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Preface
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• Developments and Novel Approaches in Biomechanics and Metamaterials

ICoNSoM 2019 Conference has been intended to provide an international oppor-
tunity for communicating recent developments in various areas of nonlinear solid
mechanics. This monograph consists theory, experiments, and applications in me-
chanics, thermodynamics, and multiphysics simulation in many length scales.

As editors, we intend to thank all authors for their crucial contributions as well
as all reviewers for their invaluable time and effort. We delightedly acknowledge Dr.
Christoph Baumann (Springer Publisher) for initiating the book project. In addition,
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ence; Materials Engineering; Nanotechnology and Nanomedicine) and Mr. Ashok
Arumairaj (Production Administrator) giving their support in the process of publi-
cation.

Brussels, Rome Bilen Emek Abali
May 2020 Ivan Giorgio
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Chapter 1
Perspectives in Generalized Continua

Marco Laudato & Alessandro Ciallella

Abstract The International Conference on Nonlinear Solid Mechanics (ICoNSoM)
2019, held in Rome from 16th to 19th of June 2019, had as main goal to gather
together researchers in the field of nonlinear Solid Mechanics in a stimulating re-
search environment. This work is a rational report of activities of the mini-symposia
“Perspectives in Generalized Continua” held during the conference. The main aim
is to provide the interesting reader with the main topics treated during the confer-
ence and to furnish all the relevant bibliography. Additional information, such as
the abstracts of all the talks, can be found at the official web-site of the conference:
http://www.memocsevents.eu/iconsom2019/.

Keywords: Continuum mechanics · Metamaterials · Second gradient materials

1.1 Introduction

The multi-scale analysis of mechanical systems with a microstructure is one of the
most growing research fields in modern Solid Mechanics. The main reasons are the
efficient fast-prototyping techniques developed in the last decades on the one hand,
and the enhanced mathematical and numerical understanding of this kind of systems,
on the other hand. These results have been exploited by researchers to increase the
forecasting power of the mathematical models used to describe the behavior of
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continuous systems and even to tailor the features of the microstructure to obtain a
desired macroscopic behavior in the so-called mechanical metamaterials (Barchiesi
et al, 2019b; Del Vescovo and Giorgio, 2014; Milton, 2013; Milton et al, 2017).
Since a detailed mathematical model of the elements of the microstructure is often
very expensive from the numerical point of view, a customary approach is to define,
by means of a homogenization procedure, an analogous continuous system (Abdoul-
Anziz and Seppecher, 2018; Pideri and Seppecher, 1997; Boutin et al, 2017; Rahali
et al, 2015; dell’Isola et al, 2015a; Mandadapu et al, 2018). The dynamics of such
a system is defined in terms of an energy functional obtained from the kinematics
and dynamics of the microstructure via some limiting procedure (Carcaterra et al,
2015; Turco et al, 2020). When the resulting energy model cannot be framed under
the hypothesis of the classical theory of elasticity, the resulting continuous system is
called a generalized continuous system.

The impact that this idea is having on modern Solid Mechanics in the last years
has motivated the creation of a dedicated symposium on new perspectives in the
generalized continua framework within the International Conference on Nonlinear
Solid Mechanics 2019. Motivated by the need to create a stimulating forum of dis-
cussion on the main topics in nonlinear Solid Mechanics, the International Research
Center of Mathematics and Mechanics of Complex Systems (M&MoCS) of L’Aquila
University, in collaboration with the McGill University of Montreal, the Laboratoire
International Associé Coss&Vita, and Roma Tre University have organized the In-
ternational Conference on Nonlinear Solid Mechanics 2019 (ICoNSoM 2019), held
in Rome from 16th to 19th of June 2019.

The topics of the conference have been divided into thematic symposia. In the
present work, we focus on the symposium Perspectives in Generalized Continua.
We present the content of the talks and, to introduce the interested reader into the
state-of-art of the treated topics, we furnish the relevant references.

1.2 Perspectives in Generalized Continua

In this section we briefly review the content of the talks presented in the mini sym-
posium Perspectives in Generalized Continua. The goal is to furnish the interested
reader with the main topics treated and with the relevant bibliography.

The symposium has been animated by ten contributions which have been clas-
sified in this work for their experimental or theoretical preeminent nature. We will
start by discussing the results in the theoretical framework and then we will conclude
by discussing the talks on the experimental results. In the first group we have in-
cluded the contributions by Eleni Agiasofitou on the J-,M -, andL-integrals, Claude
Boutin on highly contrasted plates, Francesco dell’Isola on pantographic metamate-
rials, Salvatore Federico on convected stress and balance equations, Markus Lazar
on singularity-free point of defects, Uwe Mühlich on the influence of randomness
on the stiffness of different networks, and Hua Yang on homogenization procedures.
In the second group, we have included the contributions by Gregor Ganzosch on
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experiments on pantographic materials, Marco Laudato on the experimental investi-
gation of the dynamics of pantographic materials, and Mario Spagnuolo on the pivot
damage mechanism in pantographic materials.

1.2.1 J -, M -, and L-integrals: from Micromechanics of
Dislocations to Body Charges and Forces - Eleni Agiasofitou

Eleni Agiasofitou presented a talk titled “J-, M -, and L-integrals: from Microme-
chanics of Dislocations to Body Charges and Body Forces”. The main goal was to
provide an exposition of the J-, M -, and L-integrals and their role in field theories
(Lazar and Agiasofitou, 2018a). The physical interpretation of these integrals have
been discussed by deriving them in different physical scenario, highlighting their
fundamental role. In particular, the role of these integrals for a single dislocation
(e.g., edge and screw) has been analyzed and the remarkable result is that the M -
integral can be used to describe the total energy per unit length of the dislocation
which is in turn given by the sum of the self-energy and of the core energy per unit
length. In the final part of the talk, electromagnetic systems have been discussed and
it has been shown that the J-integral of body charges (in electrostatics) represents
the Lorentz force whereas theM -integral between two point sources is proportional
to the electrostatic interaction energy. Finally, the results coming from the compar-
ison between these concepts in electromagnetism and elasticity theory have been
remarked (Agiasofitou and Lazar, 2017; Lazar and Agiasofitou, 2018b).

1.2.2 Non-conventional Behavior of Highly Contrasted Plates -
Theory and Experiments - Claude Boutin

Claude Boutin, in his contribution “Non-conventional Behavior of Highly Contrasted
Plates - Theory and Experiments”, discussed an effective approach to the description
of highly contrasted plates exhibiting a non-conventional behavior. Two types of
systems have been discussed: stratified plates in which thin inter-layers are softer
than the thick layers, and plates characterized by a periodic 1D or 2D array of
beams (Fossat et al, 2018; Viverge et al, 2016). A validation of the approach has
been discussed in terms of numerical simulations and experiments. In particular,
for the stratified plates it has been highlighted the role of inter-layer sliding as
an additional kinematical descriptor. Such an enlarged kinematics allows for a tri-
Laplacian formulation able to furnish analytical solutions under standard simple
loadings. The dynamics of 1D and 2D beams stiffened plates has been analyzed in
the final part of the talk. The different modeling approaches for the two cases allow
for the investigation of non-typical wave dispersion in presence of high geometrical
and mechanical contrast between the structural components (see also Boutin and
Viverge, 2016; Boutin et al, 2020; Gazzo et al, 2020).
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1.2.3 Pantographic Metamaterials - Francesco dell’Isola

Francesco dell’Isola presented a keynote lecture titled “Pantographic Metamateri-
als”. During the lecture, the main features and the state of the art of this mechanical
metamaterial (Alibert et al, 2003; dell’Isola et al, 2015b) have been carefully re-
viewed and discussed (dell’Isola et al, 2019b,a; Placidi et al, 2016; Barchiesi and
Placidi, 2017). In particular, it has been stressed the crucial role of the interplay
between fast-prototyping techniques such as 3D printing and the mathematical de-
scription of this complex system. An extended discussion was made, with the aid of
several theoretical (Eremeyev et al, 2018; dell’Isola and Steigmann, 2015; dell’Isola
et al, 2016; Steigmann and dell’Isola, 2015), numerical (Turco et al, 2016a; Giorgio,
2016; dell’Isola et al, 2017a; Maurin et al, 2019; Greco et al, 2017; Giorgio et al,
2016, 2017; Turco et al, 2017a; Scerrato et al, 2016; Giorgio et al, 2018a, 2019; Scer-
rato and Giorgio, 2019) and experimental results, of the static (Turco et al, 2017b;
Golaszewski et al, 2019; Barchiesi et al, 2018a, 2019a, 2020b; Nejadsadeghi et al,
2019; Yildizdag et al, 2020) and dynamical Laudato and Barchiesi (2019) behavior
of this system. In the final part of the talk, an analysis of the rupture mechanism of
the system under quasi-static boundary conditions has been presented, highlighting
the possible technological applications of this metamaterial. In particular, it has
been shown that pantographic materials show three different deformation regimes.
In the first one, the relation between relative displacement of the specimen and the
total deformation energy is quadratical and consequently the resultant forces de-
pends linearly on the displacement. In the second regime, the system is still in an
elastic regime, although the forces do not depend linearly on the relative displace-
ment. Finally, in the last regime the rupture of the systems starts but the resultant
force continues to increase with the displacement up to the final rupture. The final
value of the force is several times greater that the maximum obtained in the linear
regime. As a consequence, the total energy needed to reach the ultimate failure of
a pantographic material is larger that the maximum stored elastic energy. This is a
remarkable property reinforced by the advantageous weight/resistance to extension
ratio. One of the aspects of the utmost importance to be underlined here is that the
pantographic metamaterial is a concrete example of material whose energy must
incorporate second gradient terms at a macroscopic level of observation (Mindlin,
1965; dell’Isola et al, 2017b, 2015c).

1.2.4 Convected Stress and Balance Equations - Salvatore Federico

A rigorous mathematical formulation of the spatial equation of balance of linear
momentum in field theories has been discussed in the talk “Convected Stress and
Balance Equations” by Salvatore Federico. In particular, a fully material form of
the vectorial equation of balance of linear momentum in terms of the so-called
convected stress has been discussed (Alhasadi et al, 2019). By means of the pull-
back by the so-called configuration map φ, it is indeed possible to define convected
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accelerations A = φ∗a, convected body forces B = φ∗b and convected divergence
which is computed in terms of the Levi-Civita connection associated with the pull-
back via the configuration map of the metric tensor C = φ∗g. Finally, it has been
highlighted the relations between the geometrical meaning of convected stress and
its relation with the Piola–Kirchhoff stress tensor. In particular, the convected stress
is power conjugated to the convected deformation rate, i.e. the Lie derivative of the
pulled-back metric C with respect to the convected velocity. Therefore, it is possible
to consider the convected stress as a geometrically meaningful alternative to the
second Piola–Kirchhoff stress tensor. We refer also to the papers by Federico et al
(2019); Epstein (2009); Grillo et al (2016, 2005) for some more details.

1.2.5 Singularity-free Point of Defects: Gradient Elasticity of
Bi-Helmholtz Type - Markus Lazar

In the talk by Markus Lazar, “Singularity-free Point of Defects: Gradient Elasticity of
Bi-Helmholtz Type”, a non-singular continuum theory of point defects based on the
bi-Helmholtz second strain gradient elasticity theory has been presented. The non-
singular expressions of the displacement field, the first displacement gradient, and
the second displacement gradient which have been derived in this setting have been
discussed. Furthermore, plastic distortion and the gradient of plastic distortion appear
to be dependent on a form factor and their expression is non-singular. By means of
this approach, the interaction energy and the interaction force between two dilation
centers and for one dilation center in the stress field of an edge dislocation have
all non singular expression (Lazar et al, 2006; Lazar, 2013). The main advantages
have been discussed in the last part of the seminar in which applications on the
computation of finite self-energy of a dilation centre have been shown (Lazar, 2019).

1.2.6 Influence of Randomness in Topology and Geometry on the
Stiffness of Different Networks Generated from the Same
Graph - Uwe Mühlich

Uwe Mühlich presented a talk titled “Influence of Randomness in Topology and
Geometry on the Stiffness of Different Networks Generated from the Same Graph”.
The main goal was to present a Ising model aimed at describing the relations between
the characteristic of a random network and the effective materials Mühlich et al
(2015). During the talk, different networks obtained from the same initial graph
have been analyzed when undergoing to an overall strain. In particular, different
realizations of the network can be realized by varying the ratio between the numbers
of diagonals of different type and a regularity measure. By means of the interpretation
of the edges of the network in terms of truss and beams it is possible to study in this
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way mechanical systems undergoing an overall strain. The correlation between the
strain energy density and the matrices describing an effective media theory defined
on these networks, such as degree matrix, adjacency matrix and incidence matrix,
has been discussed in the last part of the talk. Moreover, for the sake of completeness,
some useful concepts can be find in Zybell et al (2014); Mühlich et al (2012, 2009).

1.2.7 Homogenization of Metamaterials with Strain Gradient
Effects Based on Asymptotic Analysis - Hua Yang

In the contribution by Hua Yang, “Homogenization of Metamaterials Based on
Asymptotic Analysis by Considering Strain Gradient Effects”, the role of asymptotic
analysis in homogenization procedures has been discussed (Abali et al, 2017). It has
been shown how to involve, in this approach, higher order terms in the asymptotic
expansion of the microscopic deformation energy (Yang et al, 2018). In particular,
once a constitutive strain gradient law is defined by assuming the equivalence be-
tween strain energy at micro and macro scale over a representative volume element,
the deformation energy is developed in an asymptotic series in which the higher
order terms are kept in order. Their role is to model the emergent effects of the
microstructure at the macroscopic scale. The dependence of this method on the char-
acteristic of the representative volume element has been discussed in the final part
of the talk. A useful assortment of papers about the considered topic can be listed as
follows (Andreaus et al, 2016; Giorgio et al, 2018b; De Angelo et al, 2019a; Placidi
et al, 2017; Turco et al, 2018; Abali et al, 2015, 2019; Yang et al, 2019).

1.2.8 Experiments Performed on Additively Manufactured
Pantographic Structures, Validated by Digital Image
Correlation - Gregor Ganzosch

Gregor Ganzosch, in his talk “Experiments Performed on Additively Manufactured
Pantographic Structures, Validated by Digital Image Correlation”, discussed the
design, additive manufacturing, experimentation, and data analysis of particular
examples of pantographic beams and bi-pantographic fabrics. Similarly to panto-
graphic structures, bi-pantographic materials shows wide elastic range during the
compliant phase followed by a stiffening when the total strain increases. The math-
ematical description of the behavior of this kind of system requires therefore higher
gradient models. Indeed, 2D pantographic and bi-pantographic materials represent
two paradigmatic examples of complete second gradient continua in plane. The
results of these investigations have been described, highlighting the presence of
buckling phenomena and the high resilience-to-weight ratio exhibited by the various
specimens Ganzosch et al (2016). In particular, the presence of non-negligible local
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buckling phenomena for specimens undergoing shear tests has been discussed. For
an overview about the subject, we refer to the papers by Misra et al (2018); Gan-
zosch et al (2018); Juritza et al (2019); Turco (2019); dell’Isola et al (2020, 2019c);
Barchiesi et al (2020a); Tran et al (2020).

1.2.9 Dynamics of 2D Pantographic Metamaterial: Numerical and
Experimental Results - Marco Laudato

Marco Laudato, in his contribution “Dynamics of 2D Pantographic Metamaterial:
Numerical and Experimental Results”, has shown the results of his investigation
on the dynamical behavior of 2D pantographic fabrics. The comparison between
numerical simulations and digital correlation based experiments has been discussed
Laudato et al (2018, 2019); Barchiesi et al (2018b). Finally, some information on
the spectral properties of this system has been drawn. In particular, the system
under investigation was a rectangular pantographic material with one of its short
sides clamped to the ground and with the other one undergoing a sinusoidal small
oscillation. Under the assumption of linear temporal invariance, the behavior of the
system has been analyzed by fitting the displacement vector field in time of the
elements of a discrete mesh with a generic sinusoidal function. The proposed linear
second gradient model and the experimental observations have been compared by
analyzing the distribution of the fit parameters on the geometric domain of the sample
(see also Battista et al, 2015, 2017; Eremeyev et al, 2019; Eremeyev and Sharma,
2019; Eremeyev, 2019).

1.2.10 Pivots Damage Mechanism in Metallic Pantographic
Structures: An Overview - Mario Spagnuolo

A comprehensive analysis of the behavior of pivot damage in metal pantographic
structures has been the main topic of the talk “Pivots Damage Mechanism in Metallic
Pantographic Structures: An Overview” by Mario Spagnuolo. The relation between
the geometrical features of the pivots and the spatial localization of failure signatures
of the structure have been discussed (Spagnuolo et al, 2017; De Angelo et al, 2019b).
In particular, it has been remarked that in planar rectangular pantographic specimens
under bias extension tests the first sign of damage has been always observed in
one of the corners of the sheet. By varying the geometric features of the pivots,
the localization of such failure points can appear in different places and, more
remarkably, can be forecast on the basis of the shear or torsion of the pivots (see,
e.g., Spagnuolo et al, 2019; Turco et al, 2016b; Placidi et al, 2018; Placidi and
Barchiesi, 2018; Andreaus et al, 2018).
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1.3 Conclusions

What emerges from the contributions of the symposium “Perspectives in Generalized
Continua” is the central role of the generalized continua framework in the modern
approach to Solid Mechanics. Indeed, from the discussions outlined in the previous
section, the width of applications of this approach is evident. A paradigmatic exam-
ple is the branch of the theoretical and experimental analysis of the pantographic
metamaterial. It has been shown that this system has to be modeled in terms of a gen-
eralized theory of elasticity. Of course, this is a powerful tool and it has been already
exploited in other areas of investigation. Successful examples are the study of defects
and dislocations, multi-physics applications such as the coupling of mechanical sys-
tems with electromagnetism, high contrast materials, etc. During and after the talks,
several discussions have animated the symposium. Indeed, there are several open
problems in this framework (e.g. the role of the inertia) that have to be tackled by the
community and that have been outlined during the conference. The importance of
events like the International Conference on Nonlinear Solid Mechanics 2019, to this
regard, should not be underestimated. They represent the perfect chance for scientists
from different fields to confront and to establish new collaborations. The symposium
Perspectives in Generalized Continua can be considered a successful example of
this paradigm. Indeed, thanks to the judicious work made by the chairmen and to
the stimulating atmosphere provided by the venue, Palazzo Argiletum in Rome, new
collaborations and ideas for future works have been created. In forthcoming papers,
the contents of other symposia will be reported. The hope of the authors is to help
the spreading of the new interesting ideas that catalyst events like ICoNSoM 2019
help to create.
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Chapter 2
Failure Prediction of Tumoral Bone with
Osteolytic Lesion in Mice

Benjamin Delpuech, Stéphane Nicolle, Cyrille B. Confavreux, Lamia Bouazza,
Philippe Clezardin, David Mitton, and Hélène Follet

Abstract Pathological fractures due to bone metastases remain difficult to predict.
The aim of this study is to assess whether a model taking into account tumor-specific
geometry and mechanical properties improves assessment of bone failure, and to
determine which criterion has to be taken into account to improve failure detection.
To achieve this aim, an osteolytic mice model was considered. Tumoral cells were
injected intra-tibially to induce a tumor in the bone. After six weeks, eight mice
were sacrificed. Tomographic (μCT) images were obtained to build subject-specific
finite element models. A compression test was performed on each tibia and used to
assess the finite element models. Implementation of tumor geometry and mechanical
properties did not provide better failure prediction in comparison to models based
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on μCT grey levels. The average difference with experiments reached respectively
(23 ± 22% and 12 ± 7%). Considering a detection criterion based on the percentage
difference between bone global ultimate load and bone local ultimate load (with
a region of interest surrounding the tumor) allowed detection of all bones that
experienced a partial failure. A next step will be to assess this failure criterion on
human bones to help clinicians in decision-making.

Keywords: Bone metastasis · Fracture prediction · Finite Element Analysis · Ex-
perimental tests · Mice

2.1 Introduction

The skeleton is the third most common localization of metastases (Du et al., 2010).
Metastases usually develop in the vicinity of the bone red marrow in the spine and
proximal long bones. Even if radiological aspects of bone metastases are “lytic,”
“blastic” or “mixed,” these features all impair bone strength and increase bone
fragility (Wong and Pavlakis, 2011). Pathological fractures are responsible for pain,
altered quality of life, comorbidities and are associated with a reduction in overall
survival. Nevertheless, pathological fractures remain difficult to predict even for ex-
perienced surgeons (Attar et al, 2012). In 1982, Mirels suggested a scoring system to
predict failure risk in long bones (Mirels, 2003). Their system was developed based
on a retrospective study of 78 metastatic long bone lesions. Mirels’s score is based
on four criteria: lesion site, size, degree of sclerosis/lysis and pain (Mirels, 2003).
To evaluate Mirels’s score, Van der Linden et al. led a retrospective study including
102 patients with metastatic femora of whom 14 suffered a fracture during follow-
up (Van der Linden et al, 2004). Each patient lesion was rated using Mirels’s score.
Among the considered cases, 84 (82%) would have been surgically overtreated while
13% of the lesions without fracture were detected at low risk (Van der Linden et al,
2004). Implementing a threshold on metastases with axial cortical involvement re-
duced overtreatment to 42% (Van der Linden et al, 2004). As surgical overtreatment
has a large impact on quality of life for patients, especially when they have limited
life expectancy (Van der Linden et al, 2004), a more accurate failure risk predictor
would be useful for physicians. Interestingly, most cancer patients undergo regular
whole body Computed Tomography (CT) to assess cancer progression and guide
oncological treatment. Up to now, such quantitative CT data has not been used to
assess fracture risk and the decision relies on surgeon expertise. Nevertheless, CT
data may be used to predict bone metastasis strength using Finite Element Analysis
(FEA). This strategy has already been tested to assess fracture risk in osteoporosis,
and the results were quite interesting (among others, Bessho et al, 2009; Duchemin
et al, 2008; Keyak et al, 2001; Kopperdahl et al, 2014; Zysset et al, 2013). More
recently FEA was used as a potential tool to improve failure prediction of metastatic
bones (Benca et al, 2017, 2019; Derikx et al, 2012; Eggermont et al, 2018; Good-
heart et al, 2015; Keyak et al, 2005; Tanck et al, 2009). In an ex vivo study with
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mechanically-induced defects, FEA in this condition outperformed clinical experts
(Kendall’s tau of 0.78 for FEA against 0.5 ± 0.03 on average for six clinical experts
(Derikx et al, 2012)). The main limitation of this study was the comparison with
mechanically-induced defects which are far from real metastases. To overcome this
limitation a clinical retrospective study was led by the same team (Eggermont et al,
2018). In that study, 39 patients with non-fractured femoral metastatic lesion were
included. Each patient was followed for six months, until femoral fracture or death
(whichever occurred first) (Eggermont et al, 2018). Results agreed with previous
studies, showing better prediction with FEA (sensitivity (correctly identifying clin-
ical fractures) of 89% versus 0% to 33% for clinical assessments). Even though
the difference is incommensurate with previous cited results, it has to be noted that
clinicians scored a higher specificity than FE models (specificity (correctly iden-
tify cases that do not fracture), which was 79% for the FE models versus 84% to
95% for clinical assessments), leaving room for improvement. However, studies on
metastatic bones are difficult to perform, as samples are uncommon. Thus, mice
have been widely used as a skeletal model(Fritton et al, 2005)in preclinical studies
(Slosky et al, 2015) and even a biomechanical cancer study (Mann et al, 2008) to
create tumoral bones. Thus, we decided to consider a mice model to obtain bone with
a biologically-induced tumor (lytic). Based on this mice model, our aim was twofold.
First, create and assess a FE model taking into account specific tumor properties to
predict failure of tumoral bone in a lytic lesion. Second, consider a simpler model
(relying only on elastic properties) to evaluate failure criteria taking into account a
global and local analysis.

2.2 Material and Methods

The overall process of our investigation is presented in Figure 2.1. Since we used
human cell lines, experiments were performed in immunocompromised six-week
old BALB/c nude mice (Janvier Laboratories®). Protocols received approval of the
University Claude Bernard Lyon I Ethical Committee for Animal Experimentation
(DR2015-39). To assess tumoral tissue mechanical properties, subcutaneous tumori-
genesis experiments were performed on mice. In addition, a human specimen was
collected during surgery of a patient with a myeloma lytic lesion of the hip (au-
thorization number: CT 69HCL19_0266). On different mice, intra-tibial injections
were used to create bone metastases in limbs.

2.2.1 Tumorigenesis

A first group composed of BABL/c nude female mice (n = 4) was created in order
to assess tumoral tissue Young’s moduli. Mice were anesthetized using an induction
box with a 1 L air/min stream, 3% isoflurane concentration, and maintained with a
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Fig. 2.1 Global Study workflow.

mask at the same stream, 2% isoflurane. The mice were then subcutaneously injected
with MDA-B02 human breast cancer cells (106 cells in 100 μL Phosphate Buffered
Saline –called PBS– solution using a 1 mL syringe, Myjector 070151, Terumo
Japan). After injection, tumor development was followed up through palpation, and
as soon as possible, tumors were measured with a caliper. When the tumor reached
about 1 cm in diameter without apparent necrosis, animals were anesthetized using
once again isoflurane, sacrificed via cervico-dislocation, and the tumor was excised
and stored in liquid azote for same-day testing.

2.2.2 Rheological Tests on Tumor and Soft Tissues

Each mice tumor (≈ 1 cm in diameter ball) was sliced into 800 μm thick slices
using a home-made double-scalpel. First a B02 tumor allowed for slicing into four
slices, while a second provided 6 slices, the third 1 slice, and the fourth 2 slices.
Normal tissues (skin, muscle, and fat) were also collected and provided respectively
17, 15, and 7 slices to obtain the rheological properties of normal tissues. The human
myeloma sample was also sliced with the same tool and provided 13 slices. Each
slice was then placed between two glass slides equipped with a variable gap in order
to precisely measure the thickness and the surface of the slice. The sample was
then placed in a custom rheometer and subjected to small-displacement harmonical
shearing between 0.1 and 10 000 Hz (Nicolle et al, 2005). This test allows the
determination of the frequency-dependent shear modulus (dynamic shear modulus)
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of the tissue. Assuming that the deformation process is quasi-static during the test
and that the tumor tissue has a linear elastic behavior in a first approximation (Fung,
2013), a low frequency modulus was chosen to characterize each tumor tissue in
our specific FE models. Since Young’s modulus is required in FE software when
using a linear elastic law, the dynamic shear modulus was thus converted to Young’s
modulus by assuming that the tumor tissue is quasi-incompressible (Poisson ratio
= 0.499) as is usually assumed for other soft biological tissues. In this case, it is
demonstrated that Young’s modulus was equal to three times the shear modulus.

2.2.3 Intra-tibial Bone Metastases

Six-week-old BALB/c female mice (n=16) were anesthetized as previously de-
scribed. Mice were injected with tumor cells (n=8) in 15 μL of PBS. The number
of tumor cells injected has been previously determined through a pre-study where
mice were injected with different concentrations to set a reliable model providing
a repeatable lyse at 30 days. Bone metastases development was assessed weekly on
plain radiographs. At day 30, mice were sacrificed by cervicodislocation and limbs
were excised en bloc, to be stored at -20◦C in PBS soaked gauze. Limbs were only
unfrozen on the day of the mechanical test. A first group of eight BALB/c nude
female mice were injected with human B02 tumor cells in the right limbs and PBS
in the left limb (sham limb). A second group, of eight BALB/c nude mice female,
were injected in both limbs with PBS to provide sham limbs. For convenience, this
second group will be further referred to as “control” limbs, while contralateral PBS
injected limbs (first group) will be referred as “sham” limbs. Bone injected with B02
cells will be referred as “tumor” bones (Figure 2.1).

2.2.4 Imaging: μCT Acquisition and Reconstruction

Aμ-CT scan was performed prior to and after the mechanical test.μCT imaging were
performed on a Bruker Skyscan 1176 (Kontiche, Belgium) with a 10 μm nominal
resolution. Each limb was scanned at a 10 μm isotropic resolution (50 kV, 500 μA,
0.5 mm aluminum filter, 0.6◦ rotation step on 180◦). Reconstruction was performed
using scan software (Nrecon 1.7.0.4, Bruker, Kontiche, Belgium) with a smoothing,
ring artefacts correction and beam-hardening correction (parameters respectively
set at 2, 6 and 20%). To ensure density/bone mineral density (BMD) correlation, a
classical phantom created by the scanner manufacturer (Skyscan Bruker, Kontiche,
Belgium) was used, providing two known densities (0.25 g/mm3 and 0.75 g/mm3).
All scans were performed with the same parameters and in the same conditions in
the PBS soaked gauze.
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2.2.5 Compression Tests on Tibia

Before the test, limbs were thawed at an ambient temperature for half an hour. Next,
tibia was separated from the femur at the knee junction, and from the foot at the
ankle, thus removing all tendons linking tibia muscle to other bones. Finally, the
attachment between the tibia and fibula was cut, but soft tissues surrounding the
tibia were kept in place in order to limit any possible damage to the tibia or tumoral
tissue. To avoid excessive buckling, the tibia was embedded in a 5 mm acorn hex cap
nuts stainless steel with methyl methacrylate glue (VariDur ref 10-1027, Buehler,
USA). This allowed the bone to stay intact, while limiting its slenderness. The
proximal end of the tibia was molded using fast epoxy paste (Pattex, Ref 1875423)
and the tibia was imaged imbedded while allowing it to have its exact length once
housed along with its orientation. After μCT imaging, two acorn nuts were put in
place in a previously countersunk loading plateau, creating a ball joint at each end
of the tibia. The mechanical test started with sinusoidal pre-cycling -0.5 N and -2
N for 30 cycles at 0.5 Hz. The destructive test was conducted immediately after
pre-cycling by compressing the tibia at a rate of 0.03 mm/s until failure using an
electromagnetic testing machine (Access 5500, Bose Corporation, Eden Prairie,
USA). Load (with a one-axis load transducer, accuracy 0.03 N) and displacement (3
μm accuracy) were recorded at 60 Hz (WinTest®Digital Control System). A custom
Python program was developed to analyze load-displacement curves to determine
stiffness and the ultimate load on each bone. Briefly, stiffness was determined by
using the derivative of the experimental curve. This was determined using a linear
regression on the longest interval where the derivative function variation was under
±5 N/mm. Ultimate load was defined as the maximum load measured by the load
cell.

2.2.6 FE Model Creation

Two different types of models were created, one converting grey levels in the images
into mechanical properties as proposed in the literature (Keyak et al, 2005), called
“heterogeneous,” while the other model took into account tumoral tissue mechanical
properties (obtained by rheology) called “specific.” Results from both mice and
patient tumor rheological tests were implemented in these specific models.

“Heterogeneous models” were based on reconstructed and straightened μCT
scans, while the volume occupied by each bone was converted to generic surface
mesh (STL files) from 8-bit images using the scanner manufacturer’s software (CTan
1.16.4.1+, Skyscan Bruker, Kontiche, Belgium) and open source software (3DSlicer
4.8.1, various developers). This surface mesh was then refined (MeshLab ν2016.12,
CNR, Roma and ISTI, Pisa, Italy), converted to a volume, and meshed using tetra-
hedron elements thru FEA software (Ansys 19.0, Ansys inc., Canonsburg, Penn-
sylvania, USA). Academically-developed software was then used to correlate bone
density to the Young’s modulus of each element of the model (Bonemat, Istituto
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Fig. 2.2 A) Example of tibia μCT reconstruction with cross-sectional view: Sham tibia on left and
tumoral tibia on right, B) Boundary condition for FEA, load is applied on top “a” elements,
displacement is blocked on bottom “b” elements , C) Heterogeneous model, D) Specific model,
tumor can be seen on light grey on the top of bone, E) Global analysis on the entire bone , F) Local
analysis focused on the location of the tumor.

Ortopedico Rizzoli, Bologna, Italy) using a published relationship to convert μCT-
derived volumetric density to elastic modulus (equation (15.1)) (Easley et al, 2010).
A threshold at 0.31 HA g/mm3 was applied in order to prevent an unrealistic Young’s
modulus in the shaft due to a beam hardening effect. These heterogeneous models
were created for all study groups (control, tumor and sham groups). Finally, models
with implemented Young’s modulus:
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E = 11270 ρ1.746 MPa , (2.1)

were taken back to Ansys, in order to perform FEA. In order to build “specific”
models, a tumor was segmented from the bone, assuming that tumoral tissue would
be where the bone disappeared. The resulting volume was subtracted from the bone
volume and both were meshed independently. The mechanical properties of the
tumoral tissues were derived from the rheological tests. Mechanical properties of
bone volume mesh elements were attributed in the same way as for the heterogeneous
model.

2.2.7 FEA Specifications

In order to mimic the experimental compression test, the first top millimeter of the
bone was selected and set as a rigid body. In the first step, an axial force equal to
the ultimate load was applied to this selection while the distal bone elements were
fixed to represent the embedding. The stiffness from the simulation is assumed to
be the slope linking the origin to the point representing the displacement due to the
applied load. The simulated stiffness was optimized to fit the experimental stiffness.
The applied load was modified, implementing the contribution on X and Y axes.
These axes were not measured during the experiments (uniaxial force sensor). The
limit for these contributions was set to 20% of the axial force for the sum of the loads
on the X and Y axes.

2.2.8 Mesh Element Size Convergence Study

It is generally accepted that an optimal mesh density exists, allowing for the most ac-
curate solution with the smallest possible amount of elements (Burkhart et al, 2013).
This is commonly determined through the use of a convergence study (Burkhart et al,
2013). This convergence study was done on the same bone, meshed with a different
number of elements. Studied models included 10 k, 100 k, 200 k, 300 k, 400 k, and
500 k elements. To prevent a double variation due to variation in element size be-
tween models and variation in mechanical properties, a constant Young’s modulus
of 20 GPa was applied with a threshold at 0.31 HA g/mm3. As the failure criteria
used is based on strain, the sensitivity study was done with an average strain energy
density.



2 Failure Prediction of Tumoral Bone 25

2.2.9 Failure Criterion Parameters Determination

As our model is purely elastic, no damage to the elements is recorded and a criterion
is needed to assess failure. Pistoia et al (2002) proposed such a criterion on human
radii, and defined failure as reached when 2% of the bone meshed volume reaches
0.007 or more in strain. Nyman et al. reworked this in order to adapt it to mice
vertebrae (Nyman et al, 2015). To assess the best couple of parameters in the current
study, failure volume (FV) was set at 2, 4 and 6%, while failure strain (FailStrain)
was set at 0.007, 0.0085, and 0.01. Root Mean Square Error of Estimate (RMSE)
was minimized while maximizing R2 (as close as one). One parameter was added to
the comparison from the Nyman et al (2015) study: the slope, which had to be the
closest to one as possible in order to avoid under or overestimations of failure load.

2.2.10 Regions of Interest for Failure Assessment

Two different analyses of the same simulation were performed in order to test failure
detection sensitivity. The first analysis took into account the entire bone volume
(except bone embedded in resin) and will be further referred to as “global” analysis
(Figure 2.2E). Another analysis took into account only the three millimeters of bone
below the load application selection, referred as “local” analysis (Figure 2.2F). This
region of interest corresponded to the lyses location of tumoral bone due to the
intra-tibial injection.

2.2.11 Statistical Analysis

Statistical analysis was performed with R software (RCore TEAM, 2016) using a sig-
nificance level of 5%. All tests were two-tailed. Results were reported as a scattergram
and Bland-Altman’s representation. Bland-Altman’s differences were calculated as
experimental ultimate load-numerical ultimate load values. Dotted lines represented
the lower and higher limit of agreement (95% confidence interval (CI) of limits
of agreement: average difference ± 1.96 standard deviation of the difference) and
the pecked line represented the average difference. Statistical correlations between
experimental and FEA ultimate loads were assessed using Spearman’s rank correla-
tion (ρspearman) test. Group comparison was ascertained by Mann-Whitney’s unpaired
test. The ability of FEA to predict sample ultimate load was ascertained by linear
regression to determine the intercept, the slope and the Root Mean Square Error of
Estimate (RMSE (Equation (15.2)), representing the square root of the differences
between simulated failure load and predicted failure load (i.e., linear regression be-
tween experimentally measured peak force and simulated failure load of each tibia,
with
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RMSE =

√∑
(y − ȳ)2

n− 1− p
(2.2)

2.3 Results

Raw data are presented in Table 2.1.

2.3.1 Rheological Results

Mice harvested tumor tissues showed stronger mechanical properties than other soft
tissues. Dynamic modulus of the tissues reached ten times the fat tissue and twice
that of the skin and muscle tissues. After conversion, the value of 0.0225 MPa was
used for tumoral tissue Young’s modulus. The human myeloma sample obtained
during surgery had a dynamic modulus 10 times superior to the one obtained on
mice samples, given after conversion of a Young’s modulus of 0.3 MPa.

2.3.2 Sham and Control Limbs Comparison

No differences were found in the experimental ultimate load between the two groups
of sham and control (p=0.77). Therefore, sham and control limbs were pooled for
the rest of the analyses.

2.3.3 Mesh Element Size Convergence Study

The 200k element model was chosen because its strain density was close to those of
the 500k model (2% on average strain density) and provides a reduced computational
cost. Thus, the mesh was composed of elements of 0.0001 mm3 in volume, a mean
surface element of 0.018 mm2 and an average edge of 0.18 mm.

2.3.4 Results for Heterogeneous Models

The Mouse 8 tumor limb experienced a local fracture before overall failure of the
entire structure and was removed from this comparison. The Mouse 9 left control
limb was also removed from the analysis due to a fall experienced prior to test. All
other limbs were pooled (n=30) for the assessment of the heterogeneous model. FEA
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Table 2.1 Raw data of the study.
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ultimate load showed good agreement with experimental ultimate load (11±8%
difference on average and in absolute value) along with a low RMSE (2.78), an
acceptable R2 (0.65) and slope (0.7) (Figure 2.3A). A significant correlation was
found between the numerical ultimate load and experimental load when considering
all samples (ρspearman=0.69, p<0.001) (Figure 2.3A). The mean difference on the
Bland-Altman’s graph is 0.56. When only the tumoral samples are considered, there
is no longer significant correlation (ρspearman=0.75, p=0.052), even if RMSE=2.99
and R2=0.85, with a mean difference on the Bland-Altman’s graph of -0.71 (Figure
2.3B).

2.3.5 Specific Model Results

The Young’s modulus considered for the seven specific models was the one obtained
on mice subcutaneous tumors (E = 0.0225MPa). The ultimate loads predicted via
FEA showed a lower agreement with the experimental results than their heteroge-
neous counterpart (23 ± 22% difference on average and in absolute value). The
RMSE remained low (3.66), the R2 and slope were respectively 0.79 and 1.33. The
two methods were significantly linked (ρspearman = 0.77, p = 0.041) (Figure 2.3B).
The mean difference on the Bland-Altman’s graph is -0.11 (Figure 2.3C). When us-
ing the Young’s modulus determined on a human myeloma sample (E = 0.3MPa)
the agreement between the two ultimate loads improved as RMSE stayed at the same
value (3.55), R2 and slope values increased (respectively 0.81 and 1.38) as did the
correlation (ρspearman = 0.86, p = 0.014) (Figure 2.3C). The mean difference on the
Bland-Altman’s graph is −0.31 (Figure 2.3D).

2.3.6 Global and Local Analysis

Local analyses were compared to experimental data in order to provide enlightenment
on disruption in load-displacement curves or low fracture (Figure 2.4D). Figure
2.4 shows an example of the different types of experimental curves obtained. For
both control and sham limb (without tumoral cells), the experimental behavior
corresponded to a classical compressive test on live material (Figure 2.4A)&B)).
The same behavior is sometimes also obtained on tumoral limbs (Figure 2.4C), but
can also show a total different behavior, which suggest a different analysis (Figure
2.4D, same scales for all graphs) When using the threshold of 20% between local and
global ultimate loads, it is possible to detect all bones that experienced a disruption
in their loading curves (Figure 2.5), which correspond to five of eight tumoral limbs.
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Fig. 2.3 On left, linear regression between experimental ultimate load (N) and Numerical ultimate
load and on the right, Bland & Altman graph representing the difference between the numerical
ultimate load and the experimental load in function of the mean of the two parameters, for the
following A) all sample, using a heterogeneous simulation (n = 30), B) tumoral sample using a
heterogeneous simulation (n = 7), C) tumoral sample using a specific Young’s modulus for the
simulation (n = 7), here breast cancer (B02), D) tumoral sample using a specific Young’s modulus
for the simulation (n = 7), here myeloma cancer (Myeloma).
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Fig. 2.4 Example of typical experimental curves. A) Control mice, B) Sham limb, C) Tumoral
limb, D) Tumoral limb requiring a local analysis. Same scales are used for all graphs.

Fig. 2.5 Percentage of the difference between global and local ultimate loads for all limbs, ordered
by pairs (left and right tibias, with white bars: control limbs, grey bars: sham limbs and black bar:
tumor limbs). The dot line represents a threshold at 20% allows to distinguish limbs with partial
failure (five limbs upper the line experienced partial failure).
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2.4 Discussion

The aim of this study was to assess FE models taking into account specific tumor
properties to predict failure of tumoral bone in lytic lesion in mice. Additionally, a
failure criterion was assessed to discriminate a limb with lower strength. The FE
model with specific tumor properties did not improve prediction of the experimental
failure load compared to a heterogeneous FE model based on CT grey levels. In
this first study, the tumoral samples came from subcutaneous tumors. The tumoral
properties of bone metastases might be different than these subcutaneous tumors. The
mechanical properties of the bone metastases should be quantified in future work.
The agreement between the heterogeneous FE model and the experiments obtained in
the current study on biologically induced tumor confirms previous results obtained
on human bones with mechanically induced defects (Benca et al, 2019) (Tanck
et al, 2009). A failure criterion based on the difference between the failure load
assessed in the entire tibia and the failure load assessed in a region of interest
close to the tumor allowed us to distinguish different strengths (Figure 2.5). The
criterion is based on a local region of interest of 3mm around the tumor. This
value is arbitrary. The sensitivity of this value should be assessed in future work,
especially when considering other bones in mice or human bones. However, this
principle opens new perspectives for FE model prediction. This study has several
limitations. The rheological approach was considered to assess Young’s modulus of
the soft tissues, which induces many assumptions. This limitation was known in the
study design, however, this methodology was considered because it is a reference
approach (Nicolle et al, 2005) for quantifying soft tissue properties (especially in
cases of small samples) and allowed for a comparison between tumors and other soft
tissues. The compression test on the tibia had a limitation due to the definition of the
loading conditions. The orientation of the tibia according to the loading direction
is not known because we decided to keep soft tissues surrounding the tibia so as
to not damage the tumor during the dissection. As a consequence, an optimization
of the loading conditions was done prior to the simulation of the failure load. A
third limitation was the use of an isotropic FE model that is purely linear elastic,
whereas bone is in fact an anisotropic and elastoplastic material. Indeed, tumoral area
could also be modeled with a mixture theory as done by (Lekszycki and dell’Isola,
2012), (Giorgio et al, 2016),(Madeo et al, 2012). Despite this simplification, the
prediction model is promising. These results have to be confirmed on human bones,
but the simplicity of the model could be of interest for clinical applications. A fourth
limitation is related to the tumoral properties. The mechanical properties of bone
metastases were not quantified. No data were available and the human myeloma
sample and the subcutaneous tumors in mice might have different properties from
the bone metastases. This should be assessed in the future.
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2.5 Conclusion

The results obtained from a specific model using the mechanical properties of a
tumor (coming from subcutaneous samples or human myeloma) did not improve
failure prediction compared to heterogeneous models. Heterogeneous models were
more consistent with experimental data than specific models (respective difference
with experiments 11% and 23%). Interestingly, we were able to improve the failure
assessment of tumoral bone by comparing a global bone analysis with a local analysis
(in a region of interest surrounding the tumor). We found that a threshold of a
20% difference between local and global ultimate loads, allowed for the successful
differentiation of all tumoral samples. This new prediction approach might be very
useful in human bones to help clinicians in their decision-making.
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Chapter 3
Automatic Classification of Intramuscular EMG
to Recognize Pathologies

Alban Gallard, Konstantin Akhmadeev, Eric Le Carpentier, Raphaël Gross,
Yann Péréon, and Yannick Aoustin

Abstract This paper proposes to assess the relevance of new automated tools for
electromyography (EMG) analysis, in order to differentiate neuropathic from myo-
pathic patterns. The challenge is to define the diagnosis with only one iEMG signal
per patient. Our proposed method uses the decomposition of the EMG signal to char-
acterize motor unit action potentials (MUAPs). The decomposition of each iEMG
signal is carried out with EMGLAB. For each signal, the decomposition provides a
code which is used by the automated classification algorithms. We use here the linear
Support Vector Machine (SVM) and the Bagging Trees methods. For the learning
process we use several EMG signals and in different parts of the muscle. Only one
recorded electromyography EMG signal per subject is used for the diagnostic test.
We evaluate the k−fold cross-validation and the confusion matrix for both models.
The accuracy is 77.3% for the SVM and 68.2% for the Bagging Trees. These are the
first developments of this tool to make it useful for clinical practice.

Keywords: Quantitative electromyography · Motor unit action potential · Classifi-
cation · Support Vector Machine · Bagging Trees
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3.1 Introduction

Electromyography (EMG) is used in routine in clinical practice. Electrodes are
inserted into the muscle (intramuscular EMG, iEMG) or placed on the skin (surface
EMG, sEMG) to record the muscular electrical activity. The measured EMG signal
is a sum of elementary contributions. Each contribution is a wavelet train produced
by a motor unit (MU) in the electrode vicinity. A MU corresponds to a spinal
motoneuron (MN) and the muscle fibers it innervates (Heckman and Enoka, 2012),
and the wavelet is called the Motor Unit Action Potential (MUAP). A variation of
muscle activation level produces a variation of the number of active MUs in a process
called “spatial recruitment,” and a variation of the discharge rate (that is the number
of MUAPs per time unit) of the active MUs, called “temporal recrutement.”

EMG signals study can be used to detect neuromuscular diseases. It provides
information in favor of either muscle lesions (so-called myopathic pattern) or nerve
lesions (so-called neuropathic pattern). Nerve and muscle lesions affect both indi-
vidual MUAP characteristics and recruitment pattern during contraction. In routine,
neurologists assess both through a visual and auditory analysis, but differentiating
normal recordings from myopathic or neuropathic ones can be difficult with possible
misdiagnosis (Pereon, 2015; Harwood et al, 2012).

EMG can also be used to gain knowledge about the neuromuscular mechanisms
involved in the force and movement control. For example, in Gross et al (2016),
EMG data and capture motion data are used to analyze children walking along a
curved path. This study investigated the EMG activity in the lower limbs of typically
developing children during turning trajectories with increasing curvature resulting
from changes of direction towards targets, and evidenced that differences exist in
curved compared with straight walking.

Despite the medical doctors’ expertise a purely descriptive approach is not suffi-
cient. An automated analysis can lead to an objective diagnosis minimizing observer
bias, (Dorfman and McGILL, 1988). For a few decades now different approaches
have been proposed for rendering the EMG examination more quantitative and more
automatic to permit precise interpretation of the findings, to minimize observer bias,
to facilitate comparative studies over time for different methodologies. An automated
analysis relies on a preliminary decomposition of the processed signal, that is the
separation of the active MUs contributions together with MUAPs shapes and trains
characteristics estimation, to provide EMG features. Pattichis et al (1995) proposed
artificial neural networks for the automatic classification of EMG features, which
are recorded from normal individuals and patients suffering with neuromuscular
diseases. In the field of machine learning, Katsis et al. used a Support Vector Ma-
chine (SVM) algorithm (Katsis et al, 2006), or a radial basis function network and
a decision tree (Katsis et al, 2007) for automated EMG decomposition and MUAPs
classification. Let us remark that several methods exist to carry out this automated
EMG decomposition: the Convolution Kernel Compensation (CKC) (Holobar and
Zazula, 2007; Holobar et al, 2009), Monte Carlo Markov Chain based decomposition
(Ge et al, 2011), Bayesian filtering based on a hidden Markov model of the intra-
muscular EMG (iEMG) (Monsifrot et al, 2014). They allow a full decomposition of
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single-channel iEMG signals produced during contractions at moderate force levels
but presenting superimposed MUAPs. Farina et al (2001) propose a tool to evaluate
and compare EMG signal decomposition algorithms.

Note that these previous works to help to diagnosis are about the MUAP classi-
fication. Another way can be to make the EMG classification. Pattichis and Schizas
(1996) studied a hybrid diagnostic system that combines both neural network and
genetics-based machine learning models to diagnose certain neuromuscular diseases
from EMG data. 680 MUAP’s are collected from twelve healthy subjects, 11 patients
with neuropathy and 11 patients with myopathy. The experimental protocol therefore
uses 20 MUAPS per patient. Eight people from each group formed the training set,
and the other 10 subjects formed the evaluation set. The considered MUAP parame-
ters are duration, spike duration, amplitude, area, spike area, phases, and turns. Each
subjects are described mean and the standard deviation of each MUAP parameter
in order to characterize the EMG signals and perform the diagnosis. They showed
that the diagnostic performance of neural network genetics-based machine learning
models is enhanced by the hybrid system. In this paper, a unique EMG signal per
subject is used to make a targeted analysis of the MUAP shape, in order to provide
a patient diagnosis based on full recorded iEMG signal classification. This paper is
also focused on the EMG classification. Sadikoglu et al (2017) analyzes the power
spectrum of patients’ EMG signals to describe parameters such as mean frequency,
median frequency, amplitude in terms of root mean square spectral density, min-
imum and maximum. The classification results distinguish between healthy EMG
signals and EMG signals from neuropathic patients. Yousefi and Hamilton-Wright
(2014) provide a critical review of several classification methods including Bayesian
techniques, neural networks, multilayer perceptrons, fuzzy approaches, SVM, and
neuro-fuzzy systems for EMG signal characterization. They conclude that SVM
is a remarkably robust classification method in disease diagnosis. Subasi (2013)
proposed to combine the particle swarm optimization (PSO) and SVM to improve
the EMG signal classification accuracy. The EMG signals are decomposed into the
frequency sub-bands using discrete wavelet transform (DWT). A set of statistical
features are extracted from these sub-bands to represent the distribution of wavelet
coefficients. The presented results show that the strategy is very efficient. However,
the features deduced from the decomposition are not physiologically interpretable.

In this paper, our goal is to mimic the practitioner behavior, that is a combination
of overall aspect of the EMG signal with a more targeted analysis of the MUAP
shape, in order to provide a patient diagnosis based on full recorded iEMG signal
classification. However our method is based on a unique recorded EMG signal
per patient. This method necessarily leads to poorer results than those of Pattichis
and Schizas (1996) but it is less tedious at the level of the experimental protocol.
Since the purpose of this paper is not to compare decomposition tools, we will use
a semi-automatic decomposition by means of the EMGLab software with manual
corrections (EMG, 2007; Florestal et al, 2006). Each signal will be encoded by the
number of active MU, an average MUAP shape and a firing rate for each active MU.
Then, we will focus on the use of machine learning tools for the EMG classification
stage. Two algorithms are considered: the linear SVM (Breiman, 1995; Yousefi
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and Hamilton-Wright, 2014) and the Bagging Trees (Breiman, 1996). The bagging
method is a suitable mean for increasing efficiency of standard machine learning
algorithms, see Machova et al (2006); Gokgoz and Subasi (2015).

This paper is outlined as follows: section 3.2 where presents the decomposition
of the EMG signal, the Motor Unit, the general features of the myopathic and
neuropathic patterns, the features and the classification of the EMG signal; section 3.3
shows the different numerical results; then section 3.4 discusses about these results
and finally the section 3.5 offers our conclusions and perspectives.

3.2 Methods

The method is composed of five steps. First, the decomposition of the EMG signals
gives the MUAPs. Secondly, we need to understand how the MUs work. We also
need to know how the pathologies modify EMG signals and more particularly the
MUAPs. With the second and third steps, the best features to classify the signal
can be found. Finally, the computation of the machine learning algorithms can be
performed with the features created in the previous step.

3.2.1 Data

Miki Nikolic from the Rigshospitalet of Copenhagen presented in his Ph.D thesis
(Nikolic, 2001) an automatic system called EMGPAD to decompose the clinical
EMG signal into its constituent motor MUAPs and their corresponding firing patterns
(FPs). The signals used for this paper were made available by Miki Nikolic on the
website of EMGLab (EMG, 2007; Florestal et al, 2006). Only the Biceps Bracii
muscle has been studied to eliminate variations in EMG in the different muscles.

Five healthy people (age rank 21-37 years) were studied, as well as five patients
presenting with myopathic lesions (age rank 19-63 years) and five patients with
neuropathic lesions (age rank 35-67 years).

3.2.1.1 Preprocessing

The EMG signal was recorded using intramuscular needle electrodes with a cross-
section of 0.07 mm2. A surface electrode has been placed on the limb to allow single
pole work. The signal was measured for 11.2 s in each case.

The signals were amplified 4000 times and filtered with a bandpass filter between
2 Hz and 10 kHz. Then, they were sampled and digitized. The sampling frequency
was 23437 Hz and the digital conversion is encoded with 16 bits processor.

Several measures were taken in different depths and different locations of the
Biceps Bracii muscle to explore it globally.
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3.2.1.2 Decomposition

The decomposition of the EMG signals was performed semi-automatically using
EMGLab (EMG, 2007).

For simple cases, the automatic decomposition was correct. A manual check was
carried out to avoid any errors. For complex cases, the automatic decomposition
created too many errors. Automatic decomposition and manual verification take
longer than manual decomposition alone.

The first step in manually decomposing a signal is to find isolated MUAPs. It is
important to check their repetitions to ensure that they are isolated. Afterwards, each
time the MUAPs are found in the EMG signal, a mark is placed. This allows you to
decompose overlapping MUAPs and find new ones.

The number of signals decomposed for each patient is detailed in the table 3.1.
There are respectively 50 signals for the groups of healthy subjects and patients
with myopathy. There are 45 signals for the neuropathic patient group. Thus, 145
signals were decomposed to feed the machine learning algorithms. Each signal is
represented by the number of active MU’s and, for each active MU, by the firing rate
and the average MUAP.

Table 3.1 Number of signals for each healthy subject and patient.

Subject Number Total
numbers of signals

Healthy Subjects

1 17

50
2 12
3 4
4 14
5 3

Myopathic Subjects

1 15

50
2 8
3 6
4 9
5 12

Neuropathic Subjects

1 12

45
2 9
3 8
4 5
5 11
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3.2.2 Motor unit (MU)

Studying the creation and propagation of the electrical signal is important to under-
stand the differences between the pathologies. The central nervous system composed
of the brain and the spinal cord sends electrical messages to the muscles (Heckman
and Enoka, 2012). These messages are sent by using the motoneurons (MNs) (Silani
et al, 1999), which are located in the brain stem and in the anterior part of the grey
matter of the spinal cord, through the motor axon along the peripheral nerves to
the muscles fibers. The muscle fibers innervated by a motoneuron are called muscle
unit. The motor unit (MU) defines the association of the motoneuron and the muscles
fibers it innervates. The MUs transform the message of the central nervous system
to contract a muscle and to extend the opposite one. In that way, a synergistic effect
and an antagonistic force are produced (Farina et al, 2016).

A MUAP found in the EMG is the sum of the action potentials of all the muscle
fibers innervated by a single motoneuron. The electrode location is important because
an EMG measures a part of the electrical signal of the muscle fibers of the MUs.
Moreover, a fiber closer to the electrodes gives a more important signal.

Waveform characteristics are different for all MUAPs, for example the duration
or the amplitude. The number of phases, which is the number of sign changes of the
signal and also changes; such as the number of peaks.

The rate at which the MUAPs are discharged is the firing rate. In other words, it
is the number of MUAPs per unit of time. It increases with strength.

The number of muscle fibers per MU is different for all muscles. That is why, it
is important to always use the same muscle to compare the EMG.

3.2.3 Pathologies

To find the best features for machine learning it is essential to know how the patholo-
gies affect the MUs and the EMG signals. Typically, in case of nerve or root lesions,
a lower number of MUs are recruited (poor recruitment because fewer motor neu-
rons are available), and at a higher rate. The chronic dennervation-reinnervation
process is responsible for the increase in size and duration of MUAPs due to distal
reinnervation: this defines the EMG neuropathic pattern. In the case of muscular
dystrophy, a lower number of muscle fibres per MU is present, providing MUAPs
of low amplitude, short duration, multiple turns, and recruitment is abnormally in-
creased (rich recruitment) in order to provide as much as possible efficient strength:
this induces the EMG myopathic pattern. Figure 3.1 shows this phenomenon by
simplifying it (Kubis and Lozeron, 2014).

Table 3.2 summarizes the consequences of the disease on the MUAPs. The healthy
case is the standard, which is why there is the sign = at every lines. The + sign
means higher and the − sign means lower.



3 Automatic Classification of Intramuscular EMG to Recognize Pathologies 41

Fig. 3.1 Diagram of the MUs: Healthy (left), Myopathy (center), Neuropathy (right). The black
circles represent the motoneurons and the pairs of black lines are the muscle fibers. The grey lines
represent the connection between a motoneuron and the muscle fibers.

Table 3.2 Consequences of the pathologies (# means number).

Healthy Myopathy Neuropathy

# active MUs = + -

MU firing rate = + -

MUAP duration = - +

MUAP amplitude = - +

MUAP # phases = + +

MUAP # turns = + -

3.2.4 Features

The features of the Table 3.2 can be used to differentiate the pathologies. The number
of active MUs is the first feature of the signal, but the others are defined for each
MU. To obtain a unique length of the feature vector, the minimum, the mean and the
maximum values are used.

The vector of features for a signal, considering the set of MUAPs, has 16 elements:
the number of MUAPs and the minimum, mean and maximum of the duration,
amplitude, firing (discharge) rates, number of phases and number of turns.

In this vector, some of the features can be useless to differentiate the pathologies.
A T-test is used to find them. A T-Test rejects or not the null hypothesis: there is
no significant statistical difference between the two distributions. In that case, the
two distributions are one feature for a pathology and the same feature with another
pathology (Rice, 2006).

The T-test is composed of three variables. The first one is the significant value
α that determines the percentage of rejection of the hypothesis. The two others are
the TValue TV and the degree of freedom of the T-test df . Let us consider two
distributions Healthy Subjects−Myoapthic Subjects, Healthy Subjects−Neuropathic
Subjects, or Myoapathic Subjects−Neuropathic−Subjects . The values of T-test and
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df are calculated with the mean of the distribution x̄ and ȳ, their standard deviation
σx and σy , their number of data n and m:

TV =
|x̄− ȳ|√
σ2
x

n +
σ2
y

m

(3.1)

df = n+m− 2 (3.2)

TV is after compared with the result found with df and the significant value α
in the table of T-Test. The value of α is chosen equal to 0.05. If it is higher, the null
hypothesis will be rejected and the features must be kept. Otherwise, it will not be
rejected and the features can be deleted.

The T-test shows that the number of active MUs is not significant.
The correlation analysis indicates the strength of the relationship between two

features. The correlation coefficient ρA,B determines the correlation between the
two distributions A and B. In our case, A and B are two different features with all
pathologies. The following equation gives ρA,B :

ρA,B =
1

N − 1

N∑
i=1

(
Ai − ā

σA

)(
Bi − b̄

σb

)
(3.3)

Where ā and b̄ are the means of the distributions, σA and σB their standard
deviations and N their number of data.

This analysis shows the mean of the duration, the mean of the number of phases
and the mean of the number of turns are highly correlated to the other features.

The 12 features remaining are:
• Minimum and maximum of the duration.
• Minimum, mean and maximum of the amplitude.
• Minimum and maximum of the number of phases.
• Minimum and maximum of the number of turns.
• Minimum, mean and maximum of the firing rate.

3.2.5 Classification

With the features found in the previous step, the machine learning models can be
studied. The two models used are the Support Vector Machine (SVM) and the
Bagging Trees. The first one has been chosen for its simplicity and the second one
for its speed and its good performance.



3 Automatic Classification of Intramuscular EMG to Recognize Pathologies 43

3.2.5.1 Linear SVM

The SVM separates the data in several parts. For the linear SVM, the separation is
an hyperplane. Its equation is:

h(x) = w0 + x�w (3.4)

The SVM uses margins that have to be the largest to decrease the error. Usually, the
data can not be separated. To have less errors, the SVM attributes a slack variable ξi
to each point. Its value depends on the classification. It will be null, if it is correct;
less than 1, if it is in the margin; and more than 1, if it is false. The problem to find
the parameters w, w0 and ξi is solved thanks the following minimization:

min
w0,w

1

2
||w||2 + C

n∑
i=1

ξi (3.5)

With the conditions:

ξi ≥ 0 ∀i (3.6)
yi(w0 + x�i w) ≥ 1− ξi ∀i (3.7)

The value of the parameter C is chosen depending on the importance of the slack
variables that we want. This problem can be solved with the Lagrangian function
where the Lagrange multipliers are maximized.

3.2.5.2 Bagging Trees

The Bagging Trees is a model that uses several Trees. A Tree is a succession of
choices. A tree takes one of the features and a value for it. Then a tree compares the
data with the value and separates it in two parts. For each part, the Tree does the
same thing until a shutoff parameter like a number of points is reached. The Bagging
Trees does not use all data for each Tree, but only a part that is different for all Trees.

When the Bagging Trees tests a new data, it finds the numberPd,t of all pathologies
d for each Tree t. LetNt be the number of trees. After, the Bagging Trees assembles
the Nt trees:

• Major voting.
argmax

d

∑
t

(d = argmax
d

Pd,t) (3.8)

• Sum rule.
argmax

d

∑
t

Pd,t (3.9)

• Mean rule.
argmax

d

∑
t Pd,t

Nt
(3.10)

• Product rule.
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argmax
d

∏
t

Pd,t (3.11)

We will use the major voting is usually used for the classification case Hakim et al
(2017) with 30 trees and 100 possible choices.

3.3 Results

The quality of the decomposition can be defined with the signal to interference ratio
(SIR) and the standard deviation (SD). These criteria are described for the healthy
subjects, the neuropathic patients, and the myopathic patients in Table 3.3.

Table 3.3 Decomposition: Quality indices for the healthy subjects, the neuropathic patients, and
the myopathic patients.

Healthy Myopathy Neuropathy

SIR 8.57 dB 7.53 dB 9.33 dB

SD 3.37 4.04 3.82

We can remark that the SIR is lower for myopathy because the magnitude signals
are lower. Conversely, SIR is higher for neuropathy because the magnitude of the
signals are higher.

The data are split up in two sets. The first, called a training set contains 85% of
the data and it is used to train the model. The other one contains 15% of the data
and is called the test set. After the training, the model uses the data in the test to
verify the number of misclassified signals. The elements of both parts are randomly
selected.
k-fold cross-validation method is a reliable method for predicting the error rate

of a classification technique (Sandvig et al, 2008; Gokgoz and Subasi, 2015). k-fold
cross-validation arbitrarily divides the data in a given number of subsets, the “folds.”
For the number of employed folds k = 10 we have respectively for each classifier:

• for SVM classifier, Cross-validation accuracy: 68.92%, with STD=13.5.
• for Bagging Trees with 30 trees and and 100 split nodes, Cross-validation accu-

racy: 84.55%, with STD=8.3.

The Confusion Matrix gives the errors between each pathology for the prediction
and the actual pathologies according to expert. The Confusion Matrix for the tests
of the SVM and Bagging Trees is represented in Tables 3.4 and 3.5. To understand
the gathered data let us consider of the healthy subjects in Table 3.4. The numbers
in blue bold illustrate the agreement between the prediction and reality. There are 8
healthy subjects and 8 predicted healthy subjects. The percentage of good prediction
is thus 100%. The first line indicates that the classifier predicts 8 + 4 + 1 healthy
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subjects but 4 are myopathic patient and 1 is a neuropathic patient. Percentage of
good prediction is thus 61.4%.

Table 3.4 Confusion Matrix for one test of the SVM (Pred = Prediction, Heal = Healthy, Myo =
Myopathy, Neuro = Neuropathy, Per = Percentage of good prediction)

Truth
Per

Heal Myo Neuro

Pred
Heal 8 4 1 61.4%
Myo 0 6 0 100%

Neuro 0 0 3 100%

Per 100% 60% 75% 77.27%

Table 3.5 Confusion Matrix for one test of the Bagging Trees (Pred = Prediction, Heal = Healthy,
Myo = Myopathy, Neuro = Neuropathy, Per = Percentage of good prediction)

Truth
Per

Heal Myo Neuro

Pred
Heal 5 3 1 55.56%
Myo 0 7 0 100%

Neuro 3 0 3 50%

Per 62.5% 70% 75% 68.18%

In the Confusion Matrix, the columns are the real pathologies and the rows are the
predictions. The last column gives the percentage of good predictions for a pathology
on all predictions of this pathology. For the last row, this is the percentage of good
predictions for a pathology on all real signal for this pathology. The number in the
last cell is the percentage of the total of good predictions on all signals. The accuracy
is 77.3% for the SVM and 68.2% for the Bagging Trees.

3.4 Discussion

The percentage of errors for the two models is not very high, 23% for the linear SVM
and 32% for the Bagging Trees. For our study, the SVM seems a better model. The
errors of the linear SVM come from the mixed data between the pathologies. For
the Bagging Trees, the errors can come from overfitting, but as for the linear SVM,
it can also be the mixed signals.
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The SVM classifier has better test results than validation from the study of k-fold
cross-validation. The opposite is true for Bagging Trees. We have to be careful with
these results because it depends on the training set and the test set.

The Confusion Matrix of the Tables 3.4 and 3.5 gives information about the
localization of the errors. The models usually make the difference between the
myopathic and the neuropathic signals. The most important part of the errors is
between the healthy and the myopathy. They are more present between the healthy
subjects and the myopathy patients than between the healthy subjects and neuropathy
patients.

The last column of the Confusion Matrix shows the good prediction for the
myopathic and neuropathic signals. It is possible to trust them, but it is more difficult
to believe the models when they say the signal is from a healthy subject.

The last line indicates a patient with neuropathy will usually have the right
diagnostic. It is not the case for the healthy subjects and myopathic patients.

Both models can have better results. For example, with a higher number of signals,
it will be possible to have models whose the train has signals with a lot of differences
to take into account all cases and to avoid errors in the test.

Another way to improve the classification is to use more features. It can be
by finding new temporal features or by using frequency ones. The force can also
be used. Indeed, the measure can be done with a specific strength to have every
features without depending of the force. Moreover, the signal can be measured to
different values of the strength to take into consideration the evolution of the features
depending to the force.

The SVM can be improved by using a non-linear method. For example, it can be
a parabolic, a cubic or a Gaussian SVM.

Bagging Trees can have better results with a larger number of trees. The trees can
also have a different stop parameter, but it is important to deal with the overfitting.

3.5 Conclusion

This new methodology automatically classifies the intramuscular EMG signal into
three classes: healthy, myopathy and neuropathy. Two machine learning algorithms,
the linear SVM and the Bagging Trees, have been studied. For our study SVM classi-
fier has better performance. The classifier tools can give information to the doctor to
help for the diagnosis of the pathology. The methodology needs a decomposition of
the signal. The obtained MUAPs give features, that must be normalized to be used by
the machine learning models. In this work the decomposition was semi-automatic. In
future with an automatic decomposition, this methodology can be integrated on-line
in a decision support system to help the doctors.
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Chapter 4
Algorithmic Formulation of Bone Fabric
Evolution Based on the Dissipation Principle: A
2D Finite-Element Study

Madge Martin, Peter Pivonka, Guillaume Haïat, Thibault Lemaire,
and Vittorio Sansalone

Abstract Bone remodeling is a highly complex biological process allowing bone tis-
sue to evolve throughout life. While this continuous change involves various events at
the microscopic scale, macroscopic observations show a correlation between bone
architecture and in vivo loading conditions. In particular, the orientation of bone
microstructure, also referred as bone fabric, relates to principal stresses induced by
in vivo loading conditions. We utilize here a thermodynamically-consistent formu-
lation based on generalized continuum mechanics to describe the evolution of bone
fabric. Our macroscopic model accounts at the continuum level for the reorientation
of bone orthotropic elasticity axes, referred to as rotary remodeling. We use our
model to study the stress-induced rotary remodeling in two benchmark problems.
To this end, we developed an algorithm combining finite-element analysis (FEA)
and fabric tensor evolution. This iterative routine allows one to compute and up-
date the orthotropic elastic properties of bone material in each element of the FE
mesh. Stresses and strains are computed via FEA and fed forward into the rotary
remodeling algorithm, resulting in the evolution of bone tissue material axes. In the
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first benchmark, using a simple toy problem, we found that the meshing strategy
and time discretization choices can significantly impact the rotary evolution of bone
microstructure. In the second benchmark, depicting bone rotary remodeling in the
proximal femur, we recognized that the material axes tend to align with the typical
directions of the trabeculae, while noting the influence of intrinsic bone tissue proper-
ties and geometry. This work provides a numerical framework for potential clinical
applications, in particular studying the influence of mechanical and biochemical
parameters on bone remodeling at the organ scale.

Keywords: Generalized continuum thermodynamics · Bone remodeling · Trabecu-
lar adaptation · Finite element analysis · Convergence

4.1 Introduction

The close link between mechanics and bone architecture has been noted since the
19th century and the early observations of Culmann, Von Meyer, Wolff and Roux
(Culmann, 1866; Roux, 1881; von Meyer, 1867; Wolff, 1870). Georg Hermann Von
Meyer was a German professor of anatomy with a strong interest in the human skele-
ton. Benefitting from his interactions with the German civil engineering professor
Culmann, he noticed the arched patterns of bone inner porous structure (trabecular
bone). Culmann noted that the struts appeared to be aligned along principal stress
directions. The result of this collaboration deeply influenced the work of Julius
Wolff, a German surgeon convinced that Culmann and von Meyer’s findings could
not be a coincidence (Culmann, 1866; von Meyer, 1867). At the end of the 19th
century, Wolff (1870) introduced a theory on bone remodeling, nowadays referred
to as “Wolff’s law,” stating that the mechanical function of bone drives the evolution
of its architecture.

Several macroscopic theories were introduced over the past decades to model
how bone may adapt its microstructural orientation to mechanical loads (Cowin,
1986; Cowin et al, 1992; Doblaré and García, 2002; Miller et al, 2002; Pettermann
et al, 1997; Watzky and Naili, 2004). One may stress the particularly important
work of Cowin on that matter, who introduced the fabric tensor (a measure of tissue
anisotropy, Cowin, 1986) and largely investigated the optimal micro-orientations of
bone under varying loading configurations (Cowin, 1986, 1995). In his 1986 work,
Cowin found that, at remodeling equilibrium, the eigenspaces of the stress and strain
tensors are aligned. This sound observation was also derived mathematically later
on by Sansalone et al (2011) as a result of the dissipation principle.

As Skedros and Baucom (2007) note in their study of trabecular “trajectories,”
a popular example for cancellous bone functional adaptation is the human femur,
even though the first experiment showing the close correspondence between arched
trabecular patterns and orientations of principal strain was performed on sheep
calcanei (Lanyon, 1974) which undergo simpler loading conditions . Hence, several
numerical studies attempted to recover the identified femoral neck patterns (see the
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illustration of the variety in the representation of trabecular and stress patterns in
Figure 4.1). These works rely on optimization theories (Fernandes et al, 1999; Jacobs
et al, 1997; Luo and Gea, 1998) or on bone remodeling algorithms based on ad hoc
expressions of directional elastic moduli evolution laws (Geraldes et al, 2016; Miller
et al, 2002; Shang et al, 2007) or continuum damage mechanics (Doblaré and García,
2001).

Fig. 4.1 Examples of the diversity in femoral trabecular trajectories representations: (A) Wolff’s
femur (Wolff, 1870); Culmann’s crane (Wolff, 1892); (C) von Meyer’s femur (von Meyer, 1867);
(D) Koch’s drawing (Koch, 1917). Labeled trabecular tracts mark main trajectories. From Skedros
and Baucom (2007), with permission.

On the one hand, optimization theories rely on the definition and minimization
of an objective function Q of the microstructural orientation (θ) under a certain load
σ, that can also depend on other variables such as density (ρ):

Q(ρ, θ̂, σ) = min
θ

Q(ρ, θ, σ), (4.1)
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where θ̂ is the optimal orientation. Optimization theories usually also include con-
straints, generally on mass. For instance, Fyhrie and Carter (1986) developed an
optimization theory using a cost function based on the strain energy, which is in-
terpreted as a measure of bone’s structural integrity depending both on density and
orientation. This concept was used later on by Luo and An (1998) who also for-
mulated two constraints, being the assumption of a stationary total mass and an
upper-limit value to density (saturated cancellous bone density). In the same vein,
Jacobs et al (1997) built a model minimizing the dissipation, therefore measuring the
efficiency of the translation of external loads into a variation of the internal energy. In
their model based on Lagrangian optimization, the imposed constraint is a criterion
to remodeling, ensuring that net bone remodeling only takes place when the criterion
is violated. Building from this work, Fernandes et al (1999) proposed an approach
accounting for the metabolism needed to maintain tissue: their model relies on a
minimization of the sum of the compliance and the metabolic cost (assumed to be
proportional to tissue mass), while respecting the principle of virtual power. On the
other hand, several models rely on the mathematical expression of the evolution of
directional elastic moduli. In these approaches, the evolution of the elastic moduli are
dependent on directional measures of strain (Geraldes and Phillips, 2014; Geraldes
et al, 2016) or stress (Miller et al, 2002; Shang et al, 2007). A different approach
was proposed by Doblaré and García (2001) who described bone remodeling in a
continuum damage mechanics framework, including the simultaneous evolution of
the density and the directions of the material axes. In their theory, the remodeling
tensor is considered as an internal variable and its evolution follows from the defi-
nition of suitable damage criteria which depend on the local principal directions of
anisotropy and the principal directions of equivalent strains.

