistance of the metallic structure, the structure
should have both a large geometrical capacitance and a wide width of the ring, and
the original shape of SRR, which is concentric double rings with gaps, is appropriate.
On the other hand, when the frequency becomes higher than 100 THz, the effect of
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Fig. 2.5 Calculated results
of the dispersion of μeff for
gold, silver, and copper SRR
arrays

Table 2.1 Design guideline of metamaterial structure

Frequency <100 THz 100 THz <

Requirement Large C and small R Small C and large L

Resonator structure

Reason for the limitation
of magnetic response

Increase of surface resistance Decrease of L by scaling of SRR

the reactance (Xs(ω)) in the ring becomes more dominant than that of the resistance
in the SRR ring. To increase the resonant frequency to such a higher frequency
region, the resonant structure should have a small geometrical capacitance, and in
order to keep the high Q-value and sufficient magnetic responses, SRR should have
a large geometrical inductance. To satisfy these requirements, we proposed that the
single ring with a number of cuts is more suitable than the original double-ring SRR,
because this is advantageous to prevent the effect of Xs(ω).

2.3 Three-Dimensional Metamaterials Versus Bulk
Metamaterials

The term “three-dimensional metamaterials” has two different meanings. One is that
the shape of metamaterial is three-dimensional and not planate. The other meaning
is the functionality of the metamaterial has three degrees of freedom. In this section,
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the difference between the dimension of the structure and that of functionality will
be discussed.

As already described, one of the most typical unit elements of metamaterial is
SRR [12]. An SRR consists of metal rings with several gaps. The metal rings are
designed towork asmagnetic antenna and inductors, and the gapswork as capacitors.
Since the SRR itself works as an LC resonant circuit and there is no antenna whose
radiation property is isotropic, metamaterials made with SRRs arrays also inevitably
become anisotropic.

When SRRs are placed on x–y plane as shown in Fig. 2.6a, the structure can
be defined as 2D structure. On the other hand, this SRRs array can interact with
a magnetic component of light wave that oscillates in the z-direction and it never
interacts with magnetic fields that oscillate in the x–y plane. Therefore, in terms of
the degree of freedom of the magnetic interactions, this structure is categorized as
a one-dimensional (1D) metamaterial. Even if such 2D structures are stacked in the
z-direction and they form a bulk (3D) structure, its functionality consistently still
remains 1D.

Fig. 2.6 Three-dimensional structure versus three-dimensional functional metamaterials. a Two-
dimensional structure but 1D functionality, b 3D structure and 2D functionality, and c both structure
and functionality are 3D
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In this sense, we found that the dimension of the structure and that of functionality
are completely different. If wewant to increase the degree of freedomofmetamaterial
functions, we need to add different orientated structures as shown in Fig. 2.6b, c.
When we add another SRR in the x–z plane, the metamaterial exhibits 2D optical
functions. Moreover, adding an SRR in the y–z plane makes the structure complete
3D functional metamaterials. In the following part of this chapter, we define the term
“bulk metamaterials” as metamaterials whose structure is distributed in x–y–z 3D
space irrespective of the dimension of its functionality, and we use the term “3D
metamaterials” only for those that have complete 3D functionality.

2.4 Fabrication of Three-Dimensional Metamaterials

2.4.1 Stacking of Planar Structures to 3D

The easiestway to fabricate a bulk structuremight be to stack 2Dplanar layers.Owing
to recent progress in micro- and nanofabrication technologies like photolithography,
EB lithography, dry etching techniques, and so on, we can fabricate 2D nanopatterns.

Liu et al. reported an optical metamaterial in which four SRR array structures are
stacked by the use of a layer-by-layer technique [15]. In their experiment, 430 nm by
380 nm square SRRs array with an 80 nm linewidth are fabricated using EB lithog-
raphy, and then four these layers are stacked one-by-one with 70 nm-thick polymer
spacing layers as shown in Fig. 2.7. Figure 2.7a shows an oblique incidence view
taken by a scanning electron microscope (SEM). In 2009, the same technique was
applied to make stereo-SRR dimer metamaterials with various twist angles as shown
in Fig. 2.8 [16]. Layer-by-layer techniquewas also applied by the same team to create
a plasmonic-induced transparency (PIT) phenomenon in amultilayermetamaterial in
which gold nanorods are stacked on an underlying gold nanowire pair [17]. Because
dipole–quadrupole coupling occurred in the PIT structure, they observed a plasmon-
induced transmission band in the absorption dips of the upper Au nanorod structure
(Fig. 2.9). Multiple stacking of SRRs layers also provides large optical activity [18].
Figure 2.10 shows scanning electron microscope image of the fabricated stacked
SRRs. This structure was applied for plasmonic rulers to determine the nanoscale
structures of molecules such as proteins, DNA molecules, and so on [19].

In 2012, Kante et al. proposed a two-layer nanosquare ring structure fabricated
by the multiple EB lithography methods [20]. In this technique, two layers of gold
nanosquare ringswere fabricated on a quartz substrate separated by a spacing layer of
SU-8.AnSEM image of the fabricated two-layer nanoring structure and its schematic
image are shown in Fig. 2.11. Two rings are aligned precisely by the EB lithography
technique. When one of the rings is fully shifted with respect to the other ring,
absorption bands of symmetric and asymmetric modes were overlapped and Fano
interference was occurred resulting in appearance of a negative-index band at 1.9μm
in wavelength.
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Fig. 2.7 Scanning electronmicroscope images of the four-layer SRR structure. aOblique incidence
overview and b normal view. Inset: magnified view, and c enlarged oblique view. Reprinted by
permission from Nature Publishing Group: [15], copyright 2008

To realize negative-index metamaterials, Garcia-Meca et al. fabricated a multi-
layered fishnet metamaterial by depositing silver and hydrogen silsesquioxane-based
resist layers alternatively and then patterned by a focused ion beammilling technique.
The result is shown in Fig. 2.12 [21]. In 2008, negative refraction of near-infrared
light (1200–1700 nm in wavelength) was experimentally demonstrated by Valentine
et al. [22]. Figure 2.13 shows a 21-layer fishnet metamaterial consisting of alter-
nating layers of 30-nm silver and 50-nm magnesium fluoride (MgF2) patterned by
focused ion beam (FIB) milling technique. Additional FIB milling was used by the
fishnet metamaterial to form a prism shape. The effective refractive index was exper-
imentally estimated by measuring the absolute angle of refraction. Xu et al. used a
multilayer structure of Ag and TiO2 to fabricate a negative-index metamaterial in the
ultraviolet frequency region and demonstrated flat lens effect as shown in Fig. 2.14
[23]. Zero-index metamaterial in the near-infrared region (λ = 1.4 μm) was demon-
strated using silicon rods separated by a silicon dioxide layer byMoitra et al. in 2013
[24].
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�Fig. 2.8 Scanning electron microscope images and experimental measurement. a–c are oblique
views of the a 0°, b 90°, and c 180° twisted gold SRR dimer metamaterials. Insets: normal views.
d–f are experimental transmittance spectra for the d 0°, e 90°, and f 180° twisted SRR dimer meta-
materials. The black and red curves represent the experimental and simulated results, respectively.
For the 90° twisted SRR dimer structure, an analyzer is applied behind the sample, which is rotated
by 75° with respect to the polarization of the incident light. Reprinted by permission from Nature
Publishing Group: [16], copyright 2009

Decker et al. made left-handed and right-handed twisted double-layer cross-
structures. Figure 2.15a shows SEM images of the fabricated structures. Experi-
mental results of the polarization dependences on left- and right-handed circularly
polarized (LCP and RCP) light are shown in Fig. 2.15b [25].

A flexible 3D negative-index metamaterial fabricated by a nanotransfer printing
technique was reported by Chanda et al. Nanotransfer printing technique is a kind of
nanoimprinting techniques. The fabrication process is shown in Fig. 2.16a. A multi-
layer fishnet structure was made on a soft imprinting mold by using EB evaporation,
and this multilayer fishnet structure was transferred to the target substrate by contact-
ing the mold against the substrate. They used a polydimethylsiloxane (PDMS) film
for the substrate. Using this soft substrate, they demonstrated flexible bulk metama-
terials with a negative index of refraction in the near-infrared regime [26].

Chen et al. applied double-exposure EB lithography to fabricate an upright U-
shaped 3Dmetamaterial [27]. A U-shaped upright SRR resonantly interacts with the
magnetic component of incident light as shown in Fig. 2.17a. Field enhancement
factors were estimated 16 times and 4 times at the center and two prongs of the SRR,
respectively. Multilayer photolithography and electroplating techniques were also
utilized to fabricate 3D self-standing SRR arrays on a silicon substrate by Fan et al.
[28]. While the structure of the fabricated SRR arrays is three-dimensional, it has
only one degree of freedom of the magnetic interaction because SRRs are aligned
in only one plane. Zhang et al. used the multilayer photolithography and liftoff
methods to make a THz metamaterial that consists of 3D unit elements. In 2009,
they applied the same technique to fabricate a chiral negative-index metamaterial
for 1 THz wave [29]. In 2012, they also applied the same technique to demonstrate
chiral switchable metamaterials whose property can be modified by photoexcitation
with a femtosecond laser, as shown in Fig. 2.18c [30].

2.4.2 Two-Photon Absorption Techniques for Bulk Structures

Photolithography and electron beam lithography have already been widely used as
basic technique for fabricating 2D metamaterials, and these techniques are extended
to the fabrication of bulk metamaterials by stacking 2D patterns. While these tech-
niques demonstrate good productivity in 2D fabrication, they cannot be applied
for the fabrication of 3D structures. Recently, micro-stereolithography [31, 32] and
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Fig. 2.9 Structural geometry and scanning electron microscope images. a Schematic diagram of
the stacked plasmonic EIT structure with definitions of the geometrical parameters: l1 = 355 nm,
l2 = 315 nm, w= 80 nm, g= 220 nm, t= 40 nm, and h= 70 nm. The periods in both the x- and y-
directions are 700 nm. Red color represents the gold bar in the top layer, and green color represents
the gold wire pair in the bottom layer. b Oblique view of the sample with lateral displacement
s = 10 nm. Inset: enlarged view. Reprinted by permission from Nature Publishing Group: [17],
copyright 2009
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Fig. 2.10 Electron microscope images of a typical fabricated chiral metamaterial. The normal
incidence image illustrates the high alignment accuracy of the two stacked layers. Inset: oblique
view onto the sample. Reprinted by permission from [18]. Copyright 2010 by The Optical Society

FIB chemical vapor deposition (FIB-CVD) [33] enable us to create 3D structures.
However, these techniques are still based on layer-by-layer fabrication and do not
inherently have 3D spatial resolution. Therefore, it is still big challenge to make
arbitral 3D micro-/nanostructures.

Two-photon absorption (TPA) technique is one of the key technologies to solve the
above-mentioned problem. The TPAprocesswas first proposed byGoppert-Mayer in
1931 [34]. Different from the one-photon absorption (OPA), the absorption probabil-
ity in TPA is proportional to the square of the light intensity, and thus, light absorption
is localized only at the focal point of the light. At the same time, successive chemical
or physical reactions are confined only in a small volume with three-dimensional
spatial resolution. As a result, unlike other fabrication techniques, the TPA pro-
cess inherently has 3D spatial resolution, with potential applications in fluorescence
microscopy [35], optical data storages [36], and lithographic fabrications [37, 38].
In this section, several 3D fabrication techniques for bulk metamaterials based on
TPA are reviewed.

2.4.2.1 Two-Photon Fabrication Techniques for 3D Polymer Structures

In 1997, Maruo et al. demonstrated a fabrication technique based on a combina-
tion of micro-stereolithography and TPA. This technique offers great potential for
the production of 3D polymeric micro-/nanostructures [39]. A near-infrared mode-
locked Ti:sapphire laser, whose pulse duration is around 100 fs, is tightly focused on
a photopolymerizable resin with a high numerical aperture (NA) objective lens. By
scanning the laser beam spot three-dimensionally inside the resin, 3D polymer struc-
tures with arbitrary shapes can be fabricated with sub-micrometer spatial resolution.
Since the TPA phenomenon occurs only in the region where the photon density is
sufficiently high and successive reactions triggered by the light absorption are also
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Fig. 2.11 Three-
dimensional chess
metamaterial structure.
a Tilted-view electron
microscope image of the 3D
structure (ten layers) of
stacked broken symmetry
nanorings fabricated by
stacked electron beam
lithography. The structure
consists of layers of
nanorings separated by an
insulator (SU-8). Each layer
of nanorings is shifted with
respect to the adjacent layer.
The dimensions of the rings
are: period = 600 nm, L =
300 nm, w = 60 nm, t =
30 nm, s = 50 nm. b Sketch
of the corresponding
metamaterial. Reprinted by
permission from Nature
Publishing Group: [20],
copyright 2012

based on a nonlinear process, the TPA process offers both 3D spatial resolution and
the ability to achieve subdiffraction-limit fabrication, as shown in Fig. 2.19 [40].

With such a 3D laser fabrication capability, the so-called direct laser writing
(DLW), awide variety of 3D optical functional devicesweremade. Photonic crystals,
which consist of periodic dielectric structures with dimensions on the wavelength
scale, are one of the most important applications for optical communications, but
the realization of full 3D photonic bandgap crystals is still a challenge, even when
employing cutting-edge semiconductor device fabrication processes [41]. By using
DLW, Deubel et al. demonstrated the first fabrication of a large-scale face-centered
cubic (fcc) photonic crystal in 2004 [42]. They used a commercially available pho-
toresist, SU-8, in the DLW process and fabricated a complete 3D photonic crystal
that exhibits photonic bandgaps at near-infrared wavelengths from 1.3 to 1.7 μm.
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Fig. 2.12 a Schematic of a fishnet metamaterial made up of three unit cells in the propagation
direction. The overall number of layers is 7 (4 metal layers and 3 dielectric layers). b Top-view
SEM image of the fabricated 3-unit cell fishnet structure 3. c Detail of image in (b). Reprinted with
permission from [21]. Copyright 2008 by American Physical Society

Fig. 2.13 Diagram and SEM image of fabricated fishnet structure. a Diagram of the 21-layer
fishnet structure with a unit cell of p = 860 nm, a = 565 nm, and b = 265 nm. b SEM image
of the 21-layer fishnet structure with the side etched, showing the cross section. The structure
consists of alternating layers of 30-nm silver (Ag) and 50-nm magnesium fluoride (MgF2), and the
dimensions of the structure correspond to the diagram in (a). The inset shows a cross section of the
pattern taken at a 45° angle. The sidewall angle is 4.3° and was found to have a minor effect on
the transmittance curve according to simulation. Reprinted by permission from Nature Publishing
Group: [22], copyright 2008
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Fig. 2.14 Ultraviolet bulk
metamaterial. a Schematic of
negative refraction of
ultraviolet light from air into
a coupled plasmonic
waveguide metamaterial
formed by three vertically
stacked MDMDM (M: metal
and D: dielectric) unit cells
and coated with a
beamdefining mask
consisting of a rectangular
aperture in an opaque Cr
film. Si and St, incident and
transmitted time-averaged
Poynting vectors,
respectively; ki and kt,
incident and transmitted
wavevectors, respectively.
b Scanning electron
microscope image of the
fabricated ultraviolet bulk
metamaterial, showing the
beamdefining aperture, and
sectioned by focused ion
beam (FIB) milling to reveal
the internal metamaterial
structure. Left inset: glass
slide uniformly coated with
450-nm-thick metamaterial;
right inset: magnified cross
section of the metamaterial
layers. Reprinted by
permission from Nature
Publishing Group: [23],
copyright 2013

The DLW technique allows even complex 3D photonic structures that cannot be
fabricated in a layer-by-layer built-up manner. In 2005, Seet et al. demonstrated
the fabrication of 3D spiral architecture photonic crystals using SU-8 and observed
photonic bandgaps at infrared regime [43]. Based on 3D photonic crystals fabri-
cated by the DLW technique, Ergin et al. recently realized a 3D optical metamaterial
that exhibits the so-called invisibility cloaking for unpolarized infrared light [44].
They designed and fabricated a 3D fcc woodpile photonic crystal with a tailored
filling fraction on a gold mirror surface and demonstrated carpet cloaking, which is
proposed by Li in 2008, at near-infrared wavelengths [45].
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Fig. 2.15 Left-handed (LH) and right-handed (RH) twisted double-layer cross-structures and their
experimental results. a Schematic and scanning electron microscope images of chiral metamaterial.
(i) Scheme of the chiral metamaterial structure composed of right-handed twisted gold crosses. (ii)
Oblique view electron microscope image of a fabricated sample and (iii) normal-view large-area
electron microscope image of a right-handed structure. The insets show close-ups. b Measured
normal incidence transmittance and conversion spectra (logarithmic scale) of the twisted cross-
structure. The left column is for an LH structure, and the right column for an RH structure. Trans-
mittance for LCP and RCP is plotted in gray (red online) and black (blue online), respectively. The
conversion into the other circular polarization is extremely small and, hence, shown by the same
color. In contrast, we find significant conversion of linear polarization (second row) in between the
two resonances, where the intensity transmittances for the two incident circular polarizations are
closely similar. This regime highlighted in gray delivers pure and large optical activity. Reprinted
by permission from [25]. Copyright 2009 by The Optical Society
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Fig. 2.16 Fabricating 3D NIMs by transfer printing. a Schematic of steps for printing. b Top-view
SEM image of a silicon stamp (left; inset: magnified view), tilted-view (52°) SEM image of a stack
of alternating layers of Ag and MgF2 on a silicon stamp (middle; inset: magnified top view), cross-
sectioned by FIB. c Corresponding SEM images of a tilted silicon stamp (left), an eleven-layer
Ag/MgF2 stack (right). Period P of the structure is 850 nm, and the depth-averaged widths of the
ribs in the fishnet along the x- and y-directions are 635 nm (Wx) and 225 nm (Wy), respectively. The
thicknesses of the Ag and MgF2 layers are 30 and 50 nm, respectively. d Three-dimensional NIM
printed with a stamp onto a flexible substrate. Reprinted by permission from Nature Publishing
Group: [26], copyright 2011

The spatial resolution of the DLW technique is intrinsically limited by the non-
linear characteristics of the TPA process, and it is typically as low as 120 nm for
an excitation wavelength of 780 nm [40]. Recently, these limitations were improved
by introducing a novel microscopy technique based on stimulated emission deple-
tion (STED) technique [46, 47]. Fischer et al. recently demonstrated STED-DLW by
using a specially manufactured photoresist, and its spatial resolution was improved
down to 65 nm, while the wavelengths of the excitation and the depletion laser were
810 nm and 532 nm, respectively [48, 49].
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Fig. 2.17 a Schematic diagram showing the feature size of erected U-shaped three-dimensional
resonance ring, L1 = 110 nm, H1 = 30 nm, H2 = 30 nm, W2 = 40 nm, W1 = 40 nm, P =
200 nm, respectively. The optical properties of the fabricated sample are studied in the case of x-
polarized illumination as well as y-polarized illumination. In the case of x-polarized illumination,
the electric field of incident light oscillates parallel to the resonant ring. In the case of y-polarized
illumination, the electric field of incident light passes through the resonant ring. b SEM image
of a small region from the fabricated sample. The inset shows a magnified view of four erected
U-shaped three-dimensional resonance rings with bottom length L1 = 110 nm. c Experimental
transmission spectra for x-polarized illumination (the purple curve) and y-polarized illumination
(the green curve). d Finite element simulation transmission spectra for x-polarized illumination
(the purple curve) and y-polarized illumination (the green curve). The inset in both frames (c) and
(d) shows the propagating direction of incident light as well as the polarization direction of incident
light related to the resonance ring. Reprinted by permission from [27]. Copyright 2011 by The
Optical Society
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Fig. 2.18 Experimental
demonstration of chiral
switching metamaterials.
a and b Scanning electron
microscope images of the
fabricated metamaterial. The
period of the metamaterial is
50 μm, which is far less than
the wavelength of the
terahertz waves. Scale bar in
(a), 25 μm. In b, the purple,
blue, and yellow colors
represent the gold structures
at different layers and the
two silicon pads are shown
in green. Scale bar, 10 μm.
c The ORD derived from the
measured transmission
amplitude and phase spectra,
without (black) and with
(red) photoexcitation. In the
shaded area, both the signs
of CD and ORD are flipped,
indicating the switching of
handedness of the
metamolecules. Reprinted by
permission from Nature
Publishing Group: [30],
copyright 2012

2.4.2.2 Two-Photon Techniques for 3D Metallic or Metallodielectric
Structures

Although two-photon-induced photopolymerization offerswide versatility in the fab-
rication of 3D complexmicro- and nanostructures, only dielectric photonic structures
have been developed so far. To gain more functionality in photonic and plasmonic
applications, the development of 3Dmetallic or metallodielectric structures is impor-
tant and highly demanded. Several reports on the fabrication of 3D metallodielectric
structures based on the TPA process have already been published. They can be cat-
egorized into two techniques: (i) electroless plating of a polymer template [50] and
(ii) photoreduction of metal ions in a polymer matrix/solution [38, 51]. Figure 2.20
shows metal microstructure fabricated by photoreduction of metal ions.
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Fig. 2.19 Microfabrication and nanofabrication at subdiffraction-limit resolution. A titanium–sap-
phire laser operating in mode-lock at 76 MHz and 780 nm with a 150-fs pulse width was used as
an exposure source. The laser was focused by an objective lens of high numerical aperture (~1.4).
a and b Bull sculpture produced by raster scanning; the process took 180 min. c and d The surface
of the bull was defined by two-photon absorption (TPA; that is, surface profile scanning) and was
then solidified internally by illumination under a mercury lamp, reducing the TPA-scanning time
to 13 min. Reprinted by permission from Nature Publishing Group: [40], copyright 2001

Electroless plating on the surface of 3D polymer structures was firstly reported
by Farrer et al., and they demonstrated gold/copper coating of selectively function-
alized acrylic/methacrylic structures [50]. In 2006, Formanek et al. demonstrated
selective silver coating of 3D polymer structures by chemical modification on the
polymer surface with stannous chloride (SnCl2). They also employed a microlens
array to realize parallel fabrication and demonstrated mass production of 3D met-
allodielectric microstructures over a large sample area [52, 53]. Figure 2.21a shows
the multiple laser beam spots created by the microlens array, and Fig. 2.21b–d shows
the SEM images of the fabricated structures. Takeyasu et al. demonstrated a similar
selective coating technique by directly mixing methacrylamide in a resin to selec-
tively activate/deactivate the polymer surface as shown in Fig. 2.22 [54]. Rill et al.
fabricated 3D metallodielectric microstructures by combining the DLW process and
atomic layer deposition (ALD) as shown in Fig. 2.23. In the process, an SU-8 tem-
plate of a 3D structure was first coated with SiO2 using ALD and then CVD process
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Fig. 2.20 Micrometal structures fabricated by two-photon-induced metal ion reduction. a Optical
microscope image of a silver double-ring pattern made by the reduction of an AgNO3 aqueous
solution.bAgold patternmade by reduction of anHAuCl4 solution. c Scanning electronmicroscope
image of the gold ring. d Scanning electronmicroscope image ofmicrosized 3D silver gate structure
standing on a glass substrate without any support. The width, height, and linewidth were 12, 16, and
2 μm, respectively. Reprinted with permission from [51]. Copyright 2006 by American Institute of
Physics

was applied to realize 3D deposition of silver onto the polymer surface [55]. In
contrast to such surface coating techniques, Gansel et al. fabricated 3D metallodi-
electric microstructures by employing the electrochemical deposition of gold onto
an exposed positive-tone photoresist. After removing the polymer template by dry
etching, they obtained an array of gold-helix structures. This gold-helix array works
as a broadband polarizer for circularly polarized light [56]. These techniques have
been extensively improved recently and applied to the development of a wide variety
of functional optical/mechanical 3D devices [57–60].
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Fig. 2.21 Two-photon polymerizationwithmicrolens array andmetal deposition. a Intensity profile
of the expanded beam measured before the microlens array along the horizontal direction. b 78 ×
58 μm2 SEM image of a 3D periodic silver-coated structure fabricated on a hydrophobic-coated
glass surface. c Tilted magnified view of an individual uncoated polymer structure composed of a
cube (2 μm in size) holding up a spring (height 2.2 μm and inner diameter 1 μm). d SEM image of
an individual silver-coated structure after electroless plating. Reprinted by permission from [53].
Copyright 2006 by The Optical Society

Fig. 2.22 SEM image of
silver/polymer 3D
microstructures. The size of
the structures is 2 μm ×
2 μm × 2 μm. Reproduced
from [54] by permission of
Springer, copyright 2008
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Fig. 2.23 Metamaterial structure with elongated SRRs. a A planar lattice of elongated SRRs. This
structure shall serve as a reasonably simple test bed for the novel fabrication approach. Polymer
(light gray), silica (blue), and silver (dark gray, reflective). b Electron microscope images of fabri-
cated structure. The oblique views show structures that have been cut by a focused ion beam after
fabrication to reveal the interior. Reprinted by permission from Nature Publishing Group: [55],
copyright 2008

In 2000, Wu et al. reported the photoreduction of metal ions in polymer matrix.
They demonstrated the fabrication of silver microstructures inside a SiO2 solgel
matrix using image formation and developing processes [38]. Similar method was
also reported by Duan et al. using titanium ions for the fabrication of functional com-
positematerials [61, 62]. In 2002, Stellacci et al. improved the reduction properties of
organic-solvent-soluble silver salt (AgBF4) in a polymer matrix with ligand-coated
silver nanoparticles [63]. They realized electrically conductive silver and gold 3D
structures in a polymer matrix, but the resistivity of the metal structures is still low
compared with that of bulk metal, implying that the fabricated structures were not
fully connected. To make fully connected and electrically conductive 3D metal-
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Fig. 2.24 SEM images of a freestanding a silver-tilted rod and b silver cup on a substrate. The
length of the rod and the angle relative to the substrate were 34.64 μm and 60°, respectively. The
height and the top and bottom diameters of the cup were 26, 20, and 5 μm, respectively. Reprinted
with permission from [64]. Copyright 2006 by American Institute of Physics

lic structures, Tanaka et al. proposed the two-photon-induced reduction of metal
complex ions in aqueous solution and demonstrated 3D metallic structures made of
silver or gold with superior electrical conductivity [51]. The reduction property and
spatial resolution were improved further by introducing a two-photon sensitive dye
(coumarin 440) for high-efficiency photoreduction as shown in Fig. 2.24 [64] and
surfactant molecules to avoid unwanted crystal growth as shown in Fig. 2.25 [65].
These photoreduction techniques have recently been applied to the fabrication of
magnetic metamaterials at infrared frequencies [66].

2.4.2.3 Other Fabrication Techniques for 3D Metallodielectric
Structures

Grayscale photolithographymethod has beenwidely applied to fabricate 3D polymer
structures, and the recent development of digital light processing devices (spatial
light modulator) has enhanced its capability for even complex 3D fabrication [67,
68]. However, the fabricated structures are still limited only to surface profiles on
photoresist. To extend the 2D capability of conventional photolithography to three
dimensions, Burckel et al. developed membrane projection lithography as shown in
Figs. 2.26 and 2.27 [69, 70]. Although this technique is based on the conventional
lithography process, we can create out-of-plane metallic structures, enabling the
fabrication of bulk metamaterials.

A2Dmetamaterial has been proposed as a simple yet powerful concept tomold the
flow of light in a desired manner [71, 72]. This is termed “metasurface.” Although
most of the metasurfaces demonstrated so far are based on 2D planar structures,
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Fig. 2.25 Three-dimensional silver structures fabricated by surfactant-assisted multiphoton pho-
toreduction. a SEM image of the freestanding silver pillar on the coverslip, made by using a laser
power of 1.14 mW and a linear scanning speed of 3 mm/s, taken at an observation angle of 45°.
The inset is a close-up view of the silver pillar parallel to the substrate, which demonstrates the
linewidth of the smallest portion of the silver pillar as 180 nm. b SEM image of silver pyramids,
fabricated with a laser power of 1.3 mW and scanning speed of 2.5 mm/s, taken at an observation
angle of 45°. The inset on the left is a top view of the silver pyramid array. The inset on the right is
a close-up view of the silver pyramid. Reproduced from [65] by permission of John Wiley & Sons
Ltd.

Fig. 2.26 SEM images of an array of fully 3D metamaterial elements consisting of SRRs on each
side of an open cubic cavity arranged in a rectangular lattice. There are five SRRs per unit cell,
with dimensions and composition identical to the preceding designs. a Low-resolution SEM image.
b The high magnification inset SEM image shows 3 of the 5 unit cell SRRs. Reproduced from [69]
by permission of John Wiley & Sons Ltd.
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�Fig. 2.27 Three-dimensionalmetamaterials fabricated by self-alignedmembrane projection lithog-
raphy method. a (A) As-drawn pattern. (B) SEM image of membrane suspended over cavity. The
halo shows the extent of the cavity. (C) High-resolution SEM image of spheroidal cavity decorated
with three instances of the resonator pattern. (D) Lower-resolution SEM image demonstrating uni-
formity. Samples were uniform to this extent over the entire 5 mm × 5 mm area. b (E) Pattern
specifications. (F) SEM image of patterned membrane suspended over the cavity. Halo indicates
the extent of the cavity. (G) Angled SEM image demonstrating the curved cavity with obviously
out-of-plane resonators. (H) Low-resolution SEM image indicating degree of sample uniformity.
Reproduced from [70] by permission of John Wiley & Sons Ltd.

extending the technique into the third dimension is the next step to gainmore function-
ality for versatile optical/photonic applications [73–75]. Recently, Ni et al. demon-
strated a metasurface on a 3D arbitrarily shaped object to realize carpet cloaking at
visible wavelengths [76]. The height profile of the 3D object was firstly obtained by
the use of an atomic force microscope (AFM), and then metasurfaces were patterned
at each local position by using a standard EB lithography technique with precise
focus alignment.

2.4.3 Self-organization and Templating Techniques
for Large-Area Metamaterials

The fabrication technologies that are referred to as top-down techniques, such as pho-
tolithography, EB lithography, DLW, and so on, have the strong advantage that they
can fabricate diverse patterns with precise controllability of the pattern alignment.
However, these techniques are intrinsically time- and energy-consuming, and it is still
challenging to fabricate a large amount of micro- and nanostructures because of the
low throughput. On the other hand, bottom-up approaches based on self-organized
or self-assembling fine structures of metamaterial templates are effectual tools for
the mass production of metamaterials.

Yao et al. used a nanoporous alumina that is produced by electrochemical anodiza-
tion tomake a silver nanowire array [77]. Silver nanowire arrays of 60 nm in diameter,
110 nm center-to-center distance, and 4.5 μm or 11 μm in length were fabricated by
electrochemical deposition of silver into the pores. Negative refraction was experi-
mentally demonstrated at wavelengths of both 660 nm and 780 nm.

According to theoretical investigations of optical metamaterial structures, metal
ring structures with gaps of several nanometers work as the resonant unit of metama-
terials (meta-atoms/metamolecules) [78]. To form such structures, aDNA-templating
method was proposed by Watanabe et al. [79, 80]. A chemically synthesized gold
nanoparticle was bound to an artificially designed and synthesized single strand
of DNA with thiol moiety. When three DNA strands with Au nanoparticles are
hybridized with each other, a triangular DNA template structure is automatically
formed, then three DNA templates are assembled into a trimer ring structure, and
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Au nanoparticles formed triangle structure with nanometer-scale gaps. The fabrica-
tion process, scanning transmission electron microscope (STEM) images, and AFM
images of gold trimer ring structures are shown in Fig. 2.28.

Self-organization of colloidal particles on a substrate can be used for nanofabri-
cation templates. Fredriksson et al. used the hole–mask colloidal lithography tech-
nique to make large-scale 2D arrays of nanosized structures [81]. In the first step,
randomly dispersed particles are used as a mask for metal deposition to make a metal
hole–mask pattern. Using the metal hole–mask and plasma etching, a polymethyl
methacrylate (PMMA) sacrificial filmwas patterned; then,materialswere evaporated
on the surface of the substrate through the PMMA pattern, and various patterns such
as nanodisks, oriented elliptical nanostructures, nanocone arrays, nanodisk pairs,
and so on were obtained. Lodewijks et al. also used self-assembled nanospheres as
a mask to make large-area double fishnet metamaterial structures [82]. A schematic
and SEM images of the fabricated hexagonal double fishnet structures are shown in
Fig. 2.29.

Aoki et al. demonstrated a magnetic self-assembly technique to form resonant
unit cells of metamaterials [83]. Randomly dispersed gold core–shell microparticles
dispersed in water are attracted to the equator plane of the center polystyrene bead
and automatically formed a necklace shape structure only applying an external static
magnetic field. Figure 2.30 shows optical microscope images of Au microparticle
necklace structures assembled by the developed technique.

In 2005, Nastaushev et al. proposed the self-organized formation of micro- and
nanotubes from strained metal bifilms [84]. The schematic diagram of the proposed
process and the experimental results are shown in Fig. 2.31. They examined the
combination of materials and found that the Au/Ti bifilm has the best properties
for the tube formation. This structure works as a so-called Swiss roll resonant unit.
Mei et al. used the same technique to form an integrated microtube array, and they
examined the photoluminescence spectrum of SiO/SiO2 microtubes [85].

Chen et al. have developed a metal stress-driven self-folding method for self-
standing three-dimensional split-ring resonators using residual stress in thin metal
films [86]. They demonstrated a 3D SRR array made of Al as shown in Fig. 2.32. In
2015, they applied the technique to fabricate three-dimensional isotropic metama-
terials [87]. The fabrication process of the metal stress-driven self-folding method
is shown in Fig. 2.33a. The materials for SRR were changed from Al to Au/Ni
bifilms. The fabrication process and a scanning electron microscope image of the
3D SRR array are shown in Fig. 2.33b. By using the fabricated bulk metamaterials,
they demonstrated isotropic optical responses at the 30 THz, and an extremely low
refractive index of 0.35, which is lower than that of vacuum, was demonstrated.

2.5 Conclusion and Outlook

The study of metamaterials began in the last decade in the microwave regime and has
now been extended to the visible or UV light region. Together with theoretical inves-
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Fig. 2.28 DNA-templating process for gold trimer rings. a Schematic outline of the DNA-
templating process for mass production of gold trimer ring. Ligand DNA covalently binds with
gold NP and then hybridizes with template DNA and supporting DNA to form building blocks.
They finally assemble into a trimer ring structure through hybridization. STEM images of a b gold
ring and c linear trimer obtained after AEG separation. AFM d height and e phase images of gold
trimers on quartz substrates. The insets are the enlarged images. The trimers are indicated by the
dashed white circles in (d). The height range is 25 nm. Reprinted with the permission from [80].
Copyright 2012 American Chemical Society
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Fig. 2.29 Self-assembled hexagonal double fishnet structures. a Schematic sample structure.bUnit
cell for simulation dimensions; D is the diameter, and α is the 20° sidewall angle of the holes.
c Detailed scanning electron microscope picture of the nanosphere lithography (NSL) sample and
d a perfectly ordered domain with some defects. Reprinted with permission from [82]. Copyright
2011 by American Institute of Physics

Fig. 2.30 Magnetic field-induced assembly of necklace structures: a–e Necklace structures com-
posed of φ = 2.5 μm gold core–shell paramagnetic spheres around φ = 10 μm polystyrene center
spheres. Ferrofluid concentrations were increased gradually from (a) to (e). Reprinted with permis-
sion from [83]. Copyright 2012 by American Institute of Physics
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Fig. 2.31 Roll-up process of a nanomembrane into a tube on photoresist. a Schematic diagram
illustration. b–i Optical images of rolled-up nanomembranes made out of b Pt, c Pd/Fe/Pd, d TiO2,
e ZnO, f Al2O3, g SixNy, h SixNy/Ag, and i DLC; j SEM image of an array of rolled-up SiO/SiO2
nanomembranes. Reproduced from [85] by permission of John Wiley & Sons Ltd.

tigations, the most important progress that has supported the development of optical
metamaterials is the rapid advancement of micro- and nanofabrication technologies.
As a result, optical metamaterials are no longer mere conceptual ideas but have
already become a practical reality with unexemplified and fascinating optical phe-
nomena and applications, such as perfect lenses, optical cloaking, perfect absorbers,
and so on. These application ideas are really fascinating, and they stimulate our sci-
entific interests and motivate us to develop new technologies. However, as practical
applications, it is worth remembering that a discussion of “killer applications” will
be important for demonstrating the real intrinsic potential of metamaterials.
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Fig. 2.32 Oblique view of SEM imageswith tilting angle of 40° for the three-dimensional split-ring
resonators. a–c show SRRs with the same arm length of 2 μm but with different Al film thickness,
respectively. The metal thickness (a) = (d) = 8 nm, (b) = (e) = 5 nm, and (c) = (f) = 4 nm,
respectively. Figures d–f are the SRRs with arm length of 3 μm. Notice that the bar shapes on
the substrate represent the residual fused silica material underneath the metal film, resulting from
the shadow effect of etching process. Reprinted by permission from [86]. Copyright 2012 by The
Optical Society

Fig. 2.33 Three-dimensional split-ring resonators fabricated by metal stress-driven self-folding
method. a The fabrication process of a 3D SRR; spin-coating resist, electron beam lithography,
Ni/Au (10/60 nm) deposition, liftoff, CF4 plasma dry etching, and self-folding (in sequence). The
SRR diameter, d, height, h, and gap size, g, were 2.2 μm, 1.8 μm, and 1.5 μm, respectively. Note
that a shadow effect of the arms in the dry etching process produces protruding Si portions under
the arms in the last two steps. b SEM image of the fabricated isotropic metamaterial consisting of
fourfold symmetric 3D SRRs. The inset shows a magnified image, and the total sample area was 4
× 4 mm2. Reproduced from [87] by permission of John Wiley & Sons Ltd.
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Chapter 3
Blackbody Metamaterial Composite Film
of Nanoparticle and Polymer

Kotaro Kajikawa and Hisashi Karube

Abstract Blackbody metamaterial composite films of nanoparticles and polymer
are presented both theoretically and experimentally. Reflectance, transmittance and
absorption of the film are calculated on the basis of the Mie theory and Clausius–
Mossotti relation, which is equivalent to the Maxwell Garnett theory, at various con-
ditions.We also fabricated the composite metamaterials in which gold nanospherical
particles are dispersed in a polyvinylpyrrolidone film. Although the experimental re-
sults are in agreement with the calculated spectra in the composite of binary gold
nanoparticles with different sizes, the results are somewhat deviated from the cal-
culated spectra of the composite of single-element gold nanoparticles. This may be
due to aggregation of the gold nanoparticles at high volume fraction.

3.1 Introduction

Light absorbers are important media that can be applied to light-harvesting technol-
ogy and light emitters. Sincemetamaterials allow us to form very thin light absorbers,
many studies have been carried out [1–4]. This is because we can design the meta-
materials to optimize the optical properties, as required. Here, we describe our stud-
ies on blackbody metamaterial composite films of nanoparticles and polymer. The
broadband absorption stems from the interaction between the nanoparticles, whereas
isolated nanoparticles have rather narrow absorption bands at peak wavelengths. The
composite film is formed by a simple fabrication procedure and has a high absorption
over the visible wavelengths.

K. Kajikawa (B) · H. Karube
Interdisciplinary Graduate School of Science and Engineering,
Tokyo Institute of Technology, Nagatsuta, Yokohama 226-8502, Japan
e-mail: kajikawa@ep.titech.ac.jp

© Springer Nature Singapore Pte Ltd. 2019
K. Sakoda (ed.), Electromagnetic Metamaterials, Springer Series
in Materials Science 287, https://doi.org/10.1007/978-981-13-8649-7_3

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8649-7_3&domain=pdf
mailto:kajikawa@ep.titech.ac.jp
https://doi.org/10.1007/978-981-13-8649-7_3


44 K. Kajikawa and H. Karube

3.2 Theory

3.2.1 Optical Absorption

When light is incident to a layered structure such as a film, as shown in Fig. 3.1a, re-
flectance, transmittance, scattering and reflection occur. Transmittance T , reflectance
R, scattering efficiency S and absorption efficiency A are in the following relation.

R + T + A + S = 1 (3.1)

If three parameters T , R and S are known, absorption efficiency A is evaluated.
When the layered structure is flat, S = 0, resulting in the relation

A = 1 − R − T . (3.2)

The transfer matrix method can be used to obtain R and T .

3.2.2 Layered Structure

The layered structure for the blackbody considered in this study is depicted in
Fig. 3.1a. Light is incident from the medium 1 whose refractive index is n1. The
layer structure is composed of medium 2 with a refractive index n2 and thickness
d2. The light is transmitted to medium 3 with a refractive index n3. To obtain the
condition that the layer is good light absorber, we calculated the absorption A, as a
function of nRe and nIm, where nRe and nIm are the real and imaginary parts of n2
[2]. The thicknesses d2 = 50, 100, 150, 200, 300 and 500nm were examined. The
results at a wavelength of 400nm are shown in Fig. 3.2, in which the absorption A is

(a) (b)

Fig. 3.1 a Three-layer structure considered. b The blackbody metamaterial composite film
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Fig. 3.2 Calculated absorption A at 400nm for different d2
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Fig. 3.3 Calculated mean absorption Ā over the visible spectral range (400–800nm) at different
d2

Fig. 3.4 Calculated
maximum mean absorption
Āmax as a function of d2

represented in gray scale. When d2 ≤ 100nm, the absorption is much less than unity
whereas there is condition that gives A ∼ 1 at d ≥ 150nm. When d2 is larger, the
nRe approaches to 1, while it is around 1.5 at d2 = 200nm. It is difficult to match the
refractive index to be unity because the refractive index of polymers is usually ∼1.5.

Figure3.3 showsmean absorption Ā over the visible spectral range (400–800nm).
The Ā ∼ 0.8 at d2 = 100nm, and it is nearly 0.9 at d2 ≥ 300nm. At these conditions,
however, the real part of the refractive index nRe should be close to unity for low
reflectivity. Figure3.4 plots themaximummean absorption Ā as a function ofd2.With
increasing d2, Ā increases to unity.When d2 ≥ 300nm, Ā > 0.9 with the appropriate
n2. According to these calculations, the conditions for the thin-film blackbody are
as nRe = 1 − 1.5 and nIm ∼ 0.3, at the thickness of 200−300nm.

3.2.3 Effective Refractive Index

To satisfy the condition for the thin-film blackbody, we consider a composite film of
metallic nanoparticles and polymer, as shown in Fig. 3.1b. The effective refractive
index neff of the composite is given by the Clausius–Mossotti relation, which is
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equivalent to the Maxwell Garnett theory. Suppose that the composite is composed
of N different particle elements with different radii r j and a refractive index n j . The
squared effective refractive index n2eff is written as [1, 5]

n2eff =
2

N∑

i

f j
r3i

α j + 1

1 −
N∑

j

f j
r3j

α j

n2mat. (3.3)

Here, r j and f j are the radius and the volume fraction of the element j , respectively,
and nmat is the refractive index of the polymer matrix. The dipole polarizability α j

of the element j is

α j = 3r3j
2x3j

a j
1 i. (3.4)

x j is the size parameter of the element j , which is given by

x j = 2π

λ0
r jnmat, (3.5)

where λ0 is the vacuum wavelength of light. The Mie coefficient a j
n of nth order of

the element j is written as

a j
n = m jψn(m j x j )ψ

′
n(x j ) − ψn(x j )ψ

′
n(m j x j )

m jψn(m j x j )ξ ′
n(x j ) − ξn(x j )ψ ′

n(m j x j )
. (3.6)

Here, Riccati–Bessel functions ψn(ρ) = ρ jn(ρ) and ξn(ρ) = ρh(1)
n (ρ) are used, in

which jn(ρ) and h(1)
n (ρ) are the spherical Bessel functions of the first order and the

third order, respectively. The prime indicates differentiation with respect to the argu-
ment in parentheses. mi is the relative refractive index with respect to the refractive
index of the polymer matrix: m j = n j/nmat.

Figure3.5 shows the real and imaginary parts of the effective refractive index
of the composite of gold nanoparticles and polymer, at different particle fractions
f and radii of the particles r . The refractive index of the polymer is set to be 1.5.
When the size of the gold particles is small (r = 50nm), an absorption band is
observed, indicating that the wavelength dispersion is significant.When r = 100nm,
the absorption disappears and gradual increase in the refractive index is observed
with the longer wavelength region. When r = 200nm, the effect of the particle to
the optical response is almost absent.

Figure3.6 shows the real and imaginary parts of the effective refractive index of
the composite of gold nanoparticles and polymer, at different f and r . The composite
of small silver particles shows an absorption band blue-shifted from that from the
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Fig. 3.5 Calculated real and imaginary parts of the effective refractive index of the composite
medium of gold nanoparticles in a polymer thin-film matrix, at a different particle fraction f and
the radius of the particles r

gold composite at r = 50nm. The composite of larger particles (r = 100 or 200nm)
has a refractive index similar to the composite of gold.

The calculated reflectivity R, transmittance T and absorption A of the composite
film of gold nanoparticles and polymer, at different f and r , are shown in Fig. 3.7.
The refractive index of medium 1 and 3 is set to be n1 = n3 = 1, and the refractive
index of the polymer to be nmat = 1.5. The thickness of the composite film (medium
2) is set to be d2 = 500nm. The hatched region is high absorbance (A ≥ 0.8) at
visible wavelengths (400−800nm). The composite ( f = 0.2, r = 50nm) satisfies
the condition (A ≥ 0.8) over the visible wavelengths, as shown in (d).

The calculated results of R, T and A of the composite film of silver nanoparticles
and polymer, at different f and r , are shown in Fig. 3.8. Parameters n1 = n3 = 1,
nmat = 1.5 and d2 = 500nm are used. The composites ( f = 0.2, r = 50nm) and
( f = 0.2, r = 75nm) satisfy the condition (A ≥ 0.8) over the visible wavelengths,
as shown in (d) and (e). In both cases, reflectivity is suppressed, as low as R ≤ 0.2,
and the transmittance is negligibly small, at the visible wavelengths.
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Fig. 3.6 Calculated real and imaginary parts of the effective refractive index of the composite of
silver nanoparticles in a polymer thin-film matrix, at a different particle fraction f and the radius
of the particles r

To find the optimized particle size, the mean absorption Ā of the composite film
of gold nanoparticles and polymer was calculated over the visible wavelengths, at
different f and r . The results are shown in Fig. 3.9. The greatest mean absorption
Ā ∼ 0.9 is found in the two conditions ( f = 0.2, r = 50nm) and ( f = 0.4, r =
75nm). The spectra are shown in Fig. 3.7d, h, respectively. Although good Ā value
is given at the condition ( f = 0.4, r = 75nm), the absorbance is less than 0.8 at the
long wavelength range (700−800nm). This is not good condition for blackbody in
the visible wavelength range.

The mean absorption Ā of the composite film of silver nanoparticles and poly-
mer is shown in Fig. 3.10. The greatest mean absorption Ā ∼ 0.9 is found in
the three conditions ( f = 0.2, r = 50 − 75nm), ( f = 0.3, r = 75nm) and ( f =
0.4, r = 100nm); corresponding spectra are shown in Fig. 3.8d, e and i.1 Although
good Ā value is given at the condition ( f = 0.4, r = 75nm), the absorbance is less
than 0.8 at the short wavelength range (400−450nm).

1The spectra at the condition ( f = 0.3, r = 75nm) is not shown.
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Fig. 3.7 Calculated reflectivity R, transmittance T and absorption A of the composite film of gold
nanoparticles and polymer, at a different particle fraction f and the radius of the particles r

To have greater absorption, we calculated the mean absorption Ā of the composite
film of binary gold particles and polymer. The fractions and the radii are f1, f2, r1 and
r2, respectively. The results of the composite of gold nanoparticles and polymer are
shown in the contour plot in Fig. 3.11, at different fractions f1 and f2, as a function
of radii r1 and r2. The refractive indexes of the media are set to be n1 = n3 = 1 and
nmat = 1.5. The high absorption (A ≥ 0.8) is satisfied under a wide range of r1 and
r2. The results for the composite of binary silver particles and polymer are shown in
Fig. 3.12. The conditions to have high mean absorption Ā are also broad, similar to
the gold composite.



3 Blackbody Metamaterial Composite Film of Nanoparticle … 51

Fig. 3.8 Calculated reflectivity R, transmittance T and absorption A of the composite of silver
nanoparticles and polymer, at a different particle volume fraction f and the radius of the particles r

3.3 Experiment

We show experimental results of reflectance, transmittance and absorption spectra
of composite films. The gold nanoparticles were made by the following procedure.
Sodium chloroaurate (NaAuCl4) 79.6mg (0.2mmol) was dissolved in pure water
(100mL). Aqueous solution of citric acid at a concentration of 1.5 wt%, used for
reduction of NaAuCl4, was added to the sodium chloroaurate solution at 80 ◦C with
stirring for 10min. It was radiationally cooled to the room temperature. An ethanol
solution of polyvinylpyrrolidone (PVP) at 4 wt%was added to the solution to prevent
aggregation of the particles. The amount of the PVP solution was 100mL. The size
of the gold nanoparticles was controlled by the amount of the aqueous solution of
citric acid. Addition of 2mL and 4mL of the citric acid solution affords us the gold
particles of radii of 50nm and 37.5nm, respectively. The size of the particles was
evaluated by scanning electron microscopy.
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Fig. 3.9 Calculated maximum mean absorption Ā of the composite film of gold nanoparticles and
polymer, at a different particle fraction f and the radius of the particles r

For the gold particles lager than of a radius of 50nm, a mixture of ascorbic acid
(8.1 wt%) and citric acid (1.5 wt%) was used for reduction. Sodium chloroaurate
(NaAuCl4) 82.4mg (0.2mmol) was dissolved in pure water (100mL). After heating
the sodium chloroaurate solution at 80 ◦C, 2mL of the mixture solution of ascorbic
acid and citric acid was added. After stirring for 1min, an ethanol solution of PVP
at 4wt% was added to prevent aggregation.

Since the gold particle solutions were low density to form a film, they were con-
centrated by centrifugation. The composite film was fabricated on a glass substrate
by the spin-coating method. The thickness of the film was evaluated with a Dektak
Stylus Profiler.

Experimental results of R, T and A of the 750-nm-thick composite film of gold
nanoparticles and polymer are shown in Fig. 3.13a. The radius of the nanoparti-
cles was r = 100nm, and the volume fraction was f = 0.4. The absorption of the
composite film is over 0.9 in visible spectrum range with negligible transmittance
and low reflection below 0.1. The absorbance is gradually decreased with the wave-
length. The refractive index of the composite film calculated with the parameters
r = 100nm and f = 0.4 is shown in Fig. 3.13b. The R, T and A calculated are
shown in Fig. 3.13c. While the results of experimental and theoretical results were in
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Fig. 3.10 Calculated maximum mean absorption Ā of the composite film of silver nanoparticles
and polymer, at a different particle fraction f and the radius of the particles r

good agreement with wavelengths 400−500nm, they are not in good agreement with
the wavelengths longer than 500nm. A possible reason is that aggregation occurs
owing to the high concentration f = 0.4 and the optical absorption is changed from
that of the nanoparticles isolated and dispersed in the polymer matrix.