The present work introduces a 2D finite-element study of bone rotary remodeling
based on a previously-introduced theoretical framework (DiCarlo et al, 2006; Martin
et al, 2019). In this formulation, bone remodeling is envisaged in an enriched contin-
uum mechanics framework with the introduction of a state variableRRR that accounts
for the micro-rotation of bone tissue microstructure. The spatial organization of bone
microstructural elements (osteons in cortical tissue and trabeculae in trabecular tis-
sue) is supposed to lead to an orthotropic symmetry at the continuum scale. Thus,
bone is assumed to behave as a linearly elastic, orthotropic material andRRR is meant
to describe the orientation of the orthotropy axes. (Note thatRRR cannot be considered,
in general, as a surrogate of the main trabecular orientation.) Hence, DiCarlo et al
proposed a constitutive equation defining the free energy as a function of the visible
(macroscopic) deformation EEE and the micro-rotationRRR: ψ = 1

2 (C : EEE) : EEE where
C is the time-dependent 4th-order elastic tensor. The elastic stiffness C represents the
prototype elastic tensor C0 (which itself is time-independent) rotated by the action
of a rotation tensorRRR, namely

∀EEE, C(EEE) = RRRC0(RRR
TEEERRR)RRRT . (4.2)

Additionally, DiCarlo et al postulated a passive remodeling: the outer remodeling
couple (a skew-symmetric couple) is assumed to be null, meaning that no external
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action targeted at bone rotary remodeling is accounted for. In this scope, bone
remodeling is driven by mechanical forces. Moreover, they assumed classically that
the deformation EEE does not induce dissipation, which means that the dissipation
would only come from the remodeling process.

In this context, they obtained an expression of the intrinsic dissipation Dint due
to the remodeling process, reading

Dint =
+

T (ṘRRRRRT) ≥ 0 , (4.3)

where
+

T = [SSS,EEE] denotes the dissipation couple related to remodeling, SSS is the
stress tensor, EEE is the small strain tensor and the brackets denote the commutator
operator: ∀ (AAA, BBB) ∈ LinLinLin, [AAA,BBB] = AAABBB −BBBAAA = 2 skw(AAABBB). Assuming

+

T to

be linearly related to the remodeling rate:
+

T = D (ṘRRRRRT), one ends up with the
evolution law of the micro-rotation tensor, reading

D (ṘRRRRRT) = [SSS,EEE] , (4.4)

where D represents the 4th-order dissipation tensor which can be interpreted as a
resistance to remodeling.

We focus here on two benchmark problems. The first benchmark is a square
with cortical bone properties on which a tensile load is applied (Figure 4.2). This
example aims to investigate algorithmic convergence and dependency on several
solver parameters (iteration method, meshing method and time step). The second
example illustrates the proposed algorithm using a simplified 2D femur geometry
and boundary conditions as per Beaupré et al (1990), see Figure 4.3. The focus is set
on the rotary remodeling of the trabecular tissue. Note that the micro-orientation of
the trabecular tissue, i.e. the orientation of the material axes of the trabecular tissue,
is related to the distribution of the trabeculae but cannot be considered as a surrogate
of the main trabecular orientations. In this scope, several computational questions,
such as the influences of mesh, time step, approximation method, geometry and
material properties, are investigated.

Fig. 4.2 Benchmark 1. Model
of a 10 mm x 10 mm square
under boundary traction: the
load is distributed over a 2
mm region at the center of the
right side of the square. Plane
stress conditions are assumed.
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Fig. 4.3 Benchmark 2. Sim-
plified femur model: geometry
and boundary conditions. (See
text for more details.)

4.2 Materials and Methods

4.2.1 Kinematics and Remodeling Law

As noted earlier, a 2D rotary remodeling law based on the energetic considerations
developed by DiCarlo et al (2006) is used. Hence, in this framework of generalized
continuum mechanics, the state of each material point X at time t is described by

(i) the position x = x̂(X, t),
(ii) the local orientation of the microstructureRRR = R̂RR(X, t).

Additionally, the material behavior is assumed to be linearly elastic. The elastic
tensor C can evolve with time, as it is dependent on the tissue orientation RRR (see
Equation (4.2)). Thus, the stress-strain relationship reads

SSS = C : EEE . (4.5)

In 2D, one can simplify the expression of the dissipation derived by DiCarlo et al
(2006) (Equation (4.4)) and obtain the rotation rate as a function of the stress/strain
state of a material point:

2 d0 α̇ = (SSSEEE −EEESSS) :WWW z, (4.6)

where α represents the orientation of the material axes and d0 is a dissipation
coefficient representing the resistance to remodeling,WWW z := e2 ⊗ e1 − e1 ⊗ e2, and
e1 and e2 are the basis vectors of the 2D Euclidean space.
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4.2.2 Numerical Solution

The algorithm developed to study bone remodeling relies on an iterative method
depicted in Figure 4.4. At each iteration, two main steps are carried out: first,
solving a boundary value problem (by means of Finite Element Analysis, FEA)
while keeping fixed the material properties; then, updating the orientation of the
material microstructure—to be called micro-orientation for short—and therefore the
material properties.

The algorithm is initialized by defining the geometry, the boundary conditions
and the initial value of the micro-orientation field. Moreover, the FE mesh and
the remodeling grid are constructed. After assigning the initial orientation on the
nodes of the remodeling grid, the iterative loop starts. At each step n, current
material properties are calculated based on the values of the micro-orientation on
the remodeling grid points (αn

i )i∈I, the index i ∈ I corresponding to a remodeling
grid point and I being the set of points of the remodeling grid. Micro-orientations are
interpolated over the FE domain, delivering a continuous field of micro-orientations.
The latter is then used to calculate a C0 continuous elastic stiffness matrix. This
matrix is then read into the nodal points of the FE grid and used to compute the
distribution of stress and strain fields with FEA. In the next step of the algorithm,
stress and strain fields are projected onto the nodes of the remodeling grid to update
the micro-orientation therein using the remodeling law (Equation (4.6)). Eventually,
if the exit criterion is not met, the new values of micro-orientation are eventually
calculated and made available to the FE model to restart the loop.

FE Mesh and Remodeling Grid

As depicted in Figure 4.5, the nodes of the FE mesh (black lines) may be different
from those of the remodeling grid (red dots). If the nodes of the remodeling grid co-
incide with the FE mesh (case (a) in Figure 4.5), there is a one-to-one correspondence
between the node-wise results of the FEA and the nodes where the micro-orientation
is computed. Hence, the remodeling law is directly computed at the mesh nodes as
a result of the FEA. Otherwise, the FE mesh can be finer than the remodeling grid
(case (b) in Figure 4.5). In the latter case, the results of the FEA will be interpolated
to evaluate the rotation rate at the remodeling grid points.

Boundary Value Problem

This step is carried out using a commercial FE software (Comsol Multiphysics®

5.3a) (COMSOL AB, 2017). Explicit formulas giving the relationship between each
elastic modulus and micro-orientation are implemented in the finite-element model:
C(x, y) = Ĉ(α(x, y)), where x and y denote the 2D spatial coordinates. Micro-
orientations α(x, y) are interpolated from the values at remodeling grid points
(αn

i )i∈I, which are updated at each step in an external file from the remodeling
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Generate the finite element
mesh and the remodeling grid
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according to the orientation
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i )

Run FEA
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ing law: αn+1
i = αn
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Grid
coordinates
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Fig. 4.4 Algorithm structure. Block colors identify computational calculation (green) or data
processing (gray). “FEA” refers to finite-element analysis.

law calculation. Thus, the material properties at Gauss points C(xG, yG) are defined.
FEA is performed using the plane stress approximation and quadratic elements.

Updating Micro-Orientation

This step is carried out using the LivelinkTM for MATLAB® (Matlab Inc., 2017)
module of Comsol Multiphysics® 5.3a. More precisely, at the n-th iteration (n ∈ N),



4 Bone Fabric Evolution Based on the Dissipation Principle 57

the discrete version of the remodeling law Equation (4.6) in a remodeling grid point
i ∈ I reads

αn+1
i = αn

i + fΔt ∀n ∈ N, ∀i ∈ I . (4.7)

The accuracy of the above formula depends on the choice of the time step Δt
and of the function f . The latter represents a discrete approximation of α̇. Two
approximation methods are considered here: Euler–Cauchy (EC) and fourth-order
Runge–Kutta (RK). Both of them are one-step explicit methods. Therefore, the
function f depends only on the current values of the micro-orientation and strain
(or, equivalently, stress), reading

f = f(αn
i ,EEE

n
i ) , (4.8)

whereEEEn
i is interpolated from the FEA strain field.

In the case of Euler–Cauchy approximation, the function f is the current value of
α̇, reading

fEC(α
n
i ,EEE

n
i ) = α̇n

i =
1

2 d0
(SSSn

i EEE
n
i −EEEn

i SSS
n
i ) :WWW z , (4.9)

where SSSn
i is computed using Equation (4.5): SSSn

i = C(αn
i ) : EEE

n
i .

The 4th-order Runge–Kutta approximation incorporates the approximation of the
micro-orientation at intermediate time steps,

fRK(αn
i ,EEE

n
i ) =

1

6
(k1 + 2 k2 + 2 k3 + k4) , (4.10)

where

Fig. 4.5 Meshing options:
(a) One grid strategy; (b)
Two-grid strategy.
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k1 = fEC(α
n
i ,EEE

n
i ) ,

k2 = fEC(α
n
i +

k1
2
Δt,EEEn

i ) ,

k3 = fEC(α
n
i +

k2
2
Δt,EEEn

i ) ,

k4 = fEC(α
n
i + k3Δt,EEE

n
i ) .

(4.11)

Exit Criterion

Several exit criteria have been considered based on local or global convergence of
mechanical quantities such as the strain energy of the system or the micro-orientation.
All these criteria require to define a threshold which can be hardly identified based on
biological arguments. Therefore, a simpler criterion was set, by fixing the duration of
the simulation so as to observe a qualitative stabilization of the remodeling process.
Therefore, the simulated physical time ranged from several months to several years
according to the specific application.

4.3 Results and Discussion

In this section, the influence of several solver and modeling parameters is investigated
using the two benchmarks in Figures 4.2 and 4.3. Concerning the solver parameters,
the focus is set on the meshing methods and on the two key parameters used to
update the micro-orientation (Equation (4.7)), namely the time step Δt and the
approximation function f . If not stated differently, the FE mesh coincides with the
remodeling grid (case (a) in Figure 4.5) and aΔt = 1 day time step and the Runge–
Kutta approximation (Equation (4.10)) are used to update the micro-orientation. The
femur model is also used to investigate the effects of the material parameters and of
the geometry.

The first benchmark is the toy example illustrated in Figure 4.2, a square piece of
cortical bone (10mm× 10mm). A surface tensile loadΣapp = 100MPa is applied
on the central part of the edge of the square, leading to strains εmax = max(|εi|) <
4000 με, ε = mean(|εi|) � 103 με. The material is assumed to be orthotropic
and the relevant material properties are listed in Table 4.1. The dependency of the
evolution of the system with respect to different meshing and iteration methods is
analyzed globally via the total strain energy and locally via the micro-orientation at
selected points of interest (A, B, C). The location of the latter can be visualized in
Figure 4.6.

The second benchmark represents a simplified model of the human proximal
femur. Geometry and boundary conditions are depicted in Figure 4.3. Arrows rep-
resent point loads resulting from joint reaction forces (Fhi) and hip abductor forces
(Fgi) (see Beaupré et al (1990)). Information on the material properties and applied
forces are provided in Table 4.2 and Table 4.3, respectively. The properties of the



4 Bone Fabric Evolution Based on the Dissipation Principle 59

Table 4.1 Benchmark 1. Material properties for the toy problem in Figure 4.2. (Kelvin notation is
used for the elastic coefficients.)

Elastic coefficients GPa

C11 30

C22 20.85

C12 11.49

C66 13.2

Dissipation coefficient kPa day

d0 555

Fig. 4.6 Benchmark 1. 10x10 remodeling grid of the square under boundary traction (see Figure
4.2, only the upper half is represented here) and location of points of interest (A, B, C).

outer shell of the femur (brown region, in Figure 4.3) were linearly interpolated
between their values at the external boundary (cortical properties as per Table 4.2,
not evolving with time) and the properties at the inner boundary (elastic properties of
the trabecular bone as per Table 4.2, evolving with time), unless otherwise specified.

4.3.1 Meshing Strategy

In this subsection, different approaches are investigated for the evaluation of the
strain/stress at the remodeling grid points. In the first case (named 1M in the figures),
the remodeling grid coincides with the FE nodes (Figure 4.5(a)). Thus, stress/strain
are directly transferred from the FE model to the remodeling grid. In a second
strategy (named 2M in the figures), stress/strain in the nodes of the remodeling grid
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Table 4.2 Benchmark 2. Material properties of cortical and trabecular bone (plane stress). (Kelvin
notation is used for the elastic coefficients.)

Material property Symbol Value

Cortical bone

Young modulus Ec 14 GPa
Poisson’s ratio νc 0.3

Trabecular bone

Elastic modulus C11 2.50 GPa
Elastic modulus C22 1.42 GPa
Elastic modulus C12 636 MPa
Elastic modulus C66 1.20 GPa

Dissipation coefficient d̃0 555 kPa τ

Table 4.3 Benchmark 2. Loading conditions: Orientation and magnitude of the point forces
applied on the femur (see Figure 4.3).

Force Angle Value

Fg1 28◦ 421.2 N
Fg2 −8◦ 70.20 N
Fg3 35◦ 93.60 N
Fh1 24◦ −1390 N
Fh2 −15◦ −213.6 N
Fh3 56◦ −309.6 N

points (the coarse grid, corresponding to the red dots in Figure 4.5(b)) are obtained
by interpolating the stress/strain fields obtained from the FEA. (Runge–Kutta method
and a time step Δt = 1 day are used to update the micro-orientation.)

In Figure 4.7, the effect of the above meshing strategies are evaluated with respect
to Benchmark 1. The 1M and 2M meshing strategies are compared, including several
2M FE mesh options of increasing densities, from a mesh 2.5 times finer than
the remodeling grid to 10 times finer. Results obtained with the 1M strategy are
represented with solid lines in Figure 4.7 whereas the results of the 2M strategy are
represented with dotted (2.5 x), dash-dotted (5 x), and dashed (10 x) lines.

The meshing strategy affects the evolution of the system to different extents. The
effect is globally small with respect to the local micro-orientation in points A, B, and
C (Figure 4.7(a)). However, larger differences exist when looking at the total strain
energy (Figure 4.7(b)). These differences are mainly due to the mesh dependency of
the FE solution in the singular points of the system (data not shown).
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Fig. 4.7 Benchmark 1. Evolutions of (a) micro-orientations in points A, B and C and (b) total strain
energy (SE) with respect to time, for varying mesh strategies (one mesh (1M) and two meshes
(2M)).

4.3.2 Quadrature of Micro-Rotation Rate

This section assesses the role of the approximation scheme (function f ) and time dis-
cretization (time stepΔt) in the quadrature of the micro-rotation rate, Equation (4.7).
(The 1M meshing strategy is used throughout this subsection.)

Figure 4.8 shows the results of a sensitivity analysis with respect to Benchmark
1. Simulations were undertaken with time steps Δt ranging from 0.5 day to 2
days. In parallel, two different approximation schemes were used, namely fourth-
order Runge–Kutta (RK, (a)) and Euler–Cauchy (EC, (b)). The evolution of the
micro-orientation at the points of interest A, B and C (blue, green, and red lines,
respectively) is shown for three different time steps Δt ∈ {0.5, 1, 2} day (dotted,
dashed and solid lines, respectively) and the RK and EC quadrature schemes ((a) and
(b), respectively). As expected, the RK scheme performs better than the EC scheme.
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The former renders a stable evolution of the micro-orientation even for large time
steps and the behavior of the system is approximately the same, irrespective of the
time step (see the dashed lines in any of the points of interest). By contrast, the EC
scheme leads to numerical instabilities for large time steps (see the bright red solid
line in Figure 4.8 corresponding to point C and a time step Δt = 2 day).

Fig. 4.8 Benchmark 1. Evolutions of the micro-orientation in points A, B and C for varying time
steps and approximation methods (EC and RK). Dotted, dashed and solid lines correspond to time
steps Δt = 0.5, 1, 2 day, respectively. Subfigure (a) corresponds to the Runge–Kutta
approximation (RK) and subfigure (b) to the Euler–Cauchy approximation (EC).

A similar analysis was performed on the femur model of Benchmark 2. The time
step was varied between from 0.5 to 20 units time (τ ) and both EC and RK quadrature
schemes were used.

The evolution of the system did not vary significantly when imposing different
approximation and time discretization methods from 0.5 to 20 time units. The results
of the remodeling simulations are displayed in Figure 4.9, which illustrates the finite-
element mesh (a), initial micro-orientation field (b), and micro-orientation fields
after 5000 (c) and 10000 (d) time units. Note that, as expected, the strain energy map
changes with time (Figure 4.9(b-d)).
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Fig. 4.9 Evolution of the micro-orientation (brown sticks) in the femur model: (a) finite-element
mesh; (b) initial micro-orientation field; (c) micro-orientation field after 5000 time units; (d)
micro-orientation field after 10000 time units. Color map: strain energy density (MPa).

4.3.3 Geometry

In this subsection, the effect of the presence of the marrow cavity on the remodeling
process in the proximal femur is investigated. Therefore, an elliptical cavity was
added in the diaphysis of the original femur model to account for the marrow cavity.
In one case (Figure 4.10(b)), the cavity was assumed empty. In the other case (Figure
4.10(c)), the marrow cavity was filled with a linearly elastic, almost incompressible
isotropic material (Em = 10 kPa, νm = 0.499) mimicking the presence of the marrow.
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Fig. 4.10 Micro-orientations (brown sticks) in the femur model after 10000 units time for varying
geometries: (a) original model; (b) empty marrow cavity; (c) filled marrow cavity. Color map:
strain energy density (MPa).

Figure 4.10 displays the results of the previously-mentioned simulations as well
as the original femur model (Figure 4.10(a)). These simulations were performed
with a time step of 1 time unit and with the 1M method. In all cases, the initial
micro-orientation field was assumed as in Figure 4.9(b). While there is a significant
discrepancy in the results when introducing the marrow cavity in the geometry, the
specific values of the material properties of the marrow space do not seem to notably
impact the micro-orientation field in the femur (comparison of Figures 4.10(b) and
(c)).

4.3.4 Material Properties

Material properties of bone tissue play a substantial role in remodeling. In particular,
the modification of the shear modulus of trabecular bone may change the remodeling
response dramatically. Hence, one can also infer that a change in mechanical loading
is not the only trigger to a change in bone remodeling activity: changes in bone
structure and composition also prompt a different bone cell activity, as the mechanical
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environment changes. Here, this issue is addressed by considering a modification of
the shear modulus C66 which is set to twice its original value: C66 = 2.4GPa.

A different shear modulus can modify the material response to loading in terms of
micro-rotation. The influence of material properties on rotary remodeling has been
investigated by Martin et al (2019) considering a uniaxial, stationary load. In that
scope, the remodeling response has been shown to strongly depend on the sign of
the function f3 defined hereafter:

f3({Cij}) = 2 C44C55(
√
2C2

13C22 +
√
2C2

12C33 +
√
2C11(C

2
23 − C22C33)

−C2
23C66 + C12C33C66 + C22C33C66 − C13C23(2

√
2C12 + C66)).

The function f3 governs the tendency of the microstructure to align with the
principal stress directions. In particular, it has been shown by Martin et al (2019)
that a necessary condition for the micro-orientation to align with the 1D stress
direction is the function f3 to take positive value.

The analytical results of Martin et al (2019) cannot be applied straightforwardly to
the femur model since the stress state is more complex and evolves in time. However,
it is reasonable to expect the shear modulus to affect the remodeling process by
favoring the alignment of the material axes with the principal stress directions when
f3 is positive. Actually, the function f3 takes negative value when using the elastic
coefficients in Table 4.2. However, f3 takes positive value assumingC66 = 2.4GPa.

Remodeling of the trabecular tissue can be also affected by the elasticity of the
surrounding cortical shell. A linear transition between the trabecular and cortical
material properties reported in Table 4.2 was postulated through the outer shell of
the femur. This research hypothesis was investigated by smoothing the trabecular-
to-cortical transition. To this end, a parabolic variation of the elastic moduli through
the cortical shell was also considered. The elastic moduli variations are displayed in
Figure 4.11.

Figure 4.12 depicts the material orientations after 10000 time units, using a time
step of 1 time unit, a 1M meshing method and varying material properties. The
material properties of the original model are shown in the subplot (a). Subplot (b)
shows the results obtained when the shear modulus of the trabecular is increased
(C66 = 2.4GPa). One can note the significant changes in the micro-orientation
field, in particular at the femoral head. Subplot (c) shows the results obtained by
considering a quadratic variation of the elastic moduli through the cortical shell. It
is apparent that there are no major changes to the orientations associated with this
choice.

4.4 Conclusion

This study on numerical solutions of benchmark problems shows the potential of the
proposed algorithm and the relevance of the questions of mesh, time discretization,
geometry and material properties. These questions are closely related to the problem
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Fig. 4.11 Evolution of the elastic moduli: trabecular-to-cortical transition in the linear and
quadratic interpolation cases.

studied, in particular when dealing with complex in vivo geometries, where one
must find a balance between model convergence and physical meaning. One of the
findings of this study is the importance of the definition of material properties, in
accordance with earlier theoretical developments (Martin et al, 2019).

The results of this study will be useful in tackling the next developments of
our remodeling model. A first development consists in coupling the (macroscopic)
remodeling model with a (microscopic) mechanobiology model. This is an ongoing
project which introduces new challenges on both modeling and numerics. From this
latter point of view, numerical issues are related to the sensitivity and stability of
the mechanobiology model. Further developments concern the clinical application
of our model, e.g. to understand bone remodeling around the implants or in bone
pathologies such as adolescent idiopathic scoliosis (AIS) or osteoporosis. This will
introduce additional challenges such as dealing with patient-specific geometries.
Besides the computational cost and the possible convergence issues related to 3D
numerical simulations of real systems, the proposed algorithm provides a useful
numerical framework to tackle these studies as it allows to couple FEA and bone
remodeling laws in a straightforward way.

To conclude, it should be noted that in this work we considered only passive
rotary remodeling, i.e. a rotation of the material axes triggered by a local mechanical
stimulus. Recent works pointed out the relevance of including non-local mechanical
and biological stimuli in bone remodeling (Lekszycki and dell’Isola, 2012; Giorgio
et al, 2016; Spingarn et al, 2017; Bagherian et al, 2019; George et al, 2019; Giorgio
et al, 2019; Kazempour et al, 2019; Sheidaei et al, 2019). Investigating the effects
of non-local multi-physics stimuli is an interesting topic that will be tackled in the
future.
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Fig. 4.12 Micro-orientations (brown sticks) in the femur model after 10000 units time for varying
material properties: (a) original model; (b) modified trabecular elastic modulus (C66 = 2.4GPa);
(c) quadratic interpolation between the boundaries of the cortical shell. Color map: strain energy
density (MPa).
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Chapter 5
Data-Driven Simulation for Augmented Surgery

Andrea Mendizabal, Eleonora Tagliabue, Tristan Hoellinger, Jean-Nicolas Brunet,
Sergei Nikolaev, and Stéphane Cotin

Abstract To build an augmented view of an organ during surgery, it is essential to
have a biomechanical model with appropriate material parameters and boundary con-
ditions, able to match patient specific properties. Adaptation to the patient’s anatomy
is obtained by exploiting the image-rich context specific to our application domain.
While information about the organ shape, for instance, can be obtained preoper-
atively, other patient-specific parameters can only be determined intraoperatively.
To this end, we are developing data-driven simulations, which exploit information
extracted from a stream of medical images. Such simulations need to run in real-
time. To this end we have developed dedicated numerical methods, which allow for
real-time computation of finite element simulations.
The general principle consists in combining finite element approaches with Bayesian
methods or deep learning techniques, that allow to keep control over the underlying
computational model while allowing for inputs from the real world. Based on a
priori knowledge of the mechanical behavior of the considered organ, we select a
constitutive law to model its deformations. The predictive power of such constitutive
law highly depends on the knowledge of the material parameters and the boundary
conditions. In our first approach, material properties are modeled as stochastic pa-
rameters whose probability distributions will be modified in real-time using Kalman
filters, given observations extracted from intraoperative data. The second option
we propose is to directly learn material parameters and boundary conditions from
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patient-specific data using deep neural networks. This has been applied to the mod-
eling of liver biomechanics, its real-time simulation, and parametrization to achieve
patient-specific augmented reality during

Keywords: Data-driven simulation · Bayesian filtering · Deep neural networks ·
Finite element method · Augmented reality

5.1 Introduction

In computer-aided intervention, the correct alignment of the preoperative images to
the intraoperative ones remains a real challenge especially when large deformations
are involved. In the context of hepatic surgery for instance, the objective is to
accurately locate the internal structures such as tumors and blood vessels (that need
to be preserved for the post-operative regeneration of the liver tissue). While the
initial position of these structures is known from the preoperative images, their
actual position during surgery is often hidden or uncertain. To guide the surgeon,
augmented reality techniques are used to enrich visual information through fusion of
intraoperative images and a preoperative 3D model of the patient’s anatomy. This is
usually done by overlaying a virtual representation of the liver built from preoperative
images over intraoperative images or through augmented reality glasses. However,
surgical manipulations and interactions with the surrounding anatomy can induce
significant deformations to the patient’s liver. As a consequence, the virtual model of
the liver has to account for non-rigid transformations and produce its deformed state
in real-time, which is difficult given the complexity of the physical systems needed
for accurate biomechanical modeling.

Existing works in this area rely on patient-specific biomechanical models that can
provide in-depth motion given surface deformation (Clements et al, 2008; Haouchine
et al, 2013; Suwelack et al, 2014; Alvarez et al, 2018). The Finite Element (FE)
method is the preferred one due to its ability to numerically solve the complex
partial differential equations that come into play. However, the demanding accuracy
of medical applications (e.g. registration of internal structures below 5 mm (Ruiter
et al, 2006)) raise several challenges that are far from being solved.

In augmented surgery, the computational efficiency of the FE method becomes
crucial. In the case of augmented hepatic surgery, intraoperative images are acquired
at about 20 Hz leading to update times of less than 50 ms. During this small amount
of time, acquisition and processing of the images as well as model update need to
take place. As a result, FE computation times should require less than 30 ms. If only
small deformations take place, achieving such computation times is feasible (Meier
et al, 2005). However, if large non-linear deformations happen, computation times
become incompatible with such time constraints. A solution might be the use of
the co-rotational FE method, where geometrical non-linearities can be handled in
real-time (Haouchine et al, 2013; Petit and Cotin, 2018). Nevertheless, when more
complex biomechanical models need to be used these optimizations no longer hold.
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Alternative solutions have been proposed with different trade-offs regarding the ratio
between computation time and model accuracy (Peterlík et al, 2012; Suwelack et al,
2014; Modrzejewski et al, 2018; Niroomandi et al, 2008; Johnsen et al, 2015; Allard
et al, 2007). Marchesseau et al (2010) proposed the Multiplicative Jacobian Energy
Decomposition (MJED) that allows for fast and realistic liver deformations including
hyperelasticity, porosity and viscosity. Also, Miller et al (2007) introduced Total
Lagrangian explicit dynamics (TLED) which can achieve real-time performances
when coupled with explicit time integration and GPU-based solvers (Joldes et al,
2010).

More recently, another class of methods made use of machine learning (ML)
algorithms to solve the deformed state of a model (Lorente et al, 2017; Roewer-
Despres et al, 2018; Tonutti et al, 2017; Pellicer-Valero et al, 2020). Such ML
models are often trained with synthetic data generated by the FE method.While the
offline training phase can be computationally expensive, the online predictions satisfy
real-time compliance and can provide very accurate estimations of the displacement.

Furthermore, to guarantee the high level of precision required, accurate modeling
adapted to the patient anatomy needs to be pursued. The first step towards patient-
specific modeling is the patient-specific geometry of the organ. Generally, the 3D
anatomical model of the organ is constructed from preoperative volumetric medical
images such as CT scan or MRI without too much difficulty. Moreover, boundary
conditions (BCs) are essential for the FE method to produce accurate results (Bosman
et al, 2014). The location and the elastic properties of the BCs are also patient-specific
but are not visible on preoperative images. The partial intraoperative images give
inaccurate information about the BCs that are often out of the field of view of the
laparoscopic camera. In addition, the correct identification of the patient-specific
elasticity parameters is essential for an accurate estimation of the deformation of the
considered tissue. Note that the values of these parameters are intrinsic to the choice
of the constitutive law.

To ensure the aforementioned requirements in terms of model parameteriza-
tion and computational efficiency, we combine FE approaches with either Bayesian
methods or deep learning techniques, in order to keep control over the underlying
computational model while allowing for intraoperative inputs. We first propose an
image-driven stochastic assimilation method to identify the BCs on the one hand,
and the elasticity parameters on the other hand. Second, we present a data-driven
deep neural network that learns the desired biomechanical model including its BCs
and material parameters, to predict complex non-linear deformations in real-time.
This chapter is divided in three main segments. First of all, the biomechanical for-
mulation of the general problem we want to solve is presented, with an emphasis on
the role of each parameter in the predictive power of such models. Next, we look at
the importance of the correct estimation of patient specific boundary conditions and
material parameters, which are identified based on real observations using Kalman
filtering. In the third section, we go a step further by directly learning from data
the mechanical behavior of a liver through deep neural networks. Lastly, the learned
model is adapted to patient specific properties through transfer learning.
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5.2 Numerical Simulation of Hyperelasticity Problems

5.2.1 Hyperelasticity of Soft Tissues

The deformable behavior of soft tissues can be described following the laws of
continuum mechanics. Hyperelastic formulations are usually exploited to character-
ize biological materials undergoing large deformations, which cannot be accurately
handled by linear models (Delingette and Ayache, 2004). Our reference problem
corresponds to the boundary value problem of computing the deformation of a
hyperelastic material under both Dirichlet and Neumann boundary conditions. The
solid occupies a volumeΩ whose boundary isΓ . We assume the Dirichlet conditions
on ΓD, a subset of Γ , known a priori, while Neumann boundary conditions on ΓN

can vary at any time step. Relying on the Lagrangian formulation, the relationship
between the deformed x and undeformed state X of each point of the solid reads as

x = X + u (5.1)

where u is the displacement field. Throughout this chapter, we describe material
behavior with the Saint-Venant–Kirchhoff constitutive model, which is the simplest
generalization of the linear model for large displacements. The Green–Lagrange
strain tensor E ∈ R3×3 is computed as a non-linear (quadratic) function of the
deformation gradient F = I +∇Xu,

E =
1

2
(FT F − I) (5.2)

where I ∈ R3×3 is the identity matrix. The strain-energy density function W for a
St. Venant–Kirchhoff material is obtained according to the following equation:

W(E) = λ

2
[tr(E)]2 + μ tr(E2) (5.3)

where λ and μ are the material parameters called Lame’s constants, derived from
the Young’s modulus Y and the Poisson’s ratio ν such that

λ =
Y ν

(1 + ν)(1− 2ν)
,

μ =
Y

2(1 + ν)
.

(5.4)

The constitutive law is then obtained by differentiating W with respect to E,

S =
∂W(E)
∂E = [λtr(E)I + 2μE] : E (5.5)

where S is the second Piola–Kirchhoff stress. S is related to the first Piola–Kirchhoff
stress tensor P by P = FS.
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Ignoring time-dependent terms, the boundary value problem formulated in mate-
rial coordinates (i.e., considering kinematic quantities with respect to the undeformed
geometry) is then given by ⎧⎨⎩∇(FS) = b in Ω

u(X) = 0 on ΓD

(FS)n = t on ΓN

(5.6)

where b gathers the external body forces, n is the unit normal to ΓN and t is the
traction applied to the boundary ΓN . The weak form of (5.6), obtained from the
principle of virtual work, brings forward the boundary term and reads as∫

Ω

S : δE dΩ =

∫
Ω

b η dΩ +

∫
ΓN

t η dΓ (5.7)

where δE = 1
2 (F

T∇η + ∇T ηF) is the variation of the strain, and η = {η ∈
H1(Ω) | η = 0 on ΓD} is any vector-valued test function (H1(Ω) being a Hilbert
space). The left side of equation (5.7) denotes the internal virtual work, and the right
side, the virtual work from the applied external load.

5.2.2 Finite Element Method

A typical approach to find a numerical solution to equation (5.7) is the finite element
method (FEM). FEM relies on a discretization of the domain into a finite number
of elements, usually hexahedral (H8) or tetrahedral (T4). The displacement of each
point in the volume is represented as a function of the displacement values at the
element nodes. The methods we propose in the following rely on either H8 or T4
elements. H8 elements are known to have better convergence and stability, but it is
difficult to use them to describe irregular shapes (Shepherd and Johnson, 2008). On
the contrary, T4 elements can fit complex geometries, but can be highly inaccurate in
the computation of stresses and strains (Benzley et al, 1995). Therefore, tetrahedral
meshes are the main approach used for solid organs.

Due to the non-linearity of equation (5.2), the unknown displacements are ob-
tained as the solution of a non-linear system of equations. Using an iterative Newton–
Raphson method, from an initial displacement u0, we try to find a correction δnu after
n iterations that balances the linearized set of equations:

K̇n−1
δnu = r(u0 + δn−1

u ) + b (5.8)

where K̇ is the tangent stiffness matrix and r is the internal elastic force vector. In
order to solve the linearized system, both the matrix K̇ and the vector r need to be
re-computed at each iteration. A more detailed description of the solution process is
described in (Bro-Nielsen and Cotin, 1996).
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5.3 Stochastic Identification of Patient-Specific Properties

Our finite element simulations depend on parameters of the constitutive model such
as Young’s modulus, Poisson’s ratio and the boundary conditions (BCs). Since the
liver may be represented with an incompressible material, Poisson’s ratio can be
safely set to a value close to 0.5. However, the value of Young’s modulus E is more
difficult to estimate as it varies with the age of the patient or even with pathology. For
instance, a cirrhotic liver is significantly stiffer than the average. Therefore, values
from the literature do not directly match each patient. Besides that, the location and
the elastic properties of the attachments of the organ play a major role in the accurate
approximation of the displacement field. Such BCs are not visible in the preoperative
images and it is difficult to estimate them intraoperatively as they are often out of
the field of view of the surgery.

The elastic properties of materials can be identified by solving inverse problems
(Lu and Zhao, 2009; Zhao et al, 2009; Gee et al, 2010; Sinkus et al, 2010) or using
elastography techniques (Sarvazyan et al, 1998; Muthupillai et al, 1995; Xu et al,
2007) initially developed for diagnosis purposes. Some works have focused on the
estimation of BCs intraoperatively such as (Peterlik et al, 2014; Plantefève et al,
2016; Johnsen et al, 2015) but these methods are difficult to use in practice as either
additional intraoperative scanning is required or they are sensitive to anatomical
variations. Moreover, when acquiring information intraoperatively, observational er-
rors may occur, thus introducing uncertainty to the system. Alternative solutions
accounting for such uncertainty rise from the use of Bayesian methods. For instance,
authors in (Mendizabal et al, 2019a), employed the reduced-order unscented Kalman
filter (ROUKF) to estimate Young’s modulus of a porcine sclera based on observa-
tions extracted from optical coherence tomography images. Also works in (Nikolaev
et al, 2018; Peterlik et al, 2017), employed the ROUKF to model the BCs of a liver
as stochastic parameters, leading to more accurate simulations of the deformations
of the organ.

Similarly to works in (Peterlik et al, 2017; Mendizabal et al, 2019a), we propose to
use the ROUKF to estimate the value of Young’s modulus and the BCs of a liver using
observations of the target model. To this end, each sought parameter p is described as
a stochastic parameter associated to a Gaussian probability density function (PDF).
Initially p ∼ N(μ0, σ0) with μ0 the mean value of p reported in the literature and σ0
its standard deviation. The aim of the assimilation process is to iteratively reduce the
standard deviation σ of p in order to find the most likely value for μ. To this end, the
PDF of the parameter p is transformed based on observations. The transformation
of the PDF is modelled using a ROUKF which can handle non-linear processes, and
is computationally efficient (Moireau and Chapelle, 2011).

In this section we provide a brief description of the ROUKF algorithm, that is
first used to estimate Young’s modulus of a synthetic liver, and in a second time used
to estimate the boundary conditions of an in vivo liver.
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5.3.1 ROUKF: Overview of the Algorithm

Once the FE model of the organ is built (from a preoperative CT scan for instance),
the constraints imposed on the surface ΓD need to be identified in order to generate a
deformation. In other words, the organ attachments representing Dirichlet boundary
conditions and the traction or displacement imposed on the free part of the boundary
need to be identified. In this work, the former can be either fixed (Sect. 5.3.2) or
set as a set stochastic of parameters (Sect. 5.3.3) and the latter can be determined
intraoperatively. During the intervention, points in the surface of the organ can be
tracked in each video frame. Such points are called features and are separated into
control features and observation features. The control features govern the deforma-
tion of the liver model (imposed displacement on ΓD or traction if a force sensor
is available) and the observation features correspond to ground truth data (used in
the filter correction phase to compute the Kalman gain). The control features can
be selected close to the surgical tool and be used to prescribe displacements in the
mechanical model.

An efficient implementation of a Bayesian inference method able to process
nonlinear systems like our models is the Unscented Kalman Filter (UKF) (Julier
et al, 1995). Compared to an Extended Kalman Filter, it does not require to compute
the Jacobian of the system, which would be prohibitive given the size of our problem.
The unknown data to be estimated (the stochastic state of the system) is described
as a Gaussian distribution, which transformation through the nonlinear system is
performed using an unscented transformation (see Julier et al (1995) for details).
The main idea is to parameterize the Gaussian distribution using a set of sigma
points, which hold the mean and covariance information, but are easier to transfer
through a nonlinear function. The general algorithm is described in Alg. 1. It consists
of a loop that contains two main steps. During the prediction step we form the new
hypothesis about the estimated state, while during the correction step we correct it
by comparing the predicted measurements with (noisy and partial) observations.

The prediction step can be very costly when using a model with many degrees
of freedom, as it is the case when using a FEM method. Using the simplex method
to generate the sigma points would require m + 1 simulations if m is the number
of elements in the stochastic state vector (line 9 of the algorithm). With a mesh of
n nodes and k stiffness parameters, this would mean 3n + k + 1 simulations. A
simple FEM mesh of only a few hundred nodes would be too time-consuming for a
clinical application, as it would require more than 300 simulations for each step of
the assimilation process. To solve this issue, we use a Reduced Order Kalman Filter
(ROUKF) instead of the UKF. This method significantly reduces the computation
cost since only k + 1 simulations (in the best case) are required. This approach was
proposed in Peterlik et al (2017).

Let us assume there are k unknown parameters in our model, so k different
parameters to estimate that can be either the elasticity of the material or the elasticity
of the organ attachments. Since we are using the simplex version of the ROUKF, there
are k+1 sigma points meaning that k+1 evaluations of the model are performed in
each prediction step of the assimilation process. At each step of the assimilation, the



78 Mendizabal, Tagliabue, Hoellinger, Brunet, Nikolaev, Cotin

Algorithm 1: Main steps of unscented Kalman filter
1: Initialize data:
2: set x1 - model positions and unknown parameters
3: set T = T (x1) - finite element model
4: set I, P1, Q, W - initial filter parameters
5: for each simulation step i do
6: Compute prediction phase:
7: xσ∗

i = xi +
√

PiI - generate sigma points
8: for each sigma point k do
9: x̃σk

i+1 = T (xσk
i ) get result from deformation step

10: end for
11: x̃i+1 = E

(
x̃σ∗
i+1

)
- compute predicted state as mean of sigma points

12: P̃i+1 =
(
x̃σ∗
i+1 − x̃i+1

)(
x̃σ∗
i+1 − x̃i+1

)T
+ Q - compute predicted covariance

13: Compute correction phase:
14: get q(o)

i+1 - observation features
15: for each sigma point k do

16: q̃(o)
i+1

σk

= H(x̃σk
i+1) - get predicted observation

17: end for
18: Pxq(o) =

(
x̃σ∗
i+1 − x̃i+1

)(
q̃(o)
i+1

σk

− E
(
q̃(o)
i+1

σ∗)T - compute cross covariance

19: Pq(o) =
(
q̃(o)
i+1

σk

− E
(
q̃(o)
i+1

σ∗)(
q̃(o)
i+1

σk

− E
(
q̃(o)
i+1

σ∗)T
+ W - comp. obs. cov.

20: Ki+1 = Pxq(o)P−1

q(o)
- compute Kalman gain

21: xi+1 = x̃i+1 +Ki+1

(
q(o)
i+1 − E

(
q̃(o)
i+1

σ∗))
- compute corrected state

22: Pi+1 = P̃i+1 − Pxq(o)P−1

q(o)
PT

xq(o) - compute corrected covariance
23: end for

control features are extracted from the actual video frame and mapped onto the FE
model through barycentric coordinates, in order to prescribe displacements. At the
first step, μ and σ are initialized to μ0 and σ0 for each parameter. Then, k+1 vectors
of parameters are sampled and k + 1 simulations are performed. Each simulation
corresponds to one of the sampled k + 1 values of the parameter and they can be
done in parallel as they are independent. After the simulations for all sigma points
are performed, the a priori expected value and covariance matrix are updated. This
is called the prediction phase. Later, in a correction phase, the extracted observation
features are compared to the model predicted positions to compute the innovation
that is used to compute the Kalman gain. The a posteriori expected values and the
covariance matrix are computed based on the Kalman gain.

5.3.2 Estimation of the Young’s Modulus Using Kalman Filters

In this paragraph, we aim at estimating the value of the Young’s modulus of the
liver using the ROUKF. This estimation is done using synthetic data, but a similar
process can be followed for real data. We build a biomechanical model of the liver,
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Fig. 5.1 Liver simulation mesh made of 11, 000 tetrahedral elements (left). The red points
highlight the fixed points (Dirichlet boundary conditions), the yellow points correspond to the
observed features, and the green arrows illustrate the direction of the applied forces. Variation of μ
and σ for Young’s modulus estimation using the ROUKF (right). The value of the parameter
converges to 4992± 15Pa in 500 seconds.

with fixed boundary conditions (red points in Figure 5.1(left)) to mimic the effect
of the falciform ligament and of the vascular tree. A force of fixed magnitude and
varying amplitude is continuously applied to one of the liver lobes to generate
observations (yellow points in Figure 5.1(left)). The amplitude of such force follows
the sinusoidal function 1

2 × (1− cos(2× π × τ)) where τ is a period. In this case,
the control features defined in section 5.3.1 correspond to the force applied (that is
known). The Young’s modulus is set to 5, 000 Pa in the reference simulation.

For the initialization of the ROUKF, we set μ0 to 1, 000 Pa and σ0 to 200 Pa.
The state vector contains all the degrees of freedom of the mesh and the parameters
to estimate (one parameter in our case). Hence, there are only 2 sigma points which
allows a very fast assimilation process to take place as only two evaluations of
the model need to be performed at each prediction phase. As depicted in Figure
5.1(right), the value of the Young’s modulus reaches rapidly a value close to the
ground truth (at iteration 150, μ = 4948 and σ = 97). The value of the parameter
converges to 4992± 15 Pa in 631 iterations (that is 500 seconds). Such assimilation
process could take place before the surgery starts. Note that if the assimilation needs
to be done in real-time, the simulations could be parallelized and simplified (we
chose here a relatively high mesh resolution).

5.3.3 Estimation of Boundary Conditions Using Kalman Filters

Apart from material properties, the same approach can be employed to estimate the
unknown attachments of the liver. We consider a scenario where an in vivo porcine
liver is deformed with laparoscopic pincers. A video sequence of 7 s was acquired
with a laparoscopic monocular camera inserted in the porcine abdomen inflated
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Fig. 5.2 The first frame of the video sequence with features (left). Temporal evolution of the
assessment error computed for each assessment point (right).

with gas. We assume there is a region Σ on which hidden boundary conditions are
applied.

Before the intervention, a CT scan was collected from the organ’s geometry and
a FE model was built following the pipeline described in section 5.2.2. A tetrahedral
mesh having 315 nodes was generated. The obtained model is fixed with elastic
springs in a region Σ that is hidden to the laparoscopic camera view. There are 35
nodes inΣ meaning that 35 nodes were attached with springs to mimic the boundary
conditions at these specific locations. The elasticity parameters of such springs are
modelled as stochastic parameters (see section 5.3.1). The elasticity values can
range from 0 (no attachment) to high values (stiff attachment). A different elasticity
is associated with each spring.

Known surface displacements are prescribed on a small area of the visible surface
to mimic the effect of the surgical tool based on the control features. The considered
scenario falls within the category of displacement-zero traction problems, where the
relation between surface and volume displacements is independent of the Young’s
modulus, for homogeneous materials (Miller and Lu, 2013). As a consequence,
without lack of generality we set Y to the fixed value of 5, 000 Pa, which is the
average stiffness value for a liver.

For the initialization step of the ROUKF, μ = 0 and σ = 0.01 for each parameter.
Three assessment points are placed on the surface of the liver mesh in order to
compute the prediction error between the observed data and the model. We ensure
that the assessment points are different from the control and the observation features
(see Fig. 5.2(left)). In Fig. 5.2(right) is shown the temporal evolution of the predic-
tion error computed over the three assessment points. The error achieved with the
stochastic simulation is compared to the error obtained with either fixed BCs (e.g.
stiff attachment) or without BCs (e.g. spring stiffness set to zero). Results show that
the stochastic simulation leads to smaller errors than the deterministic simulation.
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5.4 Deep Neural Networks for Data-Driven Simulations of a
Liver

Methods described in Section 5.3 allow to estimate the boundary conditions and the
material parameters of the anatomy, assuming that the constitutive model is known.
In practice, the choice of the constitutive relation is usually based on previous
works and/or phantom tests, and it is not possible to guarantee that it is the most
representative of the real clinical scenario. Within this context, it seems natural to
try to learn the complete biomechanical behavior of the organ directly from real data
acquired intraoperatively (including its constitutive equation).

In recent years, machine learning (ML) started to revolutionize several fields
(vision, language processing, image recognition, genomics). With sufficient ground
truth data, machine learning algorithms can map the input of a function to its output
without any mathematical formulation of the problem, thus actuating like a black
box. The high inferring speed of these methods makes it useful for many applications
where the prediction speed is of critical importance. Due to this characteristic and
the fact that they are driven directly by data, these methods seem promising for the
learning of the entire mechanical behavior of the anatomy without relying on prior
models.

Some first attempts that exploit learning methods to estimate the deformation
of biological tissues have recently been made. By implicitly encoding soft tissue
mechanical behavior in the trained ML models, they proved successful to predict
the entire 3D organ deformation starting either by applied surface forces (Morooka
et al, 2008; Tonutti et al, 2017; Rechowicz and McKenzie, 2013; Mendizabal et al,
2020) or by surface displacements (Pfeiffer et al, 2019; Brunet et al, 2019; Lorente
et al, 2017; Mendizabal et al, 2019b). However, the accuracy of a ML model highly
depends on the quality and on the amount of data used to train it. In an ideal scenario,
such a model would be trained with an infinite amount of real patient-specific noise-
free data, which is in practice not possible. As a matter of fact, acquiring large
number of volumetric deformations of an organ is a challenging problem. Moreover,
the constraints applied should be precisely controlled which is in practice very
complicated to guarantee. Within this framework, FE simulations can be exploited
to generate synthetic data that is highly representative of the reality, to be used as
training samples.

Among the various ML techniques, the use of neural networks (NN) has con-
siderably increased. This is due to the fact that they are the building blocks of
deep learning, a class of methods which is able to learn data representations and
has demonstrated strong abilities at extracting high-level representations of com-
plex processes. For example, neural networks are used by Tonutti and Rechowicz to
predict the displacement of brain tumors and of the rib cage surface respectively,
starting from the acting forces (Tonutti et al, 2017; Rechowicz and McKenzie, 2013).
However, both these works do not predict whole volume deformation but only sur-
face displacements. Neural network based methods have been also used to predict
liver deformation in augmented surgery. Morooka et al. trained a NN to predict liver
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deformations for a given input force. They use their model together with PCA to
compress the size of the output deformation modes, and thus reduce the training time.
Although the model proved able to learn the deformation modes, it was only applied
to simulated data and not to real cases (Morooka et al, 2008). An additional example
is proposed by Pfeiffer et al., who used a deep NN to estimate liver deformations
from the known displacement of partial liver surface. The innovative aspect of this
work is that the proposed network is able to provide an accurate prediction on a liver
mesh even though the synthetic data used for the training were generated from a
set of random meshes. Similarly, Pellicer-Valero et al. trained a NN on various liver
geometries by registering them to an average liver geometry. However, the authors
rely on the assumption that both the boundary conditions and the elastic properties
of the object are known, and they did not test their network performance on real data
acquired during surgery (Pfeiffer et al, 2019; Pellicer-Valero et al, 2020).

From all these works it emerges that the main advantage of using neural networks
to predict anatomical deformations is that the prediction speed is in the order of few
milliseconds and is not affected by the complexity of the model used to generate the
training dataset. In this section, we propose a method that, similarly to the approaches
described above, allows for extremely fast and accurate simulations by using an
artificial neural network that learns the stress-strain relationship directly from data,
without any a priori mathematical formulation of the problem. Such a network
can not only learn the desired biomechanical model, but also the desired boundary
conditions and material properties; and predict deformations at haptic feedback
rates with very good accuracy. This section is divided in three main segments.
First of all, we present the selected network based on a U-Net architecture and the
strategy adopted for the generation of training data. Afterwards, we report some
representative results, obtained when using the proposed U-Net both in simulated
and real scenarios. In a further section, we explain how we employed transfer learning
methods to make the U-Net able to generalize to new unseen boundary conditions
and elastic parameters.

5.4.1 Method

In this section we propose to use a deep neural network that learns the relation
function between surface constraints and volumetric deformation accounting for the
specificity of each patient. The general procedure, named the U-Mesh framework,
consists in training a 3D U-Net architecture (Ronneberger et al, 2015) with synthetic
deformed meshes generated with the FEM described in section 5.2.2.

5.4.1.1 The U-Mesh Framework

Formally, our network h is a parameterized function that accepts a 3×nx×ny ×nz
tensor of input constraints C and produces a tensor of volume displacements Uv of
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the same size as output. The computational domainΩ is sampled by a 3-dimensional
grid of resolution nx × ny × nz (see Fig 5.5(left)). The tensor C represents the
constraints applied over the surface boundary Γ of the domain.

Our problem consists of finding the function h that produces the best estimations
of the displacement field given prescribed constraints C. This is performed by
minimizing the expected error over the training set {(Cn,Uvn)}Nn=1 ofN samples:

min
θ

1

N

N∑
n=1

‖h(Cn)−Uvn‖22. (5.9)

To characterize our network h, we choose a 3D U-Net (Ronneberger et al, 2015)
architecture for its similarities with model order reduction techniques from the
mechanics community. It is a modified fully convolutional network with an encoding
path that transforms the input into a low-dimensional space and a decoding path that
expands it back to the original size (see Fig. 5.3). Additional skip connections transfer
detailed information along matching levels from the encoding path to the decoding
path. For a more detailed explanation of the U-Net, the reader may refer to our
previous publication on the subject (Mendizabal et al, 2020).
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Fig. 5.3 Network architecture for an initial grid resolution of size 20× 16× 15, padded to
32× 16× 16, 128 channels in the first layer and 3 steps

5.4.1.2 Synthetic Data Generation for U-Net Training

Training data for our network are made of pairs of (C,Uv) which are obtained
from the previously explained FEM. We perform multiple simulations by imposing
random constraints on the boundary Γ . At the end of each simulation, the pair of
imposed constraints and obtained volumetric deformation is stored as an element of
the data set.

For a correct spatial understanding, the U-Net requires regular grids as input,
meaning that the displacements of the considered object need to be encoded in
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a regular grid. To this end, we propose to mesh the domain Ω using tetrahedral
elements to compute the FE deformations and then, map a 3-dimensional regular
grid onto the tetrahedral mesh to follow its deformation (see Fig 5.5(left)). This
mapping introduces an approximation error that is reduced when the grid resolution
is increased. Random forces are directly applied to the surface of the object and then
mapped to the nodes of the grid and to the T4 elements. At this stage, we can store the
imposed constraints C (applied traction on grid nodes or grid surface displacement)
and the resulting volumetric deformation Uv as a point of the data set. In total N
training samples and M testing samples are generated.

The generated N training samples are used to train the network by minimizing
Eq. 5.9 with the Adam optimizer (Kingma and Ba, 2014). All our experiments are
performed in a GeForce 1080 Ti using a batch size of 4 and 100, 000 iterations for
training. We use a PyTorch implementation of the U-Net. We recall that the batch
size is the number of samples that are given to the network at each iteration of the
minimization process.

5.4.1.3 Validation Metrics

To assess the efficiency of our method, we perform a statistical analysis of the
error over the testing data set {(Cm,Uvm)}Mm=1. Let Uvm be the ground truth
displacement tensor for sample m generated using the FEM described in section
5.2.2 and h(Cm) the U-Mesh prediction. We define the mean Euclidean error e
between Uvm and h(Cm) for sample m as:

e(Uvm, h(Cm)) =
1

n

n∑
i=1

∥∥Uv
i
m − h(Cm)i

∥∥
2

(5.10)

where n is the number of nodes of the mesh. We compute the average e and standard
deviation σ(e) of such norm over the testing data set. The mean Euclidean error
represents the intuitive nodal distance, averaged over all the nodes of the mesh.

5.4.2 Predicting the Deformation of the Liver

In this section we will show the performance of the U-Mesh in predicting the
deformations of a liver. To start with, the U-Net learns to predict the displacement
field of a virtual liver given an input contact force. In a follow-up, the U-Net is
used in an augmented reality context, where the full volumetric displacement field
needs to be estimated from a partial surface deformation. In both cases the network
is trained with FEM-generated data since for the moment, we do not know how to
collect a sufficient amount of real volumetric information of a liver using current
imaging techniques.
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5.4.2.1 U-Mesh on a Synthetic Liver

A surface mesh is obtained from a pre-operative CT scan of a human liver. The liver
volume is meshed with 4859 tetrahedral elements and Dirichlet boundary conditions
are used (67 nodes between the two lobes were fixed) to mimic the effect of the
vascular tree and of the falciform ligament (Abdel-Misih and Bloomston, 2010).
The length of the liver is 0.2 m. The Young’s modulus Y is set to 5, 000 Pa and the
Poisson’s ratio to 0.48. A regular grid of resolution 21 × 23 × 21 is mapped onto
the tetrahedral mesh to encode the displacement fields and the forces in a “U-Net
interpretative manner”.

Normal forces of random magnitudes are computed on the liver surface. Only one
force is applied at each time step on a small surface area. To fit the time requirements
of a clinical routine (e.g. a few hours between the pre-operative CT scans and the
surgery), we decided to limit the size of the data set to 2, 000 samples (generated
in 180 min). The data set consists of 2, 000 pairs of input forces and corresponding
volume deformation. N = 1, 600 samples are used to train the network in 327 min
and M = 400 samples are left for validation.

Metrics obtained on the validation set are reported in Table 5.1. The maximal mean
Euclidian error over the testing data set is of only 6.8e−4 m (see Fig 5.5(right)) and
the maximal deformation is 0.08m. The most impacting result is the small prediction
time: outputs are predicted in only 3.47±0.60ms. In Fig. 5.4 are shown some samples
of U-Mesh-deformed livers with the corresponding reference solutions.

These results show the potential of the U-Mesh in applications requiring both
high accuracy and speed. In the following, we will show its performance on an
augmented reality scenario where the available information can be noisy and sparse.

Table 5.1 Error measures on a liver of length 0.2 m immersed in a 21× 23× 21 grid. The
maximal e is 6.8e− 4 m and the maximal deformation is 0.08 m.

e σ(e) prediction time training time
in m in m in ms in min

6.94e− 5 7.81e− 5 3.47± 0.60 327

Fig. 5.4 Various liver samples from the testing data set. The reference solution appears in red and
the U-Mesh prediction is in green. The rest shape of the liver is shown in gray.
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Fig. 5.5 The computational domain Ω is meshed with T4 elements and a 3-dimensional grid of
resolution nx × ny × nz is mapped onto the tetrahedral mesh (left). Sample with maximal nodal
error 0.00068 m (right). The reference solution is shown in red and the U-Mesh prediction is in
green. The rest shape is shown in gray.

5.4.2.2 U-Mesh for Augmented Hepatic Surgery

To build an augmented view of a liver during surgery we need to perform an elastic
registration of the preoperative model to the intraoperative images acquired with a 3D
imaging device (see Fig 5.6). While in minimally invasive surgeries a laparoscopic
camera can be used to acquire a video of the abdominal cavity, in open surgeries
and RGB-D sensor can capture the surface deformation of the tissues. From such
images, a partial point cloud of the liver surface can be extracted using one of the
methods listed in Petit and Cotin (2018). To perform the elastic alignment between
the preoperative internal structures and the surgical live images, the preferred method
is the co-rotational FEM as it can provide a real-time estimation of the displacement
field (Petit and Cotin, 2018). However, the complex deformations happening during
surgical manipulations may not be correctly taken into account by such a simple
model. To overcome this issue we propose to replace the FEM step with the U-Mesh
trained on a more sophisticated FEM model (typically not capable of achieving
real-time computations).

The U-Mesh needs to learn to predict full volumetric displacements from partial
surface point clouds that give information about the position of some points of the
surface of the liver. These positions can be translated as prescribed constraints. As
explained in section 5.2.2, using H8 elements lead to better approximation of the
stress and the strain. Therefore, to generate the data sets, we choose to use a FEM
combined with an immersed boundary method (Düster et al, 2008) as it allows for
the use of regular hexahedral meshes to compute accurate deformations of the liver.
It is worth noting that in this scenario the FEM mesh directly matches the input to
the U-Net, thus avoiding the approximation error introduced by the mapping in the
previous section.

We can assume that during surgery, half of the surface of the liver is visible
to the camera. As depicted in Figure 5.7, 100 points are uniformly sampled in the
visible part of the surface to mimic a point cloud. Then, 100 simultaneous forces
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of random magnitude and direction are applied to these points in order to generate
nearly random displacements. The training data set consists of pairs of (Us,Uv)
where the input to the network Us corresponds to the surface point cloud mapped
onto the regular grid. For the same reasons stated in previous section, we limited
the size of the data set to 2, 000 samples (N = 1, 600 for training and M = 400
for testing)(see Fig. 5.8 for examples of the generated deformations). It is worth
mentioning that no patient-specific parameterization of the biomechanical model is
required since for homogeneous materials, the relation between the surface and the
volumetric displacements is independent of the stiffness of the object (Miller and
Lu, 2013), and only depends on the Poisson’s ratio (set to 0.49 as soft tissues can
generally be described as incompressible).

Preoperative 
3D model

Preoperative 
FEM model

Intraoperative 
live image

Partial surface 
point cloud

Elastic registration 
showing internal 

structures

Fig. 5.6 Augmented reality pipeline: preoperative internal structures are mapped in real-time onto
the live image of the organ using a FEM model.

Once the network is trained, we assess our approach on ex vivo human liver
data, on which ten markers are embedded to compute target registration errors
(TRE). During the experiments, surface data is obtained with an RGB-D sensor and
ground truth data acquired at different stages of deformation using a CT scan. The
RGB-D point clouds can be interpolated onto the regular grid to obtain per-node
displacements on the surface and can be given as input to the network that in turn
predicts the volumetric displacement fields. Each new RGB-D point cloud can be fed
to the network, thus generating a continuous visualization of the internal structures
of the organ.

The marker predicted positions are compared to our ex vivo ground truth by
computing TREs (see Fig 5.9). The average TRE at the 10 markers is of only 2.92
mm with a maximal value of 5.3 mm. The same scenario, but this time using a
co-rotational FE method, leads to an average TRE of 3.79 mm and is computed at
about 25 ms. The solution of the Saint-Venant–Kirchhoff model, used to train our
model, gives nearly the same error (which was expected) but for a computation time
of 1550 ms.
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Fig. 5.7 Virtual point cloud
on the visible surface of
the liver to generate random
displacements.

Fig. 5.8 Examples of generated deformations to train the network.

Fig. 5.9 Comparison between the reference co-rotational FEM, the Saint-Venant–Kirchoff model
used to train the network and the U-Mesh.

5.5 Updating the Trained Model Through Transfer Learning

As mentioned above, there exists a correlation between our method and model
reduction techniques. There is an important body of work in this area, with a well-
established understanding of the process linking the fast (macro) model to the full
(micro) model (De Angelo et al, 2019). Such theory-driven approaches define how to
generate reduced models with adapted parameters that characterize the full (micro-
scale) model (Boutin et al, 2017). Our Deep Learning approach does something
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similar by learning the key characteristics (deformation and parameters) of the full-
scale model, but using a data-driven approach for this.

When applied in the context of surgery, both approaches share the same limitation.
The full model (micro-model) cannot always be correctly parametrized until the
surgery has started, as some model parameters are not measurable in pre-operative
images. In this case, the use of transfer learning methods can offer a natural, data-
driven solution for adapting the neural network to a particular patient. For methods
based on reduced models, Bayesian approaches are probably a good alternative, as
they can estimate material properties from a probability distribution and a priori
knowledge of the parameter value.

As mentioned in the section 5.3, boundary conditions have a significant impact
on the accuracy of the predictions computed by biomechanical models. However,
since they are hard to identify, we want to ensure the robustness of the U-Mesh to the
variability of the BCs. We will show that small amount of data is required to learn
patient-specific BCs, when refining a network pre-trained with variable BCs from an
appropriate distribution. This could help to significantly reduce the expensive cost
of the offline data generation phase. Lastly, since real data can be sparse and noisy,
we explore the behaviour of the U-Net when the input tensor C is highly sparse, and
the effect of noise on the quality of the predictions.

5.5.1 Beam with Hidden Fixed Dirichlet BCs

In this section, we compare the accuracy of the U-Mesh either when trained from
scratch with up to 16, 128 samples, or when pre-trained on various BCs and refined
on the target BCs.

We consider a deformable beam (size 4x1x1 m3, E = 300 Pa, ν = 0.4, 500
regular H8 elements) subject to fixed boundaries on a rectangular cuboid of its
bottom part (see Figure 5.10). The beam follows the Saint-Venant–Kirchhoff behavior
described in section 5.4.1.2. We generate three different training data sets (N1 =
16, 128; N2 = 1, 209; N3 = 100) and one testing data set (M = 4, 032), all
drawn from the same distribution. We performed 10 trainings to compare 7 different
strategies, summarised in Table 5.2. In strategies 1, 2, and 4, the U-Net is trained
from scratch whereas in strategies 3, 5, 6 and 7, the U-Net is refined starting from a
network pre-trained with 16,128 data with different boundary conditions (see Table
5.2).

In Table 5.3 are reported the validation metrics computed for each strategy on
the same testing dataset (M = 4,032), as well as the index of the best iteration
over 200,000 (with a saving step of 5,000). We see that strategy 3 performs better
than strategy 2. More impressive yet are the strategies 5, 6 and 7 (especially 5,
which, by refining, led to errors comparable to the one obtained with 12x more data
without refining). Furthermore, they are substantially better than strategy 4 where
no refinement was done. This is an example of a scenario where the U-Net cannot
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Upper surfaceBC1

Fig. 5.10 Cuboid-like boundary conditions on which the U-Net is pre-trained in strategies 3 and 5.
In strategy 6, there are four more cuboids so that the lower part of the beam is fully covered. In
strategy 7, the U-Net is pre-trained on BC1.

Table 5.2 Summary of the 7 strategies of interest. “BC4” stands for 4 adjacent cuboids in the
middle of the hidden part of the beam. “BC8” stands for 8 adjacent cuboids fully covering the
hidden part of the beam (see figure 5.10).

Strategy ID 1 2 3 4 5 6 7

Training data set # N1 N2 N3

Pre training data set – – BC4 – BC4 BC8 BC1

accurately learn a deformation model from scratch with very few (100) data, whereas
it does learn an accurate model in a few thousands iterations using transfer learning.

The mild differences between the metrics obtained for strategies 5, 6 and 7 show
that the data generated for pre-training must be reasonably distributed. Indeed, even
though the network benefits from the diversity of BCs encountered in the pre-training
stage, it is more efficient when these BCs are close enough to the target boundary
conditions. Hence the need for a reasonable distribution.

So far we have seen that refining from an average model significantly reduces the
quantity of data required to learn a deformation model. Results in Table 5.4 highlight
the fact that it also speeds up the model convergence. Computing more metrics, we
found that a good accuracy is reached approximately 20x faster when refining with
100 data than when starting from scratch with either 16,128 or 1,209 samples.

For completeness, we also investigated the case where the constitutive law changed
between pre-training and refining stages. For pre-training, we modelled a beam
with the linear Hooke’s law, and for refining, we chose the Saint-Venant–Kirchoff
constitutive equation to model the deformations of the beam. In this scenario as well,
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Table 5.3 Error measures over all seven scenarios. Best iterations are given in thousands. Transfer
learning situations are highlighted in red, first and second best results in green and blue.

e

in mm
avg max σ(e)

# training
dataset

best
iteration

1 0.45 2.48 0.29 16,128 200
2 0.71 2.96 0.47 1,209 180
3 0.52 2.66 0.32 1,209 40
4 3.49 32.0 3.59 100 200
5 0.80 4.85 0.61 100 15
6 1.11 5.89 0.80 100 5
7 0.98 8.88 0.82 100 5

Table 5.4 Error measures at iteration 5000. We relaunched the training of 6 and 7 with a step of 50
iterations to ensure there was no significant overfitting before iteration 5,000, hence the values
“1.5” and “1.15” (as a matter of fact, iterations 1,500 and 1,150 were actually slightly better than
5,000). Transfer learning situations are highlighted in red.

e

in mm
avg max σe

# training
dataset

iteration

1 5.74 27.4 3.73 16,128 5
2 7.47 42.1 5.36 1,209 5
3 0.55 2.91 0.35 1,209 5
4 5.25 44.2 4.71 100 5
5 0.81 4.1 0.58 100 5
6 1.09 5.37 0.7 100 1.5
7 0.95 8.66 0.84 100 1.15

we observed that transfer learning reduces the amount of data required to reach a
given accuracy even when the base equations are complexified.

5.5.2 New Boundary Conditions and Sparse Data

As mentioned in previous paragraphs, real intra-operative data can be sparse and
noisy. In this section, we show that the U-Net can still learn models when the training
input tensors only contain a sparse view of the displacementUs imposed on the upper
surface ΓD. In return, the accuracy is reduced and we show that transfer learning is
barely relevant in such an adverse scenario.
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We consider the same beam as described in 5.5.1, except that the beam is supported
on both ends (fixed beam). In order to train the network, we built 2 data sets of sizes
N1 = 10, 080 andN2 = 1, 008 (see 5.5.1). Here, every tensor C contains the values
of an imposed surface displacement, on a randomly selected subdomain of the upper
surface (in between 13 and 114 non-zero displacements in the testing data set, 67
in average) - see figure 5.11. We trained the network either directly with N1 or N2

samples (strategies 1 and 2), or with N2 data after a pre-training on a stiffer beam
fixed at one end (Young’s modulus of 500 Pa). The pre-training was done either
with sparse data (strategy 4, same distribution as the refining data set), or dense data
(strategy 3, full view of the imposed upper surface displacement Us).

Fig. 5.11 Randomly visible sub-domains of the upper face of the beam (in yellow).

In Table 5.5 are reported the validation metrics at best iteration. The average error
withN1 = 10, 080 is of only 3.03 mm and the maximal error is 57.1 mm - meaning
less than 1.5 % of the length of the beam as maximal error. This shows that even
though U-Net may learn much more accurate models with dense data, it still deals
pretty well with sparse data when provided with a large enough training dataset. We
should mention that we obtained very similar results by applying an additive white
Gaussian noise of variance N = 10−3 m on the testing dataset. With a variance
N = 10−2 m, the average mean Euclidean error e barely exceeds one centimeter. On
another note, we see that there is no meaningful difference between the validation
metrics of strategy 2 (1,008 data without refining) and strategy 4 (1,008 data with
refining). Eventually, except when the data set is very small, we found that refining
doesn’t enhance accuracy in such a scenario. What is more, these results highlight the
importance of pre-training the network with sparse data whenever the refining data
is sparse. We further investigated the case where only very few data (N3 = 100) are
available, and found that it was not sufficient (with or without pre-training), although
the refined model was more accurate. What remains valid is that in any scenario, the
U-Mesh maintained a better accuracy with transfer learning in the first thousands
of iterations. Reiterating these tests with sparse data without modifying the Young’s
modulus between pre-training and training stage corroborated these results.

5.6 Conclusion

In this work we have proposed a method fulfilling the real-time and precision re-
quirements of patient-specific augmented reality. Based on a priori knowledge of
the biomechanics of the organ, we select a constitutive model describing the rela-
tion between stresses and strains. Such relation is heavily affected by patient-specific
properties such as boundary conditions and material characteristics. While obtaining
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Table 5.5 Error measures at best iteration. Transfer learning situations are highlighted in red.

e

in mm
avg max σ(e)

# training
dataset

best
iteration

1 3.03 57.1 3.57 10,080 185
2 5.69 101 7.11 1,008 115
3 7.73 106 9.02 1,008 145
4 5.79 88.3 6.85 1,008 95

these properties preoperatively may be troublesome, having information about them
intraoperatively can be straightforward. In our approach, the parameters of the pre-
operative finite element or deep learning models are updated based on intraoperative
observations. These data-driven simulations are obtained by exploiting Bayesian fil-
tering to update the parameters of the finite element model and by employing transfer
learning to update a deep learning model. In the former, each parameter can only be
modified individually. Indeed, in our pipeline using the Kalman filters, to estimate
the stiffness of boundary conditions, the Young’s modulus of the material needs to be
fixed (and vice versa). A simultaneous estimation of both sets of parameters would
be more complicated (yet possible), less precise (variance of the stochastic parame-
ters will remain high) and would require very tedious fine-tuning of the filter. In the
latter, not only the elasticity parameters and the boundary conditions can be changed
simultaneously, but also the constitutive model itself. An interesting point of using
deep neural networks is that the parameters do not need to be explicitly identified.
They are encoded in the data. Hence, the network builds its own representation and
through transfer learning, the weights of the network can be modified to match the
targeted function.

In the second part of this work, we have presented a method that can approximate
complex elastic deformations of a real liver and generate a deformed state from
an RGB-D point cloud. The obtained accuracy is comparable to the one obtained
with the finite element model used to train it while being about 500 times faster.
Whenever the preoperative model differs from the intraoperative one, we can use
transfer learning to exploit the already learned knowledge in a fast and efficient
way. We have reasons to believe that the U-Net learns local correlations in the
displacement field rather than an overall model only. As a consequence, if the pre-
trained model represents an average liver, transfer learning should not break the
constitutive model learned previously. Note that the variability between livers can
be high but it will always vary in a bounded range. For this reason, we believe that
transfer learning is the key to an accurate and fast simulation of the deformations of
a liver. However, the results dedicated to transfer learning are only a proof of concept
as for now, we do not know how to collect intraopertaive volumetric data needed to
refine our network.
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Chapter 6
New Aspects of the Trabecular Bone Remodeling
Regulatory Model—Two Postulates Based on
Shape Optimization Studies

Michał Nowak

Abstract In the paper the results in the area of shape optimization but related
to the simulation models of the trabecular bone remodeling are presented. The
interpretation of the results in the context of the trabecular bone adaptation leads to
two postulates concerning the simulation of the trabecular remodeling phenomenon.

Keywords: Trabecular bone remodeling · Shape optimization

6.1 Introduction

The regulatory model of the trabecular bone remodeling phenomenon has been
described in many papers and books (Huiskes, 2000; Huiskes et al, 2000; Van Oers
et al, 2008). The first observation of the amazing behavior of the trabecular bone
tissue was made by Wolff and published in 1892 Wolff (1892). The observation
proposed by Julius Wolff—called the Wolff’s law—can be described as a structural
adaptation of the bone to the external forces. Since then, scientific research on
the description and development of numerical models of the phenomenon of bone
remodeling is still ongoing. As the process of bone remodeling is extremely complex,
taking into account the dependence on external loads and various biological aspects,
very different numerical modeling approaches are considered for this phenomenon.
One of the most interesting of them is the coupled model based on global stimulus of
the bone remodeling. The global stimulus approach allows to combine in one model
different factors related to the remodeling sequence. The factors are related both to
mechanical stimulation but also to other specific biological aspects of the remodeling
process like cellular migration and differentiation or nutriments supply (George
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et al, 2018, 2019). Other models consider the relationship between mechanical
and biological stimulation using the concept of mechanical and biological models
coupling to describe the phenomenon of bone remodeling (Giorgio et al, 2016,
2019). From a medical point of view it is also an important issue to include in the
models both bone tissue and the tissue reconstructed or reinforced by the addition
of an artificial resorbable material (Lekszycki and dell’Isola, 2012). Regardless of
the approach used, however, the modeling of structural adaptation to variable load
becomes a central research topic.

The same structural adaptation problem is a subject of the shape optimization
studies, especially in the area of the stiffest design research (Haftka and Gürdal,
2012; Pedersen, 2003; Plotnikov and Sokołowski, 2012). In this paper, I attempt to
present results of our team in the area of shape optimization related to the simulation
models of the trabecular bone remodeling phenomenon. The interpretation of the
results in the context of the trabecular bone adaptation is based on our previous
papers (Nowak et al, 2018, 2020).