Experimental results of R, T and A of the 260-nm-thick composite film of binary
gold particles and polymer are shown in Fig. 3.14a. The particles were r1 = 100 and
r2 = 37.5nm with volume fractions of f1 = 0.3 and f2 = 0.1, respectively. Small
particles were used to elevate the volume fraction. The absorption of the composite
film is over 0.8 in visible spectrum range with negligible transmittance and low
reflection below 0.1. The refractive index of the composite film calculated with the
parameters is shown in Fig. 3.14b, and the calculated R, T and A are shown in
Fig. 3.14c. The results were almost in agreement probably due to no aggregation in
the binary mixture.
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Fig. 3.11 Calculated mean absorption Ā of the composite film of binary gold nanoparticles and
polymer, at different particle fractions f1, f2 and the radii of the particles r1, r2
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Fig. 3.12 Calculated mean absorption Ā of the composite film of binary silver nanoparticles and
polymer, at different particle fractions f1, f2 and the radii of the particles r1, r2
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(a) (b) (c)

Fig. 3.13 a Experimental results of R, T and A of the 750-nm-thick composite film of gold
nanoparticles and a thin PVP film. The diameter of the nanoparticles was r = 100nm, and the
volume fraction was f = 0.4. b The refractive index of the composite film and c R, T and A
calculated with the parameters r = 100nm and f = 0.4

(a) (b) (c)

Fig. 3.14 a Experimental results of R, T and A of the 260-nm-thick composite film of binary gold
nanoparticles and a thin PVP film. The nanoparticles were r1 = 100 and r2 = 37.5nm with volume
fractions of f1 = 0.3 and f2 = 0.1. b The refractive index of the composite film and c R, T and A
calculated with the parameters r1 = 100, r2 = 37.5, f1 = 0.3nm and f2 = 0.1

3.4 Summary

Theoretical and experimental results of blackbody metamaterial composite film of
nanoparticles and polymer have been discussed. Although the experimental results
are in agreementwith the calculated spectra in the composite of binary gold nanoparti-
cles and polymer, the results are deviated from the calculated spectra in the composite
of single-element gold nanoparticles and polymer. This may be due to aggregation
of the gold nanoparticles at high volume fraction.
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Chapter 4
Bottom-up Strategies for Fabricating
Meta-atoms via Self-assembly
of Polymers and Nanoparticles

Hiroshi Yabu

Abstract In this chapter, bottom-up strategies for fabricating nanoscale ring
structures to produce optical metamaterials are described. Co-assemblies of
submicrometer-sized spherical polymer particles and metal nanoparticles sponta-
neously form three-dimensional (3D) nano-ring arrays among polymer particles
through self-assembly of metal nanoparticles at the evaporation meniscus. Colloidal
assemblies of submicrometer particles,which form3Dperiodic structures, are used as
templates to assemble metal nanoparticles and block copolymers. Block copolymers
form phase-separated structures tens of nanometers in size; thus, metal nanoparticles
can be self-assembled into the phase-separated block copolymers. These bottom-up
methodologies are useful for fabricating optical metamaterials.

4.1 Introduction

Optical metamaterials, which can modulate the refractive indices of materials from
positive to negative in the visible light region, are attractive for their applications
ranging from high-resolution optical microscopy beyond the diffraction limit [4] to
optical cloaking [5]. Theoretical calculations indicate that metallic nano-resonators
smaller than the wavelength of visible light, which have electromagnetic resonance
with electromagnetic radiation, are required for realizing optical metamaterials [6].
Current top-down microfabrication technologies have been used to prepare two-
dimensional (2D) arrays of these meta-atoms on solid substrates, and their optical
properties have been investigated [7]. However, the angular dependences of the opti-
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cal properties must be measured owing to the 2D nature of the arrays, and the arrays
require expensive, elaborate multistep fabrications. Therefore, a simple process to
fabricate three-dimensional (3D) metallic nano-resonators is desirable.

Bottom-up strategies, including self-assembly and chemical synthesis of nano-
structures, provide alternative ways to create arrays of 3D metallic nano-resonators.
An essential technique for bottom-up fabrication is arranging metallic nanoparticles
(NPs) which have plasmonic properties and interact with visible light [8]. In this
chapter, we describe bottom-up approaches based on colloidal self-assembly and
polymer phase separation for creating 3D arrays of NPs.

4.2 Formation of Metallic Shells on the Surface
of Microspheres

Thin metallic shells formed on the surface of microspheres smaller than the light
wavelength provide ideal conditions for interacting with visible light. The small
noble metal shells have plasmonic resonances with visible and ultraviolet light and
absorb visible light, and their spherical shape means that the optical properties do
not depend on angle.

There are two approaches to forming metallic shells: chemically plating micro-
sphere surfaces withmetals and heterocoagulation ofmetal NPs. Plating is the simple
chemical reduction of metal ions on the surface of silica or polymer particles. Halas
et al. reported the formation of silver nano-shells on silica NPs and measured their
optical properties (Fig. 4.1a) [9]. However, because silver has self-catalytic proper-
ties, controlling the surface roughness is difficult, which may affect the plasmonic
properties of the nano-shell structures.

Heterocoagulation of metallic NPs on microsphere surfaces is another technique
for forming metallic NP arrays on the surface of microspheres [10]. The plasmonic
resonance of metal NPs is enhanced by plasmonic coupling among NPs, resulting
in strong electromagnetic resonance. Furthermore, the resonance wavelength can be
controlled by tuning the size and plasmonic coupling of metal NPs to red-shift the
absorption wavelength.

Kanahara et al. also reported the formation of nano-shell structures composed
of Au NPs on polymer blended particles of amino-terminated poly(butadiene) (PB-
NH2) and poly(styrene) (PS) [11]. PB-NH2 and PS were dissolved in tetrahydrofu-
ran (THF), and then water was mixed into the solution. After complete evaporation
of THF, core–shell polymer blended particles with PB-NH2 shells, were formed
(Fig. 4.1b). Owing to the cationic amine groups, the surface charge of the blended
particles was positive. Negatively charged Au NPs stabilized with citrate molecules
adhered to the surface of the blended particles and formed Au NP shells. Further-
more, Au NPs diffused into the shell, and then multilayered NP assemblies were
formed on the shell layer owing to the low glass transition temperature of PB. The
plasmonic resonance of these core–shell composite particles was red-shifted from
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Fig. 4.1 a TEM image of silver-plated silica NPs [9] and b SEM image of Au NPs and polymer
composite particles [11]. (a, b) are reprintedwith permission from J. B. Jackson, N. J. Halas, J. Phys.
Chem. B 2001, 105(14), 2743, Copyright (2001) American Chemical Society and M. Kanahara, H.
Sato, T. Higuchi, A. Takahara, H. Jinnai, K. Harano, S. Okada, E. Nakamura, Y. Matsuo, H. Yabu,
Part. Part. Syst. Char. 2014, 32(4), 441, Copyright (2014) by John Wiley Sons, Inc. Reprinted by
permission of John Wiley & Sons, Inc., respectively

500 to 780 nm, and the top peak wavelength was controlled by changing the num-
ber of assembled Au NPs, allowing arbitrary control of the resonance wavelength.
Based on the high electromagnetic resonance with visible and near-infrared wave-
length light, surface-enhanced Raman scattering signals from absorbed molecules
were obtained from these composite particles.

The morphology of the microphase-separated structure in composite particles
consisting of metal NPs and the block copolymer is controlled by many factors,
including the molecular weight, the copolymerization ratio of block copolymers,
the NP concentration, and the NP size. Yabu et al. reported the effects of the size
and concentration of Au NPs on the microphase-separated structure in composite
particles consisting of Au NPs and a block copolymer (Fig. 4.2) [2].

PS-b-P2VP-stabilized Au NPs [12] and PS-SH-stabilized Au NPs have been syn-
thesized [13]. The inner structure of block copolymer particles depends on the copoly-
merization ratio of each polymer segment. PS-b-PI forms lamellar structures in the
bulk state, and unidirectionally stacked lamellar structures or onion-like structures in
particles were used. Figure 4.3a–c shows transmission electron microscopy (TEM)
images of the composite particles. Each particle was spherical with a diameter of
~300 nm and had onion-like microphase-separated structures, which were the same
as in the block copolymer.

Cross-sectional TEM images showed that the position of the Au NPs depended
on their size (Fig. 4.3d–f). Au NPs were present in each of the PS layers in the
onion-like block copolymer particles. In contrast, Au NPs were only located on the
surface of the onion-like block copolymer particles and were not present in the inner
layers in larger Au NPs. Because the Au NPs were smaller than the thickness of the
PS layers in composite particles, the Au NPs simultaneously precipitated with the
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Fig. 4.2 Schematic illustration of the preparation of composite particles. The figure is reprinted
from [2] H. Yabu, K. Koike, T. Higuchi, M. Shimomura, J. Polym. Sci. Polym. Phys. 2011, 49(24),
1717, Copyright (2011), by John Wiley Sons, Inc. Reprinted by permission of John Wiley & Sons,
Inc.

block copolymers and were included in the layers. However, when the thickness of
the layer of Au NPs was greater than the thickness of PS layer, the Au NPs remained
on the outer layer of the composite particles, even though the AuNPs simultaneously
precipitated with the block copolymers.

Figure 4.3g–i show close-up TEM images and models of the single PS layers
of the composite particles. The Au NPs in the composite particles were randomly
dispersed in the PS layer (Fig. 4.3g). However, the Au NPs in composite particles
were located in the center of the PS layer and were aligned parallel to the layers
(Fig. 4.3i). Because the polymer-stabilizing Au NP was a low-molecular-weight
polymer, the Au NPs were incorporated into the polymer chains of the PS moieties
(model images, insets of Figs. 4.3g–i). The polymer-stabilizing Au NP is a higher-
molecular-weight polymer and was aligned in the center of the PS phase, which is
the lowest density area of the polymer chains, although the Au NPs are small enough
to be incorporated into the PS phase.

When the number of PS moieties in PS-b-PI was decreased, a large number of
Au NPs were introduced into the composite particles with an onion-like microphase-
separated structure. To increase the number of Au NPs in the composite particles,
the mixing ratio of Au NPs in the solution of PS-b-PI and Au NPs was increased.
However, the morphologies of the composite particles changed from lamellar to
cylindrical and spherical phases as the amount of Au NPs increased owing to the
increase in the fraction of PS and PS-stabilizedAuNPs phases (Fig. 4.4). The number
of PS moieties in PS-b-PI was decreased to maintain the lamellar morphology as the
amount of Au NPs increased.

The control of microphase-separated structures in composite particles consisting
of Au NPs and a block copolymer was achieved by changing the Au NP size, the
mix ratio, and the copolymerization ratio of the block copolymers. The Au NP size
controlled where the NPs were introduced in the composite particle. These results
reveal a set of guiding principles for creating metal–polymer composite particles.
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Fig. 4.3 TEM images of composite particles composed of PS-b-PI (Mn(PS) = 45.0 kg/mol, Mn(PI)
= 31.0 kg/mol) and Au NPs stabilized with PS-SH (Mn(PS) = 1.0 kg/mol) (a), PS-b-PI (Mn(PS) =
45.0 kg/mol, Mn(PI) = 31.0 kg/mol) and AuNPs stabilized with PS-SH (Mn(PS) = 11.5 kg/mol) (b),
and PS-b-PI (Mn(PS) = 143 kg/mol, Mn(PI) = 81.0 kg/mol) and Au NPs stabilized with PS-b-P2VP
(Mn(PS) = 25.5 kg/mol, Mn(P2VP) = 23.5 kg/mol) (c). Cross-sectional TEM images of composite
particles in a, b, and c are shown in d, e, and f, and close-up images of the cross-sectional TEM
images are shown in g, h, and i, respectively. The images are reproduced from [2] H. Yabu, K. Koike,
T. Higuchi, M. Shimomura, J. Polym. Sci. Polym. Phys. 2011, 49(24), 1717, Copyright (2011), by
John Wiley Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.

4.3 Colloidal Self-assembly of Metallic NPs

Binary colloidal systems of submicrometer-sized PS particles and Au NPs produce
ring arrays of AuNPs. Colloidal particles have been used as templates in a bottom-up
approach to creating nano-ring structures. Chemical vapor deposition and physical
vapor deposition of metals and metal oxides in colloidal assemblies of particles have
been used to form 2D ring arrays. Xia and co-workers developed a simple method for



64 H. Yabu

Fig. 4.4 Schematic illustration of the co-assembly process [3]. Hiroshi Yabu, Langmuir 29(4),
1005–1009 (2013), Copyright © 2013 American Chemical Society

fabricating 2Dmetal nano-ring arrays by edge-spreading lithography using colloidal
particles and an etching process [14]. Goedel and colleagues reported submicrometer
gold rings, which were fabricated by imprinting colloidal particles in polymer films
and filling the interior of the imprinted surfaces with the metal ions. Cremer and
co-workers prepared double-ring structures by using water stain templates for nano-
lithography [15]. Yang and co-workers fabricated ring arrays by embossing spherical
particle assemblies on polymer films [16].

Additionally, patterned inorganic NP assemblies have been fabricated on solid
substrates through the capillary condensation of NP suspensions. Yabu and Shimo-
mura found that various micropatterns, including a dot pattern and a line-and-space
pattern, can be simply fabricated by sandwiching a polymer and Au NP suspension
between two parallel substrates [17]. The Au NPs were concentrated at the three-
phase contact line of the suspension at the edge of the upper substrate and were
deposited at the meniscus of the solution when the solution concentration at the edge
exceeded the NP solubility. After the suspension receded, the concentration grad-
ually increased again, and deposition of materials occurred intermittently, forming
periodic micropatterns. Because the Au NPs precipitated at the three-phase line of
the suspension supplied from the edge of the substrate, the prepared dots and lines
were well aligned along themeniscus edge. By exploiting this capillary condensation
mechanism, Lin et al. [18] used spherical templates to fabricate various concentric
ring patterns from functional materials on the micrometer scale.

Recently, Savinova and co-workers formed2Dgold nano-ring arrays by a colloidal
templating technique that involved the reduction of gold ions patterned beneath
polymer particles [19]. Chen et al. fabricated nano-ring arrays of CdSe NPs on a
solid substrate [15] by co-assembly of PS colloidal particles and CdSe NPs during
simple evaporation of solvent and removing PS colloidal particles with adhesive
tape. These reports demonstrate the fabrication of 2D nano-ring structures on solid
substrates; however, there are few reports of 3D nano-ring assemblies.

Yabu also reported a bottom-up approach to creating 3D assemblies of Au nano-
rings [3]. Hexagonally assembled colloidal crystals were formed by drying aqueous
dispersions of PS colloidal particles and Au NPs, and nano-rings composed of Au
NPs and PS colloidal particles were also formed. Figure 4.4 shows the formation of
the co-assembly of PS colloidal particles andAuNPs. First, two solid substrates were
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placed parallel separated by a gap of about 500µm, and an aqueous dispersion of PS
particles and Au NPs was injected into the gap between the two glass substrates. The
upper glass substrate was slid across the bottom at a velocity of 1 µm/s to create a
co-assembly of PS colloidal particles and Au NPs. After complete evaporation of the
water, the surface and cross-sectional structures of co-assemblies were observed by
scanning electronmicroscopy (SEM). The field emission (FE)-SEM image (Fig. 4.5)
shows hexagonally arranged PS colloidal particles. The darker contrast regions at
the connection sites among the PS colloidal particles correspond to high electron
densities and indicate the formation of Au NPs assemblies.

The size of the nano-rings could be controlled from tens to hundreds of nanome-
ters. After sintering, the Au NPs formed Au nano-rings. This simple approach pro-
vides a potentially useful path to new plasmonic materials and unique metamaterials
for the visible light region.

Fig. 4.5 SEM image (a), cross-sectional SEM image (b), TEM image (c), and cross-sectional TEM
image (d) of a co-assembly of 500 nm PS spheres and 5 nm Au NPs. Images are reprinted with
permission from H. Yabu, Langmuir 2013, 29(4), 1005 [3]. Copyright (2001) American Chemical
Society
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4.4 Preparing NP Arrays by Combining Colloidal
and Block Copolymer Self-assembly

Block copolymer microphase separation structures are suitable candidates for the
bottom-up approach to arranging metal NPs. Recent developments in living poly-
merization have allowed the preparation of a wide variety of block copolymers that
have a high affinity for metal NPs and form unique microphase separation struc-
tures. Many studies have been published detailing the assembly of metal NPs in 2D
and 3D microphase separation structures in bulk or thin-film block copolymers [18].
The microphase separation of block copolymers can create periodic nanoscale struc-
tures, in which metal NP assemblies are arranged along the microphase separation
structure. However, the orientation of the microphase separation structure’s nano-
domain, which contains the metal NPs, cannot be controlled, and the domain sizes
of the microphase separation structures are too small for optical and electrical appli-
cations. Mesoscale templates avoid these problems by arranging the nano-domains
of the microphase separation structures.

The microphase separation structures were arranged along the interface between
the template and the block copolymer; the structure depended on the boundary con-
ditions and size of the confined space in the template. Thin-film (one-dimensional)
confinement [20], 2D confinement systems [21], and 3D confinement [22] have been
reported. Inverse opals are suitable templates for 3D confinement systems because
their pore size is comparable to the characteristic length of the microphase separa-
tion in block copolymers [23]. Dispersions of submicrometer- or micrometer-sized
colloidal particles can be assembled into fine crystals by evaporating the solvent,
spin-coating, or compression. Inverse opals can be prepared by molding colloidal
crystals with another material and removing the template colloid. By using col-
loidal crystals and inverse opals as confinement spaces, frustrated block copolymer
microphases can be created.

Yabu et al. constructed 3D Au NP assemblies embedded in the microphase sep-
aration structures of confined block copolymers in the pores of inverse opals [1].
They synthesized polymer-stabilized Au NPs, and submicrometer PS colloidal crys-
tals were prepared by a simple coating method. After molding a PS colloidal crystal
with poly(vinyl alcohol) (PVA), block copolymers and Au NPs were introduced into
the PVA inverse opal from solution (Fig. 4.6).

Figure 4.7a shows an FE-SEM image of an Au NPs/PS-b-PI composite array. The
spherical submicrometer structure reflects the structure of the inverse opal template
prepared from 248 nm PS colloidal particles. The cross-sectional image of the Au
NPs/PS-b-PI composite array also shows that spherical domains were formed in the
film (Fig. 4.7b). The close-up image of the single spherical domain shows onion-like
microphase separation structures, consisting of gray PI phases and bright PS phases
(Fig. 4.7c). In the more closed inner structure, black dots are visible in the PS phases,
which were identified as Au NPs (Fig. 4.7d). In the cross-sectional images of an Au
NPs/PS-b-PI composite array prepared from 498 nm PS particles (Figs. 4.7e, f), the
multilayered structures of the spherical domains are clear, and the periodicity of each
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Fig. 4.6 Photograph of coating apparatus (i) and the schematic illustration of colloidal crystal
preparation (ii). Schematic illustration of the preparation of inverse opals and Au NPs and block
copolymer composites (b). Images are reprinted with permission from H. Yabu, T. Jinno, K. Koike,
T. Higuchi, M. Shimomura, Macromolecules 2011, 44(15), 5868 [1]. Copyright (2011) American
Chemical Society

microphase-separated structure is same as for the 248 nm PS particles. The array of
Au NPs is visible in the PS phase (Fig. 4.7f).

An onion-like microphase separation structure was formed, even though the vol-
ume fraction of PI (fPI) value for PS-b-PI was 0.74. The thermodynamically stable
microphase separation structure of this block copolymer is PS cylinders dispersed
in a PI matrix. The morphologies of the inner-phase separation structures of block
copolymer particles can be controlled by the amount of metal NPs. Based on ther-
mogravimetric analysis, the Au NPs contained free PS-SH molecules. Because the
PS-SH-stabilized Au NPs and free PS-SH molecules were incorporated into the PS
phase, the volume fraction of the PS phase increased, and a lamellar microphase sep-
aration structure was formed. The microphase separation structures of block copoly-
mers in 3D confinement spaces were affected by the size of the confinement spaces
and the affinity of the polymer segments for the template materials. Experimen-
tal analysis of 3D confinement systems in block copolymer particles indicated that
when the ratio between the periodicity of a microphase separation structure (L0)
and the diameter of the confinement space (D) (D/L0) was smaller than 2.0, frus-
trated phases appeared. These phases are different from the microphase separation



68 H. Yabu

Fig. 4.7 FE-SEM image of the AuNPs and block copolymer composite in an inverse opal prepared
from 248 nm PS colloidal crystals (a), cross-sectional (b) and close-up cross-sectional (c) TEM
images of Au NPs, cross-sectional TEM image of block copolymer composite (d), and cross-
sectional TEM images of Au NPs (e) and block copolymer composites (f) in an inverse opal
prepared from 498 nm PS colloidal crystals. Images are reprinted with permission from H. Yabu,
T. Jinno, K. Koike, T. Higuchi, M. Shimomura, Macromolecules 2011, 44(15), 5868 [1]. Copyright
(2011) American Chemical Society

structures observed in the bulk system. When the affinity (R) of one of the polymer
segments in the block copolymer used for the confinement space material was higher
than that of the other segments, the microphase separation structure was arranged
along the interface between the domain of the block copolymer and the confinement
space. In this case, the D value (249 nm) was sufficiently larger than L0 to prevent
the frustrated phase from appearing.
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4.5 Summary

Combining colloidal self-assembly and phase separation of block copolymers is a
promising method for fabricating nanoscale metal nano-rings that respond to visible
light without angular dependency. Because colloidal particles smaller than 1 µm
can be assembled into submicrometer-scale periodic structures, they can be used
as templates for assembling metal NPs [24] and block copolymers arranged into
structures tens of nanometers in size. 3D structures on this size scale are difficult to
access by using top-down microfabrication technologies; therefore, the bottom-up
methodologies we have described are useful for fabricating optical metamaterials.
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Chapter 5
UV-Nanoimprinted Metasurface
Thermal Emitters for Infrared CO2
Sensing

Hideki T. Miyazaki

Abstract A polarization- and angle-independent dual-band metasurface thermal
emitter for CO2 sensing was developed. The metasurface was based on a stacked
Au/Al2O3/Au structure in which orthogonal rectangular Au patches were alternately
arrayed, generating nearly perfect blackbody radiation with emittance as high as 0.98
at 4.26 and 3.95µm. Themetasurfacewas integrated on a Joule heater fabricated on a
SiNmembrane so that infrared light is radiated by applying voltage. Subwavelength-
sizedmetasurfaces weremanufactured bymass-producible, cost-effective ultraviolet
nanoimprint lithography, and the emitter chip was mounted on a standard package
compatible with conventional optoelectronic devices. A simple single-layer lift-off
process was enabled by employing an organic-solvent-soluble UV resist. The meta-
surface emitter was applied to a CO2 sensor and was demonstrated to reduce required
electric power by 31% as compared with a conventional blackbody emitter, due to
the suppressed unnecessary radiation. Results demonstrate that commercialization
of metasurface infrared thermal emitters is becoming a reality.

5.1 Introduction

5.1.1 Gas Sensing Based on Infrared Emitters

Concentrations of CO2, one of the most important greenhouse gases, are most com-
monly measured using an optical method called the non-dispersive infrared (NDIR)
technique [1]. NDIR sensors determine the concentration of a specific gas from the
transmission ratio at two wavelengths, one of which is selected so that only the target
molecule is absorbing and the matrix is non-absorbing, while the other (reference
wavelength) is selected so that both are non-absorbing. Compared with non-optical
gas sensors, NDIR sensors offer outstanding gas selectivity and accuracy but exhibit
remarkable power consumption and have a short battery life.
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Conventional NDIR sensors employ blackbody thermal emitters such as microb-
ulbs. Nonlinear optics, which are widely used for obtaining mid-infrared radiation
in laboratories, require large-scale systems. Light-emitting diodes for mid-infrared
wavelengths can generate low output. There has recently been remarkable progress
related to quantum cascade lasers, but these are still expensive and not yet widely
used. For these reasons, thermal emitters are currently the only choice as light sources
for NDIR sensors. However, only a very small portion of the radiation selected from
the broadband output by two narrow-band filters is utilized; most radiation is dis-
carded. Thus, the NDIR technique is fundamentally energy inefficient when conven-
tional thermal emitters are used.

5.1.2 Thermal Emission Engineering

Thermal emission has been recognized in the past few decades as engineerable
by using nanostructured surfaces made of plasmonic or phononic materials [2–8].
Interest in controlled thermal emission in the context of metamaterials has further
increased since the first demonstration of a perfect metamaterial absorber [9]. Recent
plasmonic thermal emitters aremostly based on stackedmetal/insulator/metal (MIM)
cavities. At first, stacked MIM structures on a plane were utilized as magnetic atoms
that constitutemetamaterials [10, 11]. Thesewere later recognized asmanufacturable
cavities that exhibit controlled and strong interactions with vertically incident light
[12]. There are also reports of thermal emission from metal patches [13] and stripes
[14] on insulator/metal substrates. The emission properties of these structures are
dominated by subwavelength-sized MIM cavities or antennas arrayed with a period
shorter than the wavelength. They can therefore be called metamaterial surfaces or
metasurfaces.

5.1.3 Toward Engineered Thermal Emitters for CO2 Sensing

The development of emitters for NDIR sensing of a specific gas is quite limited
[15]. For practical applications, perfect blackbody radiation that peaks at two exact
wavelengths and insensitivity to polarization and angle are crucial. Some of these
properties have been demonstrated in the past several years, during which dual-
band metasurfaces based on rectangular patches [16], patchworks of different cavi-
ties [17–19], or stacked cavities [20] have been realized. Polarization independence
has been achieved by combining orthogonal elements [21–23]. Although most of
these works showed only engineered absorption, some actually demonstrated multi-
wavelength thermal emission [16, 17].

Another problem is fabrication. Conventional metasurface thermal emitters are
fabricated by electron-beam lithography, which has low throughput and is imprac-
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tical for industrial mass production. In addition, the emitter is incompatible with
conventional optoelectronic devices.

In this section, we introduce metasurface thermal emitters that generate
polarization- and angle-independent nearly perfect blackbody emission at two wave-
lengths necessary for CO2 sensing through alternate arrangement of orthogonal rect-
angular patches [24, 25]. Themetasurface is integrated on amembrane heater, and the
infrared waves are produced by applying voltage. The thermal emitters are manufac-
tured by a cost-effective, mass-producible ultraviolet (UV) nanoimprint lithography
(NIL) technique. The use of an organic-solvent-soluble UV resist enables simple
fabrication by a single-layer lift-off process. Moreover, the emitter chips mounted
in standard packages are completed and used for CO2 concentration measurement.
These results demonstrate that commercialization of metasurface infrared thermal
emitters is now becoming a reality.

5.2 Design

5.2.1 Metasurface

The target wavelengths are 4.26 and 3.95 µm (referred to as λ1 and λ2, respectively)
according to the standard dual-band detectors for CO2 sensors [1]. The 4.26 µm
wavelength is absorbed by CO2 molecules, while 3.95 µm is not absorbed and can
therefore be used as a reference signal. By arraying rectangular metal patches with
a size of L1 × L2 while alternating the direction with period P on a dielectric film
with thickness T and refractive index n (Fig. 5.1a), we attempted to find an optimum
design that provides perfect blackbody emission (perfect absorption [26]) without
polarization and angle dependence. We use Au as the metal, and for the dielectric we
use Al2O3, which exhibits low loss around 4 µm and can be deposited with a high
thickness precision by atomic layer deposition (ALD).

The resonancewavelengths aremainly determined by n,T,L1, andL2.P affects the
height of the emittance peaks. The effective refractive index of a MIM waveguide
is given as neff ≈ n (1 + 2δ/T )1/2 [13, 27, 28], where δ is the skin depth of Au.
Therefore, the length of the cavity for the resonant wavelength of λ0 is determined
as L ≈ λ0/(2neff ) ≈ λ0/{2n (1 + 2δ/T )1/2}. For small T values, L1, L2, and optimal
P are short, thereby resulting in a deep subwavelength, angle-independent structure.
However, the quality factor Q is low, because the fields mainly stay in lossy Au
clads [29], producing excessive unnecessary radiation. By contrast, a higher Q is
achievable for larger T values, but the optimum P has a close value as λ1 and λ2, and
angle dependence due to diffraction emerges.

The thicknesses of the top Au patches and Al2O3 film (T ) were set at 100 nm
and 50 nm, respectively. As a result of maximizing emittance (absorptance) at λ1

and λ2 while minimizing emittance at other wavelengths, we found a set of values
(T = 50 nm, L1 = 930 nm, L2 = 850 nm, and P = 1.5 µm) that exhibit a maximum
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Fig. 5.1 a Top view of the dual-band metasurface thermal emitter (upper) and the cross section
along the dashed line (lower). b Emittance spectrum (x polarization, z direction) calculated for
the optimum design, which is identical for y polarization. c, d Electromagnetic fields at λ2 and
λ1, respectively (x polarization, z direction). Upper: Ez; lower: Hy after 90° phase rotation along
the dashed lines. Although these fields are calculated for vertical incidence, the same fields are
thermally excited and x-polarized emission is generated when the metasurface is heated. e Upper:
top view of the emitter chip. The metasurface pattern shown in (a) is fabricated in the green area.
Dashed lines show the border of the thin membrane. Lower: a cross section

emittance of 0.98, as shown in Fig. 5.1b. The resonant modes for λ1 and λ2 are
displayed in Fig. 5.1c, d, respectively. At each wavelength, a standing wave of the
first-order guidedmode of theMIM structure is formed along the corresponding side.
The field is localized mainly in the lossless Al2O3, thereby obtaining a relatively
sharp resonance (Q ~ 11). This system is invariant to 90° rotations around the z-axis,
making the proposed emitter polarization independent.

The spectra and electromagnetic fields in this study are calculated by rigorous
coupled-wave analysis andfinite difference time-domainmethods, respectively (Syn-
opsys, RSoft CAD). Reported values are used for the dielectric constant of Au [30].
The refractive index of Al2O3 is set at 1.52 [24, 25, 31].
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5.2.2 Integrated Emitter

To heat only the emission area while keeping the substrate near room temperature,
the metasurface is fabricated on a meander Joule heater made of Au supported on
a thin membrane. Figure 5.1e shows the overall structure. This Joule heater also
serves as the bottom Au layer of the metasurface. The emitter chip is a 3.4 mm
square, which is suitable for standard packages. The central 2.1 mm square area
of the substrate is made of a 500-nm-thick amorphous SiN membrane to achieve
thermal isolation and minimize thermal mass. The blank space outside the heater is
also covered with Au. This is necessary for precise NIL patterning (discussed later
in 5.4.4). The metasurface shown in Fig. 5.1a is formed in the central 2.0 mm square
area.

5.3 Nanoimprint Lithography

5.3.1 Fundamentals

Metamaterials in optical frequencies consist of elements that are smaller than the
optical wavelength. Photolithography-based fabrication is thus impractical, possible
only through use of a state-of-the-art, large-scale stepper for memory chips. Conven-
tionally, optical metamaterials were demonstrated using electron-beam lithography
or focused ion-beam techniques. However, their low throughput and high cost make
them impractical for mass production. Thus, NIL is considered an ideal solution for
creating optical metamaterials. The NIL technique produces resist patterns based on
mechanical transfer from a nanostructured mold. Instant patterning over a large area
without the restriction of optical wavelengths is possible [32].

Figure 5.2 shows the basic flow of NIL techniques, which are roughly classified
into two types: thermal NIL and UV-NIL. In the thermal NIL process (Fig. 5.2a), a
mold is pressed against a thermoplastic polymer film coated on a substrate under heat,
transferring the pattern. The system is then cooled, and the mold is released [33]. In
the UV-NIL process (Fig. 5.2b), a UV-transparent mold, usually made of quartz, is
pressed against a UV-curable polymer film on a substrate, irradiated by UV light, and
then released [34]. In both cases, a residual resist film is present on the bottom, and
the substrate is not exposed. This residual layer is removed by dry etching until the
substrate is exposed. In this way, nanostructured resist patterns equivalent to those
by electron-beam exposure and subsequent development are formed. The following
processes are the same as in conventional electron-beam lithography. Thermal NIL
requires time to raise and lower the temperature of the mold and specimen. By
contrast, UV-NIL is a room-temperature process with higher throughput.

There are two options for lithography-based metal patterning: dry etching or a
lift-off process (Fig. 5.3). In dry etching (Fig. 5.3a), a metal film is deposited on the
substrate, on which the resist mask pattern forms. Directional dry etching is then
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applied until metal film on the unmasked region is perfectly removed. Metal patterns
are completed by removing the resist. In the lift-off process (Fig. 5.3b), a resist pattern
is first formed on the substrate, onto which a metal film is evaporated. Finally, the
metal on the resist is removed by dissolving in an organic solvent. The dry etching
process requires accurate control of the etched depth, care in re-deposition of the
etched materials, and degradation of the mask. The lift-off process is therefore much
simpler and more reliable, thereby making it suitable for mass production.

5.3.2 UV-NIL Followed by Lift-off

However, UV-NIL has been incompatible with lift-off processes. Resist materials for
thermal NIL can be used for both dry etching and lift-off. The first NIL was accom-
plished by a combination of thermal NIL and lift-off, demonstrating the excellent
applicability of the NIL [33]. Nonetheless, UV resins for UV-NIL generally do not
dissolve in organic solvents after photocuring, because of crosslinks initiated by the
UV irradiation, meaning that lift-off is not applicable.

Lift-off processes for UV-NIL were conventionally realized by a bilayer resist
technique, which uses a soluble underlayer and two-step dry etching [35]. However,
this complicated process diminishes the advantages of lift-off techniques. Here, we
employ a recently developed organic-solvent-soluble UV resist [36]. Lift-off with
a single-layer resist is enabled by this new UV resist, retaining the advantage of a
simple lift-off process.

5.4 Fabrication

5.4.1 Preparation of Heater Substrate

Figure 5.4 shows the fabrication process of the metasurface thermal emitter. Both
sides of a Si substrate with size of 30 mm square and thickness 0.38 mm are coated
with a 500-nm-thick amorphous SiN film. The SiN is Si-rich to provide suitable
tensile stress. Thirty-six emitter chips with size 3.4 mm square are arranged in a 6 ×
6matrix on this substrate. First, SiNwindows for themembranes and cutting slots are
formed on the back of the substrate (Fig. 5.4a). After depositing the first 50-nm-thick
Al2O3 filmwith ALD, meander Joule heater patterns made of Ti (50 nm), Pt (50 nm),
and Au (100 nm) are patterned. The Al2O3 and Pt are barrier layers for preventing
the diffusion of Si atoms into Au [37], and the Ti layer is the adhesion layer of Pt
and Al2O3. The second Al2O3 layer is then deposited for the metasurface insulator
layer (Fig. 5.4b).
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Fig. 5.4 Fabrication process for the metasurface thermal emitter. a SiN windows are formed on
the back, the Al2O3 layer for the diffusion barrier is deposited, and the Joule heater made of Ti, Pt,
and Au films is patterned. b The second Al2O3 layer for the insulator of the MIM structure with
thickness T is deposited. c The organic-solvent-soluble UV resist is coated and then UV-NIL is
processed. d The residual resist is dry-etched, and the adhesion Ti and top Au layers are evaporated
and lifted off. e The third Al2O3 layer with a precise thickness is deposited for passivation and peak
wavelength control. f Anisotropic etching with KOH is applied to the Si substrate from the back,
and the membrane and cutting slots are formed. Reprinted from [25]. Copyright 2015, National
Institute for Materials Science

5.4.2 Metasurface Patterning by UV-NIL

We used a micropattern imprinting machine (ST50, Toshiba Machine) for UV-NIL
[38, 39]. A quartz mold (30 mm square, 1 mm thick) with 250-nm-high rectangular
mesas corresponding to the Au patches was prepared using electron-beam lithogra-
phy and dry etching. After cleaning with piranha solution and vacuumUV light [40],
the mold is coated with a release agent (SAMLAY-A, Nippon Soda). An organic-
solvent-soluble UV resist (NIAC705, Daicel) is coated and prebaked on the heater
side of the substrate. The resist thickness is approximately 250 nm. The mold and the
substrate are manually positioned with a precision of approximately ±250 µm. The
mold is pressed against the substrate at a pressure of 1.8 MPa for 5 min, irradiated
with UV light (365 nm) with a power density of 37mW/cm2 for 10 s and 33mW/cm2

for 60 s, and post-baked (Fig. 5.4c). Afterward, a residual resist layer with thickness
10–20 nm at the bottom is removed by reactive ion etching with O2 and N2 gases
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until the insulator Al2O3 layer on the heater is exposed. Then, adhesion Ti and top
Au layers with thicknesses of 3 nm and 100 nm, respectively, are evaporated and
lifted off with N-methyl-2-pyrrolidone (Fig. 5.4d).

5.4.3 Post-processing

The third Al2O3 layer is deposited by ALD for surface passivation (Fig. 5.4e). The
back is then etched with KOH (Fig. 5.4f). The substrate is attached to a special
holder for one-sided etching, and the membrane and cutting slots are fabricated by
anisotropic etching of Si with KOH (8 mol/L, 82–88 °C) [41]. Finally, the chips
are separated, mounted on a stem, wire bonded with 25-µm-thick Al wires, and
encapsulated with a cap.

5.4.4 Precise Wavelength Tuning

In NIL, fabricated patterns cannot be modified after the mold is prepared. The top
rectangular Au patches actually fabricated using the mold prepared for realizing
the designed dimensions in Fig. 5.1a are larger than expected. However, the optical
properties of the MIM structures can be tuned by other parameters. First, through
variations in the thickness of the metasurface insulator layer T, the resonance wave-
length can be varied by changing the wavelength of the surface plasmon mode [42],
with thicker layers leading to shorter wavelengths. The resonance wavelength is also
affected by the thickness of the passivation layer, with thicker layers leading to longer
wavelengths [43]. Shorter wavelengths are first realized through a thicker insulator
layer, then adjusted through thickness of the passivation layer with a precision of
0.1 nm.

Uniformity of pattern dimensions is crucial. Stacking of multiple patterns is indis-
pensable in most realistic devices, like our heater-integrated metasurface emitters.
However, there have been few reports describing NIL on pre-patterned substrates
[44]. At first, the resonance wavelengths of the metasurface were not uniform across
the heater due to deformation of the substrate during the NIL [33] resulting from
the height difference between the heater pattern and the blank area. We therefore
adjusted the surface levels by coating the blank area outside the heater pattern with
Ti, Pt, and Au layers (Fig. 5.1e). Optical uniformity drastically improved as a result
[25].

We set the thickness of the insulator Al2O3 layer as T = 81 nm to obtain slightly
shorterwavelengths than the target values.We thenmeasured the absorption spectrum
and precisely determined the passivation Al2O3 layer thickness [25].
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5.4.5 Fabrication Results

Figure 5.5 shows a chip during the process and the completed emitters. Figure 5.5b
shows scanning electron micrographs of the metasurface. After the KOH etching
(Fig. 5.5d), the bridges at the four corners are broken to separate the chips. The chip
is mounted on a TO-51 stem, wire bonded, and encapsulated with a cap (Fig. 5.5e).
The window is a 0.25-mm-thick sapphire plate with a high transparency up to a
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1 mm
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(e) (f)

(b)

SiNSi

1 mm

Cutting slotsMembrane

1 mm

3 μm 

1 μm 

5 mm 10 mm

Fig. 5.5 Emitters during the process. a After patterning of the top Au layer. b Scanning electron
micrograph of the metasurface, seen from an oblique direction. Inset: vertical view. Horizontally
(red) and vertically (blue) long rectangles. c Backside of the Si substrate before and d after the KOH
anisotropic etching. The back of the Joule heater pattern can be seen at the center square area of (d).
Cutting slots are formed along the four sides of the frame, and the four bridges at the corners support
the chip. e Completed metasurface emitter in a TO-5 package, and f a C-QFN (LCC) package

1TO: Transistor Outline.
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wavelength of 6 µm. The Joule heater resistance is 18 � at room temperature. The
NIL technique is advantageous to producing a large device with high throughput. In
this study, we also prepared a mold for 10 mm square areas and demonstrated large
emitters with a C-QFN (LCC)2 package with a 0.30-mm-thick sapphire window
(Fig. 5.5f). According to Planck’s law, thermally emitted power is proportional to
the area. A large emitter is therefore necessary for generating large optical power.

5.5 Optical Properties

5.5.1 Emission Spectra at Various Temperatures

Figure 5.6 shows properties of the TO-5 metasurface emitter in Fig. 5.5e. Figure 5.6a
displays the emission spectra at various voltages observed with a Fourier transform
infrared spectrometer (JASCO, FT/IR-6200). At the maximum voltage of 1.30 V, the
temperature is 305 °C. Figure 5.6a also shows the emission power of a blackbody
emitter at the same temperature. This emitter is equivalent to themetasurface emitter,
in which a blackbody paint (TASCO, THI-1B, emittance: 0.94, thickness: 2–5µm) is
coated on the Joule heater instead of the metasurface (similarly assembled in a TO-5
package). These emitters are placed in a vacuum (0.2 Pa) to remove thermal loss
due to air convection. The temperatures of the emitter surfaces at each voltage were
determinedby comparisonof their emission spectrawith equivalent emittersmounted
on a temperature-controlled substrate. Figure 5.6a shows that themetasurface emitter
generates the same radiation intensity at the two wavelengths as a conventional
blackbody emitter at a lower voltage (lower power) while drastically suppressing
unnecessary emissions. The reference blackbody required 1.53 V to reach the same
temperature.

5.5.2 Absorptance Versus Emittance

Figure 5.6b shows the absorptance of the metasurface as determined by reflec-
tion measurements and the corresponding calculation results. Excellent agreement
between the experiment and the calculation, and the equivalence of emittance and
absorptance are demonstrated. The maximum emittance is as high as 0.98, close
to the perfect blackbody limit. The emittance spectra at different temperatures are
almost identical.

We alsomeasured the emission spectra in various directions for both polarizations
and found that our emitter has negligible angle and polarization dependence. The
results also agreed well with calculations [24]. Therefore, the areal integration of the

2C-QFN: Ceramic Quad Flat No Lead Package. LCC: Ceramic Leadless Chip Carrier.
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Fig. 5.6 a Emission spectra of themetasurface thermal emitter at various voltages (color) and those
for an equivalent blackbody (black, the same 305 °C temperature as the metasurface at 1.30 V).
b Experimental absorptance (red) and emittance spectra (blue) of the metasurface thermal emitter.
Calculated absorptance for the actual dimensions (black; T = 81 nm, L1 = 1006 nm, L2 = 915 nm,
and P = 1.50 µm) is also displayed. c Relationship between electrical power and temperature for
the metasurface (red) and blackbody emitters (black). Dashed lines show the estimated emission
powers. d Relationship between the modulation ratio at λ1 and the frequency. In this measurement,
the maximum temperature is 300 °C at f = 1.0 Hz (duty ratio: 50%). The inset shows the raw signal
at f = 1.0 Hz

spectra in Fig. 5.6a straightforwardly indicates the total emission power for both the
metasurface and blackbody emitters.

5.5.3 Power Reduction

Figure 5.6c shows the relationship between the electrical power and the temperature
of the emitters. To achieve the same temperature, the blackbody requires higher
power compared with the metasurface emitter; using a metasurface emitter reduces
the required power by 31%. Figure 5.6c also displays as dashed lines the emission
power calculated from Planck’s law. The reduced input power is consistent with the
estimated decrease in emission power. We estimate the emission power from the
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metasurface at 300 °C to be 3.4 mW, so most of the electrical power (59 mW) is not
used for radiation, but instead dissipated by conduction from the membrane to the
frame. In this study, the membrane is designed to be excessively rigid due to fears of
fracture. In previous studies by other researchers, conduction loss reductions as low
as 15 mW [45] or even below 1mWhave been reported [46]. Similar optimization of
membrane design should drastically reduce conduction loss, remarkably improving
power saving factors against the blackbody emitter.

5.5.4 Frequency Response

In CO2 sensors, the transmitted infrared power is detected with high sensitivity by
modulating the emitter power. Figure 5.6d presents the relationship between the
modulation frequency f and the modulation ratio at λ1 of the metasurface emitter.
The signal is recorded with a HgCdTe infrared photodetector (VIGO, PVI-2TE-10.6;
cut-off frequency: 300 kHz) combinedwith a bandpass filter (center: 4.26µm;width:
0.18 µm). The modulation ratio is defined as (Imax − Imin)/(Imax + Imin), where Imax
and Imin are the maximum and minimum signal of the photodetector, respectively.
The inset shows the raw signal at f = 1 Hz. The cut-off frequency at −3 dB is f =
20 Hz. This modulation speed is sufficient for CO2 sensors.

However, this result simultaneously suggests a serious limitation of thermal emit-
ters: Minimizing conduction loss restricts the heat escape channel, diminishing the
modulation speed. Consequently, there is a trade-off between power efficiency and
frequency response. To overcome this limit, wemust incorporate amodulationmech-
anismother than direct temperature control. Recently, high-frequency electricalmod-
ulation of thermal emission has been demonstrated in a photonic crystal thermal
emitter based on inter-subband transitions [47]. Dynamic control of emittance has
also been shown in metasurface thermal emitters [48].

5.5.5 Application to CO2 Sensing

We constructed a CO2 NDIR sensor employing the developed TO-5-packaged meta-
surface emitter (Fig. 5.7a). This sensor features a dual-channel pyroelectric detector
(InfraTec, LIM-222-DH) for CO2 sensors, in which two filters centered at 4.26 and
3.95 µmwith bandwidths of 0.18 and 0.09 µm, respectively, are attached in front. A
gas cell is sandwiched between the emitter and the detector. The path length is 61mm,
which is a typical value forCO2 sensors. The gas cell is first filledwithN2 gas at 1 atm,
and we change the CO2 concentration by adding CO2 gas. For optical chopping, the
input voltage is directly modulated with the waveform in the inset of Fig. 5.6d. The
poor signal-to-noise ratio shown by the error bars is due to the absence of optics
to enhance efficiency. The signal ratio of λ1 to λ2 linearly decreases as CO2 gas is
added (Fig. 5.7b). The signal change is −4.4% at 400 ppm (typical atmospheric air).
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Fig. 5.7 a Configuration of
the CO2 NDIR sensor.
b Relationship between the
signal ratio of λ1 to λ2 and
the CO2 concentration. The
error bars show standard
deviations

2.8

2.7

2.6

2.5

2.4

2.3

2.2

Si
gn

al
 ra

tio

12008004000
CO2 concentration (ppm)

(b)

(a)

Emitter

Lock-in Amp.

Gas cell

Dual-channel
pyroelectric

detector
Power
source

λ1

λ2

This result clearly reveals that our mass-producible dual-band metasurface emitter
is readily applied to CO2 sensing.

5.6 Summary

In summary, we demonstrated metasurface infrared thermal emitters that are mass-
producible and nearly ready for commercialization. We manufactured dual-band,
polarization- and angle-independent metasurface thermal emitters integrated with
a membrane Joule heater tailored for CO2 sensors by a UV-NIL combined with a
single-layer lift-off process. The use of an organic-solvent-soluble UV resist was
key to developing a simple, practical fabrication process. Furthermore, we realized
hermetically encapsulated emitters in a package form compatible with conventional
optoelectronic devices and used these for monitoring CO2 concentrations. Although
thermal loss must be further reduced by improving the membrane design, our meta-
surface infrared thermal emitters are close to commercialization. The emitter can be
easily applied to a different gas by changing the cavity lengths. In particular, using
this emitter in CO sensors, which presently depend on non-optical methods with low
reliability, would realize a battery-powered, highly selective sensor for preventing
fatal CO poisoning accidents.
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Part II
Metamaterials in THz Frequencies



Chapter 6
Birefringent Metamaterials for THz
Optics

Masaya Nagai

Abstract Terahertz (THz) region is typically referred to as the frequencies from
100 GHz to 30 THz, which lies between the infrared and microwaves. Since the typ-
ical wavelength of the THz wave is hundreds micrometer, we can easily fabricate the
metallic structure with the size comparable with its wavelength, and the bulky three-
dimensional metamaterial is not huge. Recent development of the ultrafast-pulse-
laser technique allowed the generation and detection of the THz electromagnetic
pulse, which has led to easy characterization of the medium with the time-domain
spectroscopy. Therefore, there are many reports on the metamaterials in the THz
frequency region. Metamaterials have been used as the practical optics in the THz
region. Many materials are not transparent in this frequency region, so the artificial
media based on the periodic structures of the metal such as the metal slit array and
metal hole array have been developed. In this chapter, we review the recent advances
of the metamaterials in the THz frequency region.

6.1 THz Optics Based on the Parallel Metal Plate
Waveguides

Metamaterials are the artificial media with the controllable refractive index and are
attractive for the present optics in the THz frequency region. It is because many
materials are not transparent in this frequency region, and we can easily fabricate the
metal structures with the size comparable with the wavelength of several hundred
micrometers. There are many two-dimensional metasurface, which are used as the
THz optics such as the polarizer and band-pass filter.

Recently, a simple THz optics composed of stacked parallel metal plates with a
gap distance has been demonstrated. It is a parallel metal plate waveguide (PPWG)
ensemble, which is categorized as the simple three-dimensional metamaterial. The
PPWG is one of the simplest waveguides, and there are many explanations in the
textbook of microwave technologies [1] because its operation is similar to that of
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many other waveguides. The electromagnetic wave propagates in the PPWG as the
transverse electric (TE) and the transverse magnetic (TM) modes with the differ-
ent phase velocities. Thus, a PPWGs ensemble is a birefringent medium, and the
frequency-dependent behavior of the PPWG brings in the unique phase optics in
wide THz frequency region. It has been applied in various practical THz optics, such
as polarizer, novel filter, prisms, and lenses.

In this section, the propagation properties in the waveguide and the application
of phase shifter are introduced.

6.2 Transverse Electric Waveguide Mode in Parallel Plate
Waveguides

In order to understand the PPWGmode, we assume the simple waveguide composed
of two flat conducting plates with a gap distance g, as shown in Fig. 6.1a. When the
electromagnetic waves are incident with a polarization parallel to the metal plates,
the light propagates as a TE waveguide mode. Above the cut-off frequency νc =
c/2g, its phase velocity is higher than the speed of light in vacuum. According to
waveguide theory [1], the phase velocity of the lowest TE1 mode is faster than the
light velocity in the vacuum as

vT E = c
√
1 − (νc/ν)2

. (6.1)

Solid curve in Fig. 6.1b shows the phase index n = c/vT E of the TE waveguide
mode in the PPWGs with g = 1 mm. The assembly of the waveguides can be con-
sidered as the homogeneous medium with the refractive index of 0 < n < 1. While
many of the materials in nature have a high refractive index in the THz region, this
artificial medium has a refractive index smaller than one. This dispersion is similar
to plasma dispersion, where the plasma frequency corresponds to the cut-off fre-
quency νc. Thus, the dispersion can be easily tuned by adjusting the gap distance
g. In the microwave region, this waveguide concept is useful to demonstrate funda-

Fig. 6.1 a Scheme of TE
waveguide mode in PPWGs.
b Phase index n and group
index nG in the PPWGs
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mental electromagnetic phenomena in the artificial medium, but they were relatively
bulky because of long wavelengths.