6.2 The Stiffest Design Problem

To begin with, the problem of how to obtain the stiffest design and its setting could
be presented as follows. In order to maximize the stiffness of a structure (the stiffest
design goal), one needs to minimize the functional:

J(Ω) =

∫
Γ1

t · u ds (6.1)

The constraint is the given volume:∫
Ω

dx− V0 = 0 (6.2)

The state equations are as follows:

divσ(u) = 0 in Ω

σ(u) · n = t on Γ1

σ(u) · n = 0 on Γv

u = 0 on Γ0

(6.3)

Herein above, Ω represents domain of the elasticity system, u the displacement,
Ω0 a given volume, Γ0 part of the boundary with Dirichlet condition, Γ1 part
of the boundary loaded by traction forces t, Γv part of the boundary subject to
modification. The domain of the elasticity system and the featured parts are presented
in Fig. Nowak-fig1.eps. By analyzing the picture above and construing the presented
parts of the domain as the elements of the trabecular bone structure—despite the fact
that a single trabecula size ranges from tens to hundreds of micrometres (Hamed et al,
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Fig. 6.1 The domain of the
elasticity system Ω, Γ0 part of
the boundary with Dirichlet
condition, Γ1 part of the
boundary loaded by traction
forces,Γv part of the boundary
subject to modification.

2012), one may imagine that the trabecular structure is the domain of the elasticity
system. Subsequently, one can use their result from the area of shape optimization,
which concerns Γv—a part of the boundary subject to modification.

After defining the Lagrangian for the problem under considerations, where Ωt is
an image of Ω in transformation Tt,

L(Ωt, λ) =

∫
Γ1

t · ut ds+ λ

[∫
Ωt

dx− V0

]
(6.4)

The shape derivative Sokołowski and Zolesio (1992) of the state equation in the
weak form gives the formula:∫

Γ1

t · u′ ds = −
∫
Γv

σ(u) : ε(u)V · n ds (6.5)

Then the shape derivative of Lagrange function using speed method Sokołowski and
Zolesio (1992) is taken

[L(Ωt, λ)]
′ =

∫
Γ1

t · u′ ds+ λ

∫
Γv

V · n ds = 0 (6.6)

and using the formula (6.5) the derivative of Lagrange function gives∫
Γv

[
λ− σ(u) : ε(u)

]
V · n ds = 0 (6.7)

The derivative at the stationary point should vanish—for details see Nowak et al
(2018)—and it can be concluded that

σ(u) : ε(u) = λ = const. (6.8)

It means that for the stiffest design, the strain energy density on the part of the
boundary subject to modification Γv must be constant. By referring this result to
the structure of the trabecular bone, it can be concluded that if the strain energy
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density on the structural surface of the trabecular tissue is constant—from the shape
optimization point of view—the stiffest design state is obtained.

6.3 The Modification of the Structural Surface
Position—Mimicking the Remodeling Process

Going back to the numerical models developed by Huiskes and others Huiskes
(2000); Huiskes et al (2000), the regulatory model is based on the strain energy
density U as the mechanical stimulation measure. The regulatory model presented
in Fig. 6.2. is described by the following equations:

dE

dt
=

⎧⎪⎨⎪⎩
U > Uu : Ce(U − Uu)

Ul ≤ U ≤ Uu : 0

U < Ul : Ce(U − Ul)

(6.9)

where Uh is the strain energy density value corresponding to homeostasis of bone
loss and gain,Ce is a constant value, 2s is the size of the “lazy zone”,Ul = Uh(1−s),
Uu = Uh(1+ s) are the values corresponding to lower and upper strain energy level
inside the lazy zone, and E denotes Young’s modulus of the tissue. The model
assumes that the Young’s modulus (as a local elastic modulus) of the tissue may vary
depending on the level of the mechanical stimulation (strain energy density). The
existence of homeostatic value of strain energy density surrounded by the “lazy zone”
is assumed. In this way, the bone (trabecular tissue together with marrow) adapts
its density value. The “lazy zone” concept was originally proposed by Carter Carter
(1984).The approach is similar to this used in topology optimization SIMP method
(Solid Isotropic Microstructure with Penalization Bendsoe and Kikuchi (1988)), and

Fig. 6.2 The regulatory model
and the “lazy zone” concept.
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the Young modulus of the material varies from a value close to zero to the real value,
characterized by the Young modulus value for the used material.

To stay closer to the real trabecular remodeling phenomenon, one should take
a look at the BMU (Basic Multicellular Unit) Van Oers et al (2008), presented
in Fig.6.3, i.e. the area where the remodeling process takes place. The BMU-s
are located on the surface of the trabecular tissue to allow cells migration from the
marrow. Accordingly, the remodeling process occurs on the surface rather than in the
whole trabecular area. Subsequently, one can formulate the first postulate regarding
the modification of the trabecular bone remodeling regulatory model.

Fig. 6.3 The cross-section of the single trabecula—a scheme of Basic Multicellular Unit (BMU)
the bright arrows depict bone loss while the dark arrows represent new tissue formation. A: an
initial position of the trabecular tissue surface. A’: a new position of the surface for a higher value
of strain energy density than the “lazy zone” borders. A”: a new position of the surface for a lower
value of strain energy density value than “lazy zone” borders.

Postulate 1.: during the remodeling process, the trabecular bone tends to maximize
the stiffness of a structure (i.e. to find the stiffest design) by the strain energy density
equalization on the structural surface of the trabecular tissue. According to formula
(6.8), the strain energy density on the part of the boundary subject to modification (in
this case the trabecular bone tissue surrounded by the marrow) must be constant. The
local change on the structural surface leads to global minimization of the strain energy
for the whole structure. Importantly, the condition from formula (6.8) concerns the
structural surface rather than the whole structural volume. However, the fulfillment
of this surface condition is tantamount to reaching the goal in the form of minimizing
the energy of the entire structure in the domain, i.e. minimization of the functional
(6.1). In fact, assuming the possibility of moving the surface of the trabecular tissue
in the virtual space, we can modify its position depending on the local value of strain
energy density, as presented in Fig. 6.3. If the local value of the strain energy density
(on the BMU surface) is higher than the “lazy zone” borders, the surface moves from
position A to A’. If, in turn, the local value of the strain energy density (on the BMU
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surface) is lower than the “lazy zone” borders, the surface moves from position A to
A”. There is no need for the evolution of Young modulus in such a model, and the
obtained structural configurations will reflect the real structure of the trabecular net.

6.4 The Problem of Multiple-Load Conditions

In the regulatory model, the strain energy density is a measure of the mechanical
stimulation of the bone tissue. According to formula (6.8), the strain energy density
on the structural surface of the trabecular tissue must be constant. However, the loads
of the whole bone are very different in time and the distribution of the strain energy
density along the structural surface of the trabecular tissue will also be different
for various load conditions. Assuming that the trabecular bone can form an optimal
structure for multiple loads too, one may consider two different loads, i.e. t1 and t2
acting on the same Γ1 boundary, see Fig. 6.1. Two compliances correspond to these
load cases:

C1(Ω; t1), C2(Ω; t2) (6.10)

In order to maximize the stiffness of a structure (for multiple loads), one needs to
minimize the functional, similar to formula (6.1), with the same constraint (volume)
(6.2),

J(Ω) = α1C1(Ω; t1) + α2C2(Ω; t2) (6.11)

where α1 + α2 = 1, αi ≥ 0.
After defining Lagrangian for the problem under considerations, the state equation

in the weak form can be rewritten, and then the shape derivative of the Lagrange
function can be taken. The derivative at the stationary point should vanish (for details
see Nowak et al (2020)), and one may conclude that

α1σ(u1) : ε(u1) + α2σ(u2) : ε(u2) = λ = const. (6.12)

Since α1 + α2 = 1, one can analyze different load cases and, in order to treat
the value of λ as homeostatic value of the strain energy density on the structural
surface in the modified regulatory model, formula (6.12) can be extended to other
linear combinations of load cases. From the shape optimization point of view, also
the result is very interesting. The method was tested for the common multiple load
benchmark example (the analytical solution exists), see Nowak et al (2020).

Thereafter, the “lazy zone” concept is coming back to show its necessary presence
in the model. If there was no “lazy zone” and different load cases were analyzed
separately, the solution (the structural form of the trabecular net) would oscillate
between configurations corresponding to each load case. When, for example, the
load is applied only in the vertical plane, the resulting structure will also be arranged
only in such a plane. If the direction of the load is changed to horizontal, the same
solution will be obtained, only rotated by 90 degrees. This will be the case where
the “lazy zone” is not taken into consideration but the λ value is assumed. Fig. 6.4.
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depicts the Boolean sum of separated solutions of the cantilever beam bending on
the left side (vertical and horizontal bending force). Nevertheless, the regulatory

Fig. 6.4 Multiple load problem. Left: the Boolean sum of two solution (bending of cantilever
beam) for vertical and horizontal bending force. Right: the solution of multiple load problem
obtained with use of the regulatory model wit assumed “lazy zone”.

model is used, the problem can be solved for both load cases according to formula
(6.12). The “lazy zone”, i.e. insensitivity zone is necessary to avoid oscillations and
to consider the impact of all load cases.

Afterwards, the second postulate regarding the modification of the trabecular bone
remodeling regulatory model can be formulated. If the existence of the “lazy zone”
is not taken into account, then - for the load in the horizontal direction - the term in
formula (6.12) corresponding to the load in vertical direction disappears (neutral axis
of bending). By the same token, if the direction of force is changed to vertical, the term
in formula (6.12) corresponding to the load in horizontal direction will disappear.
The solution will oscillate between these two configurations corresponding to each
load case. However, if the existence of the “lazy zone” is assumed, the situation will
be completely different and one solution for different load cases will be obtained.
The solution is presented on the right side in Fig. 6.4. Please note that in this case
there is no material in the vertical and horizontal plane. Hence the solution obtained
has no common areas with any of the single load bending solutions. Furthermore,
it should be emphasized that according to formula (6.12), the same λ value was
assumed regardless of the load case. Please note also, that both structures (on the left
and right site in Fig. 6.4.) has the same “density,” i.e. the same rate of real material
and voids in a domain. Both structures have the same volume, but the total structural
displacement of the structure on the right side in Fig. 6.4 is lower by 9.8%, while the
Huber–Mises stress is lower by 7.9% for each of single load cases.

Finally, it is possible to formulate the second postulate regarding the modification
of the regulatory model.

Postulate 2.: the regulatory model of the trabecular bone remodeling can be applied
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to the multiple load problem maintaining its character and the basic assumptions
about the existence of the homeostatic value of the strain energy density, according
to formula (6.12). The “lazy zone” is an important element of the model which pro-
vides the opportunity to find a solution for many load cases. The local change (in this
case related to different loads) on the structural surface leads to global minimization
of the strain energy for the whole structure.

6.5 Conclusions

The presented postulates regarding the modification of the trabecular bone remodel-
ing regulatory model require the preparation of appropriate numerical models. Since
the local change on the structural surface leads to global minimization of the strain
energy for the whole structure, the fulfillment of both postulates requires energy
distribution analysis on the structural surface.

To conclude, the need for geometric modeling of structural surface of the trabec-
ular tissue is evident. In addition, the estimation of the λ value and the size of the
“lazy zone” seem to be very promising research areas.
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Chapter 7
Bone Mechanics and Cell Populations:
Mathematical Description and Parametric Study
of the Model

Alessio Ciro Rapisarda, Matin Almasi, Naser Almasi, Emilio Barchiesi,
Alessandro Della Corte, and Daria Scerrato

Abstract In this paper we study a recently proposed mathematical model for the
description of the mechanics of bone as well as bone remodeling processes and bone
cell populations dynamics. We investigate the biological meaning and a suitable
value for the numerical parameters of the model. To do so, we compare biological
data with a systematic numerical investigation of the model. We also propose some
corrections to the original model aimed at better describing the observed phenomena.
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7.1 Introduction

In the recent past there has been an increasing interest in the development of mathe-
matical descriptions of bone-related phenomena. In fact the subject has quite a long
history (for general reference works see e.g. Currey (2012); Pivonka and Komarova
(2010); Martin et al (1998)), but in the last years the access to larger amounts of
experimental data and also the developments in the mechanics of micromorphic
continua (see e.g. Eremeyev and Pietraszkiewicz (2016); Altenbach and Eremeyev
(2015); Engelbrecht and Berezovski (2015); dell’Isola et al (2018); Andreaus et al
(2018); Franciosi et al (2018) for recent interesting results and Goda et al (2012);
Madeo et al (2012); Goda et al (2014); Misra et al (2013, 2015); Sheidaei et al
(2019) for applications to bone modeling) have led to a sharp increase in the number
of studies. Different models have been proposed, covering almost all the relevant
aspects of bone biology, from remodeling (Madeo et al (2012); Lekszycki (2001);
Pivonka et al (2008); Scala et al (2017); Giorgio et al (2019)) to functional adaptation
(Prendergast and Taylor (1994); Lekszycki (2005, 2002)) to fracture (Lu and Lekszy-
cki (2015); Bednarczyk et al (2018); Lu and Lekszycki (2016); Doblaré et al (2004);
Giorgio et al (2017b)) to interaction with artificial grafts (Giorgio et al (2017a); Lu
and Lekszycki (2018); Andreaus et al (2008, 2015); Giorgio et al (2016a); George
et al (2019)) to cell populations dynamics (Hambli (2014); Komarova et al (2003)).
A major problem in order to pass from promising theoretical researches to reliable
and predictive models is an accurate parametrization of the model itself. Indeed,
an evaluation of the parameters involved in the mathematical description of bone
has been attempted several times, but in the opinion of the authors there has been
generally an insufficient interaction between mathematical and mechanical literature
on one side and biological researches on the other.

In this paper we propose an estimate for the parameters used in the model intro-
duced (in a simplified form) in Della Corte (2017), and described in Rapisarda et al
(2018). The model was mainly aimed at the description of bone mechanics and bone
cell populations dynamics. Although our investigation will be based on an inspection
of recent and authoritative biological literature on bone and bone cells, this has to be
considered as a preliminary work mainly aimed at evaluating the order of magnitude
of the parameters, although in some cases we are confident to have established a
reasonably accurate estimate. Rather than accuracy, however, the principal difficulty
in performing the analysis is the intrinsic variability of the involved parameters. In
fact, the next step towards a predictive model will probably require the introduction
of a stochastic model, in which at least some of the involved quantities are treated as
random variables.

7.2 The Model

The mathematical model studied herein is based on the enrichment of the one
described in Lekszycki and dell’Isola (2012); Giorgio et al (2016b) with bone cell-
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populations dynamics. The main novelty of the employed cell populations dynamics
model (presented in Rapisarda et al (2018)) is the introduction of the osteocytes
density with the relative differentiation terms.

In this section we want to quickly recall the proposed model and the ideas behind
it. For a more accurate description the reader is referenced to the works mentioned
before.

The model is based on the following assumptions:

• The elastic properties of the bone tissue are described by means of an isotropic
Cauchy continuum in small deformations regime.

• The communication between the sensor and actor cells is modeled by means
of a scalar field called Stimulus and denoted by S, defined at every point of the
bone and depending on the mechanical load and on the density of sensor cells.

• The status of the system at a given time is given by the macromechanical variables
as well as the internal state i.e. the scalar fields representing the cells densities;

• The precursor cells are indefinitely available everywhere.

The system of ODEs describing the evolution of cell densities and bone tissue
density is

∂xk
∂t

= −βkXk + γbkxbK(ϕ), (7.1)

∂xb
∂t

= −βbXb − γbkxbK(ϕ) + αbS
+xk, (7.2)

∂xc
∂t

= −βcXc + γcxcK(ϕ) + αcS
−xk, (7.3)

∂ρ

∂t
= (axb − bxc)H(ϕ), (7.4)

Where xk, xb, xc are respectively the density of osteocytes, osteoblasts and osteo-
clasts and ρ is the density of the bone tissue. The terms Xk, Xb, Xc are threshold
functions defined by

Xi =

{
xi, if xi > x̃i

0, if xi � x̃i
i = k, b, c

The coefficients −βk, −βb, −βc indicate the removal rates of the cells.
The terms −γbkxbK(ϕ) and +γbkxbK(ϕ) are related to the differentiation from

osteoblasts to osteocytes, while K is a function of bone tissue porosity.
The term +γcK(ϕ) models birth and activation of osteoclasts. The terms

+αbS
+xk and +αcS

−xk model respectively the creation of osteoblasts and os-
teoclasts due to the stimulus and the osteocytes density: S+ is the positive part of
the stimulus and promotes the birth of osteoblasts, and S− means the negative part
of the stimulus and promotes the birth of osteoclasts.

The parameters a and b are the synthesis and resorption rate of bone tissue (or
osteoid) for a single osteoblast or osteoclast. The variable ϕ indicates the porosity
defined like in Lekszycki and dell’Isola (2012); Andreaus et al (2014) as:
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ϕ = 1− θ
ρ

ρmax
0 < θ � 1 (7.5)

where we chose the simplest case θ = 1 and set ρmax = 0.002 g
mm3 . (Bochud et al

(2017)). The functionH(ϕ) used in Rapisarda et al (2018) was a parabola (7.6), and
was used in order to account for the influence of effective porosity on the biological
activity of actor cells: when effective porosity is too large there is not enough material
which actor cells can adhere to, when it is too small there is not enough free space
in the pores to allow their mobility and adhesion. In formulas (setting ρ̃ := ρ

ρmax
):

H(ϕ) = H(1− ρ̃) = 4(1− ρ̃)ρ̃ (7.6)

The function K(ϕ) used in Rapisarda et al (2018) was

K(ϕ) = K(1− ρ̃) = 4(1− ρ̃)ρ̃ (7.7)

In this paper, however, since we are mainly interested in modeling cortical bone, the
functions H and K play a different (and less relevant) role, as porosity is always
quite small. Thus we assumed for simplicity H ≡ 1 and K ≡ 1.

We will denote the initial data of (1-4) by xk0, xb0,xc0 and ρ0. In a stationary
state, they are the physiological values respectively for the osteocytes, osteoblasts,
osteoclasts and bone tissue density in a healthy bone sample.

7.2.1 The Stimulus Function

The stimulus function is defined as:

S(x, t) =

⎛⎝∫B U(y, t)ηxk(y, t)e
− ‖x−y‖2

D2 dy∫
B
e−

‖x−y‖2
D2 dy

⎞⎠− S0(x, t). (7.8)

Here B is the reference configuration, U is the deformation energy density, η mea-
sures how much the stimulus is affected by the density of osteocytes andD the range
of action of sensor cells. The density of osteocytes appears here because it has been
established that osteocytes in vivo can amplify the mechanical stimuli through the
mechanotrasduction (Bonewald and Johnson (2008); Schaffler and Kennedy (2012);
George et al (2018)). The denominator is a normalization factor introduced in or-
der to avoid edge effects (Kumar et al (2011)), while S0 is a positive function that
defines a reference value of stimulus, associated with a physiological amount of
loading, which entails a biological equilibrium state where the effect of resorption
and synthesis are balanced. Herein for simplicity we will assume S0 as constant and
uniform.
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7.2.2 The Mechanical Equations

The Deformation gradient (F ), its determinant (J), and the Green-Saint-Venant
strain tensor (G) are defined as usual:

F = ∇χ, J = detF , 2G = F TF − I, (7.9)

where χ : B → R3 is the placement function. The strain energy is defined as:

U(G, ρ, x) = μtr(G2) +
λ

2
(tr(G))2. (7.10)

where μ and λ are the Lamé parameters. Since the material is not homogeneous, and
its density evolves with the time, μ and λ are assumed as functions depending on t
and x:

μ = μ̂(ρ(t), x), λ = λ̂(ρ(t), x). (7.11)

Young’s modulus and Poisson ratio are related to Lamé parameters by the well-known
relations:

λ =
Y ν

(1 + ν)(1− 2ν)
, (7.12)

μ =
Y

2(1 + ν)
(7.13)

where Y is the Young modulus, ν is the Poisson ratio, λ and μ are the Lamé
coefficients. The Young modulus for the bone tissue is assumed to be (Carter and
Hayes (1977))

Y = Ymb

(
ρ

ρmax

)ωb

, (7.14)

where ωb = 2, Ymb is the maximum theoretical value for the Young modulus. A
physiological value for the Young modulus of a cortical bone is 18 GPa (Cowin
(2001)). Assuming 0.2 as a typical value for the porosity of a cortical bone Giorgio
et al (2016b), this leads to Ymb ≈ 28 GPa. The Poisson ratio was set as ν = 0.14,
adapting to the isotropic case and averaging the experimental results given in Shahar
et al (2007) (see Cluzel and Allena (2018); Allena and Cluzel (2018) for a better
insight on mechanical properties of bone). Notice that these results concern cortical
bone. In our numerical results we thus expect values of the density and the porosity
which are consistent with this fact.

The equilibrium equations are

DivT = Div
(
F · ∂U

∂G

)
= −bext, (7.15)

T [N ] = F · ∂U
∂G

·N = fext, (7.16)
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where T is the first Piola stress tensor, F is the deformation gradient and G the
strain tensor. The (7.15) gives the force acting on an RVE of the considered body’s
volume (−bext) instead the (7.16) gives the force acting on the unity surfaces of the
considered body (fext) (with outward unit normal N ).

Finally, we point out that we will interpret our 2D model as a thin layer of (cortical)
bone tissue having the thickness of an average lamella, i.e. ≈ 10μm (Pazzaglia et al
(2012)). We remark that this choice corresponds to the average thickness of the layer
of osteoid deposited by an osteoblast or of bone tissue resorbed by an osteoclast
(Dumitrescu et al (2007)).

7.3 Estimate of the Model’s Parameters

In this section we start the systematic study of the parameters of the model, so as
to give realistic values for them (in Rapisarda et al (2018) all of them were non
dimensional and assessed simply by means of agreement between numerical results
and observations). The parameters that we will consider are xk0, xb0, xc0, a, b, D,
βb, βc, βk, γbk, γc, αb and αc. Our chosen time unit is one day. Since the stress
response of the cells takes place in minutes (Schaffler and Kennedy (2012)), with
this choice we are able to treat the stimulus function as a quantity which is averaged
over a suitably long time interval.

7.3.1 Estimate of Initial Data and Removal/Production Rates of the
Cells

Initial Cell Populations

We are interested in reproducing the physiological behavior of a healthy bone sample
in a stationary state. Therefore, we wanted to use, as initial data for cell densities,
average physiological values. It is not easy to assess these values, because they have
significant intrinsic variability (being strongly influenced by age, sex and pathologi-
cal conditions (Dalzell et al (2009); Parfitt et al (1997)). We used percentage values
taken from Schaffler and Kennedy (2012) and Pawlina and Ross (2006):

xk0 = 0.94N xb0 = 0.05N xc0 = 0.01N (7.17)

where N is the total number of bone cells in a unit volume. Averaging the results
from 12 human samples in Bromage et al (2016), where the number of osteocytes
has been evaluated counting the lacunae, we obtain

xk = 316/mm2 (7.18)
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whence, using (7.17) and approximating to the closer integer

xb0 = 17/mm2

xc0 = 3/mm2

The Value of D

The parameter D represents the range of action of sensor cells. In Ruimerman et al
(2005) the proposed value for D was 100 μm. However, in Burra et al (2010) the
length of dendritic processes of osteocytes is estimated at 10 μm. The last article
supports the claim with confocal imaging, and therefore will be considered reliable
herein. However there is experimental evidence that dendritic processes can elongate
up to more than 30 μm in vitro if suitably stimulated (Zhang et al (2006)). Moreover
it is known that osetoecytes can respond to and transmit signals over long distances
while embedded apart from each other in a calcified matrix (Takano-Yamamoto
(2014); Ishihara et al (2008, 2013)). It is very difficult to estimate this distances,
so we chose to use for D a value which is one order of magnitude larger than the
average length of non-stimulated dendritic processes. Therefore we set

D = 100 μm

We observe that the term e−
‖x−y‖2

D2 approaches very quickly zero when ||x − y||
becomes larger than D.

Removal/Production Rates of the Cells

The parameters βb, βc, βk are the removal rates (meanly due to apoptosis) of the
corresponding cell densities and are assumed to be constant. We obtained an estimate
for these parameters starting from the lifespan of the different cell populations (data
from Manolagas (2000); Rosenberg et al (2012)). In Manolagas (2000) birth and
death of osteoblasts and osteoclasts are studied in vitro, and therefore no osteoblasts
differentiation into osteocytes has to be taken into account (we recall that osteoblasts
do not undergo mitosis see e.g. Manolagas (2000)). This allows us to estimate the
apoptosis rates for this two cell populations applying stationarity and neglecting the
term −γbkxbK(ϕ) in (7.2). Furthermore, we are in absence of external load and
of osteocytes, so the term αbS

+xk can be neglected too. Finally, the threshold x̃b
describes a feedback due to bio-chemical communications among the different kinds
of cells, and therefore is neglected too, so that we study directly the variable xb.

Using 45 days for the half-life of osteoblasts we obtain βb, as follows:

xb(45) =
xb0
2

= xb0e
−45βb (7.19)

whence
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βb = 0.015 (7.20)

With a similar procedure we can obtain βc. We neglect the term γcxcK(ϕ) in the
equation (7.3), and precisely as before also the termαcS

−xk can be neglected. Using
7 days for the half-life of osteoclasts (Manolagas (2000)) we obtain βb (again we
consider the variable xc instead of Xc for similar reasons as before)

xc(7) =
xc0
2

= xc0e
−7βc

βc = 0.099

As for βk, let us start observing that the life-span of osteocytes is 10-20 years Pawlina
and Ross (2006), but osteocytes death rate is strongly influenced by the evolution
of the bone tissue. Indeed, it has been recently reported that the bone loss observed
in Crohn’s disease is associated with increased osteocyte death and decreased bone
remodeling (Dallas et al (2013); Dallas and Bonewald (2010)) and furthermore the
death of osteocytes is connected with bone tissue resorption (Dallas et al (2013);
Noble (2008); Zarrinkalam et al (2012)). In addition, dying osteocytes can undergo a
process of self-preservation called autophagy to preserve themselves until favorable
conditions return (Bonewald (2011)). Because of this evidence, a more accurate form
of the term βkXk is

−λβ∗xcH(ϕ)xk − βkXk

where λβ∗xcH(ϕ)xk represents the osteocytes dead as a consequence of bone
resorption. The factor λ is a simple threshold function which lets this term activate
only above a certain density threshold (which constitutes another parameter of the
model):

λ =

{
λ̄, if ρ > ρcritical

0, if ρ � ρcritical

In the present contribution we do not want to enrich the model in this way, so we
simply estimated βk with the same procedure of βb and βc considering a much longer
half-life, namely 7.5 years ≈ 2700 days. In this way we obtain the estimate:

βk = 2.5 · 10−4

The Values of Cells Populations Thresholds

Measuring directly x̃k, x̃b and x̃c is not a simple task. These thresholds are introduced
to model what in reality is a very complex feedback mechanism due to bio-chemical
communications between different kinds of cells. Herein we chose to have very low
thresholds, so as to keep the apoptotic process activated unless there is a sharp lack in
a specific cell population. This is in agreement with the fact that generally stationary
behaviors in cell populations dynamics are a consequence of an equilibrium between
birth and death of cells, in which apoptotic processes are normally activated (Lawen
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(2003)). Therefore we set

x̃k = xk0/10

x̃b = xb0/10

x̃c = xc0/10

7.3.2 Estimate of the Differentiation Rates and Coupling
Coefficients

The Value of γbk

The parameter γbk can be seen (in the simplest case K(ϕ) = 1) as the probability
for an osteoblast to become an osteocyte in a given day. It is known that about 10-
20% of osteoblasts experience differentiation into osteocytes in their lifetime Noble
(2008); Pawlina and Ross (2006). Using 15% and supposing an initial population
with uniformly distributed ages we get

(1− γbk)
90 = 0.85

whence
γbk = 1.8 · 10−3

The Value of γc

The term γcK(ϕ) models the birth of new osteoclasts. Since in the proposed model
(differently from, e.g. Komarova et al (2003)) we introduced another source term
(αcS

−xk) depending on the interaction with other cells and on the stimulus, the
parameter γc has the only potential role of describing osteoclasts proliferation. Since
mature osteoclasts are terminally differentiated cells that do not undergo mitosis (see
e.g. Li et al (2015)), we can set

γc = 0

The Value of a and b

The term a represents the synthesis rate of a single osteoblast in a time unit, while
b represents the resorption rate for a single osteoclast in a time unit. Imposing
stationarity to Eq.(7.4) we get

a

b
=
xc0
xb0

≈ 0.18 (7.21)
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A direct estimate of the bone production rate per osteoblast is in Gruber et al
(1986), where it is obtained from a sample of women suffering of postmenopausal
osteoporosis

production rate per osteoblast = 2.9 · 10−5 mm2

day

In Bose and Bandyopadhyay (2016) it is reported that osteoporotic patients have
a normal rate of osteoid production per cell. Therefore we will use the value for a
estimated in Gruber et al (1986). To transform it in grams per day we have to consider
that the thickness of a lamella is ≈ 10 μm (Pazzaglia et al (2012)) and recall that a
physiological value for cortical bone density is 1.6 · 10−3 g/mm3. This leads to the
estimate:

a = 4.6 · 10−10 g
day

Using Eq.(7.21) we get
b = 2.6 · 10−9 g

day
As an internal consistency check we can compute b from data given in Gruber et al
(1986), as done for a. The proposed value is

resorption rate per osteoclast nucleus = 1.6 · 10−5 mm2

day

Using again 10μm for the thickness and 1.6 · 10−3 g/mm3 for the density, we get
2.56 ·10−9 g

day . This is in agreement with the value obtained imposing stationarity in
our model1.

The Value of αb and αc

The terms αb and αc model respectively the differentiation rate of osteoblasts and
osteoclasts from progenitor cells due to the stimulus and osteocytes density. In fact
the presence of these two parameters allows us to set η = 1 (more precisely, to move
it outside the integral and suitably redefine αb, αc and S0). Imposing stationarity to
Eqs.(7.2)-(7.3), we get

αbS
+ = (βb + γbk)

xb0
xk0

αcS
− = (βc + γc)

xc0
xk0

1 We remark that in this case we used the lowest extremum of the range of values for osteoclasts
resorption rate given in Gruber et al (1986). However, even using the other extremum we have
agreement for what concerns the order of magnitude
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This leaves us with three final degrees of freedom, i.e. S0, αb and αc, to be adjusted
using numerical simulations.

7.4 Numerical Simulations

The model has been simulated using Comsol Multiphysics (Weak Form PDEs and
ODE solver). Finite Element Method has been employed to solve the static elastic
problems. In particular, for the mechanical computations Hermite elements with
third order polynomials have been used, whereas the ODE system has been solved
using the Backward Differentiation Formula, with a variable order depending on the
desired accuracy. Our sample is a rectangle sized 1 mm × 0.2 mm, meant to model a
portion of the thin bone layer (lamella) deposited by osteoblasts. For the evaluation
of magnitudes distributed per unit volume, we therefore treated the sample as a thin
parallelepiped having the typical thickness (≈ 10μm) of a lamella.

Our first goal was to estimate the parameters S0, αb and αc so as to obtain a
reasonable stationary state when the initial values for bone tissue density and cell
populations were physiological. We point out that in fact these parameters could
not have been estimated from purely biological data as the other ones, as they
describe the way external loads affect cell populations dynamics. We considered
a compressive load applied to the short side (while the opposite side is clamped)
whose time history has a normal distribution around the mean value Lm = 2 N/mm
with standard deviation of 0.07N/mm. A 120-days simulation using the initial values
given in Table 7.1 is shown in Fig.7.1. The figure refers to cell concentrations and

Fig. 7.1 Cell concentrations and bone tissue density at the central point of the sample in a
compressive test.

bone tissue density at the central point of the sample. In the simulations the employed
values are S0 = 0.0344, αb = 1 days−1, αc = 1.2 days−1. With these values, it
can be seen that the initial physiological state is maintained, so that the system can
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Fig. 7.2 Deformation energy at day 120.

Fig. 7.3 Stimulus evaluated at the central point of the sample.

be considered in a stationary state. The final distribution of deformation energy and
the stimulus function S(t) are shown in Figs. 7.2-7.3.

We remark that every time we refer to values evaluated in the central point of
the sample; no significant differences are visible considering other points. Next
we checked what happens if we start with values of the initial cell populations
densities which are far from the normal physiological values. In Fig.7.4, we start
with an osteoblasts population which is everywhere less than in the previous case,
i.e. xb0 = 6 instead of xb0 = 17. We can see that in presence of normal production
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Fig. 7.4 Cell concentrations and bone tissue density at the central point of the sample in a
compressive test with initial low value for osteoblasts population.

rates, the system adjusts itself to normal physiological values in the considered time
period of 120 days. A similar result is obtained if we start with a higher value for the
initial osteoclasts population, i.e. xc0 = 9 instead of xc0 = 3, as shown in Fig. 7.5.
It can be seen that the system lets the osteoblasts population increase beyond normal

Fig. 7.5 Cell concentrations and bone tissue density at the central point of the sample in a
compressive test with initial high value for osteoclasts population.

values during the phase in which the osteoclasts are more numerous. In this way,
the bone tissue density can remain more or less stable throughout. In the following
simulation we checked what happens if the external load is significantly lower, i.e.
Lm = 1.5 N/mm instead of Lm = 2 N/mm. The result is shown in Fig. 7.6. It is
interesting to observe that, after an initial phase in which the osteoclasts increase
much, the system reaches a new stationary state with a different (lower) value of
bone tissue density. It is also noticeable that the stimulus function has a negative
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Fig. 7.6 Cell concentrations and bone tissue density at the central point of the sample in a
compressive test with a lower value (-25%) of the load.

average at the beginning, but after some time it adjusts to the usual fluctuations
around zero, even if the average load per day remains lower than in the previous
simulation (see Fig. 7.7). The numerical simulations presented in this section show

Fig. 7.7 Stimulus evaluated at the central point of the sample with a lower (-25%) external load.

that the parametrization of the model was effective, in that the results are consistent
and realistic.
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7.5 Summary of the Results

Values and short definitions of the parameters proposed in the paper are summarized
in Table 7.1.

Table 7.1 Legend of symbols and their initial values.

ρ0 physiological cortical bone density g/mm3 1.6× 10−3

ρmax maximum cortical bone density g/mm3 2× 10−3

Yp physiological cortical bone Young modulus GPa 18.6
Ymb maximum cortical bone Young modulus GPa 28
ν cortical bone Poisson coefficient - 0.14
D osteocytes range of influence mm 0.1
xk0 physiological density of osteocytes 1/mm2 316
xb0 physiological density of osteoblasts 1/mm2 17
xc0 physiological density of osteoclasts 1/mm2 3
x̃k lower threshold for osteocytes density 1/mm2 31.6
x̃b lower threshold for osteoblasts density 1/mm2 1.7
x̃c lower threshold for osteoclasts density 1/mm2 0.3
a rate of bone synthesis for one osteoblast g/day 4.6× 10−10

b rate of bone resorption for one osteoclast g/day 2.6× 10−9

βk death rate of osteocytes 1/day 2.5× 10−4

βb death rate of osteoblasts 1/day 0.015
βc death rate of osteoclasts 1/day 0.099
γbk rate of differentiation from osteoblasts to osteocytes 1/day 1.8× 10−3

γc proliferation rate of osteoclasts 1/day 0
αb production rate of osteoblasts 1/day 1
αc production rate of osteoclasts 1/day 1.2
S0 reference value of the stimulus - 0.0344
L longitudinal length of the sample mm 1
l width of the sample mm 0.2
h thickness of the sample mm 0.01
Lm average load N/mm 2

7.6 Conclusions

In this work we addressed the problem of determining, with reasonable accuracy, the
values of the parameters of a mathematical model for bone mechanics and bone cell
populations dynamics (described in Rapisarda et al (2018)). The parameters were
determined using biological data from recent literature, with the exception of the
coefficients αb and αc measuring how much the mechanical stimulation affects the
production/removal rates of osteoblasts and osteoclasts, and the normal physiological
value for the stimulus (see in that regard Abali (2016)). The numerical simulations
showed that in this way the model is capable of producing consistent and realistic
results. Further investigations are required to improve the reliability of the model,
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and probably the introduction of stochastic ingredients, capable of accounting for the
intrinsic variability of individual biology, have to be taken into account. Moreover,
in order to describe trabecular bone, in which microstructure plays an even more
relevant role, the assumption of a classical Cauchy continuum can be relaxed in
favor of more general continuum theories (see e.g. Placidi et al (2018b); Alibert et al
(2003); dell’Isola et al (2009); Giorgio (2016); Placidi and Barchiesi (2018); Placidi
et al (2018a); Abali et al (2012); dell’Isola et al (2015); Placidi and Hutter (2005)).
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Chapter 8
Non-Linear or Quasi-Linear Viscoelastic
Property of Blood for Hemodynamic Simulations

Ernesto Romano, Luísa C. Sousa, Carlos C. António, Catarina F. Castro,
and Sónia Isabel Silva Pinto

Abstract Hemodynamic simulations with the complex rheology of blood is still a
challenge. They can be used to obtain an auxiliary clinical tool, as close as possible
to reality, with great potential for the development of preventive measures, diagnosis
and treatment of cardiovascular diseases. A wide range of models defining the
rheological behavior of blood, ranging from the Newtonian to the purely shear-
thinning non-Newtonian models have been used by many authors. However, in
vessels, such as carotid or coronary arteries, the validity of such simplified models for
blood is not completely clear, mainly in stenotic or aneurysm cases - regions of high
velocity gradients. It is well-known, from literature, that blood has complex rheology,
behaving as a viscoelastic non-Newtonian fluid due to the storage and release of
elastic energy from red blood cells aggregates. Therefore, authors of the present
work implemented the viscoelastic property of blood, in UDFs of Ansys® software,
in order to simulate the most accurate hemodynamics. Afterwards, the velocity
contours, in the middle plane of a 3D idealized coronary artery, were obtained
considering the purely shear-thinning model, Carreau model, and two viscoelastic
non-Newtonian models. Using the Generalized Oldroyd-B, a quasi-linear model,
the viscoelastic effects are not highlighted. Comparing results taking into account
the multi-mode Giesekus, a non-linear model, and Carreau model, differences are
significant and equal to 0.20 m/s under a maximum velocity of 1.40 m/s (14.3%).
Using the multi-mode Giesekus model, the viscoelastic effects are pronounced in
addition to the shear-thinning, mainly in regions with high velocity gradients as the
stenotic region.
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8.1 Introduction

Hemodynamic simulations have proven to be an auxiliary clinical tool with great
potential for the development of preventive measures, diagnosis and treatment of
cardiovascular diseases. However, the numerical tool should mimic physiological
conditions and blood properties as close as possible to reality. There are several
models in the literature that can simulate the behavior of blood. Auffray et al (2015)
formulated a description for second gradient continua in order to mimic capillary
fluids, i.e, fluids for which the deformation energy depends on the second gradient
of placement. A Lagrangian action was introduced in both the material and spatial
descriptions. The corresponding Euler-Lagrange equations and boundary conditions
were found. These conditions were formulated in terms of an objective deformation
energy. Eremeyev and Altenbach (2014) have discussed the equilibrium equations
and natural boundary conditions also for a second-gradient fluid interacting with a
nonlinear elastic solid under finite deformations. They have also taken into account
the surface stresses acting at the surface of the solid according to the model. They
applied the variational approach based on the energy functional. Rickert et al (2019)
have described the flow of fluids with internal rotational degrees of freedom, for
example a blood plasma carrying red blood cells (RBC). This blood behavior can be
described by the theory of Eringen. Eringen’s approach, also known as the microp-
olar theory of fluids, relies on a consistent use of the complete spin balance and the
concept of the conservation of microinertia. They studied such fluids not only from
the mechanical point of view, i.e., determining the linear and angular velocities, but
also from a thermodynamic one, such as studying the generation of a temperature
field during the flow due to internal dissipation. Thus, this requires the balance of
momentum, spin and internal energy in combination.

Many authors specialized, concretely, in cardiovascular engineering field have
used a wide range of models defining the rheological behavior of blood, ranging
from the Newtonian to the purely shear-thinning non-Newtonian models. The par-
ticles are oriented randomly in the minimum energy states and the RBC in plasma
undergo reversible aggregation, the rouleaux (Thanapong Chaichana, Zhonghua Sun,
2012; De Santis et al, 2013; Lee et al, 2008; Morbiducci et al, 2011; Van Canneyt
et al, 2013). However, in vessels, such as carotid or coronary arteries, the validity
of the Newtonian and the purely shear-thinning non-Newtonian hypotheses is not
completely clear, mainly in stenotic or aneurysm cases – regions of high velocity gra-
dients. It is well-known from literature that blood has a viscoelastic non-Newtonian
behavior (Baskurt and Meiselman, 2003; Bodnár et al, 2011; Campo-Deaño et al,
2013, 2015) due to the storage and release of elastic energy from RBC aggregates.
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Baskurt and Meiselman (2003) have described the way in which blood viscosity is
affected by hematocrit, shear rate and red blood cells aggregation. They also empha-
size the importance of red blood cell deformability and list factors which affect the
cellular mechanical property. Campo-Deaño et al (2013) achieved, experimentally,
several parameters, namely the mobility factor and the extensibility coefficient, for
viscoelastic non-Newtonian models of blood at 37◦C –the multi-mode Giesekus and
simplified Phan-Thien-Tanner (sPTT) models. Later, Campo-Deaño et al (2015) pre-
sented a state-of-the-art review of the different models used in the hemodynamics,
focusing on modeling blood as a viscoelastic non-Newtonian fluid, in order to un-
derstand the role of the complex rheology of blood upon the dynamics in aneurysms.

Nevertheless, few authors have considered the viscoelastic property of blood in
numerical simulations. Bodnár et al (2011) demonstrated and quantified the most
relevant non-Newtonian characteristics of blood flow in vessels, namely its shear-
thinning and viscoelastic behavior. Numerical simulations, through a finite-volume
method, were performed in a 3D idealized stenosed vessel, with nominal vessel
diameter equal to 6.2 mm. Four models for blood were taken into account: the
Newtonian (NS) and the Generalized Newtonian (GNS) models; and the Oldroyd-B
(OB) and the Generalized Oldroyd-B (GOB) models. The NS model assumes con-
stant viscosity of blood at infinite shear rate, the GNS considers fluid with variable
shear-thinning viscosity, OB takes into account the elastic property of blood and
constant viscosity at infinite shear rate and GOB assumes the elastic property of
blood with variable shear-thinning viscosity. At constant flow rate, the impact of
non-Newtonian effects was observed and viscoelasticity of blood was highlighted.
Therefore, simulations considering the complex rheology of blood, viscoelasticity,
are of great interest since the most accurate hemodynamic is essential for clinical
practice. There is a need for the use of models depicting this behavior.

Thus, authors of the present paper want to take a step forward in the numerical
hemodynamic simulations through the implementation and validation of a more ac-
curate rheological model for blood in User-Defined Functions (UDF) associated to
the Ansys® software package. Ansys® software was chosen since it is a user-friendly
software, widely used by other authors. So that, the UDFs implemented by authors
of the present paper can be, in the future, easily used by other authors.

In the present work, a 3D idealized geometry of a stenosed bifurcation, mimicking
a right coronary artery (RCA) bifurcation, was chosen to show the accuracy of us-
ing the implemented viscoelastic models. Two different viscoelastic non-Newtonian
models also able to predict shear-thinning behavior - a Generalized Oldroyd-B
model, a quasi-linear model (Bird et al, 1987), and a multi-mode Giesekus model,
a non-linear model (Larson, 1988) - were compared with a simpler Generalized
Newtonian model – Carreau Model. For all models, time-dependent velocity and
pressure profiles of pulsatile flow and pressure waveforms, characteristics of a right
coronary artery, were imposed as boundary conditions for numerical simulations.
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8.2 Materials and Methods

8.2.1 Mathematical Models for Blood Rheology

The governing equations, taking into account the principles of mass conservation
and linear momentum conservation for an incompressible fluid, used in blood flow
dynamics, can be defined by:

∇ · u = 0

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p+∇ · τττ (8.1)

where u is the velocity vector, ρ the blood density, p the pressure, t the instant time
and τττ the extra stress tensor. These governing equations can also describe fluids with
viscoelastic non-Newtonian behavior using a constitutive equation defining τττ .

Generally, the total stress τττ is expressed by the sum of the solvent part τττ s and the
elastic part τττ e:

τττ = τττ s + τττe (8.2)

where τττ s is equal to:

τττ s = 2μsD (8.3)

depending on the viscosity of the solvent part (μs) and the strain rate tensor (D).

The elastic stress, τττe, satisfies the following equations:

f(τττ e)τττ e + λ
�
τττ e + α

λ

μe
(τττ e · τττe) = 2μeD

f(τττ e) = 1 +
λε

μe
tr(τττ e)

(8.4)

where μe is the viscosity related to the elastic part of the fluid, α is the mobility
factor, ε the extensibility coefficient and

�
τττ e is the upper-convected derivative in the

elastic contribution of the extra stress tensor.

Since blood has complex rheology, three models were considered in order to
observe the importance of considering the viscoelasticity of blood in the hemo-
dynamics. The simplest model chosen is a Generalized Newtonian Model, purely
shear-thinning model (without viscoelasticity), through Carreau Model:

μs(γ̇) = μ∞ + (μ0 − μ∞)× [1 + (λγ̇)2]
n−1
2 (8.5)
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In this model, τττ is equal to τττ s and τττe is equal to 0. μs is the viscosity of the solvent
part and γ̇ the shear rate. For blood at 37◦C, the viscosity at infinite shear rate (μ∞)
is equal to 0.00345 Pa s, the viscosity at zero shear rate (μ0) equal to 0.056 Pa s, the
relaxation time (λ) is 3.313 s and the power index (n) equal to 0.3568 (Johnston et al,
2004).

Two different viscoelastic non-Newtonian models were used to also predict the
shear-thinning behavior of blood: the Generalized Oldroyd-B model and the multi-
mode Giesekus model.

The Generalized Oldroyd-B considers both the mobility factor (α) and the exten-
sibility coefficient (ε) of Equation (8.4) equal to 0 – a quasi-linear model (Bird et al,
1987). Thus, the constitutive equation becomes:

τττ e + λ
�
τττ e = 2μeD (8.6)

The viscosity related to the elastic part (μe) is equal to 4.0 × 10−6 Pa s and the
relaxation time (λ) is 0.06 s, for blood (Bodnár et al, 2011). The shear-thinning
viscosity (μs) was defined through Carreau Model represented by Equation (9.8)
and parameters for blood are the same as defined previously (Johnston et al, 2004).

The Giesekus model, defining viscoelasticity and shear-thinning, was used in
multi-mode form. Each mode number is defined by k. The viscoelastic multi-mode
Giesekus model does not take into account the extensibility coefficient (ε) of Equation
(8.4) (ε = 0). However, the model considers the mobility factor (α). Therefore,
the viscoelastic multi-mode Giesekus model is a non-linear model (Larson, 1988)
represented by:

τττek + λk
�
τττ ek +

αkλk
μek

(τττ ek · τττek) = 2μekD (8.7)

The total elastic stress (τττ e) is the sum of the elastic stress of each k mode (τττek )
in the total of m modes.

τττe =

m∑
k=1

τττ ek (8.8)

Parameters of the multi-mode Giesekus for whole human blood were obtained
experimentally by Campo-Deaño et al (2013) and can be shown in Table 9.1.

In addition to the shear-thinning and viscoelastic property of blood, blood was
also considered as isotropic, incompressible and homogeneous fluid with constant
density (ρ = 1060 kg/m3).
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Table 8.1 Parameters of the multi-mode Giesekus model for human blood (Campo-Deaño et al,
2013)

Mode μek [Pa · s] λk [s] αk

1 0.05 7 0.06

2 0.001 0.4 0.001
3 0.001 0.04 0.001

4 0.0016 0.006 0.001

Solvent μs = 0.0012 Pa s

8.2.2 Implementation of the Viscoelastic Models

The previous viscoelastic models are not included in Ansys® Fluent package. How-
ever, they can be implemented through user-defined-functions (UDFs). UDFs are
functions or subroutines programmed in a modified C language which are loaded
in Ansys® Fluent. This software was used in the present work, to implement the
viscoelastic models for blood and further hemodynamic simulations, since it is a
user-friendly software widely used by other authors. Therefore, the UDFs imple-
mented by authors of the present paper can be, in the future, easily manipulated by
other authors.

The Einstein notation was used in order to compact extensive equations. Einstein
notation implies the sum of a set of indexed terms in a formula. In the current case,
the subscript n must be replaced for a sum of the different Cartesian components,
i.e, x, y and z. Thus, the upper-convected derivative equation becomes:

�
τ ijk =

∂τijk
∂t

+ un
∂τijk
∂xn

− τnjk
∂ui
∂xn

− τink

∂uj
∂xn

(8.9)

Adding Eq. (8.9) to Eq. (9.6), the equation with the upper convected derivative
terms on the left side was obtained:

∂τijk
∂t

+ un
∂τijk
∂xn

− τnjk
∂ui
∂xn

− τink

∂uj
∂xn

=
2μekDij

λk
−

1

λk
f(τijk)τijk − αk

μek
(τink

· τnjk)
(8.10)

Eq. (8.10) can be simplified as:

∂τijk
∂t

+ un
∂τijk
∂xn

= Sτijk
(8.11)

where Sτijk
are the source terms for each stress component, and for each mode,

defined as:
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Sτijk
=

2μekDij

λk
− 1

λk
f(τijk)τijk−

αk

μek
(τink

· τnjk) + τnjk
∂ui
∂xn

+ τink

∂uj
∂xn

(8.12)

The last step of the implementation was the analysis of the Navier–Stokes equa-
tions. The basic conversion of the moment equation must be modified in order to
include the decomposition of the stress tensor (Eq. (8.10)). As such, there is a need
to take into account the elastic parts of the stress, which are calculated as scalars.
This was achieved through the addition of the divergence of the extra stress tensor,
τττ e, as sources to the momentum equations, known in Ansys® Fluent as momentum
sources.

SMx
=

m∑
k=1

∂τxnk

∂xn

SMy =

m∑
k=1

∂τynk

∂xn

SMz
=

m∑
k=1

∂τznk

∂xn

(8.13)

8.2.3 3D Geometry and Computational Mesh

A 3D idealized geometry representing a bifurcation of a RCA was constructed in
Solidworks® (Fig. 9.1a). The main branch representing a RCA starts with 3 mm
diameter and after bifurcation decreases to 2.5 mm. The side-branch, with much
lower diameter than the main branch, was considered to have a 1.5 mm diameter. A
40% lumen stenosis in the main branch just after the bifurcation was also designed
in order to observe the viscoelastic effects in these regions of flow acceleration and
recirculation.

The 3D idealized geometry with the inlet and outlet boundaries perpendicular to
the blood flow, and the axis defined at the inlet, was imported to Meshing Ansys® to
construct the computational mesh.

A tetrahedral mesh was defined in all the domain of the artery (Fig. 9.1b). The
Path Independent Method of Meshing Ansys® was selected in order to uniform the
elements and to obtain an accurate mesh (Ansys, 2013). So, the statistical parameter
Skewness was used to verify the precision of the mesh. A Maximum Skewness of 0
indicates the best case scenario, equilateral cells, while a Maximum Skewness equal
of 1 indicates the worst case scenario, completely degenerated cells. Following the
tutorial guide of Ansys®, the mesh is accurate when the Maximum Skewness is lower
than 0.95 (Ansys, 2013). The computational mesh of this work has a Maximum
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Fig. 8.1 (a) 3D geometry of the idealized RCA constructed in SolidWorks®; (b) 3D computational
mesh obtained through Meshing Ansys® software.

Skewness equal to 0.58 with 182909 elements, which is considered accurate for
numerical simulations.

8.2.4 Boundary Conditions

Boundary conditions must be imposed. At the inlet of the idealized geometry, a
Womersley velocity profile was taken into account. This profile depends on the
instant time of the cardiac cycle, the radial position at the inlet and the Womersley
number:

Wo = R

√
ρω

μ
(8.14)

The Womersley number (Wo) is defined by the radius of the artery (R), the
blood density (ρ), the viscosity of blood (μ) at infinite shear rate and the cardiac
frequency (ω). For the present geometry, Wo is equal to 2.40 corresponding to an
inlet diameter of the artery equal to 3 mm. At the outlet branches, pressure profiles
were imposed. These profiles are dependent on the instant time of the cardiac cycle
but radius-independent.

The boundary conditions, defined previously, for RCAs, were also implemented in
UDFs in Ansys® software by some authors of the present paper (Pinho et al, 2019a,b).
Fig. 9.2 shows the mean velocity profile imposed at the inlet of the idealized artery
and the pressure profile at the outlet branches.
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Fig. 8.2 Mean velocity profile
imposed at the inlet of the
idealized RCA (blue line) and
pressure profile imposed at the
outlet branches (orange line).

8.2.5 Numerical Method

Ansys® Fluent software was used to perform computational fluid dynamic (CFD)
simulations of unsteady blood flow. Navier–Stokes equations were solved in a laminar
regime, since Reynolds number in the systolic peak does not exceed the value of 1000.
The velocity-pressure coupled equations were solved by the SIMPLE algorithm. The
momentum equations with the implemented source terms were discretized by the
second-order upwind scheme. The analysis was performed considering a total time
of the cardiac cycle equal to 0.74 s, using 148 times steps, each one equal to 0.05 s;
the number of iterations for each time step was equal to 20. The simulation process
was completed according the convergence criteria of 1× 10−4.

8.3 Results and Discussion

Fig. 9.3 represents the velocity contours, in the systolic peak (maximum velocity of
the cardiac cycle), along the middle plane of the 3D idealized coronary geometry, for
three different rheological models: a Generalized Newtonian model, purely shear-
thinning model, through Carreau model; and two viscoelastic non-Newtonian models
as the Generalized Oldroyd-B and the multi-mode Giesekus.

For the three cases, there is an acceleration of blood flow in the stenotic region,
where the maximum velocity is 1.40 m/s, and there are also recirculation regions
just after the stenosis. However, Fig. 9.3 shows that the effect of the viscoelastic
components of stress decreases the velocity of blood flow in the stenosis and increases
the velocity in the recirculation regions. This effect is highlighted considering the
multi-mode Giesekus model.

The Generalized Oldroyd-B model assumes that both mobility factor and exten-
sibility coefficient are equal to 0 and only one mode. It is considered a quasi-linear
model (Bird et al, 1987). The multi-mode Giesekus model takes into account four
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Fig. 8.3 Velocity contours, in the systolic peak, along the middle plane of the 3D idealized
coronary geometry for the different rheological models.

Fig. 8.4 Velocity difference between the Viscoelastic models (Generalized Oldroyd-B and
multi-mode Giesekus) and the Generalized Newtonian model (Carreau), in the systolic peak.
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modes with four different mobility factors (only the extensibility coefficient equal to
0). This model is a non-linear model (Larson, 1988). Therefore, Fig. 9.4 shows that
velocity differences considering the Generalized Oldroyd-B model (quasi-linear vis-
coelastic model) and Carreau model are almost null (grey region), which means that
viscoelastic effects using Generalized Oldroyd-B for blood are not so pronounced.
These conclusions are in concordance with those of Bodnár et al (2011). Bodnár
et al (2011) consider a different geometry and different boundary conditions (con-
stant flow rate); however, they also concluded that for a higher flow rate, equal to 2
cm3/s, velocities almost overlap considering these two models. In the present paper,
the velocities are also almost coincident for a maximum flow rate, in the systolic
peak, equal to 3.9 cm3/s.

Differences in velocity between using the multi-mode Giesekus and Carreau mod-
el are highlighted in Fig.9.4, where the viscoelasticity effects are well evident. The
green regions, velocity differences around -0.20 m/s, mean that resulted velocities
from simulations taking into account Carreau model are 0.20 m/s higher than using
multi-mode Giesekus. In the recirculation regions, the opposite happens. In Fig.9.4,
a velocity difference of 0.20 m/s (red regions) can be observed, meaning that ve-
locity field using multi-mode Giesekus is higher than using Carreau model, in the
recirculation region. These differences are significant, mainly in regions with high
velocity gradients as stenotic regions, in a scale with maximum value of 1.40 m/s.
Such results are not surprising since multi-mode Giesekus model is a non-linear
model and well-known as one of the best to characterize viscoelastic fluids (Bird
et al, 1987).

8.4 Conclusion

The viscoelastic non-Newtonian models, the Generalized Oldroyd-B and multi-mode
Giesekus, characterizing the complex rheology of blood for accurate hemodynamic
simulations, were implemented in UDFs in Ansys® software. The velocity contours,
in the middle plane of a 3D idealized right coronary artery, were plotted con-
sidering the purely shear-thinning model, Carreau model, and the two viscoelastic
non-Newtonian models. Using the Generalized Oldroyd-B and Carreau model, differ-
ences are almost null, meaning that the viscoelastic effects in Generalized Oldroyd-B
are not pronounced. This model is a quasi-linear model. These results are in concor-
dance with those obtained in literature. Comparing results considering multi-mode
Giesekus and Carreau model, differences are significant and equal to 0.20 m/s under
a maximum velocity of 1.40 m/s (14.3%). Using the multi-mode Giesekus model,
the viscoelastic effects are highlighted in addition to the shear-thinning, mainly in
regions with high velocity gradients as the stenotic region. Whether the viscoelastic
models are emphasized in idealized geometry bifurcations, where the velocity gra-
dients of flow are high, the same viscoelastic models will certainly be accurate in
real models of arteries.
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Chapter 9
WSS Descriptors in a Patient RCA Taking into
Account the Non-linear Viscoelasticity of Blood

Ernesto Romano, Luísa C. Sousa, Carlos C. António, Catarina F. Castro,
and Sónia Isabel Silva Pinto

Abstract Hemodynamic analyses, in patient-specific right coronary arteries (RCA)
considering non-linear viscoelastic property of blood, have been underexplored in
literature. Therefore, authors intend to evaluate and compare the relative residence
time hemodynamic descriptor, and the tendency for atherosusceptible regions, in
arteries with absence of atherosclerosis, when a purely shear-thinning model for
blood (Carreau Model) or a non-linear viscoelastic model (multi-mode Giesekus
model) are used for hemodynamic simulations. Ansys® software was chosen since
it is a user-friendly software widely used by other authors who are interested in
this research field. Carreau model is incorporated in Ansys® package software; how-
ever, the multi-mode Giesekus model was implemented and validated by authors
in a previous work. Using the non-linear viscoelastic property of blood, the criti-
cal atherosusceptible regions in a patient-specific artery are larger than using the
purely shear-thinning model. In the present patient case, some regions with high
velocity gradients, mainly in bifurcations, have an increase of 87.5%. Therefore, the
multi-mode Giesekus model, taking into account the complex property of blood,
should be used in order to obtain an accurate hemodynamic simulation and accurate
atherosusceptible regions.
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9.1 Introduction

Cardiovascular diseases, such as atherosclerosis development in arteries, are one
of the most common causes of death in developed countries (Mozaffarian et al,
2015). It is well-known from clinical practice that specific sites are sensitive to
develop atherosclerosis, the accumulation of lipoproteins inside the arteries. Thus,
the stenosis blocks the normal circulation of blood flow (Ku, 1997). The Computed
Tomography (CT) scans can give information about the geometry of the artery and
location of the disease; however, do not explain the hemodynamic with detail. The
study of blood flow in patient-specific cases has become highly relevant in clinical
practice due to a need for understanding the mechanical stresses induced on the
vessels. Hemodynamic simulations using CT image-based geometries of arteries,
with all the conditions as close as possible to the patient, have been a powerful
auxiliary tool for prevention, diagnosis and treatment of atherosclerosis disease.

Some authors have considered generalized models that can be useful to simulate
hemodynamics in blood vessels. In studies of Auffray et al (2015), a description for
second gradient continua is formulated for the case of capillary fluids, i.e., fluids
for which the deformation energy depends on the second gradient of placement.
Therefore, a Lagrangian action was introduced in both the material and spatial
descriptions and the corresponding Euler–Langrange equations and boundary con-
ditions were found. These conditions were formulated in terms of an objective
deformation energy volume density. The second-gradient theory was also applied to
Cahn–Hilliard fluids in studies of Seppecher (2000). The second gradient theory is
necessary when describing a particular class of materials: when the energy depends
on the second gradient of the displacement. They concluded that the use of extended
thermodynamics is similar to describe a linear elastic material without invoking
the Cauchy stress tensor. Moreover, Seppecher (1993) applied the Cahn–Hilliard
model for another type of studies: multiphase fluid. He studied the influence of the
wetting properties of the fluid upon the stability of a thin liquid film. Ivanova and
Vilchevskaya (2016) formulated an additional constitutive equation in order to model
structural transformations due to the consolidation or defragmentation of particles
or anisotropic changes. Thus, the tensor of inertia of the elementary volume may
change. Ivanova and Vilchevskaya (2016) suggest kinetic equations for the tensor of
inertia of the elementary volume. They also discuss the specificity of the inelastic
polar continuum description within the framework of the spatial distribution.

However, in the present work, authors intend to use, for hemodynamic simula-
tions, the most accurate behavior of blood, well-known from literature (Thanapong
Chaichana, Zhonghua Sun, 2012; De Santis et al, 2013; Lee et al, 2009; Morbiducci
et al, 2011; Van Canneyt et al, 2013). Blood can be modelled by a viscoelastic
non-Newtonian fluid, through a constitutive equation that combines viscosity and
elasticity in the total extra stress tensor. Therefore, this total tensor can be splitted into
the sum of the suspending fluid and the elastic contributions. The elastic contribution
is dependent on the upper-convective derivative of the elastic stress tensor, among
other variables. This model must be taken into account, especially, when considering
the pulsatile nature of blood flow in arteries with stenosis or aneurysms, i.e., regions



9 WSS Descriptors in a Patient RCA 143

of high velocity gradients. However, the rheological behavior of blood, in the car-
diovascular system, is frequently characterized by many authors as a Newtonian or a
purely shear-thinning Non-Newtonian fluid (Thanapong Chaichana, Zhonghua Sun,
2012; De Santis et al, 2013; Lee et al, 2009; Morbiducci et al, 2011; Van Canneyt
et al, 2013) which cannot represent with accuracy blood behavior.

The present work is focused on numerical studies of blood flow and wall shear
stress (WSS) in patient-specific RCAs, arteries with low caliber and with regions
of high velocity gradients, taking into account the viscoelastic property of blood.
Ansys® software was used for hemodynamic simulations since it is a user-friendly
software widely used by many authors who are interested in this research field. Non-
linear viscoelastic models are not incorporated in Ansys® package. However, authors
of the present paper implemented in user-defined functions (UDFs) and validated the
viscoelastic model, in previous work, through 3D idealized geometries with stenosis
(Romano et al, 2019).

The hemodynamic behavior under two different rheological models for blood
was considered: a purely shear-thinning model incorporated in the software, Carreau
model, and a non-linear viscoelastic model (shear-thinning plus elasticity) imple-
mented and validated by Romano et al (2019), multi-mode Giesekus model. The goal
is to compare, after hemodynamic simulations, the effects in the WSS of patient-
specific RCAs when using such different models and analyze the importance of
considering the elastic property of blood. Moreover, boundary conditions as close as
possible to the patient-specific right coronary artery were imposed. Pulsatile flow,
space and time-dependent velocity, was considered at the inlet (ostium); and the
pressure profile, for each side-branch, dependent on the time of the cardiac cycle
with radius-independent was taken into account at the outlet branches.

9.2 Materials and Methods

9.2.1 Study Case

From a population of patients referred to Coronary CT Angiography at Gaia/Espinho
Hospital Centre, one male individual aged 41 and absence of coronary atheroscle-
rotic disease was selected for this study (Fig. 9.1). This individual has presented a
total absence of any calcification and absence of any non-calcified plaque or lumi-
nal irregularity. This subject gave informed consent and the present research was
approved by the institutional ethical committee.
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Fig. 9.1 Model of the patient-
specific RCA in study (front
and back view).

9.2.2 Geometry Reconstruction

The CT scans provided by the medical team were analyzed, through the commercial
software Mimics®, by Pinho et al (2019b). The semi-automatic algorithm allows the
reconstruction of the lumen through the manual selection of the Aorta domain and
the RCA points of interest as ostium (inlet) and the multiple side-branches. After
the manual selection of all the interested points, the algorithm adjusts the coronary
path and the lumen area to produce the 3D mask of the RCA model (Fig. 9.2). Then,
the 3D mask was processed in 3-Matic® software to produce a smooth model of the
lumen (Pinho et al, 2019b).

Fig. 9.2 Schematic repre-
sentation of the geometry
reconstruction based on CT
scans (Siemens SOMATOM
Force®, Erlanger, Germany)
provided by the Cardiology
Department of Gaia/Espinho
Hospital Centre (Pinho et al,
2019b).
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9.2.3 Mesh Generation

The patient-specific RCA model was discretized using Meshing Ansys® software
with tetrahedral elements for the fluid domain. A Patch Independent Method was
used in order to uniform the tetrahedral elements (see Fig. 9.3). Moreover, the mesh
quality was evaluated through the statistical parameter Maximum Skewness. A value
of the Maximum Skewness equal to 0 points to an equilateral cell, which is the
best case scenario. A value of Maximum Skewness equal to 1 points to a completely
degenerated cell. The accuracy of the mesh is achieved when the Maximum Skewness
is lower than 0.95 (Ansys, 2013). The computational mesh of the present work has
a Maximum Skewness equal to 0.59 with 399533 elements. Following the tutorial
guide of Ansys® Fluent (Ansys, 2013), the mesh is considered accurate for numerical
simulations.

Fig. 9.3 Computational mesh
of the fluid domain and detail
of the uniform tetrahedral
mesh at the inlet (ostium) and
in a bifurcation.

9.2.4 Boundary Conditions

At the inlet boundary condition (ostium), a Womersley velocity profile was imposed.
The profile depends, mainly, on the time of the cardiac cycle (t), the position of a
given point (r) and the Womersley number (Wo) specific for a patient-specific artery:

u(r, t) =
AR2

iμW 2
o

(
1− Jo

(
i3/2Wo

r
R

)
Jo
(
i3/2Wo

) )
eiωt (9.1)

where r is the radial distance from the center of the artery; Jo is the first order
Bessel function; A = 1

ρ
∂P
∂r is the pressure gradient, ρ is the blood density and the

Womersley number (Wo) is defined by:
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Wo = R

√
ρω

μ
(9.2)

depending on the radius of the artery (R), the cardiac frequency (ω) and the
viscosity of blood (μ) at infinite shear rate. For this patient-specific case,Wo is equal
to 2.72 corresponding to a diameter of the ostium (inlet) equal to 3.40 mm. The
outlet pressure profiles, for each side-branch, depend on the time of the cardiac cycle
and are also radius-independent.

The boundary conditions, referred previously, for patient-specific right coronary
arteries, were already implemented in user-defined functions (UDFs) in Ansys®

software by some authors of the present paper (Pinho et al, 2019a,b). Fig. 9.4 shows
the pressure profile imposed at the outlet branches and the mean velocity profile at
the inlet (ostium) for the patient-specific inlet radius and Womersley number.

Fig. 9.4 Mean velocity profile
imposed at the inlet (ostium)
of the patient-specific RCA
and pressure profile imposed
at the outlet side-branches.

9.2.5 Blood Properties

Blood has been considered to be isotropic, incompressible, homogeneous, constant
density (1060 kg/m3) and non-Newtonian fluid. It is well-known from literature
that blood is a complex fluid with the shear-thinning property, solvent part (τττ s),
and the elastic property (τττ e) (Baskurt and Meiselman, 2003; Bodnár et al, 2011;
Campo-Deaño et al, 2013, 2015).

Thus, in the governing equations where u is the velocity vector:

∇ · u = 0

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p+∇ · τττ (9.3)

the viscoelastic non-Newtonian behavior of blood is represented by a constitutive
equation that combines viscosity and elasticity in the total extra stress tensor (τττ ).
Therefore, this total tensor can be split into the sum of the suspending fluid (τττ s) and
the elastic (τττe) contributions:
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τττ = τττ s + τττe (9.4)

τττ s is equal to:

τττ s = 2μsD (9.5)

which depends on the viscosity of the solvent part (μs) and the strain rate tensor (D).
The elastic stress, τττ e, defined through Giesekus model, satisfies the following

equation:

τττek + λk
�
τττ ek +

αkλk
μek

(τττ ek · τττek) = 2μekD (9.6)

depending on the upper-convected derivative in the elastic contribution of the extra
stress tensor (

�
τττ ek ), the relaxation time (λk), the viscosity related to the elastic part of

the fluid (μek ) and the mobility factor (αk) resulting in a non-linear model (Larson,
1988). Moreover, Giesekus model, defining shear-thinning and elastic properties of
blood, was used in multi-mode form. Each mode number is defined by k. Therefore,
the total elastic stress (τττ e) is the sum of the several k modes (τττek ) in the total of m
modes:

τττ e =
m∑

k=1

τττ ek (9.7)

Parameters of the multi-mode Giesekus model for human blood were determined
in vitro by Campo-Deaño et al (2013) and can be shown in Table 9.1.

Table 9.1 Parameters of the multi-mode Giesekus model for human blood (Campo-Deaño et al,
2013)

Mode μek [Pa · s] λk [s] αk

1 0.05 7 0.06

2 0.001 0.4 0.001

3 0.001 0.04 0.001

4 0.0016 0.006 0.001

Solvent μs = 0.0012 Pa s

The hemodynamics taking into account the non-linear viscoelastic property of
blood (shear-thinning plus elastic property), the multi-mode Giesekus model, will
be compared with that obtained considering a purely shear-thinning model (without
viscoelasticity)—Carreau model. In this model, τττ = τsτsτs and τττe is equal to 0. The
viscosity (μ) can be defined as:

μ(γ̇) = μ∞ + (μ0 − μ∞)× [1 + (λγ̇)2]
n−1
2 (9.8)
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γ̇ being the shear rate. For blood at 37◦C, the parameters are well defined by
Johnston et al (2004) where the viscosity at infinite shear rate (μ∞) is 0.00345 Pa s,
the viscosity at zero shear rate (μ0) is equal to 0.056 Pa s, the relaxation time (λ) is
3.313 s and the power index (n) is equal to 0.3568.

Carreau model is included in Ansys® package software and only the previous
parameters for blood must be input. However, the so-called non-linear viscoelastic
property of blood (shear-thinning plus elasticity) does not take part of the Ansys®

package and must be implemented through the constitutive equation (9.6) and incor-
porated in the conservative equations. The source terms were modeled, by authors
of the present work, in UDFs and added to the momentum equations in Ansys ®

software (Romano et al, 2019). The source term for each stress component, and for
each mode, is defined by:

Sτijk
=

2μekDij

λk
− αk

μek
(τink

· τnjk) + τnjk
∂ui
∂xn

+ τink

∂uj
∂xn

(9.9)

9.2.6 Numerical Method

Ansys® Fluent software, was used to perform unsteady hemodynamic simulations.
Navier–Stokes equations were solved in a laminar regime since Reynolds num-
ber in the systolic peak of the patient-specific case is not higher than 1000. The
velocity-pressure coupled equations were calculated by SIMPLE algorithm and the
momentum equations with the implemented source terms were discretized by the
second-order upwind scheme. Three cardiac cycles, of 0.74 s each, were simulated
(2.22 s in the total). The time step size considered was 0.005 s/time step, the time
step number was 444 (148 time steps for each cardiac cycle) and the number of
iterations for each time step was equal to 20. The simulation process was completed
following the convergence criteria of 1× 10−4.

9.2.7 WSS Hemodynamic Descriptors

The WSS-based hemodynamic descriptors are parameters used to summarize the
hemodynamic behavior along a cardiac cycle. They depend on the location in the
artery s, the instant time of the cardiac cycle t, and the total time of the cardiac
cycle T (Arzani and Shadden, 2016; Pinho et al, 2019a). The most used wall shear
descriptors are the time average wall shear stress (TAWSS), the oscillatory shear
index (OSI) and the relative residence time (RRT ).

The Time Averaged Wall Shear Stress (TAWSS) evaluates the mean value of
the WSS magnitude along the cardiac cycle:

TAWSS(s) =
1

T

∫ T

0

|WSS(s, t)| dt (9.10)
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Low values of TAWSS, below 0.4 Pa, indicate a higher probability of plaque
formation (Malek et al, 1999).

The Oscillatory Shear Index (OSI) is a dimensionless parameter that describes
the disturbed flow near the wall. This hemodynamic descriptor ranges from 0, with
no oscillation and unidirectional WSS, to 0.5 corresponding to a highly disturbed
flow with 180◦ deflections (He and Ku, 1996; Soulis et al, 2011).

OSI(s) = 0.5

⎡⎣1−
∣∣∣∫ T

0
WSS(s, t) dt

∣∣∣∫ T

0
|WSS(s, t)| dt

⎤⎦ (9.11)

The Relative Residence Time descriptor (RRT ) indicates the residence time of
particles near the arterial wall. This hemodynamic descriptor is directly dependent
on the OSI and inversely dependent on the TAWSS:

RRT (s) =
1

(1− 2×OSI)× TAWSS
(9.12)

Thus, wall regions with low values ofWSS and high variation ofWSS direction
(high values ofOSI) are susceptible to atherosclerosis appearance.RRT values over
the threshold of 8 Pa−1 indicate zones of risk. Once this parameter is a combination
of TAWSS and OSI , it is considered to be the strongest metric of assessing blood
flow disruptions (Lee et al, 2009).

9.3 Results and Discussion

Fig. 9.5 shows theRRT spatial distribution, the strongest metric for assessing prone
regions of atherosclerosis formation, in a patient-specific RCA. RRT is represented
taking into account the purely shear-thinning model, Carreau model, and the non-
linear viscoelastic model for blood (shear-thinning plus elastic property), multi-mode
Giesekus model, in the hemodynamic simulations. Moreover, differences in theRRT
spatial distribution between considering multi-mode Giesekus and Carreau model
can be visualized on the right of Fig. 9.5.

Using the non-linear viscoelastic model or the purely shear-thinning model in the
hemodynamic simulations, the critical regions (high RRT ) are in similar specific
locations. However, when the non-linear viscoelastic model, multi-mode Giesekus
model, is considered, these critical regions are larger corresponding to higher val-
ues of RRT . Some regions, mainly bifurcations, RRT value varies from 1 Pa−1

(using Carreau model) to 8 Pa−1 (using multi-mode Giesekus model), representing
an increase of 87.5%. Since multi-mode Giesekus model takes into account the
shear-thinning and elastic property of blood, simultaneously, and Carreau model
only considers the shear-thinning, significant differences observed (see Fig. 9.5 on
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Fig. 9.5 RRT spatial distribution considering the purely shear-thinning model - Carreau model
(left), the non-linear viscoelastic model - multi-mode Giesekus model (center), and differences
between the models (right).

the right) are due to the elastic property of blood.

Therefore, considering the multi-mode Giesekus model in the hemodynamic
simulations, regions of RRT higher than 8 Pa−1 were observed, meaning a high
tendency for atherosclerosis appearance and the importance of using the non-linear
viscoelastic model to obtain an accurate hemodynamic and accurate atherosuscepti-
ble regions in patient-specific RCAs.

9.4 Conclusion

The present work is focused on numerical studies of blood flow in patient-specific
right coronary arteries, using Ansys® software. More precisely, the study presents
the hemodynamic behavior in a patient-specific RCA, of an individual of 41 years
old, under two different rheological models for blood: a purely shear-thinning model
(Carreau model) and a non-linear viscoelastic model (multi-mode Giesekus). Consid-
ering these two models,RRT special distribution, the strongest metric for assessing
prone regions of atherosclerosis formation, were obtained and compared through An-
sys® software. Using the purely shear-thinning model and the non-linear viscoelastic
model, the critical regions are in similar specific locations. However, when the non-
linear viscoelastic model (multi-mode Giesekus model) is considered, these critical
regions are larger. Mainly in bifurcations, the increase of RRT values is 87.5% in
this patient case. This means a higher tendency for atherosclerosis appearance and
the importance of the viscoelastic model’s use for an accurate hemodynamic.
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Chapter 10
A Method for the Quantification of Architectural
Anisotropy in Cancellous Bone Samples Using
CT Images

Nicolas Rogalski, Christophe Cluzel, and Sébastien Laporte

Abstract In osteoporotic patients, the sites most prone to fracture are characterized
by a predominance of cancellous bone. It has been shown that trabecular architecture
plays a crucial role in the mechanical performance of this type of bone. It therefore
appears necessary to be able to describe this architecture within an elementary vol-
ume. This requires a quantification of the anisotropy of the bone, i.e. a description
of the preferred orientations of its architectural elements. Classical techniques are
based on the use of a symmetrical second-order tensor, implying orthotropic symme-
try within the bone, which is not always the case. In order to properly characterize the
architectural anisotropy of cancellous bone samples, this paper presents a new ap-
proach for computing the preferred orientations of CT-scanned samples. This method
is based on the skeletonization of surfaces reconstructed from binarized CT images,
on the use of a projector on the directing vectors of the skeletal rods and finally on
the 3D surface analysis of the distribution of the orientations and lengths of the rods.
The method introduced has made it possible to obtain the preferred directions of 52
samples of bovine cancellous bone and to show that, in general, these directions are
not orthogonal, refuting the oversimplification of orthotropic models.
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10.1 Introduction

In osteoporosis, the sites most prone to fracture, whether hip, femur or vertebrae, are
bone regions characterized by a predominance of cancellous bone (Liu et al, 2006).
Cancellous bone plays a crucial role in charge transmission and energy absorption
(Silva et al, 1997). However, despite the relationship between an increased risk of
fracture and a decrease in bone mineral density (Cummings et al, 1993), more than
half of postmenopausal women who have had a hip fracture have a density above
the World Health Organization osteoporosis threshold (Wainwright et al, 2005). On
the other hand, a study on microarchitectural differences between white women
and Chinese American women showed that despite a lower bone mineral density,
Chinese American women have fewer fractures than white women (Liu et al, 2011).
The study of trabecular microstructure therefore contributes to the understanding of
lesion mechanisms and the prediction of fracture risk.

To perform the mechanical study of trabecular microstructure, finite element
calculations are currently used (Pottecher et al, 2016). However, these models do not
integrate the microarchitectural specificities of trabecular bone. Another approach
is to quantify the structural and mechanical anisotropy of bone (Gomez-Benito et al,
2005). Current methods allow to determine a symmetric, positive definite, second-
rank fabric tensor, from which can be extracted estimates of principal component
directions and magnitudes (Moreno et al, 2014) (the Mean Interception Length
(MIL) (Whitehouse, 1974), the Volume Orientation (VO) (Odgaard et al, 1990),
the Star Length Distribution (SLD) (Smit et al, 1998)). Although a second-rank
tensor provides accurate information about a continuum material, it defines three
orthogonal axes whereas the alignment directions of the elements of the trabecular
network are not necessarily orthogonal (Ketcham and Ryan, 2004). It can also mask
the secondary reinforcing directions, leading to an oversimplification in the case of
porous materials such as trabecular bone.

The objective of this paper is therefore to introduce a method allowing the charac-
terization of architectural anisotropy of cancellous bone samples from micro-scanner
images in order to obtain the privileged orientations, but also to address the gaps
among the various parameters described in the literature, used to analyze the microar-
chitecture of cancellous bone (Bouxsein et al, 2010); none provides information, at
the scale of a representative elementary volume, on the directions of trabecular net-
works. The proposed tool is based on an analysis of three-dimensional geometric
anisotropy in terms of trabecular orientation.
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10.2 Material and Methods

10.2.1 Trabecular Bone Image Processing

The use of a CT-scan (Phoenix v | Tome | x L240 / NF180: 70 kV, 350 μA, acquisition
time of 500 ms per image, resolution of 80 μm), allowed the acquisition of 2D images
of cancellous bone. These images were binarized using a multi-level Otsu method
(Otsu, 1979) (see Fig. 10.1). Using a segmentation algorithm, the 3D surfaces of
the bone samples were obtained. Finally, a thinning algorithm (Lee et al, 1994) was
used to skeletonize the surface.

Fig. 10.1 2D Image from the CT-scan (left) and binarized image (right).

The curved lines of the skeleton were approximated by their chord to obtain a
network of straight lines (see Fig. 10.2).

Fig. 10.2 Reconstructed surface (left) and sample after skeletonization (right).
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10.2.2 The Projector

To analyze the architectural anisotropy of the samples in order to obtain the preferred
alignment directions of the rods, as well as to obtain the distribution of their average
lengths, a projector was introduced. The purpose of the projector, defined by equation
(15.1), is to account for the relative contributions of rods of different orientations
using their respective directing vectors. It takes the form:

k(αT , α0, p) = A

(
1− e

−
(

π−2αT
π−2α0

)p
)

(10.1)

• αT : angle between the direction of interest and the mechanical axis of the
trabeculae (radians).

• α0: angular width of the projector (radians).
• p: power of the projector.

The principle is that of a filter: a direction of interest is first chosen. Then, if the
angle between the axis (the directing vector) of a trabecula and the direction of
interest is between 0 and α0, the axis is projected on the direction of interest. This
allows to group the similar contributions of orientation together in order to highlight
the privileged directions. The p-factor provides better filtration quality. When p
increases, the projector values for angles greater than α0 tend towards 0 (see Fig.
10.3). It is therefore a question of finding a compromise between precision, relevance
in the choice of secondary directions and calculation time.

Fig. 10.3 Projector values as a function of angle αT for different values of p.

From the projector, the 3D distribution of the trabeculae in the direction n is given
by equation (15.2)
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dn(α0, p) =
1

NTrab

NTrab∑
T=1

k(αT , α0, p) (10.2)

The mean length of the trabeculae in the direction n is given by equation (15.3)

Ln(α0, p) =

∑NTrab

T=1 LT k(αT , α0, p)∑NTrab

T=1 k(αT , α0, p)
(10.3)

Using the principle of 3D histogram on a continuous surface (cubed sphere Bruno,
2020) and the projector, it was possible to obtain 3D representations of the distribu-
tion of the orientations of the directing vectors of the rods as well as their lengths.
The preferred orientations and rod lengths were then computed by analyzing the
local extrema of the surfaces obtained, the low extrema being neglected. Finally, the
samples were classified according to their number of preferred orientations.

10.2.3 Samples of Cancellous Bone

The image processing method and then the projector were used on cancellous bone
samples from cattle aged about 4 years. 52 cylindrical samples (height: 7.5 mm,
diameter: 10.5 mm) from the femoral head and greater trochanter of 6 different
femurs were collected in collaboration with the BISRU laboratory at the University
of Cape Town, South Africa (Prot, 2015) and processed.

10.3 Results

10.3.1 Influence of Projector Parameters

It is possible to play with the projector parameters (angular width and power) in
order to monitor the effects of the filtration process and thus modify the shape of
the 3D distribution of orientations. Decreasing the width allows to take into account
privileged directions closer to each other and vice-versa. The parameter p is used to
control the quality of filtration : it is possible to switch from binary filtration with a
high power (the directing vector of the rod is included in the angular opening around
the direction of interest, or not) to a softer filtration, for a lower power (see Fig. 10.3,
10.4).

The principle is the same for the distribution of lengths (see Fig. 10.5).
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Fig. 10.4 Influence of the projector parameters on the 3D distribution of the rod orientations. (a):
α0=10◦, p=20 (b): α0=2◦, p=20 (c): α0=2◦, p=40.

10.3.2 Use of the Projector on Bone Samples

By using the projector on bone samples treated with the method described in 10.2.1
and computing the local extrema of the resulting surface, the preferred orientations,
the mean rod lengths, the rod length standard deviations and the mean angles between
the directing vectors of the preferred orientations were obtained. The samples were
sorted in three groups according to their number of preferred orientations (Table
15.1, 15.2).

Table 10.1 Mean trabecular lengths, length standard deviations for the different groups of
cancellous bone samples.

Number of preferred orientations Mean trabecular length (μm) Length standard deviation (μm)

4 484.72 13.89

3 476.77 11.29

2 476.54 13.98

Five samples were not referenced because the number of orientations was greater
than 4. In this case, the relative importance of the orientations within the network
decreases as the bone approaches the isotropic case, which makes their determination
more difficult. Fig. 10.6 illustrates the different possible configurations within the
samples, in terms of preferred orientations.

Fig. 10.5 Influence of the
projector parameters on the 3D
distribution of rod lengths. (a):
α0=10◦, p=20, (b): α0=5◦,
p=40.
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Table 10.2 Mean angles between the directing vectors of preferred orientations for the different
groups of cancellous bone samples. Angles of directing vectors (deg).

Number of preferred orientations (v̂1v2) (v̂1v3) (v̂2v3) (v̂1v4) (v̂2v4) (v̂3v4)

4 60.03 79.02 64.96 66.26 75.89 53.38

3 72.95 72.76 76.6

2 74.42

10.4 Discussion

In this paper, an approach allowing the quantification of architectural anisotropy as
well as obtaining information on the average length of rods in a sample of cancellous
bone was presented. The method relies on the use of a set of images acquired by
a CT-scan, processed to reconstruct a surface and a tool based on the principle of
projection of the directing vectors of the rods after skeletonization of the surface.

The projector offers the possibility of computing non-orthogonal privileged direc-
tions and secondary directions, contrary to conventional techniques for quantifying
architectural anisotropy, such as the MIL, the VO or the SLD. It has been shown
that the measured angles between the preferred directions are on average quite far
apart from 90 degrees (Table 15.2), which proves that the hypothesis of orthotropy
within the trabecular network is over-simplifying in most cases. Highlighting the
actual preferred directions is essential because the mechanics of cancellous bone is
driven by its microstructure.

The whole approach presents some drawbacks though. In particular, the method
presents a sensitivity due to the imaging techniques used. The resolution of the scan
must be sufficient to preserve a maximum of information on the architecture of the

Fig. 10.6 3D distribution of orientations and trabecular length (in μm) for bone samples (α0=10◦,
p=20). From left to right: 2 non-orthogonal orientations, 2 orthogonal orientations, 3 orthogonal
orientations, 3 non-orthogonal orientations, 4 orientations.
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bone, but the possibility of clinical use must also be taken into account, which limits
the minimum usable resolution. Moreover, the resolution also affects the choice of
the projector parameters. Indeed, the chosen voxel size allows to obtain a minimum
angular width value below which one cannot work, this value corresponding to the
positioning inaccuracy of the bone sample in the scanner (see Fig. 10.7).

Fig. 10.7 Difference in rod orientation obtained after skeletonization by considering the
positioning uncertainty in the CT-scan.

Considering an average rod length of 480μm (see Table 15.1) as well as a voxel
size of 80μm, the angle corresponding to this uncertainty equals approximately 9.5
degrees. The voxel size therefore limits the angular width of the projector.

In addition, the thinning algorithm used does not differentiate the plate and rods
elements of the samples. The skeleton shows only rods. A more complex algorithm
can be used to preserve this distinction in the skeletonization process, as it was
shown that plates play a crucial role in the mechanical behavior of cancellous bone
in several regions of the body (Wang et al, 2013). Another point is that the rods are
approximated by their chord, their curves are neglected. It is advisable to take this
into account later on, in order to obtain a more accurate geometric description and
to be able to envisage damage phenomena linked to microarchitecture (buckling for
example). Finally, the application of this tool will be more difficult to implement
than the above-mentioned techniques because it will rely on the use of higher order
tensors, in order to be able to use all the geometrical information obtained from the
projector.

Once the improvements listed have been incorporated, it will then be possible to
compare the method presented to other methods that do not rely on a skeletonization
process, such as the use of facet normals of a STL file (Cluzel and Allena, 2018). It
would also be interesting to carry out a mapping of the anisotropic field of coordinates
on the femurs where the samples were taken, similarly to the work done on cortical
bone for orthotropic directions (Allena and Cluzel, 2018). This would allow to show
the alignment of the privileged orientations with the mechanical loading axes, which
would constitute a validation of the interest of the approach based on physiology. A
method allowing the detection of extrema based on the norm of orientation vectors
could be considered in order to automatically neglect low intensity directions within
the network.
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Chapter 11
A Model of Integrin and VEGF Receptors
Recruitment on Endothelial Cells

Mattia Serpelloni, Matteo Arricca, Valentina Damioli, Cosetta Ravelli,
Elisabetta Grillo, Stefania Mitola, and Alberto Salvadori

Abstract Angiogenesis is a multistep process in which endothelial cells (ECs) are af-
fected by several extracellular stimuli, including growth factors, extracellular matrix
(ECM), and parenchymal and stromal cells. In this process, growth factor receptors
as well as adhesion receptors convey the extracellular signaling in a coordinate in-
tracellular pathway. The Vascular Endothelial Growth Factor (VEGF), by binding
the Vascular endothelial growth factor receptor 2 (VEGFR-2), promotes EC pro-
liferation, migration, and their reorganization in active vessels. Once engaged, the
activation of VEGFR-2 is modulated by its interaction with β3 integrin. Although the
ability of VEGFR-2 to participate in a complex with β3 integrin is well known, the
close correlation between their activation and the multiphysical phenomena regulat-
ing EC dynamics remains still very restricted. Here we computationally model the
VEGFR-2 and β3 integrin membrane dynamics by a multi-physics model, to identify
how ligands stimulation induces the polarization of receptors in cell protrusions and
in the basal aspect of ECs plated on a ligand-enriched ECM. The research for new
anti-angiogenic solutions through the controlled activation of the ECs could arise
from the determination of the laws that govern the polarization of the receptors.
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11.1 Introduction

Tumor neovascularization and angiogenesis-dependent diseases are characterized
by the uncontrolled release of angiogenic growth factors, leading to EC activa-
tion. Although growth factors are considered soluble molecules, many of them bind
extracellular matrix components leading to the formation of immobilized ECM-
bound complexes. Among these, the Vascular endothelial growth factor (VEGF-A),
a major pro-angiogenic molecule, is produced by tumor or inflammatory cells, and
accumulates in extracellular matrix, and interacts with its tyrosine kinase receptor
VEGFR-2 expressed on EC surface. The ECM-anchored VEGF induces the recruit-
ment of VEGFR-2 at the basal portion of the basal membrane, receptor dimerization
and the activation of an intracellular signaling through a series of phosphorylations.

The EC response to this ligand differs upon the physical state of the ECs. Upon
VEGF stimulation, the phosphorylation grade of VEGFR-2 is slighter in confluent
cells compared to that observed in sparse cells (Neufeld et al, 1999). Also, adhe-
sion to different ECMs modulates the VEGFR-2 response (Ravelli et al, 2015; Soldi
et al, 1999). Such distinctive feature may be attributed to the VEGFR-2 associ-
ation with different transmembrane proteins, which form distinct multi-molecular
complexes that interact with cytosolic transducers. VEGFR-2 forms a complex with
Ve-Cadherin and -catenin into cell-cell contacts (Carmeliet et al, 1999), with the
vascular endothelial-phosphotyrosine phosphatase (VE-PTP) into cell-cell junctions
(Esser et al, 1998), with neuropilin 1 (Peach et al, 2018) and αvβ3 in lipid raft
domains (Ravelli et al, 2015). αvβ3 exists in an inactive form with a bent-clasped
conformation (low-affinity integrin), in an activable form with an unbent-clasped
conformation or in an active form with an unbent and unclasped conformation
(high-affinity configuration) (Eliceiri, 2001; Hynes, 2002; Valdembri and Serini,
2012). The conformation and the affinity of αvβ3 for its ligands fibrin(ogen), fi-
bronectin, thrombospondin, von Willebrand factor, and vitronectin is subjected to
short-term modulation by phorbol esters, Mn2+, ADP, vascular endothelial growth
factor, basic fibroblast growth factor, and elevations in intracellular cyclic AMP
(cAMP) (Calderwood, 2004). αvβ3 integrin mediates cell-matrix interactions, and,
similarly to VEGFR-2, transmits “outside-in” signals to the cell, which trigger a large
array of intracellular signaling events. αvβ3 integrin is one of the most important
survival system for nascent vessels and participates in the full activation of VEGFR-2
triggered by VEGF-A or gremlin, which are important angiogenic inducers in tumor,
inflammation and tissue regeneration. Although the role of productive crosstalk be-
tween VEGFR-2 and αvβ3 in the angiogenic response is well characterized in terms
of intracellular signaling, ECs migration and proliferation, the effects of complex
formation on the membrane dynamic of both receptors is still missing.
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Starting from imaging experimental data and a rigorous thermodynamic approach
(Salvadori et al, 2018b), we modeled in recent publications (Damioli et al, 2017;
Salvadori et al, 2018a) the relocation of VEGFR-2 on ECs membrane during the
angiogenic process. The developed chemo-transport-mechanics model captures the
VEGFR-2 recruitment at the basal portion of EC in active blood vessels and high-
lights three different phases in receptors relocation, driven by three main regulatory
factors: extracellular ligand/receptor chemical interaction, cell mechanical deforma-
tion, and receptor diffusion.

It is known that VEGF-A (Soldi et al, 1999) or Gremlin (Ravelli et al, 2013) trigger
the polarization of VEGFR-2. It has been also proved that integrin participates in
VEGFR-2 full activation, sparking the propagation of intracellular signaling cascades
that affect the cell mechanical response. This correlation shows to be particularly
efficient in prolonging and strengthening the intracellular signal released by VEGFR-
2-Ligand complex.

In the present work, we aim at theoretically modeling and at numerically simulat-
ing the interplay between VEGFR-2, αvβ3 in its different conformations, VEGF-A
or Gremlin, and ECM components (e.g. fibrinogen). The receptor dynamics is com-
bined with the cell mechanical deformation and with the chemical interactions in the
framework of the thermodynamics of continua (Gurtin et al, 2010).

The multi-physics model, described in Section 11.2, stems from the balance
equations for mass, energy and entropy, includes thermodynamic restrictions and
constitutive choices together with standard chemical kinetics. The equations that
govern the problem of relocation of VEGFR-2 and Integrin motion on the mem-
brane driven by their specific ligands will ultimately be expressed in a strong and
dimensionless formalism, in terms of four space-time unknown scalar concentra-
tion fields. In order to enable a numerical approximation of the partial differential
equations above, a weak form will be devised in Section 11.3. Such a weak form nat-
urally leads to a semi-discrete problem, by approximating the space-time unknown
scalar concentration fields into suitable finite dimensional spaces, thus rephrasing
the weak form into a system of ordinary differential equations, whose solution is an
approximation of the exact solution for each time. A Backward Euler scheme for
the finite element approximation of the chemo-transport model was implemented.
To avoid poor numerical accuracy, numerical simulations require a very small time
discretization step, thus leading to a very high computational cost in properly cap-
turing the spreading process. The time-dependent partial differential equations have
been therefore rephrased in order to apply higher order time integration schemes.
The non linear, discretized equations have been implemented in a high performance
computing environment, exploiting the deal.ii open software library, in Section 11.4.
Final remarks conclude the paper.
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11.2 Modeling VEGFR-2 and Integrin Motion Driven by Their
Specific Ligands

The equations that model the motion of integrins and VEGFR-2 on the lipid mem-
brane are detailed in this section. The relocation of these proteins is assumed to
take place merely along the lipid bilayer, i.e. internalization processes as well as
supply of proteins from the cytosol are neglected. Governing equations emanate
from a chemo-transport-mechanical model in terms of balance equations coupled
to thermodynamic restrictions. These two items will be separately dealt with in the
next two subsections.

11.2.1 Chemical Reactions

Proteins relocation is guided by their corresponding ligands, i.e. VEGF-A or Gremlin
for VEGFR-2 and fibronectin for integrins. The interactions between ligands and
receptors are modeled as three chemical reactions, accompanied by the mass balance
equations. They are defined on the cell membrane, which will be henceforth denoted
with Ω.

The first chemical reaction

I + LI

k1f
�
k1b

IhLI︸︷︷︸
C1

(11.1)

accounts for the interaction between the diffusing, not engaged integrin receptors (I)
with fibronectin (LI), which leads to the formation of complex C1. The subscript
h emphasizes that integrin molecules bound to fibronectin within the complex C1

are in a hight affinity state, i.e. they are trans-membrane proteins that manifest
modest relocation propensity on the lipid bilayer. Reaction (11.1) induces a cascade
of intracellular signals, which lead to the formation of macromolecular clusters (so-
called focal adhesions) through which mechanical forces and regulatory signals are
transmitted between the ECM and ECs.

The second chemical reaction

R+ LR

k2f
�
k2b
C2 (11.2)

describes the interaction between VEGFR-2 (R) and VEGF-A or Gremlin (LR),
which provides complex C2 and induces a cascade of intracellular signals that
ultimately lead to the activation of angiogenesis. Reaction (11.2) alone was studied
thoroughly in the two publications (Damioli et al, 2017; Salvadori et al, 2018a).

The last chemical reaction that this work concerns with, i.e.
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I + C2

k3f
�
k3b
C3 (11.3)

depicts the interplay between the complex C2, supplied by reaction (11.2), and the
integrin receptors I. Reaction 11.3 ultimately provides another complex, denoted
with C3, which drives the long-term VEGFR-2 phosphorylation required to trigger
the first intra-cellular signal.

11.2.2 Mass Balance Equations

In order to include the reaction rate of reactions (11.1)–(11.3) depicted in section
11.2.1 into appropriate mass balance equations, the three chemical reactions will be
here stated in the following abstract form

A+ B
kf
�
kb

C . (11.4)

The integral form of the mass balance equation for the generic species I is defined
as follows:

d

dt

∫
Ω(t)

cI(x, t) dS = −
∮
Γ (t)

hI · t⊥ dl +

∫
Ω(t)

sI(x, t) dS , (11.5)

on a subpart Ω(t) of the membrane, as shown in Fig. 11.1. In eq. (11.5), vector t⊥
is normal to the curve Γ (t) at a generic point x on the cell membrane. As shown
in Fig. 11.1, the so-called (mobile) trihedron of Frenet is completed by the vectors
n and t�, i.e. the cell membrane unit normal and the vector tangent to the curve
Γ (t), respectively. Furthermore, cI is the molarity of species I (i.e. the number of
molecules per unit area); hI is the mass flux in terms of molecules, i.e. the number
of molecules of species I measured per unit length per unit time, and is a tangent
vector field on the membrane; sI is the rate in number of molecules per unit volume
per unit time at which species I is generated by sources, and t is the time.

Exploiting Stokes’s theorem, the line integral in equation (11.5) can be written as∮
Γ

hI · t⊥ dl =

∮
Γ

hI · (t� × n) dl =

∮
Γ

(n× hI) · t� dl =∮
Γ

(n× hI) · dl =
∫
Ω

curl [n× hI ] · n dS .

(11.6)

By denoting as usual with

divΩ [hI ] = curl [n× hI ] · n , (11.7)

the mass balance equation can be finally recasted in the form
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Fig. 11.1 Membrane surface
subpart Ω at time t and its
closed boundary Γ . The unit
vector normal n and the
normal and tangent vectors to
the curve Γ (t), i.e. t⊥ and t�,
are depicted as well.

t⊥ t∥

n(P)

n(Q)

Q

P

Ω(t)
Γ(t)

d

dt

∫
Ω(t)

cI(x, t) dS +

∫
Ω(t)

divΩ [hI ] dS =

∫
Ω(t)

sI(x, t) dS . (11.8)

It is straightforward to show that Reynold’s theorem on Ω(t) reads as follows:

d

dt

∫
Ω(t)

cI dS =

∫
Ω(t)

d cI
d t

+ cI divΩ [vb ] dS , (11.9)

where vb(x, t) is the velocity of advection at point x and time t. Replacing eq. (11.9)
into eq. (11.8) leads to localize the mass balance equation (11.5) for species I at
point x and time t in the form

d cI
d t

+ cI divΩ [vb ] + divΩ [hI ] = sI(x, t) , (11.10)

which can be pulled back to a reference configuration using standard arguments of
continuum mechanics (Gurtin et al, 2010) as follows:

∂cIR
∂t

+ DivΩ [hIR ] = sIR(X, t) . (11.11)

The apex R denotes quantities in the reference configuration. In this work, however,
we will follow a different path of reasoning, mutuated from Damioli et al (2017);
Salvadori et al (2018a).

11.2.3 Surrogated Mechanics

The geometrical evolution of the cell during its spreading on the substrate couples
with the relocation of receptors along the lipid membrane. Mathematically, the
coupling occurs through the velocity of advection in eq. (11.10) and through the mass
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supply sIR(X, t) in eq. (11.11). Specifically, the latter accounts for the spreading
by setting the amount of the cell geometry that, being in contact with the substrate,
interacts with ligands, ensuring that the chemical reaction (11.4) takes place.

Assigning a given value for sIR(X, t) is equivalent to surrogate the mechanics on
a spherical geometry, a priori imposing a supply of ligandsLR andLI (see equations
(11.1)–(11.2)) that is calibrated from experimental investigations of the mechanics
of spreading. We chose this form1

sLR
(x, t) =

cLR

t
H
[
t− x

v

]
H
[
t− t+

x

v

]
sLI(x, t) =

cLI

t
H
[
t− x

v

]
H
[
t− t+

x

v

] (11.12)

where:

• cLR
and cLI are the concentrations of substrate immobilized ligands;

• H[−] is the Heaviside step function;
• tf is the time experimentally required to a complete mechanical deformation;
• v =

πr

2tf
is the velocity of the mechanical deformation (assumed constant up to

tf );
• r is the cell radius;
• t� tf is a parameter that identifies a finite time required for binding;
• x is the curvilinear abscissa on the meridian plane of the sphere;
• t is the generic time.

By this approach, already elaborated in our previous works (Damioli et al, 2017;
Salvadori et al, 2018a), the relocation of receptors can be solved without numer-
ical simulations of the real spreading process. Whereby questionable quantitative
response is expected, the physics of the relocation of receptors is captured with
fidelity.

Application of the surrogated mechanics approach to equations (11.4) and (11.11)
finally leads to the following set of paradigmatic mass balance equations

∂cA
∂t

+ divΩ [hA ] + w(11.4) = sA ,

∂cB
∂t

+ divΩ [hB ] + w(11.4) = sB ,

∂cC
∂t

+ divΩ [hC ]− w(11.4) = sC .

(11.13)

As a result of the assumptions that the ligands on the substrate are not free to move,
and neither are the complex molecules after activation, it follows that equation (11.13)
particularize to the integrin - VEGFR reactions (11.1)-(11.3) in the following form:

1 Following this path of reasoning, the identification of a reference configuration is unnecessary.
Therefore, the suffix R will be removed from now on. The notation divΩ [ ] is equivalent toDivΩ [ ].
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∂cI

∂t
+ divΩ [hI ] + w(1) + w(3) = 0

∂cLI

∂t
+ w(1) = sLI

∂cC1

∂t
− w(1) = 0

∂cR
∂t

+ divΩ [hR ] + w(2) = 0

∂cLR

∂t
+ w(2) = sLR

∂cC2

∂t
− w(2) + w(3) = 0

∂cC3

∂t
− w(3) = 0

(11.14)

11.2.4 Constitutive Assumptions and Chemical Kinetics

Governing equations emanate from the mass balance equations (??) after a rigorous
thermodynamic derivation of the following constitutive equations of Fick’s type for
the receptors fluxes

hI =−DI∇Ω [ cI ]

hR =−DR∇Ω [cR] .
(11.15)

Fick’s constitutive equations satisfy thermodynamic restrictions, as well known; their
derivation will not be detailed here, see e.g., Gurtin et al (2010). Note, though, that
the gradient operator in equations (11.15) is defined on the surface, i.e.

∇Ω [ c ] = ∇ [ c ]− (n· ∇ [ c ])n (11.16)

The chemical kinetics of the paradigmatic reaction (11.4) is modeled as for ideal
systems (De Groot and Mazur, 1984) via the law of mass action:

w(11.4) = kf
ϑB

(1− ϑB)

ϑA
(1− ϑA)

− kb
ϑC

(1− ϑC)
(11.17)

In eq. (11.17), ϑA denotes the non-dimensional ratio between the concentration of
species A and its amount cmax

A at saturation,

ϑA = cA/c
max
A .

Similarly ϑB and ϑC for species B and C. At chemical equilibrium, as w(11.4) = 0,
the concentrations obey the relation

kf
kb

=
ϑeqC

(1− ϑeqC )

(1− ϑeqR )

ϑeqR

(1− ϑeqL )

ϑeqL
= K(11.4)

eq , (11.18)
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which defines the constant of equilibriumK
(11.4)
eq of reaction (11.4). The description

of the chemical reaction (11.4) in terms of activities can be found in Salvadori et al
(2018a,b).

Far from the saturation limit, (1− ϑA) ∼ 1 (the same for species B and C). The
mass action law (11.17) thus simplifies as

w(11.4) = k̃f cB cA − k̃b cC (11.19)

having denoted with

k̃f = kf (c
max
B cmax

A )−1 , k̃b = kb(c
max
C )−1 .

Either eq. (11.17) or eq. (11.19) provide a set of three balance laws in terms of
concentrations cA, cB , and cC once inserted into eq. (11.13). Provided that the mass
fluxes are constitutively related to concentrations, as for Fick’s laws (11.15), eq.
(11.13) turn out to be three governing equations.

Experimental evidences (Damioli et al, 2017) show that the equilibrium constant,
paradigmatically defined by eq. (11.18), is high for all the three chemical reactions
(11.1)–(11.3). This favors the formation of products and the depletions of receptors
and ligands. Moreover, the diffusion of receptors on the cell membrane appears to
be much slower than the interaction kinetics, i.e. the time required to reach chemical
equilibrium is orders of magnitude smaller than the time-scale of other processes.
For these reasons, the concentrations of species may be governed by thermodynamic
equilibrium at all times.

Making reference again to the paradigmatic equation (11.19), the concentration
of complex cC relates to the others in the case of infinitely fast kinetics. Far from
saturation, equating the reaction rate to zero, i.e. w(11.4) = 0, implies

cC =
cB cA
α

, (11.20)

having denoted with α the following constant:

α =
k̃b

k̃f
=
cmax
A cmax

B

cmax
C

1

K
(11.4)
eq

. (11.21)

11.2.5 Governing Equations

In conclusion, therefore, the paradigmatic problem (11.13) in the surrogated mechan-
ics approach can be written in terms of concentrations after imposing that speciesB
and C are immobile, that the Fick law (11.15)1 relates the mass flux hA to the con-
centration cA, and either imposing the mass action law in the form (11.17) ( (11.19)
when far from saturation ) or assuming infinitely fast kinetics in the form (11.20). In
this last case, the two concentrations cA and cB describe the paradigmatic problem
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(11.13), as follows:

∂cA
∂t

(
1 +

cB
α

)
+
cA
α

∂cB
∂t

+ divΩ [−DA∇Ω [ cA ] ] = 0

∂cB
∂t

(
1 +

cA
α

)
+
cB
α

∂cA
∂t

= sB .

(11.22)

Parameter α depicts the influence of chemistry at infinitely fast kinetics; parameter
DA is associated with the diffusion process on the surface; function sB accounts for
mechanics, in a surrogated way. All these multi-physics processes impact onto the
discretization parameters for the numerical simulation.

Equations (11.22) can be properly rephrased to model to the integrin - VEGFR
reactions (11.1)–(11.3). Four unknown fields, cI(x, t), cLI(x, t), cR(x, t), cLR

(x, t)
describe the evolution of the system through the following non-linear partial differ-
ential equations:

∂cLR

∂t

(
1 +

cR
α2

+
cR
α2

cI

α3

)
+
cRcLR

α2α3

∂cI

∂t
+
∂cR
∂t

(
cLR

α2
+
cLR

α2

cI

α3

)
− sLR

= 0

∂cR
∂t

+ divΩ [−DR∇Ω [ cR ] ]− ∂cLR

∂t
+ sLR

= 0

∂cI

∂t

(
1 +

cRcLR

α2α3

)
+ divΩ [−DI∇Ω [ cI ] ]− ∂cLI

∂t
+

cI

α3

cLR

α2

∂cR
∂t

+
cI

α3

cR
α2

∂cLR

∂t
+ sLI = 0

∂cLI

∂t

(
1 +

cI

α1

)
+
cLI

α1

∂cI

∂t
− sLI = 0

(11.23)
Initial conditions are dictated by experimental evidences and hold

cI(x, 0) = 8, cLI(x, 0) = 0, cR(x, 0) = 4.8, cLR
(x, 0) = 0 (11.24)

11.2.5.1 Dimensionless Equations

The interplay among the multi-physics processes in the governing equations (11.23)
can be better pointed out in a dimensionless formulation. To this aim, denote withLd

a reference length, with td a problem timescale, with cbulk a reference concentration
and finally define the dimensionless (starred) amounts

x = Ld x
� , t = td t

� , cA = cbulk c
�
A , αi = cbulkα

�
i (11.25)

with i = 1, 2, 3. Exploiting the simple identities
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∂cA
∂t

=
cbulk
td

∂c�A
∂t�

, sA =
cbulk
td

s�A ,

∇Ω [ ca ] =
cbulk
Ld

∇�
Ω [ c�A ] , divΩ [ f ] =

1

Ld
div�Ω [ f ]

(11.26)

and defining the Peclet number (Quarteroni and Valli, 2008) for a generic species A
as

PA
e =

L2
d

DA td
, (11.27)

the following dimensionless governing equations of the problem come out

∂c�LR

∂t�

(
1 +

c�R
α�
2

+
c�R
α�
2

c�I
α�
3

)
+
c�Rc

�
LR

α�
2α

�
3

∂c�I
∂t�

+
∂c�R
∂t�

(
c�LR

α�
2

+
c�LR

α�
2

c�I
α�
3

)
− s�LR

= 0 ,

∂c�R
∂t�

− div�Ω

[
1

PR
e

∇�
Ω [ c�R ]

]
− ∂c�LR

∂t�
+ s�LR

= 0 ,

∂c�I
∂t�

(
1 +

c�Rc
�
LR

α�
2α

�
3

)
− div�Ω

[
1

PI
e

∇�
Ω [ c�I ]

]
−

∂c�LI

∂t�
+
c�I
α�
3

c�LR

α�
2

∂c�R
∂t�

+
c�I
α�
3

c�R
α�
2

∂c�LR

∂t�
+ s�LI

= 0 ,

∂c�LI

∂t�

(
1 +

c�I
α�
1

)
+
c�LI

α�
1

∂c�I
∂t�

− s�LI
= 0 .

(11.28)
These initial values PDEs will be solved for the unknown fields c�LR

, c�R, c�I , and c�LI
once initial and boundary conditions will be given. Whereby the transport process
is ruled by the Peclet’s numbers PR

e and PI
e, several other dimensionless amounts

control chemistry ( the three parameters α�
i ) and spreading (s�LR

and s�LI
). The ratios

between those numbers define the limiting factors during the evolution in time of
the whole system. It will be clarified in discussing the numerical approximation of
problem (11.28), that stems from its weak form.

11.3 Weak Formulation and Finite Elements Discretization

This section aims at building up the weak form of the governing equations to enable
a numerical approximation of the partial differential equations problem (11.28)
equipped with appropriate initial and boundary conditions. Formally speaking, the
weak formulation is obtained after multiplication of the strong form of the governing
equations by a suitable set of time independent test functions (expressed here with
a superposed caret), and performing an integration upon the domain, exploiting
Green’s formula with the aim of reducing the order of differentiation. Such a weak
form, in terms of the unknown fields c�LR

, c�R, c�I , and c�LI
, reads as follows:
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(11.29)
Note that there is no contribution defined on the boundary, because the cell membrane
Ω is a closed surface. The weak form above can be written in a more abstract setting:
we seek for unknown fields c�A(x�, t�) —with A denoting LR, R, I , or LI— in the
functional space V[0,t�f ] that satisfy initial conditions c�A(x�, 0) = c0

�
A(x

�) such that

a

({
∂

∂t�
c�A(x

�, t�), c�A(x
�, t�)

}
, ĉ�A(x

�)

)
=
(
fA(x

�, t�), ĉ�A(x
�)
)

(11.30)

for all ĉ�A(x�) that belong to a suitable functional space V. In the abstract form
(11.30), a(·, ·) is a non linear functional and (f, c) denotes the standard scalar
product between f and c. The identification of the functional spaces V[0,t�f ],V falls
beyond the scope of the present paper.

The weak form (11.30) naturally leads to a semi-discrete problem, by approxi-
mating the space V by a finite dimensional space Vh. To this aim, unknown fields
c�A(x

�, t�) —with A denoting LR, R, I , or LI— will be approximated as a product
of separated variables, by means of a basis {ϕA

i (x
�)} of spatial shape functions and

nodal unknowns that depend solely on time

ch
�
A(x

�, t�) = ϕA
i (x

�) c�Ai (t�) . (11.31)

The Einstein summation convention is taken for repeated indexes. The semi-discrete
approximate problem reads as follows: given c0h�A(x�) a suitable approximation of
the initial datum c0

�
A(x

�), for each t� ∈ [0, t�f ] find ch�A such that

a

(
ϕA
j (x

�)

{
∂

∂t�
c�Aj (t�), c�Aj (t�)

}
, ϕA

i (x
�)

)
= (fA(x

�, t�), ϕA
i (x

�)) .

(11.32)
The weak form (11.29) is thus rephrased into the system of ordinary differential
equations (11.32), whose solution is an approximation of the exact solution for each
t�.

In order to obtain a full discretization of the weak form (11.29), we consider a
uniform mesh for the time variable t� and define t�n = nΔt� with n = 0, 1, ...,
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and Δt� > 0 being the time step. The time derivative will be replaced by suitable
difference quotients

∂c�Ai
∂t�

� c�Ai (t�n +Δt�)− c�Ai (t�n)

Δt�
, (11.33)

thus constructing a sequence cnh
�
A(x

�) that approximates the exact solution c�A(x�, t�n)
(Quarteroni and Valli, 2008). Making recourse to the Backward Euler method leads
to the non linear problem depicted in appendix 11.7.

The Backward Euler scheme for the finite element approximation of the chemo-
transport model was implemented exploiting the high performance computing open
source library deal.ii (https://www.dealii.org/ ). Numerical simulations shown that
it is mandatory to use a very small time discretization step Δt� when a first order
accuracy numerical integration scheme is used. The limiting time scale is imposed
by the mechanical deformation of the cell (identified within the equations by the
terms of fictitious sources s�LR

and s�LI
). Therefore, properly capturing the spreading

process leads to a very high computational cost.
The time-dependent partial differential equations (11.28) can be conveniently

rephrased in order to apply higher order time integration schemes. A variable change
will be adopted, namely

c�A = c�LR
+ c�C2

+ c�C3
, c�B = c�R − c�LR

, c�D = c�I + c�C3
− c�LI

, (11.34)
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Simple algebra leads to the following set of time-dependent PDEs,
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(11.37)

and initial conditions
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c�A(0) = 0 , c�B(0) =
4.8

cbulk
, c�D(0) =

8

cbulk
, c�E(0) = 0 . (11.38)

Analytical integration of (11.36a) and (11.36d) together with relevant initial condi-
tions (11.38) leads to

c�A(x
�, t�) = S�

LR
(x�, t�) , c�E(x

�, t�) = S�
LI

(x�, t�) , (11.39)

where S�
LR

and S�
LI

are the integral over time of the source terms. They correspond
to the value of ligands that at every instant t� are in contact with the cell membrane at
point x� due to the (surrogated) mechanics of spreading and are also available for the
reaction with relevant counterparts. As such, they shall be assumed as experimental
data, whereby the source terms s�LR

and s�LI
are much harder to identify.

Since c�A and c�E have been analytically solved, the weak form of problem (11.36)
can be recast in a standard (Quarteroni and Valli, 2008) abstract setting: we seek
for unknown fields c�Z(x�, t�) —with Z denoting B or D— in the functional space
V[0,t�f ] that satisfy initial conditions (11.38) and subject to the constraints (11.37)
such that

∂
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�)) + a (c�Z(x

�, t�), ĉ�Z(x
�)) = (fZ(x

�, t�), ĉ�Z(x
�))

(11.40)
for all ĉ�Z(x�) that belong to a suitable functional spaceV. In the abstract form (11.40),
a(·, ·) and b(·, ·) are the usual bilinear forms of the Laplace operator written on a
non-Riemann manifold Ω�. The weak form (11.40) can be conveniently integrated
in time, providing the following approximation scheme
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�
Z(x

�))− b
(
c�Z(x

�, t�n−1), ĉ
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) (11.41)

for all ĉ�Z(x�), whereby c�Z(x�, τ�) must satisfy initial conditions (11.38) and is
subject to the constraints (11.37). Note that the integral∫ t�n

t�n−1

fZ(x
�, τ�)dτ�

is given in closed form and involves the functions S�
LR

(x�, t�) and S�
LI

(x�, t�)
evaluated in t�n−1 and t�n. In view of this feature, the contribution of cell spreading in
terms of surrogated mechanics is captured with high accuracy, whereas the accuracy
in the approximation of the transport term∫ t�n

t�n−1

a (c�Z(x
�, τ�), ĉ�Z(x

�)) dτ�
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appears not to require too small time steps in view of the longer timescale of
the diffusivity compared to the other two physics involved (see also the similar
conclusions reached in Damioli et al (2017)). The extended version of the weak form
(11.41) can be found in Appendix 11.7.

11.4 Simulations

The relocation of VEGFR-2 (i.e. the main pro-angiogenic receptor expressed on
the endothelial cells) and integrin (i.e. the cardinal regulator of mechanical signal
transduction between endothelial cells and the extracellular matrix (ECM)) along
the cell membrane of an endothelial cell during its adhesion onto a ligands-enriched
substrate was simulated implementing a fully coupled Newton–Raphson solver for
the discretized weak form (11.41) exploiting the high performance computing library
deal.ii (see https://www.dealii.org).

Parameters and Data

The process was investigated over a time span of t = 3900 s, an adequate extent
for the deployment of the experimentally observed mechanisms. The parameter
tf , which represents the time required for a complete adhesion, was calibrated as
tf = 600 s from experimental evidences. Since spreading has been mechanically
surrogated in the present note, half of the sphere that geometrically recovers the
shape of the membrane is taken as covered by ligands at time tf . The finite time
required for binding two reactants has been set to t = 1 s .

The size l = 20 μm of the radius of the cell-sphere has been deduced from an
average of 50 measurements on different endothelial cells. Utilizing two different
experimental techniques, Fluorescence Recovery After Photobleaching (FRAP) and
Surface Plasmon Resonance (SPR), it was possible to measure the diffusivity of
the VEGFR-2 DR = 0.21 μm2/s and the kinetic parameter K(2)

eq = 354059 for
Gremlin/VEGFR-2.

The amount of VEGFR-2 on the cell membrane per μm2 at the beginning of the
process, cR(x, 0) = 4.8 molecules/μm2, come out dividing the number of high-
affinity binding sites for cell surface area. Consistent with in vitro observations, it
was taken cmax

LR
= 16000 molecules/μm2 assuming that cmax

R = cmax
C2

= cmax
C3

and cmax
I = cmax

C1
. Furthermore, the following parameters have been deduced from

preliminary experimental results:

• DI, the diffusivity of integrin: here assumed equal to 0.23 μm2/s;
• K(1)

eq and K(3)
eq , the equilibrium constants for the chemical reactions 11.1 and

11.3: here taken equal to K(2)
eq ;
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• cI(x, 0), the initial concentration of free integrin that has been taken to be equal to
8 molecules/μm2 (a value that is reasonably larger than the initial concentration
of VEGFR-2 but without experimental confirmation);

• cmax
LI

and cmax
I , saturation limits for the fibronectin and integrin: here assumed

equal to cmax
LR

, the saturation limit for Gremlin.

Numerical Approximation of sLR
and sLI

To avoid discontinuities, a “Gaussian” approximation on the relationships (11.12)
has been implemented:

sLR
� a exp

[−((t− b)2)/(c2)
]
,

sLI � d exp
[−((t− e)2)/(f2)

]
,

(11.42)

in which the coefficients a, b, c, d, e, f characterize the shape of sLR
and sLI

.
The latter can be integrated in time:∫ t

0

sLR
(x, τ)dτ = SLR

(x, t)− SLR
(x, 0) =

1

2
ac
√
π(Erf [b/c]− Erf [(b− t)/c])∫ t

0

sLI(x, τ)dτ = SLI(x, t)− SLI(x, 0) =
1

2
df
√
π(Erf [e/f ]− Erf [(e− t)/f ]) .

(11.43)
Expressions (11.43) are consistent with the requirements SLR

(x, 0) = 0 and
SLI(x, 0) = 0. The function (11.43) provide a supply of ligands, at the end of
the cell-substrate contact dynamic process, equal to 16 molecules/μm2. Such a total
density of ligands is almost as twice as compared to the initial concentration of
integrins (here fixed at 8 molecules/μm2) and more than three times compared to
VEGFR-2 (here fixed at 4.8 molecules/μm2).

Discretization of Geometry

The tessellation of the cell membrane consists of 37650 quadrilaterals, uniformly
distributed over the spherical surface. The discretization, depicted in Fig. 11.2,
remained unchanged throughout the analysis, with no remeshing.

11.4.1 Outcomes

In addition to the values of c�R and c�I , which are derived directly from the linear
system solution together with c�A, c�B , c�D, c�E , the values of c�LR

, c�LI
, c�C1

, c�C2
, c�C3

will be evaluated and converted back into dimensional quantities, at each Gauss
point, during the post-processing, by means of the identities (11.34) and (11.35).



11 Integrin and VEGF Receptors Recruitment on Endothelial Cells 179

Fig. 11.2 Half-sphere tessel-
lation via hexagons.

Evolution in Space and in Time of Free Receptors and Complexes

The evolution in space and time of free receptors and complexes is regulated by three
mechanism:

• chemistry—chemical interaction among ligands-receptors (chemical reactions
(11.1), (11.2)) and receptor-complex (chemical reaction (11.3)),

• mechanics—mechanical spreading of the cell that puts ligand into contact with
receptors, and

• diffusion—Brownian motion of unbound receptors.

Chemical reaction (11.3) connects the reactions (11.1) and (11.2). Accordingly, the
evolution in space and time of free receptors is connected to the history of complexes.

Depletion of VEGFR-2

A major depletion of free VEGFR-2 on the entire membrane is observed in numerical
simulations (Fig. 11.3): the concentration of free VEGFR-2 decreases from the initial
amount (4.8 molecules/μm2 ) to a value one order of magnitude smaller on the apical
side (after 3900 s). Free VEGFR-2 receptors on the basal membrane are essentially
absent.

Concerning the chemical interactions involving VEGFR-2, since there is a much
higher quantity of integrin and Gremlin than VEGFR-2, it emerges that:

1. the equilibrium constants of the reactions (11.2) and (11.3), are extremely high
(and comparable in magnitude). As such, they favor the production of complexes;

2. when a receptor cR gets in contact with the corresponding ligand cLR
, cC2

is
immediately generated;

3. the newly produced complex instantly interacts with the available integrin, giving
cC3

.

This chemical-loop concerning cR, cLR
, cI, cC2 and cC3 , occurs whenever two

reactants of a specific chemical reaction meet on the cell membrane.
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(a) t=0 s (b) t=3900 s

Fig. 11.3 Comparison between the concentration distribution of VEGFR2 at the initial and final
time of the analyses.

The physics that preside the motion of the reagents change according to the time of
observation of the events. Because the time scale of the mechanics is much faster than
that of diffusion, one discriminates a first chemo-mechanically-dominated period,
which begins at the instant t = 0 s (pure chemo-dominant) and terminates at the
end of the mechanical spreading of the cell (tf = 600 s). During this time, the basal
part of the cell completely adheres to the substrate, and the VEGFR-2 receptors get
trapped (Salvadori et al, 2018b) by the ligands.

A second phase, chemo-diffusive-dominated, exists from t = tf until the end of
the analysis, at t = 3900 s. During this period, free receptors diffuse across the cell
membrane, from the apical to the basal side of the cell. As soon as that they meet
ligands, they are immediately captured on the substrate.

In order to visualize the overall information mentioned above, a few frames of the
evolution of VEGFR-2 over time are shown in Fig. 11.4.

Evolution of C2 and C3

From the frames in Fig. 11.5 it is seen that two “rings” of complexes C2 exist on the
cell membrane in contact with ligands. Moving from the pole at the basal side of the
cell towards the equatorial area of the sphere, three homogeneous bands are clearly
visible. They show different intensities: medium (about 3.2 molecules/μm2), high
(about 4.2 molecules/μm2) and low (about 2.2 molecules/μm2), respectively. These
different areas of complexes accumulation generate progressively. The medium zone
is essentially completed at the end of the chemo-mechanical-dominated phase (tf =
600 s), whereupon the two rings grow throughout the chemo-diffusive-dominated
phase.

Once again, we highlight that it is not possible to study the outcome of a single
reaction, because all three are intimately linked. If one considers the distribution of
the complex C3, in Fig. 11.6, an accumulation at the edge that delimitates the area
of contact between cell and substrate becomes evident. It is easy to figure out that
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(a) t=0 s (b) t=500 s

(c) t=1000 s (d) t=2000 s

(e) t=3000 s (f) t=3900 s

Fig. 11.4 Distribution of the concentration of the VEGFR-2 at times
t = 0, 500, 1000, 2000, 3000, 3900 s.

the low concentration ring for C2 in Fig. 11.5 is, at the same time, a zone for high
accumulation of complex C3.

In fact, C2 would accumulate at the edge that delimitates the area of contact
between cell and substrate. This phenomenon has been illustrated in depth in Damioli
et al (2017) and motivated by the diffusion of VEGFR-2 from the apical side toward
the basal membrane coupled to the chemical reaction (11.2), which highly favors
the production of C2. As soon as the latter is formed, reaction (11.3) is triggered
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(a) t=0 s (b) t=500 s

(c) t=100 s (d) t=2000 s

(e) t=3000 s (f) t=3900 s

Fig. 11.5 Distribution of the concentration of the complex cC2
at time

t = 0, 500, 1000, 2000, 3000, 3900 s.

and it proceeds until integrin receptors are available. The latter, however, are rapidly
consumed by reactions (11.1) and (11.3) and once they are fully depleted, C2 cannot
be converted to C3 anymore and it stores itself in its own accumulation ring.

Note that in view of the diffusion of VEGFR-2, the C2 accumulation ring moves
in time towards the basal pole of the cell.

In conclusion, the complexes cC2
and cC3

, evolve driven by a large flow of
receptors from the apical part of the cell towards the basal part. These free receptors,



11 Integrin and VEGF Receptors Recruitment on Endothelial Cells 183

meeting the corresponding reactants in the cell-substrate contact zone, generate
complexes and trap. In this regard, it is useful to analyze the trend of the integrin
receptor and the corresponding complex cC1

generated in the chemical reaction
(11.1).

(a) t=0 s (b) t=500 s

(c) t=1000 s (d) t=2000 s

(e) t=3000 s (f) t=3900 s

Fig. 11.6 Distribution of the concentration of the complex cC3 at time
t = 0, 500, 1000, 2000, 3000, 3900 s.
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Evolution of CI

The free integrin receptor I and VEGFR-2 undergo a similar evolution2. Free integrin
concentration ranges from 8 molecules/μm2 (value at time t = 0 s) to a value of
the order of magnitude of 10−1 − 10−2 molecules/μm2 at the end of the analysis, at
time t = 3900 s. The reasons for the global consumption of integrin, visible in Fig.
11.7, are to be found in the receptors-ligands chemical interactions (11.1)–(11.3).

Figures 11.6 and 11.8 show an accumulation of complexes C1 and C3 at the edge
between cell and substrate. The magnitude of the concentrations is similar, because
similar are the equilibrium constants of chemical reactions (11.1) and (11.3) and the
saturation limits of integrins and fibronectin.

Unlike the complex C2, which shows three homogeneous areas with different
magnitude, the concentration of C1 and C3 locates in two (high intensity and low
intensity) zones.

Diffusion guides the free integrin and the VEGFR-2 from the apical part towards
the basal one, leading to the accumulation of complexes in a relatively narrow zone
of high availability of ligands and C2. When free integrins cross the border that
identifies the cell-substrate contact zone, they are immediately captured by LI and
C2, which have the same affinity with I. The difference in concentrations between
cC1

and cC3
(cC1

� 14 molecules/μm2 is greater than cC3
� 13.5 molecules/μm2)

is due to the different physics that supply ligands and C2. The (larger) availability of
fibronectin is provided by the chemo-mechanics, whereas theC2 at hand is generated
from 11.2 and in the high intensity narrow zone is mostly due to the chemo-diffusive
phase that cause the migration of VEGFR-2 from the apical to the basal side of the
cell.

In the low intensity zone cC1
and cC3

reach the values of about 7 molecules/μm2

and 2.6 molecules/μm2, respectively. The gap is due again to the larger availability
of fibronectin for the reaction (11.1) compared to the C2 at hand for the reaction
(11.3).

It should be emphasized that the flux of integrins is higher than that of VEGFR-
2 because DI is bigger than DR and integrins are consumed concurrently by two
chemical reactions. The latter justifies a large concentration gradient of I .

11.5 Remarks on Surrogated Mechanics

During processes such as tissue regeneration and wound healing, cell adhesion,
spreading, and migration are controlled by receptor-mediated interactions with the
extracellular matrix. The synergy among soluble growth factors, cytokines, and the
extracellular matrix acts to regulate changes in cell shape, growth, proliferation, and
motility.

2As for the VEGFR-2, a first chemo-mechanical-dominated period and a following chemo-diffusive-
dominated phase hold also for the integrin.
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(a) t=0 s (b) t=500 s

(c) t=1000 s (d) t=2000 s

(e) t=3000 s (f) t=3900 s

Fig. 11.7 Distribution of the concentration of integrin at time t = 0, 500, 1000, 2000, 3000, 3900 s.

In order to identify how ligands stimulation induces the polarization of receptors
in cell protrusions and in the basal aspect of ECs plated on a ligand-enriched ECM,
a chemo-transport model has been devised in equations (11.10)–(11.11), in a finite
strain formulation.

The interaction between a cell and its substrate has a specific, important ability
to control cell morphology via traction exerted through cellular receptors onto the
ECM (Reinhart-King et al, 2005). These interactions during spreading have not been
accounted for explicitly in the present paper, rather we surrogated the mechanics
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(a) t=0 s (b) t=500 s

(c) t=1000 s (d) t=2000 s

(e) t=3000 s (f) t=3900 s

Fig. 11.8 Distribution of the concentration of the complex cC1 at time
t = 0, 500, 1000, 2000, 3000, 3900 s.

for the sake of focusing on fundamental membrane dynamics of the relocation of
VEGFR-2 and beta3 integrin and their time-scales.

Mechanical aspects of cell deformation have been treated more extensively by
many authors. The mechanical response of the cell during its spreading has been
attributed merely to the lipid membrane (by means of the underlying cortical actin
network) in several contributions. In the so-called active gel theory (Joanny et al,
2013; Kruse et al, 2005; Marchetti et al, 2013; Prost et al, 2015), the lipid membranes
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were regarded as two-dimensional liquid crystals whose structure is conferred by
the oriented lipid molecules, an approach apparently originated in Helfrich (1973).
General cell-substrate contact conditions have been developed for lipid membranes
interacting with curved substrates along their edges in Agrawal and Steigmann
(2009), through a variational energy principle. The same authors extended these
ideas to the electromechanics of lipid bilayers in Steigmann and Agrawal (2016),
accounting for flexo-electricity so to include deformations in the presence of applied
electric fields, as well as to include the effects of a continuous distribution of trans-
membrane proteins (Agrawal and Steigmann, 2011).

Mechano-sensitive cellular contractility models that account for the stress fibers
(SFs) reorganization in the bulk of the cell have also been proposed in a number of
phenomenological models (to cite a few see the large repertoire of Deshpande et al,
2011, 2008, 2006, 2007; McMeeking and Deshpande, 2017; Ronan et al, 2012, 2014;
Obbink-Huizer et al, 2014; Vernerey and Farsad, 2011). SFs are bundles of actin,
capable to generate contractile force and linked to integrins by means of focal ad-
hesions (FAs), which are able to convey a chemo-mechanical cue between receptors
and the SFs themselves. The model proposed in Vigliotti et al (2016) quantifies the
traction forces activated by the SFs and transmitted via FAs onto the integrins. To this
aim, the authors developed a thermodynamically consistent framework to describe
the stress, strain, and strain rate dependence of SFs formation and remodeling. A
steady-state implementation of this thermodynamically motivated framework, cou-
pled with an active thermodynamically consistent focal adhesion assembly, predicts
cell cytoskeletal distributions on micro-patterned substrates (McEvoy et al, 2017).
All of these cell mechanics formulations differ from active gels theory since they
use a phenomenological Hill-type stress-strain rate relationship to represent active
contractility of SFs.

11.6 Conclusion

Recent technological advances made available a large number of experimental data
in biology. On the one hand, this is a motivation for great excitement. On the other, it
pushes interpretative abilities to the limit. For this sake, the ability of multi-physics
models to predict the time-space evolution of complex processes and to unravel their
intimate nature is more and more becoming of pivotal importance in science.

The present work provides a contribution in understanding how VEGFR-2 and
integrins regulate tumor angiogenesis, by means of a chemo-transport-mechanical
model, set in the thermodynamics of continua. This model couples three chemical
reactions to continuity equations for mass, energy, and entropy. Thermodynamic
restrictions (Clausius–Duhem inequality) set limits for the Helmholtz free-energy,
and ultimately, on constitutive relations.

Two simplifying assumptions are taken in this model: surrogated mechanics
and infinitely fast kinetics. By the first one, the cell-substrate contact dynamics is
surrogated by means of a fictitious term in the mass balance equations of the ligands.



188 Serpelloni, Arricca, Damioli, Ravelli, Grillo, Mitola, Salvadori

The second makes chemical reactions always at equilibrium; such a scenario stems
from experimental evidences, which show that the time required to reach the chemical
equilibrium is orders of magnitude lower than the timescale of all other physical
processes.

The formal derivation of the governing equations has been achieved both in
strong and weak forms. The latter has been discretized and implemented in the
deal.ii framework, an open-source C++ software library that supports the creation of
high performance computing finite element codes.

The different time scales that characterize the chemical, mechanical and diffusive
phenomena lead to a clear identification of two predominant phases of the trapping of
free receptors by the corresponding ligands. The time-space evolution of the receptor
dynamics has been discussed at large in the simulations section.

The achieved comprehension, in spite of the two major simplifying assumptions
taken, encourages us to devote efforts towards more sophisticated formulations, so
to further lessen the numerical approximations introduced herein. This improvement
will enhance the predictive capabilities of the current model by, for instance, properly
accounting for the mechanical deformation of the cell. The chemo-diffusive model
presented in the current work will be improved enriching the chemical potential of
bound integrins with the potential energy of the load applied to integrins. The emerg-
ing model would be able to capture the cell’s active and passive mechanical behavior
and couple it with the receptor dynamics of integrins and VEGFR-2 proposed here,
providing an in silico model of how the mechanical processes of an endothelial cell
can influence the activity of the main angiogenic regulator (VEGFR-2).
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11.7 Appendix

A: Backward Euler Formulation

First Equation

∫
Ω�

ϕ�LR
i (x�)ϕ�LR

l (x�)dΩ�

(
c�LR

l (t� +Δt�)− c�LR

l (t�)

Δt�

)
+

∫
Ω�

ϕ�LR
i (x�)ϕ�LR

l (x�)ϕ�R
k (x�)dΩ�

(
c�LR

l (t� +Δt�)− c�LR

l (t�)

Δt�

)
c�Rk (t� +Δt�)

α�
2

+

∫
Ω�

ϕ�LR
i (x�)ϕ�R

k (x�)ϕ�LR

l (x�)dΩ�

(
c�Rk (t� +Δt�)− c�Rk (t�)

Δt�

)
c�LR

l (t� +Δt�)

α�
2

+

∫
Ω�

ϕ�LR
i (x�)ϕ�LR

l (x�)ϕ�R
k (x�)ϕ�I

p (x
�)dΩ� c

�LR

l (t� +Δt�)

Δt�
c�Rk (t� +Δt�)c�I

p (t
� +Δt�)

α�
2α

�
3

−

∫
Ω�

ϕ�LR
i (x�)ϕ�LR

l (x�)ϕ�R
k (x�)ϕ�I

p (x
�)dΩ� c

�LR

l (t�)

Δt�
c�Rk (t� +Δt�)c�I

p (t
� +Δt�)

α�
2α

�
3

+

∫
Ω�

ϕ�LR
i (x�)ϕ�I

p (x
�)ϕ�R

k (x�)ϕ�LR

l (x�)dΩ�
c�I
p (t

� +Δt�)

Δt�
c�Rk (t� +Δt�)c�LR

l (t� +Δt�)

α�
2α

�
3

−

∫
Ω�

ϕ�LR
i (x�)ϕ�I

p (x
�)ϕ�R

k (x�)ϕ�LR

l (x�)dΩ�
c�I
p (t

�)

Δt�
c�Rk (t� +Δt�)c�LR

l (t� +Δt�)

α�
2α

�
3

+

∫
Ω�

ϕ�LR
i (x�)ϕ�R

k (x�)ϕ�LR

l (x�)ϕ�I
p (x

�)dΩ� c
�R
k (t� +Δt�)

Δt�
c�LR

l (t� +Δt�)c�I
p (t

� +Δt�)

α�
2α

�
3

−

∫
Ω�

ϕ�LR
i (x�)ϕ�R

k (x�)ϕ�LR

l (x�)ϕ�I
p (x

�)dΩ� c
�R
k (t�)

Δt�
c�LR

l (t� +Δt�)c�I
p (t

� +Δt�)

α�
2α

�
3

−

∫
Ω�

ϕ�LR
i (x�)s�LR

dΩ� = 0

c�LR
(x�, 0) = 0
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Second Equation∫
Ω�

ϕ�R
i (x�)ϕ�R

k (x�)dΩ�

(
c�Rk (t� +Δt�)− c�Rk (t�)

Δt�

)
−

∫
Ω�

ϕ�R
i (x�)ϕ�LR

l (x�)dΩ�

(
c�LR

l (t� +Δt�)− c�LR

l (t�)

Δt�

)
+

∫
Ω�

∇�
Ω

[
ϕ�R
k (x�)

] · ∇�
Ω

[
ϕ�R
i (x�)

]
dΩ� c

�R
k (t� +Δt�)

PR
e

+

∫
Ω�

ϕ�R
i (x�)ϕ�LR

l (x�)s�LR
dΩ� = 0

c�R(x
�, 0) =

4.8

cbulk

Third Equation

∫
Ω�

ϕ�I
i (x

�)ϕ�I
p (x

�)dΩ�

(
c�I
p (t

� +Δt�)− c�I
p (t

�)

Δt�

)
−

∫
Ω�

ϕ�I
i (x

�)ϕ�LI
m (x�)dΩ�

(
c�LI
m (t� +Δt�)− c�LI

m (t�)

Δt�

)
+

∫
Ω�

ϕ�I
i (x

�)ϕ�I
p (x

�)ϕ�R
k (x�)ϕ�LR

l (x�)dΩ�
c�I
p (t

� +Δt�)

Δt�
c�Rk (t� +Δt�)c�LR

l (t� +Δt�)

α�
2α

�
3

−

∫
Ω�

ϕ�I
i (x

�)ϕ�I
p (x

�)ϕ�R
k (x�)ϕ�LR

l (x�)dΩ�
c�I
p (t

�)

Δt�
c�Rk (t� +Δt�)c�LR

l (t� +Δt�)

α�
2α

�
3

+

∫
Ω�

ϕ�I
i (x

�)ϕ�R
k (x�)ϕ�I

p (x
�)ϕ�LR

l (x�)dΩ� c
�R
k (t� +Δt�)

Δt�
c�I
p (t

� +Δt�)c�LR

l (t� +Δt�)

α�
2α

�
3

−

∫
Ω�

ϕ�I
i (x

�)ϕ�R
k (x�)ϕ�I

p (x
�)ϕ�LR

l (x�)dΩ� c
�R
k (t�)

Δt�
c�I
p (t

� +Δt�)c�LR

l (t� +Δt�)

α�
2α

�
3

+

∫
Ω�

ϕ�I
i (x

�)ϕ�LR

l (x�)ϕ�I
p (x

�)ϕ�R
k (x�)dΩ� c

�LR

l (t� +Δt�)

Δt�
c�I
p (t

� +Δt�)c�Rk (t� +Δt�)

α�
2α

�
3

− . . .
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· · ·
∫
Ω�

ϕ�I
i (x

�)ϕ�LR

l (x�)ϕ�I
p (x

�)ϕ�R
k (x�)dΩ� c

�LR

l (t�)

Δt�
c�I
p (t

� +Δt�)c�Rk (t� +Δt�)

α�
2α

�
3

+

∫
Ω�

∇�
Ω

[
ϕ�I
p (x

�)
] · ∇�

Ω

[
ϕ�I
i (x

�)
]
dΩ�

c�I
p (t

� +Δt�)

PI
e

+

∫
Ω�

ϕ�I
i (x

�)ϕ�I
p (x

�)s�LI
dΩ� = 0

c�I (x
�, 0) =

8

cbulk

Fourth Equation∫
Ω�

ϕ�LI
i (x�)ϕ�LI

m (x�)dΩ�

(
c�LI
m (t� +Δt�)− c�LI

m (t�)

Δt�

)
+

∫
Ω�

ϕ�LI
i (x�)ϕ�LI

m (x�)ϕ�I
p (x

�)dΩ�

(
c�LI
m (t� +Δt�)− c�LI

m (t�)

Δt�

)
c�I
p (t

� +Δt�)

α�
1

+

∫
Ω�

ϕ�LI
i (x�)ϕ�I

p (x
�)ϕ�LI

m (x�)dΩ�

(
c�I
p (t

� +Δt�)− c�I
p (t

�)

Δt�

)
c�LI
m (t� +Δt�)

α�
1

−

∫
Ω�

ϕ�LI
i (x�)s�LI

dΩ� = 0

c�LI
(x�, 0) = 0

B: Weak Form

First Equation∫
Ω�

ϕ�A
i (x�)ϕ�A

j (x�)c�Aj (t�)dΩ� −
∫
Ω�

ϕ�A
i (x�)S�

LR
(x�, t�)dΩ� = 0

c�A(x
�, 0) = 0
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Second Equation∫
Ω�

ϕ�B
i (x�)ϕ�B

l (x�)c�Bl (t�n)dΩ
� −

∫
Ω�

ϕ�B
i (x�)ϕ�B

l (x�)c�Bl (t�n−1)dΩ
�+

1

PR
e

∫
Ω�

∇�
Ω

[
ϕ�B
i (x�)

] · ∇�
Ω

[
ϕ�R
k (x�)

]
dΩ�

t�n∫
t�n−1

c�Rk (τ�)dτ�+

∫
Ω�

ϕ�B
i (x�)S�

LR
(x�, t�n)dΩ

� −
∫
Ω�

ϕ�B
i S�

LR
(x�, t�n−1)dΩ

� = 0

c�B(x
�, 0) =

4.8

cbulk

Third Equation∫
Ω�

ϕ�D
i (x�)ϕ�D

m (x�)c�Dm (t�n)dΩ
� −

∫
Ω�

ϕ�D
i (x�)ϕ�D

m (x�)c�Dm (t�n−1)dΩ
�+

1

PI
e

∫
Ω�

∇�
Ω

[
ϕ�D
i (x�)

] · ∇�
Ω

[
ϕ�I
p (x

�)
]
dΩ�

t�n∫
t�n−1

c�I
p (τ

�)dτ�+

∫
Ω�

ϕ�D
i (x�)S�

LI
(x�, t�n)dΩ

� −
∫
Ω�

ϕd
iS

�
LI
(x�, t�n−1)dΩ

� = 0

c�D(x�, 0) =
8

cbulk

Fourth Equation∫
Ω�

ϕ�E
i (x�)ϕ�E

s (x�)c�Es (t�)dΩ� −
∫
Ω�

ϕ�E
i (x�)S�

LI
(x�, t�)dΩ� = 0

c�E(x
�, 0) = 0

Fifth Equation

α�
3

∫
Ω�

ϕ�R
i (x�)ϕ�R

k (x�)ϕ�R
k (x�)c�Rk (t�)c�Rk (t�)dΩ�+∫

Ω�

ϕ�R
i (x�)ϕ�R

k (x�)ϕ�R
k (x�)ϕ�I

p (x
�)c�Rk (t�)c�Rk (t�)c�I

p (t
�)dΩ�+

α�
2α

�
3

∫
Ω�

ϕ�R
i (x�)ϕ�R

k (x�)c�Rk (t�)dΩ� − . . .
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. . . α�
3

∫
Ω�

ϕ�R
i (x�)ϕ�R

k (x�)ϕ�B
l (x�)c�Rk (t�)c�Bl (t�)dΩ�−∫

Ω�

ϕ�R
i (x�)ϕ�R

k (x�)ϕ�I
p (x

�)ϕ�B
l (x�)c�Rk (t�)c�I

p (t
�)c�Bl (t�)dΩ�−

α�
2α

�
3

∫
Ω�

ϕ�R
i (x�)ϕ�B

l (x�)c�Bl (t�)dΩ�−

α�
2α

�
3

∫
Ω�

ϕ�R
i (x�)ϕ�A

j (x�)c�Aj (t�)dΩ� = 0

c�R(x
�, 0) =

4.8

cbulk

Sixth Equation

α�
2α

�
3

∫
Ω�

ϕ�I
i (x

�)ϕ�I
p (x

�)ϕ�I
p (x

�)c�I
p (t

�)c�I
p (t

�)dΩ�+∫
Ω�

ϕ�I
i (x

�)ϕ�I
p (x

�)ϕ�I
p (x

�)ϕ�R
k (x�)ϕ�R

k (x�)c�I
p (t

�)c�I
p (t

�)c�Rk (t�)c�Rk (t�)dΩ�−∫
Ω�

ϕ�I
i (x

�)ϕ�I
p (x

�)ϕ�I
p (x

�)ϕ�R
k (x�)ϕ�B

l (x�)c�I
p (t

�)c�I
p (t

�)c�Rk (t�)c�Bl (t�)dΩ�−

α�
2α

�
3

∫
Ω�

ϕ�I
i (x

�)ϕ�I
p (x

�)ϕ�D
m (x�)c�I

p (t
�)c�Dm (t�)dΩ�+

α�
1α

�
2α

�
3

∫
Ω�

ϕ�I
i (x

�)ϕ�I
p (x

�)c�I
p (t

�)dΩ�+

α�
1

∫
Ω�

ϕ�I
i (x

�)ϕ�I
p (x

�)ϕ�R
k (x�)ϕ�R

k (x�)c�I
p (t

�)c�Rk (t�)c�Rk (t�)dΩ�−

α�
1

∫
Ω�

ϕ�I
i (x

�)ϕ�I
p (x

�)ϕ�R
k (x�)ϕ�B

l (x�)c�I
p (t

�)c�Rk (t�)c�Bl (t�)dΩ�−

α�
1α

�
2α

�
3

∫
Ω�

ϕ�I
i (x

�)ϕ�E
s (x�)c�Es (t�)dΩ�−

α�
1α

�
2α

�
3

∫
Ω�

ϕ�I
i (x

�)ϕ�D
m (x�)c�Dm (t�)dΩ� = 0

c�I (x
�, 0) =

8

cbulk

in which the following Newton–Cotes quadrature formula will be given
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∫
Ω�

1

PR
e

∇�
Ω

[
ϕ�B
i (x�)

] · ∇�
Ω

[
ϕ�R
k (x�)

]
dΩ�

t�n∫
t�n−1

c�Rk (τ�)dτ�

�
∫
Ω�

1

PR
e

∇�
Ω

[
ϕ�B
i (x�)

] · ∇�
Ω

[
ϕ�R
k (x�)

]
dΩ�Δt

�

2

(
c�Rk (t�n) + c�Rk (t�n−1)

)
∫
Ω�

1

PI
e

∇�
Ω

[
ϕ�D
i (x�)

] · ∇�
Ω

[
ϕ�I
p (x

�)
]
dΩ�

t�n∫
t�n−1

c�I
p (τ

�)dτ�

�
∫
Ω�

1

PI
e

∇�
Ω

[
ϕ�D
i (x�)

] · ∇�
Ω

[
ϕ�I
p (x

�)
]
dΩ�Δt

�

2

(
c�I
p (t

�
n) + c�I

p (t
�
n−1)

)
Finally, it is possible to deduce the following six formulations:

First equation∫
Ω�

ϕ�A
i (x�)ϕ�A

j (x�)dΩ�
[
c�Aj (t�)

]− ∫
Ω�

ϕ�A
i (x�)S�

LR
(x�, t�)dΩ� = 0

c�A(x
�, 0) = 0

Second equation∫
Ω�

ϕ�B
i (x�)ϕ�B

l (x�)dΩ�
[
c�Bl (t�n)

]− ∫
Ω�

ϕ�B
i (x�)ϕ�B

l (x�)dΩ�
[
c�Bl (t�n−1)

]
+

1

PR
e

∫
Ω�

∇�
Ω

[
ϕ�B
i (x�)

] · ∇�
Ω

[
ϕ�R
k (x�)

]
dΩ�

[
Δt�

2

(
c�Rk (t�n) + c�Rk (t�n−1)

)]
+

∫
Ω�

ϕ�B
i (x�)S�

LR
(x�, t�n)dΩ

� −
∫
Ω�

ϕ�B
i S�

LR
(x�, t�n−1)dΩ

� = 0

c�B(x
�, 0) =

4.8

cbulk
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Third equation∫
Ω�

ϕ�D
i (x�)ϕ�D

m (x�)dΩ�
[
c�Dm (t�n)

]− ∫
Ω�

ϕ�D
i (x�)ϕ�D

m (x�)dΩ�
[
c�Dm (t�n−1)

]
+

1

PI
e

∫
Ω�

∇�
Ω

[
ϕ�D
i

] · ∇�
Ω

[
ϕ�I
p (x

�)
]
dΩ�

[
Δt�

2

(
c�I
p (t

�
n) + c�I

p (t
�
n−1)

)]
+

+

∫
Ω�

ϕ�D
i (x�)S�

LI
(x�, t�n)dΩ

� −
∫
Ω�

ϕd
i (x

�)S�
LI
(x�, t�n−1)dΩ

� = 0

c�D(x�, 0) =
8

cbulk

Fourth equation∫
Ω�

ϕ�E
i (x�)ϕ�E

s (x�)dΩ�
[
c�Es (t�)

]− ∫
Ω�

ϕ�E
i (x�)S�

LI
(x�, t�)dΩ� = 0

c�E(x
�, 0) = 0

Fifth equation

α�
3

∫
Ω�

ϕ�R
i (x�)ϕ�R

k (x�)ϕ�R
k (x�)dΩ�

[
c�Rk (t�)c�Rk (t�)

]
+∫

Ω�

ϕ�R
i (x�)ϕ�R

k (x�)ϕ�R
k (x�)ϕ�I

p (x
�)dΩ�

[
c�Rk (t�)c�Rk (t�)c�I

p (t
�)
]
+

α�
2α

�
3

∫
Ω�

ϕ�R
i (x�)ϕ�R

k (x�)dΩ�
[
c�Rk (t�)

]−
α�
3

∫
Ω�

ϕ�R
i (x�)ϕ�R

k (x�)ϕ�B
l (x�)dΩ�

[
c�Rk (t�)c�Bl (t�)

]−∫
Ω�

ϕ�R
i ϕ�R

k (x�)ϕ�I
p (x

�)ϕ�B
l (x�)dΩ�

[
c�Rk (t�)c�I

p (t
�)c�Bl (t�)

]−
α�
2α

�
3

∫
Ω�

ϕ�R
i (x�)ϕ�B

l (x�)dΩ�
[
c�Bl (t�)

]−
α�
2α

�
3

∫
Ω�

ϕ�R
i (x�)ϕ�A

j (x�)dΩ�
[
c�Aj (t�)

]
= 0

c�R(x
�, 0) =

4.8

cbulk



196 Serpelloni, Arricca, Damioli, Ravelli, Grillo, Mitola, Salvadori

Sixth equation

α�
2α

�
3

∫
Ω�

ϕ�I
i (x

�)ϕ�I
p (x

�)ϕ�I
p (x

�)dΩ�
[
c�I
p (t

�)c�I
p (t

�)
]
+∫

Ω�

ϕ�I
i (x

�)ϕ�I
p (x

�)ϕ�I
p (x

�)ϕ�R
k (x�)ϕ�R

k (x�)dΩ�
[
c�I
p (t

�)c�I
p (t

�)c�Rk (t�)c�Rk (t�)
]−∫

Ω�

ϕ�I
i (x

�)ϕ�I
p (x

�)ϕ�I
p (x

�)ϕ�R
k (x�)ϕ�B

l (x�)dΩ�
[
c�I
p (t

�)c�I
p (t

�)c�Rk (t�)c�Bl (t�)
]−

α�
2α

�
3

∫
Ω�

ϕ�I
i (x

�)ϕ�I
p (x

�)ϕ�D
m (x�)dΩ�

[
c�I
p (t

�)c�Dm (t�)
]
+

α�
1α

�
2α

�
3

∫
Ω�

ϕ�I
i (x

�)ϕ�I
p (x

�)dΩ�
[
c�I
p (t

�)
]
+

α�
1

∫
Ω�

ϕ�I
i (x

�)ϕ�I
p (x

�)ϕ�R
k (x�)ϕ�R

k (x�)dΩ�
[
c�I
p (t

�)c�Rk (t�)c�Rk (t�)
]−

α�
1

∫
Ω�

ϕ�I
i (x

�)ϕ�I
p (x

�)ϕ�R
k (x�)ϕ�B

l (x�)dΩ�
[
c�I
p (t

�)c�Rk (t�)c�Bl (t�)
]−

α�
1α

�
2α

�
3

∫
Ω�

ϕ�I
i (x

�)ϕ�E
s (x�)dΩ�

[
c�Es (t�)

]−
α�
1α

�
2α

�
3

∫
Ω�

ϕ�I
i (x

�)ϕ�D
m (x�)dΩ�

[
c�Dm (t�)

]
= 0

c�I (x
�, 0) =

8

cbulk

References

Agrawal A, Steigmann DJ (2009) Boundary-value problems in the theory of lipid membranes.
Continuum Mechanics and Thermodynamics 21(1):57–82

Agrawal A, Steigmann DJ (2011) A model for surface diffusion of trans-membrane proteins on
lipid bilayers. Zeitschrift für angewandte Mathematik und Physik 62(3):549–563

Calderwood DA (2004) Integrin activation. Journal of cell science 117(5):657–666
Carmeliet P, Ng YS, Nuyens D, et al (1999) Impaired myocardial angiogenesis and ischemic

cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF 164 and
VEGF 188. Nature medicine 5(5):495–502

Damioli V, Salvadori A, Beretta GP, Ravelli C, Mitola S (2017) Multi-physics interactions drive
VEGFR2 relocation on endothelial cells. Scientific reports 7(1):1–11

De Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. Dover
Deshpande R, Cheng YT, Verbrugge MW, Timmons A (2011) Diffusion induced stresses and strain

energy in a phase-transforming spherical electrode particle. Journal of the Electrochemical
Society 158(6):A718–A724

Deshpande VS, McMeeking RM, Evans AG (2006) A bio-chemo-mechanical model for cell con-
tractility. Proceedings of the National Academy of Sciences 103(38):14,015–14,020

Deshpande VS, McMeeking RM, Evans AG (2007) A model for the contractility of the cytoskeleton
including the effects of stress-fibre formation and dissociation. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences 463(2079):787–815



11 Integrin and VEGF Receptors Recruitment on Endothelial Cells 197

Deshpande VS, Mrksich M, McMeeking RM, Evans AG (2008) A bio-mechanical model for
coupling cell contractility with focal adhesion formation. Journal of the Mechanics and Physics
of Solids 56(4):1484–1510

Eliceiri BP (2001) Integrin and growth factor receptor crosstalk. Circulation research 89(12):1104–
1110

Esser S, Lampugnani MG, Corada M, Dejana E, Risau W (1998) Vascular endothelial growth
factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. Journal of cell science
111(13):1853–1865

Gurtin ME, Fried E, Anand L (2010) The mechanics and thermodynamics of continua. Cambridge
University Press

Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift
für Naturforschung C 28(11-12):693–703

Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. cell 110(6):673–687
Joanny JF, Kruse K, Prost J, Ramaswamy S (2013) The actin cortex as an active wetting layer. The

European Physical Journal E 36(5):1–6
Kruse K, Joanny JF, Jülicher F, Prost J, Sekimoto K (2005) Generic theory of active polar gels: a

paradigm for cytoskeletal dynamics. The European Physical Journal E 16(1):5–16
Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J, Rao M, Simha RA (2013)

Hydrodynamics of soft active matter. Reviews of Modern Physics 85(3):1143–1189
McEvoy E, Deshpande VS, McGarry P (2017) Free energy analysis of cell spreading. Journal of

the mechanical behavior of biomedical materials 74:283–295
McMeeking RM, Deshpande VS (2017) A bio-chemo-mechanical model for cell contractility,

adhesion, signaling, and stress-fiber remodeling. In: Holzapfel G, Ogden R (eds) Biomechanics:
Trends in Modeling and Simulation, vol 20, Springer, pp 53–81

Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF)
and its receptors. The FASEB journal 13(1):9–22

Obbink-Huizer C, Oomens CW, Loerakker S, Foolen J, Bouten CV, Baaijens FP (2014) Computa-
tional model predicts cell orientation in response to a range of mechanical stimuli. Biomechanics
and modeling in mechanobiology 13(1):227–236

Peach CJ, Kilpatrick LE, Friedman-Ohana R, Zimmerman K, Robers MB, Wood KV, Woolard
J, Hill SJ (2018) Real-time ligand binding of fluorescent VEGF-A isoforms that discriminate
between VEGFR2 and NRP1 in living cells. Cell chemical biology 25(10):1208–1218

Prost J, Jülicher F, Joanny JF (2015) Active gel physics. Nature Physics 11(2):111–117
Quarteroni A, Valli A (2008) Numerical approximation of partial differential equations, vol 23.