In the THz frequency region, its wavelength of this frequency is sub-millimeter,
so the accuracy required for compact waveguide is not so high. While the surface
impedance increases with the frequency, energy loss of THz waveguide with the
several centimeter lengths is negligible. Therefore, various optics based on PPWGs
have been demonstrated [2]. A pair of PPWGs allows universal filter that provides
low-pass, high-pass, band-pass, and stop band or notch filtering in the THz frequency
regime [3]. Prism-shaped PPWGswith constant gap distance allow us to demonstrate
the fundamental optical phenomena of internal reflection and Brewster’s effect [4].
A concave PPWG-lens exhibit a focus, which is both strongly frequency dependent
due to the dispersion [4–6]. Furthermore, effective refractive index is almost zero
just above the cut-off frequency, which is attractive in viewpoint of novel epsilon-
near-zero optics [5].

The waveguide with varying the plate separation behaves as the medium with
gradient index at the given frequency, and the THz wave propagating inside an
inhomogeneous dielectric medium will bend toward the high-index region [7]. This
concept allows novel fisheye lens in the THz frequency region [8].

6.3 Carrier Envelope Phase Control with the Parallel Metal
Plate Waveguides

The dispersion of TE waveguide mode causes the following group velocity vg in the
PPWGs,

vgT E = c
√
1 − (νc/ν)2, (6.2)

which is slower than the light velocity in vacuum and phase velocity vTE. The cor-
responding group index ng = c/vgT E is added as the dashed curve in Fig. 6.1b.
This difference causes functional propagation properties of a-few-cycle THz pulse
in the medium. Here, we assume the constant group velocity in whole frequency
region. When a-few-cycle pulse is incident to this media with the phase velocity
different from the group velocity, the carrier envelop phase (CEP) of the propagat-
ing pulse changes continuously as it moves forward in the medium maintaining the
pulse duration. Figure 6.2 shows its scheme. It is critical in the present extreme
nonlinear optics such as high harmonic generation in gases, because the phenom-
ena are strongly dependent of the CEP of the a-few-cycle excitation pulse [9, 10].
Recent development of the laser technique brings in the generation of the intense
a-few-cycle phase-locked THz pulse, which has strong electric and magnetic fields
for the extreme nonlinear optics [11]. CEP is also fundamental to THz pulses and
CEP-locked THz pulse can be easily generated via optical rectification process, but
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vp

vG

Fig. 6.2 Scheme of the carrier envelope control in the medium with the dispersion

practical adjusting technique has been missing. Therefore, PPWGs are promising for
a simple passive component for controlling the CEP of a-few-cycle THz pulses.

Figure 6.3a shows the temporal electric-field profiles of transmitted THz pulses
with the polarization parallel (TE mode; bold) to the metal plates. Tens of 50 ×
10 mm2 steel plates were prepared with chemical etching and were aligned with an
equal gap distance. This is assumed as the medium with the thickness of L = 10 mm.
We define the original electric-field profile with its main peak at the maximum point
of the envelope, namely E(t) = A(t) cos (2πνt), where the envelope function A(t)
also has its maximum at t = 0 ps. The upper in Fig. 6.3b shows the power spectrum of
the incident THz pulse with a center frequency of 0.7 THz. The pulse after passing
through the medium with g = 1 mm is negatively chirped due to the large group
velocity dispersion. This chirp becomes almost negligible for g ≥ 2 mm, and the
CEP of the pulse slightly shifts to earlier times. Thus, only the CEP of the THz pulse
is modulated maintaining other properties. When the gap is g = 2 mm, the pulse
profile becomes “sin-like,” which is expressed as E(t) = A(t) sin(2πνt). The lower
in Fig. 6.3b shows the complex transmission coefficients of these media. We add the
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ization parallel to the metal sheets with L = 10 mm. b The upper panel shows the power spectrum
of the incident THz pulse. The lower panels show the complex transmission coefficients
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theoretical curves of the phase spectra as the following,

φT E = 2πνL

(
1

vT E
− 1

c

)
= 2πν L

c

(√
1 − (νc/ν)2 − 1

)
. (6.3)

The CEP shift can be denoted as the y-intersect of the tangent line of the spectral
phase at the center frequency of 0.7 THz, and actually is close to π/2 for g = 2 mm.
The intensity transmission of this optics is 60%. This transmission loss is mainly due
to the diffraction.

6.4 Transverse Magnetic Waveguide Mode in Parallel Plate
Waveguides

Parallel metal plate waveguides are promising as low-loss broadband THz waveg-
uides. When an electromagnetic wave is incident with a polarization perpendicu-
lar to the metal plates, light propagates in PPWGs in the TM waveguide mode.
Figure 6.4a shows a schematic of this. In the case of plain metal sheet, this is the
lowest-order transverse magnetic (TM0) mode, which corresponds to the transverse-
electromagnetic (TEM) mode in the PPWG. Since the wave of the TEM waveguide
mode propagates with the same velocity as the velocity of light in vacuum, we can
ignore group velocity dispersion. Figure 6.4b shows the time profiles of incident and
transmitted THz pulses with the polarization perpendicular to the metal sheets with L
= 10mm. It indicates the profile of the transmitted THz pulse independent of g. These
waveguides have therefore been developed for applications as low-loss waveguides
[12, 13] and are also useful for spectroscopy of small amounts of precious samples
in the waveguide [14, 15].

PPWGs are essentially birefringent media owing to the different dispersions of
TE and TEM waveguide modes. TEM waves can propagate in PPWGs even below

Fig. 6.4 a Scheme of TM
waveguide mode in PPWGs.
b The temporal electric-field
profiles of incident and
transmitted THz pulses with
the polarization
perpendicular to the metal
sheets with L = 10 mm EO
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the cut-off frequency of the TE waveguide mode. This structure thus behaves as a
polarizer. In the THz frequency region, the wire-grid structure is one of the most
common polarizers and is provided by PPWGs. The TE mode transmission power
TTE below the cut-off frequency is given by

TT E = exp

(
−

√
k2c − k2L

)
, (6.4)

where k is thewavenumber, kc = π/d is thewavenumber at the cut-off frequency, and
L is the length of the PPWG. In general, the extension ratio of the wire-grid polarizer
is very low because L is small, and so a thicker artificial medium is important for
improving the extension ratio. PPWG-based polarizers can be used for cut-through
metal slits, and an ideal THz polarizer with a high extinction ratio and transmission
power has been demonstrated [16].

6.5 Phase Shifter Based on the Parallel Metal Plate
Waveguides

An ensemble of PPWGs is an artificial medium with the controllable dispersion
above the cut-off frequency of the TE waveguide mode, which can be designed
as a phase shifter. Polarization conversion optics is one of the most fundamental
optics for the novel application of the electromagnetic wave, and we usually use
the quartz phase shifter in the optical frequency region. However, there are few
transparent birefringent materials in the THz frequency region, so artificial medium
is promising. In the PPWGs, phase difference of the transmitted THz pulse between
TE and TM waveguide modes depends on the frequency, so the matching between
group velocities of TE and TM waveguide mode is required.

It is well known that the sub-wavelength periodic structures on the metal plate
such as the hole array, corrugation, and pillar array modulate TM wave propagation
[1, 17]. It brings in the sharp frequency resonance. In the THz frequency region,
Bingham et al. fabricated parallel metal plates with a cylindrical hole array and a
cylindrical pillar array [18], and clearly showed the existence of a stop band in the
TM mode of the parallel metal plate waveguide. Its resonance is determined by the
pitch of the structures. Below this resonance frequency ν0, the TM wave propagates
slowly [19], and both phase and group velocity of the TMwaveguide mode are lower
than that in vacuum. It can also be assumed as spoof surface plasmons, which emulate
optical frequency surface plasmons on flat metallic surfaces [20, 21].

Assuming that the waveguide ensemble behaves as an effective medium with
single Lorentz oscillator with a resonance frequency of ν0, the phase shift for the
TMmode is phenomenologically simplified with neglecting the damping as follows:
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φT M = 2πν L

c

(√

1 + Aν2
0

ν2
0 − ν2

− 1

)

(6.5)

The dispersion of the TMwaveguide mode is shown as the solid curve in Fig. 6.5b
with the parameters L = 10 mm, ν0 = 1.5 THz, and A = 0.0022. That of the TM
waveguide mode is added as the dashed curve with the cut-off frequency of νc =
0.1 THz. The phase for both TM and TE modes increases with frequency between
νc and ν0. The phase difference between the two modes is added in the lower panel
of Fig. 6.5b. There is the minimum of the phase difference at 1.0 THz, and an
approximately constant phase shift can be obtained at around 1.0 THz. The periodic
structure on the metal plates does not influence the dispersion in the TE waveguide
mode because of narrow electric-field distribution at the metal surface. Therefore,
it reduces the propagation speed in TM mode without the modulation of the TE
waveguide mode.

For the experimental demonstration of PPWG-based phase shifter, three types of
the thin steel sheets with the different periodic structures through-hole array [22] or
pillar array [23] were rectangularly shaped by the chemical etching, and they were
stacked with the same gap distance using commercial metal washers. Figure 6.6
shows the scheme of the PPWGs, and parameters are listed in Table 6.1, where p
and a are the pitch and the diameters of through-holes/pillars, respectively. h is the
height of the pillars. Since holes or pillars are arranged in a triangular lattice, the
resonant frequencies of the structures of PPWGs 1–3 are ν0 = c/

√
3 p= 3.4, 1.7, and

0.86 THz. The cut-off frequencies of TE waveguide modes are ν0 = 0.17, 0.10, and
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Fig. 6.5 a Scheme of the artificial medium based on the PPWGs with the periodic structures on
the metal surface. b The dispersion of the TE (solid curves) and TM (dashed curves) waveguide
modes in the PPWGs with the periodic structures on the metal surface
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Fig. 6.6 Scheme of the artificial medium based on the PPWGs

Table 6.1 Parameters of the PPWGs’ assemblies

No. Size of one sheet (mm) g
(mm)

surface p
(μm)

a
(μm)

h
(μm)

1 50 × 10 0.9 Pillar 50 20 3.7

2 50 × 10 1.5 Through-hole 100 66 –

3 50 × 20 2.8 Through-hole 200 140 –

0.05 THz, respectively. These frequencies can be tuned by changing the size and pitch
of the structures, but PPWGswith pillar array are preferred as a high-frequency phase
shifter. It is because thinner metal sheets must be used for maintaining the aspect
ratio of the through-hole formed by chemical etching, which causes bending of the
metal sheets.

The phase retardation for these PPWGs can also be evaluated with conventional
THz time-domain spectroscopy. The transmissivities of these artificial media are
around 60%. The upper panel of Fig. 6.7 shows the transmittance of the TM waveg-
uidemode. The resonances appear at ν0 = 3.4, 1.7, and 0.86 THz, respectively, below
which the velocity of TMwaveguide mode becomes slow. The lower panel shows the
phase difference�φ of the transmitted THz pulses between the polarizations parallel
and perpendicular to the metal sheets. For the artificial medium 1–3, the minimums
of �φ lie at 2.5, 1.0, and 0.5 THz, respectively, and the values of �φ were approxi-
mately π/2 in the vicinity of this frequency. Therefore, these artificial media based
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Fig. 6.7 Upper shows the transmittances of the three PPWG ensembles for the polarization per-
pendicular to the metal sheets. The lower panel shows the phase difference �φ of the transmitted
THz pulses between the polarizations parallel and perpendicular to the metal sheets

on the stacked parallel metal plates with structures function as achromatic quarter
wave plates over an arbitrary frequency range.

Various polarization conversion optics have been demonstrated, which are based
on themetasurface [24, 25]. They havewide available bandwidth, low dephasing, and
high conversion. However, PPWG-based phase shifters are essentially birefringent
media without the chirality, and they promise the same performance of the polar-
ization conversions from the linear polarization to the circular polarization and vice
versa. A circularly polarized THz pulses converted from linearly polarized THzwave
with a δ = π/2-phase shifter are reflected by some reflector. It is converted to lin-
early polarized THz wave with the same phase shifter, whose polarization direction
is perpendicular to that of the incident pulse. This returning wave can be extracted
using a polarization beam splitter.

This wave contains information about the reflection coefficients of the reflector
for one circularly polarized field. For the low precision of the δ = π/2-phase shifter,
the polarization of the THz wave on the reflector is distorted. However, this distorted
component is not extracted with a polarization beam splitter. Consequently, we can
evaluate the reflection coefficient for the circularly polarized field, even with a low-
precision phase shifter. Experimentally, THz time-domain spectroscopy on a doped
InSb wafer under a magnetic field has been demonstrated using these phase shifters
and a wire-grid polarizer [26]. The evaluated complex conductivity spectrum in a
circularly polarized field was shifted by the cyclotron frequency while maintaining
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the Drude-like spectral shape. This technique using a phase shifter paves the way for
new simple magneto-optical spectroscopy methods.
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Chapter 7
Development and Applications
of Metasurfaces for Terahertz Waves

Keisuke Takano, Boyong Kang, Yuzuru Tadokoro, Kosaku Kato,
Makoto Nakajima and Masanori Hangyo

Abstract The development of optical components, in the terahertz frequency range,
composed of artificial metallic structures is reviewed, with particular focus on two-
dimensional metamaterials (metasurfaces). Various electromagnetic responses and
associated fundamental terahertz optical components such as polarizers, wave plates,
lenses, and absorbers can be derived even from two-dimensional structures made
from common materials. Such terahertz optical components are light and thin, made
from readily available materials, and are easy to fabricate owing to the long wave-
length of terahertz waves. Both linear and nonlinear optical responses in metama-
terials have been developed. The generation of terahertz waves by the nonlinear
optical response in silver nanostructures is investigated with a view to designing the
nonlinear response of the light and terahertz waves in metamaterials.

7.1 Introduction

Terahertz waves are electromagnetic radiation with a frequency typically in the range
of 0.1–10 THz. Corresponding wavelengths range from 3 mm to 30 μm and lie
between the infrared and millimeter-wave regimes. As a result of this wavelength
scale, the size of elements of metamaterials is of the order of microns. It is not diffi-
cult to fabricate deep subwavelength structures. The size of the components made of
metamaterials can be also of the order of several tens of millimeters, suitably small
for easy handling. Another feature of this frequency range is the very large permit-
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Fig. 7.1 Dispersion of the complex conductivity in aluminum, gold, and silver calculated within
the Drude model

tivity and conductivity of metals. Dispersion in typical metals is described by the
Drude model below terahertz frequencies. Figure 7.1 plots the complex conductivi-
ties of silver, gold, and aluminum between 109 and 1015 Hz [1].Metallic conductivity
at terahertz frequencies is significantly higher than at optical frequencies and there
is low dispersion below 1 THz, the so-called Hagen–Rubens regime [2]. Because
of the large conductivity, provided a piece of metal is thicker than the skin depth
(~ 100 nm for Au at 1 THz) and there are no resonances with a high quality factor
or a long interaction length, the metal is well approximated by a perfect conductor
below terahertz frequencies. Thus, because of their ease of fabrication and the low
loss of metals, terahertz components involving two-dimensional artificial metallic
structures have typically been used in the terahertz range. Such two-dimensional
structures are called frequency-selective surfaces (FSSs) [3]. After the discovery of
metamaterials, FSSs have been considered as a constitutive element of metamateri-
als, two-dimensional metamaterials, or metasurfaces. Advanced features have been
added to FSSs operating in the microwave to light regimes.

The last few decades have seen the development of terahertz optical components,
efficient sources, anddetectorsmade fromartificial structures. Fundamental andprac-
tical terahertz components such as polarizers, wave plates, absorbers, andmodulators
can be made using metasurfaces and artificial structures. This chapter describes the
development of terahertz components and demonstrates how the nonlinear response
of metal nanoparticles can be exploited to produce a source of coherent terahertz
waves.
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7.2 Terahertz Components

7.2.1 Polarizers

Terahertz time-domain spectroscopy (THz-TDS) systems are standard and powerful
spectroscopic tools operating in the terahertz region [4]. Femtosecond laser pulses are
converted to broadband coherent terahertz pulses by photoconductive antennas, non-
linear optical crystals, etc. Photoconductive antennas and nonlinear optical crystals
are also used for detection. By using a part of the femtosecond pulses as a sam-
pling gate, a time-domain waveform of the electric fields can be directly obtained.
Fourier transforming the time-domain waveforms yields both amplitude and phase
spectra. By comparing the amplitude and phase spectra of the samples with those of
a reference, both the real and imaginary parts of the refractive index of the samples
are obtained. The polarization states can also be easily determined by using only
polarizers [5].

Given the two mutually independent polarization components, the polarization
states can be calculated. The complex Fourier amplitudes of the electric fields in the
x- and y-directions [Ex (ω) and Ey(ω)], which propagate in the z-direction in free
space, are expressed as

[
Ex (ω)

Ey(ω)

]
= 1√

2

(
1 1
1 −1

)[
E+45◦(ω)

E−45◦(ω)

]
. (7.1)

Here, E+45◦(ω) and E−45◦(ω) are the complex Fourier amplitudes of the electric
field in directions ±45 relative to the x-axis. By converting the basis from linear to
circular polarization, the complex Fourier amplitudes of the left- and right-handed
circular polarizations are described as

[
EL(ω)

ER(ω)

]
= 1√

2

(
1 −i
1 i

)[
Ex (ω)

Ey(ω)

]
. (7.2)

The ellipticity χ(ω) and polarization angle φ(ω) of an arbitrary terahertz pulses are
given by [6]

tanχ(ω) = |EL(ω)| − |ER(ω)|
|EL(ω)| + |ER(ω)| , φ(ω) = 1

2
arg

[
ER(ω)

EL(ω)

]
. (7.3)

The polarization states can be determined by THz-TDS by using only linear polariz-
ers. Birefringence and optical activity have been measured for applications in mate-
rials science and industry. For opaque materials, ellipsometers have also been devel-
oped in the terahertz region [7–9].

The accuracy of a polarization measurement depends on the polarizer efficiency.
Wire-grid polarizers have been known as the standard polarizers at terahertz fre-
quencies and consist of two-dimensional metal wire arrays as shown in Fig. 7.2.
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Fig. 7.2 a Schematic of a wire-grid structure. b SEM image of the cross section of the wire-grid
structure fabricated on cyclo-olefin polymer film by a nanoimprint process. c Transmission spectra
for the polarizations perpendicular (Tperp) and parallel (Tpara) to the wires. They are compared with
the noise spectra of the measurements

This is the same structure as that used for designing a negative permittivity [10].
For the polarization component oriented parallel to the wires, the wire-grid structure
behaves effectively like a diluted metal with an effective plasma frequency deter-
mined by the period and diameter of wires. For the perpendicular component, the
electrons in the thin wire do not reflect the electromagnetic waves of wavelength
longer than the wire diameter. The wire-grid structure then behaves like a dielectric
[11, 12]. This anisotropy of the wire-grid structures is the basis of polarizers [13,
14].

The bandwidth of wire-grid polarizers depends on the wire period. An ultra-
broadband polarizer is achieved with a deep subwavelength structure [15].
Figure 7.2b shows a cross section of the wire-grid structure fabricated by the nanoim-
print technique on a cyclo-olefin polymer film. A nickel-grating mold was put on a
cured resin layer on the film, and the resin was cured by exposure to ultraviolet light.
After peeling off the mold, the aluminum layer was formed by oblique deposition.
The period and height of the gratingwere 100 and 160 nm, respectively. The transmis-
sion coefficients for the perpendicular (Tperp) and parallel (Tpara) polarizations were
measured between 1011 and 1015 Hz. Terahertz time-domain spectroscopy, Fourier-
transform infrared spectroscopy, and spectral photometry were used in frequency
ranges 0.1–5 × 1012 Hz, 5–230 × 1012 Hz, and 0.33–1.58 × 1015 Hz, respectively.
Because cyclo-olefin polymer is one of the most transparent materials at terahertz
frequencies, Tperp > 0.8 below 4 THz. Although there are opaque frequency ranges
above 5 THz owing to absorption by cyclo-olefin polymer, Tpara is smaller than 10−4

between 1011 and 1014 Hz.
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A conventional free-standing wire-grid polarizer is made of tungsten wire with
a high tensile strength [14]. As the wire diameter and period are limited to several
micrometers to maintain mechanical strength, the bandwidth of the free-standing
wire grid remains below several terahertz. The fabrication of deep subwavelength
structures on optically thin films is possible for terahertz waves. The nanoimprint
wire-grid polarizer demonstrated here has a high efficiency and ultra-broadband
operation resulting from the deep subwavelength fabrication. Large-area films can
also be fabricatedwith a roll-to-roll process, and arbitrary shapes can be cut out easily
using scissors. This nanoimprint polarizer film is one of the most practical polarizers
available for making terahertz polarimeters. Such wire-grid polarizer sheets are now
commercially available. Metasurfaces on thin films are also a tractable element to
form three-dimensional bulk metamaterials. Stacking fabricated films is one way to
obtain bulk metamaterials [16].

7.2.2 Wave Plates and Asymmetric Transmission

Birefringence is the underlying physical basis of wave plates. At terahertz frequen-
cies, birefringence in quartz crystals has been exploited to fabricate wave plates [17],
but birefringence in stacked parallel metal plates can also be used. The phase differ-
ence between transverse magnetic (TM) and transverse electric (TE) waves produces
birefringence, and achromatic wave plates can be designed [18, 19]. An isolator is
another important component realized by exploiting the non-reciprocity of magnetic
materials [20].

A different approach to designing wave plates is to use metasurfaces with
anisotropic and chiral shapes. Anisotropy in the shape of the metasurfaces produces
anisotropic transmission coefficients for linear polarizations [21]. Chirality causes
anisotropy for left- and right-handed circular polarizations [22–24]. Optical activity
and circular dichroism result from chirality. A chiral structure is a three-dimensional
structure whose mirror image does not coincide with the original one by either trans-
lation or rotation. In contrast to the non-reciprocity of Faraday rotation in magnetic
media, and because of time-reversal symmetry, optical activity and circular dichro-
ism in chiral structures are indifferent to whether the electromagnetic waves impinge
on the front or back of the chiral structure. However, the asymmetric transmission
coefficients, which depend on the incident direction, can be designed by the metasur-
faces while retaining reciprocity [25, 26]. Here, broadband asymmetric transmission
for circular polarizations in the terahertz frequency ranges by a symmetry-broken
structure.

In general, the vectors of the input and output electric fields (Ei , Eo) are related
by the 2×2 matrix representing the transmission coefficients as Eo = t linEi , where

t lin =
(
txx txy
tyx tyy

)
=

(
A B
C D

)
. (7.4)



104 K. Takano et al.

Here, the bases Eiand Eo are linear polarizations and it is assumed there are no
electric field components in the z-direction. A metasurface is considered with Mxy

mirror symmetry. When (7.4) is invariant under the Mxy symmetry operation, then
B = C. Additionally, by a basis transformation into circular polarization, (7.4) is
transformed into

t fcirc =
(
tRR tRL
tLR tLL

)
=

(
A + D (A − D) − 2i B

(A − D) + 2i B A + D

)
, (7.5)

where R and L denote the right- and left-handed circular polarizations, respectively.
All materials forming the metasurface are reciprocal, and therefore, the Lorentz
reciprocal theorem is not violated [27]. Applying the Lorentz reciprocal theorem to
(7.5), the transmission matrix for back-side incidence on the metasurfaces becomes

tbcirc =
(

tRR −tLR
−tRL tLL

)
=

(
A + D −(A − D) − 2i B

−(A − D) + 2i B A + D

)
. (7.6)

The difference in the total power transmission coefficients for front- and back-side
illuminations is [28, 29]

Δ f = T f
R − T b

R = (|tRR|2 + |tLR|2)−(|tRR|2 + |−tRL |2
) = |tLR|2 − |tRL |2. (7.7)

The metasurfaces displaying Mxy mirror symmetry can exhibit asymmetric trans-
mission (Δ f �= 0).

Figure 7.3 shows an example of a broken-symmetry metasurface with Mxy mirror
symmetry, which can achieve asymmetric transmission. Gold film on MgO sub-
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Fig. 7.3 a Schematic of a unit cell of a metasurface and micro-photograph of the sample. Trans-
mission matrix elements for b forward and c backward irradiations. d Asymmetric transmission
coefficients for forward and backward irradiations
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strates was ablated by femtosecond laser pulses to form the patterns. The gold film
and substrate thicknesses were 200 nm and 2 mm, respectively. The transmission
coefficients were measured by THz-TDS and normalized with that of the substrate.
The x- and y-polarized terahertz pulses impinged from the front and back of the
sample, and the transmission matrix for the linear polarizations t lin was measured
using wire-grid polarizers. By performing a basis transformation from (7.4) to (7.5),
the transmission matrix for the circular polarizations tcirc was obtained.

Figure 7.3b and c plots the squared absolute value of each matrix element
Ti j = ∣∣ti j ∣∣2 corresponding to irradiation from the front and back, respectively. The
transmission peaks are attributed to the resonances of the shape of the design on the
metasurface. As expected from the Mxy mirror symmetry, the asymmetric transmis-
sion coefficients Δ f are not zero, as shown in Fig. 7.3d. When the metasurface is
irradiated from the front, it is more transparent to right-hand circular polarizations.
When irradiated from the back, the sign of Δ f is reversed and the metasurface is
more transparent to left-handed circular polarizations. The asymmetric transmission
coefficient at the transmission peak at 0.4 THz is 0.04, which is 1/10 of the transmis-
sion peak of 0.12. As shown here, polarization- and direction-sensitive asymmetric
transmission can be designed using only reciprocal materials and planar structures.

7.2.3 Lenses

Designing a lens requires a spatial phase-shift gradient. Because metasurfaces are
thin, their resonances produce an almost discontinuous plane of electromagnetic
phases. By arranging the subwavelength resonators to design a phase-shift gradient,
it is possible to achieve ultra-thin or flat optical components such as a lens, wave-
front controller, or arbitrary-angle beam sweeper [30]. There is no definite distinction
between these and conventional phased array antennas.

A conventional lens for terahertz waves is composed of a dielectric, such as
plastic or highly resistive silicon. The lens can be designed by introducing a structural
gradient in a stack of parallel metal plates [31–33]. In contrast to conventional lenses,
arbitrary impedances and refractive indices can be designed. Lenses, however, are
bulky because of the longwavelength of the terahertz waves. Flat optical components
constructed from metasurfaces may be suitable for wireless communication devices
[34, 35]. Another approach is to use hyper-lenses to observe near-field images [36].

7.2.4 Absorbers

The complex transmission and reflection coefficients from a vacuum to a thin film
(Fig. 7.4a) on a substrate are approximately [37, 38]
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(a) (b)

(c)

Fig. 7.4 Schematics of a a thin film on a substrate, b checkerboard pattern, and c bowtie antenna
array. In the finite-element method (FEM) simulation, the tops of the squares and triangles are
tapered and connected with 5 × 5 × 5 nm3 chips, as shown in the inset

tf ∼ 2

1 + ns + z0σh
, rf ∼ 1 − ns − z0σh

1 + ns + z0σh
, (7.8)

where ns , z0, σ , and h are the substrate refractive index, vacuum impedance, film
conductivity, and film thickness, respectively. The energy absorption coefficient of
the thin film on the substrate is calculated as

A f ∼ 1 − ∣∣t f ∣∣2ns − ∣∣r f

∣∣2 =
∣∣∣∣ 4z0σh

(1 + ns + z0σh)2

∣∣∣∣. (7.9)

Equation (7.9) specifies a maximum A f = 1/(1 + ns) for a sheet conductivity
of σh = (1 + ns)/z0. For a high-resistivity silicon substrate (ns = 3.42), the sheet
conductivity for maximal absorption is approximately 0.0117 S. Such a conductivity
is achieved in thin and roughmetallic films [38, 39].Aside fromabsorbers, broadband
anti-reflection coating was demonstrated using gold thin films [38].

A self-complementary design [40] of metasurfaces also achieves broadband
absorption. Consider two metasurfaces with mutually complementary patterns. For
example, a periodic metal hole array and a disk array, where the holes and disks
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have the same diameter, form mutually complementary patterns. Babinet’s principle
[41] implies that the complex amplitude transmission and reflection coefficients of
an original and complementary pattern (tO , rO ) and (tC , rC ), satisfy [42]

tO + tC = 1 and rO + rC = −1. (7.10)

When the original and complementary patterns are identical, the pattern is called
self-complementary. A self-complementary pattern satisfies tO = tC and rO = rC .
Combining this with (7.10) and (7.9), we then have tO = tC = tS = 1/2 and the
maximum energy absorption A = AS = 1/2. Frequency-independent absorption
can be designed using self-complementary patterns.

The checkerboard pattern in Fig. 7.4b is one of the simplest possible self-
complementary patterns. Nakata and Urade et al. theoretically and experimentally
demonstrated that checkerboard patterns with an appropriate resistivity can achieve
frequency-independent transmission and absorption coefficients [43, 44]. In Fig. 7.5,
the real part of the complex amplitude transmission coefficient and the energy absorp-
tion coefficient of the checkerboard pattern on a silicon substrate were simulated,
and compared with those of the bowtie antenna array (Fig. 7.5a). The checkerboard
pattern is composed of gold squares, where the frequency dispersion of the conduc-
tivity (σAu) is given by the Drude model (Fig. 7.1) [1]. The squares are connected
with small metallic chips with volume 5× 5× 5 nm3. When the conductivity of the
chips is made to be σAu/10 to satisfy tS = 1/2, a transmission coefficient with little
dispersion is obtained. Simultaneously, the broadband energy absorption coefficient
shown in Fig. 7.5b is obtained. The energy absorption maximum in the film on the
silicon substrate (with ns = 3.42) is A ∼ 0.226. The absorption value near 0.226
is achieved by the checkerboard pattern with an appropriate conductivity. The reso-
nance of the bowtie antenna array also achieves the maximal absorption (Fig. 7.5b).
However, the absorption bandwidth is much greater in self-complementary checker-
boards. Thin metallic film and the checkerboard pattern differ in terms of where the
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Fig. 7.5 a Real part of complex amplitude transmission coefficients and b simulated absorption
spectra for the checkerboard (red) and bowtie antenna array (blue) by the FEM method
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electromagnetic energy is absorbed. In the latter case, most of the absorption occurs
at the small connections between the squares, where the induced currents are con-
centrated. [45] This property is promising for terahertz sensors, bolometer, and other
detectors.

We note that randomness in the connection between the squares results in energy
loss similar to that due to absorption for transmission coefficients [45–47]. It is also
noted that the absorption coefficient of the thin film is limited to 1/2 by virtue of (7.9).
To obtain A = 1, multilayer or bulk structures are required. Absorbing films com-
posed of double-layered metasurfaces have been demonstrated. When the reflected
waves from the first and the second metasurface layers interfere destructively, the
electromagnetic waves are trapped and absorbed almost perfectly into the film and
resonators [48, 49]. By exploiting the phase discontinuity of the metasurface reso-
nances, it is possible to design an absorber that is much thinner than the wavelength.

Dielectric resonators can be used instead of planar resonator arrays to design an
absorber. Figure 7.6a and b shows a schematic and a scanning electron microscope
image of a terahertz-wave absorber, composed of TiO2 sphere resonators [50]. Since
the permittivity of TiO2 is approximately ε ∼ 100 + i1 at 1 THz [51], a subwave-
length spherical resonator can be obtained [52]. Spheres of 53.3 μm diameter were
fabricated using micro-flow channels. The microspheres were arranged in a triangu-
lar lattice with period 68.4 μm. A metal mesh with holes forming a triangle lattice
was used to arrange the spheres. The metal mesh was placed on a glue-covered sur-
face on aluminum substrate. The spheres were sprinkled onto the metal mesh and
fixed with the glue in the holes. The metal mesh was then peeled off by hand, leaving
the spheres behind, forming a triangular lattice. The energy absorption coefficient
for normal incidence was measured using a reflection-type THz-TDS system, as
shown in Fig. 7.6c. The two observed absorption peaks are attributed to the Mie
resonances of the spheres. In Fig. 7.6d, the distributions of the magnetic fields on the
cross section of the spheres were simulated using a finite-element method (Ansys,
HFSS). The distributions displaying features of TE and TM modes of the first Mie
resonance were simulated at 0.54 and 0.73 THz, respectively. The destructive inter-
ference between the electromagnetic fields scattered from the Mie resonances and
reflected from the substrate produces the absorption peaks of 85% at 0.52 THz and
96% at 0.71 THz, experimentally. The manufacturing process for the absorber of
terahertz waves demonstrated here is simple, economical, and applicable even to
curved surfaces.

Terahertz-wave absorbers can be also be made from highly absorbing materials,
such as a carbon nanotube forest [53] and magnetic materials [53]. In the terahertz
region, however, magnetic materials are rare and should be sufficiently thick owing
to the wavelength of the terahertz waves. By using artificial structures such as meta-
materials and photonic crystals [54], thin but efficient absorbers can be achieved
with common materials. Terahertz detectors based on the temperature increase in
films have been developed [39, 55, 56]. The thinness of the metamaterial absorbers
is useful for bolometric detectors.
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Fig. 7.6 a Schematic and b SEM image of a TiO2 sphere array on ametal substrate. c Experimental
and simulated absorption spectra. d Simulated distribution of magnetic fields on the cross section
of the spheres at 0.54 and 0.73 THz. Reproduced with permission from R. Yahiaoui et al., Opt. Lett.
40, 3197 (2015). Copyright 2015 Optical Society of America
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7.3 Nonlinear Response of Metamaterials to Terahertz
Waves

Ametamaterial acts like an ensemble of metallic resonators. Electromagnetic waves
are confined and enhanced in the vicinity of the resonators. The nonlinear response of
the surrounding material is induced by strong electromagnetic fields. In the terahertz
region, the role of the nonlinear effects aroundmetamaterials is twofold: firstly, when
a metamaterial resonates with terahertz waves, the enhanced terahertz near-field can
induce a nonlinear response. Studies of nonlinearity induced by terahertz waves have
been conducted mainly using recently developed table-top terahertz pulse sources.
Femtosecond laser pulses are converted to terahertz pulses with peak electric fields
greater than several 100 kV/cm by a tilted-pulse-front excitation of the nonlinear
optical crystal prism [57, 58]. Furthermore, the electric and magnetic fields of the
terahertz pulses are enhanced around the metallic resonators. For example, the insu-
lator–metal transition of vanadium oxide has been induced by the intense terahertz
electric fields enhanced by split-ring resonators [59]. Intense terahertzmagnetic fields
also have been paving the way to manipulate electron spins [60–62]. Furthermore,
the intense terahertz fields cause not only microscopic material property change [63]
but also irreversible macroscopic structural changes [64–66]. The intense terahertz
fields might be a material processing tool such as the microwave oven and laser
machining.

Secondly, nonlinear electromagnetic response in optical metamaterials can be
used to generate terahertz pulses. Welsh et al. have reported broadband terahertz
pulses generated from a metallic grating irradiated by femtosecond near-infrared
laser pulses [67, 68]. The terahertz generation was enhanced by the plasmon reso-
nances in the gratings. Subsequently, the mechanism of terahertz generation was also
discussed in metallic nanostructures such as metal films in the percolation limit [69],
gold nanospheres [70], and nanoparticle arrays [71]. At present, since the incident
laser pulse energy density is of the order of 1 GW/cm2, electron emission from the
nanostructures and electron acceleration by the ponderomotive force are considered
to form the generation mechanism [68, 72, 73]. Electron emission is a nonlinear pro-
cess caused by multi-photon ionization and tunneling ionization induced by intense
laser fields. Since the ponderomotive acceleration is also a nonlinear process, the effi-
ciency of terahertz generation displays a complex and high-order nonlinearity with
respect to the incident laser power [67, 72]. When the incident laser pulse energy
density is of the order of 1 MW/cm2, one observes an optical rectification by the
nonlinear response due to the modulation of the electron density [69, 70]. The non-
linear process is strongly enhanced by the resonating structures, though the precise
mechanism is still debated.

We here demonstrate terahertz pulse generation from silver nano-metal ink [74].
The nano-ink was composed of silver nanoparticles of approximate diameter 5 nm,
dispersed in tetradecane solvent. By annealing at 220°C for 1 h in air, the nanoparti-
cles melt, connect, and become metalized. Nano-metal ink is used in printing elec-
tronics. Recent progress in printing technology has enabled the fabrication of 1-μm-
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thin lines by a simple and economical process [75]. The resolution of an advanced
ink-jet printer suffices to fabricate terahertz devices and metamaterials [76–78].

The silver nano-ink was spin-coated onto cover glass, and a change in the metallic
luster was observed for several baking temperatures, as shown in Fig. 7.7a. Metallic
luster was observed between 220 and 235 °C. The film conductivity was evalu-
ated by THz-TDS. Transmission decreased rapidly for annealing temperatures rang-
ing from 205 to 220 °C, as shown in Fig. 7.7c. Here, transmission is defined by
T = ∫∣∣E f ilm+glass(t)

∣∣2dt/ ∫∣∣Eglass(t)
∣∣2dt , where E f ilm+glass(t) and Eglass(t) rep-

resent the time-domain waveforms transmitted through, respectively, the nano-ink
film on glass substrate and cover glass only, in the THz-TDS measurements. As the
nanoparticlesmelt and connect, nanostructures of size 100 ~ 200 nm form, depending
on the baking temperature, as observed in the scanning electron microscope (SEM)
image (Fig. 7.7b). The nanostructures grow with increasing baking temperature.
When the cluster size exceeds the percolation threshold, the conductivity increases
rapidly and results in a decrease in the transmission.

The nanostructure morphology is critical for terahertz generation. The terahertz
pulses are generated by irradiating the baked nano-ink with regenerative amplified
femtosecond laser pulses. As shown in the schematic in Fig. 7.8a, the incident pulse
was p-polarized and incident at 45°. The generated terahertz pulses were collected
by parabolic mirrors onto a 1-mm-thick ZnTe crystal. The time-domain waveforms
of the p-polarized component were measured by electro-optical sampling. The time-
domain waveforms generated from the nano-ink at three baking temperatures are
shown in Fig. 7.8b. The Fourier-transformed spectra typically cover frequencies up
to 3 THz, a limit imposed by the coherence length in the ZnTe crystal (Fig. 7.8c).
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Fig. 7.7 a Photograph of the silver nano-metal ink baked at various temperatures. bAFM images of
nanoparticle ink without baking, baked at 220 and 250 °C. c Squares, left axis: baking temperature
dependence of the terahertz-wave fluence between 190 and 250 °C. Triangles, right axis: power
transmittance at the average frequency of 0.7 THz, evaluated by the THz-TDS. Reproduced with
permission from K. Kato et al., Opt. Lett. 41, 2125 (2016). Copyright 2016 Optical Society of
America
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Fig. 7.8 a Experimental configuration. b Terahertz waveforms emitted from the silver nanoparticle
ink pumped by p-polarized pump pulses at different baking temperatures. c Amplitude spectrum
obtained by Fourier transforming the waveform for the sample baked at 220 °C. Reproduced with
permission from K. Kato et al., Opt. Lett. 41, 2125 (2016). Copyright 2016 Optical Society of
America

The generation efficiency strongly depends on the baking temperature. The terahertz
pulses are not generated from the nano-ink without baking; with baking, this occurs
above 250 °C. The fluences of the generated terahertz waves for the different baking
temperatures are plotted in Fig. 7.7c.

The relation between the percolation threshold and the generation of terahertz
waves has been discussed in terms of the enhancement of plasmon resonances [67,
69, 72]. Electric fields are enhanced by localized plasmon resonances on the metallic
surface near the percolation threshold and enhance the efficiency of terahertz genera-
tion. The best conditions for terahertz generation exist clearly around 235 °C, which
differs slightly from the 220 °C baking temperature that marks the decrease in trans-
mission, as plotted in Fig. 7.7. This temperature difference presumably arises from
the nanostructural difference between the surface and the inside of the film. Elec-
tric field enhancement is important for terahertz generation. However, the decrease
in transmission measured by THz-TDS reflects the conductivity averaged over the
whole film. Once the lower particles are connected, the increase in the conductivity
causes a rapid decrease in the transmission, which does not correspond to the electric
field enhancement factor.
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Despite the low terahertz-wave generation efficiencyobtainable frommetal nanos-
tructures, there are some advantages. Since metallic nanostructures do not absorb
infrared light, broadband generation is expected as well as terahertz generation from
air plasma [79]. The operating (resonant) wavelength and symmetry properties can
be designed by artificial structures [80, 81]. Luo et al. demonstrated terahertz gener-
ation from metasurfaces, which depended on the symmetry of such resonators [80].
Using only common materials, it is possible to make disposable and large-area tera-
hertz sources that are suitable for high-power laser excitation [82, 83]. The challenge
of resolving phase mismatch is also being addressed. Phase matching in a four-wave
mixing process was demonstrated in epsilon-near-zero metamaterials [84]. The arbi-
trary electromagnetic phase control is one of the features of the metamaterials. Fur-
ther improvements to the terahertz generation efficiency are also expected. Here, we
reported that silver nano-ink can generate terahertz waves by laser irradiation [74].
A type of terahertz source could thus be designed and fabricated by ink-jet printing.

7.4 Summary and Perspective

This chapter described the development of terahertz components using two-
dimensional metasurfaces. The devices and properties introduced here involve only
a fraction of the terahertz techniques based on the artificial structures like meta-
materials. Common advantages of such devices are their thinness, lightness, design
versatility, and ease of fabrication, and the rich supply ofmaterials. As long as the res-
onators are used, despite the limited operating frequency, narrowband metasurfaces
are suitable for sensing applications. Alternatively, the operating frequency range
can be extended by tuning the material properties and structures using an external
stimulus [85, 86]. The nonlinear response of the metasurfaces is another actively
controllable property. Thin and light planar elements made from common materials
are expected to become constituents of future compact and mobile terahertz devices.
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Chapter 8
Efficient Optical Modulation
of Terahertz Metamaterials Utilizing
Organic/Inorganic Semiconductor
Hybrid Systems

Tatsunosuke Matsui, Keisuke Takano, Makoto Nakajima
and Masanori Hangyo

Abstract We have utilized highly efficient optical modulation of terahertz (THz)
transmission in organic/inorganic semiconductor hybrid system for active control
of THz metamaterials. We have investigated highly efficient optical modulation
of THz transmission through Si substrate coated with thin layer of organic π-
conjugated material, copper phthalocyanine (CuPc) under various continuous-wave
(CW) laser light irradiation conditions using THz time-domain spectroscopy. It has
been believed that the charge carrier transfer from inorganic semiconductor substrate
to π-conjugated material is crucial for efficient optical modulation of THz transmis-
sion. We found that the thickness of CuPc layer is a critical parameter to realize
high charge carrier density for efficient optical modulation of THz transmission.
We also investigated several solution-processable π-conjugated materials instead of
CuPc and found that some of them show better modulation efficiency than CuPc. We
fabricated a silver split-ring resonator (SRR) array metamaterial on CuPc-coated Si
utilizing superfine ink-jet printer and succeeded in obtaining efficient modulation of
THz resonant responses of SRR array metamaterials by CW laser light irradiation.
Our findings may be utilized to fabricate various types of THz active metamaterials
utilizing printing technologies.
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8.1 Introduction

Since Pendry et al. put forward a basic concept of obtaining negative magnetic
permeability utilizing artificial subwavelength resonant elements such as split-ring
resonators (SRRs) in 1999 [1], numerous studies have been carried out to develop
novel optical materials and devices in a wide spectrum range, from microwaves and
terahertz (THz), to near-infrared and visible light. Such novel optical materials are
now called metamaterials, and various optical functionalities cannot be obtained
in natural materials have been realized utilizing them, such as negative refraction,
superlensing, optical cloaks, and so on [2–6]. The first experimental demonstration
of negative refraction was performed in microwave frequency range by Shelby et al.
in 2001 [7]. In 2004, Yen et al. first succeeded in obtaining negative permeability
based on magnetic resonance using an SRR array in THz frequency range [8] and
numerous studies have been conducted in this actively studied spectral range [9–11].

The SRRs play crucial roles as building blocks in metamaterials [1]. The resonant
characteristics of the SRRs determine the working frequency of the metamaterials,
and such resonant frequencies are typically restricted only in the narrow frequency
range. Various attempts have been made to tune the resonant frequency of metama-
terials by external stimuli including optical, thermal, and electrical means [9–18].
In 2006, Padilla et al. succeeded in optical modulation of resonant responses of
the SRR metamaterials utilizing a GaAs as substrate, in which the amount of free
charge carriers could be optically tuned, and thus, their THz responses could also
be controlled [12]. Such optical modulation of the THz wave has been studied not
only in the field of metamaterials, but also from other viewpoints such as filters,
modulators, and imagers [19]. In 2011, Yoo et al. reported that the efficiency of the
optical modulation of the THz transmission through a silicon (Si) substrate can be
drastically enhanced by depositing a thin layer of organic π-conjugated material,
copper phthalocyanine (CuPc) [20]. They have shown that the THz transmission
through Si substrate coated with a thin layer of CuPc decreases when irradiated with
low-power (tens of mW) continuous-wave (CW) laser light. When the Si substrate
was used alone, or when CuPc was deposited on a quartz substrate instead of on
Si, no remarkable modulation was observed. It has been perceived that this effect
was caused by metallization of the CuPc layer due to a charge transfer from Si to
CuPc. There is no way to create free charge carriers in CuPc directly through optical
excitation. This is because tightly bound electron–hole pairs (Frenkel-type excitons)
are formed and they cannot be dissociated easily due to the strong exciton binding
energy typical in organic π-conjugated materials with low dielectric permittivity.
Therefore, the organic/inorganic semiconductor interface should play a crucial role
in the modulation mechanism. We have utilized highly efficient optical modulation
of THz transmission in such organic/inorganic semiconductor hybrid system and
succeeded in realizing efficient optical modulation of THz responses of SRR array
metamaterials [21].
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8.2 Sample Fabrication and THz-TDS Measurements

In Fig. 8.1, molecular structure of CuPc and experimental setup for optical modula-
tion of THz transmission are schematically shown. We used a 540-μm-thick, highly
resistive Si (> 2.0 × 104 � cm, Optostar Ltd.) that is transparent to THz wave as a
substrate. We purchased copper(II) phthalocyanine (β-form powders) from Sigma-
Aldrich and used without purification as the organic π-conjugated material. A thin
film of CuPc was deposited by thermal evaporation and subsequently annealed at
250 °C to induce transition to β-phase in which the highest modulation could be
achieved, as reported by Yoo et al. [20]. We have also investigated optical modula-
tion characteristics of various solution-processable organic π-conjugated materials
instead of CuPc. Here, we show results of two lowmolecules: a well-known fullerene
derivative electron acceptor, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM),
and 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene), which is exten-
sively studied as an active layer of organic thin-film transistors [22]. These materials
were purchased from Sigma-Aldrich and used without purification. To form thin
films, a spin-coating was used and toluene was used as solvents. These films were
also thermally annealed at 250 °C.

The optical characteristics in the THz range were investigated using typical THz
time-domain spectroscopy (THz-TDS). For the optical modulation experiment, a
532-nm CW laser (Spectra-Physics) was used. At this wavelength, there is no much
absorption in CuPc, and therefore, free charge carriers can only be excited in Si [23].
The area of the illuminated spot is larger than the beam waist of the THz wave.

In our study, modulation factor (MF) is employed in order to quantitatively eval-
uate the degree of optical modulation of THz transmission and MF is defined as the
change of the integrated transmitted power of THz radiation due to CW laser light
irradiation as follows:

Fig. 8.1 Schematic representation of a molecular structure of copper phthalocyanine (CuPc) and
b experimental setup for optical modulation of THz transmission in Si substrate coated with thin
layer of CuPc. Adapted with permission from [21], ©The Optical Society
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MF =
∫ |EOFF (ω)|2dω − ∫ |EON (ω)|2dω

∫ |EOFF (ω)|2dω
, (8.1)

where EOFF(ω) and EON(ω) are the frequency-domain field amplitudes of the trans-
mitted THz radiation when the laser is off and on, respectively [21, 22]. The inte-
gration was performed over the frequency range from 0.2 to 1.5 THz. A higher MF
reflects a larger decrease of THz transmission under CW laser light irradiation and
thus reflects higher degree of THz transmission modulation.

We have fabricated a silver SRR array on a Si substrate coatedwith a 200-nmCuPc
film, utilizing a superfine ink-jet printer (SIJ printer, SIJTechonology, Inc.) [24–27].
An SRR array with a total area of 5× 5 mm2 was fabricated. The dimensions of each
SRR meta-atom were designed following that of Padilla et al. [12] such that they
showedmagnetic resonance in the THz region. Therefore, the period (�), side length
(L), width (W), and gap (G) were made to be 100, 60, 12, and 6μm, respectively. The
samples were annealed at 240 °C. The photo-induced change of the THz responses
was investigated using the same THz-TDS system. However, the electric field of the
linearly polarized THz radiation is made to be perpendicular to the SRR gap, so that
magnetic resonance can be initiated [12].

8.3 Mechanism of Optical Modulation of Terahertz
Transmission in Organic/Inorganic Semiconductor
Hybrid System

Figure 8.2a shows the THz transmission spectra without CW laser light irradiation
for the bare Si substrate and Si coated with thin layer of CuPc of different thick-
nesses. There is no significant difference between the bare Si and CuPc-coated Si.
In Fig. 8.2b, the THz transmission spectra of the same samples under CW laser light
irradiation with an intensity of 2.5× 103 mW/cm2 are shown. Upon laser light irradi-
ation, the THz transmission decreases to almost zero, especially in CuPc thinner than
200 nm. However, the transmission modulation becomes smaller when the thickness
of CuPc is further increased [21]. In Fig. 8.2c, the MF of the THz transmission is
summarized as a function of thickness of the deposited CuPc film. Without the CuPc
film, MF is ~0.54; however, it increases drastically to almost unity by depositing a
CuPc film thinner than 200 nm. By increasing thickness of the CuPc layer further,
MF decreases again and reaches a value that is almost the same as without the CuPc
film. As was discussed so far [20–22], the charge carrier transfer from Si to CuPc
seems to play a crucial role in the THz transmission modulation. From the value of
the absorption coefficient of Si at 530 nm, 7850 cm−1 [28], the optical excitation of
free charge carriers should occur at the surface (interface) of the Si to a skin depth
of micrometers. The mismatch of the band alignment between Si and CuPc and the
bended energy band relationship at the interface drives the free charge carriers to
move toward the Si/CuPc interface. The band alignment between these two materi-
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Fig. 8.2 Summaryof opticalmodulation ofTHz transmission experiment inSi substrate coatedwith
thin layer of CuPc of different thicknesses. THz transmission spectra through a bare Si substrate
and Si coated with thin CuPc films of different thicknesses a without and b with a CW laser
light irradiation of 2.5 × 103 mW/cm2. c CuPc film thickness dependence on the MF for THz
transmissions. Adapted with permission from [21], ©The Optical Society

als allows charges to transfer into the CuPc layer. Assuming every incident photons
(np, ~6.7 × 1018 cm−2s−1) under laser light with intensity of 2.5 × 103 mW/cm2

at 532 nm creates one charge carrier in the Si, and also assuming the lifetime (τ of
these charge carriers is 50 μs, the following equation of carrier dynamics,

dn

dt
= np − n

τ
, (8.2)

gives us charge carrier density in the Si substrate at equilibrium (ne = npτ ) of ~3.3×
1014 cm−2. Assuming all of these photo-induced charge carriers in the Si substrate
transfers into the 200-nm-thick CuPc, charge carrier density in the CuPc thin layer
(nc) should be ~1.7 × 1019 cm−3, which gives the plasma frequency of ~36 THz
assuming the effective mass of charge carriers is the same with electron mass. This
simple examination tells us the charge carrier density increases after being trans-
ferred to the CuPc layer when the CuPc layer is thin enough and shifts the plasma
frequency to show metallic characteristics in the THz spectral range of our interest.
The concentration effect of the transferred free charge carriers in the thin CuPc layer
might be the major origin in the metallization of CuPc, which agrees well with the
CuPc thickness dependence of MF summarized in Fig. 8.2c [21]. The skin depth of
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the THz radiation penetrating into the metallic CuPc should be shallow and therefore
showing less transmission and higher MF. On the contrary, when the thickness of the
CuPc films becomes thicker, the CuPc behaves as a dielectric due to the relatively
low charge carrier density and therefore becomes more transparent in THz and the
MF decreases.