Springer Science & Business Media
Ravelli C, Mitola S, Corsini M, Presta M (2013) Involvement of αvβ3 integrin in gremlin-induced

angiogenesis. Angiogenesis 16(1):235–243
Ravelli C, Grillo E, Corsini M, Coltrini D, Presta M, Mitola S (2015) β3 integrin promotes

long-lasting activation and polarization of vascular endothelial growth factor receptor 2 by
immobilized ligand. Arteriosclerosis, thrombosis, and vascular biology 35(10):2161–2171

Reinhart-King CA, Dembo M, Hammer DA (2005) The dynamics and mechanics of endothelial
cell spreading. Biophysical journal 89(1):676–689

Ronan W, Deshpande VS, McMeeking RM, McGarry JP (2012) Numerical investigation of the
active role of the actin cytoskeleton in the compression resistance of cells. Journal of the
Mechanical Behavior of Biomedical Materials 14:143–157

Ronan W, Deshpande VS, McMeeking RM, McGarry JP (2014) Cellular contractility and substrate
elasticity: a numerical investigation of the actin cytoskeleton and cell adhesion. Biomechanics
and modeling in mechanobiology 13(2):417–435

Salvadori A, Damioli V, Ravelli C, Mitola S (2018a) Modeling and simulation of VEGF receptors
recruitment in angiogenesis. Mathematical Problems in Engineering 2018:1–10

Salvadori A, McMeeking R, Grazioli D, Magri M (2018b) A coupled model of transport-reaction-
mechanics with trapping. Part I–Small strain analysis. Journal of the Mechanics and Physics of
Solids 114:1–30



198 Serpelloni, Arricca, Damioli, Ravelli, Grillo, Mitola, Salvadori

Soldi R, Mitola S, Strasly M, Defilippi P, Tarone G, Bussolino F (1999) Role of αvβ3 integrin in
the activation of vascular endothelial growth factor receptor-2. EMBO J 18(4):882–892

Steigmann D, Agrawal A (2016) Electromechanics of polarized lipid bilayers. Mathematics and
Mechanics of Complex Systems 4(1):31–54

Valdembri D, Serini G (2012) Regulation of adhesion site dynamics by integrin traffic. Current
opinion in cell biology 24(5):582–591

Vernerey FJ, Farsad M (2011) A constrained mixture approach to mechano-sensing and force
generation in contractile cells. Journal of the mechanical behavior of biomedical materials
4(8):1683–1699

Vigliotti A, Ronan W, Baaijens FPT, Deshpande VS (2016) A thermodynamically motivated model
for stress-fiber reorganization. Biomechanics and modeling in mechanobiology 15(4):761–789



Chapter 12
Designing Optimal Scaffold Topographies to
Promote Nucleus-Guided Mechanosensitive Cell
Migration Using in Silico Models

Maxime Vassaux, Laurent Pieuchot, Karine Anselme, Maxence Bigerelle,
and Jean-Louis Milan

Abstract Computational models have become an essential part of exploratory pro-
tocols in cell biology, as a complement to in vivo or in vitro experiments. These
virtual models have the twofold advantage of enabling access to new types of data
and validate complex theories. The design of mechanically functionalized bioma-
terials or scaffolds, to promote cell proliferation and invasion in the absence or in
the complement of synthetic chemical coatings, can certainly benefit from these
hybrid testing approaches. The underlying fundamental process of cell migration
and in particular its dependence on the cell mechanical/geometrical environment
remains crudely understood. Currently at least two theories explain the migration
patterns observed by cells on curved topographies, involving either polymerization
dynamics of actin or assembly dynamics of focal adhesions. We recently proposed
a third mechanism relying on nucleus mechanosensitivity, which has been tested
extensively experimentally and computationally. We now explore the hypothesis that
nucleosensitivity could be a mechanism for cells to optimally find microenviron-
ments suited for mitosis, providing mechanical stability and relaxation. By means
of a computational mechanical model with intracellular structure detail, we inves-
tigate how the complex interplay between this new migration mechanism and the
microenvironment topography can lead to more relaxed cells and organelles. To go
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further, we simulated in this study cell migration via a novel protocol in silico which
generates dynamical ripple wave on a deformable substrate and changes topography
over time. This kind of in silico protocols based on a new understanding of cell
migration and nucleosensitivity could, therefore, inform the design of optimized
scaffold topographies for cell invasion and proliferation.

Keywords: Biomechanics · Continuum mechanics · Finite Element Method (FEM)

12.1 Introduction

12.1.1 Intertwined Computational-Experimental Protocols

Computational physical models are large sets of equations that describe a controlled,
reduced version of an experiment. Unlike analytical models, computational ones can
integrate a more significant part of the complexity of living systems, as computational
resources and methods allow to solve numerous and complex equations on large
and heterogeneous systems. Nevertheless, in silico models remain far from the full
complexity of in vivo experiments, and their validity relying on various assumptions
can always be questioned. In vitro models are a first step toward breaking down the
physics of living systems, disentangling that complexity, but in silico ones constitute
a step further. Hypothesized multiple physics and the multiple scales involved in
the mechanisms regulating the behavior of living systems can easily be integrated
and tested as desired within in silico models. They have become an essential tool
in theoretical biophysics, complementary to in vivo and in vitro models (Mogilner,
2009; Rodriguez et al, 2013; Rens and Merks, 2017). Indeed, in silico models
enable integrating more complexity in a controlled way. For example, in discerning
the origin of observed biological behavior, in silico models enable to sort active
regulatory mechanism from passive physics (Nickaeen et al, 2019; Winkler et al,
2019). In silico models also provide complementary data, hardly accessible with
in vitro and even less in vivo models: (i) at different scales, very small ones, for
example, using methods solving the mechanics of clouds of electrons (Zink et al,
2013) (ii) and of different type, quantities that cannot be measured directly, called
internal state variables in thermodynamics, among which forces and stresses can be
found for example in Milan et al (2016).

12.1.2 Biomaterials Design for Tissue Engineering

The design of biocompatible materials for tissue engineering requires understanding
how cells and materials interact to promote cell proliferation and invasion. Cell
biology and more specifically migration are conditioned by the scaffold (or substrate)
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physics, which constitute a set of cues relying on chemistry (Zigmond and Hirsch,
1973; Dillon et al, 1995), electromagnetics (Adey, 1983) and mechanics (Isenberg
et al, 2009). These physics play a role on multiple scales predominantly ranging
from the characteristic scale of electrons, up to at least the characteristic scale of
the cell. However, it is not possible yet to exclude larger scales, as macroscopic
thermodynamical effects could certainly influence cell mechanobiology (Isenberg
et al, 2009). Unravelling the interplay between these different cues at different scales
and cell migration would certainly enable to engineer optimal biomaterials.

12.1.3 The Example of MAPS: Could Topography Cause Invasion?

Recently developed biocompatible scaffolds made of a microporous annealed particle
(MAP) gel display promising levels of cell invasion and proliferation (Griffin et al,
2015; Darling et al, 2018). MAP gels are an example of biomaterial making use of
the newly understood cell signaling cues. The mechanical properties of the gel can
be tuned to steer the differentiation of cells depending on the type of tissue to repair
Annealing particles of controlled sizes also enable to tune stability and therefore
biodegradability of the scaffold. Nevertheless, the higher orders of cell invasion
and proliferation are hardly explained by these features of the gels. More generally,
microporous scaffolds tend to induce similar enhanced cell migration rates. In the
meantime, recent pieces of research have highlighted in vitro and confirmed in silico
how the geometry and the topography of the substrate can direct migration (Clark
et al, 1991; Doyle et al, 2009; Czeisler et al, 2016). Specifically, the mechanical
instability conveyed by convex topographies (Vassaux and Milan, 2017; Pieuchot
et al, 2018) is shown to promote cell motility (Vassaux et al, 2019). Could a link
more substantial than a correlation between the observed enhanced invasion and the
topographical cue be established here? Potentially, causation involving underlying
cell mechanics?

12.2 Understanding Cell Migration in Interaction with
Extracellular Topography

12.2.1 Current Theories and in Silico Models Used to Explore
Them

Cells have evolved multiple mechanisms to migrate in interaction with their envi-
ronment. For instance, we reported recently a new cellular ability, which we termed
“curvotaxis” that enables the cells to respond to cell-scale curvature variations, a
ubiquitous trait of cellular biotopes (Pieuchot et al, 2018). Ascertaining enhanced
invasion as a consequence of the specific geometry of microporous scaffolds lacks
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a mechanistic explanation of how cell migration is systematically influenced by
the curvature of the underneath substrate. Topography and curvature influence cell
physics provoking local confinement at cell-scale or below, from which originates
cell polarization. At least three theories have been developed in the last two years and
supported by means of computational models (Winkler et al, 2019; Vassaux et al,
2019; Schakenraad et al, 2019):

a) Topography as confinement of actin polymerization during cell migration.
Winkler et al (2019) have shown that confinement breaks down the symmetry
of actin polymerization in the cytoskeleton, and therefore favors a particular
direction of the extension of the lamellipodium. This mechanism is endorsed
by simulating physiological migration patterns using a continuum phase-field
model of a single adherent cell and its internal actin organization. Actin or-
dering and polymerization seen as key factors of cell motility is not a recent
discovery (Mogilner, 2009), however, as a source of persistence in confined en-
vironments definitely is. Even pieces of evidence in epithelia show a correlation
between actin organization and topography, actin flowing away from parts of the
cytoskeleton exposed to convex curvatures (Chen et al, 2019).

b) The nucleus pushed away from convex topography indicates the direction for
cell migration to more relax region. We have rather focused on the role of the
nucleus in Vassaux et al (2019). Confinement is shown to polarize the nucleus
position inside the cell and we hypothesized that nucleus internal motility is a
precursor of migration guidance. We had recently proved a correlation between
the direction of nucleus motility and the direction of cell migration on sinu-
soidal surfaces (Fig. 12.1) (Pieuchot et al, 2018). We simulated cell adhesion
on sinusoidal surfaces using our particle-based model of a single adherent cell
with an explicit description of the nucleus (Vassaux and Milan, 2017; Vassaux,
2018). Simulations indicated a decentering of the nucleus toward the valleys of
the sinus, which are concave regions of lower pressure (Fig. 12.2). We integrated
secondly the mechanism of cell migration in the direction of intracellular nu-
cleus displacement. Cell model reached concave regions whatever is its initial
deposit location (Fig. 12.3). Simulations of persistent migration away from con-
vex topographies and stabilization on symmetric concave niches supported our
theory. This nucleus mechanosensitive mechanism could explain the intensive
cell invasion and proliferation observed in MAP scaffolds, in which cells are
solely exposed to convex surfaces.

c) Cell migration between obstacles as Brownian particle movement involving
repelling force. Schakenraad et al (2019) have actually led an investigation of
cell migration one scale above, to which the cell is modelled as an active Brow-
nian particle, assuming that the influence of the environment’s topography is
cell-type independent. Cells consist of rigid disks with a finite area, imposed
with a self-propelling velocity. The magnitude of the imposed velocity is con-
stant, and its direction is defined as fluctuating randomly with some persistence.
Cell migration is simulated on a substrate paved with obstacles which simply
exert a repelling force modifying the overall cell motion, but not the imposed
velocity. Schakenraad et al (2019) have shown that the observed guidance of
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migration on such substrates could be caused entirely by the spatial modulation
of obstacles, cells crudely migrating toward less confined spaces, independently
organelles mechanosensitivity.

These three theories we presented hereabove are all valid, have redundancies and
grey areas, therefore not mutually exclusive, but need to be sorted. These theories
illustrate separate mechanisms of guided migration in anisotropic environments, at
the scale of the organelle or of the whole cell. The actin cortex contractility is probably
a redundant element of the two first theories, as it builds up the pressure gradient
in the cytoskeleton polarizing either actin polymerization or nucleus position. In
turn, cell migration may be, respectively, either a passive mechanism or a nucleus
centering regulation mechanism (Almonacid et al, 2015).

12.2.2 How Conceptually Mechanical in Silico Cell Models Can Be
Used at the Interface Between Materials Science and Cell
Biophysics for Scaffold Design?

Harnessing cells polarization and migration mechanisms, the design of scaffolds
could be improved. The scaffold topography and the induced confinement could be
tuned to promote optimal motility depending on the cell lineage and its characteristic
mechanical properties. In silico mechanical cell models constitute a tool of choice
for scaffold design. Such models integrate simultaneously the topographical and
mechanical complexity of the cell microenvironment that is the scaffold and the
mechanosensititvity of the cell migration process. In turn, sensitivity analysis of
migration rate and persistence to the scaffold design parameters is rendered easily
tractable.

12.3 Going Deeper in the Understanding of Cell Migration with
an in Silico Cell Model

12.3.1 Description of the Mechanical in Silico Cell Model

The in silico cell model we are developing integrates substrate and cell dynamics de-
scribing the mechanical structure as assembly of rigid particles (Vassaux and Milan,
2017). The model explicitly integrates actin, microtubules, intermediate filaments
networks, contractile stress fibers, a contractile actomyosin cortex mingled in the
cytoplasmic membrane, a viscous cytosol, and a viscoplastic nucleus (Fig 12.4.a).
Each internal cell structure is modelled as an assembly of particles interacting via
contact or springs. The parameterization of the model’s interaction potentials has
been largely verified and validated against indentation tests on mesenchymal stem
cells (Vassaux and Milan, 2017). Complete details on the mathematical foundation
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Fig. 12.1 In vitro observations of cell cultured on surfaces with sinusoidal topography (a). Cell
migration trajectories remain in valleys and avoid peaks (b) of the sinusoidal topography viewed by
side (c). Later, cells tend to stabilize their position in concave regions (d). Mechanical hypothesis to
explain cell migration on sinus: curvature gradient breaks homogeneity in the compressive stress
exerted by the cytoskeleton on the nucleus (f). The nucleus moves to lower pressure region. Then
the cell migrates in the direction of nucleus movement so that the nucleus is in the center of the cell
(g). Reproduced under the terms of the CC-BY 4.0 license (Pieuchot et al, 2018).
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Fig. 12.2 Final displacements of the nucleus in the cell model depending on cell location on the
sinus (a). Nucleus motion in cell model adhering on a peak (b) Nucleus motion in the opposite
direction of greater traction force on the substrate. Reproduced under the terms of the CC-BY 4.0
license (Vassaux et al, 2019).

of the model as well as the calibration, validation, and adhesion simulation process
can be found in Vassaux and Milan (2017). This mechanical cell model is able to
capture realistic nucleus dynamics; the nucleus equilibrium is found at the center
of the cell on a flat topography. These are governed by the coupled contribution of
viscous, inertial (nucleus mass), and elastoplastic (conformational changes in the
cytoskeleton) effects.

Simulations of cell adhesion follow a standardized procedure. In their initial
configuration, the simulated cells display a spherical shape (Fig 12.4.b). Spreading
is actioned after the displacement of the focal adhesions (FAs) away from the center
of the cell following the topography of the substrate (Fig 12.4.c). This dynamic
adhesion process, coupled with actomyosin contraction in stress fibers and the actin
network, induces conformational changes in the cytoskeleton. At the end of the
simulation (Fig. 12.5), cells are pulled onto the substrate and attached via a set
number of focal points. FAs are distributed at the cell’s periphery, regardless of the
site of the cell adhesion in a concave, convex, or in the transitional areas.

Fig. 12.3 Simulation of cell
migration following the
curvature-induced nucleus
displacement. The cell model
stabilizes when the nucleus
stabilizes, the both in the
center of the concave region.
Reproduced under the terms
of the CC-BY 4.0 license
(Vassaux et al, 2019).
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Fig. 12.4 Detailed structure of our in silico mechanical cell model. In the cell model, particles are
interacting in one of three ways: repulsive contact, cable-like or spring-like. (a) The model
encompasses a wide range of intracellular structures, for more details on what type of interaction is
used for each structure and why see (Vassaux and Milan, 2017). (b) Initially, before adhesion, the
cell is generated in a spherical shape, with all its constituents relaxed. (c) After adhesion, here on a
convex substrate (not appearing), the cell finds its stretched configuration, with the filaments and
stress fibres building up tension, and the microtubules and nucleus bearing compressive loads,
ensuring structural stability of the cell. Reproduced under the terms of the CC-BY 4.0 licence
(Vassaux and Milan, 2017).

Subsequently, the adhesion model has been extended to render migration tractable
(Vassaux et al, 2019). The migration is simulated by reproducing in a simplified way
the simultaneous protrusion of a lamellipodium at the front and the cell retraction at
the back of the cell. The cell model migrates as new FAs are continuously assembled
away from existing disassembling adhesions in the direction of motion. While the
cytoskeleton connects the new FAs, the old ones are disassembled. We hypothesized
that the lamellipodium forms in the direction of the topography-induced polarization
of the nucleus and advances proportionally to nucleus internal motion. The inter-
nal displacement of the nucleus is computed as the vector directed from the cell
barycenter to the nucleus barycenter. The spatial jump (amplitude, direction) from
the disassembled adhesions to the assembled ones at a given step is equal to the
internal displacement of the nucleus observed at the previous step. The simulation of
cell migration ends when the nucleus displacement becomes negligible with respect
to the cell dimensions; that is when the cell is assumed to have stabilized. Such a
procedure renders a continuous migration of the cell.

The level of complexity encompassed in such in silico model is already high
enough so that we are enabled to investigate the role of several intracellular struc-
tures, as well as the topography of substrate on cell mechanics, as well as on a
hypothesized nucleosensitive migration mechanism. In comparison to in vitro mod-
els, the mechanical properties of each component of the model may easily be tuned
and their role assessed on migration parameters such as rate and persistence. Ac-
quiring data is also simplified, as in such computational models, mechanics are
intrinsically quantified.



12 Scaffold Topographies to Promote Nucleus-Guided Mechanosensitive Migration 207

Fig. 12.5 Intracellular force
network in the in silico cell
model. Blue and red segments
represent respectively tension
and compression forces.
Width of the segment is
proportional to the magnitude
of the force.

12.3.2 Cell-Scale Curvatures Optimize Migration Rates and
Persistence

We hypothesized the importance of wavelength and amplitude for the nucleosen-
sitivity guidance mechanism to occur. We made use of our in silico cell model
whereby cell motility is induced by direction and the magnitude of the polarization
of the nucleus to find optimal sinusoids to promote single mesenchymal stem cell
migration rate. We demonstrated that on cell-scale curvatures an optimum of migra-
tion efficiency is reached. Cells were arbitrarily positioned in the neutral part of the
sinusoid, that is in the middle of a flat portion of the sinusoid where the curvature
is null. The adhesion and migration dynamics were simulated on three sinusoids,
with a constant ratio of amplitude to wavelength: 3μm / 30μm, 10μm / 100μm,
30μm / 300μm (Fig. 12.5). The dynamics were observed until the cells stabilize
and their motile behavior was considered inexistent. The efficiency of the cell model
in finding the direction of the shortest path to the location of stabilization varied
significantly with the sinusoid size. Radii of curvature approximately of the size of
the cell led to the most straightforward to stabilization. On shorter and larger radii of
curvature, cells exhibited curved trajectories (Fig. 12.6.a) or even sudden changes of
direction (Fig. 12.6.c). In turn, migration rates were also much higher on cell-scale
curvatures, reducing the time from the initiation of the dynamic migratory behavior
to stabilization.

Simulations indicated that curvotaxis at small wavelength seems limited. Simi-
larly, long-wave curvotaxis is also limited: large sinusoids are almost flat surfaces
that offers almost no relaxation zone. The cell model cannot sense larger wavelength
than its own spread diameter nor it senses smaller wavelength than the diameter of
its nucleus. In other words, in this mechanism of cell migration induced by cur-
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Fig. 12.6 Cell-scale curvatures optimize migration rates and persistence. Migration of a
100μm cell on (d) 3-30μm, (e) 30-100μm, and (f) 30-300μm sinusoids, the trajectories of the
center of the cell model are indicated by the red/white data points. Cells dynamics are initiated on
the flat part of the curvature (at the center of each map). Data points composing the trajectories are
measured at identical time intervals, a large gap between two neighboring points indicates large
migration velocity. Reproduced from Vassaux et al (2019) (CC-BY 4.0 license).

vature and intracellular movement of the nucleus, the diameter of the nucleus and
the diameter of the cell constitute the minimum and the maximum of the spatial
scale of the curvotaxis of the cell; cell curvotaxis is then related to its intrinsic
dimensions. Extrapolating these results to scaffold design, topographies exhibiting
cell-scale curvatures could be used for enhanced invasion and proliferation. As cells
stabilize faster, they also enter more rapidly in growth and division phase.

12.3.3 Pieces of Evidence of a Will of the Cell to Relax

We led here additional simulation of cell migration decreasing drastically cortical
tension or nuclear stiffness. In both cases, the greater is the decrease, the more the
model lose the capability of sensing the curvature of the substrate and migration
process stopped far away from the center of a concave region. Besides as a conse-
quence the migration velocity dropped down. So, the cell model is able to sense the
curvature and to reach concave region to relax only if it possesses full integrity in
its cortical tension and nucleus stiffness. Simulation results are in good agreement
with in vitro observations we reported in drugged cells obtained by either blocking
F-polymerization or by knocking down nucleus lamina (Fig. 12.7).

The stiffness of the nucleus makes it an ideal topography sensor. Coupled with the
actin cortex contractility, this renders a complex mechanism propelling the nucleus
toward most relaxed locations inside the cell. Our in silico model enables to analyze
and quantify directly the networks of forces established inside the cell throughout
its migration (Fig. 12.8). This network of forces resulting from the interaction in
the cytoskeleton and the nucleus is highly dynamic. Focusing on a 100μm cell
migrating on the 10μm / 100μm sinusoid, we observe the progressive relaxation
of the forces as the cell migrates from convex to concave locations. In turn, the
cell could be using its nucleus to find optimally relaxed and mechanically stable
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Fig. 12.7 In silico and in vitro results on final location of cells with altered properties of the
cytoskeleton. In gray, the sinusoidal substrate. The bands in blue, red and green represent the
location of the in vitro cells respectively, in control conditions, with low stiffness in the nucleus
(lamin A knockdown) and without contractile cytoskeleton (no F-actin). For instance, cells in
control condition located in concave area. For each in vitro condition, a vertical arrow indicates on
the left side the mean position of the cells on the sinusoidal surface. On the right side, verticals
arrows indicated the final position of the cell model at the end of migration in control conditions or
with altered cell mechanical properties reproducing in vitro tests using drugs. In silico results are
consistent with in vitro observations and lead to the same conclusion: the curvature-induced cell
migration based on nucleus mechanosensitivity needs both nucleus stiffness and cytoskeleton
contractility, and especially cytoskeleton contractility. Without one or both, and especially without
the contractility of the cytoskeleton, cells lose their ability to detect curvature and can localize
independently of the curvature gradient, whether convex or concave.

locations in its microenvironment. Concave locations in a sinusoid typically provide
these two characteristics. In comparison, convex locations are highly unstable, small
fluctuations in cell and nucleus centering on the topography could lead to large
internal motions of organelles, highly damageable during mitosis. Flat locations are
indeed more stable but do not enable the cell and its organelles to relax as much.
Only cell-scale curvatures provide gradients of topography that can be perceived by
the cell by impacting its mechanics. On smaller and larger radii of curvature, the
topography is mostly integrated by the cell as a flat substrate, potentially not yielding
a sufficiently strong mechanical signal.

12.3.4 Topography as a Parameter of Scaffold Design

Properties of the topography are a significant parameter in designing scaffolds and
should be chosen depending on the type of cell, more precisely the size of the cell
and its nucleus, for optimal invasion and proliferation. Our in silico cell model has
served as a framework to integrate the hypothesized mechanism of migration called
curvotaxis, whereby the cell motility is driven by the instability of its nucleus. We
have been able to analyze the influence of the topography of the cell microenviron-
ment on the motile behavior of mesenchymal stem cells. These primary results from
our in silico stem cell model tend to show that curvotaxis could be an attempt to min-
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Fig. 12.8 Nucleus mechanical stress relax during curvotaxis. The mechanical vertical stress
integrated over the nucleus relaxes during migration from convex to concave of a 100μm-wide cell
on a 30-100μm sinusoid (Fig. 12.6.b). Snapshots of the nucleus shape and internal contact forces
in the nucleoplasm are taken for three different cell positions during migration. Positions of the cell
on the sinusoid in each snapshot are shown in the inset picture in the upper right corner. The
vertical stress in the nucleus displays a relative decrease of 80% between onset of migration and
stabilization in the nearest concave. Snapshots illustrate the simultaneous relaxation of nucleus
shape, from elongated to rounded, and significant decrease of contact forces between particles
constituting the nucleoplasm.

imize cells mechanical energy via relaxation, as well as a way to find mechanically
more stable microenvironments. Such microenvironments are beneficial for a more
robust cell growth and division. Our in silico cell model has also enabled to quantify
optimal microenvironment topographies, that is sinusoid wavelength and amplitude.
Curvotaxis is rendered more efficient by sinusoids displaying cell-scale curvatures.
These results could inform the design of scaffolds used in tissue engineering to
promote invasion and proliferation of mesenchymal stem cells. The methodology
applied in this work could be repeated for different cells types, hence enabling to
design cell-type specific scaffold topographies.

12.4 Design of a New Generation of Biomaterials of Dynamic
Topography Aided by Silico Cell Models

Many in vitro studies exist on the influence of topography on cell migration, however
in all these works the topography remains fixed (Caballero et al, 2015) (Fig. 12.9).
We have shown that the concave regions attract the cells, but once these regions
are reached, the cells stop their migration. To encourage the cells to migrate over a
greater distance thanks only to the topography of the substrate and by using their
curvotaxis capacity, we may propose a substrate of variable geometry, with changing
topography, which can become alternately and locally concave then convex, and
this cyclically. Some authors developed photochemical protocols to modulate in
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real time the local stiffness or strain of hydrogel substrates (Kloxin et al, 2010;
Chandorkar et al, 2019). We have shown that cells cultured on sinusoidal surfaces,
migrate naturally, with no other stimulus than the only curvature of the surface. What
would be the migratory behavior of the cells on a sinusoidal surface animated by
an undulatory movement (Figure 12.10). Would the cells follow the ripple? Would
the cells start surfing the surface of the substrate following the ripple wave? What
would be the influence of the ripple frequency? The optimal frequency of ripple, or
in other words the speed of the wave front, should be a priori of the same order of
magnitude as the migration speed of the cell. However, what could be the influence
of a ripple at very high frequencies? In such a case, a displacement of the nucleus
would be observed within the cell, a displacement going in the same direction as the
wave front. As we showed that the displacement of the nucleus and its decentering
is a signal for the cell to migrate to center again its nucleus, this would stimulate
continuous cell migration.

Fig. 12.9 Effect of the Cell Nucleus on Symmetry Breaking and Directional Migration. Cells move
directionally in local asymmetric topographical ratchets imposed by confinement (A) or adhesion
(C). A mechanical interaction between the cell nucleus and the tilted micropillars (B) or
actomyosin stress fibers (D) guides cell polarization and motility. Reproduced from Caballero et al
(2015) (CC-BY 4.0 licence).

As a perspective, we can imagine an evolution of the biomaterials and scaffolds
with dynamic topography to induce cell migration and invasion. Typically, in silico
modelling can play a role here. Indeed, in silico experiments can be pushed beyond
what is technically feasible in vitro for the time being. We propose here to analyze in
silico the influence of a dynamic topography on the migratory behavior of cells using
our computational cell models we presented above. In the present study, we simulated
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Fig. 12.10 Substrate ani-
mated by wave motion. Are
migrating cells able to surf the
wave?

curvature-guided cell migration on a deformable sinus animated by sequential ripple
motion. We imposed at the location of the cell, a deformation of the substrate to reach
a sinus morphology or micro-corrugated shape. Following the same process of cell
migration based on the interplay between curvature-induced nucleus decentering and
cell movement to center the nucleus again, we simulated iteratively the displacement
of the cell until it reached the most concave region of the sinus (Fig. 12.11). Then
the substrate deforms to become flat as at the beginning. The cell migrates with a
net displacement of 45μm. Then we deformed the substrate, a second time, with the
same sinusoid morphology with a dephasing of 45μm, inducing at the cell location a
convex region. Following the same cell migration process, we simulate a second time
cell displacement until it reached the new concave region. At the end, in imposing
two deformations of the substrate, we induced cell migration in a controlled direction
with a net displacement of 90μm corresponding to 1.5 times the diameter of the
cell. It is worth to be noted there is no gravitation here and the cell migrates only
following the nucleus decentering induced by curvature.

In the same way we can imagine to study in silico the cellular migration in
interaction with a dynamic substrate, micro-channels or micro-tubes able to be
piloted in radial deformation by shrinkage movements or on the contrary of swelling.
In such a case, are the cells able to migrate by accompanying the deformations of
the micro-tubes?

We can also design in silico, a fibrous substrate whose fibers and their crosslinking
could be driven dynamically to locally animate the fibrous matrix by contraction or
extension. We could experiment with the potential of migrating cells and predict
whether cells are able to take advantage of the movements of their environment to
migrate.

This type of dynamic topography substrates continuously stimulating cell migra-
tion could help the colonization of porous biomaterials by the cells, a colonization
that is still insufficient to obtain volume tissue regeneration. And this, proposing an
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Fig. 12.11 Image series of the sequential cell migration on a flat substrate animated by 2 successive
sinus deformations. The diameter of the adherent cell shape is 100μm. After the first substrate
deformation, the cell model migrated over 44.5μm. As a result, the 2nd sinus deformation was
imposed with a phase shift of 44.5μm from the first one. After the two successive deformations of
the substrate, the cell model migrate over 90μm in a controlled direction. It is worth to be noted
that there is no gravitation in this simulation.
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original method, natural because based on the normal migration of cells, and alter-
native to conventional mechanical methods such as perfusion or pumping of cells
in suspension, methods that can damage cells. Substrates with dynamic topography
could also be an alternative to biochemical methods employing chemoattractants
and which raise the question of the duration of release and the duration of action.

Playing on the topography by proposing artificial and controlled geometry can
make it possible to identify the processes of setting up of the adhesion and migration,
to identify the cellular preferences, the processes of optimization of their form
and position, of their potential adaptation, to observe the emergence of alternative
solutions when one is blocked. This work could provide a great deal of information
on cellular functioning and adaptation resources. This work could also inform future
improvements in the design of biomaterials to stimulate migration or proliferation
or differentiation by time. This cellular model could be used for the design of
scaffolds specifically dedicated to bone reconstruction. To this end, the design of the
scaffold should promote the invasion of mesenchymal stem cells and osteoblastic
differentiation. The scaffold should also stimulate the osteoblastic activity of bone
tissue synthesis via mechanical stimuli based on high apparent rigidity allowing
deformation of high frequency and low amplitude. The cellular model could be a
complementary approach at the cellular level to those which are developed at the
tissue level and which succeed in embracing bone mechanobiology (Lekszycki and
dell’Isola, 2012; Giorgio et al, 2017; George et al, 2018, 2019).

In vitro experiments have their limits. While they do not fully reproduce the
reality of in vivo conditions, but especially their complexity and the difficulties
of producing biomaterials prevent testing many different solutions and analyze the
cellular response in completely new conditions. The contribution of in silico or
numerical simulation experiment, precisely allows to put in the cells situation under
conditions impossible to consider in vitro and / or in vivo.

Virtually we can culture cells in a 3D environment, in contact with a material, a
surface, or a fibrous matrix that would have the capability of changing its topography
according to whether we are looking for the viability of stem cells by proposing a
quiescent state or on the contrary a state of stress that will push them to migrate
or differentiate. These controllable materials could adapt their conformation to the
cellular time and specific cell function. Those smart materials are difficult or im-
possible to design for now. Nonetheless in silico experiments make it possible to
overcome this problem by testing unrealistic conditions while identifying cellular
behaviors never observed in vitro and dynamic microstructures and their associated
deformation modes capable of stimulating cells. Based on these results, we would
be able to imagine technical and feasible solutions to reproduced in vitro and in vivo
the cellular response predicted by the model. The in silico approach can then join
current developments in the field of intelligent materials such as meta-materials and
nanomotors. For example, meta-materials thanks to their exotic electromagnetic or
mechanical properties can modify their structural arrangement under the passage
of electromagnetic waves or can have a negative Poisson’s ratio, contracting trans-
versely during compression (Barchiesi et al, 2019; Del Vescovo and Giorgio, 2014;
dell’Isola et al, 2019). This type of material could be used to reproduce the opti-
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mal dynamic topography of the substrate identified by the cell model. Similarly, the
properties of meta-materials could be modeled to predict and analyze the behavior
of cells.
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Chapter 13
Viscoelastic Characterization of Dacron Graft
and Aortic Tissue

Christopher Zikry, Stewart McLennan, Gilles Soulez, Raymond Cartier,
and Rosaire Mongrain

Abstract We present the elastic and viscoelastic characterization of aortic tissue
and a synthetic material used for the fabrication of artificial vessels (Dacron). Using
biaxial, high deformation and oscillating mechanical testing protocols, we assessed
the hyperelastic and viscoelastic properties of both aortic tissue and Dacron. Energy
loss is a viscous measure of energy absorbed by a material during deformation. It
provides information of the materials time dependence and capacity to dissipate
energy. Investigation of the correlation between smooth muscle cell (SMC) content
and energy loss within healthy and aneurysmal aortic tissue was carried out via
biaxial tensile testing of aortic tissue samples. The results of aortic tissue energy
loss investigation show that an acceptable correlation exists between the presence of
SMCs and the magnitude of energy loss. In addition, our data suggests that the con-
dition and organization of SMCs may affect the viscous behaviour of tissue, instead
of their mere presence. The results of the high deformation and oscillating mechan-
ical testing show significant differences between the biological and the synthetic
materials. Histologic examination of selected samples revealed healthy tissue was
characterized by higher elastin content, 45.3±2.07% vs. 39.78±1.84%. Aneurysmal
tissue was found to have greater SMC content in comparison to healthy tissue.
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13.1 Introduction

The aorta carries oxygenated blood and nutrients throughout the human body via
systemic circulation (Maton et al, 1993). The aortic wall is a viscoelastic material
that exhibits a measure of compliance and energy dissipation, by which it preserves
pressured flow and protects itself against damage from cyclic stresses. Its J-shaped
stress-strain curve has been linked to elastin and collagen fiber behaviour (Roach
and Burton, 1957). Measures of viscosity along the aorta, such as circumferential
relaxation, strength and energy loss, are thought to be correlated with the degree of
SMC presence (Azuma and Hasegawa, 1971). Viscosity plays an important biome-
chanical role in the ascending aorta by dissipating arterial pulse waves, preserving
the aortic wall and directing the precise timing of the Windkessel elastic function,
where the aorta acts as an elastic buffering chamber behind the heart.

Prior investigation has suggested the ‘elastic’ arteries (conducting arteries) allow
expansion and offer elastic recoil, while ‘muscular’ arteries limit expansion and pro-
mote vasoconstriction through increased SMC content (Rhodin, 1980). In addition
it is believed that SMCs are preferentially aligned circumferentially to provide resis-
tance to circumferential loads (Rhodin, 1980). Prior investigation has utilised energy
loss as a robust biomechanical parameter to describe aortic pathological condition
(Chung et al, 2014). Energy loss can be seen as a measure of how aortic tissue dis-
tributes energy and is thought to correlate with microstructural defects in the media
(Chung et al, 2017).

During each cardiac cycle, the aortic wall receives energy from the pumping
heart with each ventricular ejection of blood. The aortic wall absorbs this energy by
distending. In accordance with its Windkessel elastic function, the wall returns to its
resting circumference, transferring energy back to the blood. In this process, the aortic
wall dissipates some energy into itself. While systolic pressure rises rapidly, diastolic
pressure returns in a much slower fashion, as result of the reduced energy returned
by the wall (Westerhof and Noordergraaf, 1970). Although the tissue compliance
enables the Windkessel elastic function, the dissipative capacity of tissue directs
the timing. This behaviour is highlighted in the stress-strain response hysteresis
loop of aortic tissue and has been thoroughly observed in vitro and in vivo. Unlike
the loading curve, the unloading curve is moderately unaffected by changes in the
strain or strain rate (Goto and Kimoto, 1966). Therefore, the width of the hysteresis
loop is determined by the magnitude of stretch or strain rate (Remington, 1954).
When considering the behaviour of the aortic wall, this response is clear. As the
tissue experiences higher levels of stress, it demands increasingly more relaxation to
restore the tissue to its equilibrium state.

Pressure-area dynamics of the aorta can be obtained in vivo by mapping the
stress and strain of the tissue under physiological loading cycles (Imura et al, 1990;
Stefanadis et al, 1995). Armentano et al (1995) quantified the viscous component
of the aortic wall by analysing in vivo hysteresis loops in conscious dogs. The study
confirmed that the viscous modulus depends upon the arterial pressure and smooth
muscle activation.
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Understanding the biomechanical role of SMC content is important when de-
signing artificial vessels. Vascular grafts are implanted in the human body in order
to replace damaged or blocked vessels (Puskas and Chen, 2004). The development
of synthetic grafts began in the 1940s (Puskas and Chen, 2004). In the 1950s, the
concept of porous, fabric vascular grafts were introduced using polyvinyl chloride
(PVC) and polyacrylonitrile (PAN). By the 1960s, most fabrics were abandoned ex-
cept for Dacron and Teflon. At present, Prosthetic Dacron grafts are widely used as
a synthetic substitute following aortic resection in cases of aortic aneurysms, aortic
dilatations and aortic dissections. While these polyester grafts are readily available,
very durable, and biocompatible. They exhibit mechanical properties inconsistent
with native aortic tissue. Current Dacron graft implantation, despite its high patency
rates, yields notable and potentially harmful consequences to the arterial circulation.
This is a result of its disparate geometry and mechanical properties, with issues such
as endoleaks and unwanted stress concentrations potentially arising.

From a bioengineering perspective, there are important geometrical and mechan-
ical constraints that the synthetic replacements need to mimic to properly replace
the aorta. This includes compliant functioning with the soft tissue environment
and avoidance of damaging local stresses (pressure, friction). Furthermore, graft
insertion creates discontinuity in the mechanical response of the entire vessel wall,
associated with abnormal hemodynamics and shear stresses. Dacron grafts are ap-
proximately 75% thinner than the aortic wall and have well-defined corrugations
along the longitudinal direction to increase axial distensibility and prevent buckling.
The aortic wall is comprised of three distinct layers, while Dacron is a single-layered
woven or knitted fabric. At physiological strain, Dacron is approximately 24 times
stiffer than healthy ascending aorta (Tremblay et al, 2009). In accordance with its
increased stiffness, Dacron exhibits reduced circumferential compliance (Puskas and
Chen, 2004; Tremblay et al, 2009; Hasegawa and Azuma, 1979; Walden et al, 1980).
The exceedingly high circumferential stiffness of Dacron grafts also results in its
increased anisotropy (directional dependency) when compared to healthy ascending
aorta (Tremblay et al, 2009) and iliac artery tissue (Lee and Wilson, 1986).

While Dacron grafts compromise non-physiological mechanical properties for
long-term strength and durability, there is need to better characterize their viscoelastic
behaviour in order to improve future graft design. In vitro planar biaxial tensile testing
has been widely used to characterize arterial tissue (Azadani et al, 2013; Babu et al,
2015; Debes and Fung, 1995; Emmott et al, 2016; Geest et al, 2006; Mohan and
Melvin, 1983; Okamoto et al, 2002). Biaxial tensile testing identifies the tensile
behaviour of a material in two distinct directions under physiological multi-loading
conditions. This reproducible testing method provides understanding of local tissue
hyperelasticity, anisotropy and viscoelasticity.
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13.2 Methods

13.2.1 Smooth Muscle Cell Content and Energy Loss Investigation
of Aortic Tissue

Five aortic tissue samples were cut into 15×15mm2 patches. Quintuplicate thickness
measurements were performed along the samples using a digital thickness calliper
(Litematic VL-50A, Mitutoyo Corp., Japan). The samples were assumed to hold
constant thickness at the average value for subsequent analysis. All samples were
fastened with 4-0 prolene sutures to mount them onto the tensile arms. The no-load
length was measured between sutures again using a calliper. The samples were then
loaded in the ElectroForce Planar Biaxial TestBench (ELF 3200, TA Instruments,
New Castle, DE, USA), as seen in Fig. 13.1, equipped with WinTest software (V8.0,
Build 2011) linked to a displacement transducer and a 1kg load-cell (Model 31,
Sensotec Honeywell).

Fig. 13.1 ELF 3200 Biaxial
Tensile Tester setup. Inset
displays suture layout of a
sample, including locations
of thickness measurements
(t) and definition of gauge
lengths (w) between sutures.

All samples were immersed in buffered solution at 37◦C for 15 minutes prior to
testing to attain thermal equilibrium and subsequently remained there throughout
all testing. Samples were preloaded to a force of 0.05 N in both directions before
testing to ensure sutures were slightly tensioned. The zero displacement position
was taken following this preloading. Samples then underwent 10 preconditioning
loading-unloading cycles at a strain rate of 0.4mm/s to a displacement of 6mm
and then back to the zero displacement position, in both perpendicular directions.
Depending on suture location, this corresponded to a maximum strain of 60-65%.
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Following preconditioning, 7 experimental cycles were performed at a strain rate of
0.1 mm/s to the same displacement.

Immediately following the last experimental cycle, the samples were pulled to a
6mm displacement at a rise time of 1s. Each sample was held at this displacement
for 2000 s and the stress relaxation response was recorded. The sample was then
slowly unloaded at a rate of 0.1 mm/s to its starting position and then quickly loaded
in a similar fashion for a total of 5 cycles.

To investigate the correlation between SMC content and energy loss, healthy and
aneurysmal human ascending aorta tissue samples were used. Viscous energy loss
was calculated as the percentage of energy lost during the loading-unloading cycles,
out of the total energy absorbed by the material during loading in the circumferential
direction. A portion of tissue adjacent to each testing specimen was stained with
Movat’s pentachrome. Images were captured with a microscope and the percent
micrograph field coverage of SMC content was measured.

13.2.2 Hyperelastic Characterization of Dacron Graft and Aortic
Tissue

For hyperelastic characterization the same ELF 3200 Biaxial Tensile TesBench was
used as for the SMC and energy loss investigation, with the setup and loading
procedure remaining the same. This time, both Dacron and aortic tissues samples
were tested.

A number of hyperelastic material models can be used to classify biological
material properties. However, for simplicity, the elastic modulus at different strains
(incremental elastic modulus) was measured in order to provide information on
the overall hyperelastic behavior. Incremental elastic modulus was defined as the
instantaneous slope at the low (15%) and high (45%) strain values, taken from the
hyperelastic stress-strain plots for each sample. These values were determined using
polynomial functions in MATLAB.

13.2.3 Viscoelastic Characterization of Dacron Graft and Aortic
Tissue

The ELF 3200 also allows for frequency characterization (it can perform a frequency
sweep from 0.1–100 Hz). Briefly, an oscillating force (load) was generated (σ =
σ0 sin(ωt), with amplitude ‘σ0’ and frequency ‘ω’) which produced an out-of-phase
displacement (ε = ε0 sin(ωt+ δ), with amplitude ‘ε0’ and phase lag ‘δ’). From
this, the complex viscoelastic stiffness was assessed using E∗ = Es + iEl where,
Es = σ0/ε0 cos(δ) is the storage modulus and El = σ0/ε0 sin(δ) is the loss
modulus, from which tan(δ) = El/Es can be found.
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It can be shown that for a Kelvin–Voigt model (Fig. 13.2), E∗ = k + iω η with
‘k’ and ‘η’ being the elasticity and viscosity, respectively (then |E∗|2 = k2 + ω2η2

and tan(δ) = ω η/k).

Fig. 13.2 Kelvin–Voigt
Spring and Dashpot Model.

It can also be shown that the corresponding hysteresis is modelled as an el-
lipse (with an area Wd = πωε2). From here, the Loss Factor (or energy loss) was
calculated. This is defined as the ratio of the area of the hysteresis over the storage de-
formation energy, LF=Energy hysteresis/Storage energy or LF =Wd/(We −Wd)
with We being the elastic deformation energy (Chung et al, 2014; Shahmansouri
et al, 2016; Zikry, 2018). The hysteresis loop calculation are illustrated in Fig. 13.3.

Fig. 13.3 Example hysteresis
plot of typical viscoelastic ma-
terial stress-strain response.
Graphical representation of
energy loss and incremental
elastic modulus is depicted.

To investigate the applicability of the Kelvin–Voigt model for viscoelastic charac-
terization of Dacron graft and aortic tissue we used the Fung Quasi-linear Viscoelas-
ticity (QLV) model for comparison. Here, the QLV parameters were obtained using
a custom made MATLAB script that fitted the biaxial testing data onto a Cauchy
stress-time plot and extracted the QLV parameters via curve fitting of the constitutive
equations. The constitutive equations of the Fung QLV material model were taken
from Fung (1972, 1993).



13 Viscoelastic Characterization of Dacron Graft and Aortic Tissue 223

13.3 Results

13.3.1 Smooth Muscle Cell Content and Energy Loss Investigation
of Aortic Tissue

Histologic examination of the aortic tissue samples showed that healthy tissue was
characterized by higher elastin content, 45.3±2.07% vs. 39.78±1.84%. In addition,
thick, continuous elastinous sheets encapsulate single layers of SMCs inside healthy
tissue. In aneurysmal tissue, several layers of SMCs are separated by weak, discon-
tinuous elastin fibers, which vary in integrity across the thickness. Aneurysmal tissue
was found to have a larger SMC content. An acceptable correlation (R2 = 0.3519)
exists between the presence of SMCs and the magnitude of viscous energy loss
(Fig. 13.4), where viscous energy loss is defined as the area of dissipated energy over
the area under the stress-strain loading curve and is given by

LF =
WL −WU

WL
(13.1)

whereWL andWU refer to the energy absorbed during loading and energy released
during unloading, respectively. More evident correlation (R2 = 0.9168) was found
between patient age and energy loss (Fig. 13.5).

Fig. 13.4 Energy loss as a
function of SMC presence in
the aortic media. Scale bars
represents 100 μm.

13.3.2 Hyperelastic and Viscoelastic Characterization of Dacron
Graft and Aortic Tissue

The results for the incremental modulus (or tangent modulus) at 15% and 45%
strain and the viscoelasticity characterization assessed with the energy loss are
summarised in Fig. 13.6 and 13.7, respectively. Results are shown for healthy aortic
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Fig. 13.5 Correlation be-
tween patient age and aortic
tissue energy loss.

tissue, aneurysmal tissue and Dacron. Significant differences between the synthetic
material and the biological tissues are observed.

Dacron grafts are approximately 5 and 11 times stiffer than healthy aortic tissue in
the circumferential direction at 15% and 45% strain, respectively. In the longitudinal
direction, this modulus disparity between Dacron and tissue is decreased. Slight
differences were observed among samples considered healthy and aneurysmal. In
Fig. 13.7, the energy loss of each sample is presented for each direction. Dacron
grafts were found to exhibit twice as much energy loss as healthy ascending aortic
tissue.

The solved Fung QLV parameters for healthy aortic tissue, aneurysmal aortic
tissue, and Dacron graft are presented in Table 13.1. Here the C parameter can be
thought of a measure of viscosity for each sample type and as such, can be compared
against the prior energy loss values. The MATLAB QLV curve fitting for a typical
aortic tissue sample is illustrated in Fig. 13.8.

Fig. 13.6 Incremental mod-
ulus at 15% and 45% strain
in the circumferential direc-
tion. Chart values represent
mean ± SD. ∗p < 0.05
measured for same strain.
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Fig. 13.7 Circumferential and
longitudinal energy loss of
each sample. Chart values
represent mean±SD. *p <
0.05 measured for same strain.

Table 13.1 Fung QLV parameter values from circumferential biaxial testing presented as
mean ± SD; ∗p < 0.05 for each parameter across all samples.

Fig. 13.8 Fung QLV model fit on typical stress relaxation response of aortic tissue. Inset displays
first 5 seconds of the test.

13.4 Discussion

Important research into aortic tissue hyperelasticity characterization has been pre-
viously carried out (Avril, 2017; Avril et al, 2010). Avril et al (2010) established
hyperelastic material parameters of human arteries using full-field experimental data
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from inflation/extension tests and the virtual fields method (VFM). The VFM was
shown to be successful in identifying hyperelastic properties and as such may be
considered an alternative to the incremental modulus method used in this study.

A seminal study by Holzapfel and Gasser (2001) presented a viscoelastic model for
investigating three-dimensional stress and deformation response of fiber-reinforced
composites, such as arterial walls. Here, using a particular anisotropic Helmholtz
free-energy function, three components of the wall were modeled (a matrix mate-
rial and two families of fibers), all of which were considered to have viscoelastic
behaviour. Implementation of the model constitutive equations in numerical simula-
tion showed good qualitative agreement. As such, future research efforts may benefit
from using such a model opposed to the simplified viscoelastic characterisation used
in this study. Additionally, It should be noted that other wall constituents can also
affect the tissue viscoelasticity, however further studies are required to establish the
extent of this.

While energy loss is a robust parameter and hysteresis loops are observed in vivo,
it provides limited information of the time-dependent behaviour of aortic tissue under
a peak load. In standard biaxial tests, unloading is performed at a controlled rate.
In physiological loading conditions, the aortic wall unloading is determined by its
previous distension, heart rate, and smooth muscle activation. For this reason, stress
relaxation tests were performed in this study to assess viscoelastic behaviour over a
time span, where stress decrease is achieved by the material alone. The correlation
between SMC content and energy loss presented in this study (R2 = 0.3519) was
affected by the relatively large error bars on the data points, as seen in Figure 1.4.
It should be noted, however, if using mean data values, a stronger correlation would
be observed.

As previously mentioned, multiple stress relaxation cycles preconditioned the
material to achieve repeatable curves. Holzapfel (2009) noted that Cauchy stress-
stretch hysteresis loops during uniaxial preconditioning of muscular artery tissue
shift toward a larger deformation, before converging to a certain deformation with
smaller hysteresis. Here, Holzapfel (2009) found 5 loading-unloading cycles to be
sufficient for convergence, which supports the 10 cycle approach used in our study.
Conversely, Carew et al (2004) determined that repeatable stress relaxation curves
in porcine aortic valves cannot be achieved by standard loading-unloading precon-
ditioning. Zou and Zhang (2011) addressed this by compensating for drops in initial
stress level (in aortic elastin), after each cycle by modifying the target stretch at each
cycle. In the present study, the materials initial stress level dropped significantly
after the first cycle, just as it does in standard preconditioning protocols. However,
the maximum stretch was consistent through all cycles. Excised aorta achieved up to
50% relaxation after 5 cycles, which is substantially larger than the 20% relaxation
observed by Zou and Zhang (2011). This may be due to the strain-rate dependence
of viscoelasticity in soft tissues (Doehring et al, 2004). In the case of the present
study, samples achieved target stretch in half of the total preconditioning time.

Histological examination revealed noticeable disparities between healthy and
aneurysmal tissue. Although only 5 samples were used, increased elastin and energy
loss were also observed to be correlated. At low stress levels, elastin fibers sustain
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more load than collagen fibers. Elastin viscoelasticity, while minimal, can contribute
more to the overall viscous behaviour of the material at these stress levels. So
combining SMC and elastin effects could reinforce the viscous assessment. It should
be noted that this study examined tissue under controlled strain rate, as opposed
to controlled stress value. It was also observed that SMCs in tissue with a lower
collagen-to-elastin (C/E) ratio may hold higher integrity than those with higher C/E
ratio. This may be the result of high stresses caused by increased collagen content
causing degradation of SMC relaxation properties over time. Conversely, it may be
a result of elastin degradation increasing load-bearing responsibility of SMCs and
also inducing cell fatigue. However, it is important to note that SMC content is not
believed to be the sole determinant of arterial viscoelastic properties.

Increasing the amount of tissue samples would help to account for variability
in SMC content of aortic tissue. Furthermore, measuring the distance from the
aortic valve and accounting for regional location of the tested sample may help
illuminate reasons for potential variation across aortic tissue. A more sophisticated
closed-loop system that accounts for transmural pressure, characteristic impedance,
and physiological frequency can be replicated with a pulsatile blood pump flowing
through a conduit.

It should be noted that this study revealed only normalized stress relaxation
values. Circumferential stretch during the stress relaxation tests were 50% and 10%
for aortic tissue and Dacron, respectively. These different stretch values need to be
considered when interpreting the results. One study however, by Lee and Wilson
(1986), determined stress relaxation behaviour of arterial tissue and vascular grafts
by accounting for equal load, as opposed to strain. By doing so it was found that
Dacron grafts displayed much more relaxation than iliac arteries.

Recent investigation of woven Dacron aims to explain the role of viscoelasticity on
in vivo dynamics (Amabili et al, 2018; Tubaldi et al, 2018). Understanding of Dacron
graft viscoelasticity and its unique effect on hemodynamics is limited and requires
further study. Dacron grafts expand after initial placement in the thoracic aorta with a
distinct early and late growth rate, mimicking a typical creep response of polymers.
In the ascending aorta, grafts dilate 17% within a week following implantation,
with smaller diameter grafts experiencing higher diameter increase (Etz et al, 2007).
While the graft seems to adapt to the aorta geometry and hemodynamic demands
through structural changes, its pre-implant circumferential mechanical properties are
maintained. This was evidenced in a case study of a woven double-velour Dacron
graft explanted after 27 years (Nagano et al, 2007).

From our obtained results, the measured aortic tissue and Dacron incremental
modulus values were observed to be consistent with previous literature (Tremblay
et al, 2009; Emmott et al, 2017). In addition, the incremental modulus of Dacron at
45% strain was observed to correlate with the physiological moduli at the transition
between elastin and collagen load-bearing in rat aortic tissue (Danpinid et al, 2010).
The dependence of viscosity on stress level, as seen in this study, may account for the
increased energy loss in Dacron, which achieved supraphysiological loads at 60%
strain. Dacron’s large increase in stress levels at the same strain may explain our
observed proportionately higher viscosity when compared to aortic tissue. Azuma
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and Hasegawa (1971) verified that Dacron grafts stretched to 10% matched the
viscoelasticity of the proximal aorta when stretched to 50%. Furthermore, Amabili
et al (2018) found that loss factor decreased with pre-stretching of Dacron. Their
achieved magnitude and frequency response was similar to that achieved by the aortic
tissue samples in this study. In their study, Amabili et al (2018) used a dynamic
amplitude of 0.3% strain compared to the 25% strain used in this study.

A limitation of this study was the use of only one method for hyperelasticity
characterization. It has been shown that classical hyperelasticity models produce
different behaviour responses for living tissues (Holzapfel and Gasser, 2001; Avril,
2017; Avril et al, 2010) and as such future studies should investigate the behavioural
differences between models for Dacron. In one case, a similar studies involving
prosthetic material design for cardiovascular application found the Mooney–Rivlin
hyperelastic model to be successful for characterizing a range of soft tissues (Mo-
hammadi et al, 2009).

Another limitation is the use of the Kelvin–Voigt viscoelastic material model.
The Kelvin–Voigt model is the simplest viscoelastic model capable to recover the
creep and relaxation of soft tissue (1 spring and 1 dashpot in parallel). A more
detailed alternative model would be the Zener model, which uses an additional spring.
However, under low frequency (heart beat), the creep response of the Zener model
has been shown to be very similar to that of the Kelvin–Voigt model (Bronshtein
et al, 2013), but is slightly better at higher frequencies. As such, the use of the
Kelvin–Voigt model is justified in this study, however, future studies using more
complex loading assignments may wish to use a less simplified model. While we
made use of the Fung QLV model, the Kelvin–Voigt model was found to be more
practical in terms of practicality.

The parameter C of the QLV model represents a measure of viscosity within
the material and τ1 and τ2 represent the immediate and long-term time constants,
respectively. The QLV model results showed that Dacron holds the highest initial
relaxation rate and the lowest normalized level of remaining stress, resulting in the
largest estimation of C. Dacron also reaches its final value much quicker, confirmed
by the shorter τ2 value. While the QLV model has been widely used (Carew et al,
1999; Doehring et al, 2004; Kohandel et al, 2008), it improperly assumes that strain
and time effects on stress are independent. For this reason, it insufficiently simu-
lates the magnitude of initial stress relaxation during biaxial testing. In addition, the
model is inadequate in predicting the stress levels during the ramp phase of biaxial
testing, but is however able to recover in predicting the long-term relaxation. This
is evidenced by the increasing residuals level during the first second, displayed in
Fig. 13.8. The model overestimates the material’s elasticity, resulting in an underes-
timation of viscosity. This effect is more pronounced in materials with high elastic
modulus and viscosity, such as Dacron.

The established Dacron energy loss values do not resemble in vivo behaviour,
but do however further attest to its significantly lower compliance in comparison to
aortic tissue.
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13.5 Conclusion

The SMC content of aortic tissue carries a certain fraction of the aortic walls viscosity
as determined by energy loss mechanical testing.

In addition, an evident positive correlation was found between patient age and
energy loss. An acceptable positive correlation was found between SMC content and
energy loss, which suggests that SMC content alone, is not an effective predictor of
the viscous parameter of aortic tissue.

Aortic tissue increases in stiffness as it is stretched. This hyperelastic characteristic
is similar in Dacron, although its magnitude of stiffness is much higher. Furthermore,
the compliance of this artificial tissue matches that of the aortic wall.

Current synthetic Dacron material has intrinsic stiffness and viscoelastic proper-
ties that are significantly different from biological tissue. Improvement in terms of
biomechanical integration would require adjustments of the viscoelastic properties
to achieve closer properties to native tissue.

Biaxial tensile tests are simple and reproducible, which help in providing a stan-
dard for material characterization. However they are limited by the fact that they
do not mimic the conditions that the aorta endures in vivo. Stress relaxation and
dynamic mechanical analysis incorporate time-dependent behaviours, but are still
insufficient.
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Chapter 14
Plane Waves Transmission and Reflection at the
Interface between Thermoelastic Continua in
Absence of Dissipation: The Influence of
Magnetic Field and Rotation

Abdelmoody M. Abd-Alla, Said M. Abo-Dahab, Abo-el-nour N. Abd-alla, and
Mohamed Elsagheer

Abstract In the present contribution, it is addressed the problem of plane wave
reflection and transmission at the imperfect interface between thermoelastic half-
spaces having different properties when the effect of magnetic and rotation fields is
relevant. Using Green and Naghdi theory, we formulate the needed governing equa-
tions for thermoelastic bodies occupying both an half space under the assumption
that each of them is homogeneous and isotropic. We could solve in a closed form
the problem of planar waves whose propagation is determined by postulated balance
equations. The amplitude of transmitted and reflected waves are obtained so that we
can prove that one can observe three kinds of waves, namely, P−waves, T−waves
and SV−waves. Our closed form solution allows us to determine the amplitude
ratios between reflected and refracted waves also in the case of imperfect boundary.
In particular, we obtain that these amplitude ratios depend on the elastic stiffness,
the magnetic field and on the thermal properties of the considered bodies. Also the
case of stress-free boundary has been considered. The effect of the magnetic and
rotation fields is investigated via suitable numerical computations. We observe that
rotation and magnetic fields may induce relevant phenomenology.
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Nomenclature
αt is the coefficient of linear thermal expansion,
δij is the kroneckar delta,
λ, μ are the Lame’s constants (material constants),
μe is the magnetic permeability,
ν = αt (3λ+ 2μ) is the thermal parameter
ρ is the density of the medium,
σij are the components of stress tensor,
τij are the components of Maxwell’s stress tensor,
∇2 is the Laplace operator,
ω is the frequency,
bc is heat transfer coefficient at the interface,
Ce is the specific heat per unit mass,−→
E is the electric intensity vector,−→
H is the magnetic field vector,−→
J is the electric current density vector,
K is the thermal conductivity,
Kc is the thermal contact conductance with dimension,
Kn, Kt are normal and transverse stiffness coefficients of a unit layer thickness,
t is the time,
T is the absolute temperature,

T0 is the initial temperature,
∣∣∣∣T − T0

T0

∣∣∣∣� 1,

u, v are the components of displacement vector −→u .

14.1 Introduction

The recent push towards the formulation of generalized continuum models (Al-
tenbach et al, 2010; Eremeyev and dell’Isola, 2018; Piccardo et al, 2014; Andreaus
et al, 2018; Barchiesi et al, 2019a; Eremeyev and Pietraszkiewicz, 2012; Eremeyev
et al, 2018; Abdoul-Anziz and Seppecher, 2018) has been motivated by the need of
supplying a solid theoretical ground for the design (dell’Isola et al, 2015b; Eugster
et al, 2019; Pideri and Seppecher, 1997; Placidi, 2015; Alibert et al, 2003; Bouchitté
et al, 2019; Camar-Eddine and Seppecher, 2001, 2003; dell’Isola and Placidi, 2011;
Spagnuolo and Andreaus, 2019; Giorgio, 2020; Baroudi et al, 2019; Eremeyev et al,
2019) and development of multiphysics multiscale metamaterials (Barchiesi et al,
2019b; dell’Isola et al, 2019a,b; Barchiesi and Placidi, 2017; Carcaterra et al, 2015;
De Angelo et al, 2019b; Abali and Zohdi, 2020). Generalized continua were for-
mulated already by Piola (dell’Isola et al, 2015a, 2014; Turco et al, 2018), but only
recently attracted again the interest of scholars in Mechanics (dell’Isola et al, 2015c;
De Angelo et al, 2020; Del Vescovo and Giorgio, 2014; Eugster et al, 2019; Misra
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et al, 2018; Spagnuolo et al, 2019; Turco et al, 2017; Altenbach and Eremeyev, 2009,
2010, 2011; Altenbach et al, 2015; Eremeyev and Pietraszkiewicz, 2016). However
up to now it has been neglected the possibility of exploiting multiphysics phenom-
ena for getting exotic behaviors at macro level (Andreaus et al, 2004; Batra et al,
1998; dell’Isola and Rosa, 1997; dell’Isola et al, 2003, 2004; Maurini et al, 2004b,a;
Giorgio et al, 2009, 2015; Eremeyev, 2016, 2018; Abali and Queiruga, 2019). More-
over, the recent theories of thermoelasticity, in which the thermal signal has a finite
speed, have attracted more and more often intense research. These theories, based
on the seminal paper by Cattaneo (1948), are formulated to avoid the paradox of
infinite speed of heat signals, which instead, is present in the standard thermoelas-
ticity theory (Biot, 1956). Lord and Shulman (1967) postulated a model where a
finite speed is obtained using one relaxation time only. Green and Lindsay (1972)
assumed in the constitutive equations a temperature rate, but at the cost of loosing
the classical Fourier’s law for heat conduction in the case when the material con-
sidered has a center of symmetry. This last theory manages to predict a finite speed
of heat propagation but introducing two relaxation times. A specific thermoelastic
problem in an infinite cylinder in presence of initial stress is considered in El-Naggar
and Abd-Alla (1987). Green and Lindsay (1972); Green and Naghdi (1991, 1992,
1993); Chandrasekharaiah (1996a) have been formulated three other models using
alternative approaches.

In (Chandrasekharaiah, 1996b) it is considered the propagation of plane har-
monic waves in absence of dissipation. Moreover, in (Chandrasekharaiah and Sri-
nath, 1997a,b) it is dealt with cylindrical/spherical waves originated by (i) loads
applied at the boundary of considered cylindrical/spherical hole surrounded by an
infinite body, (ii) line/point sources of heat in an infinite body. In the paper by
Mukhopadhyay (2002) one finds the solution of a problem involving thermoelastic
interactions in absence of dissipation when the considered body is infinite and a
spherical cavity is present. A thermal shock is initiated in the cavity.

On the other hand, Lavrentyev and Rokhlin (1988) studied wave transmission and
reflection in the case of imperfect boundary conditions at the interface dividing two
elastic solid bodies occupying half spaces. Othman and Song (2007) have investigated
a reflection phenomena of the plane waves from a homogeneous thermoelastic solid
half-space with hydrostatic initial stress without energy dissipation. When the two
half spaces are filled with metamaterials then the reflection and transmission problem
deserves a particular interest especially because closed form solutions in the linear
case allow for parametric optimization of metamaterial parameters (Placidi et al,
2018b,a, 2019; Placidi and Barchiesi, 2018; Placidi et al, 2017; De Angelo et al,
2019a; Scerrato and Giorgio, 2019; Turco et al, 2020). Of course the investigations
about multiphysics metamaterials are not yet so advanced as those for the mechanical
metamaterials (dell’Isola et al, 2003; Maurini et al, 2006; Porfiri et al, 2004; Rosi
et al, 2010; Shen et al, 2010). We therefore believe that the present results may
suggest new design solutions in metamaterial theory (dell’Isola and Steigmann,
2020; Spagnuolo et al, 2020a; Yildizdag et al, 2019; Abali and Reich, 2018, 2017).

In this context, magneto-thermo-elasticity, that models the coupling phenomena
between deformation, heat conduction and electro-magnetism, may deserve the at-
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tention of those scholars studying the design of novel metamaterials (dell’Isola and
Steigmann, 2020; Spagnuolo et al, 2020b; Spagnuolo, 2020; Spagnuolo et al, 2017).
These novel applications may be added to those already considered in literature. A
short list of them may include:

i. Geophysics: in particular, for the description of the interaction between seismic
waves and earth magnetic field;

ii. Acoustics: in particular, for studying how magnetic fields may damp acoustic
waves;

iii. Nuclear devices design: for studying the most efficient and highly sensitive
superconducting magnetometer;

iv. Superconductivity: for studying the effects of deformation in superconductors;
v. Electrical power engineering: for obtaining design specification of high power

transmission lines.

The present work develops some ideas already presented in the literature. In partic-
ular, the reflection of plane waves in magneto-thermo-viscoelasticity has been stud-
ied in Abd-Alla and Mahmoud (2013), while coupled magneto-thermo-viscoelastic
phenomena have been studied, in an infinite body and in presence of a spherical
cavity by Abd-Alla et al (2004), in presence of periodic loading the cavity. The
seminal papers by Deresiewicz (1960, 1962) showed how to study the reflection
and transmission of plane waves in thermoelasticity: his studies are a benchmark in
the researches concerning the effects of interface properties on reflection and trans-
mission. When one relaxation time is introduced in heat conduction the reflection
and propagation results for planar waves were found by Sinha and Sinha (1974);
Beevers and Bree (1975) . Instead, Sinha and Elasibai (1995, 1996) considered the
case of two relaxation times. In (Singh and R., 1998; Singh and Kumar, 2003; Singh,
2003) the reflection and transmission at a plane boundary dividing micropolar and
microstretched thermoelastic infinite half spaces has been investigated, in the same
spirit as Placidi et al (2014); dell’Isola et al (2012). Finally, Singh (2005) studied
the reflection of P− and SV−waves at the free surface of a body where thermo
diffusion occurs.

Recently, Kumar and Sarathi (2006) investigated the reflection and refraction of
thermoelastic plane waves at an interface between two thermoelastic media without
energy dissipation. Effect of rotation and imperfection on reflection and transmission
of plane waves in an isotropic generalized thermoelastic media illustrated by Kumar
and Singh (2009). Zhou et al (2012) studied the reflection and transmission of plane
waves at the interface of pyroelectric bi-materials. Abd-Alla and Mahmoud (2010)
investigated the magneto-thermoelastic problem in rotating non-homogeneous or-
thotropic hollow cylinder under the hyperbolic heat conduction model. Abd-Alla
et al (2012b) studied the problem of transient coupled thermoelasticity of an annular
fin. Abd-Alla et al (2011) discuss the generalized magneto-thermoelastic Rayleigh
waves in a granular medium under influence of the gravity field and initial stress.
Abd-Alla and Mahmoud (2013) investigated the problem of radial vibrations in
non-homogeneity isotropic cylinder under influence of initial stress and magnetic
field. Abd-Alla et al (2012a) studied the propagation of Rayleigh waves in magneto-
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thermo-elastic half–space of a homogeneous orthotropic material under the effect of
the rotation, initial stress and gravity field.

In this paper, the reflection and transmission phenomena of thermoelastic plane
waves at an imperfect interface between two dissimilar thermoelastic solid half-
spaces with magnetic field and the rotation has been discussed. The basic governing
equations for isotropic and homogeneous thermoelastic half-space are formulated in
the context of the Green and Naghdi theory. These governing equations are solved
analytically to obtain the amplitude of reflected waves in an xz−plane. It is shown
that there exist three plane waves, namely, a P−wave, T−wave and SV−wave.
The amplitude ratios of various reflected and refracted waves are investigated for an
imperfect boundary. Some special cases of the problem are discussed. It is found
that the amplitude ratios of various reflected and refracted waves are affected by the
stiffness, magnetic field and thermal properties of the media. The amplitude ratios of
reflected waves are also deduced for a special case of stress-free boundary. Numerical
computations are carried out and comparisons made with the results predicted in the
presence and absence of magnetic field and rotation. The results obtained calculated
numerically. Some special cases have been deduced from this work. Finally, the
results obtained are displayed graphically.

14.2 Formulation of the Problem

Le us consider two homogeneous isotropic thermoelastic solids without energy
dissipation being in contact with each other at a plane surface, which we denote as the
plane z = 0 of a rectangular coordinate system axis. We consider thermoelastic plane
waves in the xz−plane with wave front parallel to y−axis and all the field variables
depend only on x, z and t taking into consideration Green and Naghdi (1993) theory,
the field equations of the thermoelastic solid without energy dissipation in the absence
of body forces and heat sources and the constitutive relations can be written as the
following:

σij = (λekk − νT ) δij + 2μeij , (i, j = 1, 2, 3) (14.1)

The field equation of the thermoelastic solid with the energy we can write the
glop equation in elastic with body force and heat source and constitutive relation can
be written as the following:

(λ+ 2μ)∇
(−→∇ .−→u )−μ−→∇×−→∇×−→u −ν−→∇T +

−→
F = ρ

[
∂2u

∂t2
+
(−→
Ω ×−→

Ω ×−→u
)]

(14.2)
where

−→
Ω × −→

Ω × −→u is the centripetal acceleration due to the time varying motion
only.

Let us consider the medium is a perfect electric conductor and the linearized
Maxwell’s equations governing the electromagnetic field, in the absence of the
displacement current (SI) in the form:
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−→
J = curl

−→
h ,−μe ∂

−→
h

∂t
= curl

−→
E ,

div
−→
h = 0, div

−→
E = 0,

E = −μe
(
∂−→u
∂t

×−→
H

)
.

(14.3)

The Maxwell’s electromagnetic stress tensor τij is given by

τij = μe [Hihj +Hjhi − (Hkhk) δij ] , (i, j = 1, 2, 3) (14.4)

The Lorentz’s force given by:

−→
F = μeH0

−→∇
(−→∇ .−→u ) (14.5)

We can write equation 14.2 as

(λ+ 2μ+ μeH0)∇
(−→∇ .−→u )−μ−→∇×−→∇×−→u−ν−→∇T = ρ

[
∂2u

∂t2
+
(−→
Ω ×−→

Ω ×−→u
)]

(14.6)
The temperature equation takes the following:

K∇2T = ρCν
∂2T

∂t2
+ νT0

∂2

∂t2

(−→∇ .−→u ) (14.7)

For a two dimensional problem, the displacement vector −→u is taken by

−→u = (u, 0, w) (14.8)

Let us consider the displacement vector is related with the potential function

−→u = gradφ+ curlψ, divψ = 0. (14.9)

where, the displacement components u and w take the form:

u =
∂φ

∂x
− ∂ψ

∂z
, w =

∂φ

∂z
+
∂ψ

∂x
(14.10)

From Eq. (14.9) we get

∇ · u =
∂2φ

∂x2
+
∂2φ

∂z2
= ∇2φ, ∇2u = Δ1

(∇2φ
)
+Δ2

(∇2ψ
)
,

∂2−→u
∂t2

= Δ1
∂2φ

∂t2
+Δ2

∂2ψ

∂t2
.

(14.11)

where
Δ1 =

(
∂

∂x
, 0,

∂

∂z

)
, Δ2 =

(
− ∂

∂z
, 0,

∂

∂x

)
, (14.12)

and we let the absolute temperature T = Θ.



14 Plane Waves Propagation at the Interface between Thermoelastic Continua 241

Substituting from Eqs. (14.10) and (14.11) into Eq. (14.6), we obtain(
λ+ μ+ μeH

2
0

)∇ (∇2φ
)
+ μ

[
Δ1

(∇2φ
)
+Δ2

(∇2ψ
)]− ν∇Θ

= ρ

[
Δ1

∂2φ

∂t2
+Δ2

∂2ψ

∂t2
+
(−→
Ω ×−→

Ω ×−→u
)] (14.13)

which reduces to the following two equations as

(
λ+ μ+ μeH

2
0

) (∇2φ
)− νΘ = ρ

[
∂2φ

∂t2
−Ω2φ

]
μ∇2ψ = ρ

[
∂2ψ

∂t2
−Ω2ψ

] (14.14)

and Eq. (14.7) reduce to

K∇2Θ = ρCν
∂2Θ

∂t2
+ νT0

∂2

∂t2
∇.φ (14.15)

Equations (2.12)-(2.14) take the following forms:

c21∇2φ− νΘ =
∂2φ

∂t2
−Ω2φ,

c22∇2ψ =
∂2ψ

∂t2
−Ω2ψ,

K∇2Θ =Cν
∂2Θ

∂t2
+ νT0

∂2

∂t2
∇2φ.

(14.16)

where

c21 =
λ+ μ+ μeH

2
0

ρ
, c21 =

μ

ρ
, ν =

ν

ρ
, K =

K

ρ
. (14.17)

Operating by ∇2 on the Eq. (14.16) we get

∇4φ− ν

c21
∇2Θ =

1

c21

[
∂2

∂t2
∇2φ−Ω2∇2φ

]
(14.18)

Substituting from Eq. (??) into Eq. (14.18) we get

∇4φ− ν

c21
∇2

[
Cν

K

∂2Θ

∂t2
+
νT0

K

∂2

∂t2
∇2φ

]
=

1

c21

[
∂2

∂t2
∇2φ−Ω2∇2φ

]
(14.19)

Simplify Eq. (14.19) we get

∇4φ−∇2

[
1

c21

∂2φ

∂t2
− Ω2

c21
φ+

ν2T0

c21K

∂2

∂t2
∇2φ

]
=
νCν

c21K

∂2Θ

∂t2
(14.20)
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Operating by
∂2

∂t2
on the Eq. (14.16) we get

ν
∂2Θ

∂t2
= c21

∂2

∂t2
∇2φ− ∂4φ

∂t4
+Ω2 ∂

2φ

∂t2
(14.21)

Multiply both sides by
Cν

c21K
, we get

νCν

c21K

∂2Θ

∂t2
=
Cν

K

∂2

∂t2
∇2φ− Cν

c21K

∂4φ

∂t4
+
CνΩ

2

c21K

∂2φ

∂t2
(14.22)

Then Eq. (14.20) implying that

∇4φ−∇2

[
1

c21

∂2φ

∂t2
− Ω2

c21
φ+

ν2T0

c21K

∂2

∂t2
∇2φ

]
=
Cν

K

∂2

∂t2
∇2φ− Cν

c21K

∂4φ

∂t4
+
CνΩ

2

c21K

∂2φ

∂t2

(14.23)

If we put ε =
ν2T0
c21Cν

then Eq. (14.23) becomes

∇4φ−∇2

[{
1

c21
+

(
1 + ε∇2 − Ω2

c21

)
Cν

K

}
∂2

∂t2
− Ω2

c21

]
φ+

Cν

c21K

∂4φ

∂t4
= 0.

(14.24)
We assume now the solution takes the following form:

φ˜φe
−iωt, Θ˜Θe

−iωt, ψ˜ψe
−iωt. (14.25)

We can define the constants as

A =
1

c21
+

(
1 + ε∇2 − Ω2

c21

)
Cν

K
, B =

Cν

c21K
, C =

Ω2

c21
. (14.26)

and
∂2φ

∂t2
= −ω2φe−iωt,

∂4φ

∂t4
= ω4φe−iωt (14.27)

From Eqs. (14.26) and (14.27) we can write Eq. (14.24) as the form:

∇4φ+ ω2

(
A+

C

ω2

)
∇2φ+Bω4φ = 0. (14.28)

by solving Eq. (14.28) we get
δ21,2 = ω2λ21,2 (14.29)

where
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λ21,2 =

−
(
A+

C

ω2

)
±
√(

A+
C

ω2

)2

− 4B

2
(14.30)

14.3 Reflection and Transmission

Let us consider a magneto-thermoelastic plane wave (P− or T− or SV−wave)
propagate through the mediumM , which we identify as the region z > 0 and falling
at the plane z = 0, with its direction of propagation making an angle θ0 with the
normal to the surface. Corresponding to each incident wave, we get the waves in
medium M as reflected P−, T− and SV−waves and transmitted P−, T− and
SV−waves in the medium M

′ . We write all the variables without the primes in the
region z > 0 (medium M ) and attach a prime to denote the variables in the region
z < 0 (medium M

′ ), as displayed in Fig. 14.1.

Fig. 14.1 Schematic of the
problem

We consider a two-bonded homogenous isotropic thermoelastic solids in contact,
as shown in Fig. 14.1. If the bonding is imperfect and the size and spacing between
the imperfection is much smaller than the wavelength, then at the interface these can
be described by using spring boundary condition (Lavrentyev and Rokhlin (1988)),
i.e. at z = 0

σ
′
33 + τ

′
33 = Kn

(
ω − ω

′
)
, σ

′
31 + τ

′
31 = Kt

(
u− u

′
)
,

K
′ ∂T

′

∂z
= Kc

(
T − T

′
)
, K

′ ∂T
′

∂z
= K

∂T

∂z
,

σ
′
33 + τ

′
33 = σ33 + τ33, σ

′
31 + τ

′
31 = σ31 + τ31.

(14.31)

whereKn andKt are normal transverse stiffness coefficients of a unit layer thickness
and have dimensionN/m2 andKc is the thermal contact conductance with dimension
W/m2Ks.

The appropriate potentials satisfying the boundary conditions are:
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Medium M:

φ = A0 exp {iδ1 (x cos θ0 − z sin θ0)− iω1t}
+A1 exp {iδ1 (x cos θ1 + z sin θ1)− iω1t}
+B0 exp {iδ2 (x cos θ0 − z sin θ0)− iω2t}
+B1 exp {iδ2 (x cos θ2 + z sin θ2)− iω2t} ,

(14.32)

Θ = a1A0 exp {iδ1 (x cos θ0 − z sin θ0)− iω1t}
+ a1A1 exp {iδ1 (x cos θ1 + z sin θ1)− iω1t}
+ a2B0 exp {iδ2 (x cos θ0 − z sin θ0)− iω2t}
+ a2B1 exp {iδ2 (x cos θ2 + z sin θ2)− iω2t} ,

(14.33)

ψ = D0 exp {iδ3 (x cos θ0 − z sin θ0)− iω3t}
+D1 exp {iδ3 (x cos θ3 + z sin θ3)− iω3t} .

(14.34)

Medium M′ :

φ
′
= A

′
1 exp

{
iδ

′
1

(
x cos θ

′
1 − z sin θ

′
1

)
− iω

′
1t
}

+B
′
1 exp

{
iδ2

(
x cos θ

′
2 − z sin θ

′
2

)
− iω

′
2t
}
,

(14.35)

Θ
′
= a1A0 exp

{
iδ

′
1

(
x cos θ

′
1 − z sin θ

′
1

)
− iω

′
1t
}

+ a
′
1A1 exp

{
iδ

′
2

(
x cos θ

′
2 − z sin θ

′
2

)
− iω

′
2t
}
,

(14.36)

ψ
′
= D

′
1 exp

{
iδ

′
3

(
x cos θ

′
3 − z sin θ

′
3

)
− iω

′
3t
}
. (14.37)

where

B0 = D0 = 0 for incident P − wave,
A0 = D0 = 0 for incident T − wave,
A0 = B0 = 0 for incident SV − wave.

The Snell’s law is given as

cos θ0
V0

=
cos θ1

λ−1
1

=
cos θ2

λ−1
2

=
cos θ3

λ−1
3

=
cos θ

′
1(

λ
′
1

)−1 =
cos θ

′
1(

λ
′
2

)−1 =
cos θ

′
1(

λ
′
3

)−1 (14.38)

where
δ1

(
λ

−1

1

)
= δ2

(
λ−1
2

)
= δ3

(
λ−1
3

)
= δ

′
1

[(
λ

′
1

)−1
]

= δ
′
2

[(
λ

′
2

)−1
]
= δ

′
3

[(
λ

′
3

)−1
]
, at z = 0

(14.39)

and
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V0 =

⎧⎪⎨⎪⎩
λ

−1

1 for incident P − wave,
λ

−1

2 for incident T − wave,
λ

−1

3 for incident SV − wave.
(14.40)

Using the potentials given by Eqs. (14.32)–(14.37) in boundary conditions (14.31)
and using Eqs. (14.1), (14.4) and (14.10), we get a system of six non-homogeneous
equations which can be written as:

6∑
i=1

aijZj = Yi, (j = 1, 2, ..., 6) (14.41)

where:

a11 = iKnδ1 cos θ1, a12 = iKnδ2 cos θ2,

a14 = iKnδ
′
1 sin θ

′
1 +

(
λ

′
+ μ

′
eH

′2
0

)
δ
′2
1 + ν

′
a

′
1 + 2μ

′
δ
′2
1 sin2 θ

′
1,

a15 = iKnδ
′
2 sin θ

′
2 +

(
λ

′
+ μ

′
eH

′2
0

)
δ
′2
2 + ν

′
a

′
2 + 2μ

′
δ
′2
2 sin2 θ

′
2,

a13 = iKnδ3 cos θ3, a16 = −
(
iKnδ

′
3 cos θ

′
3 + μ

′
δ
′2
3 sin2 θ

′
3

)
,

a21 = iKtδ1 cos θ1, a24 = −
(
μ

′
δ
′2
1 sin 2θ

′
1 + iδ

′
1Kt cos θ

′
1

)
,

a22 = iKtδ2 cos θ2, a25 = −
(
μ

′
δ
′2
2 sin 2θ

′
2 + iδ

′
2Kt cos θ

′
2

)
,

a23 = −iKtδ3 sin θ3, a26 = −
(
μ

′
δ
′2
3 cos 2θ

′
3 + iδ

′
3Kt sin θ

′
3

)
,

a31 = Kca1, a34 = −
(
iKca

′
1 + iδ

′
1K

′
a

′
1 sin θ

′
1

)
,

a32 = Kca2, a35 = −
(
iKca

′
2 + iδ

′
2K

′
a

′
2 sin θ

′
2

)
,

a33 = a36 = 0,
a41 = − [(λ+ μeH

2
0

)
+ 2μ sin2 θ1

]
δ21 − νa1,

a44 =
[(
λ

′
+ μ

′
eH

′2
0

)
+ 2μ

′
sin2 θ

′
1

]
δ
′2
1 + ν

′
a

′
1,

a42 = − [(λ+ μeH
2
0

)
+ 2μ sin2 θ2

]
δ22 − νa2,

a45 =
[(
λ

′
+ μ

′
eH

′2
0

)
+ 2μ

′
sin2 θ

′
2

]
δ
′2
2 + ν

′
a

′
2,

a43 = −μδ23 sin 2θ3, a46 = −μ′
δ
′2
3 sin 2θ

′
3,

a51 = μδ21 sin 2θ1, a52 = μδ22 sin 2θ2, a53 = μδ23 cos 2θ3,

a54 = μ
′
δ
′2
1 sin 2θ

′
1, a55 = μ

′
δ
′2
2 sin 2θ

′
2, a56 = −μ′

δ
′2
3 cos 2θ

′
3

a61 = iKa1δ1 sin θ1, a62 = iKa2δ2 sin θ2, a63 = a66 = 0,

a64 = iK
′
a

′
1δ

′
1 sin θ

′
1, a65 = iK

′
a

′
2δ

′
2 sin θ

′
2.

and

Z1 =
A1

A∗ , Z2 =
B1

A∗ , Z3 =
D1

A∗ , Z4 =
A

′
1

A∗ , Z5 =
B

′
1

A∗ , Z6 =
D

′
1

A∗ ,

Taking into account the following cases:

(a) For incident P− wave
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A∗ = A0, Y1 = a11, Y2 = −a21, Y3 = −a31, Y4 = −a41, Y5 = a51, Y6 = a61.

(b) For incident T− wave

A∗ = B0, Y1 = a12, Y2 = −a22, Y3 = −a32, Y4 = −a42, Y5 = a52, Y6 = a62.

(c) For incident SV− wave

A∗ = D0, Y1 = −a13, Y2 = a23, Y3 = a33, Y4 = a43, Y5 = −a53, Y6 = −a63.

where Z1, Z2 and Z3 are the amplitude ratios of reflected P−, T−and SV− waves
and Z4, Z5 and Z6 are the amplitude ratios of transmitted P−, T−and SV− waves,
respectively.

14.4 Cases

14.4.1 Case 1. Normal Stiffness

In the case of Kn �= 0, Kt −→ ∞, Kc −→ ∞ we have a boundary with normal
stiffness and obtain a system of six non-homogeneous equations as given by Eq.
(14.41) with changed values of aij as

a21 = iδ1 cos θ1, a22 = iδ2 cos θ2, a23 = −iδ3 sin θ3,
a24 = −iδ′

1 cos θ
′
1, a25 = −iδ′

2 cos θ
′
2, a26 = −iδ′

3 sin θ
′
3,

a31 = a1, a32 = a2, a34 = −a′
1, a35 = −a′

2.

(14.42)

14.4.2 Case 2. Transversal Stiffness

If we take into consideration Kn −→ ∞, Kt �= 0, Kc −→ ∞ the imperfect
boundary reduces to the transverse stiffness and we obtain a system of six non-
homogeneous equations as given by Eq. (14.41) and the values of aij take the
following form:

a11 = iδ1 cos θ1, a12 = iδ2 cos θ2, a13 = −iδ3 cos θ3,
a14 = iδ

′
1 sin θ

′
1, a15 = iδ

′
1 sin θ

′
1, a16 = −iδ′

3 cos θ
′
3,

a31 = a1, a32 = a2, a34 = −a′
1, a35 = −a′

2.

(14.43)
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14.4.3 Case 3. Thermal Contact Conductance

When Kn −→ ∞, Kt −→ ∞, Kc �= 0 the imperfect boundary reduces to a
thermally conducting imperfect surface, we get system of six non-homogeneous
equations as given by Eq. (14.41) and the modified values of aij are

a11 = iδ1 cos θ1, a12 = iδ2 cos θ2, a13 = iδ3 cos θ3,

a14 = iδ
′
1 sin θ

′
1, a15 = iδ

′
2 sin θ

′
2, a16 = −iδ′

3 cos θ
′
3,

a21 = iδ1 cos θ1, a22 = iδ2 cos θ2, a23 = −iδ3 sin θ3,
a24 = −iδ′

1 cos θ
′
1, a25 = −iδ′

2 cos θ
′
2, a26 = −iδ′

3 sin θ
′
3.

(14.44)

14.4.4 Case 4. Welded Contact

In this case Kn −→ ∞, Kt −→ ∞, Kn −→ ∞ then we obtain a system of
Eqs. (14.41) with changed values of aij as

a11 = iδ1 cos θ1, a14 = iδ
′
1 sin θ

′
1, a21 = iδ1 cos θ1, a24 = −iδ′

1 cos θ
′
1,

a12 = iδ2 cos θ2, a15 = iδ
′
2 sin θ

′
2, a22 = iδ2 cos θ2, a25 = −iδ′

2 cos θ
′
2

a13 = iδ3 cos θ3, a16 = −iδ′
3 cos θ

′
3, a23 = −iδ3 sin θ3, a26 = −iδ′

3 sin θ
′
3,

a31 = a1, a32 = a2, a34 = −a′
1, a35 = −a′

2.
(14.45)

14.4.5 Case 5. Slip Boundary

If Kn −→ ∞, Kt −→ 0, Kn −→ ∞ then the imperfect boundary becomes a slip
boundary and we obtain a system of six non-homogeneous equations as given by
Eqs. (14.41) with modified values of aij as

a11 = iδ1 cos θ1, a12 = iδ2 cos θ2, a13 = iδ3 cos θ3,

a14 = iδ
′
1 sin θ

′
1, a15 = iδ

′
2 sin θ

′
2, a16 = −iδ′

3 cos θ
′
3,

a21 = a22 = a23 = 0, a25 = −μ′
δ
′2
2 sin 2θ

′
2,

a24 = −μ′
δ
′2
1 sin 2θ

′
1, a26 = −μ′

δ
′2
3 cos 2θ

′
3,

a31 = a1, a32 = a2, a34 = −a′
1, a35 = −a′

2,
a44 = a45 = a46 = 0.

(14.46)
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14.4.6 Special Case: Stress-Free Boundary

In this case when Kn −→ 0, Kt −→ 0, Kn −→ ∞ our results reduce to the stress
free thermoelastic boundary and we obtain a system of three non-homogeneous
equations:

3∑
i=1

cijZj = Yi, (j = 1, 2, 3) (14.47)

where

c11 =
[(
λ+ μeH

2
0

)
+ 2μ sin2 θ1

]
δ21 + νa1, c21 = μδ21 sin 2θ1,

c12 =
[(
λ+ μeH

2
0

)
+ 2μ sin2 θ2

]
δ22 + νa2, c22 = μδ22 sin 2θ2,

c13 = μδ23 sin 2θ3, c23 = μδ23 sin 2θ3,
c31 = a1, c32 = a2, c33 = 0, [Isothermal boundary]

(14.48)

or

c31 = ia1δ1 sin θ1, c32 = ia2δ2 sin θ2, c33 = 0, [Insulated boundary]
(14.49)

with
Z1 =

A1

A∗ , Z2 =
B1

A∗ , Z3 =
D1

A∗ (14.50)

Taking into account the following cases:

(a) For incident P− wave; A∗ = A0

Y1 =− c11, Y2 = c21, Y3 = −c31, (Isothermal)
Y3 =c31 (Insulated)

(14.51)

(b) For incident T− wave; A∗ = B0

Y1 =− c12, Y2 = c23, Y3 = −c32, (Isothermal)
Y3 =c32 (Insulated)

(14.52)

(c) For incident SV− wave; A∗ = D0

Y1 = c13, Y2 = −c23, Y3 = c33, (14.53)

where Z1, Z2 and Z3 are the amplitude ratios of refracted P−, T−and SV− waves,
respectively.

14.5 Deductions

(A): In the absence of the thermal effect on the medium we obtain the elastic/
thermoelastic imperfect boundary. We obtain a system of five non-homogeneous
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equations, which can be written as

5∑
i=1

aijZ
∗
j = Y ∗

j , (j = 1, 2, ..., 5) (14.54)

where

a11 = iKnδ1 cos θ1, a12 = iKnδ2 cos θ2, a13 = iKnδ3 cos θ3,

a14 = iKnδ
′
1 sin θ

′
1 +

(
λ

′
+ μ

′
eH

′2
0

)
δ
′2
1 + 2μ

′
δ
′2
1 sin2 θ1,

a15 = −
(
iKnδ

′
3 sin θ

′
3 + μ

′
δ
′2
3 sin2 θ3

)
,

a21 = −iKtδ1 cos θ1, a22 = iKtδ2 cos θ2, a23 = −iKtδ3 sin θ3,

a24 = −
(
μ

′
δ
′2
1 sin 2θ

′
1 + iδ

′
1Kt cos θ1

)
,

a25 = μ
′
δ
′2
3 cos 2θ

′
3 + iδ

′
3Kt sin θ3,

a31 = − [(λ+ μeH
2
0

)
+ 2μ sin2 θ1

]
δ21 − νa1,

a32 = − [(λ+ μeH
2
0

)
+ 2μ sin2 θ2

]
δ22 − νa2,

a33 = −μδ23 sin 2θ3, a34 =
[(
λ

′
+ μ

′
eH

′2
0

)
+ 2μ

′
sin2 θ

′
1

]
δ
′2
1 ,

a35 = −μ′
δ
′2
3 sin 2θ

′
3,

a41 = μδ21 sin 2θ1, a42 = μδ22 sin 2θ2, a43 = μδ23 cos 2θ3,

a44 = μ
′
δ
′2
1 cos 2θ

′
1, a45 = −μ′

δ
′2
3 cos 2θ

′
3,

a51 = a52 = a53 = a54 = a55 = 0
(14.55)

with
λ

′2
1 =

1

c
′2
1

, λ
′2
2 = 0 (14.56)

and

Z∗
1 =

A1

A∗ , Z∗
2 =

B1

A∗ , Z∗
3 =

D1

A∗ , Z∗
4 =

A
′
1

A∗ , Z∗
5 =

D
′
1

A∗ (14.57)

Taking into account the following cases:

(a) For incident P−wave; A∗ = A0

Y ∗
1 = a11, Y ∗

2 = −a21, Y ∗
3 = −a31, Y ∗

4 = a41, Y ∗
5 = −a51 (14.58)

(b) For incident T−wave; A∗ = B0

Y ∗
1 = a12, Y ∗

2 = −a22, Y ∗
3 = −a32, Y ∗

4 = a42, Y ∗
5 = −a52 (14.59)

(c) For incident SV−wave; A∗ = D0

Y ∗
1 = −a13, Y ∗

2 = a23, Y ∗
3 = a33, Y ∗

4 = −a43, Y ∗
5 = a53 (14.60)

where Z∗
1 , Z

∗
2 and Z∗

3 are the amplitude ratios of refracted P−, T−and SV−waves
and Z∗

4 and Z∗
5 are the amplitude ratios of transmitted respectively.
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(B): Taking μ
′ −→ 0 in medium M

′ , we obtain an interface of thermally
conducting liquid/thermoelastic solid half-spaces, leading to a system of five non-
homogeneous equations, which can be written as

5∑
i=1

aijZj = Yj , (j = 1, 2, ..., 5) (14.61)

where

a11 = iKnδ1 cos θ1, a12 = iKnδ2 cos θ2, a13 = iKnδ3 cos θ3,

a14 = iKnδ
′
1 sin θ

′
1 + λ

′
δ
′2
1 + ν

′
a

′
1,

a15 = iKnδ
′
2 sin θ

′
2 + λ

′
δ
′2
1 + ν

′
a

′
2,

a21 = a1, a22 = a2, a23 = 0, a24 = −a′
1, a25 = −a′

2,
a31 = − [(λ+ μeH

2
0

)
+ 2μ sin2 θ1

]
δ21 − νa1,

a32 = − [(λ+ μeH
2
0

)
+ 2μ sin2 θ2

]
δ22 − νa2,

a33 = −μδ23 sin 2θ3, a34 =
(
λ

′
+ μ

′
eH

′2
0

)
δ
′2
1 + ν

′
a

′
1,

a35 =
(
λ

′
+ μ

′
eH

′2
0

)
δ
′2
2 + ν

′
a

′
2,

a41 = μδ21 sin 2θ1, a42 = μδ22 sin 2θ2, a43 = μδ23 cos 2θ3, a44 = a45 = 0,
a51 = a1 (iK

∗δ1 sin θ1 − bc) , a52 = a2 (iK
∗δ2 sin θ2 − bc) , a53 = 0,

a54 = bca
′
1, a53 = bca

′
2,

(14.62)
where

λ
′
1 =

[
1

2

(√
A′2 − 4B′ +A

′)] 1
2
, λ

′
2 =

[
1

2

(
−
√
A′2 − 4B′ +A

′)] 1
2
.

(14.63)
and

A
′
=

1

c
′2
1

+ (1 + ε)
′ C∗′

K
∗ , B

′
=

C
′
ν

c
′2
1 K

, c
′
1 =

λ
′

ρ′

Z1 =
A1

A∗ , Z2 =
B1

A∗ , Z3 =
D1

A∗ , Z4 =
A

′
1

A∗ , Z5 =
B

′
1

A∗

(14.64)

(a) For incident P− wave; A∗ = A0

Y1 = a11, Y2 = −a21, Y3 = −a31, Y4 = a41, Y5 = a51 (14.65)

(b) For incident T− wave; A∗ = B0

Y1 = a22, Y2 = −a23, Y3 = −a32, Y ∗
4 = a42, Y5 = a52 (14.66)

(c) For incident SV− wave; A∗ = D0

Y1 = −a13, Y2 = a23, Y3 = a33, Y4 = −a43, Y5 = a53 (14.67)
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The amplitude ratios Z1, Z2 and Z3 are for reflected P−, T−and SV− waves and
are for transmittedP− and T−waves respectively. If the magnetic field is neglected,
the relevant previous results obtained are deduced as a special case from this study
that discussed by Kumar and Sarthi (2006).

14.6 Particular Cases

We take into our consideration the following cases:

• For deduction (A) and (E):

i. Kn �= 0, Kt −→ ∞, corresponds to the case of normal stiffness boundary.
ii. Corresponding Kn −→ ∞, Kt �= 0, the results discussed above reduce to

transverse stiffness boundary.
iii. IfKn −→ ∞, Kt −→ 0, the corresponding results reduce to slip boundary.
iv. When Kn −→ ∞, Kc �= 0, then we obtain the corresponding results for

welded boundary.

• For deduction (B), (C) and (D):

i. Kn �= 0, corresponding to the case of normal stiffness boundary.
ii. If we take Kn −→ ∞, we obtain the corresponding results for a welded

boundary.

14.7 Numerical Results and Discussion

With the view of illustrating results obtain in the preceding sections and comparing
these in various cases, we now study some numerical results. The materials chosen
for this purpose are Magnesium (M ) and Zinc (M ′ ). Physical data of these metals
are given (Dhaliwal and Singh (1980)) below as follows:

Magnesium (M )

λ = 2.696× 1010 Nm−2, μ = 1.639× 1010 Nm−2, ρ = 1.74× 103 kgm−3,

C∗ = 1.70× 103 J kg−1 deg−1, ν = 2.68× 106 Nm−2 deg−1, T0 = 298 K.

Zinc (M ′ )

λ
′
= 8.58× 1010 Nm−2, μ

′
= 3.85× 1010 Nm−2, ρ

′
= 1.74× 103 kgm−3

C∗′
= 7.14× 103 J kg−1 deg−1, ν

′
= 3.9× 106 Nm−2 deg−1, T

′
0 = 296 K.

Figure 2 we observe the variation of the |δ1| , |δ2| and |δ3| of reflected ofP−wave,
T−wave and SV−wave, respectively,

∣∣δśtrain41

∣∣ , ∣∣δ´2∣∣ and
∣∣δ´3∣∣ of transmission of
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Fig. 14.2 Effects of the rotation on variations of |δ1| , |δ2| , |δ3| ,
∣
∣
∣δ

′
1

∣
∣
∣ ,
∣
∣
∣δ

′
2

∣
∣
∣ and

∣
∣
∣δ

′
3

∣
∣
∣ of the waves

respect the magnetic field

P−wave, T−wave and SV−wave respectively with respect to the magnetic fieldH ,
the reflected of P−wave

∣∣δ´1∣∣ decreases with increasing of magnetic field, while it
increases with increasing of rotation, as well the reflected of T−wave and SV−wave
increases with increasing of magnetic field, while the reflected of T−wave increases
with increasing of rotation , as well there is no effect of rotation on the reflected
of SV−wave and the transmission of P−wave, T−wave and SV−wave increase
with increasing of magnetic field, while the transmission of P−wave and T−wave
decrease with increasing of rotation, while there is no effect of rotation on the
transmission of SV−wave.

Figure 14.3 denotes the variation of the reflected of P−wave speed
∣∣λ−1

1

∣∣ ,
T−wave speed

∣∣λ−1
2

∣∣ and SV−wave speed
∣∣λ−1

3

∣∣, transmission of P−wave speed
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Fig. 14.3 Effects of the rotation on variations of waves speeds
|λ1| , |λ2| , |λ3| ,

∣
∣
∣λ

′
1

∣
∣
∣ ,
∣
∣
∣λ

′
2

∣
∣
∣ and

∣
∣
∣λ

′
3

∣
∣
∣ respect the magnetic field

∣∣λ−́1
1

∣∣,T−wave speed
∣∣λ−́1

2

∣∣ andSV−wave speed
∣∣λ−́1

3

∣∣with respect to the magnetic
fieldH , the reflected of P−wave speed increases with increasing of magnetic field,
while it decreases with increasing of rotation, as well the reflected of T−wave speed
and SV−wave speed decrease with increasing of magnetic field and rotation, the
transmission of P−wave speed and SV−wave speed decrease with increasing of
magnetic field, while the T−wave speed increases with the increasing of magnetic
field, the T−wave speed and SV−wave speed increase with increasing of rotation,
as well P−wave speed decreases with increasing of rotation.

Figure 14.4 shows the variation of the amplitude of reflected P1−wave |z1|, the
amplitude of reflected P2−wave |z2| , the amplitude of reflected P3−wave |z3|, the
amplitude of reflected P4−wave |z4| , the amplitude of reflected P5−wave |z5| and
the amplitude of the reflected P6−wave |z6|with respect to the angle of incident
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Fig. 14.4 Effects of the magnetic field on variations of amplitudes of P-waves respect the angle of
incidence θ0

θ0,the amplitude of reflected P1−wave decreases with increasing of the angle of
the incident, while it increases with increasing of magnetic field, the amplitude of
the reflected P2−wave and P3−wave increases with increasing of the angle of the
incident, the amplitude of reflected P2−wave decreases with increasing of magnetic
field, as well the amplitude of the reflected P3−wave increases with increasing the
magnetic field, it is seen that the amplitude of reflected P1−wave and P2−wave
and P3−wave become maximum values at θ = 90, the amplitude of the reflected
P4−wave, P5−wave and P6−wave increase until becomes maximum values at
θ = 90 with increasing of the and angle of incidence, while the amplitude of the
reflected P4−wave decreases with increasing of magnetic field, the amplitude of
the reflected P5−wave and the amplitude of the reflected P6−wave decreases with
increasing of magnetic field.

Figure 14.5 points to the variation of the amplitude of reflected P1−wave |z1|,
the amplitude of reflected P2−wave |z2| , the amplitude of reflected P3−wave |z3|,
the amplitude of reflected P4−wave |z4| , the amplitude of reflected P5−wave |z5|
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Fig. 14.5 Effects of the rotation on variations of amplitudes of P-waves respect the angle of
incidence θ0

and the amplitude of reflected P6−wave |z6|with respect to the angle of the incident
θ0,the amplitude of reflected P1−wave decreases with increasing of the angle of
incident, while the effect of rotation is very small on the amplitude of the reflected
P1−wave, the amplitude of reflectedP2−wave increases and then decreases and then
increases with increasing of the angle of incident and the rotation until it reaches
a maximum value at θ0 = 90, the amplitude of reflected P3−wave increases with
increasing of the angle of incident until it reaches a maximum value at θ0 = 90,
while there is no effect of rotation on it, the amplitude of reflectedP4−wave increases
and then decreases and then increases with increasing of the angle of incident and
rotation until it reaches a maximum value at θ0 = 90, as well the amplitude of
reflected P5−wave increases and then decreases and then increases with increasing



256 Abd-Alla, Abo-Dahab, Abd-alla, Elsagheer

Fig. 14.6 Effects of the magnetic field on variations of P-waves respect the angle of incidence θ0

of the angle of incident and rotation until it reaches a maximum value at θ0 = 90
of the angle of the incident, the amplitude of reflected P6−wave increases and then
decreases and then increases with increasing of the angle of incident and rotation
until it reaches a maximum value at θ0 = 90,while there is no effect of rotation on
it at θ0 > 80.

In Fig. 14.6 we see the variation of the amplitude of reflected T1−wave |z1|,
the amplitude of reflected T2−wave |z2| , the amplitude of reflected T3−wave |z3|,
the amplitude of reflected T4−wave |z4| , the amplitude of reflected T5−wave |z5|
and the amplitude of reflected T6−wave |z6|with respect to the angle of incident
θ0,the amplitude of the reflected T1−wave increases until it reach a maximum
value at θ0 = 37.5, 40 of the angle of incident and then decreases until vanish
at θ0 = 45,while it decreases with increasing of magnetic field, the amplitude of
reflected T2−wave increases until it reaches a maximum value at θ0 = 22.5, 37.5 of
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Fig. 14.7 Effects of the rotation on variations of amplitudes of T-waves respect the angle of
incidence θ0

the angle of incident and then decreases and increases until vanish at θ0 = 45,while it
decreases with increasing of magnetic field, the amplitude of the reflected T3−wave
increases until it reaches a maximum value at θ0 = 37.5, 40 of the angle of incident
and then decreases until vanish at θ0 = 45,while it decreases with increasing of
magnetic field, as well the amplitude of reflected T4−wave, T5−wave and T6−wave
increase until it reach a maximum value at θ0 = 37.5, 40 of the angle of incident and
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Fig. 14.8 Effects of the magnetic field on variations of amplitudes of SV-waves respect the angle of
incidence θ0

then decreases until vanish at θ0 = 45,while it decrease with increasing of magnetic
field.

Figure 14.7 shows the variation of the amplitude of reflected T1−wave |z1|, the
amplitude of reflected T2−wave |z2| , the amplitude of reflected T3−wave |z3|, the
amplitude of reflected T4−wave |z4| , the amplitude of reflected T5−wave |z5| and
the amplitude of reflected T6−wave |z6|with respect to the angle of the incident
θ0,the amplitude of the reflected T1−wave increases until it reach a maximum
value at θ0 = 37.5, 40 of the angle of incident and then decreases until vanish
at θ0 = 45,while it increases with increasing of magnetic field, the amplitude of
reflected T2−wave increases until it reach a maximum value at θ0 = 22.5, 37.5 of
the angle of incident and then decreases and increases until vanish at θ0 = 45,while
it increases with increasing of rotation, the amplitude of reflected T3−wave increases
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Fig. 14.9 Effects of the rotation on variations of amplitudes of amplitudes of SV-waves respect the
angle of incidence θ0

until it reach a maximum value at θ0 = 37.5, 40 of the angle of incident and then
decreases until vanish at θ0 = 45,while it increases with increasing of magnetic field,
as well the amplitude of the reflected T4−wave, T5−wave and T6−wave increase
until it reaches a maximum value at θ0 = 37.5 of the angle of incident and then
decreases until vanish at θ0 = 45,while it increase with increasing of magnetic field.



260 Abd-Alla, Abo-Dahab, Abd-alla, Elsagheer

In Fig. 14.8 the variation is seen because of the amplitude of reflected SV1−wave
|z1|, the amplitude of reflectedSV2−wave |z2|, the amplitude of reflectedSV3−wave
|z3|, the amplitude of reflectedSV4−wave |z4|, the amplitude of reflectedSV5−wave
|z5| and amplitude of reflected SV6−wave |z6| with respect to the angle of incident
θ0,the amplitude of reflected SV1−wave increases and then decreases until it vanish
at θ0 = 90with increasing of the angle of incident, while it decreases with increasing
of magnetic field, the amplitude of reflected SV2−wave and SV3−wave increase
with the increasing of the angle of the incident, while it decreases with increasing of
magnetic field, the amplitude of reflected SV4−wave and SV5−wave increase and
the decrease with increasing of the angle of incident until vanish at θ0 = 90,while it
decrease with increasing of magnetic field, and the amplitude of reflectedSV6−wave
decreases with increasing of the angle of incident until vanish at θ0 = 90, while it
decreases with increasing of magnetic field.

Figure 14.9 denotes the variation of the amplitude of reflectedSV1−wave |z1|, the
amplitude of reflected SV2−wave |z2| , the amplitude of reflected SV3−wave |z3|,
the amplitude of reflectedSV4−wave |z4| , theamplitude of reflectedSV5−wave |z5|
and the amplitude of reflectedSV6−wave |z6|with respect to the angle of the incident
θ0,the amplitude of reflectedSV1−wave increases and then decreases with increasing
of the angle of incident until it vanish at θ0 = 90, while it decreases with increasing
of rotation, the amplitude of reflected SV2−wave and SV3−wave decrease and then
increase with increasing of angle of incident, while SV2−wave decreases with the
increasing of rotation, as well the SV3−wave increases with increasing of rotation,
the amplitude of reflected SV4−wave and SV5−wave increase and then decrease
with increasing of the angle of incident until vanish at θ0 = 90,while it increases with
the increasing of rotation, and the amplitude of the reflected SV6−wave decreases
with increasing of the angle of incident until vanish at θ0 = 90, while it increases
with increasing of rotation.

14.8 Conclusions

We model Maxwell’s stresses and rotation effects on reflection and transmission
of plane waves between two thermoelastic media without energy dissipation. The
reflected waves velocity with the magnetic field, the rotation and amplitude of the
reflected wave with the angle of incidence are obtained in the framework of dynamical
coupling theory, Green and Naghdi theory. The effects of applied magnetic field and
rotation are discussed numerically and illustrated graphically.

The following conclusions can be made:

i. the reflected waves velocity and amplitude of the reflected wave depend on the
angle of incidence, rotation and magnetic field, the nature of this dependence is
different for different reflected waves;

ii. the rotation and magnetic field play a significant role and the two effects have
the inverse trend for the reflected waves velocity and amplitude of the reflected
wave;
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iii. the rotation and magnetic field have a strong effect on the reflected waves velocity
and amplitude of the reflected wave.

It is observed that the reflected waves velocity and amplitude of reflected wave
change their values in the presence of rotation and magnetic field. Hence, the presence
of rotation and magnetic field affect the reflection phenomena significantly.
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Chapter 15
Casimir Effect on Amplitude-Frequency
Response of Parametric Resonance of
Electrostatically Actuated NEMS Cantilever
Resonators

Dumitru I. Caruntu & Christian A. Reyes

Abstract This paper deals with the effect of Casimir force on the amplitude-
frequency response of parametric resonance of electrostatically actuated nano-
resonators. The resonator is actuated by using an electrostatic force to include a
first order fringe correction. Casimir force and viscous damping force are included
in the model, as well. Both electrostatic and Casimir forces are nonlinear. The be-
havior of the resonator is investigated using two methods, the Method of Multiple
Scales (MMS) for a Reduced Order Model (ROM) using one mode of vibration, and
numerical integration of ROMs using up to five modes of vibration. ROM is based
on the application of a Galerkin procedure that uses the undamped mode shapes of
the cantilevered beam as the basis of functions. The amplitude-frequency response
consists of two bifurcations, namely subcritical and supercritical. The increase of
Casimir effect shows an increase of the interval of frequencies of the unstable zero
steady-state solutions, and a larger range of frequencies for which the system has
stable steady-state solutions for amplitudes larger than 0.5 of the gap.

Keywords: NEMS · Non-linear · Amplitude-frequency · Parametric resonance ·
Casimir effect

15.1 Introduction

Nano-electromechanical systems (NEMS) are of great interest in the development
of miniaturized sensors (Zhang and Turner, 2005; Zhu et al, 2007; Caruntu et al,
2019; Cheng et al, 2007; Cimalla et al, 2007; Zhang et al, 2014), filters (Rhoads
et al, 2005; Lamoreaux, 2004), resonators (Caruntu and Oyervides, 2017; Nayfeh
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et al, 2007; Nayfeh and Younis, 2005; Caruntu and Juarez, 2019; Younis and Nayfeh,
2003; Alsaleem et al, 2009; Zhu et al, 2007; Ke, 2009; Blom et al, 1992; Caruntu
and Knecht, 2011, 2015; Caruntu and Taylor, 2014), actuators (Zand and Ahmadian,
2009; Hu et al, 2004; Younis et al, 2003; Daqaq et al, 2009; Batra et al, 2006; Krylov,
2008; Caruntu et al, 2013b), and switches, motors and relays (Lamoreaux, 2004).
NEMS have numerous applications due to their low power consumption, ease of
fabrication, high efficiency, simple structure, and quick response. These applications
can be achieved via a variety of element configurations and actuation methods (Zhang
et al, 2014). Electrostatic actuation could be used for such NEMS configurations
(Caruntu and Knecht, 2011). One of the critical effects in electrostatically actuated
devices is the presence of pull-in instability which arises due to nonlinearities in
the system. Pull-in occurs when a moving element contacts and “sticks” to another
element within the system. In many systems, this is a major limitation as it can
significantly limit the range of motion of the device (Zhang et al, 2014; Caruntu
et al, 2016). Hence, it is of great interest to predict how system parameters influence
pull-in in order to control or mitigate its effects.

Nonlinearities can arise from a number of sources such as geometric nonlineari-
ties due to large deflections (Spagnuolo and Andreaus, 2019; Baroudi et al, 2019),
squeeze-film damping effects, and actuating forces. In particular, capacitive electro-
static forces are commonly used as the actuating force in nano devices and introduce
nonlinear effects. Additionally, at submicron scales, intermolecular surface forces,
such as Casimir or van der Waals, can affect the behavior of micro- and nano-beams
as well (Ramezani et al, 2007; Caruntu and Juarez, 2019).

The Casimir force and a first order fringe effect models that are considered here
are reported by Ramezani et al (2008). The electrostatic excitation produced by a
fluctuating voltage across the length of the nano-beam parametrically excites the
system. Specifically, a parametric term arises in both linear and nonlinear terms of
the equation of motion. This is similar to Rhoads et al (2006) who investigated a
parametrically excited comb drive system. It was found that such an excitation does
not create just a single defined type of nonlinear effect for the system, but a variety of
effects depending on system parameters in addition to the frequency and amplitude
of excitation. Various bifurcations were found in the system in which the frequency
of excitation was used as the bifurcation parameter. These bifurcations created mixed
nonlinearities in addition to the familiar hardening and/or softening effects. In this
paper, a parametrically excited cantilevered nano-beam is investigated and similar
frequency dependant bifurcations are found.

Understanding the effect of parametric excitations is of general interest. The
stability of these systems and the types of nonlinearities that occur are highly sensitive
to physical parameters as well as frequency and initial amplitude (Nayfeh et al,
2007; Nayfeh and Younis, 2005; Younis and Nayfeh, 2003; Alsaleem et al, 2009;
Rhoads et al, 2006; Caruntu et al, 2016). It is then important to identify bifurcation
parameters and bifurcation points in order to design and control systems under
parametric excitation. Bifurcation phenomena have been investigated in literature for
such parametrically excited systems, mainly for discrete comb drive systems (Rhoads
et al, 2006; DeMartini et al, 2007), but not for cantilevered beam elements. Most of
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the analysis in literature investigated pull-in stability, amplitude-frequency responses
or found limit cycles and time responses of such systems (Zand and Ahmadian, 2009;
Ramezani et al, 2008). Daqaq et al (2009) discussed how parametric excitations in
a cantilevered beam coupled to an electrical system via a piezoelectric patch can
be used for energy harvesting. They found that there is an optimal value for the
electromechanical coupling terms for maximizing the output voltage of the harvester.
They also discussed the sensitivity for the harvester in that there is a critical value
for excitation forces below which oscillations will not occur. The value of the critical
excitation force is dependent on the electromechanical coupling term.

Ke (2009) investigated a double-sided electromechanically driven nanotube res-
onator taking into account van der Waals forces. An energy based method was used
to find analytical relationships for the steady state amplitude of the nanotube as a
function of driving frequency and excitation voltage. An analytical relationship for
the resonant pull-in voltage was also developed. The analytical results where then
verified numerically using a reduced order Galerkin method carried out to 5th order.
Sedighi et al (2014) investigated electrostatically actuated nano cantilever including
the Casmir and van der Waals force using the Parameter Expansion Method.

In this paper, an investigation of the effect of the Casimir forces on the amplitude-
frequency response of parametric resonance of electrostatically actuated NEMS
cantilever resonators is conducted. Forces acting on the resonator are 1) electrostatic
forces to include fringe effect, given by an AC voltage of frequency near natural
frequency of the cantilever, 2) Casimir force due to the gap between the resonator
and a parallel ground plate less than 1μm, and 3) viscous damping force. All forces
are in the category of soft excitation, and weak nonlinearities and damping. In the
case of soft excitation the structure experiences very small amplitudes if not in a
resonant zone.

To the best of our knowledge, this is the first time when 1) the Casimir forces
effect on the amplitude-frequency response is investigated using 2) ROMs up to five
modes of vibration. 3) ROM with one mode of vibration, and all nonlinear terms
expanded in Taylor series with all terms up to cubic power retained is solved using
the Method of Multiple Scales (MMS). 4) ROMs with two, three, four, and five
modes of vibration are numerically integrated using a MATLAB ode solver, namely
ode15s, in order to predict time response of the resonator. 5) ROMs with up to five
modes of vibration are used to perform a continuation and bifurcation analysis using
AUTO 07p software package. 6) This work shows that ROM with five modes of
vibration accurately predict the amplitude-frequency bifurcation diagram (response)
in all amplitudes up to the gap. 7) Casimir forces effect on the amplitude-frequency
response shows that as Casimir forces increase, the softening effect increases and the
bifurcation points (as well as the entire steady-state amplitudes) are shifted to lower
frequencies.



270 Caruntu, Reyes

15.2 System Model

In the present model of the NEMS cantilever resonator, the Euler–Bernoulli theory
of thin beams is used. The resonator is a uniform cantilever.

Electrostatic force is a common source of actuation in Nano-electromechanical
system (NEMS) devices. On micro- and nano-scales, electrostatic actuation is able
to provide sizable forces with relatively low voltages and power consumption. The
Palmer approximate formula (a first order fringing correction) gives the electrostatic
force per unit length as follows:

Fe =
ε0W

2

V (t)2

(g − w)2

[
1 + 0.65

(g − w)

W

]
(15.1)

where ε0 is the permittivity of free space,W is the beam width, g is the gap between
the beam and the ground plate, w is the deflection of the beam, and V (t) is the
applied voltage.

Between the beam and the ground plate is a dielectric material such as air. The
actuation forces are given by the Casimir effect and electrostatic force produced by a
potential difference across the upper beam and underlying ground conducting plate.

The Casimir force is significant for nano-scale systems, and it accounts for the
dispersion forces which arise between closely spaced, uncharged conducting sur-
faces. In the context of the system used in this paper, plate separations are large
enough when pair interactions between atoms and molecules (referred to as the van
der Waals interaction following a 1/d3 relation) are considered non-significant, and
the force between plates depends on only bulk material properties (this is sometimes
referred to as the retarded van der Waals interaction following a 1/d4 relation). This
occurs when the separation of surfaces is significantly larger than the atomic spacing.
The transition between the van der Waals and Casimir regime occurs at a distance of
approximately 20 nm (Ramezani et al, 2008) and hence a larger gap distance will be
considered in this investigation. On the other hand, in order for the Casimir effect to
be significant, surface separations should be less than approximately 1000 nm. The
Casimir force per unit length along the beam is (Lamoreaux, 2004)

Fc =
π2�cW

240(g − w)4
(15.2)

where � = 1.055 × 10−34 Js is Planck’s constant divided by 2π, and c = 2.998 ×
108 ms−1 is the speed of light. The source of this effect is a matter of debate but
is typically attributed to a zero-point energy in the electromagnetic field. Casimir’s
original derivation of Eq. (15.2) is based on this assertion, and with the experimental
verification of this effect has been argued as proof of zero-point energy. Other ap-
proaches, however, have been used to explain the Casimir force completely removed
from zero-point energy resulting in the identical results of Eq. (15.2). One of these
alternative approaches was proposed by Lifshitz who attributed the phenomena to
charge and current fluctuations due to Johnson noise. These fluctuations within a
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material produce a field that can extend beyond its surface resulting in an attractive
force at very small distances (Lamoreaux, 2004).

When modeling structures at the micro and nano scale, air damping effects are
significant and impact the behavior of the system. Viscous flow as the beam moves
through the air is one of the main components of air damping. The force due to
viscous damping is described by

Fd = b
∂w

∂t
(15.3)

where b is the coefficient of viscous damping per unit length.

15.3 Partial-Differential Equation of Motion

The flexible silicon nano cantilever resonator suspended over a grounded substrate
(underlying plate), Fig. 15.1, is electrostatically actuated by applying a potential
difference between the cantilever and the ground plate. In addition to the electrostatic
force, Casimir and viscous damping forces are included in the model. The length
of the beam is considered to be relatively long compared to the underlying gap and
hence the beam will experience only small to moderate deflections, i.e. the slope
of the beam will be relatively small, so the Euler–Bernoulli theory is suitable. This
is important since the model used to describe the electrostatic and Casimir forces
assumes the upper and lower plates to be locally parallel.

Fig. 15.1 Electrostatically Actuated Uniform NEMS Resonator
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The dimensionless equation of motion of the resonator (Caruntu and Knecht,
2011; Caruntu and Martinez, 2014) to include boundary and initial conditions, is
given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂4u(τ, z)

∂z4
+
∂2u(τ, z)

∂τ2
= − b∗

∂u(τ, z)

∂τ
+

α

[1− u(τ, z)]4
+

δV 2

[1− u(τ, z)]2
+

fδV 2

1− u(τ, z)

u(τ, 0) =
∂u

∂z
(τ, 0) =

∂2u

∂z2
(τ, 1) =

∂3u

∂z3
(τ, 1) = 0

u(0, z) = f(z),
∂u

∂z
(0, z) = p(z)

(15.4)

One can see at the right-hand side of the differential equation of motion the dimen-
sionless forces acting on the cantilever; from left to right, they are damping, Casimir,
electrostatic, and fringe effect forces. Variables z, τ and u(τ, z) are dimensionless
longitudinal coordinate, dimensionless time, and dimensionless deflection, respec-
tively, and they are related to their corresponding dimensional quantities x, t, and
w(t, x), respectively, as follows:

u = w/g , z = x/� , τ = t · 1

�2

√
EI0
ρA0

, (15.5)

where � , g,E,A0, I0, and ρ are the beam’s length, initial gap between cantilever and
ground plate, Young’s modulus, cross section area, cross section moment of inertia,
and material density, respectively. The dimensionless parameters α, δ, f and b∗

in Eqs. (15.4) track the effects of Casimir forces, voltage (or electrostatic excitation
amplitude), fringe, and damping, respectively, and they are given by

α =
π2�cW�4

240g5EI0
, δ =

ε0W�4

2g3EI0
V 2
0 , f =

0.65g

W
, b∗ = b

�2√
ρA0EI0

(15.6)

where b is the dimensional damping, and V0 the voltage amplitude. In this investiga-
tion, the dimensionless voltage V (τ), dimensionless frequency of excitation Ω, and
the dimensionless natural frequency ω are as follows:

V (τ) = cos
(
Ωτ

)
, Ω = Ω∗�2

√
ρA0

EI0
, ω = ω∗�2

√
ρA0

EI0
(15.7)

where Ω∗ is the dimensional frequency of excitation, and ω∗ is the dimensional
natural frequency of the resonator. The quality factor is related to dimensionless
damping (Caruntu and Knecht, 2011).
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15.4 Method of Multiple Scales

In what follows, the case of weak nonlinear forces and damping is considered,
i.e. the Casimir, electrostatic, fringe, and damping parameters α, δ, f, and b∗ in
Eq. (15.4) are small. The Casimir, electrostatic, and fringe effect terms in Eq. (15.4)
are expanded in Taylor series around u = 0 and all terms up to cubic power are
retained. Then MMS is applied. A small dimensionless bookkeeping parameter ε is
introduced as factor of all small terms in the resulting equation

∂2u

∂τ2
+
∂4u

∂z4
= −εb∗ ∂u

∂τ
+ εα

[
1 + 4u+ 10u2 + 20u3

]
+ εδ

[(
1 + f

)
+
(
2 + f

)
u+

(
3 + f

)
u2 +

(
4 + f

)
u3
]
V 2(τ) (15.8)

A first-order expansion of the dimensionless transverse displacement u is considered.
This is given by

u(z, τ, ε) = u0(z, T0, T1) + ε · u1(z, T0, T1) (15.9)

where T0 = τ is fast time scale and T1 = ε·τ is slow time scale. The time derivatives
become

∂/∂τ = D0 + ε ·D1, Dn = ∂/∂Tn, n = 0, 1 (15.10)

where Dn, n = 0, 1 represent partial derivatives with respect to the fast and slow
time scales. Substituting Eq. (15.9) and Eq. (15.10) into Eq. (15.8), and equating
coefficients of like powers of the bookkeeping parameter, the following two approx-
imation problems, namely zero-order and first-order, result

Order ε0 : D2
0u0 +

∂4u0
∂z4

= 0 (15.11)

Order ε1 : D2
0u1 +

∂4u1
∂z4

= −2D0D1u0 − b∗D0u0 + α
[
1 + 4u0 + 10u20 + 20u30

]
+ δ

[(
1 + f

)
+
(
2 + f

)
u0 +

(
3 + f

)
u20 +

(
4 + f

)
u30
]
V 2
(
T0
)

(15.12)

The solution u0 of Eq. (15.11) is given by

u0
(
z, T0, T1

)
= ϕ(z)

[
A
(
T1
)
eiωT0 +A

(
T1
)
e−iωT0

]
(15.13)

whereA andA are complex conjugate coefficients depending on the slow time scale.
Enforcing the boundary conditions given by Eq. (15.4), the mode shapes ϕk

(
z
)

and
the corresponding natural frequency ωk are obtained. Natural frequencies and mode
shapes for uniform cantilevers are reported in the literature Alsaleem et al (2009)
and Zhu et al (2007); Caruntu and Knecht (2011). Natural frequencies and mode
shapes of nonuniform structures as well as mathematical methods for finding them
can be found in the literature Caruntu (2007, 2005, 2013). The mode shapes ϕk

(
z
)

of a uniform cantilever form an orthonormal set, satisfying
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〈
ϕk

(
z
)
, ϕn

(
z
)〉

=

∫ 1

0

ϕk

(
z
)
ϕn

(
z
)
dz = δkn ,

d4ϕk

(
z
)

dz4
= ω2

kϕk

(
z
)

ϕk

(
0
)
= 0, ϕ′

k

(
0
)
= 0, ϕ′′

k

(
1
)
= 0, ϕ′′′

k

(
1
)
= 0 .

(15.14)

where δkn is Kronecker’s delta. The first-order approximation can be found by
solving the nonhomogeneous Eq. (15.12). Substituting Eq. (15.13) into Eq. (15.12)
, it results

D2
0u1 +

∂4u1
∂z4

= −2D0D1ϕk

[
Ak

(
T1
)
eiωkT0 +Ak

(
T1
)
e−iωkT0

]
− b∗D0ϕk

[
Ak

(
T1
)
eiωkT0 +Ak

(
T1
)
e−iωkT0

]
+ α

{
1 + 4ϕk

[
Ak

(
T1
)
eiωkT0

+Ak

(
T1
)
e−iωkT0

]
+ 10ϕ2

k

[
Ak

(
T1
)
eiωkT0 +Ak

(
T1
)
e−iωkT0

]2
+ 20ϕ3

k

[
Ak

(
T1
)
eiωkT0 +Ak

(
T1
)
e−iωkT0

]3}
+ δ

{(
1 + f

)
+ (15.15)(

2 + f
)
ϕk

[
Ak

(
T1
)
eiωkT0 +Ak

(
T1
)
e−iωkT0

]
+
(
3 + f

)
ϕ2
k

[
Ak

(
T1
)
eiωkT0+

Ak

(
T1
)
e−iωkT0

]2
+
(
4 + f

)
ϕ3
k

[
Ak

(
T1
)
eiωkT0 +Ak

(
T1
)
e−iωkT0

]3}
V 2
(
T0
)2

In this investigation the AC frequency of excitation is considered near natural fre-
quency Ω ≈ ωk. This nearness is showed by a small detuning parameter σ as
follows:

Ω = ωk + εσ (15.16)

Equation (15.15) is then expanded. The square of the dimensionless voltage V is
given by

V 2
(
T0
)
=

1

2
+

1

4

(
e2iΩT0 + e−2iΩT0

)
(15.17)

After substituting Eq. (15.16) and Eq. (15.17) into Eq. (15.15), the secular terms
containing

(
eiωkT0

)
are collected and their sum set equal to zero. In addition,

the non-homogeneous Eq. (15.15) has to be orthogonal to every solution of the
homogeneous problem Eq. (15.11), so the equation of secular terms becomes

− 2iωkg1kkA
′
k − iωkb

∗g1kkAk +
[
4α+ C2

]
g1kkAk + 3

[
20α+ C4

]
g3kkA

2
kAk+

1

2
C2g1kkAke

2iσT1 +
3

2
C4g3kkAkAk

2
e2iσT1 +

1

2
C4g3kkA

3
ke

−2iσT1 = 0 (15.18)

where

Cm =
1

2

(
m+ f

)
δ, m = 1, 2, 3, 4 , gnkk =

〈
ϕn
k , ϕk

〉
=

∫ 1

0

ϕn
kϕkdz

(15.19)
and n is greater than or equal to zero. A′

k is the derivative of Ak with respect to the
slow time scale T1. Express Ak in polar form

Ak =
1

2
ake

iβk (15.20)
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where ak and βk are real and represent the amplitude of the beam and the phase of the
system relative to the excitation frequency, respectively. Substituting Eq. (15.20) into
Eq. (15.18) and separating the real and imaginary parts, the following amplitude-
phase system of equations results

a′k = ak

[
− b∗

2
+

(
C2 +

C4

2

g3kk
g1kk

a2k

)
sin2γk
4ωk

]
(15.21)

akγ
′
k = akσ +

4α+ C2

2ωk
ak +

3
(
20α+ C4

)
8ωk

g3kk
g1kk

a3k

+ ak

(
C2 + C4

g3kk
g1kk

a2k

)
cos2γk
4ωk

(15.22)

where
γk = σT1 − βk (15.23)

The steady-state solutions result by substituting a′k = γ′k = 0 into Eqs. (15.21)
and (15.22). One of the steady-state solutions is the trivial solution ak = 0 for all
values of the detuning parameter σ. The non-trivial steady state solution case consists
of a set of parametric equations describing the amplitude-frequency bifurcation
diagram (response) as follows:

a2k =
2g1kk
C4g3kk

(
2ωkb

∗

sin2γk
− C2

)
(15.24)

σ = −4α+ C2

2ωk
− 3

(
20α+ C4

)
8ωk

g3kk
g1kk

α2
k −

(
C2 + C4

g3kk
g1kk

a2k

)
cos2γk
4ωk

(15.25)

The MMS steady-state amplitudes of the amplitude-frequency response, Eqs. (15.24)
and (15.25), are afterwards presented in Fig. 15.2 for a uniform beam. It is seen that
a softening type of behavior occurs with two branches, lower and upper, which are
unstable and stable, respectively.

15.5 Reduced Order Model of Uniform NEMS Cantilevers

The analytical results based on steady-state amplitudes which were obtained using
MMS are compared to numerical solutions of Eq. (15.4), in the case of uniform
resonators. The system is considered at nano scale, where the Casimir force is
significant.

To numerically investigate the system, a reduced order model (ROM) is con-
structed (Alsaleem et al, 2009; Younis et al, 2003; Caruntu et al, 2013a). This is
done by utilizing a Galerkin procedure in which the solution is
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u
(
z, τ

)
=

N∑
i=1

ui
(
τ
)
ϕi

(
z
)

(15.26)

where ui
(
τ
)

are time dependent functions to be determined, N the number modes
of vibrations used, and ϕi

(
z
)

the mode shape functions of the uniform cantilever.
The mode shapes satisfy Eqs. (15.14).

It is important to note that when constructing ROM, the treatment of the excitation
force is very important. It was reported by Younis et al (2003) that the exact form
of the forcing function must be used to numerically solve the equations of motion
accurately. It was shown that when the forcing function was Taylor expanded out to
third order before solving, that erroneous results were predicted in amplitudes larger
than 0.5 of the gap. In addition, for the solutions to converge, the number of terms
in Eq. (15.26) must be at least N = 5 (Caruntu et al, 2013b,c).

To implement the ROM, Eq. (15.4) is first multiplied by
(
1 − u

)4 in order
to eliminate any displacement terms from appearing in the denominator. Using
Eq. (15.26) and (15.14), multiplying the resulting equation by ϕn

(
z
)

and integrating
from z = 0 to 1, the following system of equations results

N∑
i=1

üihni − 4

N∑
ij=1

üiujhnij + 6

N∑
ijk=1

üiujukhnijk − 4

N∑
ijkl=1

üiujukulhnijkl

+

N∑
ijklm=1

üiujukulumhnijklm + b∗
N∑
i=1

u̇ihni − 4b∗
N∑

ij=1

u̇iujhnij

+ 6b∗
N∑

ijk=1

u̇iujukhnijk − 4b∗
N∑

ijkl=1

u̇iujukulhnijkl (15.27)

+ b∗
N∑

ijklm=1

u̇iujukulumhnijklm +

N∑
i=1

ω2
i uihni − 4

N∑
ij=1

ω2
i uiujhnij

+ 6

N∑
ijk=1

ω2
i uiujukhnijk − 4

N∑
ijkl=1

ω2
i uiujukulhnijkl

+

N∑
ijklm=1

ω2
i uiujukulumhnijklm = δV 2

[(
1 + f

) N∑
i=1

hn

− (
2 + 3f

) N∑
i=1

uihni +
(
1 + 3f

) N∑
ij=1

uiujhnij + f

N∑
ijk=1

uiujukhnijk

]
+ αhn

where n = 1, 2, . . . , N , and i, j, k, l,m = 1, 2, . . . , N , and
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hn =

∫ 1

0

ϕndz, hni =

∫ 1

0

ϕnϕidz, hnij =

∫ 1

0

ϕnϕiϕjdz,

hnijk =

∫ 1

0

ϕnϕiϕjϕkdz, hnijkl =

∫ 1

0

ϕnϕiϕjϕkϕldz, (15.28)

hnijklm =

∫ 1

0

ϕnϕiϕjϕkϕlϕmdz

Equations (15.27) form a system of N non-explicit coupled, nonlinear ordinary-
differential equations. A finite number of terms N are used in Eq. (15.27). N =
2, 3, 4, and 5 were the ROMs considered.

15.6 Numerical Simulations

The case of uniform cantilever beams is considered. The dimensionless cantilevers
mode shapes, Eqs. (15.13) and (15.14) are reported by Weaver Jr et al (1990) and
given by

ϕk

(
z
)
= −

{
cos

(√
ωkz

)− cosh
(√
ωkz

)
+ Ck

[
sin
(√
ωkz

)− sinh
(√
ωkz

)]}
(15.29)

where ωk are the dimensionless natural frequencies. These frequencies and the
constant coefficients Ck of the first five modes of vibration are given in Table 15.1
(Weaver Jr et al, 1990). Substituting Eq. (15.29) into Eq. (15.19) the coefficients g1kk

Table 15.1 First five natural frequencies and mode shape coefficients for uniform cantilever

k = 1 k = 2 k = 3 k = 4 k = 5

ωk 3.51602 22.0344 61.6972 120.9019 199.8595
Ck -0.734 -1.0185 -0.9992 -1.00003 0.99999

and g3kk can be obtained. The first mode k = 1 is considered. The g coefficients in
this case are

g011 = 0.7830, g111 = 1.0000, g211 = 1.4778, g311 = 2.3488 (15.30)

Similarly, substituting Eq. (15.29) into Eq. (15.28), the h coefficients of Eq. (15.27)
are calculated. Table 15.2 gives the constants of the system. Table 15.3 shows values
of physical characteristics of a typical nano-beam. This leads to realistic values of the
dimensionless parameters given by Eqs. (15.6), and shown in Table 15.4. Substituting
the values given in Table 15.4 and Eq. (15.30) into the steady-state Eqs. (15.24) and
(15.25), the amplitude-frequency relationships are obtained.
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Table 15.2 System Constants

Planck’s constant/2π � 1.055× 10−34 J s
Speed of light c 2.998× 108 m/s
Permittivity of free space ε0 8.854× 10−12 C2/N/m2

Table 15.3 Dimensional System Parameters

Beam width W 125 nm
Beam length l 132 μm
Beam thickness h 165 nm
Initial gap distance g 500 nm
Material density ρ 2330 kg/m3

Young’s modulus E 169 GPa
Quality factor Q 350

Voltage V0 0.02 V

Table 15.4 Dimensionless System Parameters

Casimir parameter α 0.01

Voltage parameter δ 0.10

Fringe parameter f 0.26

Damping parameter b∗ 0.01

Figure 15.2 shows the amplitude-frequency response using three different meth-
ods: MMS, 5T ROM AUTO, and 5T Time Response. In the horizontal axis is the
detuning frequency σ, and in the vertical axis Umax the amplitude of the tip of the
cantilever. MMS is a perturbation method used to solve a ROM with one mode of
vibration and predict the amplitude-frequency response, Eqs. (15.24) and (15.25).
5TROM AUTO is a continuation and bifurcation analysis of ROM with five modes
of vibration, Eqs. (15.27) with N = 5, by using the software package AUTO 07p in
order to predict the amplitude-frequency response. 5T Time Response is a numerical
integration of ROM with five modes of vibration, Eqs. (15.27) with N = 5, using
ode15s, a MATLAB solver of ordinary differential equations, in order to obtain time
responses of the structure. The three methods can be seen to be in good agreement at
amplitudes lower than 0.4 of the gap. However, at higher amplitudes, MMS overesti-
mates the amplitudes. At larger amplitudes 5T ROM AUTO and 5T Time responses
are in good agreement.

The amplitude-frequency response consists of zero-amplitude steady-states, and
two non-zero steady-state amplitude branches. The stable and unstable steady-state
solutions are represented by solid and dashed lines, respectively. Nontrivial ampli-
tudes resulting from Eqs. (15.24) and (15.25) are shown in Fig. 15.2. The solid
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Fig. 15.2 Comparison between MMS, 5T ROM AUTO, and 5T Time Responses. α = 0.01,
δ = 0.1, b∗ = 0.01, and f = 0.26

branch 1, shows the stable steady-state amplitudes. The dashed branch 2, shows
the unstable steady-state amplitudes. Zero amplitude solutions exist for all frequen-
cies. The zero-amplitude solution is stable except for the detuning parameter values
of σA ≤ σ ≤ σB . Two distinct bifurcations, one subcritical and the other one
supercritical, are shown. Bifurcation points A and B are subcritical and supercrit-
ical bifurcation points, respectively. The results shown in Fig. 15.2 are similar to
those reported by Rhoads et al (2006) for a parametrically excited comb drive. Zhu
et al (2007) also obtained similar results in nonlinearly coupled micromechanical
oscillators where a double pitchfork bifurcation was found with softening like char-
acteristics. One can notice a softening nonlinear behavior of the system, i.e. the
non-zero amplitude branches are bent towards lower frequencies. As the frequency
is swept up, the system has zero steady-state amplitude until reaching the subcritical
bifurcation point A. At this point the system loses stability and the system jumps
to larger amplitudes located on branch 1. As the sweeping of frequency continues,
the amplitude decreases along branch 1 until it reaches the supercritical bifurcation
point B. After this point, the response continues with zero amplitudes. When the
frequency is swept down, the system has zero steady-state amplitude until it reaches
bifurcation point B. The amplitude starts increasing along branch 1 until it reaches
the end of the branch, point C. After this point the system loses stability and pull-in
occurs.