Figure 8.3a shows the THz transmission spectra through CuPc-coated Si under
different laser light irradiances. The thickness of the CuPc film was 200 nm. With
increasing laser light intensity, the THz transmission decreases gradually and drops to
approximately zero at 2.5× 103 mW/cm2. The transmission spectra at each laser light
intensity, normalized to those with no laser irradiation, are shown in Fig. 8.3b. The
THz transmission modulation is more remarkable at lower frequencies. In Fig. 8.3c,
the MF of Si coated with 200-nm CuPc is summarized as a function of laser intensity
and that of Si is also shown for comparison. The MF is drastically enhanced by the
deposition of a CuPc film. These results clearly indicate that the THz transmission
modulation in Si can be enhanced easily by a simple deposition of a thin CuPc film
[21].

In order to investigate further the underlying physical mechanism of the enhanced
modulation efficiency of the THz transmission, we have analyzed the dielectric prop-

Fig. 8.3 THz transmission spectra through a 200-nm CuPc film on a Si substrate a under different
laser light irradiances and b those of normalized with THz transmission spectra without laser
irradiation. c The laser intensity dependence of the MF for THz transmission through a bare Si
substrate and Si coated with a 200-nm CuPc film. Adapted with permission from ref [21], ©The
Optical Society
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Fig. 8.4 Real dielectric permittivity (εre) and real conductivity (σre) spectra under different laser
light irradiances of a a Si substrate coated with a 200-nm CuPc film analyzed as a composite and
b a bare Si substrate. Adapted with permission from [21], ©The Optical Society

erties of CuPc-coated Si under different CW laser light irradiation conditions [21].
The complex dielectric permittivity and the complex conductivity were retrieved
from Fourier-transformed transmission spectra, which contains both amplitude and
phase information. Figure 8.4a shows real dielectric permittivity (εre) and the real
conductivity (σre) spectra of a 200-nm CuPc film on a Si substrate under different
laser light irradiances. In Fig. 8.4b, the corresponding spectra for a bare Si substrate
are shown for comparison. We have used CW laser light for the excitation of charge
carriers in the Si substrate and performed the THz transmission measurements under
some equilibriumconditions. In these situations, itmay bemore reasonable to assume
that bare Si substrate and CuPc-coated Si are in the different equilibrium condition,
and thus, their THz response should also be different under CW laser light irradia-
tion. Thus, the THz dielectric characteristics of CuPc/Si two-layer system cannot be
analyzed separately. Therefore, we have analyzed CuPc-coated Si as a single-layer
composite material. Without CW laser irradiation, the dielectric response shows
almost no dispersion and almost the same value with and without the CuPc film.
However, with increasing CW laser light intensity, the real dielectric permittivity
decreases especially at lower frequencies, which can be attributed to a Drude-like
metallic response. This may explain why higher modulation was obtained for lower
frequencies as seen in Fig. 8.3b. In our system, the thickness of CuPc is less than
0.5% of that of Si; however, the optically induced change in the dielectric response
is remarkable in CuPc-coated Si. This implies that the thin CuPc layer contributes
significantly to the dielectric property when analyzed as a composite material and
the optically induced change in the dielectric permittivity of the CuPc layer should
be much larger than it appeared. It is reasonable to expect that the permittivity drops
to negative values, as in a Drude-like response. The optically induced change in real
conductivity is also remarkable in CuPc-coated Si, and it should also be much higher
than it appeared under CW laser light irradiation.

We also investigated several solution-processable π-conjugated materials instead
of CuPc [22], and here, we show results of two low molecules, PCBM and TIPS-
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pentacene. PCBM does not show much absorption at 532 nm similar to CuPc; on the
contrary, TIPS-pentacene shows strong absorption.Yoo et al. also showed that optical
THzmodulation could be induced by backward excitation, i.e., excitation from the Si
side [29]. This technique is suitable for materials that show strong absorption at the
wavelength of exciting CW laser light; thus, we employed this technique for TIPS-
pentacene. In Fig. 8.5a and b, such forward and backward excitation configurations
are schematically shown. In Fig. 8.5c, MF of PCBM is shown as a function of CW
laser light intensity, along with that of CuPc for comparison. The forward excitation
was used in this experiment. PCBM showed betterMF than CuPc. In Fig. 8.5d,MF of
TIPS-pentacene and that ofCuPc investigatedwith backward excitation configuration
are summarized as a function ofCWlaser light intensity. TIPS-pentacene also showed
better MF than CuPc. Highly efficient optical modulation of THz transmission in
these solution-processable organic π-conjugated materials may be useful for future
printed THz electronics and photonics [22].

Fig. 8.5 Schematic representation of optical modulation of THz transmission in a forward and
b backward excitation configurations. Summary of the laser intensity dependence of the MF of
THz transmission in the c PCBM and CuPc with forward excitation (inset: molecular structure of
PCBM) and d TIPS-pentacene and CuPc with backward excitation (inset: molecular structure of
TIPS-pentacene). Adapted with permission from ref [22], ©The Japan Society of Applied Physics
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8.4 Efficient Optical Modulation of Terahertz
Metamaterials Utilizing Organic/Inorganic
Semiconductor Hybrid System as Substrate

We have employed Si coated with thin layer of CuPc as substrates to realize efficient
optical modulation of THz metamaterials [21]. A silver SRR array metamaterial was
fabricated on CuPc-coated Si by using a superfine ink-jet printer as described above.
Figure 8.6a shows a laser microscope image of the fabricated Ag SRR array.

Figure 8.6b shows the normalized THz transmission spectra through the SRR
array fabricated on a CuPc-coated Si substrate under different laser light irradiances,
and Fig. 8.6c shows that of a bare Si substrate for comparison. In both devices, sharp
transmission dips induced by resonant interaction with the SRRs can be recognized.
The dip in transmission at the lower (ω0 ~ 0.32 THz) and higher (ω1 ~ 0.85 THz)
frequencies could be attributed to the electric–magnetic coupled resonance and the
half-wave resonance, respectively [12, 21]. The depth of each dip is different between
SRRs onCuPc-coated Si and on bare Si substrate evenwithout laser light irradiances,
which might be attributed to the slight difference in the formed SRR structures due
to the different surface conditions even printed under the same operation conditions
of the SIJ printer. On the contrary, the frequencies of the dips of these resonances
are exactly the same, which implies that there is no influence from the change in the
capacitive and/or the inductive resonant characters of SRRs. These results imply that

Fig. 8.6 a Laser microscope image of the fabricated Ag SRR array on a 200-nm CuPc film on a Si
substrate. Normalized THz transmission spectra under different CW laser light irradiances through
the SRR array fabricated on b a 200-nmCuPc film on a Si substrate and c bare Si substrate. Adapted
with permission from [21], ©The Optical Society
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there is some difference in the oscillator strength of the resonance, which might be
attributed to the slight difference in the thickness of formed SRRs. Upon increasing
the laser light intensity, the transmission decreases in all frequencies of interest, but
the large difference between the two samples can be well recognized at the two reso-
nances at ω0 and ω1. In the SRR array fabricated on the Si substrate, the level of the
transmission dip at the two resonances does not change significantly, and the sharp
resonant dip remains even at higher CW laser light irradiations (Fig. 8.6c). On the
other hand, in the sample fabricated on CuPc-coated Si, the transmission decreases
at the two resonances as well, and almost no features can be recognized at higher
laser light intensities. These results imply that the optically induced efficient metal-
lization in CuPc-coated Si is highly efficient enough to short the capacitive gap of the
SRR and erase its resonant effect. Our results can be better understood by comparing
with the pioneering work of photo-induced dynamic modulation of SRR response
on semi-insulating GaAs by Padilla et al. introduced above [12]. In their case, the
electric–magnetic coupled resonance (ω0) becomes less and disappears first, then
half-wave resonance (ω1) becomes less pronounced, and background transmission
also decreases (Fig. 8.3a of [12]). In our device fabricated on CuPc-coated Si, similar
trend can be seen; however, the decrease of background transmission due to the met-
allization seems to be much stronger. This implies that the efficiency of metallization
in CuPc-coated Si is quite high and might also be attributed to the fact that we have
used CW laser excitation instead of the laser pulse [12].

8.5 Conclusions

In conclusions, we have analyzed the THz transmission characteristics of CuPc-
coated Si under various CW laser light irradiation conditions using THz-TDS. The
charge carrier transfer from Si to CuPc is crucial for the optically induced metallic
behavior of CuPc-coated Si. It was shown that the thickness of the CuPc layer is a
critical parameter to realize high charge carrier density for metallization. We also
investigated several solution-processable organic π-conjugated materials instead of
CuPc and found that PCBM and TIPS-pentacene show better modulation efficiency
than CuPc. We have fabricated Ag SRR array metamaterial using superfine ink-jet
printer on CuPc-coated Si and demonstrated highly efficient optical modulation of
the SRR resonance. Our findings may open the way to fabricate various types of
metamaterials utilizing printing technologies, which has strong benefit such as easy
and low cost.
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Chapter 9
Negative Refractive Index Materials
Composed of Metal Patterns
and the Applications

Hiroshi Kubo

Abstract In this chapter, the aim is to highlight some negative refractive index
(NRI) materials composed of metal patterns. First, the dielectric and the magnetic
properties of opposite metal patterns are discussed. After the operation principle
and the effective permittivity and the permeability are described, a NRI material
composedofmetal patterns onboth sides of dielectric substrates is shown. Secondly, a
bulk-typeNRImaterial composed ofmetal patterns on side face of dielectric prisms is
shown. Themetal patterns constitute a slot linewhere awave is guided. To understand
how the structure causes the electric and the magnetic properties, the structure is
expressed by the equivalent circuit for the guided modes and, using the circuit, the
dispersion characteristics are calculated. A NRI slab lens is made of the material to
measure the refocus distributions.

9.1 Introduction

A variety of metamaterial structures has been studied for basic theoretical researches
and applications [1–4]. Metamaterials are composed of many elements smaller than
wavelength. Exotic properties of metamaterials are determined by the properties of
the elements and their arrangement. Metals are mostly used to design the elements
exhibiting negative permittivity and negative permeability. Current flows along the
metal surface and electric charges are stored on the surface. Magnetic energy and
electric energy concentrate around the metal, so that the metal element has a signif-
icant effect on the properties of the metamaterials.

Metal patterns can be formed on a planar substrate comparatively easily by pho-
tolithography. In microwave frequencies and millimeter frequencies, this fabrication
method is applied to make a planar circuit on a dielectric substrate like a microstrip
line and a coplanar line. Recently,metal patterns have also been fabricated by printing
technology and can be formed even on the surfaces of a three-dimensional shape by
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laser processing. In this chapter, we present negative refractive index (NRI) materials
composed of metal patterns as follows;

1. One-dimensional (1D) NRI materials composed of metal strips on dielectric sub-
strates
2. Two-dimensional (2D) NRI materials composed of metal patterns on side face of
prisms

NRI materials have been composed of two kinds of elements, which are dielectric
elements with negative permeability and magnetic elements with negative perme-
ability, directed in proper directions according to an electric field and a magnetic
field, respectively. First, we show that an 1D NRI material can be materialized by
employing only a kind of metal pattern with a simple rectangular shape onmultilayer
substrates [5].

The transmission linemethod has been proposed for creatingNRImaterials [6–8].
By applying this method to microstrip lines and coplanar lines, planar circuit-type
left-handed transmission lines have been formed on planar substrates [9–11]. Second,
we construct a bulk-type 2D NRI material by forming planar circuit patterns on the
side faces of dielectric prisms arranged in a 2D lattice [12, 13].

9.2 NRI Materials Composed of Metal Strips

NRI materials are composed of two kinds of elements, where one is ε-negative and
the other isμ-negative, orμ-negative elements put in a guided-wave structure whose
effective permittivity becomes negative owing to evanescent fields below the cutoff
frequency of the transverse electric-type (TE-type) guided mode. The elements do
not necessarily exhibit negative properties of permittivity or permeability for all
components of electromagnetic field vectors. Thus, the elements have to be arranged
so as to face the appropriate directions according to the left-handed field vectors in the
material. Moreover, the direction of the guided field vector in the material should be
made the same as the direction of an incident wave field from the outside to decrease
reflection. For example, a guided field in the material is excited efficiently by a plane
wave from the air when the electric field vector and the magnetic field vector lie in
the transverse plane. These conditions are necessary for constituting NRI materials,
but they cause problems in the fabrication process of the materials.

The material in Fig. 9.1 is composed of metal strips on both sides of a dielectric
substrate. The periodicmetal strips on the front side or the back sidework as elements
with negative permittivity for an external electric field parallel to the longer direction
of the strips. A phaser chart of the external electric field Eext and charges q is shown
in Fig. 9.2a. In the resonant circuit of inductance of a strip and capacitance of a gap
between the upper and lower strips, current I flows in phase delayed by 90◦ from
the external electric field above the resonant frequency. Charges are stored at both
ends of the strip in phase delayed by 90◦ from the current. Thus, positive charges
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Fig. 9.1 Structure composed
of metal strips on both sides
of dielectric substrates. The
metal strips are arranged in
the same position on the
front and back sides

Fig. 9.2 Phaser chart.
a External electric field Eext
and charges q at the top of a
metal strip. b External
magnetic flux Φext and
current I along a pair of
metal strips

Im

Re

Eext

I

q

(a) (b) Im

Re

Φext

u

I

are stored at the end opposite to the direction of the electric field. This phenomenon
indicates that the element has negative permittivity.

A pair of strips on both sides works as an element with negative permeability for
the external magnetic flux Φext crossing the two strips horizontally as shown in the
phaser chart of Fig. 9.2b. Inductance of a pair of strips and capacitance between the
two strips constitute a resonant circuit. Electromotive force u along the closed circuit
is in phase delayed by 90◦ from the external magnetic flux. Current I flows in phase
delayed by 90◦ from the electromotive force above the resonant frequency. Owing to
the current, magnetic field is generated in the opposite phase to the external magnetic
field. This phenomenon indicates that the element has negative permeability.

The structure of metal strips exhibits negative permittivity for vertical electric
fields and negative permeability for horizontal magnetic fields. Thus, it may act as
an NRI material suited to x-polarized wave propagating in the z-direction. However,
the former resonant frequency is higher because the capacitance between the gap
is small compared with the capacitance between a pair of strips on both sides. It
is difficult to obtain negative permittivity in the same frequency region as negative
permeability [14].
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Figure9.3 shows the structure of a NRI material composed of only rectangular
metal strips on dielectric substrates. The strips are arranged alternately on the front
side and the back side. The front strips and the back strips are overlapped to make
the capacitance between them large. Effective permittivity and permeability of a unit
cell for a plane wave are plotted in Fig. 9.4. Both permittivity and permeability are
negative from 5.3 to 5.8 GHz.

Figure9.5a shows schematic electric fields around the strips, where only permit-
tivity is negative. The electric fields between the upper and lower strips indicate that
positive charges are stored at the upper ends of the front and back strips and negative
charges are stored at the lower ends. The strips work as dielectric elements. The
electric fields between the front and back strips indicate that there exists capacitance
between them. This capacitance is added to the capacitance of the gap to decrease
the former resonant frequency.

Fig. 9.3 NRI structure
composed of metal strips on
both sides of dielectric
substrates. The metal strips
are arranged alternately on
the front and the back sides.
Reprinted from Kubo, H.,
Yoshida, T., Sanada, A., and
Yamamoto, T., IEICE Trans.
Electron., Vol. E95-C, No.
10, p. 1658, 2012.
Copyright©2012 IEICE
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Fig. 9.4 Effective
permittivity and permeability
of a unit cell composed of
the strip pair for a = 12.8,
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Fig. 9.5 Electric field
distributions. The black
arrows denote the directions
of currents. a The electric
fields of the front and back
strips are in phase. b The
electric fields of the front and
back strips are in reverse
phase. Reprinted from Kubo,
H., Yoshida, T., Sanada, A.,
and Yamamoto, T., IEICE
Trans. Electron., Vol. E95-C,
No. 10, p. 1659, 2012.
Copyright©2012 IEICE
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Fig. 9.6 Dispersion
relations of NRI material
composed of metal strips
arranged alternately on the
front side and the back side
for a = 12.8, b = 21.8, c =
3.175, s = 12, w = 3mm, εr
= 2.17, and tan δ = 0.00085.
Reprinted from Kubo, H.,
Yoshida, T., Sanada, A., and
Yamamoto, T., IEICE Trans.
Electron., Vol. E95-C, No.
10, p. 1659, 2012.
Copyright©2012 IEICE
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Figure9.5b shows schematic electric fields in the frequency range where both the
permittivity and the permeability are negative. The electric fields circulating in the
closed circuit of the front and back strips indicate that the strips act as a magnetic
element.

Dispersion relations proper to the mode in NRI materials are found in Fig. 9.6.
The dispersion curves move to lower frequency when the gap g is short. The reason
is that the inductance and the capacitance of the elements become large and the two
resonant frequencies decrease.

Figure9.7 is a photograph of a material with five layers of substrates. Incident
waves from a horn antenna into the material are used to measure the phase constant.
The values are plotted by dark circles in Fig. 9.6. The transmission and reflection
characteristics are plotted by the broken lines in Fig. 9.8. S21 is normalized by S21
without the material. S11 is normalized by S11 of a copper sheet used instead of the
material.
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Fig. 9.7 Photograph of a
fabricated NRI material with
five layers of dielectric
substrates. Rectangular metal
strips are arranged on both
sides of the dielectric
substrates. The strips on the
back side are shifted by half
in the vertical direction

Teflon substrate

Copper strips

Fig. 9.8 Transmission
characteristics of the NRI
material composed of five
layers in Fig. 9.7. The
simulation results are
calculated by a full-wave
electromagnetic simulator.
Reprinted from Kubo, H.,
Yoshida, T., Sanada, A., and
Yamamoto, T., IEICE Trans.
Electron., Vol. E95-C, No.
10, p. 1660, 2012.
Copyright©2012 IEICE
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9.3 Bulk-Type NRI Materials Composed of Slot Lines

The transmission line theory presents a useful guideline for constituting NRI ma-
terials. NRI materials are expressed by a distributed constant circuit with series
capacitances and shunt inductances. By applying the theory to planar circuits, mi-
crostrip line-type and coplanar line-type left-handed transmission lines have been
investigated [9–11]. The theory has also been applied to formmetal patterns with the
distributed constant circuit on a three-dimensional shape to constitute a 2D bulk-type
NRI material [12, 13].
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9.3.1 Square Lattice Arrangement

Figure9.9a shows a structure operating as a 2D bulk-type NRI material for the wave
incident from the air. As shown in Fig. 9.9b, unit cells are stacked periodically to
constitute a rectangular prism of the structure. Prisms are arranged in the form of
a square lattice in the x-y plane. Two wide metal patterns with width wb constitute
a slot line on dielectric rectangular prisms. A guided mode of the slot line has a
z-polarized electric field between the two patterns and has a magnetic field in the
x-y plane. Thin metal patterns between the two patterns act as shunt inductance.
Two wide patterns facing each other between two prisms make up a capacitor in
the x-direction or y-direction. The two wide patterns act as a stub of the slot line on
prisms.When a z-polarized planewave is incident, electric fields have the same phase
at every slot line on a prism, and the stubworks as a short stubwith lengthwb/2. Then
impedance of the stub is capacitive when wb/2 is between a quarter wavelength and
a half wavelength. By adjusting the geometrical parameters properly, the structure
has shunt inductance and series capacitance in a frequency region.

Dispersion relations of z-polarized waves are plotted in Fig. 9.10. The solid lines
are dispersion curves calculated by a full-wave electromagnetic simulator. The first
and second right-handed (RH) modes and left-handed (LH) modes are plotted. In the
second LH mode, the electric fields have the same phase at every slot line along a
prism. In the first LHmode, the same phase and reverse phase are repeated alternately.
When a z-polarized plane wave or cylindrical wave is incident to the material, the
second mode is excited more efficiently for a z-polarized plane wave or cylindrical
wave incident from the outer region to the material.

The behavior of the modes propagating along the unit cells arranged in the x-
direction is expressed by an equivalent circuit. The arrangement of unit cells in a

Fig. 9.9 Structure of a 2D
bulk-type NRI material
composed of slot lines on
dielectric prisms arranged in
the form of a rectangular
lattice. a The overall
structure. b A unit cell.
Reprinted from Kubo, H.,
Nishibayashi, K., Yamamoto,
T., and Sanada, A., IEICE
Trans. Electron., Vol. E96-C,
No. 10, p. 1274, 2013.
Copyright©2013 IEICE
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Fig. 9.10 Dispersion
relations of a 2D bulk-type
NRI material composed of
slot lines for a = 12, d = 8,
g = 2, � = 12, wb = 42, ws =
0.1mm, and εr = 2.0. The
solid lines are dispersion
relations calculated by an
electromagnetic simulator.
The broken lines are
dispersion relations
calculated by the equivalent
circuit. Reprinted from
Kubo, H., Nishibayashi, K.,
Yamamoto, T., and Sanada,
A., IEICE Trans. Electron.,
Vol. E96-C, No. 10, p. 1274,
2013. Copyright©2013
IEICE
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line has a symmetric plane parallel to the x-y plane and a symmetric plane parallel
to the x-z plane. The horizontal symmetric plane is replaced with an electric wall,
and the vertical symmetric plane is replaced with a magnetic wall. Unit cells are
divided by the two walls into four parts with height (wb + �)/2 and width d/2. One
period of a quarter part of a unit cell arrangement is expressed by the circuit in
Fig. 9.11. This circuit is not an elaborate one based on an electromagnetic analysis.
However, we can understand the operating principle to clarify the relation between
the propagation mode and the structure from the circuit. The parameters are a = 12
mm, d = 8 mm, g = 2 mm, l = 12 mm, wb = 42 mm, ws = 0.1 mm, and εr = 2.0.
Two wide patterns facing each other in the air gap with width 2g constitute a stub
with width d/2 and height 2g. The stub impedance Zs is expressed by

Zs =

⎧
⎪⎪⎨

⎪⎪⎩

j Zch tan
k0wb

2
for electric wall

− j Zch cot
k0wb

2
for magnetic wall

(9.1)

Zch =
√

μ0

ε0

d

4g
(9.2)

k0 = ω
√

ε0μ0 (9.3)

where the expression of the electric wall or the expression of the magnetic wall is
chosen based on the field of the propagation mode. The magnetic wall is chosen for
the first mode, and the electric wall is chosen for the second mode.

The narrowmetal pattern with length l/2 acts as an inductor. The inductance value
L p is given by [15]
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L p = 100l

(

log
l

2ws
+ 1.19 + 0.22

2ws

l

)

(9.4)

where L p is in nanohenries. L p is determined to be 6.36 nH. The calculated curves in
Fig. 9.9 show that two RH modes have a cutoff frequency at 8.11 GHz. If the cutoff
is caused by the resonant frequency of the series component of the equivalent circuit,
Zs has to be same value for the two modes. However, Zs depends on the boundary
conditions, and the values of the first and secondmodes are different. Thus, the cutoff
frequency depends on the resonant frequency of the shunt components of L p andCp.
When the parallel circuit of L p and Cp is capacitive, RHmodes can be guided. From
L p = 6.36 nH and the cutoff frequency 8.11 GHz, Csh is determined to be 0.0605 pF.

The dielectric and the two wide metal patterns constitute a slot line as described
previously. Ls is the series inductance of the transmission line composed of the
dielectric, the wide pattern, and an electric wall on the symmetric plane. The value
of Ls is half that of the slot line. After analyzing the slot line with an electromagnetic
simulator and calculating the line constants of the distributed constants circuit, Ls is
determined to be 7.75 nH. Ls/2 is the series inductance caused by the wide pattern
with length d/2 parallel to the y-z plane.

When the same four-port circuits in Fig. 9.11 are connected infinitely, the phase
constant of the guided modes in the distributed constant circuit is given by [16]

cosβa = A + D

2
(9.5)

A and D are given by

A = D =
( jωLs + Zs)(2Zsh + jωLs) + 2Zsh(Zsh + jωLs)

2Z2
sh

(9.6)

where

Zsh = jωL p

1 − ω2L pCp
(9.7)

Lp LpCp Cp

Zs/2 Ls/2 Ls Ls/2 Zs/2

Fig. 9.11 Equivalent circuit for the modes propagating along the unit cells arranged in the x-
direction. This circuit corresponds to one period of a quarter part of the arrangement of unit cells
in a line. Reprinted from Kubo, H., Nishibayashi, K., Yamamoto, T., and Sanada, A., IEICE Trans.
Electron., Vol. E96-C, No. 10, p. 1275, 2013. Copyright©2013 IEICE
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Using these equations, dispersion curves are calculated for the first and the secondLH
modes and the first and second RHmodes. The curves are plotted by the broken lines
in Fig. 9.10 for comparison with the simulation result. Though differences are found
between the curves obtained from the two kinds of methods, the two LHmodes of the
equivalent circuit propagate in the frequency regions near the perspective propagation
regions of the two LH modes by simulation, respectively. The circuit describes the
characteristics of the NRI material. These results confirm that the RH and LH waves
of the material are guided by the slot lines with inductive patterns and capacitive
stubs.

The refractive indices are calculated from simulation results of dispersion rela-
tions. In Fig. 9.12, the curves denoted by Γ -X are the dispersion relations of the
second LHmode propagating in the x-direction, and the curves denoted by Γ -M are
those in the direction tilted by 45◦. The difference between refractive indices in the
two directions indicates the anisotropy of the material. The anisotropy is small near
theΓ point because the cell size a is sufficiently small comparedwith the wavelength
in the material. The anisotropy becomes large as the phase constant increases.

The refocus characteristics of NRI material lenses have been studied for confirm-
ing sub-wavelength resolution [17–19]. The flat lens in Fig. 9.13 is made of the 2D
bulk-type NRI material, where unit cells cut to half height are arranged in the form
of 15 rows and 9 columns on a copper plate. The unit cells are covered with a brass
plate when the propagation characteristics are measured. Around the flat lens, metal
strips are soldered on the copper plate for converting between an incident wave from
the outside and the LH mode.

The layout of the system for measuring the wave field through the flat lens is
illustrated in Fig. 9.14. The source is 54mm away from the lens. From the source

Fig. 9.12 Refractive index
of 2D bulk-type NRI
material composed of slot
lines for a = 12, d = 8, g = 2,
� = 12, wb = 42mm, and εr =
2.0. The solid lines show the
refractive index for the
second LH modes
propagating in the
x-direction, and the broken
lines show the refractive
index for the second LH
modes propagating in the
direction tilted by 45◦.
Reprinted from Kubo, H.,
Nishibayashi, K., Yamamoto,
T., and Sanada, A., IEICE
Trans. Electron., Vol. E96-C,
No. 10, p. 1276, 2013.
Copyright©2013 IEICE



9 Negative Refractive Index Materials Composed of Metal Patterns … 141

Fig. 9.13 Photograph of a
flat lens made of 2D
bulk-type NRI material for a
= 12, d = 8, g = 2, � = 12, wb
= 42, ws = 0.1mm, and εr =
2.0. Metal patterns are also
formed on the top of the unit
cells for contacting with the
upper brass plate. Reprinted
from Kubo, H.,
Nishibayashi, K., Yamamoto,
T., and Sanada, A., IEICE
Trans. Electron., Vol. E96-C,
No. 10, p. 1278, 2013.
Copyright©2013 IEICE

Fig. 9.14 Layout of a source
point, the flat lens made of
the 2D bulk-type NRI
material, and the area for
measuring the electric field
of the wave through the lens.
Reprinted from Kubo, H.,
Nishibayashi, K., Yamamoto,
T., and Sanada, A., IEICE
Trans. Electron., Vol. E96-C,
No. 10, p. 1278, 2013.
Copyright©2013 IEICE
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point, a cylindrical wave is excited by a probe, a z polarized wave propagates in the
parallel plates, and the wave is incident into the lens. The electric field of the wave
through the lens is observed at the measurement area at 4.84 GHz.

The measured field distributions are depicted in Figs. 9.15 and 9.16. The origin
is 15mm away from the edge of the lens. The magnitude distribution shows that
the field is large in the area of 23mm < x < 78mm and 48mm < y < 65mm. The
phase distribution shows that the equiphase lines are almost parallel to the y-axis in
the area of 45mm < x < 60mm. Equiphase lines around the area indicate that the
wave focuses at the area and expands to the lower area. The program for depicting
the phase chart does not normally operate in the area where the phase crosses the
branch cut from −π to π , so that the phase distribution changes rapidly from π to
−π near x = 10, 60, and 110 < x < 130mm. It is wrong of the distribution to vary
from blue to green and from green to red there. It is correct to jump from blue to red.
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Fig. 9.15 Magnitude of an
electric field distribution of
the wave through the flat lens
made of the 2D bulk-type
NRI material. The origin is
15mm away from the edge of
the outer unit cell of the lens
in the x-direction. Reprinted
from Nishibayashi, K.,
Kubo, H., and Sanada, A.,
Proceedings of the 2010
IEICE General Conference,
C-2-107, p. 150, 2010.
Copyright©2010 IEICE
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Fig. 9.16 Phase of an
electric field distribution of
the wave through the flat lens
made of the 2D bulk-type
NRI material. The origin is
15mm away from the edge of
the outer unit cell of the lens
in the x-direction. Reprinted
from Nishibayashi, K.,
Kubo, H., and Sanada, A.,
Proceedings of the 2010
IEICE General Conference,
C-2-107, p. 150, 2010.
Copyright©2010 IEICE
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The electric field distributions of the waves through the lens are measured for
excitation by two sources with the same phase. The two sources are separated by
dsour . Figures9.17 and 9.18 show the magnitude and the phase distributions for dsour
= 60mm, respectively. Taking account also of the phase distribution, the centers of
two refocus points are estimated on the magnitude distribution. The two centers are
denoted by the arrows, and the distance between them is about 60mm.

In the same way, magnitude and phase distributions are depicted for dsour = 40
and 30mm in Figs. 9.19, 9.20, 9.21, and 9.22, respectively. The distance between the
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Fig. 9.17 Magnitude of an
electric field distrubution of
the wave through the flat lens
made of the 2D bulk-type
NRI material. The wave is
excited by two sources with
the same phase. The two
sources are 60mm apart
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Fig. 9.18 Phase of an
electric field distrubution of
the wave through the flat lens
made of the 2D bulk-type
NRI material. The wave is
excited by two sources with
the same phase. The two
sources are 60mm apart x
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two centers is about 40mmwhen dsour = 40mm. As center points are indistinct when
dsour = 30mm, arrows are drawn by inferring only from the magnitude distribution.

9.3.2 Hexagonal Lattice Arrangement

Figure9.23a shows a structure acting as a 2D bulk-type NRI material composed of
dielectric cylinders with metal patterns. The metal patterns have the same roles as
those on the prisms of the 2D bulk-type NRI material in the previous subsection. The
cylinders are arranged in the form of a hexagonal lattice in the x-y plane to improve
the anisotropy. The refractive indices and anisotropic factor for z-polarizedwaves are



144 H. Kubo

Fig. 9.19 Magnitude of an
electric field distrubution of
the wave through the flat lens
made of the 2D bulk-type
NRI material. The wave is
excited by two sources with
the same phase. The two
sources are 40mm apart
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Fig. 9.20 Phase of an
electric field distrubution of
the wave through the flat lens
made of the 2D bulk-type
NRI material. The wave is
excited by two sources with
the same phase. The two
sources are 40mm apart
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plotted in Fig. 9.24. Γ -K and Γ -M denote the directions in the wavenumber space
as shown in the figure. The refractive indices are calculated from the wavenumber.
The isotropy factor is defined here by the following equation:

nΓ −M − nΓ −K

nΓ −M
(9.8)

where nΓ −K and nΓ −M denote the refractive indices in each direction. Anisotropy
is improved compared with the NRI material composed of prisms arranged in the
form of a square lattice. The anisotropy factor is small near the frequency where the
refractive indices are equal to 1.
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Fig. 9.21 Magnitude of an
electric field distrubution of
the wave through the flat lens
made of the 2D bulk-type
NRI material. The wave is
excited by two sources with
the same phase. The two
sources are 30mm apart
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Fig. 9.22 Phase of an
electric field distrubution of
the wave through the flat lens
made of the 2D bulk-type
NRI material. The wave is
excited by two sources with
the same phase. The two
sources are 30mm apart
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In Fig. 9.25, transmission characteristics are plotted for a z-polarized wave prop-
agating in the x-direction in the material composed of five layers of unit cells. To
transform the incident wave into the wave guided in the material, dielectric cylin-
ders with a metal strip pattern are arranged beside the unit cells of the input and the
output. The wave is transmitted from 4.08 to 4.49GHz where the LH mode exists in
the material.

The flat lens in Fig. 9.26 is made of 2D bulk-type NRI material composed of slot
lines on cylinders, where 218 of unit cells cut to half height are arranged in the form
of a hexagonal lattice on a copper plate. Dielectric cylinders with a metal strip for
conversion are put arround the unit cells. The unit cells are covered with a brass plate
when the propagation characteristics are measured. A wave propagating between
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Fig. 9.23 Structure of 2D bulk-type NRI material composed of slot lines on cylinders arranged
in the form of a hexagonal lattice. The figure shows the overall structure (L) and a unit cell (R).
Reprinted from Fukushima, T., Kubo, H., Sanada, A., and Yamamoto, T., Proceedings of the 2011
IEICE Society Conference, C-2-77, p. 115, 2011. Copyright©2011 IEICE
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Fig. 9.24 Frequency characteristics of the refractive index and anisotropy factor of 2D bulk-type
NRI material composed of slot lines on cylinders for a = 13.4, b = 54.4, w = 0.1, h = 40.0, � = 7.0,
r = 5.2, g = 1.5mm, and εr = 2.0. The refractive index is calculated from the phase constant of
waves propagating in the x-direction or in the direction tilted from x-axis by 30◦. Reprinted from
Fukushima, T., Kubo, H., Sanada, A., and Yamamoto, T., Proceedings of the 2011 IEICE Society
Conference, C-2-77, p. 115, 2011. Copyright©2011 IEICE
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Fig. 9.25 Transmission
characteristics of 2D
bulk-type NRI material
composed of slot lines on
cylinders for a = 13.4, b =
54.4, w = 0.1, h = 40.0, � =
7.0, r = 5.2, g = 1.5mm, and
εr = 2.0. A plane wave is
incident into five layers of
unit cells in the x-direction.
Transformers are set at both
ends
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Fig. 9.26 Photograph of the
2D bulk-type NRI material
composed of slot lines on
cylinders. Metal patterns are
also formed on the top of the
cylinders for contacting with
the upper brass plate.
Reprinted from Yamamoto,
T., Kubo, H., Fukushima, T.,
and Sanada, A., IEICE
Transactions (Japanese
Edition), Vol. J99-C, No. 12,
p. 584, 2016.
Copyright©2016 IEICE

the upper plate and the lower plate is excited by a probe located at a point 46mm
away from the lens. The electric field of the wave through the lens is observed in
the measurement area at 4.30 GHz. The measured field distributions are depicted in
Figs. 9.27 and 9.28.

The origin is 24mm away from the edge of the lens in the y-direction. The field
is maximum at x = 25, y = 78 mm. The equiphase line at x = 20 mm is almost
straight parallelly to the y-axis. The equiphase lines in the areas x < 20 mm and
x > 20 mm are curved in an arc shape. These lines indicate that the wave focuses
near the point and expands to the lower area. Also in these figures, the program
for depicting the phase chart does not normally operate at the area where the phase
crosses the branch cut from−180 to 180◦, so that black zones are found in 30< y <

60mm and in 90 < y < 100mm. It is wrong that the phase of −180◦. is colored in
black. It is correct to change from blue to red.
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Fig. 9.27 Magnitude of an
electric field distribution of
the wave through the flat lens
made of the 2D bulk-type
NRI material composed of
slot lines on cylinders. The
wave is excited by a source
located 46mm away from
the lens. The origin is 14mm
away from the lens in the
x-direction. Reprinted from
Yamamoto, T., Kubo, H.,
Fukushima, T., and Sanada,
A., IEICE Transactions
(Japanese Edition), Vol.
J99-C, No. 12, p. 585, 2016.
Copyright©2016 IEICE
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Fig. 9.28 Phase of an
electric field distribution of
the wave through the flat lens
made of 2D bulk-type NRI
material composed of slot
lines on cylinders. Reprinted
from Yamamoto, T., Kubo,
H., Fukushima, T., and
Sanada, A., IEICE
Transactions (Japanese
Edition), Vol. J99-C, No. 12,
p. 585, 2016.
Copyright©2016 IEICE
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Chapter 10
Functional Composites of Discharge
Plasmas and Solid Metamaterials

Osamu Sakai and Akinori Iwai

Abstract Discharge plasmas are composed of electrons and ions, and their permit-
tivity is dynamic and tunable. Conventional metamaterials are composed of designed
functional microstructures of solid materials, and become extraordinary wave media
such as negative-permeability materials. The composites of the plasmas and the
metamaterials are well mixed to show dynamic properties coming from plasmas and
extraordinary outputs based on metamaterials. Here, we describe their theoretical
basis and topical features observed in microwave experiments. Beyond properties
of tunability, such composite “plasma metamaterials” work well as nonlinear and
high-energy-carrier metamaterials, unlike conventional solid-state metamaterials.

10.1 Introduction

10.1.1 Roles of Discharge Plasmas in Metamaterial Structure

Plasmas and metamaterials are composites of a huge number of individual units.
Metamaterials in a conventional definition (without plasmas) are composed of
microstructures whose sizes are much smaller than the wavelength of a given electro-
magnetic wave [1, 2]. Usually, the microstructure as a unit with the same shape forms
a spatially periodic structure, and it is called a metamaterial (or metasurface, when
its structure is two-dimensional [3]). Mathematical integral effects occur over space
compared with the wavelength scale result in extraordinary outputs as averaged wave
parameters in permittivity and permeability [4]. Discharge plasmas are composed of
negatively charged electrons and positive ions, and internal free electrons with elec-
tron density ne in a quasi-steady state affect parameters like permittivity [5]. Their
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collective effects via Coulomb’s forces between individual charged particles ensure
charge neutrality over the size called the Debye length.

Although they are both composites, metamaterials and plasmas have very differ-
ent features in structures. Metamaterials’ configurations are robust; microstructures
are usually metallic, and they are installed on supporters like insulator plates. The
structure has a large volume fraction of vacancy.

On the other hand, the shape of plasma is flexible and adjustable. In plasmas, free
electrons move freely with their kinetic energy, and rather immobile positive ions
compensate electrons electrically. Then, the external shape of plasma and profiles of
their internal ne are controllable for a period with more than a time scale like particle
diffusion time and depend on the consumption of the external power that gener-
ates and sustains plasmas. For instance, we successfully created a two-dimensional
photonic-crystal-like structure that consists of 17 × 21 columns of lengthy plasmas
with 2.5-mm spatial periodicity; we never used any capillaries to confine plasmas.
We can insert plasmas in the vacant space inside the metamaterials, which is one of
the promising configurations as composites of plasmas and metamaterials [6].

Then, what are the advantages of plasmas in solid-state metamaterial structures?
So far, most studies have been performed for controlling permittivity ε, whereas per-
meability μ is designed by conventional metamaterial configurations. We note that ε
is amicroscopic one that depends on ne; free electrons work against electric fields of
propagating electromagnetic waves. Then, its harmony with macroscopic μ yields
refractive index N and wave impedance Z . Several reports including experimental
results have suggested that N can be negative by composites of plasmas and meta-
materials [6, 7]. This composite has variable ε with fixed μ. Unlike other tunable
metamaterials that usually include small additional elements with tunability, we can
directly change ε in this dynamic metamaterial. This fact can lead to nonlinearity in
such metamaterials with historical heritage of nonlinear physics pursued in plasma
science [8, 9].

In this chapter, we review previous studies and rich findings on several aspects of
plasmametamaterials. After surveying the previous studies, we investigate ε andμ in
this type ofmetamaterial. Then,we touchon recent progress of plasmametamaterials,
in particular, with tunability and nonlinearity.

10.1.2 Previous Studies on Plasma Metamaterials

There have been a huge number of studies on electromagnetic waves propagating
in plasmas for several decades, since they include charged particles of electrons and
ions that respond to them in various manners. Consequently, ε of plasmas takes
various values, and becomes a tensor in cases where we apply an external magnetic
field to plasmas; such reviews are found in older textbooks [10–12].

In this chapter, we focus on scalar ε, which is sufficiently unique to other wave
media whose materials are solids, liquids, and gases. In 1990, there was a proposal
stating that plasmaswork as tools to control electromagneticwaves, such as reflectors
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and absorbers [13]. In this proposal, plasmas are bulk materials, like plates and
spheres. After that, a few reports pointed out functions of periodic plasma structures
[14, 15], and they are called plasma photonic crystals [16]. As we will address later
in Sect. 10.3.1, they show a number of attractive features like flexible bandgaps.
Here, plasmas play roles on variable ε from +1 to 0, but another role of negative ε

was recently pointed out [17]. Bandgaps are observed both in one-dimensional and
two-dimensional plasma photonic crystals. Spatially, periodic structure also works
as a wave media in a similar manner to surface plasmon polaritons.

ε in plasmas can be easily negative in microwave frequencies if ne is sufficiently
high, and this property has been used in generation of surface-wave plasmas [18].
Thus, one may think that this property can be applied to obtain negative-N materials
by installation of negative-ε plasmas and negative-μmetamaterials. After theoretical
prediction on this concept [19], a few experimental studies verified negative-N states
in a composite of negative-ε plasmas and negative-μ metamaterials, in which ε and
N are dynamic and tunable [7, 20]; here, we call this composite plasma metama-
terial. Recently, this concept has been extended to get dynamic metasurfaces using
microplasma installation to functional surfaces [21]. Mainly, plasma metamaterials
are being studied in this chapter.

10.2 Permittivity, Permeability, and Refractive Index
in Plasma Metamaterial

Propagation of electromagnetic waves can be comprehended by refractive index N .
When N is large, theirwavelengthλbecomes short, and vice versa.On the interface of
multiple media, the impedance Z plays a crucial role; the transmission and reflection
coefficients of electromagnetic waves depend on Z .

ε and μ are constituents of N and Z , and are displayed in Fig. 10.1 for various
materials. Natural bulk materials have very limited values of ε and μ; ε is usually
more than +1, and some solids like ferromagnetic materials show large positive ε

values. Extraordinary cases are observed inmetals in the photon range and in plasmas
in the microwave range. Metamaterials studied so far have represented successful
regulations of ε and μ using elaborate designs of metallic and/or dielectric materials
thatmacroscopically (or via spatial integration) create extraordinary values including
those with a negative sign.

The point at which plasma metamaterials distinguish themselves from the other
metamaterials is ε, which is less than+1, including negative values with very smooth
continuity. In addition, these values of ε are achieved bymicroscopic properties from
free electrons, unlike the metamaterials in which ε is macroscopically negative.
Another point that is unique but requires careful design of configuration in plasma
metamaterials is spatial merging of plasma and solid components for supporting
metamaterials that macroscopically control μ, as shown in Fig. 10.2. Metamateri-
als like double split ring resonators (DSRRs) usually form as metallic patterns on



154 O. Sakai and A. Iwai

Fig. 10.1 ε − μ map for
various materials. Dotted
data points are
experimentally obtained
[26]. Reproduced with
permission from Sakai et al.,
Plasma Sources Sci.
Technol., Vol. 25:
055019-1-10. Copyright
2016 IOP Publishing

EM Waves

Plasma

Solid - state metamaterial

Transmitted waves

μ 

ε 

Fig. 10.2 Conceptual view of composite of discharge plasma and solid metamaterial [6]. Repro-
duced with permission from Sakai et al., Plasma Sources Sci. Technol., Vol. 21: 013001-1-18.
Copyright 2012 IOP Publishing

dielectric plates, between which sufficient vacancies for plasma generations exist.
Then, we have to be careful of effects of plasmas on μ and those of metamaterials
on ε, and we have to confirm successful integration of these two parameters coming
from microscopic and macroscopic values.
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10.2.1 Permittivity

ε, where we define it as relative permittivity in plasma, represents a response of
media against electric field E. When E of an electromagnetic wave is in a plasma,
free electronswith densityne,which is not in dielectric dipole but free to yield external
current, respondagainst E. Insteadof direct considerationof the constitution equation
given by D = εε0E using electric displacement field D (whose vector notation with
spatial directionality is D) and vacuum permittivity ε0, we start from Ampere’s law
as with

∇ × H = ε0
∂E
∂t

+ J, (10.1)

where H ismagnetic field, and t is time. J is external current density by free electrons.
When we take a component X̃ via Fourier transform of a time evolution in such a
manner as X = X̃ exp{i(ωt − kx)} at a frequency ω

/
2π with i = √−1, (10.1)

becomes

∇ × H̃ = iωε0 Ẽ + J̃ = iωεε0 Ẽ, (10.2)

where k iswavenumber at a spatial position x . ε in plasma arises not fromconductivity
current but from displacement current, as shown in the following. Using the plasma
frequency ωpe, where

ω2
pe = e2ne

ε0me
(10.3)

and e is elementary charge and me is electron mass, from momentum balance in
plasma, the current density is deduced as

∂ J
∂t

+ νm J = ε0ω
2
peE, (10.4)

where the first term of (10.4) on the left-hand side represents the displacement current
and the second term is for the conductive one. The conversion of (10.4) to component
at ω/2π leads to the expression

(iω + νm) J̃ = ε0ω
2
pe Ẽ. (10.5)

Then, from (10.2) and (10.5), we can derive

iωε0 Ẽ + ε0ω
2
pe

iω + νm
Ẽ = iωεε0 Ẽ, ε = 1 + ω2

pe

iω(iω + νm)
= 1 − ω2

pe

ω2(1 − iνm/ω)
.

(10.6)
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Re(ε) shown in (10.6) arises from the displacement component given in (10.4),
and it becomes negative as ne increases. This implies that E is the accelerating force
in the electron momentum balance and drives electrons mainly with phase separation
by π/2 between E and J once it exists in plasma. Another point we should address
here using Fig. 10.3 is a significant amount of Im(ε) as a source of conduction current
and energy losses, which work as an attenuation term.

From a practical point of view, we can measure values of ε in plasma metama-
terials, unlike conventional metamaterials. As shown in (10.6), ε is a function of ne
and νm, where νm depends on gas pressure and electron temperature Te [22]. Gas
pressure is easilymeasurable by an externally installed sensor on a chamber wall, and
ne and Te can be measured by a Langmuir probe, which is a tiny metallic needle that
collects a very small amount of current from the plasma at various bias voltages [23].
On the other hand, ε in conventional metamaterials should be estimated via param-
eter retrieval method [24] which assumes a homogeneous medium and is based on
macroscopic averaging. Then, plasma metamaterials can be a tool to understand the
detailed effects of ε in metamaterials.

When plasmas are adjacent to solid metamaterials that induce abnormal μ, there
is no change in ε except the periphery region on the solid surface in which sheaths
exist [5]. The thickness of the sheaths is usually negligible in plasma metamaterials,
and ne and consequently, ε are still measurable. The substantial values of ε will be
average ones weighed by spatial occupancy ratio between plasmas and solids. If
plasmas are adjacent to solid metamaterials that induce abnormal μ, both effects are
superposed. Beyond such linear superposition, more complicated effects might arise
from plasma-metamaterial composites, which are described in Sect. 10.2.2.

Fig. 10.3 Variable ε, which
is a complex value,
depending on electron
density ne and gas pressure
p [6]. Reproduced with
permission from Sakai et al.,
Plasma Sources Sci.
Technol., Vol. 21:
013001-1-18. Copyright
2012 IOP Publishing
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10.2.2 Permeability

Permeability μ in plasma metamaterials is usually controlled by additional solid
materials immersed in plasma. For instance, DSRRs and double-helix metallic wires
work as abnormal metamaterials that can be with plasmas [7, 25, 26]. At some future
stage, structured plasmas will create abnormal-μ metamaterials [6], but there have
been no specific ideas proposed to achieve them in experiments.

When we put abnormal-μ metamaterials in plasmas, the values of μ may change
due to conductivity in plasmas. That is, from a point of view based on electromag-
netics, μ may change when the integral space that is defined to derive the equivalent
value of μ [4] contains plasmas that are sources of external current J in (10.1).

This phenomenon is understandable using equivalent circuitswith additional com-
ponents by plasmas [25]. Figure 10.4a shows that the effects of plasmas are not only
additional resistors but also capacitors with diodes due to the presence of sheaths on
the surface of solids of metamaterials. When we apply a set of experimental param-
eters that are possible in real situations, the resonance frequency changes within
10% of initial values as shown in Fig. 10.4b. One thing that is also applicable for all
metamaterials is that reactance circuits composed of inductances and capacitances
have certain resonances in every design [19], and this model analysis indicates that
design of negative μ using equivalent circuits is powerful even if plasmas exist.

10.2.3 Refractive Index

Refractive index or dielectric constant N is a typical measure of propagating elec-
tromagnetic waves, and the formula

N = √
ε
√

μ, (10.7)

can be derived from the wave equation based on (10.1) (Ampere’s law) and the
equation of Faraday’s law if ε and μ are uniform in a given medium [6]. General
interpretation of parameters in metamaterials is based on the same assumption, and
this formula for N is also applicable for plasma metamaterials. Here, however, to
investigate effects of plasmas and metamaterials more carefully in a situation similar
to an experimental setup, we use the dispersion relation of one-dimensional periodic
structures [19], given as

cos ka = cos
Nωdn
c

cos
Ndωdd

c
− 1

2

(
Z

Zd
+ Zd

Z

)
sin

Nωdn
c

sin
Ndωdd

c
, (10.8)

where a is periodic length of the one-dimensional structure, dn and dd are thickness
of the plasma-metamaterial composite and that of dielectric, respectively, Nd and Zd

are refractive index and wave impedance in the dielectric layer, respectively, and c
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(a)

(b)

Fig. 10.4 a Enlarged view of contact region between plasma and metamaterial (DSRR) with
equivalent circuit [25]. b Change of resonance frequency of DSRR by increasing contact plasma
with ne. Reproduced with permission from Iwai and Sakai et al., Appl. Phys. Express, Vol. 8:
056201-1-4. Copyright 2015 The Japan Society of Applied Physics
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is velocity of light. This dispersion relation handles spatial variation of ε and μ with
suitable boundary conditions on each interface. Usually, such dispersion relations
are investigated to see the effects of bandgaps, but we here study N at frequencies
much lower than the bandgaps and with a much longer wavelength than the spatial
periodic length, as shown in Fig. 10.5a.