It should be noted that the results of Fig. 15.2 will never exceed unity since the
beam displacement of the tip is being considered relative to the initial gap between
the beam and ground electrode. If the beam’s displacement does reach or approach
unity it will experience a pull-in phenomenon. The only stable non-zero amplitudes
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are found in a band around −0.151 < σ < −0.016. For frequencies to the right of
the stable branch, σ > −0.016, all steady-state amplitudes are zero. For any given
frequency to the left of the unstable branch, σ < −0.029, depending on the initial
amplitude, the nano-cantilever settles either to zero steady-state amplitude, or larger
steady-state amplitude on branch 1, or experiences pull-in.

Figure 15.3 shows the effect of the Casimir parameter on the amplitude-frequency
response. As the Casimir force increases the response is shifted to lower frequencies.
Both branches, along with the bifurcation points, are shifted as a whole. While
the bifurcation points A and B are shifted to lower frequencies, the gap between
them does not significantly change. However, the softening effect increases, i.e. the
non-zero amplitude branches 1 and 2 are bent to a larger degree towards lower
frequencies. Therefore the system starts experiencing lower amplitudes with greater
Casimir parameter. The unstable branch experiences less bending from the influence
of the Casimir force than the stable branch. This makes the stable branch get closer
to the unstable branch, reducing the gap between both branches. The end point C
of the stable branch 1 is shifted to lower frequencies as the Casimir force parameter
increases.

Fig. 15.3 Casimir influence on the frequency response using MMS and 5T ROM AUTO. δ = 0.1,
b∗ = 0.01, and f = 0.26

Figures 15.4 through 15.6 show the time responses for specific frequencies and
initial amplitudes. These time responses are in agreement with 5T ROM AUTO
branches in Fig. 15.2. Time responses in Figures 15.4 and 15.5 settle to steady-state
amplitudes on stable branches. For initial amplitudes below and above the unstable
branch one can see that different steady-state amplitudes are reached for the same
frequency, Figure 15.5 c) and d). Figure 15.6 shows two time responses in agreement
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with the predicted last stable amplitude, point C, achieved at high amplitudes. A slight
change in the frequency in Figure 15.6 shows that the nano-cantilever either settles
to a steady-state amplitude on branch BC or experiences pull-in.

Fig. 15.4 Time Responses using five term (5T) ROM. b∗ = 0.01, f = 0.26, δ = 0.1, α = 0.01 and
a) σ = −0.025 with initial amplitude U0 = 0.2, b) σ = −0.035 with initial amplitude U0 = 0.2,
c) σ = −0.015 with initial amplitude U0 = 0.2, d) σ = −0.018 with initial amplitude U0 = 0.1.

Figure 15.7 shows the convergence of the amplitude-frequency response when
using MMS, 2 terms, 3 terms, 4 terms, and 5 terms ROM AUTO. When increasing
the number of terms used in the ROM, the softening effect experienced in the system
is better captured. The stable branch 1 with the end point C can be seen bending as
the number of terms increases. For 4 and 5 term ROM AUTO the branches do not
drastically change, so 5 term ROM AUTO is used in this research. The end point C
of the stable branch can also be seen moving towards lower frequency as the number
of terms increases. 5T ROM AUTO predicts the response and pull-in accurately.

Figure 15.8 and 15.9 show the convergence of the bifurcation points A and B
with the number of terms of ROM. Both figures show that there is no significant
difference between 4 and 5 term ROM AUTO, the responses overlapping each other.

Figure 15.10 shows the effect of the voltage parameter δ on the amplitude-
frequency response of the resonator under Casimir force. One noticeable impact
on the amplitude-frequency response is the frequency gap between the stable and
unstable branches. As the voltage parameter increases, the frequency gap between
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Fig. 15.5 Time Responses using five term (5T) ROM. b∗ = 0.01, f = 0.26, δ = 0.1, α = 0.01 and
a) σ = −0.025 with initial amplitude U0 = 0.1, b) σ = −0.029 with initial amplitude U0 = 0.6,
c) σ = −0.035 with initial amplitude U0 = 0.7, d) σ = −0.035 with initial amplitude U0 = 0.1.

Fig. 15.6 Time Responses using five term (5T) ROM. b∗ = 0.01, f = 0.26, δ = 0.1, α = 0.01 and
a) σ = −0.15 with initial amplitude U0 = 0.87, b) σ = −0.16 with initial amplitude U0 = 0.9
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Fig. 15.7 Convergence of frequency response using MMS, 2 terms, 3 terms, 4 terms, and 5 terms
ROM AUTO. α = 0.01, δ = 0.1, b∗ = 0.01, and f = 0.26

Fig. 15.8 Zoom in showing the convergence of the subcritical bifurcation point A with the number
of terms in ROM.
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Fig. 15.9 Zoom in showing the convergence of the supercritical bifurcation point B with the
numbers of terms in ROM.

Fig. 15.10 Voltage influence on the frequency response using MMS and 5T ROM AUTO.
α = 0.01, b∗ = 0.01, and f = 0.26
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the stable and unstable branch increases due to shifting of the unstable branch, and
the subcritical bifurcation point A, to lower frequencies. The stable branch and the
supercritical bifurcation point B does not have a significant shifting. So, the zero-
amplitude region between branches widens with an increase in the voltage parameter.
Therefore, a larger voltage parameter δ increases the range of values of frequencies(
σA, σB

)
for which the resonator experiences non-zero steady-state amplitudes.

The end point C of the stable branch is shifted to lower frequencies as the voltage
parameter is increased. This causes the range of values of resonant frequencies(
σB , σC

)
for which the resonator can reach non-zero steady-state amplitudes to

increase.
Figure 15.11 shows the effect of fringing parameter f on the amplitude-frequency

response of the resonator under Casimir force. It is seen that as the fringe parameter
increases, the stable and unstable branches are shifted to lower frequencies. Similar
to the voltage effect, the unstable branch along with the subcritical bifurcation point
A are significantly shifted towards lower frequencies with the increase of the fringe
parameter. The supercritical bifurcation point B located on the stable branch is shifted
towards lower frequencies as well, but the shifting is not significant. The end point
C on the stable branch is shown to keep the same amplitude but is shifted towards
lower frequencies. The unstable region

(
σA, σB

)
between branches widens.

Since the value of the fringe effect parameter depends on gap to width ratio,
resonators using narrow beam elements relative to the gap size should pay particular
attention to the fringing that arises in the electrostatic field. The fringe effect enhances
the electrostatic force.

Fig. 15.11 Fringe effect on the frequency response using MMS and 5T ROM AUTO. α = 0.01,
δ = 0.1, and b∗ = 0.01
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Figure 15.12 shows the effect of damping parameter on the amplitude-frequency
response of the resonator under Casimir force. Increasing the damping parameter
b∗ the subcritical bifurcation point A is shifted to higher frequencies, while the
supercritical bifurcation point B is shifted to lower frequencies. Therefore, as the
damping is increased, the frequency gap between the stable and unstable branches,
between points A and B as well, is reduced. At higher amplitudes, the end point C of
the stable branch is shifted to higher frequencies. As for the unstable branch, there
is minor change at higher amplitudes.

Fig. 15.12 Damping influence on frequency response using MMS and 5T ROM AUTO. α = 0.01,
δ = 0.1, and f = 0.26

15.7 Discussion and Conclusions

This paper investigates the Casimir effect on the behavior of electrostatically actuated
NEMS cantilever resonators under parametric resonance. Euler–Bernoulli beam
theory was used for modeling the cantilevered beam under electrostatic actuation.
AC voltage of frequency near natural frequency of the resonator was used to actuate
the cantilever. This led the system into parametric resonance. The forces included
in the model consisted of electrostatic force to include fringe effect, Casimir and
damping forces. The effects of the dimensionless parameters on the amplitude-
frequency response were investigated and reported.

After nondimensionalizing the equation of motion, two methods were used to
solve the equation. The Method of Multiple Scales (MMS) was used in a direct
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approach to find the amplitude-frequency relationship of the system. One should
mention that MMS solved a ROM with one mode of vibration. The second method
used was the Reduced Order Model method with up to five modes of vibration. ROM
was based on a Galerkin procedure. ROM is accurate for strong nonlinearities. The
amplitude-frequency responses from these two methods are compared. Although
MMS captures the system’s behavior quite well, it is limited to weak nonlinearities
and small amplitudes. Nayfeh et al (2007); Nayfeh and Younis (2005) reported the
use of ROM to predict periodic motions. Using ROM method with five modes of
vibration, the response at higher amplitudes is better captured when compared to
MMS. ROM captured also the behavior of the resonator for larger amplitudes includ-
ing the pull-in instability. A similar ROM was used for the cantilevered resonator
considered here using up to five modes of vibration. Using four or more modes
guarantees the convergence of the steady state amplitude (Nayfeh et al, 2007; Younis
et al, 2003). The results of the ROM where compared with the direct (Nayfeh et al,
2007) approach using the Method of Multiple Scales (MMS) for all cases.

It is important to note than both methods are in agreement for amplitudes less
than 0.4 of the gap. The ROM is more accurate for amplitudes larger than 0.4 of the
gap. However, the increased accuracy comes at a cost of increased computational
time.
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Chapter 16
Scintillating Crystals as Continua with
Microstructure

Fabrizio Daví

Abstract A scintillator material converts ionizing radiations into visible light. The
process, a microscopic one related to the band gap energy in the atoms, is mediated by
excited charge carriers which evolve and recombine in photons. Such recombination
process evolves at a scale between the microscopic scale and the macroscopic scale
of the bulk crystals. Here we show how this evolution process can be modeled with
the mechanics of a continua with microstructure. By the means of thermodynamics
we arrive at constitutive relations which lead to a reaction-diffusion-drift coupled
system. Such a system resembles those already obtained, by starting from a different
approach, for semiconductors. The mathematical study of these equations gives an
insight about some properties of scintillator crystal which are confirmed by known
experimental results.

Keywords: Continua with microstructure ·Maxwell equations ·Reaction-diffusion-
drift equations · Scintillating crystals

16.1 Introduction

A scintillator is a material that converts ionizing radiations like γ- or X-rays into
photons which in turn can be collected into light rays and hence plays a fundamental
role in detectors for high-energy physic or medical imaging. The scintillation is a
phenomena well understood, even if not completely, at the microscopic atomic scale
where it depends on the band structure of the atoms (Lecoq et al, 2017; McGregor,
2018): the energy which hits the crystal generates a population of excitation carriers
(charged particles) which recombine in a dissipative and non linear manner to yield
photons in the visible range. The scales of observable phenomena (mainly, the
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light collection, the light yield and the decay-time or timing) is the macroscopic
one whereas the recombination of excitation carriers and the light generation are
phenomena which take place at a mesoscopic scale which is between the microscopic
one of excitation carriers production and the macroscopic one of light propagation
(vid. e.g. Vasil’ev and Getkin, 2014).

Scintillation is an intrinsically non-linear problem that received a lot of attention
from an experimental point of view (vid. e.g. the references in Lecoq et al (2017)):
from the theoretical side what is missing is a model which links the microscopic scale
with the global behavior of the bulk crystals. The problem was partially overset by
two numerical tools, namely the GEANT-4 (Agostinelli et al, 2003) and LITRANI
(Gentit, 2002) programs: moreover, some evolution models borrowed from the kinet-
ics of the chemical reaction are widely used (vid. e.g. amongst the others Vasil’ev,
2008; Singh and Koblov, 2015; Williams et al, 2015, and the references quoted
therein). However, there is the need for a consistent mechanical model, based on a
limited set of parameters, to link the world of experimental results with the results
of the numerical analysis performed on bulk crystals.

In order to attain such a goal, here we assume that the whole process of charge
carriers recombination and photon production can be described in terms of the me-
chanics of a continuum with a suitable microstructure, in the sense of Capriz (1989).
Indeed, provided by a suitable scaling procedure we can to define a state variable
which represents at the mesoscopic scale the microscopic generation phenomena, by
a judicious selection of the director we obtain a balance of microforce equation which
represents, in mechanical language, the conservation of charge for a non-deformable
and non-isothermal scintillator. In Daví (2019a) such an equation was postulated
directly by adding an evolutionary term to the balance of microforce equation: here
we show instead that, provided we introduce the notion of self-energy associated
to the scintillation process, such a balance law follows directly by the invariance
of total power as proposed in Mariano (2001). We first obtain constitutive relations
from thermodynamics and then we show how the excitation carriers generation and
recombination process can be described by a reaction-diffusion-drift equation (Daví,
2019a), coupled with a heat equation which admits heat sources generated by the
scintillation process and with the equation of electrostatic for non-polar bodies. This
result closely resembles the results obtained, by starting from different hypotheses,
in semiconductors (Albinus et al, 2002).

For this set of coupled equations we obtained results about the existence, unique-
ness and asymptotic behavior of the solution which are related to meaningful physical
quantities like decay time and light yield, a measure of the scintillator resolution and
efficiency (Daví, 2019b). In another paper (Daví, 2019c) we showed how with these
results we can well estimate the measured decay time for some well-studied scintil-
lators.

The present treatment differs from those presented into (Daví, 2019a) for the
central role represented by the self-energy associated with the scintillation process:
moreover we extend the model previously obtained to encompass within such an ap-
proach other phenomena like persistent luminescence. The extension to deformable
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continua and mechanoluminescence (light production by deformation) will be the
object of a forthcoming paper (vid. some partial results in Daví, 2019d).

16.2 Excitation Carriers Density and Scintillation Self-Power

LetB a region of the three-dimensional euclidean space which we assume comprised
of a dielectric, non-magnetizable and rigid scintillating crystal. When incoming
ionizing radiation hits B at given point x and time t, the radiation energy generates a
distribution of charged particles (electrons, holes, bounded electron-hole pairs called
exciton) referred as excitation carriers. These excitation carriers which evolves in the
matter according to the Bethe–Bloch equation (Inokuti, 1971; Ziegler, 1999), follow
a complicated path with many kinks and bends for about 10 microns until either
they lose their energy, excites other particles or recombines, generating a shower of
charged particle within a region P ⊂ B whose diameter is about 100 microns (Jaffe,
2007). We call the region P about (x , t) the Scintillation region: it is within this
region that the charged carriers recombine, some of them generating photons.

x.

B

PP

ionizing radiation

·x

hν hν

hν

hν

Fig. 16.1 The scintillation region P.

In the initial stages the particles follow a straight path of few nanometers: in
(Daví, 2019a) we showed how, by the means of a suitable scaling procedure of an
approximate solution of the Bethe–Bloch equation (Ulmer, 2007), we may obtain
a mesoscopic state variable N = N(x , t), the excitation carrier density. Such a
variable, which represents the particle density in the initial stage, brings to the
mesoscopic scale the material properties and the ray-energy which impinges the
material at (x , t). We henceforth assume N a continuous field on the scintillation
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region
N : P× [0 , τ) → R ∪ {0} , (x , t) �→ N(x , t) > 0 . (16.1)

Since the charged particles may have different charge sign and also exhibits differ-
ent recombination and dissipation mechanics it is useful to differentiate them by
introducing an excitation carrier vector, the m−dimensional array:

n ≡ (n1 , n2 , . . . , nm) ,

m∑
k=1

nk(x , t) = N(x , t) ; (16.2)

the simplest non-trivial case is for m = 2 with say n1 representing the electrons
density (which is equal to the holes density) and n2 the exciton density, i.e. bounded
electron-hole pairs which evolve together. The case with m = 3 was proposed in
Williams et al (2011); Moses et al (2012) whereas in Gridin et al (2015) it was
assumed m = 7, whereas the model proposed in Vasil’ev (2008) it is m ≥ 11.

For e the elementary charge, excitation carriers (16.2) induce a free-charge density
ρf within the scintillation volume:

ρf = eq · n , in P , (16.3)

where q = (q1 , q2 , . . . , qm), qk ∈ Z is the charge number vector.
We assume that within the scintillation region P there are no bound charges and

hence, by the Maxwell–Lorentz equations in absence of magnetic fields (Wang,
1979), the excitation carrier densitiy induces an electric potential ϕ:

−εΔϕ = ρ∗ , in R3

[[∇ϕ]] ·m = 0 , on ∂P ,
(16.4)

where m is the outward unit normal to ∂P and:

ρ∗ =

⎧⎪⎨⎪⎩
eq · n , in P ,

0 , in R3/P .

(16.5)

We define the energy associated with the excitation carriers as the sum of the
electrostatic energy with an entropic term F(n) depending on the excitation carrier
density

S(P) =

∫
R3

1

2
ε‖∇ϕ‖2 dV +

∫
P

F(n) dV , (16.6)

were dV denotes the volume element: we leave at this stage the entropic term
unspecified, its nature shall be made precise later on.

Let Πself(P) be the Scintillation self-power, that is the power expended by the
charge carriers in P on P itself: then, by a constitutive assumption introduced in
(DeSimone and Podio Guidugli, 1996) we set:

Πself(P) + Ṡ(P) = 0 ; (16.7)
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by (16.4), from (16.7) we arrive at:

Πself(P) = −
∫
P

(eqϕ+
∂F

∂n
) · ṅ dV . (16.8)

We define Scintillation potential, the m−dimensional array whose components
have the dimension of an energy

g(n) = eqϕ(n) +
∂F

∂n
(n) , (16.9)

and which expends power for the rate-of-change of the excitation carriers density.

16.3 Balance Laws

We assume that the scintillation region P is comprised of a macroscopic continuum
superposed to a continuum with microstructure which, according to (Capriz, 1989)
we represent with a director d defined on (x , t) and which belongs to a manifold M :
at this stage we didn’t specify nor the manifold neither the physical meaning ofd. The
volume microforce b and the surface microforce s represent the external actions on
the microstructure in P, whereas the microstress T represents the internal action and
the interactive microforce k accounts for the interaction between the microstructure
and the macroscopic continua.

As far as the macroscopic state variables here we already assume that the scin-
tillator crystal is rigid and then the only macroscopic descriptor is the absolute
temperature θ = θ(x , t) > 0: accordingly we assume that on P be defined a heat
flux h and a heat supply r; the more general case of deformable crystal will be treated
into a forthcoming paper (vid. also Daví, 2019d).

We define the external power expended on P by the microstructure as:

Πext(P) =

∫
P

b · ḋ dV +

∫
∂P

s · ḋ dA , (16.10)

where dA denote the surface element, and likewise, the internal power

Πint(P) =

∫
P

(T · ∇ḋ+ k · ḋ) dV . (16.11)

In order to led physical significance to (16.10) and (16.11) we identify the scin-
tillation potential with the director velocity:

g = ḋ ; (16.12)

accordingly, M ≡ Rm, s and T represent electric currents (normalized with respect
to the elementary charge e) whereas b and k represent the rates of change of charge
density (again normalized with respect to e) due respectively to external and internal
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charges and the Total power expended on P:

Π(P) = Πext(P) +Πself(P)−Πint(P) , (16.13)

represents the electromagnetic power associated to scintillation.
By (16.8), (16.10), (16.11), with (16.9) and by the divergence theorem we get:

Π(P , g) =

∫
P

(divT − k + b− ṅ) · g dV +

∫
∂P

(s− Tm) · g dA ; (16.14)

we follow (Mariano, 2001) and require that the total power (16.14) be invariant under
the change of observer

Π(P , g) = Π(P , g∗) , g∗ = g + go , go = const. , (16.15)

to obtain the balance laws:

divT − k + b = ṅ , in P× [0 , τ) ,

Tm = s , on ∂P× [0 , τ) .
(16.16)

We remark that since the director is a collection of m− scalar fields there is no
rotational invariance, as pointed out in Mariano (2001): moreover, the change of
observer (16.14) means that the total power is invariant for scintillation potentials
which differs by a constant.

As far as the director d is concerned, by (16.9) and (16.12) its components
represent what in classical mechanics is called the Action:

dk(x , t) = dk(x , 0) +

∫ t

0

gk(x , τ)dτ , k = 1 , 2 , . . . ,m . (16.17)

16.4 Thermodynamics. Constitutive Relations

We assume that within the scintillation region P an Internal energy ε = ε(x , t) and
an Entropy η = η(x , t) are well-defined. Accordingly we assume that we can write
the balance of energy as:

d

dt

∫
P

ε dV = −
∫
∂P

h ·m dA+

∫
P

r dV +Πext(P) +Πself(P) , (16.18)

and the entropy inequality as

d

dt

∫
P

η ≥ dV −
∫
∂P

h ·m
θ

dA+

∫
P

r

θ
dV ; (16.19)

by the divergence theorem and the balance laws (16.16) the local forms of (16.18)
and (16.19) read:
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ε̇ = − divh+ r + T · ∇ḋ+ k · ḋ ,
η̇ ≥ 1

θ
(− divh+ r) +

1

θ2
h · ∇θ .

(16.20)

If we introduce a Gibbs free-energy:

ψ = ε− θη , (16.21)

then from (16.20) we arrive at the reduced dissipation inequality:

ψ̇ + ηθ̇ − T · ∇ḋ− k · ḋ+
1

θ
h · ∇θ ≤ 0 . (16.22)

We assume as constitutive hypotheses for the scintillator crystal that:

• the Gibbs free-energy depends at most on θ, d and ∇d = D:

ψ = ψ̂(θ ,d ,D) ; (16.23)

• the microstress and the interactive microforce can be split additively into a
conservative and a non-conservative (dissipative) part:

T = T c + T d , k = kc + kd . (16.24)

In force of these constitutive hypotheses, from the reduced dissipation inequality
(16.22) a possible separation into a conservative and a dissipative parts leads to:

(
∂ψ̂

∂D
− T c) · Ḋ + (

∂ψ̂

∂d
− kc) · k̇ + (

∂ψ̂

∂θ
+ η)θ̇

−T d · ∇g − kd · g +
1

θ
h · ∇θ ≤ 0 ,

(16.25)

which by customary assumptions leads to the constitutive relations:

T c(θ ,d ,D) =
∂ψ̂

∂D
,

kc(θ ,d ,D) =
∂ψ̂

∂d
,

η(θ ,d ,D) = −∂ψ̂
∂θ

;

(16.26)

and to a possible representation of the dissipative terms

T d(θ ,d ,D , g ,∇g) = S(θ ,d ,D , g)[∇g] ,

kd(θ ,d ,D , g ,∇g) = H(θ ,d ,D ,∇g)g ,

h(θ ,d ,D , g ,∇g) = −κ(θ ,d ,D , g ,∇g)[∇θ] ,
(16.27)
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where S and H are two m ×m positive definite matrices and κ > 0 (the thermal
conductivity). We remark that since (16.9), (16.12) and (16.17) d, D, g and ∇g
depends implicitly on n, then we can formally rewrite (16.27) as in (Daví, 2019a):

T d(θ ,n ,∇g) = S(θ ,n)[∇g] ,

kd(θ ,n , g) = H(θ ,n)g ,

h(θ ,n ,∇θ) = −κ(θ ,n)[∇θ] .
(16.28)

By (16.21), (16.26) and (16.28) the local form (16.20)1 of the energy balance
reduces to:

θη̇ = κΔθ + r + δ(g ,∇g) , (16.29)

where the dissipation δ(g ,∇g) is defined as:

δ(g ,∇g) = S[∇g] · ∇g +Hg · g > 0 ; (16.30)

if we assume a temperature-dependent entropy of the Boltzmann type, η(θ) =
K log θ, K > 0, then from (16.29) we obtain the heat equation with an additional
heat supply provided by the scintillation:

Kθ̇ = κΔθ + r + δ(g ,∇g) . (16.31)

By using (16.24), (16.26) and (16.28) into (16.16) we arrive at the evolution
equations for the excitation carrier density:

div(
∂ψ̂

∂D
+ S[∇g])− (

∂ψ̂

∂d
+Hg) + b = ṅ , g = ḋ , in P× [0 , τ) ,

(
∂ψ̂

∂D
+ S[∇g])m = s in ∂P× [0 , τ) ,

(16.32)

which are coupled with the Laplace equation (16.4) and the heat equation (16.31).
In the evolution equation (16.32)1 we have two different regimes: one which

depends on the pair (g ,∇g) and which is purely dissipative, the other which depends
on the pair (d ,D): the first regime describes the generation and recombination of
excitons into photons, a process whose decay in time is fast. With the second regime,
the equation describes phenomena which decays in longer times, like e.g. persistent
luminescence and related phenomenologies.

16.5 Reaction-Diffusion-Drift Equations for Scintillators

If we assume for the Gibbs free-energy the restricted form:

ψ = ψ̃(θ) , (16.33)
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then from (16.26)1,2 the conservative part of the stress and interactive microforce
both vanish and T = T d, k = kd, with (16.28) still holding. Then, from (16.16) we
obtain the evolution equations in term of the scintillation potential:

div S[∇g]−Hg = ṅ , in P× [0 , τ) ,

S[∇g]m = 0 , on ∂P× [0 , τ) ,
(16.34)

where without loss of generality we assumed b = 0 , s = 0 and which can be put in
the gradient-flow form

D

∫
P

1

2
δ(g ,∇g) dV = ṅ , (16.35)

where D denotes the Frechet derivative and the dissipation is given by (16.30).
From (16.9) we have:

T = S(θ ,n)[∇g] = S(θ ,n)[eq ⊗∇ϕ+
∂2F

∂n2
∇n] ; (16.36)

let N(n) be the m×m matrix:

N(n) ≡

⎡⎢⎢⎢⎣
n1 0 . . . 0
0 n2 . . . 0
...

...
. . .

...
0 0 . . . nm

⎤⎥⎥⎥⎦ , (16.37)

and let N−1(n) be the m×m matrix whose entries are 1/nk for nk �= 0 and 0 for
nk = 0. We define the m×m positive semi-definite Mobility matrix as

M(θ) = eS(θ ,n)N−1(n) . (16.38)

Likewise we define the positive semi-definite m×m Diffusivity matrix:

D(θ) = e−1M(θ)N(n)
∂2F

∂n2
(n) , (16.39)

to arrive from (16.36) to the Nernst–Planck type relation:

T = D(θ)[∇n] +M(θ)[N(n)q ⊗∇ϕ] . (16.40)

As far as the dissipative microforce is concerned, as in Daví (2019a), by following
and idea of Mielke (2011) we set:

k = H(θ ,n)g = K(θ ,n)n , (16.41)

where the m×m Recombination matrix K(θ ,n) has a polynomial dependence on
n.

Provided these hypotheses, then from the evolution equation (16.32)1 we arrive
at the same reaction-diffusion-drift equation obtained in (Daví, 2019a)
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div(D(θ)[∇n] +M(θ)[N(n)q ⊗∇ϕ])−K(n)n = ṅ , in P× [0 , τ) ,

D(θ)[∇n]m = 0 , in ∂P× [0 , τ) .
(16.42)

where we took into account the boundary condition (16.4)2: also, from (16.16) we
are able to write the dissipation (16.30) as∫

P

δ dV = −
∫
P

g · ṅ dV = Πself(P) > 0 , (16.43)

which shows that in this case the self-power has a dissipative nature, that the evolution
equation is the gradient flow of the self power and that the scintillation potential
opposes itself to the rate-of-change of excitation carriers densitry.

Equation (16.42)1 is the same as proposed into (Vasil’ev, 2008) by following ideas
given by (Fok, 1964) and (Antonov-Romanovskiy, 1966) and which was widely used
in its Kinetic or Diffusive approximation (disregarding respectively the microstress
or the interactive microforce) in many experimental and theoretical papers like e.g
Bizzarri and Dorenbos (2007); Bizzarri et al (2009b,a); Li et al (2011); Williams
et al (2011); Singh (2011); Moses et al (2012); Khodyuk and Dorenbos (2012); Grim
et al (2012); Khodyuk et al (2012); Singh and Koblov (2015); Williams et al (2015);
Gridin et al (2015); Lu et al (2015); Vasil’ev (2017); Lu et al (2017).

The same result was obtained, by starting from a different approach, in Albinus
et al (2002); Mielke (2011) for semiconductors.

We look now in some details to the entropic term F(n): in Daví (2019a) it was
assumed to represent the Gibbs entropy of the excitation carriers density :

F(n) = θkB

m∑
k=1

nk(log(Cknk)− 1) , (16.44)

where Ck are normalizing constants and kB is the Boltzmann constant. It easy to
show that:

∂2F

∂n2
= θkBN−1 , (16.45)

and then from our definition (16.39) of Diffusivity matrix we are able to recover the
Einstein-Smoluchowsky relation:

D =
θkB
e

M . (16.46)

Under such an hypothesis into (Daví, 2019b) we show how, by adapting to the
results obtained by Desvillettes and Fellner (2006); Fischer (2017); Chen and Jüngel
(2017); Fellner and Kniely (2018); Chen and Jüngel (2019) in the case m = 2 we
may proof the existence of renormalized and weak solutions for (16.42) as well as
we may obtain upper-bound estimates for the asymptotic behaviour of the solution.
This last result is very important because is an estimate of one of the most important
properties of scintillators, the decay time. To this regard, into Daví (2019c) we
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took the experimental data available for four well-studied scintillating crystals and
applied the result obtained into Daví (2019b) to estimate the decay time. The results
obtained were a very good estimate of the decay times experimentally measured for
some scintillators. The method would also be helpful, together with computer-aided
methods, to design crystals with faster decay times.

16.6 Conclusion

We obtained a mechanical thermodynamically-consistent model for the evolution of
charge carriers in scintillators, much has it was done in semiconductors by (Albinus
et al, 2002). The novelty of our approach is that the results were obtained within
the mechanics of continua with microstructure (Capriz, 1989) and that the relevant
balance law was obtained by the requirement of invariance of the total power, taking
into account the electronic self-power generated by the excitation carriers population.

The coupled reaction-diffusion-drift systems which we obtained has obtained a
great degree of attention in these recent years (Fischer, 2017; Chen and Jüngel,
2017; Fellner and Kniely, 2018; Chen and Jüngel, 2019), an instance which allows
to obtain a good mathematical estimate of the scintillator decay time, besides other
results concerning e.g. the existence of solutions. These results are in accordance
with the existing experimental data.

However, there are still many points which deserve further investigations:

• The relevant mathematical result concerning the decay time holds for m = 2
(which is enough for classical semiconductor models): it has to be extended to
the case m > 2;

• the purely dissipative reaction-diffusion-drift system (16.42) is a special case of
a more general system (16.32) which contains conservative terms. The insight
is that these terms should describe phenomena like the persistent luminescence
which is in some cases associated to scintillation. A complete constitutive theory
which can explain these behaviors, which are experimentally well documented,
is still missing;

• the model has to be extended to the deformable case (as in Xiao and Bhat-
tacharya (2008) for semiconductors) to account also for defects associated with
the residual stress due to crystal growth process and to account for radiation
damage and viscous-like phenomena due to transient stress. Some partial results
are presented into Daví (2019d);

• in (Mielke, 2011), the advantages and limits of the choice (16.44) are discussed
in some details. Indeed it would be more appropriate to choose for the term
F(n) an expression based on the Fermi-Dirac statistics proposed in (Albinus
et al, 2002):

F(n) = kBθ

m∑
k

Ck

(
zf −1

γ−1(z)− fγ(f −1
γ−1(z))

)
, z = Cknk , (16.47)
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where

fγ(z) =
1

Γ (γ + 1)

∫ ∞

0

ξγ

1 + exp(ξ − z)
dξ , γ > −1 . (16.48)
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Chapter 17
Modeling of Pyramidal Lattice Structures
Compared to Tomographic Analysis

Valentin Hassaine-Daouadji, Rui-Pedro Carreira, Jean-François Witz, and
Mathias Brieu

Abstract Architectured materials can now be easily produced thanks to recent de-
velopments in additive manufacturing processes. Such mesostructures have great
potential to supplement the classical materials used for shock absorption in mul-
tiple protective applications (with expanded polystyrene (EPS) or ethylene-vinyl
acetate (EVA) components), conferring security, comfort and lightness. Beyond the
selected raw material, the choice of the lattice pattern and the way it is repeated
directly affects the macroscopic mechanical response of the manufactured structure
under compressive loading. With respect to the colossal amount of lattice shapes, a
cost effectiveness design of experiment is needed in order to efficiently find the right
compromise between geometries, material, and applications. Based on identified me-
chanical properties of a thermoplastic polyurethane (TPU) material selective laser
sintered, and the characterization of several lattice structures, we propose a relevant
numerical modeling tool of pyramidal lattice structures and validate its reliability
and robustness.The finite element model (FEM) is based on a beam design of trusses
with parameterized stiffeness at the vertices (beam intersections). The patterns stud-
ied are octet-structures of 1mm diameter beams with 35◦, 45◦ and 55◦ angles. In
parallel, X-Ray computed tomographic analysis performed during compressive tests
provided the macroscopic static behavior and kinematic behavior of the considered
structures. The tomographic images are analyzed and directly confronted to the FEM
results, which enables us to improve and assess our model.
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17.1 Introduction

Additive manufacturing is a method for generating parts by adding successive layers
of matter. The entry into the public domain of patents related to printing technologies,
like the fused deposition modeling (FDM) (Crump and Muir, 1992), or the selective
laser sintering (SLS) (Deckard, 1986), has been accompanied by a rapid development
of increasingly accurate and innovative new printers. Today, a real effervescence,
both in industry and in the general public, results from the drastic drop in machine
prices. This context, which is conducive to the emergence of additive manufacturing
as a means of production in its own right, encourages organizations to change their
traditional design schemes and rethink conventional technical solutions (Pradel et al,
2018).

In particular, additive manufacturing makes it possible to produce complex parts
and create micro-architectural forms that were not previously manufacturable. Cellu-
lar materials as well as architectural materials and lattice structures are renowned for
their good shock absorption properties (Avalle et al, 2001)(Barchiesi et al, 2019), and
caught the attention of sports and leisure products manufacturers (Soe et al, 2015b),
(Robinson et al, 2017; Fusco and Nike, 2004). Indeed, the possibilities offered by
these types of geometries in terms of design, absorption performance, lightness and
breathability seem uncommon. These architectural materials could replace part of
the current offer of foams conventionally used in protective and footwear products.
The injection manufacturing processes for helmet EPS foams as well as the EVA
foams for soles have many defects, including poor control of local foam densities and
considerable edge effects (Arefmanesh et al, 1990; Gosselin and Rodrigue, 2005).

Lattice structures will have to meet, like conventional foams, requirements in
terms of conformity and standards (AFNOR, 2013; CPSC, 1998), guaranteeing
the safety of users. These product validations consist mainly of laboratory tests
on time-consuming and resource-intensive prototypes. However, these tests have
their digital counterparts which make it possible to iterate more quickly on the
design of products. It is therefore necessary to understand and represent the effective
mechanical behavior of these structures. An accurate numerical representation of the
behavior of architectural structures then becomes essential to assess the relevance of
these components as substitutes for foams.

A huge diversity of lattice patterns is generable , such as body center cubic models
(Yuan et al, 2017), octet-truss structures (Deshpande et al, 2001b), Kelvin patterns
and other geometries (Luxner et al, 2007; Soe et al, 2015a). In addition, there is a
large number of additive materials and manufacturing processes (Yuan et al, 2018).
A choice was made to limit the study; the material used is a TPU. The pattern studied
is the octet-truss pattern in its bending dominated form (Deshpande et al, 2001a;
Hammetter et al, 2013). This particular shape can be stiffened by simply adding
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horizontal beams to the pattern. This ease of behavior change could be interesting
in the sizing of sports products to locally stiffen the part and thus adapt the structure
if required.

The first modeling approach to represent the behavior is the raw simulation of the
structure with 3D finite elements (Tancogne-Dejean et al, 2016). The modeling of a
complete part and its immeasurable facets of lattice structures is too costly in terms
of computation time to iterate quickly designs in a industrial development of sports
products context.

A second possible method is homogenization of lattice structures. A costless
modeling could be implemented by only representing the homogeneous material
equivalent to a representative elementary volume of void and lattice structures.
Several authors have studied the question (Bohm, 2017; Hoang, 2012) and many
industrial tools are emerging to propose ergonomic solutions to the homogenization
of additive manufactured structures (Omairey et al, 2019; Adam et al, 2017; Lejeunes
and Bourgeois, 2011). In the current configuration, the technology and targeted sports
applications does not allow more than 3 to 4 repetitions of patterns in the thickness
of a helmet or sole (2 − 3 cm maximum). This low number of pattern replication
does not allow a representative elementary volume to emerge and homogenization is
therefore unsuitable for our study. Avoiding homogeneisation and directly calculating
the corresponding elasticity tensor of the whole structure is a method proposed by
(Milton et al, 2017).

The approach finally considered as the most realistic is the following: the modeling
of lattice structures as one-dimensional beam elements structure. Severals athors
decided to represent structural mechanisms in this way (Turco et al, 2016, 2018).
The beam simulation seems ideal to represent a lattice network. With this structural
approach the computation time is very low, and accurately represents the lattice
geometry.

In order to validate the relevance of the beam modeling, different TPU lattices
structures from an SLS process have been studied in quasi-static compressions
monitored by tomography.

The exact strain fields and macroscopic force signals have been recorded and
considered as references to assess the relevance of the subsequent modeling. In a
third part, a modeling with the finite element software ABAQUSTM of these same
beam structures is presented. The comparisons between the kinematics and statics of
the real tests and modelings are presented to validate the beam element modelings.

As a result, we will show this approach is able to model the mechanical behavior
of octet-truss lattice structures with beam elements.

17.2 Materials and Prints

The SLS process is selected for this study. Such powder bed fusion technology builds
objects by melting thin layers of powder feedstock. In our case, the laser is used to
melt cross sections of the truss, a layer at a time. The EOS P380 printer is used to
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process a TPU material with a powder layer thickness of 0.15mm. The scan speed
was 5m/s, with a CO2 laser type and a F-theta lens.

The TPU is well known for its mechanical performances close to those of plastics
and its elastic properties adjoining those of elastomeric materials. More specifically,
the TPU 92A-1 used in this study has a density of 1.2 g/cm3, it is flexible, known for
its durability and its high resistance to tearing. Three different octet lattice structures

Fig. 17.1 CAD of the three lattice structures studied

in Fig.17.1 with three different angles were printed for this study. Octet patterns at
35◦, 45◦ and 55◦ are repeated so that the lattice structure can match the maximum
size admissible in the tomographic chamber (20 × 20 × 30mm3). Each structures
where designed with beams of 1mm diameter (which is the minimal feature size
admissible with this SLS technology). The resulting slenderness ratio of the 35◦, 45◦
and 55◦ structures are respectively 6.10, 4.95 and 6.10 and has a volumetric density
of 0.03, 0.04, and 0.04. These volumetric densities applied to the TPU material
of 1200 g/L are coherent with the classical foams used by the sport and leisure
manufacturers.

17.3 Mesoscopic Testings

17.3.1 Tomographic Device

The X-ray tomographic analysis (Baruchel et al, 2000; Buffiere et al, 2010) is a non-
destructive characterizing technique revealing the internal composition and geometry
of the tested sample. The platform Isis4D, partner of the LaMCube, propose a
tungsten tomographic system which has the particularity of being added to a testing
device inside the measurement chamber. This uni-axial electro-mechanical testing
system enables compression and tensile testings on maximum 40mm wide samples
inside a transparent plexiglass cell. Loadings are monitored by a stepper motor
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gearbox added to a prestressed ball screws piston type with a displacement controlled
motor. The centering of the cell on the rotation plate is ensured by a precision
automated biaxial translation stage.

The whole system enables 3D images acquisition during stresses tests. The voxel
size is 30μm3.

17.3.2 Compression Tests Method

The lattice structures are submitted to uniaxial compression beetween two flat plex-
iglass plates inside the tomographic device. The displacement apparatus is driven
at very specified compressive strain rate. The upper and lower surfaces parts of the
samples in contact with the plates are allowed to slide laterally. The other four faces
of the samples (the lateral faces) are load-free. 3D images are taken during two
loadings/unloadings cycles in order to observe if the cellular material is damaged
during the first loadings. Five images per sample are performed.

• One image at the initial state with a 1N preloading to ensure contact
• Second image at 10% compression
• Third image back to the initial state with at least 1N, for contact preservation
• Fourth image at 25% compression
• Fifth image back to the initial state with at least 1N, for contact preservation

Compressions are performed at 0.033mm/s.

17.3.3 3D Images Reconstruction Method

The volume observed is obtained by digital reconstruction using a filtered back-
projection algorithm (Kak and Slaney, 1987). The reconstructed volume is then
a tridimensional mapping of the attenuation coefficient gi of the tested sample
(Baruchel et al, 2000). A grays segmentation method is used on these 3D images.
The void zones are identified by thresholding and only the voxel corresponding to
the material are considered. Many authors have already analysed lattice structures
under tomographic studies (Bernal Ostos et al, 2012; Tancogne-Dejean et al, 2016;
Liu et al, 2017).

17.3.4 3D Images Observations

The following figure 17.2 shows a 3D image of a lattice structure analyzed by to-
mography. The 3D images during the 25% compressions are reconstructed using the
same method as presented just before. The image reconstruction is efficient. We are
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Fig. 17.2 Tomographic 3D images of the 35◦, 45◦ and 55◦ structures before (left a,b,c)
and during the 25% compression (right a’,b’,c’) tests

able to recreate the lattice geometry thanks to the retro-projection filtered algorithm.
The results of the tomographic pictures were noisy, especially near the compressive
upper and lower plates. In fact the absorption coefficient of the constitutive material
of the compressive plates (plexiglass) is very close to the one of the TPU constitutive
of the studied lattice structures. The meticulous thresholding required to accurately
distinguish the upper and lower vertexes from the plates induced some noisy vox-
els in this area. Successive erosions and dilations image treatments added with a
Gaussian filter were applied to remedy this. The structures are then clearly visible
with clean extremities Fig.17.2. No internal porosity can be observed. There are no
apparent defects on the 3D pictures, no stratification or lamination, no impurities
and no significant density variation.
On the tomographic images, we can observe on the lattice larger areas than the rest of
the structure fig. 17.4. These are the areas where the beams intersect with each other
that will be named vertices or vertexes in this study. These vertices are voluminous
for two reasons: first, the mathematical intersection of two, three or four cylinders is
indeed a three-dimensional space whose volume will depend on the angle between
the bodies. A formulation of this zone is also proposed by some author (Hammetter
et al, 2013). Secondly, the resolution of the printing machine does not allow these
cylinder intersections to be perfectly represented and matters agglutinate in these
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recesses. The selected technology of the printing machine makes the vertices larger
than expected.
A very qualitative observation of those 3D images fig. 17.2 shows three different
displacements behaviors for the three lattice structures. For the 35◦ structure, the
lattice is deformed in the manner of a pantograph; the beams keep their rectilinear
apparence. The trusses moved because of local bending at the vertices such that the
structure seems to be folded. For the 45◦ structure, we can notice inflexion points
for the truss and a moment appearance near the vertexes. For the 55◦ structure,
the moments at the vertexes are dominating, there are rigid body-like rotations at
the vertices and the truss are highly bent. For the three structures, the macroscopic
Poisson’s ratio is very small, and there is no horizontal convexity or “barrel effect.”

17.3.5 3D Images Analysis

The resulting 3D images are 8bit grayscale images of approximately 1000× 1000×
1000 voxels. Those images are processed in order to extract some quantifiable
informations useful for our study.

17.3.5.1 Beams Stability

The first useful information that can be extracted from these 3D images is the
dimensional stability of the structure.

The diameters of the beams of the three structures were checked using the skele-
tonize and medial axis plugin from Python-skimage (Vanderesse et al, 2016). Av-
erages analysis of several areas of the 3D images of the structures were performed.
The equivalent average diameters and the associated standard deviations have been
represented in the Fig. 17.3. We notice that diameter of 1mm is well respected. The

Fig. 17.3 Beam diameter analysis by Python-skeletonize-skimage plugin
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overall diameter of the beam is 1mm as drawn on the CAD.
The stability of the radius compiled in Fig. 17.3 for all the beams reassures us

with the idea of modeling them with a uniform cross-section elements. The first
simulation hypothesis consisted in proposing a Timoshenko beam approach with a
homogeneous cross-section of 0.5mm radius to represent the lattice.

17.3.5.2 Matter Caking at the Vertices

A second useful information is the size of the vertices areas. The size and shapes
of theses interesting zones can lead to a better understanding of the mechanics of
the whole structure. The way the vertices are constituted can help us to accurately
represent the structure kinematics.

A cross section analysis approximate the average size of the vertices of each
structures. This succession of 2D planes analysis was performed by a Python code
based on thresholdings added to the labelization of wide cross section areas. Three

Fig. 17.4 Zoom of the tomographic picture of the lattice 45◦

different vertices cross sections are presented Fig. 17.4. We consider that the vertice
stops where the four beams constitutive of the vertex are clearly distinct and separated.

Three joining moment of the beams are presented by the three cutting views
of the Fig. 17.4. On these 2D reduced images, the section size S can be extracted.
Assuming that the section is circular (which is clearly false at some place of the
vertice), we can estimate the equivalent radius ∼ R matching the measured section.
This ∼ R is considered as an indicator of the stiffenning occuring near the vertices.

As a result of this cross section analysis, we understood that the vertices are very
larges aeras where the stiffness must be increased by at least two to five times.
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17.3.5.3 3D Images Analysis Method

A last useful information is the positions of the intersection areas between the beams
i.e the coordinates of the center of the vertices.

To do so, a Gaussian filter is applied on the 3D images with :

G(x, y, z) =
1√
2πσ

e−
x2+y2+z2

2σ2 (17.1)

where σ is the windows of the filter in the x,y,z 3D images coordinates.
The local curvature of the 3D images can be calculated with :

H(gi) =
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(17.2)

where gi is the grays level intensity of the 3D images from the tomographic recon-
struction, andHHH the Hessian matrix operator.

The results of the convolution of the gaussian filter G with the hessian H(gi) is
named H .

H = G(x, y, z)�H(gi) (17.3)

Each coefficient of H will be then identify as Hij . Thanks to the Eq. (17.2) we can
calculate the second invariant I2 of H as follows:

I2 = tr(com(Hij))

= [tr(Hij)
2 − tr

(
H2

ij

)
]

= H11H22 +H22H33 +H33H11 +H2
12 +H2

23 +H2
31

(17.4)

The sign of the I2 enables to distinguish the zones corresponding to the beams from
the zones considered as vertices Fig. 17.5. The coordinates of the gravity center of
the vertices zones are identified and recorded.

17.3.5.4 Vertices Displacements: Kinematic Reference

The analysis of this second invariant of the Hessian matrix applied to the intensity
gradients of the 3D image from the tomograph enables the identification of the co-
ordinates of each vertices of the structure. From these coordinates, a reconstruction
of the lattice skeleton is performed by a Python code. The lattice skeleton as ob-
served on the tomograph is thus reconstructed and serves as the basis for the mesh
implemented in the Abaqus simulation Fig. 17.5. Similarly, the image processing
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Fig. 17.5 Beam/Vertex distinction by the I2 of the Hessian (left),
Skeleton reconstruction for finite element analysis (right)

with the second invariant of the Hessian allows to distinguish the vertices from the
beams on the deformed structures. Vertexes coordinates of the deformed structures
are recorded. The displacement of each nodes from the upper and lower layers are
imposed as boundary conditions in the Abaqus modeling. The positions of every ver-
tices of the compressed structures will also serve as a reference for the kinematics. In
fact, the upcoming modelings will be compared to the displacement field observed.
The accuracies of each modeling will be quantified by a deviation criterion to those
kinematics references.

17.3.5.5 Macroscopic Efforts Signals: Static Reference

The uni-axial cell registers force during the compressive loadings. For each of the
three structures, the maximum load appends at the maximum strains (25%) and are
synthesized in the Table 17.1.

Table 17.1 Cyclic compressive loadings measurements

Lattice Structures

35◦ 35◦ 45◦ 45◦ 55◦ 55◦

compressive compressive compressive compressive compressive compressive

strain 0% strain 25% strain 0% strain 25% strain 0% strain 25%

Displacements(mm) 0.485 7.158 0.492 7.157 0.486 7.453

Efforts(N) 1 8 2 38 2 29
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17.4 Simple Finite Elements Modelings

17.4.1 Simple Modelings Method

An Abaqus explicit model is implemented with the three considered architectures
(at 35◦, 45◦ and 55◦). The lattice structures bases of modeling for the numerical
investigation are made of Timoshenko linear beams. The exact geometry of the three
lattice structures, and the exact nodal coordinates of each vertex, are determined
by the tomographic analyses of the mesostructures. Beam elements are designed
between the rightful nodes and the lattice structures are generated as observed.
Each beam is segmented in ten elements, which is more than enough to achieve
mesh convergence (Luxner et al, 2007). The 3D images of the deformed structures
Fig. 17.2 shows large displacements and deflections due to rotations. We can thus
assume the mechanical behavior can be modeled as an elastic behavior under large
transformation. The transformation is large only because of rotation, but the strain
remains low and the linear elastic Hooke’s law remains relevant. The constitutive
material of the beams is determined by macroscopic tensile tests on bulk samples
printed with SLS. We choose a perfectly elastic linear material with E = 30MPa.
The beams are considered as perfectly cylindrical with a 0.5mm radius circular

Fig. 17.6 Finite element modeling of the lattice 45◦ with homogeneous Timoshenko beams

section Fig. 17.6. The modeling consists in a 25% compression of the 30mm high
mesh. Node displacements are applied on the upper and lower layers while the rest of
the structure is totally free. The boundary conditions of each node of the upper and
lower layers are specified equal to the displacement observed during tomographic
analyses of the mesostructured tests.
The modelings will be compared and validated firstly in the kinematic approach.
An accuracy criterion is developed to do so: the average kinematic deviation Δ.
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Table 17.2 Kinematic deviation results

Lattice structures 35◦ 45◦ 55◦

Average Kinematic
0.18 0.24 0.71

Deviation Δ (mm)

Standard
0.11 0.18 0.63

Deviation

Table 17.3 Static deviation results

Lattice structures 35◦ 45◦ 55◦

Efforts(N)
8 38 29

Tomographe

Efforts(N)
4.2 19.5 21.5

simulations

Very simply, Δ represents the average distance for each vertex from the observed
tomographic picture (at 25% compression) to the deformed modeling result.

17.4.2 Simple Modelings Results

The 25% compression Abaqus modelings for the three structures converged well.
The deformed networks are presented Fig. 17.7 for the three structures. The average
kinematic deviation criteria and the resulting macroscopic forces (calculated as the
sum of the forces at the upper layer nodes) are reported in Table 17.2 and Table 17.3
As observed on Fig. 17.7 the three simulations presented do not have the right

Fig. 17.7 Comparison of the kinematics of the modeling results for the three lattice structures. Top:
tomographic pictures (a). Bottom: simulations results (b).

kinematics or statics behavior. In particular, the overall displacement field of the
structure is not acceptable since a barrel effect, i.e. a horizontal convex swelling at
half height on the structure in compression, is shown. This deviation from the refer-



17 Modeling of Pyramidal Lattice Structures Compared to Tomographic Analysis 317

ence kinematics is reflected in the value of the kinematic average deviation criterion
Δ in Table 17.2, increasing with the angularity of the structures. The strength signals
are also not acceptable since they are significantly lower than experimental measure-
ments for all the three structures tab. 17.3. The volume envelope of the simulated
structure does not correspond correctly. We cannot trust the stresses responses or
the internal deformations of those modelings. Reviewing our approach is therefore
essential.

In fact, the vertexes observed Fig. 17.4 are not nodal points, but volume areas.
Those intersections localizations are zones where stresses are distributed, with each
nearby beam-endings contributing to the diffusion of forces. Vertices cannot be
represented only by one-dimensional beams. Our modeling approach with homoge-
neous beams at each central node of the vertices could not work. Despite all that,
beam modeling of the filiform parts seems appropriate.

17.5 Improved Finite Elements Modeling

17.5.1 Improved Modelings Method

Finite element modelings with beam element are computationally cheap. But these
straightforward modelings of the vertices by beam elements are limited by two main
realities:

• These modelings do not take into account the volume area overlapping of the
truss cylinders.

• The solid body existing where the beams intersect is not represented and the
vertex is simply considered as a nodal point where constraints cannot exist.

Thereby, a local stiffening must be introduced in order to accurately depict the
stiffness and density of the material distribution in the intersection. Authors such
as Luxner et al (2005) noticed that a local stiffening is necessary to accurately
represent the cohesion of the vertex with a beam finite element modeling. Their
approach was to multiply the Young’s modulus by 1000 in the vicinity of the vertices
within a spherical domain with a radius equal to the strut radius. Our approach
consists in keeping the same material and stiffening the part by changing the virtual
section of the beams near the vertex. The idea is to find the size of the spherical
domain around the vertex where the beam must be stiffened. We must also find the
associated intensity of stiffening that will match the kinematic and static behavior of
the whole structure. Two parameters are introduced: first the size of the vertex, that
is to say the number of elements around the node intersections of beams that will be
stiffened. Secondly, the stiffness of the vertex by increasing the circular section of
these specified elements Fig. 17.8.

A design of experiment is proposed to find the good compromise between size
of the vertexes and stiffness of these vertexes. The size of the vertex varies from
1/10th of the strut length to 4/10th. The radius of the circular section of the beam
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Fig. 17.8 Vertex stiffening of the lattice structure modeling by local section increase

considered as vertex varies from 0.6mm to 2.0mm. For the three structures, the input
Abaqus modeling files where written in each of these conditions. All calculation were
computed in the same configuration of the simple homogeneous beam modeling
previously presented.

From this design of experiment, several optimums emerged. The optimums cho-
sen correspond to the condition minimizing the kinematic deviation criterion, but
correspond also to the conditions closest to the real size observed in the tomographic
pictures Fig. 17.4. The final parameters selected are a stiffening envelope area of
2/10th of the length between vertices, and a radius of 1.2mm for the cross-section of
the vertices. The virtual section increasing is thereby considered as a physical reality
and improves the validity of our model.

17.5.2 Improved Modelings Results

Simulations under these conditions are presented in Fig. 17.9. The calculations of
the kinematic deviation criterion and the resulting forces are specified in tab. 17.4
and tab. 17.5.

We can see in Table 17.4 that we have reduced the kinematics error for the three
structures by nearly 50%. More generally, the kinematics is much better since the
“barrel effect” has almost disappeared as seen in Fig. 17.9. The buckling behavior of
the 55◦ structure is well represented.

However, the static is still not acceptable. This time, the macroscopic efforts of
the simulations are too high. This result seems logical since we are stiffening our
structure in many ways. Several leads can explain these errors on the statics of our
model:
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Fig. 17.9 Comparison of the kinematics of the modeling results for the three lattice structures with
optimised vertices size and stiffness parameters. Top: tomographic pictures (a). Bottom: radius
1.2mm, stiffening on 2/10th of the beam length (b).

Table 17.4 Kinematic deviation of the
stiffened simulation results

Lattice structures 35◦ 45◦ 55◦

Average Kinematic
0.09 0.13 0.42

Deviation(mm)

Standard
0.07 0.09 0.39

Deviation

Table 17.5 Static deviation of the
stiffened simulation results

Lattice structures 35◦ 45◦ 55◦

Efforts(N)
8 38 29

Tomographe

Efforts(N)
12.4 44.6 42.3

simulations

• It already seems that the beam diameters were slightly overestimated during
the simulations. Dimensional stability measurements of beams showed that
the printed beams had diameters slightly smaller than 1mm. By reducing the
diameters in the abaqus modelings, the associated forces could be corrected and
the static errors reduced.

• Moreover, the material proposed for the simulations is a 30MPa Young’s mod-
ulus linear elastic material. Experiments analyses have indeed shown that the
TPU has this kind of behavior until a certain threshold (about 4MPa). Once this
threshold is reached, the material is damaged, there is softening and its equiv-
alent modulus gradually decreases. Also, modeling the material by damaging
behavior with modulus softening would also reduce the static response and thus
reduce the current error.

• Finally, the TPU material was studied on macroscopic samples of the ISO-
527 standard type. The associated macroscopic material modeling may not be
representative of the material of the microbeams of the lattice structures.
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With this proposed vertex stiffened model, it would be necessary to take a beam
Young’s modulus EBeam lower than the Young’s modulus of the TPU (EBulk =
30MPa) identified on macroscopic specimens. Table 17.6 summarizes the conversion
to eliminate the static error of the simulations.

Table 17.6 Young’s modulus reduction for static fitting

Lattice structures 35◦ 45◦ 55◦

EBeam 0.65EBulk 0.85EBulk 0.68EBulk

17.6 Conclusion

Three lattice structures were printed and tested in compression under a tomographic
device and compression testings were carried out. The structural behavior was de-
scribed thanks to 3D images reconstructions. The places where the beams intersect,
called vertices, were identified by an image analysis using the second invariant of the
Hessian matrix applied to the grayscale images for these three structures. Vertexes
centers movements were thus recorded. From these displacements, boundary condi-
tions were implemented for a Timoshenko beam compression modeling. This first
simulation involved only homogeneous beams with a circular cross-section of 1mm
diameter. These results were not conclusive, neither statically nor kinematically. In
order to more accurately represent the agglomeration of material occurring at the in-
tersections of the beams of the printed structures, local stiffening is carried out. This
virtual stiffening consists in increasing the section to 1.2mm radius at the two beam
elements directly closest to each vertex. Under these conditions, the simulations are
much better kinematically and accurately represent the overall deformation behavior
for all three structures. However, an error on the static response persists. Incorrect
adjustment of beam diameters, material damage and a wrong definition of Young’s
modulus are some of the possible explanations for these deviations. A correction of
these modules has been proposed to remove the static error.

To continue this work, a possible further investigation would be to identify a hyper-
visco-elastic material model for the TPU used. Transcription of these numerical
models into dynamics could be used to characterize the shock absorption behavior
of lattice structures. Work on the identification of contact laws would extend the
analyses to more than 25% of deformation. Finally, after the calibration of these finite
element modelings, we will be able to generate and digitally test a wide spectrum
of geometries and thus obtain a “catalogue” of lattice mechanical behaviors. Sports
and leisure manufacturers seeking to replace their shock absorbing components with
this type of structure will then be able to choose from this database.
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Chapter 18
Derivation of Imperfect Interface Laws for
Multi-Physic Composites by a Multiscale
Approach: Theoretical and Numerical Studies

Serge Dumont, Frederic Lebon, Raffaella Rizzoni, and Michele Serpilli

Abstract In the present study, we focus our attention to a specific type of composite,
constituted by two media, called the adherents, bonded together with a thin interphase
layer, called the adhesive. We assume that the composite constituents are made
of different multi-physic materials with highly contrasted constitutive properties.
The study considers a generic multi-physic coupling in a very general framework
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18.1 Introduction

Structural bonding assembly has become an important technological solution over
the past few years and is increasingly replacing bolting assembly (Ascione et al,
2017) as shown in Fig. 18.1). The resulting structure has many advantages, such
as weight savings or the elimination of stress concentration. Similarly, in nature
there are many living or natural structures that are composed of substructures, cells
or soils for example, glued together. There are also many other examples of glued
structures in the field of bioengineering (Breschi et al, 2008) as illustrated in Fig. 18.2.
Understanding and modelling the bonding process then becomes a necessity.

Fig. 18.1 An example of bonding, for civil engineering structures.

Fig. 18.2 An example of adhesion, for dental structures.

An obvious common point between all these bonded composite structures is the
thinness of the adhesive compared to those of the substrates or adherents. This is
true for both industrial structures and living or natural structures. This thinness will
obviously lead to numerical modelling difficulties. Indeed, the mesh size of the
glue will mechanically lead to computations with a very large number of degrees
of freedom and therefore very expensive computations. These costs will increase
further if the adhesive surface is irregular and has a high roughness. Similarly, in the
presence of kinematic or behaviour non-linearities, in the presence of cracks, etc., the
costs become prohibitive. “Direct” calculations are then limited to academic cases
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(Dumont et al, 2014). There are two very different possibilities, either to develop
suitable numerical methods (Alart and Lebon, 1995; Alart et al, 1997; Barbie et al,
2015) or to set up macroscopic models of the adhesive’s behaviour. In this chapter,
we will focus on the second family of solutions.

There are at least two methodologies in the literature for obtaining constitutive
laws of adhesive (interface) behaviour. The most classic is the introduction of phe-
nomenological models, usually based on experimental results, such as Coulomb
models, compliances, etc. In this chapter, we will prefer to focus on deductive mod-
els. The idea of this methodology is to start from a micromechanical study of the
adhesive (interphase) and to deduce, using mathematical methods, an equivalent
macroscopic behaviour (interface).

In this chapter, we focus our attention to a bonded composite, constituted by
two adherents, bonded together with a thin adhesive. We assume that the composite
constituents are made of different multi-physic materials with highly contrasted
constitutive properties. The study considers a generic multi-physic coupling in a
very general framework and can be adapted to well-known multi-physic behaviors,
such as piezoelectricity, thermo-elasticity, as well as to multifield microstructural
theories, such as micropolar elasticity (see, e.g. Chatzigeorgiou et al, 2015). Several
works have suggested a generalization of the classical interface models, including
the effects of other physical (thermal, piezoelectric, etc.) interactions (dell’Isola and
Romano, 1987; Chen, 2008; Wang et al, 2017; Firooz and Javili, 2019; Saeb et al,
2019), and within the framework of linear multifield theories, such as higher order
continua theories (Placidi et al, 2014; Eremeyev, 2019).

The analysis has been carried out by means of the asymptotic expansions method,
using the thickness as a small parameter. This technique is based on the fact that
the thickness of the adhesive can be considered as a small parameter (intended to
tend towards zero) and denoted by ε in the following. The asymptotic analysis has
been applied to the rigorous derivation of simplified models for complex assemblies,
presenting thin interphases, in the field of linear elasticity (Lebon and Rizzoni
(2010); Dumont et al (2018); Rizzoni et al (2014); Serpilli and Lenci (2016)) as well
as in piezoelectricity, taking into account other physical interactions, micropolar
elasticity and poroelasticity (Serpilli et al (2013); Serpilli (2015, 2017, 2018, 2019)).
As mentioned above, the asymptotic methods allow to replace the adhesive layer
with a two-dimensional surface, the so-called imperfect interface, with non-classical
transmission conditions between the two adherents. By defining the small parameter
and constitutive properties of the middle layer, we perform an asymptotic analysis.
We assume that the multi-physic stiffness ratios between the adherents and the
adhesive depend on εp. As proposed by Caillerie (1970), we identify three critical
exponents p, corresponding to different imperfect interface models: p = 1, the
soft (also called lowly-conducting) multi-physic interface model; p = 0, the hard
(also called moderately-conducting) multi-physic interface model; p = −1, the
rigid (also called highly-conducting) multi-physic interface model. Following the
approach introduced by Rizzoni et al (2014), we characterize the order zero and the
order one transmission problems. Finally, a general multi-physic interface model is
developed, and numerically tested through the finite element method. In particular,
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in the framework of piezoelectricity, we compare the results obtained by modeling
the adhesive as an interphase, having a thin finite thickness, with the results obtained
with the general multi-physic interface model.

18.2 Statement of the Problem

We consider the composite assembly constituted of two solids Ωε
± ⊂ R3, called

the adherents, bonded together by an intermediate thin layer Bε := S × (− ε
2 ,

ε
2 ) of

thickness ε, called the adhesive, with cross-section S ⊂ R2. In the followingBε and
S will be called interphase and interface, respectively. Let Sε

± be the plane contact
surfaces between the adhesive and the adherents and let Ωε := Ωε

+ ∪ Bε ∪ Ωε
−

denote the composite system comprising the interphase and the adherents (cf. Fig.
1.3a).

Fig. 18.3 Initial (a), rescaled (b) and limit (c) configurations of the composite.

We suppose that the composite is constituted by a multi-physic material, in
which different physical behaviors interact together, such as in piezoelectricity.
Its equilibrium state is determined by a collection of order parameters sε :=
(uε

1, . . . ,u
ε
N , ϕ

ε
1, . . . , ϕ

ε
M ):N vector state variables, namely uε

i , andM scalar state
variables, namely ϕε

k. With the multi-physic state sε, we associate its conjugated
physical quantity tε = tε(∇εsε), where ∇εsε denotes the gradient of sε. The vec-
tor field tε := (σε

1, . . . ,σ
ε
N ,D

ε
1, . . . ,D

ε
M ) represents a generalized stress field. We

also consider the following homogeneous and linear constitutive law:

tε = Kε∇εsε,

where Kε is a generalized linear constitutive matrix. The constitutive tensor Kε

satisfies suitable symmetry and positivity properties.
We assume that the adherents are subject to a generalized system of body

forces Fε : Ωε
± → R3N×M and surface forces Gε : Γ ε

g → R3N×M , where
Γ ε
g ⊂ (∂Ωε

+ \Sε
+)∪ (∂Ωε

− \Sε
−). Body and surface forces are neglected in adhesive
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layer. On Γ ε
u := (∂Ωε

+ \Sε
+)∪ (∂Ωε

− \Sε
−)\Γ ε

g homogeneous boundary conditions
are prescribed, so that sε = 0 on Γ ε

u . We assume that on Γlat := ∂S × (− ε
2 ,

ε
2 ) ho-

mogeneous Neumann boundary conditions are applied. The differential formulation
of the governing equations has the following structure:⎧⎨⎩

−div tε = Fε in Ωε,
tεnε = Gε on Γ ε

g ,
sε = 0 on Γ ε

u ,
(18.1)

where tεnε := (σε
1n

ε, . . . ,σε
Nnε,Dε

1 ·nε, . . . ,Dε
M ·nε) represents the generalized

traction vector on the boundary Γ ε
g and nε the outer normal unit vector to Γ ε

g . Let us
introduce the functional space V (Ωε) := {sε ∈ H1(Ωε;R3N×M ); sε = 0 on Γ ε

u}.
The variational formulation of problem (18.1) defined on the variable domain Ωε

can be written as follows:{
Find sε ∈ V (Ωε) such that
Āε

−(s
ε, rε) + Āε

+(s
ε, rε) + Âε(sε, rε) = Lε(rε),

(18.2)

for all rε := (vε
1, . . . ,v

ε
N , ψ

ε
1, . . . , ψ

ε
M ) ∈ V (Ωε), where defined by

Āε
±(s

ε, rε) :=

∫
Ωε

±

K̄ε∇εsε ·∇εrεdxε, Âε(sε, rε) :=

∫
Bε

K̂ε∇εsε ·∇εrεdxε,

Lε(rε) :=

∫
Ωε

±

Fε · rεdxε +
∫
Γ ε
g

Gε · rεdΓ ε.

18.3 Method of Asymptotic Expansion

In order to perform an asymptotic analysis of problem (18.2) when ε tends to zero,
we rewrite the problem on a fixed domainΩ independent of ε. By using the approach
of Ciarlet (1997), we consider the change of variables πε : x ∈ Ω �→ xε ∈ Ωε given
by

πε :

{
π̄ε(x1, x2, x3) = (x1, x2, x3 ∓ 1

2 (1− ε)), for all x ∈ Ω±,
π̂ε(x1, x2, x3) = (x1, x2, εx3), for all x ∈ B,

where, after the change of variables, the adherents occupyΩ± := Ωε
± ± 1

2 (1− ε)e3
and the interphase B = {x ∈ R3 : (x1, x2) ∈ S, |x3| < 1

2}. The sets S± =
{x ∈ R3 : (x1, x2) ∈ S, x3 = ± 1

2} denote the interfaces between B and Ω±
and Ω = Ω+ ∪ Ω− ∪ B is the rescaled configuration of the composite. Lastly, Γg

and Γu indicate the images through πε of Γ ε
g and Γ ε

u (cf. Fig. 1.3b). Consequently,
∂

∂xε
α
= ∂

∂xα
and ∂

∂xε
3
= ∂

∂x3
in Ω±, ∂

∂xε
α
= ∂

∂xα
and ∂

∂xε
3
= 1

ε
∂

∂x3
in B.

We assume that the constitutive coefficients of Ωε
± are independent of ε, K̄ε =

K̄, while the constitutive coefficients of Bε depend on ε, K̂ε = εpK̂, with p ∈
{−1, 0, 1}. Finally, we assume that the forces are such thatLε(rε) = L(r). By virtue
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of the previous hypothesis, the rescaled problem can be written in the following form:{
Find sε ∈ V (Ω), such that
Ā−(sε, r) + Ā+(s

ε, r) + εp−1â(sε, r) + εpb̂(sε, r) + εp+1ĉ(sε, r) = L(r),
(18.3)

for all r ∈ V (Ω) := {s ∈ H1(Ω;R3N×M ); s = 0 on Γu}, where

Ā±(sε, r) :=
∫
Ω±

K̄∇sε ·∇rdx, â(sε, r) :=

∫
B

K̂33s
ε
,3 · r,3dx,

b̂(sε, r) :=

∫
B

{
K̂3αs

ε
,3 · r,α + K̂α3s

ε
,α · r,3

}
dx, ĉ(sε, r) :=

∫
B

K̂αβs
ε
,β · r,αdx,

and K̂ij denote the sub-matrices of K̂, defined by

K̂ =

[
K̂αβ K̂α3

K̂3α K̂33

]
, (K̂ij)

T = K̂ji.

We can now apply the asymptotic expansions method to the rescaled problem (18.3),
whose fundamental assumption relies in considering the solution sε of the problem
as a series of powers of ε:

sε = s0 + εs1 + ε2s2 + . . . ,
s̄ε = s̄0 + εs̄1 + ε2s̄2 + . . . ,
ŝε = ŝ0 + εŝ1 + ε2ŝ2 + . . . .

(18.4)

where s̄ε = sε ◦ π̄ε and ŝε = sε ◦ π̂ε. By injecting (18.4) into the rescaled prob-
lem (18.3), and by identifying the terms with identical power of ε, we obtain, as
customary, a set of variational problems to be solved in order to characterize the
limit multi-physic state s0, the first order corrector term s1 and their associated limit
problem, for p ∈ {−1, 0, 1}.

Following the approach described in Rizzoni et al (2014); Dumont et al (2018), we
introduce the matching conditions based on the continuity of the generalized traction
tεe3 and multiphyisic state sε at the interfaces Sε

± in the initial configuration and on
the continuity of the traction and state t̄εe3, s̄ε, t̂εe3, ŝε at the interfaces S± in the
rescaled configuration. Hence, one has

[[sε]] = [s̄ε]− ε〈〈sε,3〉〉+ o(ε), 〈〈sε〉〉 = 〈s̄ε〉 − ε
4 [[s

ε
,3]],

[[tεe3]] = [t̄εe3]− ε〈〈tε,3e3〉〉+ o(ε), 〈〈tεe3〉〉 = 〈t̄εe3〉 − ε
4 [[t

ε
,3e3]],

(18.5)

where

〈f〉(x̃) := 1
2 (f(x̃, (1/2)

+) + f(x̃,−(1/2)−), x̃ := (xα) ∈ S,
[f ] (x̃) := f(x̃, (1/2)+)− f(x̃,−(1/2)−),
〈〈f〉〉(x̃) := 1

2 (f(x̃, 0
+) + f(x̃, 0−)),

[[f ]](x̃) := f(x̃, 0+)− f(x̃, 0−),
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denote, respectively, the mean value and the jump functions at the interfaces.

18.4 Multi-Physic Interface Models

In this section we present the asymptotic models for multi-physic interfaces obtained
for the soft, hard and rigid cases at order 0 and order 1. For the sake of brevity, we
will skip all the mathematical computations carried out in the deduction of the limit
models.

18.4.1 The Soft Multi-Physic Interface

The transmission problems at order 0 and order 1 can be summarized as follows:

• Order 0

Governing equations⎧⎪⎨⎪⎩
−div t̄0 = F in Ω±,
t̄0n = G on Γg,

s̄0 = 0 on Γu,

Transmission conditions on S±{
[s̄0] = (K̂33)

−1〈t̄0e3〉,
[t̄0e3] = 0.

• Order 1

Governing equations⎧⎪⎨⎪⎩
−div t̄1 = 0 in Ω±,
t̄1n = 0 on Γg,

s̄1 = 0 on Γu,

Transmission conditions on S±{
[s̄1] = (K̂33)

−1
(
〈t̄1e3〉 − K̂α3〈s̄0〉,α

)
,

[t̄1e3] = −K̂3α[s̄
0],α.

The transmission problems for a soft multi-physic interface at order 0 and order 1
represent a formal generalization of the soft interface models obtained by means of
the asymptotic methods in linear elasticity (see, e.g., Rizzoni et al, 2014; Dumont
et al, 2018) and in other multifield frameworks, such as poroelasticity (see Serpilli,
2019). At order 0, the interface behaves from a mechanical point of view as a series
of linear springs, reacting to the discontinuity of the multi-physic state between the
upper and bottom faces, while the generalized traction vector remains continuous.
At order 1, the interface conditions maintain a similar structure, but both the multi-
physic state and the traction vector are discontinuous through the interface. Moreover,
they depend on the in-plane derivatives of the jump and mean values of s̄0, which
can be considered a known source term, identified in the order 0 problem.
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18.4.2 The Hard Multi-Physic Interface

The hard interface transmission problems at order 0 and order 1 take the following
expressions:

• Order 0

Governing equations⎧⎪⎨⎪⎩
−div t̄0 = F in Ω±,
t̄0n = G on Γg,

s̄0 = 0 on Γu,

Transmission conditions on S±{
[s̄0] = 0,

[t̄0e3] = 0.

• Order 1

Governing equations⎧⎪⎨⎪⎩
−div t̄1 = 0 in Ω±,
t̄1n = 0 on Γg,

s̄1 = 0 on Γu,

Transmission conditions on S±⎧⎨⎩[s̄1] = (K̂33)
−1
(
〈t̄0e3〉 − K̂α3〈s̄0〉,α

)
,

[t̄1e3] = −
(
K̂3α[s̄

1],α + K̂αβ〈s̄0〉,αβ
)
.