Fig. 10.5 Theoretical plots
of ε, μ, N , and k in
one-dimensional
plasma-metamaterial
composite in dielectric
periodic gap as a function of
ω/2π [19]. Reproduced with
permission from Adamovich
and Sakai et al., Phys.
Plasmas, Vol. 17:
123504-1-9. Copyright 2010
American Institute of
Physics
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Figure 10.5b, c shows one typical example of wave parameters in plasma meta-
materials with collisionless plasma, with Im(ε) = 0. This example indicates that,
when ε andμ are both negative, N becomes negative, which is consistent with (10.7).
Further calculations shown in [19] demonstrate that, since plasma metamaterials can
take various complex ε, N can become negative with suitable negative μ even if
Re(ε) is positive. This condition is summarized as follows:

arg(ε) + arg(μ) > π. (10.9)

In one experiment in which DSRRs were installed in plasma space, the negative-
N state was successfully observed, as shown in Fig. 10.6. Since ne is time-variant
in plasmas, ε has time evolutions monitored by Langmuir probe measurement. μ

is drawn as a constant value in Fig. 10.6, which is a value measured via parameter
retrieval method [24] with deformation from the initial value, although we confirmed
that it is still in the negative polarity regardless of plasma effects.

Wementioned in Sect. 10.1 that ε is determinedmicroscopicallywhileμ is defined
macroscopically.However, plasma itself has a discrete structure composed of charged
particles, whose sizes are also much smaller than the wavelength; this is by the
definition of metamaterials. Although the sizes of charged particles and the unit
sizes of metamaterials are different by several orders, they are both in the criteria
of metamaterials, and they are well merged in plasmas metamaterials whose N is
expressed as (10.7).
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Fig. 10.6 ε, μ, and N observed in experiments of plasma-metamaterial composite, with their time
evolutions [35]. Reprinted from [35] by The Author(s) licensed under CC BY 3.0
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10.3 Aspects Emerging in Plasma Metamaterials

10.3.1 Dynamic/Tunable Properties

The dynamic properties are quite drastic in plasma metamaterials. There have been a
number of proposals to make metamaterials dynamic, such as those in which photo-
conductive layers are activated by lasers [27]. However, the dynamic range of ε, for
instance, from+1 to−20 in plasmametamaterials is so large thatmostmetamaterials
cannot work in a similar manner. This word “dynamic” can be replaced by those like
“tunable” and “reconfigurable,” both of which are quite attractive points that are
usually difficult to achieve, both by metamaterials and conventional pure materials.

The tunability often means shift of frequency properties due to the change in
Re(ε). Plasma metamaterials also offer this role in tunability, but they can also serve
as adjustable attenuators, due to the change of Im(ε) via gas-pressure variations
described in Sect. 10.2.1. That is, plasma metamaterials make metamaterials not
only tunable as scalar filters but as vector (phasor) filters in wave complex plane.
Also, the dynamic property includes drastic transitions caused by nonlinearity, which
will be discussed in Sect. 10.3.2.

Dynamic properties were observed in plasma photonic crystals, in which ε and
its spatial patterns can be deformed in time; this is a good illustration of how plas-
mas work as functional electromagnetic wave devices. Figure 10.7 displays various
flexible modes of plasma photonic crystals. Figure 10.7a shows the wave attenuation
in one bandgap of the �-X direction in the two-dimensional square lattice, where
this band gap is the lowest one at ωa/2πc ∼ 0.5 with a = 2.5 mm [28]; the plane-
wave expansion method well predicts the bandgap frequency as 61–63 GHz [29].
Higher discharge voltage for plasma generation leads to lower value ε in comparison
with the surrounding gas space in which ε ∼ +1, enhancing the attenuation with
larger Im(N ) in the bandgap. Figure 10.7b shows the varying frequency of the lowest
bandgap of the one-dimensional structure on the coplanar waveguide, by changing
spatial periodicity of turn-on plasma columns [30–33]. We observed clear frequency
shifts of the band path region according to the spatial periodicity; this is not a bandgap
itself but a transmission band just below the bandgap due to electric field localization
outside the lossy plasma.

A varying negative-N material using a plasma-metamaterial composite is
achieved as shown in Fig. 10.6.Microwave bulk plasmamakes ε negative, andDSRR
arraymakesμ negative.As described in Sect. 10.2.3, the confirmation of two negative
values is by separate measurements, and the reflection measurement of propagating
microwaves confirms simultaneous achievement of these values and consequently a
negative-N value [26]. This configuration enables us to obtain negative-N material,
without states with positive ε and negative μ, since the plasma generation is in the
nonlinear scheme described in Sect. 10.3.2. Another example of negative-N plasma
metamaterial is investigated by measurement of elements in the scattering matrix
S21, which represents transmitting signals through the device under test. In this con-
figuration, we can observe both positive- and negative-ε plasmas with negative-μ
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Fig. 10.7 a Transmittance
of waves propagating in
two-dimensional structure of
plasma columns [28]. With
fixed structure, discharge
voltage to generate plasmas
is a variable for regulation.
Reproduced with permission
from Sakaguchi and Sakai
et al., J. Appl. Phys., Vol.
101: 073305-1-7. Copyright
2007 American Institute of
Physics. b Transmittance of
wave propagation in
one-dimensional structure of
plasma columns on coplanar
waveguide [30]. With fixed
discharge voltage, periodic
length of turn-on plasma
columns is a variable for
regulation. Reproduced with
permission from Sakai et al.,
Plasma Phys. Contr. Fusion,
Vol. 49: B453–B463.
Copyright 2007 IOP
Publishing
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metamaterial because plasma generation is in the linear scheme in the total system
in which plasma generation is by low-frequency high discharge voltage.

10.3.2 Nonlinear Properties

Nonlinearity exists in various aspects and manners in science and technology. For
instance, nonlinear dynamics is stability analysis using differential equations and can
demonstrate processes in bifurcations and chaos. Nonlinear wave theory explains
wave summation and division and leads to nonlinear photonics. Both nonlinearities
are more or less significant when two factors exist: non-locality (through something
transported, in terms of position vector r) and memory (in which the past events
affect the current states, in terms of t) effects.Nonlinearmetamaterials have nonlinear
components inside, and show various extraordinary properties beyond conventional
metamaterials.
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Plasmametamaterials can be nonlinear metamaterials, partly because plasmas are
nonlinear media in terms of parameter dynamics and wave propagation due to their
nonlocal and memory effects. Owing to addition of changes in wave propagation
via abnormal μ values, plasma metamaterials exhibit various features of nonlinear
dynamics and photonics. The fundamental formulae that can describe the origin
of nonlinearity in plasmas are the particle continuum equation and the momentum
balance equation as in [33]:

∂ne(r, t)
∂t

+ ∇ · (ne(r, t)υe(r, t)) = ne(r, t)υe(r, t)α
(
E(r, t)

p

)
− βn2e(r, t),

(10.10)

mene(r, t)
{

∂υe(r, t)
∂t

+ (υe(r, t) · ∇)υe(r, t)
}

= −ne(r, t)eE(r, t) − ∇ pe(r, t)

− mene(r, t)υe(r, t)νm,

(10.11)

where υe is electron fluid velocity, p is gas pressure, β is recombination coefficient,
and pe is electron pressure. α is ionization coefficient that has a form including the
exponential function. In addition, E and H in (10.1) and (10.2), ε in (10.6), and N
in (10.7) also depend on r and t . That is, parameters related to nonlinearity are ne,
υe, E, and H (ε and N are dependent on ne). In short, the network of this nonlinear
system is displayed in Fig. 10.8.

Then, what are the effects ofμ on this system? ε andμwork together in Ampere’s
law and Faraday’s law. A negative sign of ε makes reversed direction of H , giving
rise to a negative sign of μ in propagating waves. ne of negative-ε plasma should be
higher than that of positive-ε plasma, possible in a high E space; furthermore, ne
contains a term of exp(E), which is more highly nonlinear than E2 (for instance, in
Kerr’s effect). The relation between ne and E is nonlinear as shown in Fig. 10.8, and
consequently, ε and N are in a strong nonlinear system.

More precisely, there should be the state with ε = +1, certainly in the case of
a vacuum with ne = 0 and E = 0 (no propagating waves), but the states with
ε = 0− + 1 should not exist when μ < 0, since the waves that generate plasmas
should be present. The working point with parameters of E and ε experiences a
jump from the state with ε = +1 to that with ε > 1. Details are shown in [33], and
shown in Fig. 10.9 as a schematic drawing. Figure 10.9 clearly shows this jump or
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Fig. 10.8 Theoretical display of processes among equations with key parameters
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the saddle-node bifurcation in the terminology of nonlinear dynamics.
With Fig. 10.9, we can point out what this analysis indicates from another point

of view. In the case with negative μ, ε is unlimited with increasing E . This unlim-
ited value of ε leads to the concept of high-energy metamaterials, as described in
Sect. 10.3.3.

10.3.3 Properties as Energy Carriers

Materials usually show some phase transitions from gas to liquid or from liquid
to gas due to their internal energy (provided from their external boundary area).
On the other hand, metamaterials do not have such properties and show extraordi-
nary parameters only for propagating electromagnetic waves. Due to its fixed spatial
design to assure the extraordinary parameters, we hardly expect phase transitions in
a metamaterial that induce drastic change of its configuration, but some analogical
(and hopefully abnormal) dependence on its internal energy is promising in a meta-
material. Researchers are currently interested in heat flux control via some effects
analogically similar to electromagnetic metamaterials [34], and energy may be a
keyword to open a new category in metamaterial science.
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Fig. 10.10 Energy levels of various materials and propagating waves

Plasma metamaterials are interesting research targets for studying such features.
Aswehave investigated in Sect. 10.3.2, a transition phenomenon is possible in plasma
metamaterials when we observe values of ε and N , and transition is from low- to
high-ne states, where high values of ne mean high internal energy since the internal
energy in plasmas is roughly a product of ne and electron temperature Te (except
completely ionized high-temperature plasmas like fusion-oriented ones in which ion
temperature is almost equal to Te). Furthermore, as we confirmed in Sect. 10.3.2,
when we make μ negative and launch electromagnetic waves with large amplitude
E, we can expect generation of high-ne plasma with unlimited large negative values
of ε.

Here, we estimate how much energy is stored in a plasma metamaterial in com-
parison with energy of electromagnetic waves [26]. A conventional metamaterial
contains energy of a propagating wave as a wave medium that supports wave propa-
gation. Some designed wave media such as wave cavities can store it effectively, and
they re-emit or convert it into another energy carrier. A nonlinear plasma metama-
terial can store the wave energy as internal kinetic energy (ne × Te). Assume wave
propagation inside a microwave waveguide for 2.45 GHz, whose cross section is
∼ 50 × 100 mm2. Microwave energy propagates at velocity v = cβ/k, where β is
wavenumber in the waveguide with the plasma metamaterial, whereas k is that in the
free space with phase velocity c. Its energy density per unit length along the waveg-
uide is ∼ 10−8 J cm−1. On the other hand, the density of the internal kinetic energy
in negative-μ plasma metamaterial is ∼ 10−5 J cm−1, by three orders larger than the
wave propagating energy density. Conventional plasma with both positive values of
ε and μ has a smaller internal energy by one order, and the internal kinetic energy of
hundreds-of-K materials (near the room temperature) is three orders lower than that
of the negative-μ plasma metamaterial; the internal kinetic energy of hundreds-of-K
materials is at a similar level to that of propagating waves. All of the energy levels
are summarized in Fig. 10.10. That is, plasma metamaterials have high energy and
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“phase” transition, which is a quite rich research target that bridges conventional
metamaterials and conventional pure materials.

10.4 Concluding Remarks

In this chapter, we studied the effects of discharge plasmas when we use them in con-
figurations of metamaterials. Plasmas have variable ε, in both its real and imaginary
parts, and they match with solid metamaterials whose μ is extraordinary. Negative-ε
plasmas and negative-μmetamaterials make N negative, which is a different scheme
for negative N from conventional metamaterials. Flexible ε in plasma metamaterials
achieves flexible-N materials, which leads to nonlinear metamaterials that exhibit
bifurcations of ε. It also yields high-energymetamaterials that work as energy storage
whose energy density is several orders higher than those of conventional metamate-
rials.
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Chapter 11
Meta-atoms Emulating Quantum
Systems

Toshihiro Nakanishi and Masao Kitano

Abstract Electromagnetic property of amedium can be derived from electric and/or
magnetic response of constituent atoms or molecules. If an artificial structure called
meta-atom is designed to show the same response for the incidence of electromag-
netic waves, the assembly of the meta-atoms, or metamaterial, is expected to exhibit
the same functionality as that of the atomicmedium. In this chapter,we focus onmeta-
materials mimicking electromagnetically induced transparency (EIT) effect, which
has been extensively investigated in atomic systems composed of three-level atoms.
We start with an analogy between a two-level atom and a meta-atom with a single
resonant mode as a simplest example. Next, we provide rigorous analogy between
an atomic medium with three-level atoms showing EIT effects and the metamaterial
composed of coupled resonator-based meta-atoms, comparing the atomic response
derived from Schrödinger equations of the quantum system and the response of the
meta-atom derived from the circuit equations of its circuit model. Based on the cou-
pled resonator model, several examples ofmetamaterials showing EIT-related effects
such as sharp transparency and slow propagation are introduced. We also introduce
a tunable metamaterial, which realizes storage of electromagnetic waves in the same
way as the atomic EIT system.

11.1 Introduction

Metamaterials often include resonant structures to materialize unique electromag-
netic characteristics, such as negative refraction, high nonlinearity. The individual
constituents, or “meta-atoms,” with a single resonant mode behave as artificial two-
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level atoms, which resonantly absorb electromagnetic waves oscillating at the res-
onant frequency. If two resonant meta-atoms are closely placed, the resonant line
splits into two levels in a similar way to a diatomic molecule forming bonding
and anti-bonding levels. The coupled meta-atoms can also be considered as artifi-
cial three-level atoms with two absorption lines. These coupled meta-atoms, which
emulate the molecules or multi-level atoms, can be expected to show more versatile
functionalities than themeta-atomswith a single resonant mode. Here, as an example
of unusual effects observed in three-level atoms, we focus on an electromagnetically
induced transparency (EIT) effect [1], which renders an opaque medium transparent
in a narrow spectral region. The EIT effect in an atomic system acts to dramatically
decelerate the group velocity of light [2] and even to stop light pulses in the medium
[3, 4]. The sharp transparency and slow propagation unique to the EIT effect were
demonstrated in metamaterials in microwave regions [5, 6], and various types of
metamaterials have been proposed and experimentally demonstrated to emulate the
EIT effect in various frequency ranges, including terahertz [7–10] and optical ranges
[11–15]. Recently, storage of electromagnetic waves has also been achieved in a
metamaterial in a similar way to that in the atomic EIT system [16].

In Sect. 11.2, we show an analogy between two-level atoms and singly resonant
meta-atoms, which are described by the circuit model based on an LC resonator.
In Sect. 11.3, we explicitly derive an analogy between the atomic EIT effect in
three-level atoms and the EIT-like effect in meta-atoms composed of coupled res-
onant modes. In both analogies, the atomic systems are analyzed by solving the
Schrödinger equation, while the metamaterials are analyzed by the circuit equations,
which well describe the meta-atoms. In spite of the completely different systems, the
susceptibilities of the atomic media and the metamaterial counterparts are written
in the same forms. This fact means that two systems respond to the electromagnetic
waves in exactly the same way in the long wavelength limit, where homogenization
of the medium can be employed.

11.2 Two-Level Atoms and Their Classical Model

11.2.1 Linear Response of Two-Level Atoms

The simplest example of a quantum system is a two-level system interacting with
external fields, such as atomic excitation by an oscillating electric or magnetic field,
spin precession by a static magnetic field. In this section, we consider the atomic
transition between two levels by electric fields E = Ep cosωt as shown in Fig. 11.1a.
We assume that a ground state |1〉 and an excited |2〉 state are connected with an
electric dipolemoment,whose operator is defined as p̂p = pp|2〉〈1| + H.c.Assuming
the origin of the energy is at the ground level |1〉 for simplicity, we can write the
Hamiltonian of the system as
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(a) (b)

2

Fig. 11.1 a Two-level system interacting with oscillating fields. b Circuit model

Ĥ = − p̂pEp cosωt + �ω2|2〉〈2|, (11.1)

where Ep cosωt is the electric field and ω2 is the transition frequency. For near-
resonance cases, where the detuning Δ ≡ ω2 − ω is less than the linewidth γ2, rotat-
ing wave approximation can be applied, and we obtain

Ĥ = −�Ωp

2
e−iωt |2〉〈1| − �Ω∗

p

2
eiωt |1〉〈2| + �ω2|2〉〈2|, (11.2)

with Ωp ≡ ppEp/�, which is called Rabi frequency [17]. If the state is given by
|ψ〉 = C1(t)|1〉 + C2(t)|2〉, the Schrödinger equation yields

d

dt

(
C1

C2

)
= −i

⎛
⎜⎝ 0 −Ω∗

p

2
eiωt

−Ωp

2
e−iωt ω2

⎞
⎟⎠

(
C1

C2

)
. (11.3)

The effect of the decay at |2〉 can be phenomenologically introduced as follows:

d

dt

(
C1

C2

)
= −i

⎛
⎜⎝ 0 −Ω∗

p

2
eiωt

−Ωp

2
e−iωt ω2 − i

γ2

2

⎞
⎟⎠

(
C1

C2

)
. (11.4)

Weak-field approximation If the field is weak enough to satisfy |Ωp| � γ2, it is
fairly assumed that only the ground state |1〉 is occupied, i.e., C1(t) = 1.1 Under this
condition, (11.4) is reduced to

dC2

dt
= −

(
iω2 + γ2

2

)
C2 + i

Ωp

2
e−iωt . (11.5)

1Phase factor can be ignored because the origin of the energy level is at |1〉.
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In a rotating frame defined as C̃2 = eiωtC2, the above relation can be written as

dC̃2

dt
= −

(
iΔ + γ2

2

)
C̃2 + i

Ωp

2
, (11.6)

whereΔ = ω2 − ω. The steady-state solution can be easily derived fromdC̃2/dt = 0
as

C̃2(t) = iΩp

2

1

iΔ + γ2

2

, C2(t) = iΩp

2

1

iΔ + γ2

2

e−iωt . (11.7)

Susceptibility of atomic media The electric dipole moment per atom is given by

p0 ≡ 〈ψ | p̂p|ψ〉 = p∗
pC

∗
1 (t)C2(t) + c.c.

= p̃p e
−iωt + c.c. (11.8)

where

p̃p ≡ i|pp|2
2�

Ep

iΔ + γ2

2

. (11.9)

If the medium is composed of two-level atoms with a density N , the total electric
polarization is ppN . The complex susceptibility χ is obtained from p̃pN = ε0χEp,
and the real part χ ′ and imaginary part χ ′′ are derived from (11.7) as

χ ′ = Re

⎡
⎢⎣ i|pp|2N

2ε0�

1

iΔ + γ2

2

⎤
⎥⎦ = |pp|2N

2ε0�

Δ

Δ2 +
(γ2

2

)2 , (11.10)

χ ′′ = Im

⎡
⎢⎣ i|pp|2N

2ε0�

1

iΔ + γ2

2

⎤
⎥⎦ = |pp|2N

2ε0�

γ2

2

Δ2 +
(γ2

2

)2 , (11.11)

respectively. The absorption spectrum related with χ ′′ shows a Lorentzian profile
with a width of γ2. During the derivation, we have assumed weak-field approxima-
tion |Ωp| � γ2, ignoring saturation effects. Therefore, the derived susceptibilities
represent the linear response of the medium.
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11.2.2 Circuit Analogy of the Two-Level System

The differential equation (11.5) can be regarded as the equation of motions for a
harmonic oscillator with a resonant frequencyω2 driven by an external force rotating
atω. The circuit analogy can be an LC resonator driven by an external voltage source
as shown in Fig. 11.1b. The evolution of the LC resonator is governed by

L
d2i

dt2
+ R

di

dt
+ i

C
= d

dt
(ṽ cosωt). (11.12)

If the amplitude ṽ of the external voltage source changes slowly enough to satisfy
|dṽ/dt | < ω, the current envelope ĩ , which is defined through i = ĩ e−iωt + c.c.,
also varies slowly. By applying slow varying envelope approximation and using a
near-resonance condition, ω2 + ω ∼ 2ω, (11.12) is reduced to

dĩ

dt
= −

(
iΔ + R

2L

)
ĩ + ṽ

2L
, (11.13)

where we use the same definition Δ = ω2 − ω as introduced in the previous section.
Comparing (11.6) and (11.13), we can find that the LC resonator is described by the
same differential equation as the quantum two-level system, by assuming γ2 = R/L
and Ωp = −iṽ/L . The current in steady state can be easily obtained as

ĩ = 1

iΔ + γ2

2

ṽ

2L
. (11.14)

Here, we introduce a complex power, which is given by

Pc = ṽ∗ ĩ = |ṽ|2
2L

1

iΔ + γ2

2

. (11.15)

The real part and imaginary parts of Pc are

Pr ≡ Re[Pc] = |ṽ|2
2L

γ2

2

Δ2 +
(γ2

2

)2 , Pi ≡ Im[Pc] = −|ṽ|2
2L

Δ

Δ2 +
(γ2

2

)2 . (11.16)

The real (imaginary) part of Pc corresponds to the imaginary (real) part of the complex
susceptibility. It is natural because the real part of Pc represents the energy dissipation
in the resistor and shows a Lorentzian profile with a width of γ2 = R/L .

The correspondences between the quantum system for driven two-level atoms and
its circuit model are summarized in Table11.1.
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Table 11.1 Correspondence between the two-level system in a driving field and an LC resonator
driven by an external voltage source

Driven two-level system Driven LC resonator

Transition frequency: ω2 Resonant frequency: 1/
√
LC

External field: Ep cosωt External voltage source: ṽ cosωt

Amplitude for |2〉: C2 Current in the resonator: i

Decay rate for |2〉: γ2 Dissipation rate: R/L

Absorption: Im[χ] Dissipated power: Re[Pc]

11.2.3 Metamaterial Analogy of the Two-Level System

The constituents of the metamaterial that resonates at a specific frequency can be
regarded as artificial atoms (meta-atoms) analogous to the two-level atoms, because
the circuit models of the meta-atoms are well described by LC resonators. There are
various kinds of resonant meta-atoms, such as dipole resonators, cut-wire structures,
and split-ring resonators as shown in Fig. 11.2a, b, c, respectively. Here, we take a cut-
wire structure as a typical example of metamaterials with electric dipole oscillation.
As shown in Fig. 11.2d, the metallic parts and the gaps between the cut wires can be
regarded as inductors and capacitors, respectively. In the presence of electric field E
aligned along the cut-wire structure, electric charges ±q accumulated at both ends
of the bar structure form an electric dipole p = qd, where d represents the effective
dipole length determined by the charge distribution. For an oscillating field with the
complex amplitude Ẽ , the same relation can be assumed as p̃ = q̃d, where p̃ and q̃
are the complex amplitudes of the electric dipole and the charges, respectively. From
i = dq/dt , the complex amplitude of the current, ĩ , is represented as

ĩ = −iωq̃. (11.17)

(a) (b) (c) (d) 

Fig. 11.2 Various meta-atoms. a Dipole resonator. b Cut-wire structure. c Split-ring resonator. d
Circuit model for cut-wire structure
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The voltage applied to each unit cell with a length l can be roughly estimated as
ṽ = Ẽl. Hence, (11.14) gives

p̃ = i
ld

2ωL

1

iΔ + γ2

2

Ẽ . (11.18)

For the meta-atom density of N , we can obtain the electric susceptibility of the
metamaterial as follows:

χ = p̃N

ε0 Ẽ
= i

ldN

2ε0ωL

1

iΔ + γ2

2

. (11.19)

The susceptibilities of two-level atoms and the metamaterial are the same except for
the coefficients, and it is possible to identify the metamaterial composed of artificial
atoms like cut wires with a medium composed of two-level atoms.

11.3 EIT Effect and Its Classical Model

11.3.1 EIT Effect in Three-Level Atoms

In this section,we considerEIT effects in three-level atomswith twoground states, |1〉
and |3〉, and a common excited state |2〉 as shown in Fig. 11.3. The dipolemoments for
|1〉 → |2〉 and |3〉 → |2〉 are defined as p̂p = pp|2〉〈1| + H.c. and p̂c = pc|2〉〈3| +
H.c., respectively. We assume that a probe field, Ep cosωt , induces the transition
from |1〉 to |2〉 with a detuning Δ(= ω2 − ω), and the other field Ec cosωct , called
the control field, connects the transition between |3〉 and |2〉 with no detuning, ωc =
ω2 − ω3. The Hamiltonian of the system is given by

Ĥ = − p̂pEp cosωt − p̂cEc cosωct + �ω2|2〉〈2| + �ω3|3〉〈3|. (11.20)

Fig. 11.3 Three-level
system interacting with
probe and control light
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For near-resonance cases, rotatingwave approximation can be applied, andwe obtain

Ĥ = − �Ωp

2
e−iωt |2〉〈1| − �Ω∗

p

2
eiωt |1〉〈2| − �Ωc

2
e−iωct |2〉〈3| − �Ω∗

c

2
eiωct |3〉〈2|

+ �ω2|2〉〈2| + �ω3|3〉〈3|, (11.21)

where Rabi frequencies are defined as Ωp ≡ ppEp/� and Ωc ≡ pcEc/� . If the state
is given by |ψ〉 = C1(t)|1〉 + C2(t)|2〉 + C3(t)|3〉, the Schrödinger equation yields

d

dt

⎛
⎜⎝
C1

C2

C3

⎞
⎟⎠ = −i

⎛
⎜⎜⎜⎜⎜⎝

0 −Ω∗
p

2
eiωt 0

−Ωp

2
e−iωt ω2 − i

γ2

2
−Ωc

2
e−iωct

0 −Ω∗
c

2
eiωct ω3 − i

γ3

2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎝
C1

C2

C3

⎞
⎟⎠ , (11.22)

where the effects of the decay at |2〉 and |3〉 are phenomenologically introduced in
the same way as the derivation of (11.4). We can assume that the decay rate at the
excited state |2〉 is much larger than that at the ground state |3〉, i.e., γ2 � γ3.

Weak-field approximation If the probe field is weak enough to satisfy |Ωp| � γ2,
|Ωc|, we can assume C1(t) = 1. Under this condition, (11.22) becomes

d

dt

(
C2

C3

)
= −

⎛
⎜⎝

iω2 + γ2

2
−i

Ωc

2
e−iωct

−i
Ω∗

c

2
eiωct iω3 + γ3

2

⎞
⎟⎠

(
C2

C3

)
+ i

2

(
Ωp e−iωt

0

)
. (11.23)

In a rotating frame defined as C̃2 = eiωtC2 and C̃3 = eiωt e−iωctC3, the above relation
can be written as

d

dt

(
C̃2

C̃3

)
= −

⎛
⎜⎝
iΔ + γ2

2
−i

Ωc

2

−i
Ω∗

c

2
iΔ + γ3

2

⎞
⎟⎠

(
C̃2

C̃3

)
+ i

2

(
Ωp

0

)
. (11.24)

The steady-state solution can be easily derived from dC̃2/dt = dC̃3/dt = 0 as

C̃2 = iΩp

2

iΔ + γ3

2(
iΔ + γ2

2

) (
iΔ + γ3

2

)
+

∣∣∣∣Ωc

2

∣∣∣∣
2 . (11.25)

Susceptibility of EIT media As in Sect. 11.2.1, the complex susceptibility for the
probe light is derived as
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Fig. 11.4 Electric
susceptibility of atomic EIT
medium for γ2 =
0.5ω2, γ3 = 0,Ωc = 0.2ω2.
Imaginary part (top) and real
part (bottom). Reprinted
with permission from [18].
Copyright 2018 Springer
Nature

-1.5 -1 -0.5  0  0.5  1  1.5
el

ec
tr

ic
 s

us
ce

pt
ib

ili
ty

detuning

0

0 transparency
 window

χ = i|pp|2N
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iΔ + γ3

2(
iΔ + γ2

2

) (
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∣∣∣∣Ωc
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2 . (11.26)

The spectral shape of the susceptibility for ideal case γ3 = 0 is illustrated in Fig. 11.4.
The absorption spectrumrepresentedby the imaginarypart of the susceptibility shows
sharp transparency in a broad absorption line. In addition to the absorption profile, the
refractive index related to the real part of the susceptibility is extremely modified in
the transparency window, and the group velocity of the light is dramatically reduced.
The width of the transparency window is proportional to |Ωc|2, or the intensity of the
control light. The storage of light can be achieved through the dynamic modulation
of the group velocity controlled by changing the intensity of the control light.

11.3.2 Circuit Analogy of EIT Effects

In 2002, Alzar it et al. proposed a method to mimic EIT effects using coupled har-
monic oscillators [19]. In this section, we deal with weakly coupled LC resonators
with a resonant frequency ofω2 = 1/

√
LC as shown in Fig. 11.5a, b, which represent

a magnetically coupled resonator and an electrically coupled resonator, respectively.
For the time being, we will consider the magnetically coupled resonator, which is
almost the same as the electrically coupled resonator. We assume that the resonator
directly driven by the external voltage oscillating atω has a low quality (lowQ) factor
while the other has a high quality (high Q) factor, i.e., R � r . The circuit equation
is given by
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(a) (b)

Fig. 11.5 Circuit model of atomic EIT system. a Magnetically coupled resonator. b Electrically
coupled resonator

L
d2i1
dt2

+ R
di1
dt

+ i1
C

+ M
d2i2
dt2

= d

dt
(ṽ cosωt), (11.27)

L
d2i2
dt2

+ r
di2
dt

+ i2
C

+ M
d2i1
dt2

= 0, (11.28)

where i1 and i2 are currents in the lowQ resonator and high Q resonator, respectively.
Through the same procedure to derive (11.13) in Sect. 11.2.2, we obtain

d

dt

(
ĩ1

ĩ2

)
= −

⎛
⎜⎝iΔ + R

2L
−i

κω

2

−i
κω

2
iΔ + r

2L

⎞
⎟⎠

(
ĩ1

ĩ2

)
+ 1

2

⎛
⎝ ṽ

L
0

⎞
⎠ , (11.29)

where the coupling coefficient and the detuning are introduced as κ = M/L and
Δ = ω2 − ω, respectively. In the derivation,we assume aweak coupling limit κ � 1.
By comparing (11.24) with (11.29), it is obvious that the currents in the circuit model
are governed by the same differential equations as those for quantum states in the
atomic three-level system. Then, the steady-state solution is derived as

ĩ1 = ṽ

2L

iΔ + γ3

2(
iΔ + γ2

2

) (
iΔ + γ3

2

)
+

∣∣∣∣Ωc

2

∣∣∣∣
2 , (11.30)

by using γ2 = R/L , γ3 = r/L , Ωc = κω, and Ωp = −iṽ/L .
The complex power for the current in the low Q resonator is given as

Pc = ṽ∗ ĩ1 = |ṽ|2
2L

iΔ + γ3

2(
iΔ + γ2

2

) (
iΔ + γ3

2

)
+

∣∣∣∣Ωc

2

∣∣∣∣
2 . (11.31)
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Table 11.2 Correspondence between the atomic EIT system and its circuit model

Atomic EIT system Coupled resonator model

Transition frequency: ω2 Resonant frequency: 1/
√
LC

External field: Ep cosωt External voltage source: ṽ cosωt

Amplitude for |2〉: C2 Current in low Q resonator: i1
Amplitude for |3〉: C3 Current in high Q resonator: i2
Decay rate for |2〉: γ2 Dissipation rate of low Q resonator: R/L

Decay rate for |3〉: γ3 Dissipation rate of high Q resonator: r/L

Rabi frequency by control light: Ωc Coupling of the resonators: κω or 1/ωCML

Absorption of probe light: Im[χ] Dissipated power: Re[Pc]

The real part of Pc represents the dissipation and corresponds to the imaginary part
of the susceptibility χ expressed by (11.26) for an atomic EIT medium. As a result,
the dissipation in the circuit is suppressed in a narrow spectral region. The width
of the low dissipation region is proportional to Ω2

c = κ2ω2, and smaller coupling κ

results in a narrower low dissipation region.2

In the case of the electrically coupled resonator shown in Fig. 11.5b, the circuit
equation is given by

L
d2i1
dt2

+ R
di1
dt

+ i1
C

+ i2
CM

= d

dt
(ṽ cosωt), (11.32)

L
d2i2
dt2

+ r
di2
dt

+ i2
C

+ i1
CM

= 0, (11.33)

where 1/C = 1/C0 + 1/CM. Equation (11.29) is replaced with

d

dt

(
ĩ1
ĩ2

)
= −

⎛
⎜⎝
iΔ + R

2L

i

2ωCML
i

2ωCML
iΔ + r

2L

⎞
⎟⎠

(
ĩ1
ĩ2

)
+ 1

2

⎛
⎝ ṽ

L
0

⎞
⎠ . (11.34)

This expression has the same form as (11.29) except for the coupling term. Hence,
we redefineΩc = −1/ωCML , and the electrically coupled resonator can be regarded
as identical to the magnetically coupled resonator.

The correspondences between the quantum EIT system and its circuit model are
summarized in Table11.2.

2Ωc = κω is obviously frequency dependent, though it can be considered nearly constant κω2 in
the weak coupling limit κ � 1.
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11.3.3 Metamaterial Analogy of EIT Effects

The EIT effects can be materialized with metamaterials composed of meta-atoms
that are described by the circuit model provided in the previous section. In the circuit
model, two resonators with different quality factors are coupled and only the res-
onator with a low Q factor is excited. On the other hand, the metamaterial emulating
the EIT effects, called an EIT metamaterial, consists of meta-atoms with two reso-
nant structures, or two resonant modes, with different quality factors, and only the
resonator with lowQ factor is excited by external electromagnetic waves. In the pres-
ence of the coupling between the two resonators, which we refer to as EIT coupling,
the EIT effects including narrow-band transparency and slow light propagation are
materialized.

Before showing realistic structures of the EIT metamaterials, we provide an
overview of the EIT-like effects in metamaterials with the concept model shown
in Fig. 11.6a. The left (right) circle corresponds to a low Q (high Q) resonator, and
the antenna symbolically represents the function of receiving external electromag-
netic waves. It should be noted that the high Q resonator cannot be directly excited
by the external fields. The resonant mode with the low Q factor is called “radiative
mode” or “bright mode,” and the one with the high Q factor is called “trapped mode”
or “dark mode.” As shown in Fig. 11.6b, without the EIT coupling the energy in the
radiative mode excited by the external fields is rapidly consumed due to high dissi-
pation in the low Q resonator, and consequently, the propagating waves are absorbed
in the metamaterial. On the other hand, in the presence of the EIT coupling, as shown
in Fig. 11.6c, the metamaterial is rendered transparent, because the energy received
through the radiative mode is transferred to the trapped mode with low losses via the
EIT coupling. In addition to the transparency, the propagation is slowed down in the
metamaterial owing to the temporal storage in the trapped mode.

  radiative
    mode

trapped
 mode

absorbed

    mode 
trapped
  mode

coupling

transparent
      + delay

radiative mode
      (low-Q)

trapped mode
    (high-Q)

coupling

  radiative

(a) (b) (c)

Fig. 11.6 a Concept model of EIT metamaterial. b Coupling is turned off. c Coupling is turned
on. Reprinted with permission from [18]. Copyright 2018 Springer Nature
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(a) (b) (c) 

E

B metal

+
+
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-

-
Fig. 11.7 a Dipole antenna. b Pair of strips. c Composite structure

11.3.3.1 EIT-like Effect in Coupled Resonator-Based Metamaterials

In actual EIT metamaterials, electric dipole resonance is often used as a radiative
mode, because electric dipole oscillation effectively interacts with far-field or prop-
agating waves. In other words, the stored energy in the resonant mode is quickly
released into propagating waves, and the quality factor as a resonator is relatively
low due to the radiation dissipation. On the other hand, lower dissipative resonance
such as magnetic dipole resonance and electric quadrupole resonance can be used
for a trapped mode.

As a typical example of the EIT metamaterials, the proposal by Zhang’s group
[20] is shown in Fig. 11.7. Their EIT metamaterial is comprised of two elements: a
dipole antenna shown in Fig. 11.7a and a pair of stripes shown in Fig. 11.7b. The
polarization of the incident electromagnetic field is also shown on the left-hand side
of Fig. 11.7a. As shown in Fig. 11.7a, electric dipole resonance in the dipole antenna
is induced by oscillating electric fields, when half of the wavelength is adjusted
around the length of the antenna. Hence, this resonance serves as a radiative mode.

On the other hand, the pair of stripes has an electric quadrupole resonancemode as
shown in Fig. 11.7b and serves as a trapped mode. It should be noted that the incident
electromagnetic field does not directly excite the quadrupole resonance in the long
wavelength limit. The resonance frequencies for the radiative mode and the trapped
mode are tuned to be the same by adjusting the dimensions of the structure. In order
to observe EIT-like effects, the radiative mode and the trapped mode are coupled
with each other by placing two structures close together, as shown in Fig. 11.7c.

The circuit model of a “meta-atom” for the metamaterial is expressed by the
electrically coupled resonators, as shown in Fig. 11.5b, and the current ĩ1 in the
dipole antenna can be expressed by (11.30). As described in Sect. 11.2.3, the dipole
moment p̃ is proportional to the current ĩ1 in the dipole antenna, and the resulting
susceptibility of the metamaterial with the meta-atom density of N becomes

χ = i
ldN

ε0ω

ĩ1
ṽ

= i
ldN

2ε0ωL

iΔ + γ3

2(
iΔ + γ2

2

) (
iΔ + γ3

2

)
+

∣∣∣∣Ωc

2

∣∣∣∣
2 , (11.35)
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(a) (b) (c) (d)

H

E j1 j2 j1 j2

Fig. 11.8 a Symmetric split ring. b Radiative mode. c Trapped mode. d Asymmetric split ring.
Reprinted with permission from [18]. Copyright 2018 Springer Nature

where γ2 and γ3 can be interpreted as the dissipation in the radiative mode and the
trapped mode, respectively. As a result, the above expression is written in the same
form as the susceptibility of the atomic EIT medium given by (11.26). This fact
means that the EIT metamaterial responds to electromagnetic fields in exactly the
same way as the atomic EIT medium. It is possible to control the coupling strength
Ωc by changing the distance w between the two structures instead of changing the
intensity of the control light for the atomic EIT medium.

11.3.3.2 EIT-like Effect in Structural Symmetry-Broken Metamaterial

The sharp transparency inmetamaterialswas first demonstrated inmicrowave regions
[5, 6]. In this section, we show the operating principle for themetamaterial composed
of asymmetric split rings in [5]. As shown in Fig. 11.8a, we start with a metallic
symmetric split ring. The structure has two resonant modes, one of which is formed
by symmetric currents j1 and j2 in two arcs, as shown in Fig. 11.8b, and the other is
formed by antisymmetric currents, as shown in Fig. 11.8c. The former mode shows
electric dipole resonance, which is directly excited by the electric field E and has
a low Q factor due to the high radiation loss. It works as a radiative mode. On the
other hand, the latter mode forms loop current showing magnetic dipole resonance,
which has a high Q factor owing to the cancelation of electric dipole radiation from
two arcs. This mode cannot be excited by the incident wave and works as a trapped
mode. Owing to the symmetric structure, these two resonant modes are eigenmodes
and decoupled with each other. Hence, the meta-atoms show no EIT effect.

If the structural symmetry is broken as shown in Fig. 11.8d, the two modes in the
asymmetric split rings are coupled and the EIT effect emerges. The EIT-like effects
in such symmetry-broken structures have also been widely investigated [9, 21, 22].
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Fig. 11.9 a Structure of a tunable EIT metamaterial. b Circuit model. c Transmission spectra for
C1 = 1.91 pF,C2 = 2.33 pF (top) andC1 = C2 = 2.1 pF (bottom). Adapted with permission from
[16]. Copyrighted by the American Physical Society

11.3.3.3 Tuning of EIT-like Effects in Metamaterials

For practical applications, the tunability of EIT-like effects is quite important. The
metamaterials whose EIT properties can be controlled have been demonstrated in
various ways utilizing phase transition of superconductor [23], photo-carrier excita-
tion in semiconductor [24, 25], and so on. Here, we show a capacitance-tunable EIT
metamaterial designed for dynamic switching of an EIT-like effect [16]. Figure 11.9a
illustrates the unit cell of a meta-atom, which includes variable capacitances C1 and
C2 in two arms in the central loop structure. The structure has two resonance modes:
one formed by in-phase current i+ = i1 + i2, which works as a radiative mode, and
the other formed by anti-phase current i− = i1 − i2, which works as a trapped mode.
In the same way as the structural symmetry-broken metamaterial introduced in the
previous section, this metamaterial shows an EIT-like effect, or sharp transparency,
for asymmetric case C1 �= C2.

Precise analysis can be performed by using the circuit model as shown in
Fig. 11.9b. The inductance L ′, 2L0, and the capacitance C ′, respectively, correspond
to the inductance of the metallic structure excluding the loop structure, the loop
inductance, and the capacitance between neighboring cells. By introducing the radi-
ation loss in the radiative (trapped)mode as R (r ), the circuit equation can be obtained
as

L
d2i+
dt2

+ R
di+
dt

+ i+
C+

+ i−
ΔC

= d

dt
(2ṽ cosωt), (11.36)

L0
d2i−
dt2

+ r
di−
dt

+ i−
C−

+ i+
ΔC

= 0. (11.37)

where we define L = 2L ′ + L0 and
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1
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2C2
,

1
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= 1

2C1
+ 1

2C2
,

1

ΔC
= 1

2C1
− 1

2C2
. (11.38)

The resonant frequency for i+ is tuned to that for i−. It is confirmed that these
equations (11.36) and (11.37) are written in the same forms as (11.32) and (11.33).
Consequently, the electric susceptibility shows the EIT characteristics expressed as
(11.35), assuming a coupling strength of

|Ωc| = 1

ω
√
LL0

1

ΔC
. (11.39)

It is noted that |Ωc|, which is zero for symmetric case C1 = C2, grows larger with
increasing asymmetry. Figure11.9c shows the transmission spectra computed for
the symmetric case C1 = C2 = 2.1 pF (bottom) and the asymmetric case C1 =
1.91 pF,C2 = 2.33 pF (top). As expected, the sharp transparency unique to the EIT
effect can be observed for the asymmetric case. The dynamic tunability of the EIT
effect in this metamaterial enables us to achieve the storage of electromagnetic waves
in a similar way to the atomic EIT systems. Recently, the design of this metamaterial
has been extended to implement a true EIT effect in the sense that the transparency for
an electromagnetic wave is induced by the incidence of an auxiliary electromagnetic
wave [26], and the storage of electromagnetic waves in the metamaterial has been
demonstrated in exactly the same way as light storage in the atomic EIT medium
[27].

11.4 Conclusion

We have provided rigorous analogies between atomic systems and metamaterials,
comparing the Schrödinger equations and circuit equations derived from the cir-
cuit models of the meta-atoms. The derived susceptibilities in both systems were
written in the same expression, which means that the atomic medium and the artifi-
cial metamaterial had no difference in their response to the electromagnetic waves.
The meta-atoms with a resonant mode showed a Lorentzian absorption profile like
two-level atoms, and the meta-atoms based on coupled resonators showed a sharp
transparency unique to the EIT effect, which was found in the three-level system.
Switchable EIT metamaterials were also mentioned.

In addition to the electromagnetic wave storage introduced in Sect. 11.3.3.3, there
are various other applications of the EIT-like metamaterials. The sharp transparency
sensitive to the surrounding environment can be applied to accurate sensing [28].
It can also be used for frequency selective excitation of highly localized plasmonic
modes [29].
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Chapter 12
Dispersion Relation in Chiral Media:
Credibility of Drude–Born–Fedorov
Equations

Kikuo Cho

Abstract Dispersion relation of electromagnetic field in a chiral medium is dis-
cussed from the viewpoint of constitutive equations to be used as a partner ofMaxwell
equations. The popular form of Drude–Born–Fedorov (DBF) constitutive equations
is compared with the one which is a simplified form of the first-principles macro-
scopic constitutive equations. Both of them describe [A] the dependence of the phase
velocity of the EMwave in chiral media on the circular polarizations. However, there
arises a decisive difference in the dispersion curve in the resonant region of chiral,
left-handed character, as to [B] the ability of reproducing the linear crossing at k = 0,
which is derived from the first-principles theory. DBF equations are a phenomenol-
ogy applicable only to A but not to B.

12.1 Introduction

Symmetry plays an important role in the electromagnetic (EM) response of matter. It
is revealed in the form of susceptibilities relating electric and magnetic polarization
(P and M) with source EM field. In high-symmetry case, P and M consist of the
contributions of independent groups of excitations belonging to different irreducible
representations of the symmetry group in consideration. This allows us to treat elec-
tric andmagnetic properties ofmatter independently. However, when amedium lacks
in certain mirror symmetry, i.e., the case of chiral symmetry, some (or all the) com-
ponents of P and M belong to the same irreducible representation, so that they can
be induced by both electric and magnetic source fields. In addition, there can also be
a mixing between electric dipole (E1) and electric quadrupole (E2) transitions.

The study of chiral symmetry in the EM response of matter has a long history
(Introduction of [1]). Chiral substances have been considered as unconventional
materials for a long time, but now it attracts much attention as an important source
of newmaterials and phases, providing hot topics in the studies of metamaterials [2],
multiferroics [3], and superconductivity [4].
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In spite of its long history, theoretical description of chirality does not seem to
be standardized. In the documents of IUPAP and IUPAC dealing with the standard
definitions of physical and chemical quantities [5, 6], there is no mentioning about
the chiral susceptibilities. Correspondingly, there are two or more different forms of
phenomenological constitutive equations in use for macroscopic response. Though
the effect of chiral symmetry is expected also in microscopic responses, its first-
principles theory has been made only very recently [7, 8]. From the viewpoint that
all the different forms of EM response theories should belong to a single hierarchy
with logical ranking, one should be able to choose the most appropriate form of
the constitutive equations for the macroscopic chiral response on the basis of the
microscopic theory.

A typical effect of chirality is the difference in the phase velocity of EM waves
for right and left circular polarizations in the off-resonant long-wavelength region.
However, this is not the only aspect of our interest in discussing chirality. In fact, the
dispersion curves in the resonant region of susceptibility show a remarkable behav-
ior, by which we can select the appropriate form of phenomenological constitutive
equations.

Macroscopic EM response of matter is usually calculated by the combination of
Maxwell and constitutive equations. The standard form of the latter is

D = εE , B = μH (12.1)

with the dielectric constant (permittivity) ε and permeability μ. However, if the
medium in consideration has chiral symmetry, these constitutive equations need to
be generalized. A popular form of such an extension is

D = ε(E + β∇ × E) , (12.2)

B = μ(H + β∇ × H) , (12.3)

which is calledDrude–Born–Fedorov equations (DBF equations) [9–12]. The param-
eter (chiral admittance) β describes the chirality of the medium. This is a phe-
nomenology to be used for uniform and isotropic media. All the coefficients ε,μ,β
are treated as scalars with a possible dependence on frequency ω. In considering the
ω dependence, however, each of βε and βμ should be a single parameter, because
linear response coefficients should generally be a superposition of single pole func-
tions. The reason for treating them as scalars instead of tensors is a simplification
for parameterization.

However, this is not the only way of generalization. From the viewpoint that
the fundamental variables of EM field are E and B rather than E and H , both
electric and magnetic polarizations P and M should consist both of the E- and B-
induced components, so that the definition D = E + 4πP , H = B − 4πM leads to
the extension
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D = ε̂E + iξB , (12.4)

H = (1/μ̂)B + iηE , (12.5)

where the terms with ξ and η take care of the chirality. Here also, the parameters
ε̂, μ̂, ξ, η are scalars. For later convenience, let us call them chiral constitutive equa-
tions (ChC equations). The first-principles calculation of macroscopic constitutive
equations can be put in similar form with tensorial coefficients, as shown below.

As to the difference or similarity ofDBFandChCequations, there is a controversy.
There have been arguments in the metamaterials community that DBF and ChC
equations are essentially same [13], and also, it is argued that the former can be
derived from the latter by assuming the uniformity and isotropy of matter [1] (Sect.
4.4). But there are others finding DBF and ChC equations different. The purpose
of this article is to show that there is a clear difference between them leading to
the preference of ChC over DBF equations. In view of the fact that DBF equations
are frequently used in metamaterials studies and also in recent textbook of standard
electromagnetism [12], it will be important to clarify the difference between DBF
and ChC equations.

We first note the relation between the parameters of DBF and ChC equations. By
means of the relation

∇ × E = (iω/c)B ,∇ × H = (−iω/c)D , (12.6)

DBF equations can be rewritten as

D = εE + (iω/c)εβB , (12.7)

H = (iω/c)εβE + (1/μ)[1 − (ωβ/c)2εμ]B . (12.8)

If DBF and ChC equations are equivalent, the DBF parameters can be written in
terms of the ChC parameters by comparing (12.7) and (12.8) with (12.4) and (12.5)
as

ε̂ = ε , ξ = η = (ω/c)εβ , (1/μ̂) = (1/μ) − (ωβ/c)2ε . (12.9)

This relation will be shown later to lead to a contradiction, which disproves the
equivalence of DBF and ChC equations.

The first-principles derivation of micro- and macroscopic constitutive equations
is done in the following way [7]. We assume a general form of non-relativistic
Hamiltonian (including relativistic correction terms, such as spin–orbit interaction
and spin Zeeman term) for many particle systems in an EM field, and calculate the
microscopic current density induced by the EM field, which is in general given as
a functional of the transverse (T) part of vector potential A(T) and the longitudinal
(L) external electric field E(L)

ext . The integral kernel of the functional is the micro-
scopic susceptibility of separable form with respect to position coordinates. When
the relevant quantum mechanical states have spatial extension much less than the
wavelength of the EM field, we may apply long-wavelength approximation to the
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microscopic current density, which leads to the macroscopic constitutive equations
to be used for macroscopic Maxwell equations.

In this macroscopic scheme, we need only a single 3 × 3 tensor to relate induced
current density and source EM field, covering all the electric, magnetic, and chi-
ral polarizations of matter. This macroscopic constitutive equation is given in the
form [7]

J(k,ω) = χem(k,ω) {A(T)(k,ω) − (ic/ω)E(L)
ext (k,ω)} . (12.10)

The internal L field does not appear in the source field, since it is taken into account
as the Coulomb potential in the matter Hamiltonian. The susceptibility χem is written
in terms of the quantum mechanical transition energies and the lower moments of
the corresponding transition matrix elements of current density operator.

Using the identity J = −iωP + ick × M in Fourier representation, we can rig-
orously rewrite the constitutive equation into the form

P = χeEE + χeBB , M = χmEE + χmBB (12.11)

The four susceptibilitiesχeE,χeB,χmE,χmB are againwritten in terms of the quantum
mechanical transition energies and lower transition moments of electric dipole (E1),
electric quadrupole (E2), and magnetic dipole (M1) characters. Details are given in
Sect. 3.1 of [7]. The lowest order terms of them are

χeE = 1

ω2V

∑

ν

[
ḡν J̄0ν J̄ν0 + h̄ν J̄ν0 J̄0ν

]
,

χmB = 1

V

∑

ν

[
ḡν M̄0ν M̄ν0 + h̄ν M̄ν0M̄0ν

]
,

χeB = i

ωV

∑

ν

[
ḡν J̄0ν M̄ν0 + h̄ν J̄ν0M̄0ν

]
,

χmE = −i

ωV

∑

ν

[
ḡν M̄0ν J̄ν0 + h̄ν M̄ν0 J̄0ν

]
, (12.12)

ḡν = 1

Eν0 − �ω − i0+ − 1

Eν0
, h̄ν = 1

Eν0 + �ω + i0+ − 1

Eν0
, (12.13)

where V is the volume of the cell for periodic boundary condition to define k, and J̄0ν

and M̄0ν are the E1 and M1 transition moments, respectively, of current density and
(orbital and spin)magnetization operators between thematter eigenstates |0〉 (ground
state) and |ν〉 with transition energy Eν0 between them. (E2 moments appear in the
J̄μν terms in the next higher order.) Chiral symmetry allows the existence of the
transitions with mixed (E1 and M1) or (E1 and E2) character, leading to the O(k1)
terms in χem.

Though there appear four susceptibilities, the single susceptibility nature is intact,
since the rewriting of (12.10) into (12.11) is reversible. Combining the new form of
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constitutive equations with the definition of D and H , we obtain

D = E + 4πP = (1 + 4πχeE)E + 4πχeBB , (12.14)

H = B − 4πM = (1 − 4πχmB)B − 4πχmEE . (12.15)

If we replace the parameters of these equations as

1 + 4πχeE → ε̂ , 4πχeB → iξ , −4πχmE → iη , 1 − 4πχmB → 1

μ̂
, (12.16)

we get ChC equations. It should also be noted that the poles ofχmB, i.e., the magnetic
transition energies, are, not the poles, but the zeros of μ̂. This is due to the definition
of χmB, M = χmBB as required in the first-principles approach, in contrast to the
conventional one M = χmH . In this way, ChC equations are very close to the first-
principles theory. In contrast, such a microscopic support does not exist for DBF
equations. The scalar character of ε̂, μ̂, ξ, η is due to the approximation to neglect the
off-diagonal terms of the original tensor expressions and the assumption of isotropy
in the plane perpendicular to k.

12.2 Dispersion Equation

In order to show the difference between DBF and ChC equations, it is sufficient to
give a single example. For this purpose, we compare the dispersion relations obtained
from DBF and ChC equations.

12.2.1 Case of DBF Equations

If we solve DBF equations and (12.6) for ∇ × H and ∇ × E, we obtain

∇ × H = aH + bE , (12.17)

∇ × E = dH + eE , (12.18)

where

a = e = −εμβ/� , b = −icε/ω� , d = +icμ/ω� , (12.19)

and � = εμβ2 − c2/ω2. From (12.6)–(12.8), and ∇ · B = 0, both E and H are
transverse, so that

∇ × ∇ × E = k2E, ∇ × ∇ × H = k2H (12.20)
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for Fourier components. Then, by operating ∇× to (12.17) and (12.18), we obtain
a set of homogeneous linear equations of H, E. The condition for the existence of
non-trivial solution gives us the dispersion equation

det|k21 − A2| = 0 , (12.21)

where A is a 2 × 2 matrix with the components a, b, d, e

A =
[
a b
d e

]
. (12.22)

This dispersion equation can be rewritten as

det|k1 + A| = 0 or det|k1 − A| = 0 , (12.23)

so that the solution is
k = ±a ± √

bd , (12.24)

with all the combinations of ± being allowed, which finally leads to a compact
expression

ck

ω
= ±

√
εμ

1 ± (ωβ/c)
√

εμ
. (12.25)

This gives a dispersion curve with two branches. In homogeneous isotropic media,
the two modes correspond to right and left circular polarizations. It should be noted
that the condition for the existence of real solution is εμ ≥ 0. This means that the
left-handed medium is defined in the same way as in non-chiral medium, in contrast
to the case of ChC equations shown below.

12.2.2 Case of ChC Equations

A same way of solution is possible in this case, too. After eliminating D, B from
the ChC equations, the solution for ∇ × H, ∇ × E has a same form as the one,
where a, b, d, e of previous subsection are replaced with the following f, g, h, j ,
respectively

f = (ω/c)ξμ̂ , (12.26)

g = −i(ω/c)(ε̂ + μ̂ξη) , (12.27)

h = i(ω/c)μ̂ , (12.28)

j = (ω/c)μ̂η . (12.29)
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Further transformation of the equations of∇ × H, ∇ × E into a set of homogeneous
equations of E, H allows us to obtain the dispersion equation, as the condition for
the existence of non-trivial solution,

ck

ω
= ±1

2

[
μ̂(η + ξ) ±

√
{μ̂(η + ξ)}2 + 4ε̂μ̂

]
, (12.30)

where we take all the combinations of ±. The condition for real solutions is

{μ̂(η + ξ)}2 + 4ε̂μ̂ ≥ 0 , (12.31)

which is less restrictive than non-chiral case.

12.3 Discussions

First of all, we note that, for both DBF and ChC equations, the well-known result of
(ck/ω)2 = εμ is obtained in the absence of chirality (β = 0 and ξ = 0, η = 0). Also
both of the constitutive equations exhibit the typical behavior of chiral medium, i.e.,
the existence of the two branches with polarization-dependent refractive indices. In
the nonresonant region, both of them could be used to fit experimental results via
appropriate choice of parameter values.

12.3.1 Resonant Region of Left-Handed Chiral Medium

A decisive difference appears in resonant region. An example will be the left-handed
behavior emerging in the neighborhood of a chiral resonance with E1-M1 mixed
character. Such a case has been treated by the first-principles theory of macroscopic
constitutive equation [7] (Sects. 3.8.1 and 4.1.1). It shows a pair of dispersion curves
for left and right circularly polarized modes, which have a linear crossing at k = 0. It
will be a test for the phenomenologies whether such a linear crossing can be realized
or not by choosing parameter values.

The dispersion equation in the first-principles macroscopic formalism is

0 = det|c
2k2

ω2
1 − [

1 + 4πc

ω2
χ(T)
em (k,ω)

]| , (12.32)

where χ(T)
em (k,ω) is the T component of susceptibility tensor (Sect. 2.5 of [7]). Let

us choose a chiral form of susceptibility tensor χ(T)
em as

1 + 4πc

ω2
χ(T)
em = (εb + a′ + c′k2)1 + [ 0 ib′k

−ib′k 0
]
, (12.33)
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Fig. 12.1 Dispersion curves of a chiral left-handed medium for the model in the text. Both ordinate
and abscissa are normalized by the frequency of the pole as ω/ω0 and ck/ω0. Two horizontal lines
show the frequencies of ε = 0 and μ = 0. Reprinted by permission of Springer-Verlag GmbH, part
of Springer Nature, Springer, 1st edn. [7] Copyright 2010, and 2nd edn. [14] Copyright 2018

where the terms with a′, b′, c′ represent the contribution of a pole∼1/(ω0 − ω)with
mixed (E1,M1) character, while εb is the background dielectric constant due to all the
other resonances. We assume that the resonance with mixed E1 and M1 characters
occurs in the frequency region of εb < 0, i.e., a chiral version of left-handedmedium.
The off-diagonal elements of χ(T)

em become the diagonal elements of χ(T)
eM and χ(T)

mE
according to the rigorous rewriting process given in [7], and these diagonal elements
correspond to ξ̂ and η̂ of ChC equations.

The dispersion equation for this model is written as

(ck
ω

)2 = ε̄μ̄ ± β̄μ̄
ck

ω
, (12.34)

and its solution is given as

ck

ω
= ±1

2

[ ± β̄μ̄ +
√

β̄2μ̄2 + 4ε̄μ̄
]
, (12.35)

where we take all the combinations of ±, and

β̄ = ωb′/c , ε̄ = εb + a′ μ̄ = 1/[1 − (ω/c)2c′] . (12.36)

Noting that b′ is a chiral parameter corresponding to ξ, η of the ChC equations, we
see that this equation is the same type as (12.30), but not as (12.25). An example
of this dispersion relation is given in Fig. 12.1. The characteristic behavior of the
dispersion curves is a linear crossing at k = 0 (Fig. 4.1 of [7]).

In order to check whether the dispersion equations (12.25) and (12.30) have this
typical behavior of “linear crossing at k = 0”, we focus on the behavior of the dis-
persion equations near k = 0. Since both of the dispersion equations are given in the
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form “ck/ω = F(ω),” we only need to examine how the function F(ω) approaches
zero in each case.

The microscopic model of left-handed chiral medium given above consists of
a matter excitation level with (E1, M1) mixed character in the frequency range of
εb < 0. This means that all of χeE,χeB,χmE,χmB have a common pole (at ω = ω0),
and the background part ofχeE is largely negative in the frequency range of interest to
make εb < 0. Namely, ε̂, 1/μ̂, ξ, η of ChC equations have a common pole at ω = ω0

and ε̂ = εb + ā/(ω0 − ω). It may appear that the RHS of (12.30) becomes zero for
the frequency satisfying μ̂ = 0 or ε̂ = 0. However, as mentioned before, the zero of
μ̂ corresponds to the pole of M1 transition, which in this case is common to the pole
of ξ and η. Therefore, the zero of μ̂ is canceled in the product μ̂(ξ − η). Thus, the
only remaining possibility of zero arises from ε̂ = 0. The ω dependence of the RHS
of (12.30) near zero point can be found by rewriting it as

ck

ω
= ± 2ε̂μ̂

μ̂(ξ + η) ± √{μ̂(ξ + η)}2 + 4ε̂μ̂
. (12.37)

At the frequency satisfying ε̂ = 0, i.e., εb + a′ = 0, all of μ̂, ξ, η remain finite. While
the numerator goes to zero, one of the ± combinations in the denominator remains
finite, so that the whole expression becomes zero for this combination. This occurs
for both signs of ± in front of the whole expression. For negative εb and positive
numerator of the pole ∼1/(ω0 − ω), εb + a′ = 0 occurs at ω = ωz < ω0 and in its
neighborhood ε̂ ∼ (ω − ωz). This shows that the RHS of (12.30) behaves like∼(ω −
ωz), whichmeans the linear crossing of the two branches. Note also thatωz lies inside
the frequency range of (12.31).

Now, we check whether the same behavior is obtained for DBF equations by
assuming (12.9), from which we obtain

1

μ
= 1

μ̂
+ ξ2

ε̂
,

ω2β2

c2
εμ = 1 − μ

μ̂
. (12.38)

This shows that 1/μ has the same pole as 1/μ̂ at ω = ω0, so that the factor μ/μ̂ on
the RHS of the second equation does not have the pole at ω = ω0 via cancellation.
Therefore, there is no chance for the denominator of the RHS of (12.25) to diverge.
Hence, the only possibility of its becoming zero comes from the factor

√
εμ on the

numerator. In view of the fact that the zeros of ε,μ occur at different ω’s, e.g., at ωz1

and ωz2 (ωz1 > ωz2), the ω dependence of
√

εμ should be∼√
ωz1 − ω or∼√

ω − ωz2

in the neighborhood of the zeros. Therefore, no linear crossing is possible in the DBF
dispersion curves. The two zeros are the boundaries of the region of left-handed
behavior.

One might argue that other type of ω dependence than (12.9) could lead to the
linear crossing behavior. But one cannot freely give the ω dependence even as a
phenomenology. Linear susceptibilities should be a sum of single pole functions.
In the absence of the first-principles theory for DBF equations, it would be quite
difficult to give an appropriate model on a reliable basis.
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12.3.2 Conventionality Versus Logical Consistency

DBF equations have been popularly used in the macroscopic argument of chiral
systems, especially in the field of metamaterials research. As long as they are used
for nonresonant phenomena as a practical tool, there is not much to say against
it, except for the difficulty in assigning microscopic meaning to the parameter β.
However, the restriction to the nonresonant phenomena does not seem to be widely
recognized, to the knowledge of the present author. In fact, there are examples of its
use for resonant phenomena [15, 16]. The constitutive equations in these papers are
D = εE − iξH , B = μH + iξE. They are not quiteDBFequations but of the same
type, in the sense that they lead to the dispersion equation (ck/ω) = ±(

√
εμ ± ξ),

which is unable to reproduce the linear crossing discussed above.
From the qualitative difference of the two dispersion equations (12.25) and (12.30)

in resonant region, and from the fact that DBF equations have no support from
microscopic theory in contrast to ChC equations, it is highly recommended to use
ChC equations rather than DBF equations. As we show in this note, ChC equations
can be handled as easily asDBFequations and are consistentwith themicroscopically
derived macroscopic constitutive equation. If one dares to stay with DBF equations,
one should keep the validity limit in mind.

12.4 Conclusion

The DBF equations, popularly used as the constitutive equations of chiral media, are
shown to have a limited range of applicability; i.e., they should not be used in resonant
region, where a qualitatively erroneous result can arise. On the other hand, the ChC
equations, consistent with the first-principlesmicroscopic constitutive equations, can
be used for both resonant and nonresonant problems.
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Chapter 13
Surface Waves of Isotropic Chiral
Metamaterials

Hiroshi Miyazaki and Yoji Jimba

Abstract Phase diagrams of the surface electromagnetic waves in isotropic chiral
metamaterials in contact with either the vacuum or metal are presented over a wide
range of permittivity, permeability, and chiral parameters. Chirality is found to reduce
the localized nature of the surface wave and modify strongly the surface wave phase
diagrams. Exact analytical treatment of the chirality is presented which enables us
to determine the surface wave phase diagrams and their boundaries completely.

13.1 Introduction

Metamaterials are artificial optical structures composed of periodic optical elements
called meta-atoms whose sizes are much smaller than the relevant wavelength [1–3].
Owing to the freedom of geometrical structures and composite materials, one can
design their optical functionality over a wide range such as negative permittivity
or permeability. Metamaterials with both negative permittivity and permeability are
known to exhibit left-handedness and support the backward waves where the phase
velocity is in opposite direction to the energy flow [4]. This leads to various curious
optical responses such as negative refraction, super lens, optical cloaking, negative
Dopper effect, and negative Cerenkov effect. Backward waves can also be created by
the artificial chiral meta-atoms having no mirror symmetric optical structure [5–8].
Although natural chiral materials have already been known back to the nineteenth
centuries, their chirality is too small to support left-handedness [9, 10]. However,
the concept of meta-atoms enables us to create metamaterials having huge values of
chirality. Chiral metamaterials allow much easy realization of negative refraction as
they require no negative permittivity and permeability. In addition, it can draw out
much fascinating proposals such as chiral vacuum and circular beam splitters [11].
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In spite of these intriguing proposals, there arouses soaring technological diffi-
culty of dimensionality. While tremendous efforts have still been devoted to create
three-dimensionalmetamaterials by using sophisticatedmodern technology, growing
interest has recently been provoked, instead, to the two-dimensional metamaterials
called meta-surfaces because of their feasibility of fabrication [12]. To utilize the
optical functionality of meta-surfaces, it is indispensable to study the electromag-
netic waves localized at the meta-surfaces which are natural extensions of famous
surface plasmons studied years ago by Sommerfeld [13] and Richie [14]. Shadrivov
et al. [15] and later Kats et al. [16] have pointed out that the backward surface waves
can be realized at the interfaces between the positive and negative index metamate-
rials. Jin et al. have studied the existence of surface polaritons on the surface of a
half-space of chiral metamaterials [17]. They pointed out that the surface polaritons
can exist for sufficiently large values of chiral parameter. In this paper, we report
the results of the detailed investigation of surface waves on the chiral metamaterials’
surfaces [18]. Phase diagrams are presented for the existence of the surface waves
over a wide range of parameters. Perturbative treatment of the chirality is presented
and is shown to have certain limitations even for much smaller values of chirality.
This difficulty leads us to develop the exact analytical treatment of the chirality,
which enables us to give a thorough description of the phase diagrams.

13.2 Models and Formulations

Characteristic feature of the chiral media is the simultaneous excitation of the electric
and magnetic polarizations due to the applied fields. This is best described by the
constitutive relations:

D(r) = εε0E(r) + i κ
√

ε0μ0H(r), B(r) = μμ0H(r) − iκ
√

ε0μ0E(r), (13.1)

where κ is the chirality parameter, and ε and μ are the relative permittivity and
permeability of the chiral medium. We assume positive values of κ for simplicity
of discussion. Let us briefly describe the electromagnetic waves in a uniform chiral
medium. We combine (13.1) with the Maxwell equations and assume the time and
spatial dependence of electromagnetic fields as exp(i k · r − i ω t). This leads to the
following equations for the amplitudes of the electromagnetic fields:

H = iκ

μZ0
E + k × E

ωμμ0
, D = ε0

(
ε − κ2

μ

)
E + iκ

ωμZ0
k × E, (13.2)

where Z0 is the vacuum impedance. By assuming k = (0, k, 0), we obtain the
expression for k as

k = k± = √
ε0μ0ω

(√
εμ ± κ

)
, (13.3)
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and the following relations:

Ex = ±i Ez, Hx =
√

εμ

μZ0
Ez, Ey = Hy = 0, Hz = ∓i

√
εμ

μZ0
Ez . (13.4)

Here, we assume positive value of
√

εμ for ε < 0 and μ < 0, and + and − ,
respectively, represent the right- and left-rotating waves. Since the Poynting vector
has positive y-component for ε > 0 and μ > 0, the left-rotating wave becomes
the backward wave for κ >

√
εμ because of the negative value of k−. In the chiral

medium, therefore, the backward wave can exist without assuming simultaneous
negative values of ε and μ.

Let us formulate the surface electromagnetic waves between two semi-infinite
chiral media. We assume that the chiral medium with

(
ε j , μ j , κ j

)
occupies the

region x < 0 for j = 1 and x > 0 for j = 2. The surface wave is assumed to
localize near the yz plane and propagates along the y-direction with the propagation
constant β. Since the uniform chiral medium has right- and left-rotating waves, the
surface wave can be expressed as:

E1 = E1+ exp
(
k1+x x + iβy

) + E1− exp
(
k1−x x + iβ y

) : x < 0,

E2 = E2+ exp
(−k2+x x + iβy

) + E2− exp
(−k2−x x + iβ y

) : x > 0, (13.5)

where k j±
x =

√
β2 − (

k j±)2
, and k j± is given by k j± = √

ε0μ0ω
(√

ε jμ j ± κ j
)
.

From the localization condition, we have Re
(
k j±
x

)
> 0. By substituting (13.5)

into the Maxwell equations, we obtain the relations between each component of the
surface waves as

E j±
x = ±i β

k j± E j±
z , E j±

y = ±(−1) j
k j±
x

k j± E j±
z , H j±

x =
√

ε jμ jβ

Z0μ j k j± E j±
z ,

H j±
y = (−1) j−1

√
ε jμ j

Z0μ j

i k j±
x

k j± E j±
z , H j±

z = ∓ i
√

ε jμ j

Z0μ j
E j±
z . (13.6)

It is straightforward to derive the following eigenvalue equation from the continuity
condition of the tangential components of surface waves at the interface:

(1 + Zr )
2
(
Q1+ + Q2+)(

Q1− + Q2−) = (1 − Zr )
2
(
Q1+ − Q2−)(

Q1− − Q2+)
,

(13.7)

where Zr = μ2
√

ε1μ1
/
μ1

√
ε2μ2 and Q j± is defined as

P j± ≡ k j±
x

β
, α j± ≡ √

ε jμ j ± κ j Q j± ≡ P j±

α j± . (13.8)
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Hereafter, we will use the dimensionless parameter ω = ω
√

ε0μ0/β instead of
ω.

13.3 Numerical Results

The phase diagram of surface waves can be obtained by solving (13.7) for ω which
satisfies the condition Re

(
P j±)

> 0. It is easy to show from (13.7) that the phase
diagram satisfies the following scaling rule: ε j → a ·ε j ,μ j → b·μ j , κ j → √

a b·κ j ,

ω → ω
/√

ab with a ·b > 0. In this paper, we will mainly study the phase diagrams

where medium I is non-chiral. For such occasions, the scaling rule allows us to treat
only two cases; that is, the chiral medium I is either the vacuum or lossless metal
having ε1 = −1, μ1 = 1.

As a preliminary, we explain the phase diagrams for non-chiral medium II in
contact with the vacuum or lossless metal shown in Fig. 13.1a and b, respectively.
Here, the horizontal and vertical axes represent ε2 and μ2 of the medium II. In what
follows, we will use the notations ε and μ instead of ε2 and μ2 except the cases
to be notified. The black and light gray regions indicate the surface wave regions
with the positive and negative energy flow along the y direction, respectively. No
surface wave is allowed for the white regions. Since we assume β to be positive, the
black and light gray regions mean, respectively, the right-handed (forward wave) and
left-handed (backward wave) regions. These regions are separated by the boundaries

Fig. 13.1 Phase diagrams of surfacewaves for non-chiralmetamaterial in contactwith a the vacuum
and b lossless metal with ε1 = −1, μ1 = 1, and κ1 = 1. Black and light gray regions, respectively,
indicate the right-handed and left-handed surface wave regions. No surface waves are allowed for
the white regions
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ε μ = 1 in Fig. 13.1a and ε + μ = 0 in Fig. 13.1b. There are no surface wave when
ε and μ have the same sign with those in the medium I.

These phase diagrams can be explained from (13.7). For non-chiral medium II in
contact with the vacuum, (13.7) is simplified as:

P

ε
+ P0 = 0: T M,

P

μ
+ P0 = 0: T E, (13.9)

where P0 =
√
1 − ω2 and P =

√
1 − εμω2. TM and TE represent, respectively, the

transverse magnetic and electric fields. By solving (13.9) for ω, we obtain

ω2 = ε2 − 1

ε(ε − μ)
: T M, ω2 = μ2 − 1

μ(μ − ε)
: T E, (13.10)

provided that ε < 0 for TM,μ < 0 for TE, and the following conditions are satisfied:

1 > ω2 > 0, 1 > εμω2. (13.11)

Since ω means the surface wave velocity normalized by the vacuum light velocity,
conditions (13.11) mean that the surface wave can only exist when its velocity is
smaller than the velocities of the bulk electromagnetic waves in the surrounding
media. As for the phase boundaries, it is easy to see that the condition ω2 > 0
gives rise to the phase boundaries ε = −1, μ = −1, while the boundary εμ = 1
between left-handed and right-handed regions stems from the vanishing damping
factor P0 = P = 0.

When the non-chiralmedium is in contactwith losslessmetal, the TEpart of (13.9)
and the definition of P remain unchanged while P0 is replaced by P0 =

√
1 + ω2

and the TM part of (13.8) changes as P
/
ε − P0 = 0. Correspondingly, ω2 is given

as

ω2 = 1 − ε2

ε(ε + μ)
: T M, ω2 = 1 − μ2

μ(μ + ε)
: T E, (13.12)

provided that ε > 0 for TM and μ < 0 for TE. Since there is no bulk wave in
lossless metal, the condition 1 > ω2 drops out in (13.11). These conditions lead
to the phase diagram shown in Fig. 13.1b. Here, all the boundaries result from the
condition ω2 > 0 in contrast to the case in Fig. 13.1a.

Let us study the surface waves of chiral medium in contact with the vacuum.
Figure 13.2a–d shows the phase diagrams for κ = 0.2, 0.5, 1.0, 1.5 in medium
II. As is seen, the chirality brings about the gap between the left-handed and right-
handed regions. With the increase of κ , the left-handed region moves away from
the origin with the simultaneous shrinkage. This shrinkage is also observed for the
right-handed regions in the third quadrant which approach to the origin and finally
vanish at κ = 1. On the other hand, the right-handed regions in the second and fourth
quadrants become wide with the increase of κ . It is interesting to observe that there
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Fig. 13.2 Phase diagrams of surface waves for chiral metamaterial in contact with the vacuum.
Chiral parameters κ are taken as a 0.2, b 0.5, c 1.0, and d 1.5. Black and light gray regions,
respectively, represent the right-handed and left-handed surface wave states

appear the right-handed regions in the first quadrant when κ exceeds unity. With
further increase of κ , these regions leave the origin.

Detailed numerical calculation shows that the energy flow in the vacuum layer is
in the positive y direction irrespective of the values of κ; that is, the energy flow is
right-handed. In contrast, the energy flow is always left-handed in the chiral medium
in the second, third, and fourth quadrants. The handedness of the surface wave is
determined by the sum of these energy flows. The negative flow in the chiral medium
is the strongest for ε μ > 1 in the third quadrant. This negative flow overcomes the
positive flow in the vacuum layer and results in the left-handed surface waves. In
the second or fourth quadrants, the negative flow is the strongest near ε = −1 or
μ = −1 and decreases rapidly for larger negative ε or μ. In contrast to the third
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quadrant, however, the positive flow in the vacuum layer surpasses the negative flow
in the chiral medium and results in the right-handed surface waves. The situation in
the first quadrant for κ � 1 is complicated. The energy flow in the vacuum layer
is always positive while that in the chiral medium shows both direction depending
on the values of ε and μ. It is positive for small values of ε or μ, but is negative for
larger values of ε and μ. The sum of the energy flow is positive as a whole.

In Fig. 13.3a–d, we show the phase diagrams for κ = 0.2, 0.5, 1.0, 1.5 when the
chiral medium is in contact with lossless metal of ε1 = −1, μ1 = 1. For all values
of κ , the surface waves are right-handed or left-handed for ε + μ > 0 or ε + μ < 0,
respectively. With the increase of κ , the surface wave regions in the first and third
quadrants shrink and move away from the origin, while that in the fourth quadrant

Fig. 13.3 Phase diagrams of surface waves for chiral metamaterial in contact with lossless metal
with ε1 = −1, μ1 = 1, and κ1 = 1. Chiral parameters κ are chosen as a 0.2, b 0.5, c 1.0, and d 1.5.
Black and light gray regions, respectively, indicate the right-handed and left-handed surface wave
states
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become expanded and tend to occupy the whole area of the quadrant. There is no
surfacewaves in the second quadrant irrespective of the values of κ . The energy flows
in lossless metal and chiral medium are found to be almost in reverse direction. The
flow in the chiral medium is right-handed or left-handed for the first or third quadrant,
respectively. In the region ε + μ > 0 in the fourth quadrant, it is right-handed near
the origin and becomes left-handed away from the origin. The flow for ε + μ < 0 in
the fourth quadrant is in completely reverse direction to that for ε + μ > 0.

Let us study the effect of the chirality of medium I. Figure 13.4a–d shows the
phase diagrams when the medium I has the parameters ε1 = 1, μ1 = 1, κ1 = 0.5.
Corresponding values of chiral parameter κ2 are chosen as κ2 = 0.2, 0.5, 1.2, 2.0.
Compared to the cases of the vacuum, we observe for κ2 = 0.2 that the right-handed

Fig. 13.4 Phase diagrams of surface waves at the interface between two semi-infinite chiral meta-
materials. Upper chiral metamaterial layer has the fixed parameters ε1 = 1, μ1 = 1, and κ1 = 0.5.
Chiral parameters κ2 for lower metamaterial layer are taken as a 0.2, b 0.5, c 1.2, and d 2.0. Black
and light gray regions, respectively, indicate the right-handed and left-handed surface wave regions
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regions decrease drastically in the second and fourth quadrants while the left-handed
regions remain almost unchanged. With the increase of κ2, the right-handed regions
gradually shift to the upper right direction and pass the origin at κ2 = 0.5. With
further increase of κ2, the central part near the origin becomes expanded and split
as shown in Fig. 13.4c. For κ2 = 2.0 in Fig. 13.4d, the lower boundary in the first
quadrantmoves back to the originwhile the upper boundary shifts further to the upper
right direction. In contrast, the introduction of chirality in lossless metal exhibits no
such drastic change of the phase diagrams. In general, the effect of chirality brings
about the non-local term∇×E to the electric displacementD. This non-locality tends
to weaken the localized nature of the surface waves and results in the shrinkage of
the surface wave regions. However, the effect of chirality is no simple as we observe
the re-entrant appearance of the surface states when the medium I has the chirality as
shown in Fig. 13.4. In the next section, we will discuss the effect of chirality based
on (13.7).

13.4 Perturbative Treatment of Chirality

Let us first discuss the effect of chirality from the perturbative point of view. For
simplicity of discussion, we assume no chirality for medium I. When the medium I
is the vacuum, α1± = 1 and Q1± = P1± = P0 =

√
1 − ω2. Substitution of these

expressions into (13.7) yields the following equation:

F(ε, μ, κ, ω) = Q+Q− + P2
0 + (ε + μ)

2
√

εμ
P0

(
Q+ + Q−) = 0, (13.13)

where we denote Q2± as Q±. Since this equation is even in κ , we expand F to second
order in κ:

F(ε, μ, κ, ω) ∼= F0(ε, μ, ω) + κ2F2(ε, μ, ω), (13.14)

where F0 and F2 are given as

F0(ε, μ, ω) = [
1 + εμ − 2εμω2 + (ε + μ)R(ε, μ, ω)

]
/(εμ),

F2(ε, μ, ω) = 1

2

2
(
1 − εμω2

)(
1 − 3εμω2

) + (ε + μ)
(
2 − 3εμω2

)
R(ε, μ, ω)

ε2μ2
(
1 − εμω2

)2 .

(13.15)

Here, R is given by R(ε, μ, ω) =
√(

1 − ω2
) (
1 − εμω2

)
. By solving F0(ε, μ, ω) =

0 for ω, we obtain the solutions (13.10). Denoting these non-chiral solutions as ω0,
we expand F0 to first order in�ω = ω−ω0 whileω in F2 is replaced byω0. From the
expansion, we obtain the perturbative solution for �ω. By using the approximation
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formula ω2 = (ω0 + �ω)2 ∼= ω2
0 + 2ω0�ω, we have the following perturbative

expressions for ω:

ω2
T M = ε2 − 1

ε(ε − μ)
−

(
3ε2 − 1

)
κ2

(εμ − 1)(ε − μ)ε3
, ω2

T E = μ2 − 1

μ(μ − ε)
−

(
3μ2 − 1

)
κ2

(εμ − 1)(μ − ε)μ3
.

(13.16)

These results are valid in the third quadrant while the expressions for ωT M and ωT E

are also valid in the second and fourth quadrants, respectively. When the medium I
is lossless metal, we have to replace (ε + μ) in (13.13) by (μ − ε). In addition, P0
should read P0 =

√
1 + ω2. Similar procedure leads to the following expressions

for ω:

ω2
T M = 1 − ε2

ε(ε + μ)
+

(
3ε2 − 1

)
κ2

(εμ + 1)(ε + μ)ε3
, ω2

T E = 1 − μ2

μ(ε + μ)
+

(
3μ2 − 1

)
κ2

(εμ + 1)(μ + ε)μ3
.

(13.17)

Notice that the expression for ωT M is valid for the first and fourth quadrants while
that for ωT E is valid for the third and fourth quadrants.

By using the condition (13.11) for ω in (13.16) or (13.17), we obtain the phase
diagram for the chiral medium in contact with the vacuum or lossless metal as shown
in Fig. 13.5a or b, respectively. The chiral parameter κ is chosen as κ = 0.2. The
black and light gray regions indicate the TMandTE surfacewaves, respectively (note
the difference of the definition of color regions in, e.g., Fig. 13.1). By comparing
Fig. 13.5a with the exact phase diagram in Fig. 13.2a, we observe that the effect of

Fig. 13.5 Phase diagrams of surface waves of chiral metamaterials in contact with a the vacuum
and b lossless metal obtained from the perturbative treatment of the chirality. Chiral parameter is
taken as κ = 0.2. Black and light gray regions, respectively, represent the TM and TE surface wave
modes. Note the overlap regions of TM and TE modes in (b)
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chirality is well reproduced near the boundaries ε = −1 or μ = −1. However, the
gap region between the right-handed and left-handed waves around εμ = 1 in the
third quadrant shows strange behavior.Althoughwe observe the opening of gap, there
appear peculiar unphysical surface modes within the gap region. This is also the case
of lossless metal in Fig. 13.5b where there appear unphysical surface waves near the
axes and ε μ = −1 in the fourth quadrant. These unphysical solutions originate from
the divergent factors in the denominators of the second terms in (13.16) and (13.17).
Thus, although the perturbation theory of the chirality provides certain guidelines, it
breaks down in some regions. These observations drive us to seek for more powerful
treatment of the chirality as shown in the next section.

13.5 Analytical Treatment of Chirality

By analyzing (13.7), we found the exact treatment of the phase diagrams when the
medium I is non-chiral. We will first show the results for the chiral medium in
contact with the vacuum. When medium I is the vacuum, (13.7) becomes (13.13).
Let us rewrite (13.13) in a form:

Q+Q− + P2
0 = − (ε + μ)

2
√

εμ
P0

(
Q+ + Q−)

, (13.18)

and square both sides. Then, we obtain the following equation for ω:

Q+2Q−2 − (ε + μ)2

4εμ
P2
0

(
Q+2 + Q−2) + P4

0 = (ε − μ)2

2εμ
P2
0 Q

+Q−. (13.19)

Since Q+ and Q− have square roots, we can remove themby further taking the square
of both sides. By appropriately arranging various terms, we arrive at the following
quadratic equation for � ≡ ω2:

a(ε, μ, κ)�2 + b(ε, μ, κ)� + c(ε, μ, κ) = 0, (13.20)

where a(ε, μ, κ), b(ε, μ, κ), and c(ε, μ, κ) are, respectively, given as:

a(ε, μ, κ) = −εμ(ε − μ)2
[(

εμ − κ2
)2 − (ε + κ)(μ + κ)

]
[(

εμ − κ2
)2 − (ε − κ)(μ − κ)

]
,

b(ε, μ, κ) = εμ(ε − μ)2{(
εμ − κ2

)4 −
(
εμ + κ2

) [(
εμ − κ2

)2 + εμ + κ2 − 1

]
− 2κ2

(
ε2 + μ2

)}
,
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c(ε, μ, κ) = εμ
[
(ε + 1)(μ + 1) − κ2

] [
(ε − 1)(μ − 1) − κ2

]
[
εμ(εμ − 1)2 − εμκ2

(
2εμ − κ2

)
− κ2

(
ε2 + μ2

)]
. (13.21)

Although these expressions seem complicated, we found it straightforward to derive
the analytical results from the elementary considerations. First of all, all the functions
a(ε, μ, κ), b(ε, μ, κ), and c(ε, μ, κ) are invariant for the exchange of ε and μ.
Therefore, the phase diagram should be mirror symmetric with respect to the line
ε = μ. It is obvious that the solution � ≡ ω2 of (13.20) can be regarded as a surface
wave only if the following four conditions are satisfied: (a) � should be real, (b)
� should further be positive and gives positive values to P0 and P±, (c) � should
satisfy (13.18), and (d) � should further satisfy (13.19). The latter two conditions
stem from squaring both sides. Now, the condition (a) is easily obtained from the
following expression for the discriminant of (13.20):

D = ε2μ2
(
ε2 − μ2

)2(
εμ − κ2

)2[
εμ − (κ + 1)2

]3[
εμ − (κ − 1)2

]3
. (13.22)

Therefore, the condition (a) becomes

[
εμ − (κ + 1)2

][
εμ − (κ − 1)2

] ≥ 0. (13.23)

Let us discuss the conditions (b), (c), and (d) in the first and third quadrants. The
condition (b) turns out to be the following existence conditions of the solutions �+
and�− of (13.20) which automatically include (13.23). The positive solution�+ can
satisfy the condition (b) only when c(ε, μ, κ) � 0 or the following three conditions
should simultaneously be satisfied:

√
εμ + κ ≤ 1,

[
(ε + 1)(μ + 1) − κ2

][
(ε − 1)(μ − 1) − κ2

] ≤ 0,

εμ(εμ − 1)2 − εμκ2
(
2εμ − κ2

) − κ2
(
ε2 + μ2

) ≤ 0 (13.24)

Equation (13.24) also represents the condition for the negative solution�− satisfying
(b). The condition (c) is shown to be κ � √

εμ and κ + √
εμ � 1 for the first

quadrant. As for the third quadrant, it is (1) κ � √
εμ and κ + √

εμ � 1 or (2)√
εμ � κ . These conditions cover the region near the origin of the third quadrant for

κ � 1
/
2 while they further include the region near the origin in the first quadrant

and the exterior region of the third quadrant for κ � 1
/
2. The condition (d) turns out

to impose the restriction ε μ � κ2 on the condition (13.24) for �−. As for �+, the
condition (d) gives two regions: [1] f (ε, μ, κ) � 0, εμ � κ2, and εμ � (κ + 1)2,
[2] (1) εμ � κ2, εμ � (1 − κ)2, and 0 � κ � 1 or (2) f (ε, μ, κ) � 0,
εμ � (1 − κ)2, and κ � 1. Here, f (ε, μ, κ) is defined as:

f (ε, μ, κ) = εμ
(
εμ − κ2

)4 − 2εμ
(
εμ + κ2

)(
εμ − κ2

)2 + (
ε3 − κ2μ

)(
μ3 − κ2ε

)
.

(13.25)
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In the case of the second and fourth quadrants, it is easy to show from εμ � 0
that (13.23) is automatically satisfied. The condition (b) is given by (1) c(ε, μ, κ) �
0, or (2) a(ε, μ, κ) � 0, b(ε, μ, κ) � 0, c(ε, μ, κ) � 0, and

(
εμ − κ2

)2 �
εμ + κ2. These conditions can further be simplified as (ε + 1)(μ + 1) � κ2 or
(ε − 1)(μ − 1) � κ2. The conditions (c) and (d) turn out to be simple: ε + μ � 0
for �+ and ε + μ � 0 for �−.

Now, we discuss the case of chiral medium in contact with lossless metal. In this
case, (13.18) is replaced by

Q+Q− − P2
0 = (ε − μ)

2
√

εμ
P0

(
Q+ + Q−)

, (13.26)

We square both sides and arrive at the following equation for ω:

Q+2Q−2 − (ε − μ)2

4εμ
P2
0

(
Q+2 + Q−2

) + P4
0 = (ε + μ)2

2εμ
P2
0 Q

+Q−. (13.27)

We take the square of both sides further, and obtain again the following quadratic
equation for � ≡ ω2:

a′(ε, μ, κ)�2 + b′(ε, μ, κ)� + c′(ε, μ, κ) = 0, (13.28)

where a(ε, μ, κ), b′(ε, μ, κ), and c′(ε, μ, κ) are, respectively, given as:

a′(ε, μ, κ) = εμ(ε + μ)2
[(

εμ − κ2
)4 + 2

(
εμ + κ2

)(
εμ − κ2

)2 +
(
ε2 + κ2

)(
μ2 + κ2

)]
,

b′(ε, μ, κ) = εμ(ε + μ)2{(
εμ − κ2

)4 +
(
εμ + κ2

)[(
εμ − κ2

)2 − εμ − κ2 − 1

]
+ 2κ2

(
ε2 + μ2

)}
,

c′(ε, μ, κ) = εμ
[
(ε − 1)(μ + 1) − κ2

][
(ε + 1)(μ − 1) − κ2

]
[
εμ

(
εμ − κ2 + 1

)2 − κ2(ε − μ)2
]
. (13.29)

As in the case of the vacuum, we found it straightforward to derive the analytical
results by the elementary considerations. For this case, all the functions a′(ε, μ, κ),
b′(ε, μ, κ), and c′(ε, μ, κ) are invariant against the exchange of (ε, μ) → (−μ,−ε).
Therefore, the phase diagram should be mirror symmetric with respect to the line
ε+μ = 0. The condition (a) for the real solution is given by the following expression
for the discriminant of (13.28):

D = ε2μ2
(
ε2 − μ2

)2(
εμ − κ2

)2[
ε2μ2 − 2εμκ2 + 2εμ + (

κ2 + 1
)2]3

> 0.

(13.30)
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It is easy to show that this condition is automatically satisfied for all values of ε, μ,
and κ . Therefore, we have only to concentrate on the remaining three conditions: (b)
the solutions should be positive and give the positive values to P±, (c) the solutions
should satisfy (13.26), and (d) they should also satisfy (13.27).

Let us again start with the first and third quadrants. The condition (b) for the
existence of both solutions �+ and �− turns out to be (ε + 1)(μ − 1) � κ2,
(ε − 1)(μ + 1) � κ2, and εμ

(
εμ − κ2 + 1

)2 � κ2(ε − μ)2 for κ � 1 while
the case of κ � 1 needs additional condition εμ � κ2 − 1 to the above conditions.
These conditions stem from the requirement c′(ε, μ, κ) ≥ 0 and b′(ε, μ, κ) � 0.
The solutions �+ have the additional existence region satisfying c′(ε, μ, κ) ≤ 0.
Under these conditions, the solutions �+ satisfy (13.26) for (1)

√
εμ � κ and

(ε − μ)g(ε, μ, κ) � 0 or (2)
√

εμ � κ and ε � μ. Here, g(ε, μ, κ) is given by

g(ε, μ, κ) =
[(

εμ − κ2
)2 + (ε + κ)(μ + κ)

][(
εμ − κ2

)2 + (ε − κ)(μ − κ)
]
.

(13.31)

They also satisfy (13.27) for
(
εμ − κ2

)
h(ε, μ, κ) � 0 where h (ε, μ, κ) is given as

h (ε, μ, κ) = εμ
(
εμ − κ2

)4 + (
ε3 − κ2μ

)(
μ3 − κ2ε

) + 2εμ
(
εμ + κ2

)(
εμ − κ2

)2
(13.32)

As for the solutions �−, (13.26) and (13.27) are satisfied, respectively, for
ε � μ and εμ � κ2. The conditions for the second and fourth quadrants
are simple. The condition (b) turns out to be c′(ε, μ, κ) ≥ 0, or equivalently,[
(ε + 1)(μ − 1) − κ2

] [
(ε − 1)(μ + 1) − κ2

]
� 0. Equation (13.26) can only be

satisfied by the negative solutions �− and is written as ε � μ. Equation (13.27) is
satisfied for all the regions of second and fourth quadrants.

Figure 13.6a and b shows the phase diagrams obtained analytically for chiral
medium in contact with the vacuum for κ = 0.5 and κ = 1.5, respectively, while
Fig. 13.6c is the phase diagram for chiral medium in contact with lossless metal for
κ = 0.5. Let us first discuss the case of κ = 0.5 in Fig. 13.6a. For this value of κ ,
the first quadrant is excluded because of the condition (c). The black, light gray, and
dark gray regions in the third quadrant together show the existence regions of the
solutions�+ and�−. All these regions in the third quadrant satisfy the condition (c).
The regions satisfying the additional condition (d) for �+ and �− are, respectively,
indicated by the black and light gray regions. Therefore, these two regions near and
away from the origin are the surface wave regions. The boundaries for these regions
near the origin are given by (ε + 1)(μ + 1) = κ2 and εμ = (κ − 1)2, while those
away from the origin are given by (ε + 1)(μ + 1) = κ2 and f (ε, μ, κ) = 0. The
existence regions of the solutions �+ and �− in the second and fourth quadrants are
indicated by the sum of the black, light gray, and dark gray regions. The regions for
�+ and �− which satisfy the additional conditions (c) and (d) are indicated by light
gray and black below and above the line ε + μ = 0, respectively. Thus, these two
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Fig. 13.6 Phase diagrams of surface waves of chiral metamaterials derived from the analytical
treatment of the chirality. Metamaterial with a κ = 0.5 and b κ = 1.5 is in contact with the
vacuum. In c metamaterial with κ = 0.5 is in contact with lossless metal. Meaning of each region
is given in the text

regions in the second and fourth quadrant are the regions of surface waves. Their
boundaries are given by the axes and (ε + 1)(μ + 1) = κ2.

Let us deal with the case of the first and third quadrants for κ = 1.5 in Fig. 13.6b.
The condition (c) allows for the region

√
εμ � κ in the first quadrant while it gives

the region
√

εμ � κ in the third quadrant. The dark gray and black regions show the
existence regions of the solutions �+. There is no allowed region for the solutions
�− in these two quadrants. The regions satisfying the additional condition (d) for�+
are painted by black near the origin in the first quadrant and away from the origin in
the third quadrant. These are the regions for the surface waves. They are surrounded
by the boundaries (ε + 1)(μ + 1) = κ2 and f (ε, μ, κ) = 0. As for the second and
fourth quadrants, the whole regions allow for the solutions �+ and �− as shown
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by the black, light gray, and dark gray. The regions for �+ and �− which satisfy
the additional conditions (c) and (d) are the same as in the case of κ = 0.5. Thus,
the light gray and black regions in the second and fourth quadrant are the regions of
surface waves which is surrounded by the axes and (ε + 1)(μ + 1) = κ2.

As is noticed below (13.29), the phase diagram for chiral medium in contact with
lossless metal is mirror symmetric with respect to the line ε +μ = 0. We utilize this
symmetry in Fig. 13.6c and use the first and third quadrants to show the existence
regions of the solutions�+ and�−, respectively. The dark gray and black regions in
the first quadrant show the existence regions of the solutions �+, while the dark and
light gray regions in the third quadrant show those for the solutions �−. Additional
conditions (c) and (d) are satisfied for black and light gray regions by �+ and �− in
the respective quadrant. These black and light gray areas are the existence regions
of surface waves. We can see that the surface wave region is almost occupied by the
�+ solutions with a tiny region of�− solutions. The correct phase diagrams in these
quadrants are obtained by combining the black and light gray regions in the first
and third quadrants according to the mirror symmetry. In a similar way, the existence
regions for the solutions in the second and fourth quadrants are given by the dark gray
and black areas in Fig. 13.6c. Additional conditions (c) and (d) exclude the second
quadrant and allow the black region as surface wave region. All the boundaries are
given (ε − 1)(μ + 1) = κ2 and h(ε, μ, κ) = 0. Thus, the analytical solutions exactly
reproduce the surface wave regions numerically obtained in Fig. 13.3.

13.6 Summary

Wehave studied the phase diagrams of the surface electromagneticwaves for systems
composed mainly of the chiral medium in contact with either the vacuum or lossless
metal. Numerical simulations were carried out to obtain the phase diagrams of the
surface states for various parameters. It turns out that the introduction of the chirality
generally reduces the surface wave regions because of its non-local nature. For suffi-
ciently large values of chirality, however, there appear new surface states in the first
quadrant. The perturbative treatment of the chirality is presented to analyze the phase
diagrams, which turns out to be insufficient because of the divergent terms. More
powerful analysis of the phase diagrams is developed based on the exact treatment
of the chirality. This enables us to identify all the boundaries of the phase diagrams.
Further extension of the exact treatment to the surface waves of bianisotropic chiral
metamaterials will be presented elsewhere.
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Chapter 14
Magnetochiral Metamolecules
for Microwaves

Satoshi Tomita, Kei Sawada, Hiroyuki Kurosawa and Tetsuya Ueda

Abstract This chapter overviews magnetochiral (MCh) effects for the X -band
microwaves by a single metamolecule consisting of a copper chiral structure and
a ferrite rod. The directional birefringence due to the MCh effects is induced at the
resonant optical activity frequencies by applying a weak DC magnetic field of 1 mT
and increased with the magnetic field. The nonreciprocal differences in refractive
indices by the MCh effects are evaluated to be 10−3 at 200 mT, which is much larger
than that observed in natural chiral molecules at the visible frequencies. Moreover,
the enhanced MCh effects can be obtained at ferromagnetic resonance frequencies
by the ferrite rod in the metamolecule. The present study paves the way toward the
realization of synthetic gauge fields for electromagnetic waves and the emergence
of meta material-science using microwave metamaterials. Furthermore, higher fre-
quencies including the visible region are accessible by our concept, in which an
interaction between magnetism and chirality in the metamaterials is realized without
intrinsic electronic interactions.
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14.1 Introduction

Symmetry breaking is a key in electromagnetic response of matter [1]. Let us sup-
pose an optical activity, in which the polarization plane of a linearly polarized elec-
tromagnetic wave gradually rotates as it passes through a medium. The break in
space-inversion symmetry in chiral structures like sugars, amino-acids, and proteins
causes reciprocal structural optical activity, referred to as natural optical activity
[2, 3]. Broken time-reversal symmetry in magnetized materials, on the other hand,
leads to nonreciprocal magnetic optical activity; that is to say, magneto-optical (MO)
effects.Whenboth symmetries are simultaneously broken, in otherwords,MOeffects
and natural optical activities are combined within a material; electromagnetic waves
experience the directional birefringence independent of polarizations, namely the
magnetochiral (MCh) effect [4–7]. The MCh effect is promising for new functional
optical elements such as a nonreciprocal “one-waymirror”, and also verymuch inter-
ested in terms of homochirality [8] that is a big question in biology and biochemistry.
The effect is, however, very small owing to weak coupling between magnetism and
chirality in natural materials even under strong magnetic fields [9–12]. For example,
the MCh effects in the visible region by optically active molecular liquids highlight
directional variations in refractive indices to be 10−8 at 5 T [13] and 10−10 at 100 mT
[14]. Therefore, it becomes important and interesting to enhance the MCh coupling
using artificial structures [15, 16].

Metamaterials are artificially structured materials, which are composed of unit
cells much smaller than the wavelength of electromagnetic waves and designed to
interact with and control electromagnetic waves [17]. An important feature of meta-
materials is an independent control of electric and magnetic responses that gives rise
to interesting phenomena, for example, a negative index of refraction [17] and invis-
ible cloak [18]. Such phenomena are realized by tuning independently the electric
permittivity (ε) and magnetic permeability (μ). This independent control is traced
back to the absence of an intrinsic electronic interaction between ε and μ in man-
made structures. Even without the interaction, electromagnetic waves “regard” ε

and μ combined together as a fictitious interaction: a refractive index n = √
ε
√

μ

and wave impedance η = √
μμ0/εε0, where ε0 and μ0 are, respectively, the electric

permittivity and magnetic permeability of vacuum.
In this chapter, we demonstrate a fictitious interaction between magnetism and

chirality as the MCh effect. Most studies on directional birefringence [9, 13, 14,
19–23] have been devoted so far to realizing and enhancing intrinsic electronic inter-
actions such as magneto-electric resonances. However, we reveal that theMCh effect
occurs in the artificial structure—metamolecule—without using such intrinsic elec-
tronic interactions. A large MCh effect by the single metamolecule consisting of
a ferrite rod—magnetic meta-atom—and a metallic chiral structure—chiral meta-
atom—is directly observed at the X -band microwave frequencies under a very weak
DCmagnetic field of 1 mT [24]. The effect increases as the magnetic field increases.
The nonreciprocal differences in the real and imaginary parts of refractive indices
due to the MCh effects are evaluated to be 10−3 at 200 mT. Furthermore, the MCh
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effects can be enhanced using magnetic resonance in the magnetic meta-atom [25].
The present study opens a door toward the realization of synthetic gauge fields, e.g.,
effective magnetic fields for electromagnetic waves [26, 27], and can be a pioneer in
the development of new physics, named meta material-science using metamaterials
[28–30].

14.2 Theory

We derive here the MCh effects from viewpoints of the symmetry breakings. Let
us consider dispersion relation, ω = ωL,R(k), where L and R denote left- and right-
handed circular polarizations, respectively. The two circular polarizations are defined
as eigenstates of angular momentum in this chapter. The time-reversal operation
transforms the dispersion as ωL,R(k) → ωR,L(−k). A system with the time-reversal
symmetry satisfies the following relation,

ωL(k) = ωR(−k),

ωR(k) = ωL(−k). (14.1)

Similarly, if a system has the space-inversion symmetry, the dispersion satisfies the
relation,

ωL(k) = ωL(−k),

ωR(k) = ωR(−k). (14.2)

Therefore, under the symmetry breakings of the time-reversal and/or the space-
inversion, (14.1) and (14.2) are not the case. Especially, if a system lacks both
the time-reversal and the space-inversion symmetries, unpolarized electromagnetic
waves can have directional dependence, namely the MCh effects. In Fig. 14.1,
schematics of these properties are summarized together with corresponding opti-
cal phenomena and dispersion relations.

Based on these discussions, we explicitly derive the refractive index of an MCh
medium from Maxwell equations,

∇ × E(r, t) = −∂B(r, t)
∂t

, (14.3)

∇ × H(r, t) = ∂D(r, t)
∂t

, (14.4)

where E, B, H, and D are the electric field, the magnetic field, the magnetic field
strength, and the electric flux density, respectively [28]. The constitutive equations
of the chiral media with magnetism are written as [31]



222 S. Tomita et al.

None

Space-inversion
symmetry

Time-reversal 
symmetry

k

Bext

Broken
symmetry

k

k k

Time-reversal 
symmetry &
Space-inversion
symmetry

Structural optical activity
(Natural optical activity)

Magnetic optical activity
(Magneto-optical effect)

Magneto-chiral effects

Phenomenon

Bext

Dispersion

k

Conventional propagation

k

kO

O

kO

L

R

kO

L

R

degenerate

unpolarized

Fig. 14.1 Broken symmetries in matter and optical phenomena with dispersion relations

D(r, t) = ε0ε̂E(r, t) − i
ξ̂

c
H(r, t), (14.5)

B(r, t) = μ0μ̂H(r, t) + i
ξ̂

c
E(r, t), (14.6)

where the parameters, ε̂, μ̂, ξ̂ are, respectively, the electric permittivity, the magnetic
permeability, and the chirality tensors of the medium. The permeability tensor μ̂,
which is described by
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μ̂ =
⎛
⎝

μxx −iκ 0
iκ μyy 0
0 0 μzz

⎞
⎠ , (14.7)

plays a major role to characterize electromagnetic interactions in the microwave
region, while the permittivity is assumed to be a scalar, ε̂ = ε1̂. On the off-diagonal
component, MO parameter κ is proportional to the external magnetic field and gives
the MO effects such as Faraday rotation. The chirality tensor ξ̂ represents an effect
of structural chirality that breaks the space-inversion symmetry. We suppose that the
chiral axis is parallel to the z-direction. The chirality tensor is thus written as

ξ̂ =
⎛
⎝
0 0 0
0 0 0
0 0 ξ

⎞
⎠ . (14.8)

This means that the electric field in the z-direction induces the z-component of the
magnetic field, and vice versa.

Now, we consider plane waves of E, B, H and D ∝ eik·r−iωt . Equations (14.3) and
(14.4) become

k × E(r) = ωB(r), (14.9)

k × H(r) = −ωD(r). (14.10)

Let us write E and B in terms of H. From (14.5) and (14.10), the electric field is
written as

E = 1

ε0ε

[−1

ω
k × H + i

ξ̂

c
H

]
, (14.11)

where position dependence is omitted for simplicity. Substituting this representation
of the electric field as (14.11) into (14.6), we get

B = μ0μ̂H + i
1

cε0ε
ξ̂
[−1

ω
k × H + i

ξ̂

c
H

]
. (14.12)

From (14.11) and (14.12) combined with (14.9), the wave equation is written to be

−k × (k × H) + i
ω

c
k × (ξ̂H) + i

ω

c
ξ̂ (k × H) = ω2

c2
εμ̂H − ω2

c2
ξ̂ 2H. (14.13)

To realize the MCh effect, we break the time-reversal symmetry by applying an
external magnetic field to the z-direction. The external field gives the off-diagonal
components of the magnetic permeability μ̂ as in (14.7) to be nonzero. Moreover, let
us recall here that the z-component of the electric field induces that of the magnetic
field, and vice versa, owing to ξ̂ with chiral axis in the z-direction as shown in (14.8).
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In this case, it is convenient to separate the propagation direction into the transverse
and the longitudinal components to bek = (kt, kz). Given thatμxx = μyy = μzz = μ

in (14.13), the dispersion relation, namely the index ellipsoid, is obtained to be

k2t
(n±

t )2
+ k2z

(n±
z )2

= ω2

c2
, (14.14)

where

n±
t = √

ε
√

μ ± 1

4

√
ε

μ
κ ± ξsgn(kt)

2
+ 1

4
ξsgn(kt)

κ

μ
. (14.15)

This is the refractive index of an MCh medium for transverse propagation, in which
the sign ± represents polarization states [28].

The refractive index as shown in (14.15) consists of four terms that have different
physical meanings as follows: The first term in the right-hand side is a conventional
dispersion without symmetry breakings. The second term is accompanied by κ under
the magnetic field that breaks the time-reversal symmetry. This term thus represents
the MO effect and depends on polarization states. The third term has directional
dependence and represents structural optical activity by the chirality ξ that breaks
the space-inversion symmetry. This term also depends on polarization states. The
fourth term is what we are looking for in this article; that is to say, the MCh effect.
Notably, this term is independent of polarization states but depends on propagation
directions, represented by sgn(kt). Such properties are caused by the simultaneous
breaking of the time-reversal and the space-inversion symmetries, as summarized in
Fig. 14.1.

Our derivation here implies that the MCh effect is realized without an explicit
coupling between the MO effect and the structural optical activity. Even without the
coupling, electromagnetic waves feel κ and ξ combined together as an interaction.
This situation is very similar to the conventional refractive index, namely the first
term in the right-hand side of (14.15), which can be modified using metamaterials
[17, 18]. In this way, metamaterials associated with a combination of κ and ξ may
boost MCh effects by several orders of magnitude. Consequently, the MCh effect
causes directional birefringence, resulting in the difference between transmission
coefficients of microwaves from the top and the bottom of the metamaterial.

14.3 Metamolecule Preparation and Measurement Setup

The MCh metamolecule is embodied by using an yttrium-iron-garnet ferrite square
pillar and copper (Cu) chiral structure as shown in Fig. 14.2a [24, 25]. As shown in
the left part, a Cu wire of 0.55 mm in diameter is coiled clockwise four times round a
thread groove of the right-handed screw to form the right-handed chiral meta-atom.
The cross-section and length of the ferrite magnetic meta-atom are 1.5 mm × 1.5
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Magnetic
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1.5mm

1.5mm

Fig. 14.2 a Center: A photograph of the MCh metamolecule. Diameter of the coin in the photo
is 17.91 mm. Illustrations of Cu chiral meta-atom (left) and ferrite magnetic meta-atom (right).
b A schematic of configurations in the microwave measurements of S21 of the MCh metamolecule.
Reprinted figure with permission from [24], Copyright 2014 by the American Physical Society

mm and 15 mm, respectively, as illustrated on the right-hand side. The ferrite pillar
is well insulating. The magnetic meta-atom is inserted in the chiral meta-atom for
constructing a metamolecule. The metamolecule is fixed in a thermal-contraction
tube.

A single metamolecule is put into a WR-90 waveguide, which is terminated at
both the ends by Agilent 281A adaptors. Two adaptors are connected via waveguide
so that the polarization plane of an electric field of the fundamental TE10 mode
in an adaptor is parallel to that in the other adaptor. Because AC magnetic fields of
microwaves in thewaveguide are parallel to the chiral axis of theMChmetamolecule,
structural optical activities are excited.

The single metamolecule in the waveguide is placed between two poles of an
electromagnet for applying DC magnetic fields. The external DC magnetic field is
applied in the z-direction as shown in Fig. 14.2b. The magnetic field μ0Hext is moni-
tored by using aGaussmeter equippedwith aHall element.μ0Hext > 0 (μ0Hext < 0)
corresponds to the magnetic field direction from port 1 to port 2 (port 2 to port 1).
An X -band microwave source is Agilent PNA N5224 vector network analyzer. We
measure S-parameters of S21 and S12 corresponding, respectively, to transmission
coefficients from port 1 to port 2 and from port 2 to port 1 simultaneously [24, 25].
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14.4 Magnetochiral Effects Under Weak Magnetic Fields

14.4.1 Transmission Spectra of Chiral and Magnetic
Meta-atoms

Figure14.3a illustrates an amplitude spectrum of S21 in frequencies from 6 to 12
GHz through only the Cu chiral meta-atom under μ0Hext = 0 mT in the waveguide.
The measurements are valid in the pass-band above 6.6 GHz, which is the cut-off
frequency of the waveguide. We observe a salient notch at 9.4 GHz. The notch is
attributed to resonance in the chiral meta-atom, referred to as chiral resonance in
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Fig. 14.3 a Transmission S21 amplitude spectrum of Cu chiral meta-atom in the waveguide without
the external DCmagnetic field. bTransmission S21 amplitude spectra of ferrite magnetic meta-atom
in the waveguide under μ0Hext = 0 mT, +150 mT, +200 mT, and +250 mT. Reprinted figure with
permission from [24], Copyright 2014 by the American Physical Society
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this article. The chiral resonance gives rise to the enhanced optical activity [32]. The
spectrum of the chiral structure under nonzero μ0Hext is identical as that shown in
Fig. 14.3a.

Amplitude spectra of S21 of the ferrite magnetic meta-atom in the waveguide are
shown in Fig. 14.3b. Underμ0Hext = 0 mT, a feature-less spectrum is observed from
7 to 12 GHz. In contrast, a large notch appears at 7.1 GHz when μ0Hext = +150
mT is applied by using the electromagnet. This notch shifts to a higher frequency at
approximately 8.7 and 10.3 GHz by increasing μ0Hext to +200 mT and +250 mT,
respectively. The features shifting upward with an increase in μ0Hext is caused by
the ferromagnetic resonance (FMR) of the magnetic meta-atom.

14.4.2 Magnetochiral Effects by a Single Metamolecule

By combining the ferrite magnetic meta-atom with the Cu chiral meta-atom and
applying μ0Hext, both time-reversal and space-inversion symmetries can be broken
[24]. This simultaneous breaking leads to the emergence of the MCh effects as
demonstrated in Fig. 14.4. Figure14.4a, c, e show amplitude spectra of S21 (solid
curves) and S12 (dotted curves) of the metamolecule under μ0Hext = 0 mT, +10
mT, and +180 mT, respectively. Figure14.4b, d, f are corresponding phase spectra.
Underμ0Hext = 0 mT, we see a salient notch at 10.2 GHz and additional weak notch
at 7.5 GHz in Fig. 14.4a. The phase spectra in Fig. 14.4b show weak dispersion-
type features at these frequencies. These are chiral resonances due to the Cu chiral
meta-atom. The insets in Fig. 14.4a, b show enlarged spectra at the chiral resonant
at approximately 10 GHz. The inset highlights that S21 and S12 spectra are identical
at μ0Hext = 0 mT, i.e., reciprocal in the presence of the time-reversal symmetry.

The MCh effect is manifested in the amplitude difference and phase difference
of transmitted microwaves. Indeed, under μ0Hext = +10 mT, transmission S21 (solid
curve) and S12 (dotted curve) spectra at the chiral resonance are not identical as
in Fig. 14.4c, d, whether the incident directions of microwaves are parallel or anti-
parallel to the DC magnetic field. Notably, FMR by the ferrite meta-atom is located
at a very low frequency of about 1 GHz under μ0Hext = +10 mT. Nevertheless, we
observe a finite difference between S21 and S12 spectra at the chiral resonance in
Fig. 14.4c, d.

Figure14.4e, f show transmission S21 (solid) and S12 (dotted) spectra under
μ0Hext = +180 mT. We notice in the inset that the difference around 10 GHz
increases. Moreover, FMR in the magnetic meta-atom results in complicated fea-
tures at approximately 8 GHz, which shift to a higher frequency with a further
increase in μ0Hext. Significant amplitude and phase differences between S21 and S12
are observed at FMR frequency.

Further evidence of the MCh effects by the metamolecule is shown in Fig. 14.5.
Figures 14.5a and 14.5b are, respectively, the differences in phases and in amplitudes
between S21 and S12 underμ0Hext from−200 to +200mT. A feature-less spectrum is



228 S. Tomita et al.

(a) (b)

(d)

(f)

(c)

(e)

-6

-5

-4

-3

-2

-1

0
A

m
pl

itu
de

 o
f S

21
  a

nd
 S

12
  (

dB
)

1211109876

Frequency (GHz)

-6

-5

-4

-3

-2

-1

0

-6

-5

-4

-3

-2

-1

0

0Hext = 0 mT
S21  / S12

0Hext = +10 mT
S21  / S12

0Hext  = +180 mT
S21  / S12 

-1.2
-1.0
-0.8
-0.6
-0.4

S
21

 ,
S

12
  (

dB
)

10.2010.16
Freq. (GHz)

-1.2
-1.0
-0.8
-0.6
-0.4

S
21

 ,
S 1

2 
 (d

B)

10.1210.08
Freq. (GHz)

-1.2
-1.0
-0.8
-0.6
-0.4

S
21

 ,
S 1

2 
 (d

B)

10.2810.2410.20
Freq. (GHz)

-2500

-2000

-1500

-1000

-500

0

P
ha

se
 o

f S
21

  a
nd

 S
12

  (
D

eg
re

e)

1211109876

Frequency (GHz)

-2000

-1500

-1000

-500

0

-3000

-2500

-2000

-1500

-1000

0Hext  = 0 mT
S21  / S12 

0Hext  = +10 mT
S21  / S12

0Hext  = +180 mT
S21  / S12

-1900
-1895
-1890
-1885
-1880

S 2
1

,S
12

 p
ha

se
 (D

eg
.)

10.2010.16
Freq. (GHz)

-1515
-1510
-1505
-1500
-1495

S 2
1

,S
12

 p
ha

se
 (D

eg
.)

10.1010.06
Freq. (GHz)

-2630
-2625
-2620
-2615
-2610

S 2
1

,S
12

 p
ha

se
 (D

eg
.)

10.2610.2410.22
Freq. (GHz)

Fig. 14.4 Experimentally observed transmission S21 (solid) and S12 (dotted) amplitude spectra
(a), (c), (e) and phase spectra (b), (d), (f) of the single MCh metamolecule under the external DC
magnetic fields of 0 mT [(a) and (b)], +10 mT [(c) and (d)], and +180 mT [(e) and (f)]. Insets:
enlarged spectra at the chiral resonance at approximately 10 GHz. Reprinted figure with permission
from [24], Copyright 2014 by the American Physical Society

obtained withμ0Hext = 0mT.Withμ0Hext = +1mT, a signal due to theMCh effects
emerges at a chiral resonance frequency at approximately 10 GHz. Notably, a very
weak magnetic field of +1 mT is enough to induce the MCh effects. As the magnetic
field increases, the MCh effect at approximately 10 GHz becomes large and shifts.
Differential spectra with μ0Hext < 0 are also shown in the lower half of Fig. 14.5.
The appearance and frequency shift of the MCh effects are very similar to those in
μ0Hext > 0; whereas, the polarity of MCh effects is flipped with the direction of the
magnetic field.

14.4.3 Nonreciprocal Differences in Refractive Indices

In Fig. 14.6a, we plot a graph of the phase difference, that is evaluated as a half value
of the peak-to-peak variation at the chiral resonance around 10 GHz (triangles),
versus μ0Hext. The amplitude difference (circles) is also plotted in Fig. 14.6b. The
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of the MChmetamolecule under DCmagnetic fields from−200 to +200 mT. Reprinted figure with
permission from [24], Copyright 2014 by the American Physical Society

MCh effect appears at μ0Hext = 1 mT, rapidly grows with the magnetic field up to
μ0Hext = 10 mT, and increases monotonically withμ0Hext. The continuous increase
in the MCh effect is consistent with (14.15), which theoretically indicates that the
MCh effect increases with the MO effect. The MO effects are proportional to the
effective magnetization of the metamolecule [33]. Under the unsaturated regime, the
magnetization is a function of μ0Hext. A rapid increase in the MCh effects at a very
low μ0Hext below 10 mT is thus traced back to the soft magnetic nature of the ferrite
magnetic meta-atom in the metamolecule that was observed by amagnetometer [24].

We evaluate the difference in refractive indices obtained by the MCh effects. The
phase and amplitude differences in the transmission coefficients as shown in Fig. 14.6
can be converted into the nonreciprocal differences in the real and imaginary parts of
refractive indices Δn′ and Δn′′, respectively. Let us consider the 1-D structure com-
posed of the single metamolecule inserted in a rectangular waveguide. We describe
Δn′ and Δn′′ between forward (S21) and reverse (S12) propagations of unpolarized
waves

Δn = n1→2 − n2→1 = Δn′ + iΔn′′. (14.16)

Δn is a Lorentz-type function of the operational frequency and is related to the phase
and amplitude of the complex transmission coefficients as follows:
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Δn′ = − c

2π f l
Δφ � −47.7 × Δφ

f l
, (14.17)

Δn′′ = − c

40π(log10 e) f l
ΔI � −5.50 × ΔI

f l
, (14.18)

whereΔφ corresponds to the phase difference∠S21 − ∠S12 in radian,ΔI the ampli-
tude difference |S21| − |S12| in decibel at the MCh effects. The frequency f is mea-
sured in GHz, and l denotes the total length of the metamolecule measured in mil-
limeters.

At μ0Hext = +200 mT, we find from Fig. 14.6 that the maximum values of Δφ

and ΔI are Δφ ∼ −1.0◦ = −0.017 radian and ΔI ∼ −0.4 dB. From (14.17) and
(14.18), with l = 15 mm and f = 10 GHz, we evaluate Δn′ � 5.4 × 10−3 and
Δn′′ � 1.5 × 10−2 maxima [24] as indicated from the right axes of Fig. 14.6a, b.
The success of the direct observation of the MCh effects in this study is attributed to
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several advantages for the microwave metamolecule: the structural optical activity is
enhanced through the chiral resonance in the Cu chiral meta-atom [32], the magnetic
response of the ferritemagneticmeta-atom ismassive at microwave frequencies [34],
and the microwave phase and amplitude can be directly measured using the network
analyzer. The manifestation of the real part of the nonreciprocal index difference
Δn′ and the monotonic increase with μ0Hext verifies the MCh effect. The values
of Δn′ and Δn′′ of the single metamolecule are not yet significantly large. How-
ever, larger responses are expected by combining FMR with the chiral resonance as
shown in the following and by assembling metamolecules into metamaterials. Fur-
thermore, it should be mentioned that higher frequencies including the visible region
are accessible by our concept of the interaction between magnetism and chirality in
metamaterials [35–37].

14.5 Enhanced Magnetochiral Effects Under Strong
Magnetic Fields

In the previous section, we demonstrated the emergence of large MCh effects under
weakmagnetic fields below±200mT. TheMCh effect was associated with the chiral
resonance in the chiral meta-atom. However, the interaction of the chiral resonance
with the ferrite FMR by the ferrite meta-atom remained to be addressed. By apply-
ing strong magnetic fields, FMR approaches the chiral resonance frequencies. This
motivates a further enhancement of MCh effects [25].

Figure14.7a shows experimentally observed differences between S21 and S12 of
phase spectra at various μ0Hext up to ±400 mT. Figure14.7b shows corresponding
amplitude difference spectra. A ferrite square pillar is replaced by a ferrite cylinder
in the measurements under a strong magnetic field. However, this change in the
magnetic meta-atom shape does not result in significant changes in the experimental
results. The upper halves of Fig. 14.7a, b showMCh signals with μ0Hext > 0. When
μ0Hext = +11 mT, a weak signal associated with the chiral resonance emerges at 8.9
GHz in Fig. 14.7a. A weak dip is observed at the same frequency in corresponding
amplitude difference spectra (Fig. 14.7b). An increase in μ0Hext leads to a blue shift
and an enhancement of the MCh signals at the chiral resonance.

Whenμ0Hext = +201mT, theMCh signals associatedwith FMRappear at approx-
imately 8.5GHz in Fig. 14.7. TheMCh signals due to FMRshift to higher frequencies
and become large as μ0Hext increases. This shift of FMR is accompanied by a fur-
ther blue shift of the MCh signals caused by the chiral resonance. The blue shift of
the MCh signals due to the chiral resonance is explained by the effective μ in the
waveguide [28]. Under μ0Hext = +250 mT, FMR is overlapped to the chiral reso-
nance around 9 GHz, bringing about splitting of the chiral resonance. At μ0Hext =
+280 mT, we observe a signal at approximately 8.3 GHz, a slightly lower frequency
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Fig. 14.7 Experimentally observed a phase and b amplitude differences between S21 and S12 from
8 to 14 GHz of the MCh metamolecule under DC magnetic fields up to ±400 mT. Reprinted figure
with permission from [25], Copyright 2017 by the American Physical Society

below 9 GHz. Notably, the polarity of the MCh signal due to the chiral resonance is
inverted. The polarity reversal after being passed by FMR is further evidence of the
MCh effect, which is proportional to the product of ξ and κ , because κ flips its sign
in the vicinity of FMR [28].

TheMCh signals due to FMR in Fig. 14.7a, b become significant atμ0Hext = +400
mT. The maximum values of phase and amplitude differences associated with FMR
at approximately 13 GHz under +400 mT were 20.8◦ and 9.11 dB, respectively
[25]. The nonreciprocal differences in the real and imaginary parts of refractive
indices due to the enhanced MCh effect at the FMR frequency are evaluated to be
Δn′ � −8.9 × 10−2 andΔn′′ � −2.6 × 10−1 under+400mT [25, 28]. Differential
spectra for the reversed direction of the external DC magnetic field (μ0Hext < 0) are
also shown in the lower halves of Fig. 14.7a, b.Whereas the appearance and frequency
shift of signals are very similar to those inμ0Hext > 0, the polarity of theMCh signals
is flipped with the direction of the magnetic field.
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14.6 Conclusions and Perspectives

In conclusion, we demonstrated MCh effects at the X -band microwave frequency by
a single metamolecule consisting of a Cu chiral meta-atom combined with a ferrite
magnetic meta-atom under an external DC magnetic field. The MCh effects were
induced by a very weakmagnetic field of 1mT and increased with the magnetic field.
The nonreciprocal differences in the real and imaginary parts of refractive indices due
to theMCheffectswere increased up toΔn′ � 5.4 × 10−3 andΔn′′ � 1.5 × 10−2 by
applying +200 mT [24]. Furthermore, the MCh effects were enhanced using FMR in
the metamolecule up to Δn′ � −8.9 × 10−2 and Δn′′ � −2.6 × 10−1 under +400
mT [25].

The present study paves the way to the realization of synthetic gauge fields, e.g.,
effectivemagnetic fields for electromagneticwaves. The “Lorentz force” by synthetic
gauge fields for light is expected to be observed in non-uniform metamaterials con-
sisting of the MCh metamolecules. Furthermore, the symmetry arguments used here
for electromagnetism can be applied to the electrical charge transport. The electrical
counterpart of the optical MCh effect is referred to as the electrical MCh effect [38].
These new avenues of analogy between lights and electrons lead to a new research
field, namely meta material-science using metamaterials [28–30].
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Chapter 15
Dispersion Engineering of Nonreciprocal
Metamaterials

Tetsuya Ueda and Tatsuo Itoh

Abstract Nonreciprocal metamaterials using normally magnetized ferrite
microstrip lines are reviewed, showing derivation of formula for the phase-
shifting nonreciprocity based on the eigenmode solution in terms of the effective
magnetization in ferrite and asymmetric boundary condition for the wave-guiding
structures. Dispersion engineering of the nonreciprocity is also discussed for
potential applications to leaky wave antennas with wide steering angles and reduced
beam squint.

15.1 Introduction

Metamaterials are artificial electromagnetic media that are composed of small ele-
ments compared to the wavelength, referred to as unit cell, and provide macroscopic
responses to external electric or magnetic source fields forming the constitutive rela-
tion with permittivity, permeability, and conductivity, as effective medium [1–3].
They are expected to realize new electromagnetic phenomena or functionalities that
are impossible or very difficult to achieve only with materials existing in nature, such
as negative refractive indices, cloaking techniques, and so forth.

Among various kinds of metamaterials, composite right-/left-handed (CRLH)
transmission lines are one of the most comprehensive and practically useful concepts
to concisely model complex physical phenomena and to design configuration of
metamaterials, based on circuit theory [1]. In this chapter, we focus on nonreciprocal
transmission appearing in the CRLH metamaterials.

Nonreciprocity to be discussed here means exhibition of differences in transmis-
sion coefficients of circuits/components or wave-guiding structures in two opposite
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propagation directions. In a combination of metamaterials with the nonreciprocity,
nonreciprocal metamaterials have been studied to explore exotic electromagnetic
phenomena and to create state-of-the-art circuits/componentswith transmission char-
acteristics depending on directions of wave propagation.

In general, nonreciprocal transmission characteristic stems from a combination
of two factors; one is broken time-reversal symmetry, and another is broken spatial
inversion symmetry. To realize the broken time-reversal symmetry, natural gyrotropic
media, such as ferromagnetic media and ferrites in microwave region [4, 5], or
magneto-optic media in optical region [6, 7] are conventionally used. Recently, the
use of active devices such as PIN diodes, field effect transistors, or time-varying
switches based on semiconductor circuit technology has also been proposed and
developed as artificial Faraday-effect structures operating without magnets [8, 9].
These gyrotropic materials are characterized by a rotational axis corresponding to
magnetization vector in gyromagnetic media. Both natural and artificial materials
with broken time-reversal symmetry play the same role in constructing off-diagonal
components in permeability or permittivity tensors.

It is noted that not only broken time-reversal symmetry but also broken spatial
inversion symmetry plays an important role in designing magnitude of the nonrecip-
rocal characteristics. The geometrical asymmetry is achieved by making the wave-
guiding structures asymmetric with respect to the plane including the gyrotropic
axis and propagation direction. Of course, when the wave-guiding structures are
symmetric with respect to the plane, nonreciprocal transmission characteristics dis-
appear even if there exist broken time-reversal symmetries.

In the remainder of the Introduction, we briefly summarize a history and recent
progress of nonreciprocal CRLH metamaterials and their applications to microwave
circuits and antennas. The early work on both nonreciprocal electromagnetic band
gap structures [10, 11] and nonreciprocal metamaterials [12–16] is focused and is
still now focusing mainly on nonreciprocity appearing in magnitude of transmission
coefficients for the artificial electromagnetic structures including gyrotropic mate-
rials for applications to isolators and circulators. For these cases, the selection of
propagation direction along the structures determines whether wave propagation is
permitted or prohibited just like isolators.

On the other hand, one of themost outstanding and intrinsic properties ofmetama-
terials originates from phase gradient of fields for traveling waves in the structures,
i.e., wavenumber vectors, as can be easily understood by terminologies, such as pos-
itive/negative refractive indices, right-/left-handed, forward/backward wave propa-
gation, and so forth. Recently, from a viewpoint of phase gradient, CRLH meta-
materials with phase-shifting nonreciprocity in the transmission coefficients were
proposed and demonstrated [17–19]. Ideally, such metamaterials show transparency
for both propagation directions, but with different refractive indices. With the use of
such nonreciprocal CRLHmetamaterials, we can have a situation where left-handed
mode propagation with negative refractive index is dominant in one direction of
the transmitted power, while right-handed mode propagation with positive refractive
index is dominant in the opposite power direction at the same frequencies. In the
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special cases, we can have exactly the same wavenumber vector for two different
guided modes carrying their electromagnetic powers in the opposite directions.

Such nonreciprocal CRLH metamaterials were implemented into leaky wave
antennas. Most of conventional nonreciprocal leaky wave antennas permitted elec-
tromagnetic wave radiation only for one propagation direction along the transmis-
sion lines, because they used nonreciprocal magnitude of transmission coefficients,
whereas the leaky wave radiation from phase-shifting nonreciprocal CRLHmetama-
terials permits electromagnetic wave radiation for both transmitted power directions,
but has asymmetric leaky wave beam directions [17, 20].

For leaky wave antennas based on the phase-shifting nonreciprocal CRLH meta-
materials, radiation gain can be enhanced by constructive interference of far fields
between primary leaky wave radiation from incident signals propagating along the
transmission line to the terminal and secondary leaky wave radiation that are con-
verted from residual signals which does not contribute to primary radiation and goes
back to the input port after the reflection at the terminal [21].

At specific frequencies on the dispersion curves of the nonreciprocal CRLH trans-
mission lines, unidirectional wavenumber vectors can be achieved for two differ-
ent transmitted power directions. This condition corresponds to the operational fre-
quency at the intersection of two dispersion curves whose slopes have opposite signs.
The condition can also be found at lower or higher cutoff frequencies of the band gaps
in the dispersion curves. The situation can be realized by shifting the geometrical
axis of dispersion curves for conventional CRLH metamaterials to the right or left
in the horizontal direction with respect to the vertical frequency axis. The relation of
refractive indices for two propagation directions can be understood from the fact that
tangent of each dispersion curve at the operational frequency is related to the group
velocity, i.e., transmitted power direction, and that wavenumber vector is associated
with the phase velocity.

By using nonreciprocal CRLH lines with unidirectional wavenumber vectors, a
new type of transmission line resonator, referred to as pseudo-traveling wave res-
onator, has been proposed and demonstrated [22, 23].Unique and fascinating features
of the resonators are as follows; in the first place, the resonant frequency does not
depend on the resonator’s size, but on the dispersion curves of the transmission lines
employed in the resonators that are designed with configuration parameters of the
unit cell. Second, in the field profile on the resonator, the amplitude distribution is
uniform and phase distribution varies linearly with the position in the longitudinal
direction. The gradient of phase distribution, orwavenumber vectors, on the resonator
is tunable independently of the resonant condition. Thus, the pseudo-traveling wave
resonator has size-independent resonant frequency and the field profile analogous to
traveling waves with arbitrarily tunable wavenumber vector on the resonator.

With the use of tunable gradient of phase distribution, pseudo-traveling wave res-
onators were implemented into beam scanning antennas [23]. The beamdirection can
be continuously controlled by tuning the nonreciprocity of the CRLH transmission
lines employed in the resonator, for example, by changing an externally applied dc
magnetic field to magnetic medium in the nonreciprocal transmission line. The beam
can be steered even by altering the geometrical asymmetry of thewave-guiding struc-
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tures [24], for example, by electronically tuning a pair of the electrical lengths for
double inserted stubs on both sides of the transmission line. The pseudo-traveling
wave resonators with tunable gradient of phase distribution were implemented to
compact and highly efficient leaky wave antennas with automatic power-recycling
system in order to handle the beam scanning or to switch the rotation direction of cir-
cularly polarized antennas [25, 26]. However, steering beam angle is determined by
the magnitude of the nonreciprocity. To make the circuit size compact, enhancement
of tunable range for the nonreciprocity is desired. In addition to the steering angles,
beam steering antennas suffers from beam squint problems, where the beam direction
varies with the operational frequency. To reduce the beam squint, it is necessary to
design the dispersion of phase-shifting nonreciprocity of the CRLH metamaterials
[27–29].

In this chapter, wewill review the basic theory on how to design the nonreciprocity
and their dispersion of the CRLH metamaterials. As an example, we consider typ-
ical ferrite-based nonreciprocal metamaterials for convenience. It is noted that the
design concept discussed here covers not only the ferrite-based metamaterials, but
also non-magnet gyrotropic metamaterials, from the viewpoint of designing waveg-
uide geometries. We begin with typical permeability tensor for gyrotropic materi-
als. Asymmetric admittance surfaces on sidewalls of the wave-guiding structures
are introduced to simply model the condition of broken spatial inversion symmetry
[27–29]. Nonreciprocal eigenmode analysis and some numerical simulation results
are given along with the approximate formula for the nonreciprocity, which will
give us a good insight into physical meanings of electromagnetic phenomena and
dispersive behavior of nonreciprocal CRLH metamaterials.

15.2 Permittivity/Permeability Tensors for Gyrotropic
Medium Due to Broken Time-Reversal Symmetry

15.2.1 Permeability Tensor for Microwaves in Ferrites

In microwave/millimeter wave region, ferrites, i.e., ferrimagnetic media are well-
known as magnetically tunable and gyromagnetic materials, for applications to tun-
able and nonreciprocal circuits/devices [4, 5], such as isolators and circulators. The
gyrotropic characteristics of ferrites originate microscopically from spin, magnetic
behavior of electrons. When an external dc magnetic field is applied to the ferrite
that is sufficiently large for the magnetization to be saturated and a microwave signal
is injected in it, the magnetization vector M shows the precession about the axis of
the applied dc magnetic field, as shown in Fig. 15.1a. The dynamic equation for the
precession of the magnetization is expressed by the following [4, 5, 30, 31]

dM
dt

= −γμ0M × H − αm
M
MS

× dM
dt

(15.1)
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Fig. 15.1 Schematic of a precession for magnetization in ferrite, b perspective view of normally
magnetized ferrite microstrip line, and c field profile along the strip width

where γ is a gyromagnetic ratio between angularmomentum and themagnetic dipole
moment for electronic spin, and the quantity αm is a damping constant for the pre-
cession of magnetization due to magnetic loss. In the following, we assume that the
direction of the applied dc magnetic field and the induced magnetization is in the
z-axis for simplicity. When the incident microwave signal is small and nonlinear
effect of the ferrite material is negligible, linearization approximation is assumed on
the above (15.1) under the steady-state condition, leading to the relation of complex
amplitudes between magnetization and magnetic field components in the microwave
region. As a result, the constitutive relation for microwave components in complex
phasor representation using a time-varying factor e jωt is expressed by

B̃ = μ0μH̃

μ̂ =
⎛
⎝

μ jκ 0
− jκ μ 0
0 0 1

⎞
⎠ (15.2)

μ = ω̃2
⊥ − ω2

ω̃2
h − ω2

, κ = ωωm

ω̃2
h − ω2

(15.3)

where B̃ and H̃ are complex amplitudes of microwave components of the magnetic
flux density and magnetic field, respectively, and μ̂ is Polder tensor, or a relative
permeability tensor, and

ωh = γμ0H0, ωm = γμ0MS,

ω̃h = ωh + jωαm = γμ0(H0 + j�H/2), ω̃⊥ =
√

ω̃h(ω̃h + ωm). (15.4)
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The quantities H0 and MS denote the internal dc magnetic field and saturation
magnetization in ferrites, respectively, and ΔH = 2ωαm/γμ0, a half width of mag-
netic loss for the applied dc field to the ferrite material. It is noted that gyrotropic
characteristics appear in the off-diagonal component κ of the permeability tensor in
(15.2). In what follows, wewill treat not only saturatedmagnetization for sufficiently
large applied dc magnetic fields to the ferrite, but also the unsaturated magnetization
for low applied dc magnetic fields. Even in the latter cases, we can describe behavior
of wave propagation using (15.2)–(15.4), by replacing the saturation magnetization
MS by the effective magnetization Mef.

15.2.2 Permittivity Tensor in Gyro-electric Medium

In optical region, materials in itself do not react directly against the alternating
magnetic field components of the light wave, but may respond to the electric field
component through the dynamics of electric polarization. In magneto-optic media
under the application of dc magnetic field along the z-direction, the gyrotropic char-
acteristics appear in the off-diagonal component κe of the permittivity tensor in the
following [6, 7],

D̃ = ε0ε̂ Ẽ ⇔ ε̂ =
⎛
⎝

ε1 jκe 0
− jκe ε1 0
0 0 ε2

⎞
⎠ (15.5)

Permittivity tensors analogous to (15.5) can also be found in
microwave/millimeter wave propagation in low-temperature semiconductors or
ionized materials with cyclotron motion of electrons under the applied dc magnetic
field in the z-direction. By taking into account dual relation of fields with symmetry
in Maxwell equations, we can treat permittivity tensors in (15.5) in the same manner
as permeability tensors in (15.2). In what follows, we consider only ferrite medium
in microwave region with permeability tensor in gyromagnetic medium. Of course,
we can translate the following discussion on permeability tensor in microwave
region into permittivity tensor in magneto-optic medium based on the dual relation.

15.2.3 Field Displacement Effect in Transversely Magnetized
Wave-Guiding Structures

When the electric field for an incident wave is parallel to the gyromagnetic axis of
ferritematerials and they are set to be in the transverse direction, the field profile of the
propagating wave on the cross section can be switched by changing the propagation
directions, referred to as field displacement effect, which will serve to appearance of
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the nonreciprocity. In this section, we consider the fundamental mode propagating
along a microstrip line with a normally magnetized ferrite substrate as a specific case
in order to understand the field displacement effect.

We begin with Maxwell’s equations,

∇ × Ẽ = − jω B̃

∇ × H̃ = jω D̃ (15.6)

along with the constitution relation (15.2)–(15.4) for gyromagnetic medium with the
axis in the z-direction.

The geometry under consideration and the coordinate system is shown inFig. 15.1.
In Fig. 15.1, the gyromagnetic axis is set to the z-direction, normal to the ferrite sub-
strate, and propagation direction is in the y-direction. For simplicity, we assume that
the field profile in the z-direction along thickness of the substrate is almost uniform,
i.e., ∂/∂z = 0, since the thickness is much smaller than the wavelength. Assum-
ing the field profile of the guided wave mode along the microstrip line proportional
to exp(− j β y) with a phase constant β, the differential equations (15.6) for wave
propagation in ferrite are described in the Cartesian coordinates system and reduce
to

− jβ Ẽz = − jωμ0

(
μH̃x + jκ H̃y

)

− ∂ Ẽz

∂x
= − jωμ0

(
− jκ H̃y + μH̃x

)

− jβ H̃z = jωε0εr Ẽx

− ∂ H̃z

∂x
= jωε0εr Ẽy (15.7)

Equation (15.7) implies that transverse electric (TE) modes related to the compo-
nents Ẽz, H̃x , H̃y are sensitive to the permeability tensor. We have focused only on
the TEmodes since transverse magnetic (TM)modes with H̃z, Ẽx , Ẽy are insensitive
to the dc magnetic field. From (15.7), the 1-D Helmholtz equation is given by

d2 Ẽz

d x2
− K 2

x Ẽz = 0 (15.8)

with

K 2
x = β2 −

(ω

c

)
εrμe f , μe f = μ2 − κ2

μ
(15.9)

where εr is the dielectric constant of the ferrite, and quantities μ and κ are expressed
by (15.3). Then, the field profile is assumed from (15.7) to be
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Ẽz = A cosh(Kx x) + B sinh(Kxx)

H̃y = 1

jωμ0μμe f
[A {μKx sinh(Kxx) − κβ cosh(Kxx)}

+B{μKx cosh(Kx x) − κβ sinh(Kxx)}] (15.10)

where A and B are unknown constants. To find the guided modes, we assume perfect
magnetic conductors (PMC)on the sidewalls at the strip edges of the centermicrostrip
line, for simplicity, where the tangential component of the magnetic field is zero, that
is,

H̃y = 0 at x = 0,w (15.11)

By applying the boundary conditions to (15.10), we have

[
(κβ)2 − (μKx )

2
]
sinh(Kxw) = 0. (15.12)

For the fundamental mode, the coefficient of the hyperbolic–sinusoidal function
in (15.12) vanishes, and

(κβ)2 − (μKx )
2 = (κβ)2 − μ2

[
β2 −

(ω

c

)
εrμe f

]
= 0

The following dispersion relation is obtained [32],

β = ±ω

c

√
εrμ, (15.13)

The mode is referred to as edge-guided mode. The reason will be found in its field
profile. It is noted that the relation A/B = 1 in (15.10) holds for wave propagation
in the + y-direction with (15.13). Then, the electric field profile of the edge-guided
mode in (15.10) reduces to

Ẽz = A exp

[(
κβ

μ

)
x

]
exp(− jβy) (15.14)

Therefore, the field profiles have an exponential form along the x-axis in the
transverse direction. The positionwith themaximumvalues of the fields can be found
at one of the edges of the center microstrip and can be switched by the selection of the
propagation direction, that is, the sign ofβ, as confirmed in (15.14). This phenomenon
is well known as field displacement effect. In Fig. 15.1c, the microstrip line structure
provides the symmetric geometry with respect to the plane holding two vectors; the
magnetization vector in the ferrite,M, and the wavenumber vector, β. In such cases,
the structure shows the reciprocal transmission characteristics. On the other hand, to
be discussed later, when a stub is inserted only on one side of the edges of the center
microstrip so that the geometry has the asymmetry with respect to the same plane, the
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field was concentrated on either side of the strip edge where the stubs are inserted or
the opposite side. As a result, the normally magnetized ferrite microstrip lines with
asymmetric geometry show the nonreciprocal transmission characteristics.

15.3 Introduction to Asymmetric Admittance Surfaces
Equivalent to Broken Spatial Inversion Symmetry

In this section, we introduce asymmetric admittance surfaces in simplified wave-
guiding structures as boundary conditions in order to provide broken spatial inversion
symmetry. The schematic of the transverse cross section of the geometry under
consideration is shown in Fig. 15.2. It is composed of a ferrite block with height d
and width w that is placed at the center, two metallic plates at the top and bottom,
two different admittance surfaces at the right and left, and the ferrite is magnetized
normal to themetallic plates.We assume that the fundamentalmode propagates in the
y-direction and has the electric field component in the z-direction. Then, the electric
field component is parallel to the axis of the gyromagnetic anisotropy in ferrite. We
can implement such a simplified model to understand physical meanings of wave
propagation and roughly estimate dispersion characteristics of normally magnetized
ferrite microstrip lines with stubs.

When the thickness of the ferrite substrate is much smaller than the wavelength,
variation of the field distribution along the thickness is negligible. Then, the dominant
mode is simplified to TEmode. Inmicrostrip lines, the admittance surfaces are placed
as virtual boundary condition on the sidewalls at the strip edges. A pair of admittance
surfaces Y 1 and Y 2 are defined at x = 0, and w, as a ratio of the magnetic field
component to the electric field that can be observed from the ferrite region to outside
in the following [27, 28],

Y1 = Hy/Ez at x = 0 (15.15)

z y

x
Mef

H0

w

MefY1 Y2

w

Ground plane

Metallic strip 

DielectricFerrite

d

Admi ance 
wall

(a) (b)

Fig. 15.2 Schematic of a perspective view and b cross section of a simplifiedmodel for asymmetric
insertion of stubs in normally magnetized ferrite microstrip line
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and

Y2 = −Hy/Ez at x = w, (15.16)

Stubs inserted at both edges of the microstrip line determine specific values of
the admittances Y 1 and Y 2. When no stubs are inserted, perfect magnetic conductors
may be assumed as the admittance boundaries with Y 1 = Y 2 = 0.

15.4 Analysis of Nonreciprocal Edge-Guided Modes

In order to find eigenmode solution to asymmetric wave-guiding structure with nor-
mally magnetized ferrite substrate, we return to the Helmholtz equation (15.8) and
the field profile (15.10). By imposing asymmetric boundary conditions (15.15) and
(15.16) on the model in Fig. 15.2b, the generalized dispersion relation is obtained in
the following [28],

�(ω, β, κ) = cot(kxw) − (ω/c)2μ(Ỹ1Ỹ2κ + εr ) − β2

j (ω/c)μkx (Ỹ1 + Ỹ2)
− βκ(Ỹ1 − Ỹ2)

μkx (Ỹ1 + Ỹ2)
= 0

(15.17)

with normalized admittance surfaces,

Ỹ1 = Y1/Y0, Ỹ2 = Y2/Y0, Y0 = √
εo/μo (15.18)

k2x = −K 2
x = εr μe f

(ω

c

)2 − β2, (15.19)

The first and second terms in (15.17) are even function of the phase constant β

due to the fact that kx is also even function as seen from (15.19), whereas the third
term is explicitly an odd function. Therefore, (15.17) varies with the sign of β, i.e.,
selection of propagation direction, which leads to nonreciprocal transmission where
the magnitude of phase constant differs depending on the propagation direction.

For specific cases without stubs inserted, Y1 = Y2 = 0. The dispersion relation
(15.17) becomes even function and reduces to (15.13), which results in reciprocal
transmission of the edge-guided mode.
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15.5 Formula for Nonreciprocity Appearing in Phase
Constant

In the previous section, we have derived generalized nonreciprocal dispersion rela-
tion (15.17) by introducing asymmetric admittances on the sidewalls of the transverse
cross section in the normally magnetized ferrite microstrip lines. The nonreciprocity
appearing in the phase constant can be estimated in an implicit manner by directly
solving the transcendental equation (15.17). In order to understand the mechanism
of the nonreciprocity, it is more instructive and useful to explicitly express the non-
reciprocity, in terms of the configuration parameters, such as magnetic properties of
the ferrite and asymmetry of the waveguide. In the remainder of this section, we will
show the derivation of the approximate formula for the nonreciprocity [28].

The nonreciprocity manifests itself due to the appearance of off-diagonal compo-
nents in Polder’s tensor κ in (15.2). In what follows, we assume that the magnitude of
κ is small since the operational frequency of interest is set up far away from the fer-
romagnetic resonant frequencies of the ferrite. Then, we can regard the off-diagonal
component κ as a perturbation to the dispersion relation.

We begin with the reciprocal case of (15.17) under the assumption κ = 0, and
find the phase constant β = β1 as the zeroth-order approximation. Next, we regard
F in (15.17) as a function of κ and β = β1 + �βN R, where �βN R represents a
perturbation of phase constant, i.e., phase-shifting nonreciprocity induced by κ . In
the vicinity of β = β1 and κ = 0, total derivative of the dispersion relation ΔΦ is
approximately given in the lowest order by

�� = �(ω, β1 + �βN R, κ) − �(ω, β1, 0) = ∂�

∂β

∣∣∣∣κ=0
β=β1

· �βN R + ∂�

∂κ

∣∣∣∣κ=0
β=β1

· κ = 0

Thus, we can express phase-shifting nonreciprocity �βN R as

�βN R = −κ
∂�

∂κ

∣∣∣∣
κ=0
β=β1

/
∂�

∂β

∣∣∣∣
κ=0
β=β1

. (15.20)

From (15.17), we have

�βN R ≈ − jκ(ω/c)(Ỹ1 − Ỹ2)

Ỹ1Ỹ2
(

ω
c

μ

kx1

)2 − j ω
c
wμ(Ỹ1+Ỹ2)
sin2(kx1w)

− 1
(15.21)

where a variable kx1 in (15.21) satisfies the relation k2x1 = μεr (ω/c)2 − β2
1 , and it

can be approximately expressed from �|κ=0,β=β1
= 0 using Taylor series by

k2x1 ≈ j (ω/c)μwỸ1 Ỹ2 + Ỹ1 + Ỹ2(
w2 (Ỹ1+Ỹ2)

3 + w
j (ω/c)μ

) . (15.22)
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The expression (15.22) can be reduced under the assumption that the operation
frequency is much higher than ωh and ωm . Then, the nonreciprocity appearing in the
phase constant is given by

�βN R ≈ (ωm/c)(Ỹ2 − Ỹ1)

w
(

ω
c

)
(Ỹ2+Ỹ1)

3 − 2 j
. (15.23)

For typical cases with the strip widthwmuch smaller than the wavelength, (15.23)
further reduces to

�βN R ≈ j

2

(ωm

c

)
(Ỹ2 − Ỹ1) (15.24)

It should be emphasized that for lossless cases, admittances on the sidewalls
Ỹ1, Ỹ2 are purely imaginary, and �βN R takes real values, which means that the
nonreciprocity manifests itself only in the phase constant but not in the attenuation
constant.

Equation (15.24) reveals the linear dependence of the phase-shifting nonreciproc-
ity �βN R on the magnetization Mef. In fact, it has been experimentally confirmed
that the nonreciprocity of the nonreciprocal CRLH transmission line was approx-
imately proportional to the effective magnetization of the unsaturated ferrite [23].
Equation (15.24) suggests that the use of ferrites with largerMef can provide stronger
nonreciprocity. It is also found from (15.24) that the nonreciprocity �βN R is propor-
tional to a factor (Ỹ1 − Ỹ2), the difference of admittances on both sidewalls, which
verifies that the geometrical asymmetry of the wave-guiding structure, i.e., broken
spatial inversion symmetry, contributes to the nonreciprocity.

15.6 Transmission Line Analysis for Composite Structures

In the previous section, nonreciprocal eigenmode solution for wave-guiding struc-
tures which is asymmetric on the transverse cross section but uniform in the lon-
gitudinal direction was discussed. In this section, we consider composite structures
whose unit cell is separated into several sections in the longitudinal direction. A
typical example of the normally magnetized ferrite microstrip line periodically and
asymmetrically inserted with stubs is shown in Fig. 15.3 [28]. Each unit cell is sep-
arated into three sections; two of them are reciprocal sections without stubs, and the
other section is nonreciprocal section where stubs are asymmetrically inserted into
the center microstrip line. The dispersion relation for such composite structures can
be obtained by combining in series the eigenmode solution in each section that was
discussed in the previous section, based on the transmission line model.

Circuit parameters in the 1-D nonreciprocal metamaterial structure are expressed
by theABCDmatrix for the unit cell, as shown inFig. 15.3b. The unit cell is composed
of two types of sections studied earlier, and its ABCDmatrixFCell becomes a product
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(a) (b)

Fig. 15.3 Unit cell in the periodicmetamaterial structure.aTopviewof the nonreciprocalmicrostrip
line which is composed of reciprocal sections (RS) and a nonreciprocal section (NRS). b The
transmission line model. Reproduced with permission from [28]. Copyright © 2013 IEICE

of corresponding matrices for reciprocal sections FRS and for nonreciprocal section
FNRS

FCell = FRSFNRSFRS =
[
ACell BCell

CCell DCell

]

In the first place, it is necessary to determine each matrix in each section. The
matrix FRS is a well-known ABCD matrix for conventional transmission lines. On
the other hand, the ABCD matrix FNRS is derived in terms of different propagation
constants β+ and β− in analogy to the transmission line section with nonrecipro-
cal phase constants, where the superscripts “+” and “−” denote directions of wave
propagation [17],

FNRS =
[
ANRS BNRS

CNRS DNRS

]
(15.25)

with

ANRS = e j�βN R lN

(
cos(β̄NlN ) + j

�ZN sin(β̄NlN )

Z̄N

)

BNRS = e j�βN R lN

(
j Z̄N

(
1 − �Z2

N

Z̄2
N

)
sin(β̄NlN )

)

CNRS = e j�βN R lN

(
j
sin(β̄NlN )

Z̄N

)

DNRS = e j�βN R lN

(
cos(β̄NlN ) − j

�ZN sin(β̄NlN )

Z̄N

)

β̄N = (β+ + β−)/2,�ZN = (Z+ − Z−)/2, Z̄N = (Z+ + Z−)/2 (15.26)
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where Z+ and Z− are characteristic impedances of themodeswith phase constantsβ+

and β−, respectively. The quantity lN denotes the length of nonreciprocal section. It
is noted that the nonreciprocity in the nonreciprocal section is described by �βN R =
(β+ − β−)

/
2. For lossless transmission line, characteristic impedance is reciprocal

and �ZN = 0. By applying the Floquet-Bloch theorem, that is, periodic boundary
condition to the single unit cell in the longitudinal direction, we have

[
V1

I1

]
= FCell

[
V2

I2

]
= Î e j β̃MM p

[
V2

I2

]
(15.27)

where Vi and I i are voltages and currents at ports i (i = 1, 2) of the unit cell, respec-
tively, p is the period, and β̃MM is the complex propagation constant in the whole
periodic structure that will be treated in terms of phase and attenuation constants
βMM and αMM as

β̃MM = βMM − jαMM .

Eigenmode analysis of (15.27) allows us to derive a dispersion relation for prop-
agation constant β̃MM in the metamaterial,

det(FCell) + e j2β̃MM p − e j β̃MM p(Acell + Dcell) = 0. (15.28)

For ε-negative structures, as shown in Fig. 15.3a, (15.28) becomes

cos(β̃MM p − �βN RlN ) = cos β̄N lN cosβRlR − (Z̄2
N + Z2

R) − �Z2
N

2Z̄N Z̄ R
sin β̄N lN sin βRlR (15.29)

where βR , lR , and ZR are the phase constant, total length, and characteristic
impedance of reciprocal sections without stubs, respectively. It is found from left-
hand side of (15.29) that the dispersion curves are shifted in the horizontal direction
with respect to the frequency axis by

�βMM = �βN R
lN
p

(15.30)

Equation (15.30) means that the magnitude of the nonreciprocity is determined
by a longitudinal fraction of nonreciprocal section in the unit cell.

To validate the transmission line approach along with eigenmode solution that is
discussed here, dispersion relation and the approximate formula for the nonreciproc-
ity are compared with numerical simulation results for two cases, epsilon-negative
metamaterial and CRLHmetamaterials, as shown in Fig. 15.4. For both cases, induc-
tive stubs are periodically inserted at one of center strip edges. The difference between
the two is whether the periodically loaded series capacitance is inserted or not.
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(a)             (b)

Ho

Shunt stub

Dielectric
Ferrite

z
y

x
x = 0 x = w

CL

Series capacitance

x = 0 x = w

Fig. 15.4 Schematic of the geometries a ε-negative and b CRLH metamaterials. Reproduced with
permission from [28]. Copyright © 2013 IEICE

In Fig. 15.5, the dispersion diagram and the nonreciprocity as a function of the
frequency are plotted. Figure 15.5a, b represents the dispersion curves for epsilon-
negative and CRLH metamaterials, respectively. The solid and broken lines show
phase and attenuation constants, respectively, and a dash-dot line denotes the non-
reciprocity estimated from (15.24) and (15.30). The calculations are made with
yttrium iron garnet (YIG) rod of 0.8 mm× 0.8 mm in cross section and 2-mm-length
shunt stubs inserted from one side of the structure. The effective magnetization is
μoMef = 175mT, and the internal dc field is μ0H0 = 10mT. The values of lR and
lN are 3 mm and 1 mm, respectively. For the CRLH metamaterials in Fig. 15.4b,
periodically inserted series capacitance CL = 0.3 pF.

In Fig. 15.5, numerical simulation results by ANSYS HFSS™ ver.13 based on
the finite element method (FEM) are also plotted with dots for comparison. The
simulated phase characteristics of S-parameters were converted into the dispersion
diagram. The calculations by the transmission line approach are in good agreement
with the numerical simulation. For epsilon-negative structure in Fig. 15.5a, visible
discrepancy below the cutoff frequency of 6 GHz is found due to the fact that FEM
simulation is carried out for finite number of cells. Below the cutoff region, numeri-

4

5

6

7

8

-3 -2 -1 0 1 2 3

ΔβΜΜ

βΜΜ

α, β (cm-1)

Fr
eq

ue
nc

y
(G

Hz
)

αΜΜ

Air line

30 cells
8 cells

4

5

6

7

8

-3 -2 -1 0 1 2 3α, β (cm-1)

Fr
eq

ue
nc

y
( G

Hz
)

αΜΜ

Air line

βΜΜ
ΔβΜΜ

30 cells

(a) (b)

Fig. 15.5 Comparison of dispersion diagram between the proposed TL approach and numerical
simulation. a ε-negative metamaterial. b CRLH metamaterial. Reproduced with permission from
[28]. Copyright © 2013 IEICE
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cal simulation suffers from significant errors due to small amplitude of transmission
coefficients for damping modes. It is found from Fig. 15.5a, b that the nonreciproc-
ities Δβ for both cases are approximately proportional to 1/ω. The tendency can
be confirmed by the formula for the nonreciprocity in (15.24) by substituting the
admittances of asymmetrically inserted shunt inductance Y 1 = 0 and Y 2 = −j/ω LL

into the equation. It is noted that the present transmission line approach cannot take
into account the radiation losses.

15.7 Design of Dispersion-Less Nonreciprocity for Antenna
Applications

For conventional leaky wave antennas, beam angle θ with respect to broadside direc-
tion of the transmission line is determined by the phase constant β in the fast wave
region, or by the effective refractive index of the line nef, under |nef| ≤ 1, and is given
in the following,

θ = sin−1 β

β0
= sin−1(nef) (15.31)

where β0 is the phase constant in free space. As seen from (15.31), nef must be con-
stant with the operational frequency in order to avoid beam squint problem where
the beam direction varies with the operational frequency. Unfortunately, nef is intrin-
sically dispersive, since the phase velocity in the fast wave region exceeds the speed
of light in vacuum as well as the group velocity.

On the other hand, beam direction of high-efficient resonant-type leaky wave
antennas based on nonreciprocal CRLH metamaterials is given by [23],

θ = sin−1 �β

β0
= sin−1 �nef

2
(15.32)

In order to make the nonreciprocity proportional to the operational frequency, the
admittance difference (Y 1 − Y 2) needs to be composed of capacitances, such as with
Y 1 = 0 and Y 2 = jω CR [29]. In addition, we need to insert inductive stubs into
shunt branch of the CRLH lines to establish negative permittivity. To eliminate the
influence of dispersive inductive stubs on the nonreciprocity, the inductive stubs are
inserted so that they have geometrical symmetry with respect to a plane that includes
an axis of gyrotropic material and wave propagation direction. In Fig. 15.6, top view
of the proposed CRLH transmission line is illustrated. It is composed of a microstrip
line-based CRLH transmission line on the hybrid substrate with the thickness d =
0.8 mm including dielectric and ferrite substrates with dielectric constants εd = 2.6
and εf = 15, respectively. A normally magnetized ferrite rod is embedded just below
the center strip. Series lumped capacitance is periodically loaded in the microstrip
line with period p to establish negative permeability. Capacitive stubs are inserted
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Dielectric substrate εd

Normally magnetized ferrite rod  εfHo

x yz Shunt inductive 
stub

Capacitor CL

p
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Fig. 15.6 Proposed geometry of dispersion-free nonreciprocal phase-shifting CRLH transmission
Lines. Reprint from [29]. Copyright © 2016 IEEE

only on right-hand side of the center microstrip edges so that the nonreciprocity is
approximately proportional to the operational frequency. This situation corresponds
to the constant difference of refractive indices between forward and backward prop-
agation directions. In addition, inductive stubs are also inserted in the CRLH line
to construct negative permittivity, but the influence on the nonreciprocity should be
avoided. Two equivalent short inductive stubs are inserted symmetrically in the unit
cell of CRLH line to eliminate the undesired dispersion of the nonreciprocity, as
shown in Fig. 15.6.

In Fig. 15.7, the simulated and measured dispersion curves and the phase-shifting
nonreciprocity estimated fromS-parameters are shown for the caseswith positive and
negative dc magnetic field. The configuration parameters are as follows; thickness
of the substrate including dielectric and ferrite is 0.8 mm. The dielectric constant of
dielectric and ferrite substrate is εd = 2.6 and εf = 15, respectively. The length of unit
cell p = 4.0 mm, the center strip width w = 3.0 mm, and series lumped capacitance
CL = 0.5 pF. Shunt capacitive stubs inserted are composed of the large patch with
the dimension 2.4 mm × 1.8 mm that is connected to the microstrip line with the
length 2.2 mm and width of 2.0 mm. Shorted inductive stubs have the length and
width of 1.3 and 0.5 mm. The dimension of a ferrite rectangular rod is 0.8 mm ×
3.0 mm × 40.5 mm. The magnetic loss of ferrite is μ0 �H = 5 mT. The CRLH line
was designed so that a band gap between lower and higher pass bands due to single
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Fig. 15.7 Simulated and measured dispersion curves and phase-shifting nonreciprocity. a Positive
applied dc magnetic field. b Negative applied dc magnetic field. Reprint from [29]. Copyright ©
2016 IEEE
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negative conditions is small. In the simulation setup, the effective magnetization was
±170 mT, and an externally applied dc magnetic field in the experiment was ±135
mT. In this case, the measured nonreciprocity Δβ is approximately proportional to
the operational frequency corresponding to oblique beam angle at±10° with respect
to broadside direction in a relatively wideband ranging from 5 to 7 GHz. As can be
predicted from the configuration, linearity of the nonreciprocity is restricted at low
frequency due to ferromagnetic resonance of ferrite and at high frequency due to
dispersion of distributed capacitive shunt stubs.

15.8 Summary

In this chapter, dispersion engineering of nonreciprocal CRLH metamaterials was
briefly introduced and reviewed, based on a combination of eigenmode solution and
transmission line approach.
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Chapter 16
Photonic Dirac Cones and Relevant
Physics

Kazuaki Sakoda

Abstract In this chapter, we derive a necessary and sufficient condition for materi-
alizing the photonic Dirac cone, which is an isotropic linear dispersion relation, on
the Γ point of periodic metamaterials and photonic crystals by the k · p perturbation
theory and the group theory.We analyze the coupling between the Dirac-cone modes
in metamaterials/photonic crystal slabs and the free-space modes by the Green func-
tion method, and prove that the propagation direction of the Dirac-cone modes in the
slab can be controlled by the polarization of the incident wave. We further analyze
the shapes of dispersion curves of the slab modes in the presence of diffraction loss
and show that the group velocity of the slab modes exceeds the light velocity in free
space. This problem of superluminal propagation is often found for non-Hermitian
systems. Finally, we extend our discussion to electronic waves and prove that we can
also materialize the Dirac cone on the Γ point of periodically modulated quantum
wells.

16.1 Introduction

The Dirac cone is originally an idea to describe the energy spectrum of massless
particles. It is characterized by the isotropic linear dependence of their energy on
theirmomentum.A similar energy spectrumwas discovered in the dispersion relation
of periodic metamaterials in the Brillouin zone center by the transmission line theory
in the microwave region [1–4]. Such device structures were named composite right-
/left-handed (CRLH) transmission lines. To materialize the linear dispersion, it was
necessary to make two dispersion curves of the CRLH transmission line degenerate
in the zone center or the Γ point of the Brillouin zone, by fine-tuning of the device
structure.

Later, the materialization condition of the Dirac cone in the dispersion re-
lation of periodic metamaterials and photonic crystals was clarified for general
cases by tight-binding approximation [5–7] and the k · p perturbation theory [8, 9].
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Fig. 16.1 Examples of the photonic Dirac-cone dispersion relation. a Dirac cone with an auxiliary
quadratic dispersion surface (broken line) realized, for example, by accidental degeneracy of E and
A1 modes in the square-lattice metamaterials of the C4v symmetry. b Double Dirac cone realized,
for example, by the E1 and E2 modes in the triangular-lattice metamaterials of the C6v symmetry.
ωΓ is the Dirac point frequency. Reprinted with permission from [13]: Copyright ©2014 by the
American Physical Society

Mei et al. [8] discussed the formation of the Dirac cone, the Berry phase, and map-
ping into theDiracHamiltonian for phononic and photonic crystals, while the present
author (K. S.) derived the sufficient condition for the Dirac-cone formation [9]. Be-
cause the effective refractive index is equal to zero at the vertex of the Dirac cone
[10], which is called theDirac point, quite curious phenomena and their applications
are expected, which include scatter-free waveguides [11] and lenses of arbitrary
shapes [12]. We can also expect novel phenomena like the control of the propagation
direction by the polarization of the incident wave [13].

As we shall see in this chapter, for the photonic Dirac cone to be materialized, two
electromagnetic eigenmodes with particular symmetry combinations should have
the same frequency in the Brillouin zone center by fine-tuning the structure and/or
the material parameters (Fig. 16.1). This situation is traditionally called accidental
degeneracy in solid-state physics.

In Sect. 16.2, we derive a necessary and sufficient condition for the Dirac cone
by the k · p perturbation theory and the group theory. We apply it to four examples
to completely clarify the symmetry combinations of the degenerate eigenmodes that
materialize the Dirac cones. In Sect. 16.3, we apply our theory to slab periodic struc-
tures to show that the propagation direction of the Dirac-conemode in the slab can be
controlled by the polarization of the incident wave. In Sect. 16.4, we analyze the dis-
persion and the propagation speed of the slab Dirac-cone modes with diffraction loss
to show that their apparent group velocity can be larger than the light velocity in free
space. This problem of superluminal propagation is often found for non-Hermitian
systems. In Sect. 16.5, we extend our theory to electronic waves and prove that we
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can materialize Dirac cones in the energy band of periodically modulated quantum
wells. We show that the electronic effective mass is vanishing at the Dirac point, so
we can expect curious phenomena such as divergent electronic mobility.

16.2 Dirac-Cone Dispersion Relation

16.2.1 Derivation by the k · p Perturbation Theory

In this section, we follow the discussion in [9].We start with two of the fourMaxwell
equations:

∇ × E(r, t) = −μ0
∂

∂t
H(r, t), (16.1)

∇ × H(r, t) = ε0ε(r)
∂

∂t
E(r, t), (16.2)

where E and H stand for the electric field and the magnetic field, respectively. ε0 and
μ0 are permittivity and permeability of free space, respectively. For simplicity, we
assume that the dielectric constant ε(r) of the system is real and the permeability is
equal to that of the free space; that is, we assume that the system is non-magnetic.
We also assume that ε(r) is periodic so that

ε(r + a) = ε(r), (16.3)

where a is the elementary translation vector that describes the periodicity of the
system structure. By eliminating E from these equations and assuming a harmonic
oscillation, we obtain the eigenequation for the magnetic field. Because we are con-
sidering a periodic system, the eigenfrequency and the eigenfunction depend on the
wave vector k in the first Brillouin zone:

L Hkn(R) ≡ ∇ ×
[

1

ε(r)
∇ × Hkn(r)

]
= λknHkn(r), (16.4)

where n is the band index. OperatorL is defined by the first equality of this equation.
The k dependent eigenvalue is given by

λkn = ω2
kn

c2
, (16.5)

whereωkn denotes the eigenangular frequency and c is the light velocity in free space.
According to Bloch’s theorem, the eigenfunction, Hkn , is a product of an exponential
factor and a vector field with lattice translation symmetry:
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Hkn(r) = eik·rukn(r), (16.6)

ukn(r + a) = ukn(r). (16.7)

The inner product of two vector fields is defined as follows.

〈
H1

∣∣H2
〉 ≡ 1

V

∫
V
dr H∗

1(r) · H2(r), (16.8)

where V is the volume on which the periodic boundary condition is imposed [14].
Then, we can prove that L defined in (16.4) is a Hermitian operator in the Hilbert
space of complex vector fields.

Proof For two arbitrary complex vector fields, H1 and H2,

〈
H1

∣∣L H2
〉 = 1

V

∫
V
dr H∗

1(r) ·
[
∇ ×

{
1

ε(r)
∇ × H2(r)

}]
. (16.9)

From well-known vector formula,

∇ · (A × B) = B · (∇ × A) − A · (∇ × B) , (16.10)

〈
H1

∣∣L H2
〉 = 1

V

∫
V
dr

{∇ × H∗
1(r)

} ·
{

1

ε(r)
∇ × H2(r)

}

− 1

V

∫
S
dS

[
H∗

1(r) ×
{

1

ε(r)
∇ × H2(r)

}]
⊥

, (16.11)

The second term on the right-hand side is the integral of the normal component of
the integrand on the surface of volume V , which is denoted by S. This term was
derived by Gauss’s theorem for the volume integral of the divergence of the vector
field. This surface integral is equal to zero due to the periodic boundary condition.
By using (16.10) again,

〈
H1

∣∣L H2
〉 = 1

V

∫
V
dr

[
∇ ×

{
1

ε(r)
∇ × H∗

1(r)
}]

· H2(r)

= 〈
L H1

∣∣H2
〉
. (16.12)

This equation implies that the Hermitian conjugate operator L † is L itself. So, L
is a Hermitian operator. �
So, the eigenfunctions of L are orthogonal to each other and they form a complete
set. We normalize them as 〈

Hkn
∣∣Hk′n′

〉 = δkk′δnn′ , (16.13)

where δkk′ and δnn′ are Kronecker’s delta.
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Now, we introduce a new operator Lk defined by

Lk ≡ e−ik·rL eik·r = (∇ + ik) ×
[

1

ε(r)
(∇ + ik) ×

]
. (16.14)

Then, ukn are its eigenfunctions with eigenvalue λkn . We can prove as before that
Lk is a Hermitian operator in the Hilbert space of complex vector fields with lattice
translation symmetry. So, {ukn| n = 1, 2, . . .} is a complete set. We normalize it as

〈ukn|ukn′ 〉0 ≡ 1

V0

∫
V0

dr u∗
kn(r) · ukn′(r) = δnn′ , (16.15)

where V0 denotes the volume of the unit cell of the periodic system. Thus, in partic-
ular, for k = 0,

{u0n| n = 1, 2, . . .} (16.16)

is an orthonormal complete set. So, any eigenfunction ukl of operator Lk can be
expressed by a linear combination of eigenfunctions {u0n} of operatorL0. Thus, by
a perturbative calculation, we can obtain λkl for small k using {u0n} as a basis set.
Because we are interested in the presence of k-linear terms, the quadratic term of
the perturbation operator ΔLk can be ignored:

ΔLk ≡ Lk − L0

≈ ik ×
[

1

ε(r)
∇×

]
+ ∇ ×

[
1

ε(r)
ik×

]
. (16.17)

Our next task is to calculate λkn by the first-order perturbation theory. We assume
according to the situation of our problem that some of the eigenfunctions on the
Γ point, {u0l | l = 1, 2, . . . , M}, are degenerate and denote their eigenvalue by λΓ

(= ω2
Γ /c2). By the degenerate perturbation theory, the first-order solution for ukl

(l = 1, 2, . . . , M) is obtained by diagonalizing the matrix whose i j (1 ≤ i, j ≤ M)
element is given by

C (k)
i j ≡ 〈

u0i |ΔLk| u0 j
〉
0 . (16.18)

The first-order solution gives eigenvalue corrections linear in k. So, if the eigenvalues
of matrix Ck = (C (k)

i j ) are equal to zero, the k-linear term is absent and the dispersion
curve is quadratic or of a higher order in k. This means that there is no Dirac cone.

C (k)
i j can be denoted in a slightly different form, which is easier to analyze by

group theory.

C (k)
i j = 1

V0

∫
V0

dr u∗
0i (r) ·

[
ik ×

{
1

ε(r)
∇ × u0 j (r)

}]

+ 1

V0

∫
V0

dr u∗
0i (r) ·

[
∇ ×

{
1

ε(r)
ik × u0 j (r)

}]
. (16.19)
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When we define ΔL as

ΔL ≡ ×
[

1

ε(r)
∇×

]
, (16.20)

the first term on the right-hand side of (16.19) can be modified to

(The 1st term) = −ik · 〈
u0i |ΔL | u0 j

〉
0 (16.21)

On the other hand, the second term can be written in the following form by trans-
forming the integral as we did for (16.9).

(The 2nd term) = 1

V0

∫
dr ∇ × u∗

0i (r) ·
[

1

ε(r)
ik × u0 j (r)

]

= ik · 〈u0 j |ΔL | u0i
〉∗
0 . (16.22)

When we define Pi j by
Pi j ≡ 〈

u0i |ΔL | u0 j
〉
0 , (16.23)

we finally obtain
C (k)
i j = ik · (−Pi j + P∗

j i ). (16.24)

We can examine Ck using the spatial symmetry of {u0l}. We assume that the
periodic structure that we deal with is invariant by symmetry operations of point
group G . We denote the symmetry operations and their matrix representations byR
and R, respectively. Then, we can prove [9]

k · Pi j = (Rk) · 〈Ru0i |ΔL |Ru0 j
〉
0 (16.25)

for any R ∈ G , where by definition,

[Ru0i ] (r) ≡ Ru0i (R
−1r). (16.26)

Equation (16.25) is very powerful to analyze the structure of matrix C (k). Actually,
(16.25) relates its different elements to each other, so that the number of independent
elements is reduced. In addition, in order forC (k)

i j to be nonzero, the product of k, u0i ,
and u0 j should contain a term invariant for allR ∈ G . This condition is expressed in
a group theoretical terminology that the product of the three terms should contain the
totally symmetric representation. The judgement of whether it contains the totally
symmetric representation or not is easily performed by the reduction procedure
[15]. Some examples will be given in the next four sections.
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Table 16.1 Symmetry combinations that generate Dirac cones by accidental degeneracy for one-
dimensional periodic lattices of the C2v symmetry. Symmetries of the magnetic field of the two
modes on the Γ point are given in the left column. Shapes of the dispersion curves are given in the
right column, where D denotes the Dirac cone

Mode 1 Mode 2 Dispersion

A1 B1 D

A2 B2 D

16.2.2 Examples of Dirac Cones

We first examine the one-dimensional lattice of C2v symmetry, that is, the symmetry
of a rectangle. It is known that there are only four different spatial symmetries for
the eigenmodes on the Γ point of the C2v symmetric structure. They are denoted
by A1, A2, B1, B2, respectively [15]. By following the reduction procedure, we can
tell which combination of eigenmode symmetries may lead to nonzero C (k)

i j . As

summarized in Table 16.1, C (k)
i j can be nonzero for the combinations of (A1, B1)

modes and (A2, B2) modes.
By examining all symmetry transformations R ∈ C2v, we can prove that matrix

C(k) has the following form for the combination of the A1 (u01) and B1 (u02) modes.

C(k) =
(

0, bk
b∗k, 0

)
. (16.27)

In (16.27),
b = ie · [−〈u01 |ΔL | u02〉0 + 〈u02 |ΔL | u01〉∗0

]
, (16.28)

where e is a unit vector in the direction of the one-dimensional alignment of the unit
cells. To derive (16.27), we should examine each matrix element by using (16.25).
For example, when we consider the 180◦ rotation for R, we have

Ru01 = u01, (16.29)

Ru02 = −u02, (16.30)

Rk = −k. (16.31)

So,

k · P11 = −k · 〈u01|ΔL |u01〉 = −k · P11, (16.32)

k · P22 = −k · 〈u02|ΔL |u02〉 = −k · P22. (16.33)

Thus, k · P11 = k · P22 = 0, which implies that C (k)
11 = C (k)

22 = 0.
The secular equation to determine the first-order correction,Δλ, to the eigenvalue

of (16.4) is given by
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∣∣∣∣−Δλ, bk
b∗k, −Δλ

∣∣∣∣ = 0. (16.34)

Thus, its solutions are given by

Δλ = ±|b|k, (16.35)

which leads to the following dispersion relation in the vicinity of the Γ point by the
Taylor expansion with respect to k:

ωk = c
√

λk =
√

ω2
Γ + c2Δλ

≈ ωΓ ± |b|c2k
2ωΓ

. (16.36)

So, there is a one-dimensional Dirac cone. The combination of the A2 and B2 mode
also yields the Dirac cone, since the same relation as (16.27) holds for them.

Next, we examine the two-dimensional square lattice of C4v symmetry, that is,
the symmetry of a regular square. It is known that there are five symmetries of
eigenmodes, A1, A2, B1, B2, and E [15]. The E modes are doubly degenerate, and
the rest are non-degenerate.

Let us first examine the case of the combination of an E mode and an A1 mode.
From group theory [15], we can assume without loss of generality that one of the
two eigenfunctions of the E mode is transformed like the x-coordinate and the other
like the y-coordinate by the symmetry operationR ∈ C4v. On the other hand, the A1

eigenmode is invariant. By examining all symmetry transformations, we can prove
that matrix Ck has the following form:

Ck =
⎛
⎝ 0 0 bkx

0 0 bky
b∗kx b∗ky 0

⎞
⎠ . (16.37)

The secular equation is given by

∣∣∣∣∣∣
−Δλ, 0, bkx
0, −Δλ, bky

b∗kx , b∗ky, −Δλ,

∣∣∣∣∣∣ = 0, (16.38)

whose solutions are
Δλ = 0, ±|b|k, (16.39)

where k =
√
k2x + k2y . Therefore, two of the three dispersion curves give an isotropic

Dirac cone. The linear term is absent for the third mode, so it gives a quadratic
dispersion. The same result can also be obtained by the tight-binding approximation
[6].
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Table 16.2 Symmetry combinations that generate Dirac cones by accidental degeneracy for the
square lattice of the C4v symmetry. Symmetries of the magnetic field of the two modes on the Γ

point are given in the left column. Shapes of the dispersion curves are given in the right column,
where D and Q denote Dirac cone and quadratic dispersion surface, respectively

Mode 1 Mode 2 Dispersion

E A1, A2, B1, B2 D + Q

For the combinations of (E, A2), (E, B1), and (E, B2) modes, we can similarly
prove that matrix Ck has the following forms, respectively:

(E, A2) : Ck =
⎛
⎝ 0 0 bky

0 0 −bkx
b∗ky −b∗kx 0

⎞
⎠ ,

(E, B1) : Ck =
⎛
⎝ 0 0 bkx

0 0 −bky
b∗kx −b∗ky 0

⎞
⎠ ,

(E, B2) : Ck =
⎛
⎝ 0 0 bky

0 0 bkx
b∗ky b∗kx 0

⎞
⎠ . (16.40)

We obtain the same secular equation for all these cases as the combination of the
E and A1 modes. So, there is an isotropic Dirac cone and a quadratic dispersion
surface.

Now, we examine the two-dimensional triangular lattice of C6v symmetry. There
are six symmetries of eigenmodes, A1, A2, B1, B2, E1, and E2 [15]. The E1, and E2

modes are doubly degenerate, and the rest are non-degenerate.
For the combination of an E1 mode and an E2 mode, we can prove by examining

all transformations R ∈ C6v that matrix Ck has the following form:

Ck =

⎛
⎜⎜⎝

0 0 −bky −bkx
0 0 −bkx bky

−b∗ky −b∗kx 0 0
−b∗kx b∗ky 0 0

⎞
⎟⎟⎠ , (16.41)

where we assumed without loss of generality that the two eigenfunctions of the E1

mode (u01, u02) are transformed like x and y and those of the E2 mode (u03, u04)
are transformed like xy and x2 − y2 [15]. The secular equation for the first-order
correction can be solved easily, and its solutions are given by

Δλ = ±|b|k (double roots). (16.42)
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Table 16.3 Symmetry combinations that generate Dirac cones by accidental degeneracy for the
triangular lattice of theC6v symmetry. Shapes of the dispersion curves are given in the right column,
where D, DD, and Q denote Dirac cone, double Dirac cones, and quadratic dispersion surface,
respectively

Mode 1 Mode 2 Dispersion

E1 E2 DD

E1 A1, A2 D + Q

E2 B1, B2 D + Q

So, we have isotropic double Dirac cones with the same slope (Fig. 16.1b). This
conclusion agrees with the result of the tight-binding calculation given in [7]. Other
mode combinations can be analyzed in a similar manner. The results are summarized
in Table 16.3.

Finally, we examine the simple cubic lattice of the Oh symmetry. There are four
kinds of non-degenerate eigenmodes (A1g , A1u , A2g , and A2u), two kinds of doubly
degenerate eigenmodes (Eg and Eu), and four kinds of triply degenerate eigenmodes
(T1g , T1u , T2g , and T2u) [15].

Let us examine the case of two triply degenerate modes. For the combination of
a T1g mode (u01, u02, u03) and a T1u mode (u04, u05, u06), C(k) has the following
structure:

C(k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 bkz −bky
0 0 0 −bkz 0 bkx
0 0 0 bky −bkx 0
0 −b∗kz b∗ky 0 0 0

b∗kz 0 −b∗kx 0 0 0
−b∗ky b∗kx 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (16.43)

which is sufficiently sparse so that we can easily obtain its analytical solutions:

Δλ =
{

0 (double roots),
±|b|k (double roots).

(16.44)

So, there are isotropic double Dirac cones with the same slope and two quadratic dis-
persion surfaces. Other symmetry combinations can be analyzed in a similar manner.
The result is listed in Table 16.4.

The analytical results obtained by the degenerate perturbation theory can be con-
firmed by numerical calculation. For example, we assume a simple cubic lattice of
dielectric spheres with a dielectric constant of 12.6 (GaAs). By changing the radius
of the spheres, we find several cases of accidental degeneracy among the dispersion
curves. Figure 16.2 shows two such examples, which agree with the analytical results
listed in Table 16.4.
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Table 16.4 Symmetry combinations that generate Dirac cones by accidental degeneracy for the
simple cubic lattice of the Oh symmetry. Shapes of the dispersion curves are given in the right
column, where D, DD, and Q denote Dirac cone, double Dirac cones, and quadratic dispersion
surface, respectively

Mode 1 Mode 2 Dispersion

T1g T1u DD + 2Q

T2g T2u DD + 2Q

T1g T2u 3D

T2g T1u 3D

T1g , T2g Eu 2D + Q

T1u , T2u Eg 2D + Q

T1u A1g D + 2Q

T1g A1u D + 2Q

T2u A2g D + 2Q

T2g A2u D + 2Q

Fig. 16.2 Dispersion curves of a photonic crystal composed of the simple cubic lattice of dielectric
spheres with a dielectric constant of 12.6. The vertical axis is the normalized frequency (ωa/2πc),
and the horizontal axis is the wave vector in the R (= (π/a, π/a, π/a)) and X (= (π/a, 0, 0))
directions, where R/6, for example, means that the horizontal axis is magnified by six times. The
radius of the spheres is 0.160a for (a) and0.416a for (b). The number associatedwith eachdispersion
curve is the multiplicity of the mode. Reprinted with permission from [9]: Copyright ©2012 by
The Optical Society

16.3 Dirac Cones in the Slab Structure

In this section, we follow the discussion given in [13]. We analyze slab structures
composed of a periodic metamaterial or a photonic crystal. They are practically im-
portant in the optical frequencies, since they can be fabricated by various lithographic
techniques. We show that we can control the propagation direction of the slab mode
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by the polarization of the incident wave. We formulate the retarded Green function
and analyze the excitation process of the Dirac-cone modes. We apply this method
to square and triangular lattices to show the peculiar polarization angle dependence
of the propagation direction.

16.3.1 Retarded Green Function

By eliminating the electric field from (16.1) and (16.2), we obtain the wave equation
for the magnetic field.

L H ≡ ∇ ×
[

1

ε(r)
∇ × H

]
= − 1

c2
∂2H
∂t2

. (16.45)

Then, the retarded Green function, G(r, r′, t), for the magnetic field satisfies the
following inhomogeneous equation.

−
(
1

c2
∂2

∂t2
+ L

)
G(r, r′, t − t ′) = Iδ(r − r′)δ(t − t ′), (16.46)

where I is the 3 × 3 unit tensor and δ is the Dirac delta function. The retarded Green
function is also characterized by the causality:

G(r, r′, t) = 0 (t < 0). (16.47)

We introduce the longitudinal eigenfunctions,H(L)
kn , in addition to the usual transverse

eigenfunctions, H(T )
kn . They are characterized by the following equations.

∇ · H(T )
kn = 0, (16.48)

∇ × H(L)
kn = 0. (16.49)

{H(T )
kn } is a physical solution and is the same as what we have denoted simply by

{Hkn} so far. On the other hand, {H(L)
kn } is not divergenceless, so it is an unphysical

solution. But we still need them to obtain a complete set of eigenfunctions. Then,
the retarded Green function for t ≥ 0 is given by

G(r, r′, t) = −c2

V

∑
k,n

[
sinωknt

ωkn
H(T )

kn (r) ⊗ H(T )∗
kn (r′) + tH(L)

kn (r) ⊗ H(L)∗
kn (r′)

]
.

(16.50)
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In this equation, A ⊗ B is a tensor whose (i j) element is given by Ai B j . Equation
(16.50) was derived from the completeness of {H(T )

kn } and {H(L)
kn }. For the details of

its derivation, the reader may consult [13].
The solution of the general inhomogeneous equation with a source term F,

−
(
1

c2
∂2

∂t2
+ L

)
H(r, t) = F(r, t), (16.51)

is given by the convolution

H(r, t) =
∫
V
dr′

∫ ∞

−∞
dt ′ G(r, r′, t − t ′)F(r′, t ′), (16.52)

which can be proved by substituting (16.52) into (16.51) and using (16.46).

16.3.2 Coupling with an Incident Plane Wave

We examine the excitation process of Dirac-cone modes by an incident plane wave,
which we denote by Hin:

Hin(r, t) = H0e
i(k0·r−ωt). (16.53)

In this equation, k0 and ω are the wave vector and the angular frequency of the
incident plane wave from free space, respectively. So,

ω = c|k0|. (16.54)

To use the formulation derived in the last section, we introduce a uniform distribution
of magnetic dipoles oscillating in phase, Pm(r, t), which generate the incident plane
wave, Hin.

Pm(r, t) = dmδ(z − z0)e
i(κx x+κy y)+(−iω+δ)t , (16.55)

where Cartesian coordinates are defined as shown in Fig. 16.3a. z0(> 0) defines
the plane where the oscillating magnetic dipoles are located and is assumed to be
much larger than the wavelength. For simplicity, we assume that dm is oriented in
the xy plane. We denote its tilt angle against the x-axis by θ (Fig. 16.4). Positive
infinitesimal δ in (16.55) assures the adiabatic switching of the oscillation. κx and
κy are the x and y components of the wave vector of the incident wave k0:

k0 =
(
κx , κy, −

√
ω2/c2 − κ2

x − κ2
y

)
. (16.56)
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Fig. 16.3 a Schematic illustration of a two-dimensional periodic metamaterials/photonic crystal
slab. b, c Top view of the configuration of several air holes in the triangular-lattice photonic crystal
slab of the C6v symmetry and in the square-lattice photonic crystal slab of the C4v symmetry,
respectively

The wave equation with Pm as a source term is

−
(
1

c2
∂2

∂t2
+ L

)
H(r, t) = ε0

∂2Pm

∂t2
. (16.57)

By using (16.52), we obtain

H(r, t) = −Pm(r, t)
μ0

+
∑
kn

ωknH(T )
kn (r)

μ0V

∫
V
dr′

∫ t

−∞
dt ′

H(T )∗
kn (r′) · Pm(r′, t ′) sinωkn(t − t ′). (16.58)

An important feature of this result is that the longitudinal eigenmodes were used to
reconstruct the original oscillating magnetic polarization and the propagating part of
the inducedwave is solely described by the transverse eigenmodes. So, the unphysical
longitudinal solutions do not explicitly appear in the result.
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x
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
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Fig. 16.4 Distribution of the oscillating magnetic polarization with amplitude dm and tilt angle θ .
It has a phase factor ei(κx x+κy y) to produce a plane wave propagating in the direction designated by

k0 = (κx , κy,−
√

ω2/c2 − κ2
x − κ2

y ). Reprinted with permission from [13]: Copyright ©2014 by

the American Physical Society

Now, we go back to the problem of the excitation process of the Dirac-cone
modes. The summation over n in (16.58) includes two types of eigenmodes. One is
the waveguide modes localized on the slab, and the other is reflected, transmitted,
and diffracted waves that propagate like plane waves when they are sufficiently away
from the slab and do not have a large amplitude in the vicinity of the slab. The former
have discrete eigenfrequencies for each (κx , κy) and compose the Dirac cone. On the
other hand, the latter have quasi-continuous eigenfrequencies that may be designated
by the z component of the wave vector. Because we are interested only in the former,
we ignore the contribution from the latter.

Then, we replace the summation over n by a summation over waveguide modes
in the relevant frequency range, which we distinguish by j . We denote the number of

the slab modes that contribute to the Dirac cone by ns , and introduce
〈
u∗

κ j (z0) · dm

〉
defined by 〈

u∗
κ j (z0) · dm

〉 = 1

V

∫
V
dr u∗

κ j (r) · dmδ(z − z0). (16.59)

According to the conservation law of the frequency and the wave vector parallel
to the slab surface, those of the incident wave have to be tuned exactly. But, this
exact tuning is practically impossible. Rather, we have to assume a finite width for
the eigenfrequency, which is caused by the finite lifetime of the eigenmode due
to dielectric loss, diffraction loss, etc. Thus, the positive infinitesimal δ should be
replaced by a finite relaxation rate γ in (16.55).We ignore the counter resonant terms
in the following.

To calculate the electromagnetic energy flux, we evaluate the divergence of time-
averaged Poynting’s vector, S. The result is given by [13]

∇ · S(r, t) = iωδ(z − z0)

4

ns∑
j=1

[
ακ juκ j (r) · d∗

m

ω − ωκ j + iγκ j
− α∗

κ ju
∗
κ j (r) · dm

ω − ωκ j − iγκ j

]
, (16.60)

where ακ j is defined as
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ακ j = ωκ j

2μ0

〈
u∗

κ j (z0) · dm
〉
. (16.61)

The electromagnetic energy radiated in a unit time is obtained by the spatial integral
of ∇ · S, whose propagation direction can be found by the following discussion.

We assume that the diffraction loss of the Dirac cone modes is relatively small,
so their quality factor is sufficiently large. Then, their energy flux is nearly parallel
to the slab surface. Then, its energy velocity, which is equal to the group velocity
vκ j in the case of lossless media [14], is given by the slope of the Dirac cone. As a
result, the energy flux in the slab plane, S‖, is given by

S‖ = μ0Lz

ns∑
j=1

∣∣ακ j

∣∣2 γκ jvκ j

{(ω − ωκ j )2 + γ 2
κ j }|vκ j | , (16.62)

where Lz is the size of volume V in the z direction. In the following sections, we
calculate S‖ for the square-lattice and triangular-lattice slab structures.

16.3.3 Slabs of C4v and C6v Symmetries

Let us first examine the square lattice with C4v symmetry. We examine the combi-
nation of an E mode and an A1 mode as an example. The eigenequation is

⎛
⎝ 0, 0, bkx

0, 0, bky
b∗kx , b∗ky, 0

⎞
⎠

⎛
⎝ A

B
C

⎞
⎠ = Δλ

⎛
⎝ A

B
C

⎞
⎠ , (16.63)

where Δλ denotes the difference between the eigenvalues for k �= 0 and for k = 0.
The eigenwave function is then given by

uk = Au(1)
E + Bu(2)

E + CuA1 , (16.64)

where u(1)
E and u(2)

E are two wave functions of the doubly degenerate E mode. uA1 is
the wave function of the A1 mode.

The three solutions are given as follows:
(i) Δλ = 0 ⎛

⎝ A(0)

B(0)

C (0)

⎞
⎠ =

⎛
⎝ sin φ

− cosφ

0

⎞
⎠ , (16.65)

(ii) Δλ = |b|k ⎛
⎝ A(+)

B(+)

C (+)

⎞
⎠ = 1√

2

⎛
⎝ eiβ cosφ

eiβ sin φ

1

⎞
⎠ , (16.66)
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(iii) Δλ = −|b|k ⎛
⎝ A(−)

B(−)

C (−)

⎞
⎠ = 1√

2

⎛
⎝−eiβ cosφ

−eiβ sin φ

1

⎞
⎠ , (16.67)

where β = arg b and φ is the angle between vector k and the x-axis.
When we denote the angle between dm and the x-axis by θ (see Fig. 16.4), we

can easily show from the transformation properties by symmetry operations that

〈
u(1)
E (z0) · dm

〉
= |dm | 〈uE,x (z0)

〉
cos θ, (16.68)〈

u(2)
E (z0) · dm

〉
= |dm | 〈uE,x (z0)

〉
sin θ, (16.69)〈

uA1(z0) · dm
〉 = 0, (16.70)

where

〈
uE,x (z0)

〉 = 1

V

∫
V
dr u(1)

E,x(r)δ(z − z0) = 1

V

∫
V
dr u(2)

E,y(r)δ(z − z0). (16.71)

Finally, for three solutions of Δλ = 0 and ±|b|k, we obtain

S(0)
‖ = γκ0ω

2
κ0|dm |2Lz| 〈uE (z0)〉0 |2vκ0

4μ0{(ω − ωκ0)2 + γ 2
κ0}|vκ0| sin2(φ − θ), (16.72)

S(±)
‖ = γκ±ω2

κ±|dm |2Lz| 〈uE (z0)〉0 |2vκ±
8μ0{(ω − ωκ±)2 + γ 2

κ±}|vκ±| cos2(φ − θ). (16.73)

In (16.72) and (16.73),

|vκ0| ≈ 0 and vκ± = ± vκ

|κ| (16.74)

for small |κ|, where v is the slope of the Dirac cone.
The velocity of the quadratic mode is vanishing at the Dirac point, so its energy

flow along the slab surface is small. On the other hand, the velocity of the Dirac-cone
modes is finite, so they propagate along the slab surface. Their propagation direction
is parallel to the wave vector κ . We should note the presence of the cos2(φ − θ) term
in S(±)

‖ . This term is brought about by the anisotropic mixture of two dipolar wave
functions as shown in (16.66) and (16.67). Due to this term, the induced energy flow
along the slab surface is largest when the magnetic field of the incident plane wave
is polarized in the same direction as κ .

We can analyze other cases of the mode combinations similarly. The results are
summarized in Table 16.5. Each mode combination has its own angular dependence,
so we can distinguish the mode symmetry by measuring the angular distribution of
the energy flow.
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Table 16.5 Dependence of the energy flux S‖ on the polarization angle θ of the incident magnetic
field and the propagation angle φ. “Silent” means that the coupling between the incident plane wave
from the normal direction and the Dirac-cone mode is vanishing in the first-order approximation,
so the Dirac-cone mode is not excited

Lattice symmetry Mode1 Mode2 Angular dependence

C4v E A1 cos2(φ − θ)

E A2 sin2(φ − θ)

E B1 cos2(φ + θ)

E B2 sin2(φ + θ)

C6v E1 E2 1

E1 A1 cos2(φ − θ)

E1 A2 sin2(φ − θ)

E2 B1 silent

E2 B2 silent

16.4 Superluminal Propagation

In this section, we follow the discussion in [16]. In non-Hermitian systems, we
sometimes encounter superluminal propagation of photonic eigenmodes; that is,
their group velocity exceeds the speed of light, which is an apparent violation of
special relativity. Physicists have long been perplexed by this contradiction [17], and
recently it was also found for photonic Dirac-cone dispersion [16].

Figure 16.5 shows two typical cases of normal and distorted photonic Dirac-cone
dispersion curves found by numerical calculations. Figure 16.5a shows the Dirac
cone materialized by an E2 mode and a B2 mode of a triangular-lattice photonic
crystal slab, and Fig. 16.5b shows the Dirac cone materialized by an E mode and a
B1 mode of a square-lattice photonic crystal slab. The critical difference between the
two cases is the coupling to electromagnetic modes in free space. Here, we should
recall that only E1 modes of the triangular lattice and E modes in the square lattice
couple to electromagnetic modes in free space due to the symmetry matching [14,
18]. So, the E eigenmodes gradually escape (are diffracted) to free space while they
propagate along the two-dimensional plane of the photonic crystal slab. This means
that the Dirac-cone modes in Fig. 16.5b are lossy. So, the problem that we meet here
is a new manifestation of superluminal propagation in non-Hermitian systems.

Now we extend our degenerate k · p perturbation theory to the lossy case. It is
convenient to deal with the angular frequency of the eigenmode rather than λ defined
by (16.5), so we introduce a new matrix D(k) according to (16.36).

D(k) = c2

2ωΓ

C(k). (16.75)
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Fig. 16.5 a Photonic Dirac cone materialized with a quadratic dispersion surface by the accidental
degeneracy of an E2 mode and a B2 mode in a triangular-lattice photonic crystal slab of the C6v
symmetry. Specimen parameters: refractive index = 3.52 (silicon), d = 0.137a, r = 0.474a. The
vertical axis is the dimensionless frequency normalized with the lattice constant a and the speed
of light c. The horizontal axis is the wave vector in the Brillouin zone, where M and K denote
two highly symmetric points. M/8, for example, implies that the horizontal axis is magnified by
eight times. b Deformed Dirac cone materialized by an E mode and a B1 mode in a square-lattice
photonic crystal of the C4v symmetry. Specimen parameters: d = 0.8a, r = 0.318a

Then, the eigenvalue of D(k) gives the first-order correction of the angular frequency.
For the accidental degeneracy of an E mode and a B1 mode, D(k) is given by

D(k) =
⎛
⎝−iγ 0 vdkx

0 −iγ −vdky
vdkx −vdky 0

⎞
⎠ , (16.76)

where vd is the slope of theDirac conewithout diffraction loss,which has a dimension
of speed, and γ is the extinction rate that is given by the ratio of the Dirac point
frequency ωΓ to the quality factor of the E mode. By diagonalizing (16.76), we
obtain the following isotropic dispersion relation for the deformed Dirac cone.

ω = ωΓ +
−iγ ±

√
4v2dk

2 − γ 2

2
. (16.77)

So, the group velocity is

vg ≡ ∂ω

∂k
= 2v2dk√

4v2dk
2 − γ 2

, (16.78)
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which is divergent at a critical wave vector kc = γ /2vd and is even purely imaginary
for k ≤ kc!

16.5 Periodically Modulated Quantum Well

Because the photonic Dirac cone is solely brought about by particular combinations
of mode symmetries, a similar situation is expected to be materialized in other wave
systems as well. The subbands of their energy spectra can be derived by introducing
periodic structural modulation or applying periodic external potentials. When the
symmetry of their wave functions satisfies the conditions described in the previous
sections, Dirac cones should appear. In this section, we demonstrate it for a simple
electronic system, that is, the periodically modulated quantum wells [19].

For the sake of simplicity, we assume that the electronic system is described by the
one-component effective mass Schrödinger equation. When we denote the electron
effective mass by m, the momentum operator by p̂, and the confinement potential of
the periodically modulated quantum well by U , the Schrödinger equation is given
by

Ĥ ψkn ≡
(

p̂2

2m
+U

)
ψkn = Eknψkn, (16.79)

where k is the wave vector in the two-dimensional Brillouin zone and n is the band
index. From the Bloch theorem, ψkn is expressed as

ψkn(r) = eik·rukn(r), (16.80)

and ukn(r) is a periodic function:

ukn(r + ai ) = ukn(r) (i = 1, 2), (16.81)

where ai is the two-dimensional elementary translation vector of the periodic mod-
ulation (see Fig. 16.6). Note that ai is not relevant to the atomic lattice translation
vector. The wave function for the present problem is a complex scalar field, whereas
that of the electromagnetic case was a complex vector field. So, the present problem
is easier than the latter.

We assume that the modulation of the confinement potential possesses a certain
spatial symmetry like the electromagnetic case.Wedenote its point group byG . Then,
the periodic modulation yields electronic subbands in the first Brillouin zone defined
by the above ai . We assume that two subbands are degenerate on the Γ point and
denote their eigenfunctions by {u0l | l = 1, 2, . . . , M} allowing for the multiplicity
of each subband. Then, we can discuss the conditions for materializing the Dirac
cone in a similar manner as before.

Now, the first-order perturbation matrix, C(k) = (C (k)
i j ) (i, j = 1, 2, . . . , M), for

the present problem is much simpler than the electromagnetic case. By following
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Fig. 16.6 a Side view of a periodically modulated quantum well. We assume a cylindrical bump
in each unit structure. Top view of the modulated quantum wells of b the square lattice of C4v
symmetry and c the triangular lattice of the C6v symmetry. Reprinted with permission from [19]:
Copyright ©2016 by the Physical Society of Japan

the same procedure described in Sect. 16.2.1, we can obtain its explicit form and the
invariance under the symmetry transformations.

C (k)
i j = �

m
(Rk) · 〈

Ru0i
∣∣ p̂

∣∣Ru0 j
〉
0

(∀R ∈ G
)
, (16.82)

where R is the matrix representation of R and 〈· · · 〉0 denotes integration over the
unit cell. Because (16.82) has the same structure as (16.25), we can conclude that
particular combinations of mode symmetries result in the formation of Dirac cones.
For example, the first-order perturbation matrix is given as follows for the accidental
degeneracy of the E and A1 subbands in the square lattice of the C4v symmetry:

C(k) =
⎛
⎝ 0 0 bkx

0 0 bky
b∗kx b∗ky 0

⎞
⎠ , (16.83)

where

b = �

m

〈
u(1)
E

∣∣ p̂x ∣∣uA1

〉
. (16.84)
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Fig. 16.7 Subbands of the periodically modulated GaAs/AlGaAs quantum well. a Square lattice
with |ai | ≡ a = 30 nm, t = 15 nm, h = 6 nm, and d = 22.8 nm. b Triangular lattice with a = 30
nm, t = 15 nm, h = 6 nm, and d = 20.55 nm. The vertical axis is the electron energy measured
from the bottom of the GaAs conduction band. The horizontal axis is the wave vector in the two-
dimensional Brillouin zone, where X = (π/a, 0) and M = (π/a, π/a) for the square lattice and
K = (4π/(3a), 0) and M = (π/a,−π/(

√
3a)) for the triangular lattice. X/5, for example, means

that the horizontal axis is magnified by five times. Reprinted with permission from [19]: Copyright
©2016 by the Physical Society of Japan

By solving the secular equation, we can obtain the first-order energy correction,ΔE :

ΔE = ±|b|k, 0. (16.85)

Therefore, there are an isotropic Dirac cone and a quadratic dispersion surface. We
can analyze the rest of the symmetry combinations and obtain completely the same
conclusions as shown in Tables 16.2 and 16.3. We checked the analytical results by
calculating the band structure using the finite element method [19]. As shown in
Fig. 16.7, the numerical results agreed with the analytical calculation. The specimen
parameters to materialize the accidental degeneracy are listed in the figure caption.

In the actual specimen fabrication, however, the probability of exact degeneracy
by adjusting the specimen parameters is negligibly small, so there is always an energy
mismatch between the two subbands even if it is small. Let us finally analyze this
problem. We introduce an energy mismatch α to the (3, 3) element of C(k).

C(k) =
⎛
⎝ 0 0 bkx

0 0 bky
b∗kx b∗ky α

⎞
⎠ . (16.86)
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By solving the secular equation, we obtain the first-order correction to the electron
energy.

ΔE = α ± √
α2 + 4|b|2k2
2

(16.87)

Then, from the definition of the effective mass m∗
∂2E

∂k2

∣∣∣∣
k=0

= �
2

m∗ , (16.88)

we obtain

m∗ = |α|�2

2|b|2 (16.89)

So, the electron effective mass m∗ in the periodically modulated quantum well is
proportional to the energy mismatch. The effective mass vanishes when the energy
mismatch becomes infinitesimally small. This phenomenon brings about a large
electron mobility and may find a new application.

As we showed in this chapter, the accidental degeneracy of two eigenmodes with
particular symmetry combinations materializes the Dirac cone. This phenomenon is
common to all kinds of wave propagation in mesoscopic periodic systems including
electromagnetic waves, electronic waves, phonons, magnons, excitons, and polari-
tons. In addition to common features like cloaking, there are such features that are
peculiar to each wave system: small effective mass for electronic system and con-
trol of propagation direction by incident polarization for electromagnetic waves. We
hope that these features may find peculiar applications in the future.
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