It is interesting to notice that the hard multi-physic interface problems is equivalent to
the ones derived in the case of linear elasticity in Lebon and Rizzoni (2010); Rizzoni
et al (2014); Dumont et al (2018). At order 0, we recover the classical continuity
conditions for both the multi-physic state and generalized traction vector. Thus, the
adherents are perfectly bonded together. At order 1, we encounter a mixed interface
model with a jump of the state and traction vector depending on the values of the
multi-physic state and traction vector at order 0. These order 0 terms, being known
from the solution of the previous problem, can be viewed as external source terms.

18.4.3 The Rigid Multi-Physic Interface

The differential formulations of the rigid interface problems at order 0 and order 1
take the following form:

• Order 0

Governing equations⎧⎪⎨⎪⎩
−div t̄0 = F in Ω±,
t̄0n = G on Γg,

s̄0 = 0 on Γu,

Transmission conditions on S±{
[s̄0] = 0,

[t̄0e3] = −L̂αβ〈s̄0〉,αβ .

• Order 1
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Governing equations⎧⎪⎨⎪⎩
−div t̄1 = 0 in Ω±,
t̄1n = 0 on Γg,

s̄1 = 0 on Γu,

Transmission conditions on S±{
[s̄1] = −(K̂33)

−1K̂α3〈s̄0〉,α,
[t̄1e3] = −K̂3α(K̂33)

−1〈t̄0e3〉,α − L̂αβ〈s̄1〉,αβ ,

where L̂αβ := K̂αβ − K̂3α(K̂33)
−1K̂β3. The rigid multi-physic interface problems

show the same features of the rigid interface asymptotic models obtained in different
frameworks in Bessoud et al (2009); Serpilli (2015, 2017, 2018, 2019). Concerning
the order 0 model, we obtain a continuity of the multi-physic state at the interface
level, while the traction vector is discontinuous and depends on the divergence of
a generalized membrane stress vector N0

α := L̂αβ〈s̄0〉,β . The interface behaves as
a multi-physic membrane. The order 1 presents a discontinuity on both the multi-
physic state and traction vector. Analogously to the order 0 model, we obtain a
generalized equilibrium membrane problem defined on the plane of the interface.

18.4.4 The General Multi-Physic Interface

The approach of Rizzoni et al (2014) can be extended in order to obtain a condensed
form of the transmission conditions summarizing both the orders 0 and 1 of the soft,
hard and rigid cases in only one couple of equations in terms of the jump of the
multi-physic state and generalized tractions at the interface.

Therefore, we denote by s̃ε := s̄0 + εs̄1 + ε2s̄2 and t̃ε := t̄0 + εt̄1, two suitable
approximations for s̄ε and t̄ε. Let us consider the rigid multi-physic interface con-
ditions, as starting point. After rescaling back the constitutive coefficients K̂ = εK̂ε

in Bε, we can write [s̃ε] and [t̃εe3]. Indeed, one has

[s̃ε] := [s̄0] + ε[s̄1] + ε2[s̄2] = −ε(K̂ε
33)

−1
(
K̂ε

α3〈s̃ε〉,α − 〈t̃εe3〉
)
+ o(ε2),[

t̃εe3
]
:= [t̄0e3] + ε[t̄1e3] = −εK̂ε

3α(K̂ε
33)

−1〈t̃εe3〉,α − εL̂ε
αβ〈s̃ε〉,αβ + o(ε2).

An alternative expression of the above transmission conditions can be given in terms
of 〈t̃εe3〉 and

[
t̃εe3

]
, which will be useful to write the variational formulation of the

interface multi-physic problem:

〈t̃εe3〉 = 1
ε K̂

ε
33[s̃

ε] + K̂ε
α3〈s̃ε〉,α + o(ε2),[

t̃εe3
]
= −K̂ε

3α[s̃
ε],α − εK̂ε

αβ〈s̃ε〉,αβ + o(ε2).
(18.6)

It is easy to prove that this interface law is general enough to describe the interface
laws at order 0 and order 1 prescribing the multi-physic state jump and traction jump
in the cases of the soft and hard interfaces, by choosing the following scalings for
the constitutive matrices: K̂ε = εK̂, for the soft case, and K̂ε = K̂, for the hard case.
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The relations (18.6) can be transformed into interface equations defined on S, by
making use of the matching relations (18.5), up to higher order terms:

〈〈te3〉〉 = 1
ε K̂33[[s]] + K̂α3〈〈s〉〉,α,

[[te3]] = −K̂3α[[s]],α − εK̂αβ〈〈s〉〉,αβ . (18.7)

18.5 Finite Element Implementation and Numerical Test

In order to derive the variational form of the multi-physic problem, which will be
numerically tested through a finite element procedure, one can write the variational
form of the equilibrium problem on each sub-domain Ω+ and Ω−:∫

Ω±
K̄∇s ·∇rdx−

∫
S

t(x̃, 0+)n(x̃, 0+) · rdΓ −
∫
S

t(x̃, 0−)n(x̃, 0−) · rdΓ =

=

∫
Ω±

F · rdx+

∫
Γg

G · rdΓ,

which can be rewritten as∫
Ω±

K̄∇s ·∇rdx+

∫
S

[[te3 · r]]dx̃ = L(r),

letting e3 = n(x̃, 0−) = −n(x̃, 0+) and dΓ = dx̃. Then, using the property
[[ab]] = 〈〈a〉〉[[b]] + [[a]]〈〈b〉〉, relations (18.7) and after an integration by parts, we
obtain {

Find s ∈W (Ω̃), such that
Ā−(s, r) + Ā+(s, r) +A(s, r) = L(r),

(18.8)

for all r ∈W (Ω̃) := {s ∈ H1(Ω̃;R3N×M ), s|S ∈ H1(S;R3N×M ), s = 0 onΓu},
with Ω̃ := Ω+ ∪ S ∪Ω− and

A(s, r) :=

∫
S

(
1

ε
K̂33[[s]] · [[r]] + K̂α3〈〈s〉〉,α · [[r]] + K̂3α[[s]] · 〈〈r〉〉,α+

+εK̂αβ〈〈s〉〉,α · 〈〈r〉〉,β
)
dx̃.

A standard finite element method is employed to solve this equation. In order to
take into account the jumps in the displacements across the interface, a ‘flat" finite
element is considered on the interface S that has all nodes on S, the first ones related
toΩ−, and the other ones related toΩ+. It is then possible to write a stiffness matrix
of this problem that is invertible and with standard error estimates (for more details,
see for example Nairn, 2007).
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Numerical Study: The Piezoelectric Composite Plate

The aim of this study is to numerically test the general interface law, expressed in
(18.8), comparing it to a three-dimensional analysis of the problem. As preliminary
test, we consider the piezoelectric case. The piezoelectric state at the equilibrium is
determined by the pair s := (u, ϕ), where u and ϕ represent the displacement field
and the electric potential. The generalized stress vector is given by t := (σ,D),
where σ and D denote, respectively, the Cauchy stress tensor and the electric dis-
placement.

Let us consider a piezoelectric three-phases composite plate, which occupies a
3D domain defined by Ω = [0, L1] × [0, L2] × [−h/2, h/2], with L1 = 10h and
L2 = 5h (see Fig. 1.4). The adhesive thickness is set to be ε.

Fig. 18.4 The geometry of the piezoelectric composite plate in the plane (x, z).

The adherents are constituted by PVDF (Polyvinylidene fluoride), a monoclinic
piezoelectric material with poling axis e3, while the adhesive is made of PZT-4, a
transversally isotropic piezoelectric material with poling axis e3. This constitutive
sub-matrices (Kij) are defined as follows:

K33 =

⎛⎜⎜⎝
2c55 0 0 0
0 2c44 0 0
0 0 c33 e33
0 0 −e33 H33

⎞⎟⎟⎠ , K12 =

⎛⎜⎜⎝
0 2c66 + c12 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ,

K13 =

⎛⎜⎜⎝
0 0 2c55 e15
0 0 0 0
c13 0 0 0
−e31 0 0 0

⎞⎟⎟⎠ , K23 =

⎛⎜⎜⎝
0 0 0 0
0 0 2c44 e24
0 c23 0 0
0 −e32 0 0

⎞⎟⎟⎠ ,
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K11 =

⎛⎜⎜⎝
c11 0 0 0
0 2c66 0 0
0 0 2c55 e15
0 0 −e15 H11

⎞⎟⎟⎠ , K22 =

⎛⎜⎜⎝
2c66 0 0 0
0 c22 0 0
0 0 2c44 e24
0 0 −e24 H22

⎞⎟⎟⎠ .

For the transversally isotropic material with poling axis e3, one has c11 = c22,
c13 = c23, c55 = c44, c66 = (c11 − c12)/2, e15 = e24, e31 = e32 and H11 = H22.
The elastic, dielectric and piezoelectric coefficients are listed in Table 18.1. The

Table 18.1 Piezoelectric material properties

Moduli PZT-4 PVDF

c11, GPa 139 238.24

c22, GPa 139 23.6

c33, GPa 115 10.64

c12, GPa 77.8 3.98

c13, GPa 74.3 2.19

c23, GPa 74.3 1.92

2c44, GPa 25.6 2.15

2c55, GPa 25.6 4.4

2c66, GPa 30.6 6.43

e31, C/m2 −5.2 −0.13

e32, C/m2 −5.2 −0.145

e33, C/m2 15.1 −0.276

e24, C/m2 12.7 −0.009

e15, C/m2 12.7 −0.135

H11, nF/m 13.06 0.111

H22, nF/m 13.06 0.106

H33, nF/m 11.51 0.106

piezoelectric composite plate is subject to surface uniform load equal to p = 1 kN/m2

on the top face, as shown in Fig. ??. We assume that no voltage is applied on the
upper and lower faces. In this case, the composite plates behaves as a sensor (see
Bonaldi et al, 2017).

The finite element simulations (made with GetFEM) are carried out using Q1
elements (linear on a cube), with 7280 nodes (29203 degrees of freedom) for the
three phases problem and 5824 nodes (23379 degrees of freedom) for the problem
with the interface law.

First, the influence of the relative thickness of the interphase ε
L is investigated

in order to evaluate the accuracy of the various modeling proposed in the previous
sections. In particular, the quality of the solutions is evaluated considering the L2-
relative error e = ‖sε−smodel‖

‖sε‖ , where sε denotes the reference solution computed
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using the three-phases problem with a fine finite element mesh, while smodel indicates
the solution of the interface model (18.8). The convergence of the general interface
model towards the three-phases one with respect to the thickness ratio ε

L is presented
in Fig. 18.5. From the plot, it can be observed that, by reducing the thickness of

Fig. 18.5 Convergence results with respect to the thickness ε
L

.

the adhesive, the relative error has a drastic reduction and so, the proposed general
interface model provides an acceptable solution and it is able to correctly approximate
the solution sε. The convergence rate is ε3. Besides, even if the relative thickness
is of 1%, the relative error is equal to 7.65 · 10−2% for the displacement field and
9.06 · 10−4% for the electric potential, meaning that the general interface model can
also be used for moderately thick adhesive layers.

Now, let us fix the relative thickness ε
L = 0.02. The numerical results for the

variables are provided using the dimensionless units. We set:

(Ui, Φ) =
E0

V
(ui,

ϕ

E0
) (Tij ,Dk) =

hE0

C00V
(σij , E0Dk),

where we have chosen, for numerical convenience, V = 50V , E0 = 109V m−1 and
C00 = 1GPa. The results are represented in Fig. 18.6, 18.7 and 18.8.

Figure 18.6 represents the trend of the displacement field and electric potential,
evaluated in x = L1/2, y = L2/2, z/h ∈ [−0.5, 0.5]. The plot shows a good
agreement between the solution of the general interface problem (dotted line) and
the solution of the three-phases problem (solid line). The composite plate behaves
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Fig. 18.6 Representation of the displacements and the electric potential on a section along the
z-axis.

mostly as a Kirchhoff-Love single-layer plate, taking also into account the transversal
deformation of the adhesive. From the electric point of view, the electric potential
is constant through the adhesive: this is due to the fact that the intermediate layer
(PZT-4) has a higher electrical conductivity with respect to upper and lower bodies
(PVDF), see Table 1, and, hence, it behaves as a highly conducting interface.

Figure 18.7 and Fig. 18.8 represent the trend of the jumps of the displacement and
electric potential and the jumps of the stress vector and normal electric displacement
along the x-axis, namely (x ∈ [0, L1], y = L2/2, z = 0), and y-axis, namely
(x = L1/2, y =∈ [0, L2], z = 0). The numerical simulations highlight that the
proposed model is able to describe the mechanical behavior of the composite. Few
solution oscillations can be found close to the lateral boundaries, due to the presence
of edges, which produce expected stress concentrations and singularities.

18.6 Concluding Remarks

General imperfect contact conditions have been proposed, simulating the behavior
of a thin interphase undergoing linear coupled multi-physic phenomena. These con-
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Fig. 18.7 Representation of the jumps in the displacements and the electric potential across the
interface on a section along the x-axis and y-axis.

ditions link the generalized traction vector field and its jump to the multi-physic
state vector field and its jump at the interface, which is the geometric limit of the
interphase as its thickness parameter ε goes to zero. Three interface models (soft,
hard and rigid) have been deduced by means of the asymptotic methods, by varying
the rigidity ratios between the adhesive and adherents and considering the order 0
and order 1 corrector terms. Furthermore, these three different models have been
condensed in one general imperfect interface model and its variational formula-
tion has been presented. The weak formulation represents a key step towards the
FEM simulation. A numerical example has been presented considering a piezoelec-
tric composite plate, subject to an electric potential difference at the top and bottom
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Fig. 18.8 Representation of the jumps of the stress vector and normal electric displacement across
the interface on a section along the x-axis and y-axis.
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faces. The numerical results show the convergence of the solution of the three-phases
model towards the solution of the proposed model as ε tends to zero, highlighting
the accuracy and "goodness" of the general interface conditions.
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Chapter 19
Modeling the Mechanical Response of
Rubberised Concrete

Amedeo Gregori, Chiara Castoro, Micaela Mercuri, and Michele Angiolilli

Abstract The use of rubber particles from waste tyres in concrete as partial replace-
ment of natural aggregates represents nowadays a significant recycling solution. In
this paper, FEM models have been developed and analysed to investigate the effects
on the compressive strength of the rubberised concrete. The natural fine and coarse
aggregates have been substituted with rubber particles ranging from 3 mm to 30 mm
in size, obtaining percentages from 0% to 80%. Results from the numerical anal-
yses about the effects of the substitutions with rubber particles on the rubbercrete
compressive strength confirmed the trend of literature experimental data. The effects
of different values adopted for the reference concrete compressive strength are also
confirmed to depend on the size of the rubber particles. Based on a large dataset,
analytical relationships have been developed and proposed to analyse the Strength
Reduction Factor (SRF) of rubberised concrete.

Keywords: Aggregates substitution · Rubberised concrete · Compressive strength ·
Finite element models

19.1 Introduction

Many authors have investigated in the last decades on the re-use of waste tyre rubber
in concretes, as partial replacement of the natural aggregates, allowing to reduce the
excessive consumption of the natural aggregates for concretes and to recycle waste
tyres that are gathered in the world every year. The resulting composite material is
called rubbercrete. Trucks or cars tyres are subjected to mechanical grinding in order
to obtain rubber particles to be used in the concrete mixtures. Before their use in the
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mixture, rubber particles may be separated from their textile and metallic parts and
may be subjected to pre-treatments, including also cryogenic processes. Rubbercrete
shows several interesting properties that make it suitable for the construction industry
(Wong and Ting, 2009; Gesoğlu and Güneyisi, 2011; Bignozzi and Sandrolini, 2006;
Chung and Hong, 2009; Venslovas et al, 2011; Zhu et al, 2002; Ganjian et al, 2009).

In fact, it is demonstrated that rubbercrete usually exhibits better freeze-thaw
resistance and better weathering properties compared to ordinary concrete (Chung
and Hong, 2009). Moreover, the replacement of natural aggregates with rubber re-
duces the Young elastic modulus, allowing the material to absorb energy. The high
vibration damping capacity, the impact resistance and the high thermal and acoustic
insulation of rubbercrete (Venslovas et al, 2011) allow its use for specific appli-
cations including sub-foundations, road pavements, trench filling, Jersey barriers,
etc. Rubbercrete also represents an interesting option for architectural applications
thanks to its reduced specific weight.

On the other hand, the introduction of rubber aggregates in the mixture re-
duces the mechanical properties of the hardened concrete (Siddique and Naik, 2004;
Skripkiūnas et al, 2007a,b), in particular of the compressive strength (Colom et al,
2006; Gesoğlu and Güneyisi, 2007; Güneyisi et al, 2004; Hernández-Olivares and
Barluenga, 2004; Li et al, 2004; Papakonstantinou and Tobolski, 2006; Reda Taha
et al, 2008; Ling, 2011). The compressive strength is observed to decrease when the
amount of rubber increases and this reduction is observed to be greater when coarse
aggregates are replaced with rubber, rather than fine ones (Eldin and Senouci, 1993,
1994; Lee et al, 1993; Topçu, 1995; Fattuhi and Clark, 1996; Fedroff et al, 1996;
Topçu and Avcular, 1997; Khatib and Bayomy, 1999; Albano et al, 2005; Benazzouk
et al, 2006).

There can be hypothesized different reasons for strength reduction in rubbercrete:

• Rubber particles have lower strength than concrete matrix around them.
• Moreover, rubber aggregates are characterized by a very low modulus of elas-

ticity (in the order of 2-10 MPa) compared to that of concrete (in the order of
30000 MPa) and to that of natural aggregates. For this reason, rubber particles
act like voids into concrete (Eldin and Senouci, 1993; Batayneh et al, 2008;
Aiello and Leuzzi, 2010).

• In addition, there is poor adhesion between the rubber particles and the cement
paste due to the hydrophobic nature of the rubber, and this further weaken the
mechanical strength of the whole mixture (Güneyisi et al, 2004; Li et al, 2004;
Siddique and Naik, 2004; Segre and Joekes, 2000).

On this purpose, many authors confirmed that rubber pre-treatments might increase
the compressive strength of the mixture (Albano et al, 2005; Li et al, 2004). In
particular, many authors proved that soaking waste tyre rubber in NaOH solution
increases the rubber particles adhesion to the cementitious matrix (Güneyisi et al,
2004; Li et al, 2004; Papakonstantinou and Tobolski, 2006; Segre and Joekes, 2000;
Siddique and Naik, 2004). Even using rubber particles washed in water was found
to determine a 16% increased compressive strength compared to concrete mixtures



19 Modeling the Mechanical Response of Rubberised Concrete 343

containing untreated rubber (Benazzouk et al, 2006; Eldin and Senouci, 1994; Pa-
pakonstantinou and Tobolski, 2006).

In literature there is a large number of numerical models developed to estimate the
properties of materials with defects (Christensen, 2012; Day et al, 1992; Huang et al,
1994; Isida and Igawa, 1991; Mura, 1982; Taya and Arsenault, 2016) or with additions
in the mixture. In Misra (1998), the clay stabilization was developed adding Class
C fly ash which behaves like a mixture of cementitious and pozzolanic materials,
resulting in a stiffer and stronger material. In Scerrato et al (2014) a numerical model
was developed for concretes modified by adding suitable inert additives, whose grains
can fill crack voids and improve friction contact of crack lips. In that case, the micro-
filler improved the damping performances without compromising the mechanical
strength. In Giorgio and Scerrato (2017) a non-linear 3D model was developed to
describe internal friction phenomena which occur in modified concrete under cyclic
loading with different frequencies. Although a large number of numerical models
have been proposed to study modified concretes, FEM simulations on rubbercrete
are not found in the literature and most of the research only results from experimental
investigations.

In this paper, several FE models have been developed and analysed using the
software MIDAS FEA to describe the mechanical behaviour of rubbercrete. Effects
on the compressive strength of the rubbercrete were investigated according to differ-
ent characteristics of the rubber particles: their size, their elastic modulus and their
amount in terms of percentage of substitution of the natural aggregates (with respect
to the reference concrete volume).

19.2 Materials and Methods

The size, the amount and the distribution of the rubber particles in the rubbercrete
matrix are very crucial with respect to the final mechanical properties of the resulting
material. For this reason, these parameters have been taken into account as modelling
preconditions. In this study, rubber particles were modeled with a cubic shape to
overcome difficulties related with extremely expensive calculations. These cubic
rubber particles were equally spaced along the three spatial directions and aligned
parallel to each other. This regular spatial distribution corresponds to the idea of
rubber particles well-dispersed in the concrete mixture, as attempted in real concrete
preparation. Moreover, hypotheses about the rubber aggregates shape and spatial
distribution allowed to use a much simpler and regular mesh, which also has a great
influence on the quality of the results expected from the simulations.

The numerical analyses were carried out referring to a cubic specimen of concrete
with a side length of 150 mm, in analogy with experimental tests performed for the
qualification of concrete mixtures and in accordance with the European codes UNI
EN 12390-1:2002 and UNI EN 12504-1:2002.

FE models were prepared considering the rubber particles and the concrete among
them as two homogeneous different materials. Mesh length of 1.5 mm was set for
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all the analyses. The adopted mesh length allowed to model rubber particles with a
minimum size of 3 mm, resulting to be suitable in case of rubber particles replacing
both fine natural aggregates and coarse ones. Boundary conditions were introduced
in the model to represent the concrete compressive test set up performed in real
practice.

To overcome the high computational cost of the analyses, a reduced portion of the
initial cubic specimen was actually modelled and tested, imposing the appropriate
boundary conditions. This portion consists of a cube with a side length of 75 mm
(Fig. 19.1), corresponding to one of the eight corners of the starting cubic specimen.
As done in real concrete compressive tests, a gradually increasing vertical compres-
sive stress was applied to the modelled sample of rubbercrete, in accordance with
a displacement control procedure. More precisely, a total displacement of 0.45 mm
was gradually imposed in z direction to the upper surface of the specimen, with the
final displacement rationed in 30 equal increments of 0.015 mm each one.

Different material properties were assigned to the concrete and to the rubber
particles.

Concerning concrete, mechanical properties were set in accordance to CEB-FIP
(1993) and, in particular, a reference compressive strength fc = 30 N/mm2 was
assumed together with a fracture energy G = 0.075 N/mm2 and a Young elastic
modulus Ec = 30000 N/mm2. A tensile strength ft = 3 N/mm2 was assumed as
result of an elastic, brittle stress-strain response. Mechanical parameters assumed
for the reference concrete were kept constant in all the simulations while different
amounts of rubber particles were modelled as result of different natural aggregates
substitutions.

Concerning rubber particles, a linear elastic behavior was assumed (simple
Cauchy model) and the elastic modulus Er = 1.97 MPa has been assumed for
rubber in accordance with literature recommendations (Aiello and Leuzzi, 2010)

Fig. 19.1 Reduced model:
corner cubic specimen with a
side length of 75 mm.
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19.2.1 The Numerical Simulation Cases

In this study, fourteen 3D FE models were developed and analysed using the MIDAS
FEA software. A detailed list is given in Tab. 19.1. Case number 1 corresponds to
the reference concrete with no rubber particles in the mixture and the remaining
thirteen cases refer to concrete mixtures incorporating rubber particles of various
dimensions (from 3 mm to 30 mm) and different amounts, corresponding to various
natural aggregates substitutions. In particular, the original dosage of the natural
aggregates in the reference concrete was assumed corresponding to 72% of the
concrete volume, respectively divided in 46% coarse aggregates (9 mm - 30 mm) and
26% fine aggregates (3 mm - 6 mm). These proportions correspond to the reference
concrete mixture also assumed by (Eldin and Senouci, 1993). The percentages of
substitution of the natural aggregates with rubber particles were considered to vary
in the range 0% - 83%, with respect to the original natural aggregates dosage. These
percentages of substitution are reported in Table 1 and are also calculated with
respect to the original concrete volume, so obtaining the volume of rubber per cubic
meter of concrete. These percentages of defects resulted to be in the range of 0% -
37.32% with respect to the concrete volume. Their calculation allowed to conceive
the spatial distribution of the defects to be modelled in the analyses.

Table 19.1 All the numerical simulation cases.

Case
Number

Defects size
mm

Number of
rubber
defects

% referred
to the total

concrete volume

% of substitution
operated
on coarse
aggregates

% of substitution
operated
on fine

aggregates

1 reference 0 0 0 0 0
2 3 3375 2.70 - 10.38
3 6 729 4.66 - 17.90
4 18 27 4.66 10.13 -
5 27 8 4.66 10.13 -
6 24 27 11.06 24.04 -
7 15 125 12.50 27.17 -
8 9 729 15.74 34.22 -
9 6 3375 21.60 - 83.00
10 18 125 21.60 46.95 -
11 30 27 21.60 46.95 -
12 21 125 34.30 74.56 -
13 12 729 37.32 81.00 -
14 18 216 37.32 81.00 -

The cases summarized in Tab. 19.1 were designed to investigate two different
conditions: increasing the rubber particle sizes considering a fixed percentage of
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rubber (group of cases: 3, 4, 5-9, 10, 11-13, 14). An example is provided in Fig. 19.2.
Increasing the amount of rubber considering a fixed size (groups of cases: 3, 9-4,
10, 14). An example is provided in Fig. 19.3.

Fig. 19.2 Cases 9, 10, 11 of Tab. 19.1. The percentage of substitution of the natural aggregates is
21.6% and it was obtained with rubber particles measuring 6, 18 and 30 mm respectively.

Fig. 19.3 Cases 4, 10, 14 of Tab. 19.1. The size of the rubber particles is fixed equal to 18 mm and
different amount of defects are considered (different percentage of substitution of the natural
aggregates equal to 4.66%, 21.6% and 37.32% respectively.

Since not any desired percentage of defects (rubber particles) could be modelled
with a uniform spatial distribution, the selected percentages of substitution listed in
Tab. 19.1 do not vary continuously in the range 0% - 37.32% and they were conceived
in this way due to geometric construction requirements of the FE models.

Rubber particle size equal to 6 mm and 18 mm are those for which the larger
number of defects percentages can be considered and compared each other.
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19.3 Results

19.3.1 Numerical Prediction of the Compressive Strength

Predicted compressive strength values resulted from the numerical analyses are
presented in Fig. 19.4. In this graph, the strength reduction factor (SRF), defined as
the ratio among the rubbercrete compressive strength fc and the reference concrete
compressive strength fc0, is plotted in relation to the percentage of the rubber
particles with respect to the concrete volume. The SRF is unity at 0% rubber content,
meaning the reference mix.

Fig. 19.4 Strength Reduction Factor (SRF) of rubbecretes with respect to the rubber content in the
total volume .

As shown in Fig. 19.4, a reduction in the compressive strength is observed when
the percentage of rubber, referred to the total volume of the concrete sample, increases
from 0% to 37.32%. This percentages of rubber particles correspond to the range
0% - 83% of substitution of the original dosage of the aggregates. Mathematical
regressions were performed to best fit the calculated data, in particular for cases with
rubber particles measuring 6 mm in size (substitutions operated on fine aggregates)
and 18 mm in size (substitutions operated on coarse aggregates).

The exponential form was assumed for the regressions, as done in (Gregori et al,
2019), and the equations obtained are:

• for rubber particles of 6mm:

SRF = e−0.016x (19.1)

• for rubber particles of 18mm:
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SRF = e−0.019x (19.2)

The high values of R2 calculated for the two equations confirm the good quality of
the regressions.

Sub-ranges of variation can be identified in relation to a precise type of natural
aggregate substitution operated with rubber: fine aggregates replacement or coarse
aggregates replacement.

Figure 19.4 and the equivalent data summarised in Tab. 19.2 highlight that ex-
pectable SRF values tend to be lower in case of substitutions operated on bigger
aggregates (18 mm rather than aggregates of 6 mm), this meaning that a larger loss
in compressive strength may be expected when rubber aggregates are introduced
in substitution of coarse natural aggregates compared to cases in which aggregate
substitution is operated on fine ones.

Table 19.2 Comparing SRF values of rubbercrete with fine and coarse rubber particles.

Rubber content (%) SRF
size 6 mm

SRF
size 18 mm

0 1 1
4.66 0.905 0.870
21.6 0.711 0.645
37.32 0.507

The upper bound curve illustrated in Fig. 19.4 is obtained from the large set of
experimental data already analysed in Gregori et al (2019). In that work, SRF data
resulting from several studies carried out by different authors and referring to partial
substitutions of fine and coarse natural aggregates operated on various concrete
mixes were reported.

Figure 19.4 shows that the results of the numerical simulations are in good agree-
ment with the mentioned upper bound curve. According to literature, the use of
NaOH for pre-treatment of the rubber particles improves the adhesion of these parti-
cles with the cement matrix, so resulting a lower decrease in the concrete compressive
strength. The upper bound curve calculated in Gregori et al (2019) and plotted in
Figure 19.4 refers to those cases.

In the FE models analysed in the present study, the hypothesis of perfect adhesion
between the rubber particles and the cement matrix was made, and this explains why
the results of the analyses are close to the upper bound curve of the experimental
data. Since the ITZ between the cement paste and the rubber particles is intended
to be weaker than ITZ in normal concretes, different and more complex hypothesis
rather than perfect adhesion at the interfaces could be eventually introduced in the
FE models, but this is currently out of the aim of this study.
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19.3.2 Numerical Prediction of SRF at Varying the Reference
Concrete Compressive Strength

The compressive strength of the reference concrete was assumed equal to 30 MPa
and this value was maintained fixed in all the analyses.

In this section, variations of the predicted values of SRF are investigated with
respect to the compressive strength value assumed for the reference concrete. In
particular, the case of rubber particles content of 21.6% is represented considering
different reference concrete compressive strength values, equal to 30, 40, 60 and 80
MPa respectively. Consequently, the elastic modulus assigned to the concrete was
set in accordance to the formulation proposed by CEB-FIP (1993) as function of
the assumed concrete compressive strength value. The analyses were performed for
two different rubber particle sizes (6mm and 18 mm respectively) and results are
summarised in Tab. 19.3.

Table 19.3 Predicted SRF values resulting from different values of the reference compressive
strength assumed. SRF values refers to rubbercretes with an amount of 21.6% of rubber particles of
6mm and 18mm in size respectively.

Reference concrete
compressive strength

MPa

Reference concrete
elastic modulus

MPa

SRF
rubber particles

6mm

SRF
rubber particles

18mm

30 30000 0.7111 0.6450
40 35000 0.6900 0.6396
60 40000 0.6724 0.6242
80 45000 0.6619 0.6226

From data in Tab. 19.3, a slight variation in SRF values is noticed when different
compressive strength values are assumed for the reference concrete. In particular,
lower SRF values are found when a higher reference concrete compressive strength
value is assumed. These reductions are larger in case of substitution operated on
coarse aggregates (18 mm) rather than on fine ones (6 mm).

These conclusions are confirmed regardless of the percentage and of the size of
the rubber particles in concrete. In this section, the rubber particles content of 21.6%
(corresponding to the significant case of about 50% of substitution of the original
dosage of the natural coarse aggregates or, in alternative, to about 80% of the fines)
is representative because at this percentage modification in terms of compressive
strength are relevant.

The range of variability of the predicted SRF values listed in Tab. 19.3 helps to
partially explain the large difference sometimes also noticed among experimental
SRF data reported in the literature by different authors. Actually, experimental studies
from different authors certainly refer to concrete mixtures very different each other
in terms of mix proportioning and, consequently, in terms of compressive strength.
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Then, a wide range of experimental SRF values results from the literature, as shown
in Gregori et al (2019).

19.4 Conclusion

In this study, several FE models were developed to investigate the mechanical re-
sponse of rubbercrete, which is a concrete modified by partial replacement of the
natural aggregates with rubber particles from recycled waste tyres.

The effects on the compressive strength were investigated according to the size,
the elastic modulus, and the amount of the rubber particles. Results from the nu-
merical analyses well reproduced the trends indicated by the experimental data in
literature, confirming that numerical simulations may represent a promising, eco-
nomic and complementary tool (in combination with usual experimental tests) for
pre-qualification of rubbercrete mixtures.

Numerical simulations confirmed that the compressive strength of rubbercrete
reduces when the amount of natural aggregates substituted with rubber particles
increases, and this reduction is larger for coarse aggregates substitution, rather than
fine one.

Moreover, the effects of different values adopted for the reference concrete com-
pressive strength are also confirmed to depend on the size of the rubber particles,
regardless the amount.

Predicting equations were provided for the estimation of the Strength Reduction
Factor of the rubbercrete to be expected in case of substitutions of the natural fine
and coarse aggregates with rubber particles, especially when rubber particles are
pre-treated to enhance their adhesion with the cementitious matrix.
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Chapter 20
Linear Dynamics of 2D Pantographic
Metamaterials: Numerical and Experimental
Study

Marco Laudato & Luca Manzari

Abstract In this paper, the results of numerical and experimental studies on the
linear time-invariant dynamics of a 2D pantographic material are presented. The
outcomes of a linear second gradient model enforcing the same symmetry of the
microstructure is compared to experimental observations obtained via Digital Image
Correlation (DIC).

Keywords: Pantographic material · Generalized continua · Dynamics · Mechanical
metamaterials · Digital Image Correlation (DIC)

20.1 Introduction

Some of the most interesting features of mechanical metamaterials happen when
they are subjected to dynamic loads. In this regime, the complex interactions among
the elements of the microstructure give rise to unusual macroscopic mechanical
behaviors—band gaps in the dispersion relations of the locally resonant metama-
terials proposed by Liu et al (2000) are typical examples, see also di Cosmo et al
(2018).

The mechanical metamaterials field has experienced a fast growth in the last few
decades mainly due to the remarkable improvement of fast-prototyping techniques
(such as 3D printing) that allow researchers to produce accurate specimens in a
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reasonable amount of time. However, the increasing complexity of the microstructure
geometry requires elaborate mathematical models able to properly describe the
resultant macroscopic behavior.

One of the possible modelling strategies consists in the definition of an anal-
ogous continuous mechanical system whose dynamics is obtained by means of a
homogenization of the dynamics of the metamaterial underlying microstructure.

As expected, the more complex the geometry and the interactions of the mi-
crostructure, the more complex the homogenized continuous system will be. It is
possible, indeed, that the resultant homogenized continuum model cannot be framed
in the setting of the classical theory of elasticity. When this is the case, these analo-
gous continuous systems are called generalized continua.

This kind of systems have been studied for the first time by Mindlin and Eshel
(1968) (see for historical remarks dell’Isola et al, 2015, 2017a) and have been
classified in two main classes, depending on the kinematical descriptors which
appear in the definition of the mechanical energy of the system (see Rosi et al, 2018)
for a complete description of their classification):

• Higher-order continua, in which the set of kinematical fields is extended w.r.t.
the classical theory of elasticity. A typical example is the Cosserat model, in
which local rotations are allowed in the kinematics of the system.

• Higher-grade continua, in which the set of kinematical fields is the same but
higher gradients of the displacement field are involved in the definition of the
energy of the system.

This work focuses on an exemplary system belonging to this last class called panto-
graphic material. This mechanical metamaterial is characterised by a microstructure
made of two or more parallel arrays of straight fibers which are oriented in mutual
orthogonal directions. In the intersection points of the fibers, the two arrays are
connected by a set of cylinders called pivots (see Fig. 20.1). It has been shown by
mathematical (Alibert et al, 2003; Boutin et al, 2017; Placidi et al, 2020; Eremeyev
et al, 2019) and experimental (dell’Isola et al, 2016; Golaszewski et al, 2019; Turco
et al, 2019; Barchiesi et al, 2019b) methods, that in order to fully describe the
macroscopic static behavior of this system a second gradient theory is needed.

However, the experimental investigation of the dynamical behavior of panto-
graphic materials is very recent (Laudato et al, 2018). The main aim of this work is

Fig. 20.1 CAD visualization
of the microstructure of a
2D pantographic material.
Two arrays of straight parallel
fibers are connected in the
intersection points by the
pivots.
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to compare the outcomes of the experimental observations of a pantographic material
undergoing a small periodic imposed displacement with the predictions of a linear
second gradient model under the Linear Time Invariant (LTI) dynamics assumption.

The paper is organized as follows. In Sect. 20.2 the particular specimen under
analysis is described. In Sect. 20.3 the details of the approach used to describe the LTI
dynamics in both the experimental and numerical analysis are outlined. In Sect. 20.4
the linear model used for the numerical simulations is introduced, while in Sect. 20.5
the experimental setup is presented. Finally, in Sect. 20.6 the comparison between
the experimental and numerical results is discussed.

20.2 2D Pantographic Metamaterials

Pantographic materials have been studied for long time (dell’Isola et al, 2019b,a;
Placidi et al, 2016; Barchiesi and Placidi, 2017; Nejadsadeghi et al, 2019) and in
several configurations, from 1D pantographic beams (see Barchiesi et al, 2019a)
to 3D pantographic volumes (dell’Isola et al, 2017b). The microstructure of the
so-called pantographic sheet studied in this work consists of two parallel planes
connected in the intersection points of the fibers by a set of pivots as shown in
Fig. 20.1. Some considerations are in order:

• Current state-of-the-art 3D printers are able to produce so-called “perfect piv-
ots”, meaning that there is almost no energy associated to their deformation. The
specimens considered in this work have this feature and this must be accounted
for during the modeling phase.

• Although the system is three-dimensional, its thickness is one order of magnitude
smaller with respect to the other linear lengths and it has been experimentally
observed (Laudato et al, 2019) that the out-of-plane oscillations can be consid-
ered negligible in such small deformations fashion. Therefore, for the sake of
simplicity, the specimen is modelled as a two-dimensional system.

The physical specimen under investigation is a rectangular pantographic metamate-
rial sheet made of polyamide EOS PA2200 printed by a Formiga P100 3D printer. Its
linear dimensions are 235mm× 78mm with a thickness of 6.3mm and its weight
is 24.37 g. The distance between two pivots is 7.00mm and the fibers diameter is
1.8mm.

20.3 An Approach to the Analysis of LTI Systems

In this section the method adopted to analyse and compare the outcomes from
experimental observations and numerical simulations of the dynamic behavior of the
pantographic metamaterial is presented. The main assumption is that the dynamic
behavior of the system in the observed configuration can be considered linear time
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invariant (LTI). This assumption implies that the relation between the input and the
output signals of such a system is linear and that, for a given time T , the result of an
input signal applied at time t and time t+ T will be the same except for a T delay.
As a consequence, the output signal will be the result of the convolution of the input
signal with the impulse response of the system in time domain or, equivalently, of
the multiplication of the transfer function of the system by the Laplace transform of
the input signal in the frequency domain. An interesting property is that if the input
signal is a sinusoid at a given frequency, the output signal will still be in general a
sinusoid with different amplitude and phase but same frequency.

Under this assumption, any mechanical system whose dynamic behavior can be
modeled as LTI can be fully characterized by means of transfer functions relating the
motion of its different parts. In this work, we will consider the outcomes from Digital
Image Correlation (DIC) for the experimental side, and Finite Element Methods
(FEM) for the numerical side. Indeed, both methods perform a discretisation of the
system geometry and output the displacements in time for each point of the mesh.

Since the imposed displacement is sinusoidal, due to the LTI hypothesis, the
output signals obtained by means of the aforementioned methods must be sinusoids
as well. It can, as such, be fitted by the following general sinusoidal function, for
each point of the discretised domain:

si(t) = Ai cos (2πfit+ ϕi) +Bi . (20.1)

In this way, the information of the time behavior of each point of the system is fully
represented by the set of parameters (Ai, fi, ϕi, Bi), where Ai is the amplitude of
the output signal, fi is the frequency of the oscillation, ϕi is the phase, Bi is a bias,
and the index i runs on the independent directions in which is possible to decompose
the resulting oscillations. It is now possible to plot the values of these parameters
on the system domain, obtaining in this way an informative visualization of the time
behavior of the system. The method applies in the same way for both numerical and
experimental data, allowing for a meaningful comparison between the experimental
observations and the outcomes from the model. For additional details about the data
reduction procedure, along with the advantages it entails and other applications to
experimental data from DIC (see Manzari et al, 2018).

20.4 Linear Model for 2D Pantographic Sheets

Mechanical metamaterials are inherently multi-scale systems (Barchiesi et al, 2019c;
Del Vescovo and Giorgio, 2014). The different levels of descriptions are hierarchi-
cally connected and require different modelling approaches to grasp their particular
features. Pantographic materials are no exception.
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By assuming that the elements of the microstructure (pivots and fibers) are the
elementary building blocks of our description1, the three following scales of descrip-
tion of a pantographic sheet can be considered. At microscopic level, it is possible to
model each element of the microstructure as a 3D continuum by means of the Cauchy
theory of elasticity. However, although this approach would lead to a very accurate
description of the microscopic behaviour of the system, it is extremely computation-
ally expensive and, from a more pragmatic point of view, not useful since the interest
of the current work lies in the observed overall macroscopic behaviour. Therefore it
is convenient to introduce a mesoscopic scale of description, in which the elements
of the microstructure are modeled in terms of mechanical elements (e.g. springs,
bars, beams, etc.) arranged in a way able to mimic the behaviour of the microstruc-
ture. In case of the pantographic sheet, the main approximation is the passage from
a three-dimensional model to a planar description. At this scale (for a more general
description, see Giorgio et al, 2019), the distance between the two arrays of fibers
(see Fig. 20.1) is neglected and the elements of the mesoscopic model are arranged
in a planar lattice (see Fig. 20.2). In the literature, it is possible to find two different
mesoscopic models for the pantographic sheet. One is the so-called Hencky-type
model (Turco et al, 2016, 2018; Turco, 2018; Turco et al, 2017), in which the fibers
are modeled as extensional springs and the pivots as rotational springs: an additional
spring connects two orthogonal fibers.

In a different approach, instead, the fibers are modeled as Euler beams with finite
extensional stiffness2 and the pivots represent a hinge constraint in which four beams
interact.

In addition to these two mesoscopic models, the pantographic sheet can be de-
scribed as a continuous two-dimensional system. In order to embrace a variational
approach, a continuous model will be defined by firstly specifying the kinematical
fields describing the behaviour of the system and then by providing an appropriate
form of the mechanical energy of such system as a functional of these fields. A

Fig. 20.2 Mesoscopic model
of a pantographic sheet mi-
crostructure. The fibers (Euler
extensible beams) form a 2D
lattice in which the pivots
(red circles) represent a hinge
constraint.

1 It means that the inner structure of the material which composes the elements of the microstructure
is neglected (i.e. the granular nature of the polyamide).
2 This assumption is driven by experimental observations showing that the fibers elongate up to
10% when a pantographic sheet undergoes a bias extension test.



358 Laudato, Manzari

common approach in the metamaterial framework is to obtain the explicit form of
such an energy by exploiting the multi-scale nature of the system. Indeed, there are
several methods, usually called homogenization methods, which are able to yield a
continuous model by means of some limit procedure of the semi-discrete description
of the mesoscopic structure.

Several efforts have been devoted to obtain a homogenized continuous theory for
the pantographic sheet starting from the mesoscopic description of its microstruc-
ture (dell’Isola et al, 2016; Barchiesi et al, 2018; Alibert and Della Corte, 2015;
Alibert et al, 2003). Although these models can be slightly different, all of them
entail a form of the mechanical energy which depends on the second gradient of
the displacement field (Alibert and Della Corte, 2019; Giorgio et al, 2017). This
is enough to consider homogenized models for pantographic sheets as higher-grade
models, according to the aforementioned classification. A form of the mechanical
energy is postulated in Sect. 20.4.1 and validated by comparing mathematical and
numerical results with experimental observations. This will be an educated guess,
driven by two main observations:

• As already anticipated, several mathematical and experimental results obtained
during the investigation of the static behaviour of pantographic sheets suggest
that it has to be considered as a higher-grade material to correctly forecast its
macroscopic behavior. In particular, models in which the deformation energy
depends upon the second gradient of the displacement field are able to perfectly
forecast equilibrium configuration of pantographic sheet under quasi-static stan-
dard tests.

• The same symmetry properties which hold at the mesoscopic level must hold
for the macroscopic description. Indeed, as it is evident from Fig. 20.2, the
mesoscopic lattice shows a D4 symmetry, meaning that it is invariant under
rotation of π/2 around the normal axis and under mirror transformations. The
constitutive matrix of the macroscopic model must present the same symmetry
properties.

The model will be formally defined in the rest of the section, but let us anticipate
that the deformation energy has been introduced for the first time by Placidi et al
(2017) and lies in the more general framework of the so-called strain gradient
theory (Mindlin, 1965). The main reason behind this choice is that these kinds of
models have been already successfully exploited to study the dynamical behaviour
of higher grade mechanical metamaterials (Rosi and Auffray, 2019, 2016).

20.4.1 Kinematics and Dynamics

The reference configuration of the system is defined as a rectangular closed subset B
of the Euclidean space E2. Consider a set of Cartesian coordinates such that the base
directions (X1, X2) are parallel to the fibers of the pantographic sheet, as shown in
Fig. 20.3.
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A generic point of B will be identified by a vector X = (X1, X2). As per
description in Sect. 20.5, the final output of the model will be rotated and described
in terms of the (x, y) reference frame (in red in Fig. 20.3). Be the boundary ∂B
the union of four subsets Σi of B (i = 1, . . . , 4) such that their intersection has
zero 1D and 2D Lebesgue measure. In particular, Σ1 is considered clamped and
Σ3 undergoes the imposed periodic oscillation along the y direction. The boundary
of the boundary ∂∂B is defined as the disjoint union of the four vertices Vi of B
(i = 1, . . . , 4) (see Fig. 20.3). The position of a Lagrangian point X ∈ B at time

Fig. 20.3 Geometry of the model domain. To keep contact with the experimental setting the final
output of the model will be rotated and described in terms of the (x, y) reference frame (in red).

t is defined by means of the so-called placement function χ : B × R −→ E2

such that x = χ(X, t). From the placement function it is possible to define the
displacement function u(X, t) as the difference w.r.t. the reference configuration,
namely u = χ(X, t)−X .

In this model, the whole kinematics of the system is described by the placement
field and its first and second derivatives. The gradient of the placement w.r.t. the
Lagrangian coordinates is defined as F (X, t) = ∇Xχ(X) and it is a second order
tensor. This tensor can be used to define an objective deformation measure, i.e.
a quantity able to take into account the amount of energy associated to a certain
deformed configuration. In this work, the so-called Green–Saint Venant deformation
measure is adopted,

G(X, t) =
1

2
[F ᵀF − I] , (20.2)

where (·)ᵀ indicates the transposition operation and I is the identity matrix. If F is
an orthogonal transformation, i.e. it preserves lengths and angles, the Green–Saint
Venant tensor vanishes.

The dynamical behaviour of the pantographic sheet has to minimize the following
action functional
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A(G,∇G) =
∫ T

0

∫
B

1

2
ρ|u̇|2dXdt− Edef(G,∇G) , (20.3)

where ρ is the surface mass density of the sheet, u̇ indicates the time derivative of
the displacement u and Edef is the deformation energy functional.

In the present formulation of the model the standard kinetic energy term has been
used. It has been shown in (Battista et al, 2015) that the first modes in which the
microintertia term (see Rosi et al, 2018, for a brief introduction) would play a crucial
role are relative to a range of frequencies that are not considered in the present
investigation. Therefore, this form of the kinetic energy term can be considered as a
reliable first approximation for the present case. The effects of the microintertia will
be investigated in a future work. The most general form of the deformation energy
Edef is

Edef(G,∇G) =

∫ T

0

∫
B

[
U(G,∇G)− b̃ · u

]
dXdt

−
∫ T

0

∫
∂B

[
t̃ · u+ τ̃ · [(∇u)n̂]

]
dsdt

−
∫ T

0

∫
∂∂B

[
f̃ · u

]
dt .

(20.4)

Let us analyse this expression term by term. U(G,∇G) is called strain gradient
deformation energy, and it depends upon ∇G, i.e. upon the second gradient of the
placement field, which is consistent with the discussion at the beginning of the
section.

Once the explicit form of U is given, we will require for it to be invariant w.r.t.
elements of the D4 symmetry group. All the elements labeled with a tilde represent
external actions on the body. In particular (see dell’Isola et al, 2012; Auffray et al,
2015a), b̃ is an external bulk force per unit area.

In the second term, t̃ and τ̃ represent external force and double force per unit
length. Finally, in the last term, f̃ represents an external concentrated force3 which
acts on the vertices of the system (Placidi et al, 2017). In particular, the last two
integrals are defined as:∫

∂B

g1(X)ds =

4∑
i=1

∫
Σi

g1(s)ds ,

∫
∂∂B

g2(X) =

4∑
i=1

g2(Vi) , (20.5)

where s parameteris Σi and g1, g2 are generic function of X defined on ∂B and
∂∂B, respectively.

Before giving the explicit formula for the strain gradient energy U , in order to
clarify the meaning of the following symbols, it is convenient to briefly introduce the

3 When higher order derivatives of the displacement field are considered as independent variables,
the set of admissible external actions on the system will include also terms which couple these with
additional kinematic descriptors, such as double forces or forces acting on points.
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constitutive equations of the linear strain-gradient elasticity theory. In this approach,
formulated for the first time by Mindlin in the 1960s, the constitutive laws are given in
terms of the usual infinitesimal strain tensor ε and its gradient, called strain gradient
tensor η = ε⊗∇, by means of the following linear equations:{

σij = Cijabεab +Mijabcηabc

sijk =Mabijkεab +Aijkabcηabc
. (20.6)

In this expression, σ is the usual stress tensor, s is the so-called hyper-stress tensor,
C is the usual elastic tensor, M is a tensor coupling ε and η, and A is an additional
sixth order elastic tensor.

In the case of a pantographic sheet, a bi-dimensional system invariant under rota-
tion of π/2, the odd-order tensor M vanishes. Moreover, it is possible to show (Auf-
fray et al, 2015b) that the two tensors C and A admit a matrix representation. The
explicit formula for the strain gradient energy U(G,∇G) is therefore (Placidi et al,
2017)

U(G,∇G) = U(ε,η) =
1

2
(εᵀCε+ ηᵀAη) (20.7)

where ε and η are column vectors whose components are

ε = (G11, G22,
√
2G12), η = (G11,1, G22,2,

√
2G12,2, G11,2,

√
2G12,1) ,

(20.8)
and the comma represents derivation with respect to (X1, X2) directions. In order
to take into account the symmetry w.r.t. the D4 dihedral group, we require the
strain energy density to be invariant under the action of an element Q ∈ D4 on the
Cartesian coordinate system, namely,

U(G,∇G) = U(QiaQjbGab, QiaQjbQkcGab,c). (20.9)

This requirement implies that the tensors C and A admit the following matrix
representations (for a detailed discussion about this result, refer to Auffray et al,
2009):

CD4
3×3 =

⎛⎝c11 c12 0
c12 c11 0
0 0 c33

⎞⎠ (20.10)

and
AD4

6×6 =

(
AD4

3×3 03×3

03×3 A
D4
3×3

)
(20.11)

where

AD4
3×3 =

⎛⎝a11 a12 a13a12 a22 a23
a13 a23 a33

⎞⎠ (20.12)

and c11, c12, and c33 replace the usual Lamé coefficients λ and μ and the tensor A
depends on six parameters. In Rosi et al (2018) an identification procedure for these
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parameters is outlined and in our case they have been estimated by a comparison
procedure w.r.t. static experimental observations.

Requiring the strain gradient energy U to be positive definite, further conditions
on the matrices C and A can be obtained in terms of their eigenvalues. This remark
is essential when the pantographic system under analysis comprises the so-called
perfect pivots, i.e. pivots which can freely rotate without any resistance.

The main consequence of this assumption is that the action functional is not
coercive anymore because there are several configurations in which the deformation
consists only in a rotation of the fibers around the pivots, which have all the same
deformation energy. From the modelling point of view, it translates into the condition
c33 = 0, i.e. the strain gradient energy is semi-definite positive (Placidi et al, 2017).

However, since the best current manufacturing techniques are not able to produce
completely perfect pivots, in our model the value of c33 has been estimated to be
a positive number much smaller than the other matrix elements and therefore the
resulting action functional in Eq. (20.3) is coercive.

In the case under investigation, one of the short sides of the system is clamped to
the ground, while the other short side undergoes an imposed sinusoidal displacement.
As a consequence, all the terms relative to external forces in Eq. (20.4) vanish in this
case. Vanishing flux is imposed for the long sides of the system. The parameters of
the model, i.e. the matrix elements in Eqs. (20.10) and (20.11) have been estimated by
comparing the experimental and numerical results obtained by using the procedure
outlined in Sect. 20.3 (see Table 20.1). By enforcing the least action principle on

Table 20.1 Values of the model parameters. Vanishing and symmetric parameters are not shown.

Parameter Value

c11 3.15× 105 N/m
c22 3.15× 105 N/m
c33 1N/m

a11 0.07134 J
a22 0.07134 J
a23 −0.10089 J
a33 0.14268 J
a44 0.07134 J
a55 0.07134 J
a56 −0.10089 J
a66 0.14268 J

the functional (20.3), the dynamical behavior of the system is computed by means
of a finite element scheme implemented in the software COMSOL Multiphysics (for
the explicit form of the variation of the action functional we refer to Placidi and
El Dhaba, 2017).



20 Linear Dynamics of 2D Pantographic Metamaterials 363

Like the majority of numerical integration algorithms, COMSOL has been opti-
mized for the more used first gradient continua. Therefore, the Hellinger–Reissner
variational principle has been applied by defining a new kinematical descriptor M
and imposing the constraint M = ∇χ by means of a Lagrange multiplier.

The required additional boundary condition has been fixed by imposing that the
normal derivative of the displacement, written in terms of the new variableM , must
vanish at the short sides of the system.

In this way, the integration algorithm can apply the finite element scheme on
the sum of two first gradient energy functionals (see (Scerrato et al, 2016) for a
detailed explanation of this method applied to second gradient continua). The discrete
elements used are triangular cubic Hermite and quadratic Lagrange polynomials for
the two terms of the energy functional, respectively, and the space of the test function
is the H1 Sobolev space.

20.4.2 Rayleigh Dissipation

For a meaningful physical representation, additional damping terms must be consid-
ered in the modeling phase. The focus of this work lies in the analysis of the steady
state of the system, i.e. when the LTI condition holds. In the present model we have
considered the following three Rayleigh dissipation terms which are relative to the
velocity of the three deformation measures of a pantographic sheet:

Dext = Gext (u̇1,1δu1,1 + u̇2,2δu2,2) ,

Dshear = Gshear (u̇1,2 + u̇2,1) δ(u1,2 + u2,1) ,

Dbend = Gbend (u̇2,11δu2,11 + u̇1,22δu1,22) ,

(20.13)

where Dext, Dshear, and Dbend are the Rayleigh terms relative to the extension, shear,
and bending deformation measures, respectively. The parameters Gext, Gshear, and
Gbend, whose values are listed in Table 20.2, have been estimated by comparison
with the experimental outcomes. The approach adopted to describe the dissipation

Table 20.2 Values of the damping parameters.

Parameter Value

Gext 7× 10−6 kg/s
Gshear 7× 10−6 J s
Gbend 7× 10−6 kg/s

behavior of a pantographic sheet leaves room for improvement. Indeed, the Rayleigh
terms in Eq. (20.13) are describing a pure viscoelastic damping, whereas the physical
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mechanism behind the dissipation of a pantographic sheet should be found in the
interaction between the elements of its microstructure.

Moreover, the values of the parameters in Table 20.2 should depend upon the
imposed displacement frequency, due to their viscoelastic nature. The study of the
dissipation mechanism at the level of the pantographic sheet microstructure, with
particular attention to the behavior of the pivots, will be the object of a future work.

Currently, a simulated scenario in which the system undergoes a sinusoidal im-
posed displacement lasting one second is considered. Only the last 0.25 seconds of
this time record, where the transient behavior is already negligible (see Fig. 20.4)
due to the action of the dissipation terms presented in Eq. (20.13), is used for the
subsequent data analysis.

Fig. 20.4 Simulated oscillation along the X1 (left panel) and X2 (right panel) axes of a generic
point at 140 Hz. In the last 0.25 s the system is considered at steady state due to the action of the
damping terms.
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20.5 Experimental Methods

In light of the methodology outlined in Sect. 20.3, an experimental rig is designed
with the aim of measuring the displacement of a pantographic sheet excited by
imposing a sinusoidal displacement at one of its short edges, while keeping the other
edge fixed.

20.5.1 Mounting of the Specimen

In practice, the zero-displacement boundary condition is realized by clamping one
of the short edges of the sample to the ground—which is assumed infinitely stiff
given the extreme compliance of the sample—while the opposite edge is connected
to an electrodynamic shaker.

The shaker, a Brüel & Kjær type 4809, is suspended from the ceiling by means
of metal chains and soft springs, its height adjusted such that the pantographic sheet
may be slightly prestressed in order to avoid the occurrance of buckling instabilities:
as per description in Sect. 20.2 the relaxed unmounted sample is 235mm long, while
it measures 237mm once mounted in between the shaker and the ground.

A laser distance meter and a laser level are used to carefully ensure consistent
alignment and sample prestretch before each test. The excitation signal, a sinusoid
at the frequency of interest, is generated using a NI-9263 digital-analog converter
directly connected to a Brüel & Kjær type 2718 power amplifier.

The NI-9263 module is housed in a cDAQ-9178 chassis, controlled using the Mat-
lab Data Acquisition toolbox. This mounting arrangement is shown in Figure 20.5,
and a schematic representation of the whole rig is given in Figure 20.6.

20.5.2 Imaging Techniques, DIC

The actual measurement of the displacement field in time is performed employing
Digital Image Correlation (DIC), an optical technique that relates correlation between
subsets of pixel intensities to displacements. While there are many implementations
of DIC and many different flavours of DIC-based analyses (e.g. global DIC (Besnard
et al, 2012; Wittevrongel et al, 2014), Eulerian frequency analysis as in Venanzoni
et al (2016)), the equipment available to the authors consists of a commercial white-
light DIC platform that employs the time-proven Lucas–Kanade algorithm for optical
flow estimation (LaVision GmbH, 2017; Fleet and Weiss, 2006; Bouguet, 2000).

To produce suitable stereo video footage, two Phantom v1612 high-speed cameras
equipped with 200mm macro telephoto lenses are mounted at a distance of ≈1.5
m from the sample. At such stand-off distance, this lens choice offers a field of
view of 240mm× 150mm, with a scale factor of ≈5 pxmm−1. This allows for
a theoretical maximum resolving power of ≈10 μm, given the use of subpixel-
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Fig. 20.5 A detail of the experimental setup. The pantographic sheet is clamped to the ground via a
metal adapter on one side, and connected to an electrodynamic shaker at the other end. The shaker
is hanging from the ceiling suspended via soft springs, in turn connected to chains. The power
amplifier used to drive the shaker is also shown, as well as the four spotlights that illuminate the
sample. For the sake of clarity, cables to and from the shaker and the power amplifier have been
removed before taking the picture.

interpolation with a 6th order spline (Research, 2017; Nikon, 2017). The system
is calibrated using a pinhole camera model that accounts for radial and tangential
distortion, taking 5 non-coplanar views of a two-level calibration plate and ultimately
yielding a reprojection error of 0.13 px RMS. The chosen interrogation window
size is 19 px× 19 px, with a step of 4 px: this well agrees with the characteristic
dimensions of the pantographic sheet, while keeping computational time reasonable.
A bigger observation window would act as a spatial low-pass filter on the observed
displacements, while a smaller observation window would increase computational
costs without providing additional information. (and Rory Bigger et al, 2018)

20.5.3 Measurement Routine

For any excitation frequency of interest, a measurement proceeds as follows:
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1. Four 250W spotlights are turned on; this need arises from the relativelt short
camera exposure time of 250 μs, necessary to avoid motion blur.

2. A sinusoid at the choosen frequency is fed to the power amplifier and in turn
gets the sample moving.

3. After 2.5 s (a time deemed long enough for the sample to reach steady state)
a trigger is sent to the cameras, that acquire 500 stereo frames at a rate of
2048Hz. This frequency supersamples the maximum excitation frequency of
interest (200Hz) by a factor 4, and the record length is such that 9 whole periods
at the minimum excitation frequency of interest (20Hz) can be recorded. The
spotlights and the signal generator are turned off, the video is transferred from
the RAM of the cameras to persistent storage.

The assumption of steady state has been verified by looking at the envelope of the
displacement in time, while the linearity assumption has been verified by running
the measurement at three different excitation amplitudes.

Fig. 20.6 A schematic representation of the core components constituting the measurement rig: the
two high-speed cameras, four spotlights, the sample mounted in between the solid ground and the
freely suspended shaker.

20.6 Results: Time-invariant Dynamics

In this section the results of the analysis of the numerical and experimental results
obtained by means of the method discussed in Sect. 20.3 are presented. The goal of
the analysis is to study the time-invariant dynamics of the specimen when one of its
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short sides undergoes a sinusoidal imposed displacement while the other short side
is clamped to the ground. The direction of the imposed displacement is orthogonal to
the ground. The observed physical quantity is the displacement vector field in time,
namely the set of the deformations of the specimen points with respect to a given
reference configuration. In the present investigation, the set of frequencies of the
imposed sinusoidal displacement spans from 20Hz to 220Hz with a step of 20Hz.
A more comprehensive analysis of the spectrum, by means of an imposed signal
with a frequency increasing in time, will be the object of a following work. Recall
that, according to this scheme, the time behavior of all the points of the system has
been fitted with the sinusoidal function in Eq. (20.1) under the assumption of LTI
dynamics. In this way, the information on the dynamics of each point of the system
has been compressed in the parameters (Ai, fi, ϕi, Bi), whereAi is the displacement
amplitude, fi the frequency of the oscillation, ϕi the phase, Bi a bias, and the index
i = x, y, corresponding to the short side and long side directions of the specimen,
respectively—in red in Fig. 20.3. A discussion follows, regarding the distribution on
the reference configuration geometry of the values of the frequency parameter fi and
of the amplitude parameter Ai for the four relevant imposed oscillation frequencies
of 40Hz, 80Hz, 160Hz and 200Hz.

20.6.1 Distribution of the Frequency Parameter

The interest in the distribution of the frequency parameter f on the reference con-
figuration geometry of the system is relative to the linearity assumption. Indeed, as
already anticipated in Sect. 20.3, the system is assumed to behave linearly, i.e. that
all the non-nodal points of the system will oscillate with the same frequency of the
imposed periodic signal. From Figs. 20.7-20.10 it is possible to observe that the
distribution of the estimated frequencies lies in the immediate neighborhood of the
excitation frequency. This is an indication that the linearity assumption holds in the
investigated regime. In the experimental plots, some points are missing due to the
application of a mask aimed at eliminating all non-convergent values of the fitting
procedure. In particular, in all the experimental plots the missing regions are around
the bottom part of the system, where the clamping inhibits the oscillations and the
signal-to-noise ratio decreases. The same behavior happens in the upper region of
the system when looking at oscillations in the x-direction: this is presumably due to
the action of the imposed oscillation, which is directed along the y-direction. This
behavior is encountered in the numerical simulations as well. The vertical central
axis appears to be a set of nodal points for oscillations in the x direction. Further-
more, on the bottom part of the numerical plots relative to y-oscillations (fourth
panels in Figs. 20.7-20.9) it is possible to observe the presence of a localized region
of oscillation. A detailed investigation of this region, where the signal-to-noise ratio
was too low to provide meaningful results with the current setup, will be the object
of a future work.
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Fig. 20.7 Experimental vs numerical distribution of the frequency parameter f on the reference
configuration geometry of the system. The first two and the second two panels are relative to
oscillations along the x- and y-directions, respectively. The scales relative to the linear dimensions
are in meters. The values of the color bar are in hertz. The imposed oscillation frequency is 40Hz.

Fig. 20.8 Same plots with imposed oscillation frequency of 80Hz.

20.6.2 Distribution of the Amplitude Parameter

In this section we present the plots relative to the distribution of the amplitude pa-
rameter A on the reference configuration geometry. The comparison between the
experimental results and the outcomes of the numerical model yields a qualita-
tive measure of the forecasting power of the proposed numerical model. Figures
20.11-20.14 show a remarkable correspondence between experimental and numer-
ical results. In particular, they confirm that the second gradient model presented
in Sect. 20.4 is able to forecast the linear time invariant dynamical behavior of a
2D pantographic material. In the same way of the frequency parameter plots pre-
sented in the previous section, the missing points in the experimental plots are due
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Fig. 20.9 Same plots with imposed oscillation frequency of 160Hz.

Fig. 20.10 Same plots with imposed oscillation frequency of 200Hz.

to the action of the same masking procedure. Moreover, it is possible to observe
in the experimental plots relative to oscillations in the y-direction (third plots in
Figs. 20.11-20.14) that the central areas of oscillation are not perfectly circular as
forecasted by the numerical model. This effect can be reasonably traced back to the
microstructure of the pantographic material and its modeling will be investigated in
a future work.

20.7 Conclusions and Perspectives

In this work, the results of the numerical and experimental study on the linear
time-invariant dynamics of a 2D pantographic material have been presented. The
experimental investigation has been carried out by means of high-speed stereo imag-
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Fig. 20.11 Experimental vs numerical distribution of the amplitude parameter A on the reference
configuration geometry of the system. The first two and the second two panels are relative to
oscillations along the x- and y-directions, respectively. The scales relative to the linear dimensions
and to the colorbar are in meters. The imposed oscillation frequency is 40 Hz.

Fig. 20.12 Same plots with imposed oscillation frequency of 80 Hz.

ing and DIC. The numerical model has been developed starting from the results
presented in Placidi et al (2017) and implemented to perform numerical simulations
using the software COMSOL Multiphysics.

The data have been analysed by performing a fitting procedure of both numerical
and experimental results with a sinusoidal function, under the hypothesis of linear
time-invariant dynamics. The results have been presented in form of plots of the
distribution on the reference configuration geometry of the values of the frequency
and amplitude parameters of the fitting procedure. The comparison between exper-
imental and numerical plots shows a remarkable correspondence, confirming the
forecasting power of the presented second gradient mathematical model.
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Fig. 20.13 Same plots with imposed oscillation frequency of 160 Hz.

Fig. 20.14 Same plots with imposed oscillation frequency of 200 Hz.

The results presented in this paper have to be considered just as a promising
starting point for future investigations. Indeed, as already remarked, the model can
be enhanced in several ways: test introducing in the modeling scheme a microinertia
term in the kinetic energy functional, as well as implementing a better dissipation
mechanism which is closer to the physical behavior of the microstructure, will be the
object of forthcoming works. From the experimental side, a dedicated investigation of
the bottom-most region of the system is in the workings. A final goal is investigating
the spectral properties of the system to check whether this second gradient model is
able to forecast the eigenfrequencies and eigenmodes of a 2D pantographic structure.

The quality of the forecasting power of the model, despite all the limitations and
the simplistic assumptions presented in the paper, is very encouraging and paves
the way to the ambitious goal of the analysis of these kinds of systems in large
deformation regime.
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Chapter 21
Nonlinear Dispersion Properties of Acoustic
Waveguides with Cubic Local Resonators

Marco Lepidi & Andrea Bacigalupo

Abstract Acoustic metamaterials are synthetic architected media featured by a pe-
riodic microstructured cell hosting one or more resonant oscillators. The cellular
microstructure can be parametrically design to functionalize the dispersion proper-
ties of elastic waves. A one–dimensional crystal lattice, characterized by a diatomic
periodic cell, is considered to prototypically simulate the essential undamped dy-
namics of weakly nonlinear acoustic waveguides. A cubic nonlinearity affects the
intracellular elastic coupling between the primary atom and the secondary atom
(resonator). In the small-amplitude oscillation range, the dispersion relations for the
linear wavefrequencies ω(β) and linear waveforms φ(β) are determined as ana-
lytical functions of the wavenumber β. A general asymptotic approach, based on
the multiple scale method, is employed to determine the amplitude-dependent dis-
persion relations for the nonlinear wavefrequencies !(β) and nonlinear waveforms
ψ(β). The actual existence of stable periodic oscillations orbits, confined on the
invariant manifolds in the space of the two principal coordinates corresponding to
the nonlinear waveforms, is successfully verified by numerical simulations.

Keywords: Crystal lattice · Acoustic metamaterials · Dispersion properties
Nonlinear waveforms · Cubic nonlinearity · Perturbation methods

21.1 Introduction
Acoustic or mechanical metamaterials are artificial architected media, microstruc-
turally designed for functional applications oriented at the passive control of the
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elastic wave propagation (Liu et al, 2000; Cummer et al, 2016). The metamaterial
microstructure can be parametrically customized to obtain desired band structures in
the dispersion spectrum, by leveraging the peculiar mechanism of local resonances
(Deymier, 2013; Ma and Sheng, 2016; di Cosmo et al, 2018). Essentially, the phys-
ical realizations of locally resonant metamaterials is based on the internal coupling
between the cellular microstructure and auxiliary tuned oscillators (resonators).
The virtuous synergy between highly customizable periodic microstructures and
fine-tunable local resonances paves the way for unconventional dynamic features,
including—among the others—effective negative mass density, absolute stop bands,
modal localizations, negative refraction indexes. Within this challenging scientific
framework, acoustic metamaterials are presently attracting a spreading research at-
tention, targeted at fascinating technological applications like phononic waveguiding,
frequency filtering, flat superlensing, vibration shielding, acoustic cloaking, noise
absorption, non-reciprocal propagation (Guenneau et al, 2007; Craster and Guen-
neau, 2012; Colquitt et al, 2014; Grinberg et al, 2018; El Sherbiny and Placidi, 2018;
Bacigalupo and Gambarotta, 2019).

Since many emerging engineering trends are increasingly demanding ultra-light
materials with super-low filtering properties, the microstructural optimization of
acoustic metamaterials unavoidably tends to maximize the flexibility of local res-
onators, in order to conjugate the lowest resonant frequency with the minimal mass
density (Manimala and Sun, 2014; Lepidi and Bacigalupo, 2018; Bacigalupo et al,
2019). Moreover, since enhanced dissipation properties are not strictly required to
achieve superior performances of passive control in wave propagation, the local
resonators tend to be slightly damped. This systematic tendency towards high flex-
ibility combined with low damping motivates the renewed interest toward slender
microstructures featured by geometric nonlinearities activated by high amplitude
oscillations.

In the past decades, the standing and traveling waves charactering a monocou-
pled periodically-layered undamped system with cubic material nonlinearities have
been studied by means of asymptotic methodologies (Vakakis and King, 1998). The
chaotic and subharmonic oscillations of the traveling waves propagating in a pe-
riodic array of linear oscillators with local essentially nonlinear attachments have
been analyzed (Rothos and Vakakis, 2009). The wave propagation properties in
one–dimensional chains of mono- and bi-coupled nonlinear oscillators have been
investigated by means of linearized and nonlinear maps (Romeo and Rega, 2006,
2008). In the nonlinear regime, the occurrence of quasi-periodic and chaotic so-
lutions has been also recognized. The amplitude-dependent dispersion properties
and transmission functions of one–dimensional chains with nonlinear local attach-
ments modeled as damped cubic oscillators have been studied by using the harmonic
balance method accompanied by numerical simulations (Lazarov and Jensen, 2007).

More recently, the amplitude-dependent band structure of one– and two–
dimensional weakly-nonlinear lattices with monoatomic and diatomic periodic cells
has been investigated through perturbation analyses and numerical simulations
(Narisetti et al, 2010, 2011). Similar periodic systems, but featured by strong nonlin-
earities, have been analyzed by means of a semi-analytical series expansion method
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(Fang et al, 2016). The nonlinear dynamic interactions between two internally res-
onant waves traveling through an undamped monoatomic chain of point masses in-
terconnected by linear springs and cubic couplings have been analyzed (Manktelow
et al, 2011). Different perturbation methods have been employed to determine the
nonlinear dispersion functions and to describe the coupled motion in superharmonic
and subharmonic resonance conditions between the wavefrequencies.

Starting from this scientific background, the primary objective of the paper is the
analytical description of the amplitude-dependent dispersion properties of acous-
tic metamaterials equipped with highly flexible undamped resonators, characterized
by weakly nonlinear coupling with the periodic microstructure. In this respect, the
theoretical mechanical issue is twofold. First, the nonlinear dependence of both the
frequencies and waveforms on the wave oscillation amplitude has to be assessed.
Second, the existence and number of invariant manifolds of harmonic wave motion
has to be determined. A further motivation is given by the crucial role played by
the waveforms in the physical phenomena of wave polarization and energy trans-
fers (Bacigalupo and Lepidi, 2018). Specifically, a one–dimensional periodic lattice
characterized by a locally resonant diatomic cell with cubic interatomic coupling is
considered. The nonlinear frequencies and waveforms are determined as amplitude-
dependent analytical functions of the mechanical parameters. To this purpose, a
general asymptotic strategy based on the perturbation method of multiple scales is
adopted (Lacarbonara and Camillacci, 2004). The nonlinear dispersion properties are
analytically determined in the absence of superharmonic internal resonance between
the acoustic and optical branches of the frequency dispersion spectrum. Moreover,
the invariant manifolds associated with the nonlinear waveforms are determined in
the space of principal coordinates.

21.2 One–Dimensional Diatomic Lattice

A one–dimensional crystal lattice characterized by a diatomic periodic cell is as-
sumed as minimal physical realization of a nonlinear acoustic metamaterial (Figure
21.1). The cellular microstructure can be synthesized by building up a waveguide
made of an infinite chain of massive stiff rings (principal atoms). Each principal
atom is assumed to exchange linear position-dependent forces (attraction or repul-
sion) with the adjacent elements of the chain. The local resonance mechanism can
be realized by nesting heavy circular inclusions (secondary atoms) in the rings. Each
inclusion is co-centered with the hosting ring and fully embedded in the soft matrix
filling its internal volume. Each secondary atom is supposed to exchange nonlinear
position-dependent forces with the corresponding principal atom. In the small am-
plitude range of oscillations, the secondary atoms play the role of inertial resonators,
if their linear frequencies are properly tuned with certain wave frequencies of the
principal atom chain.

From the mechanical viewpoint, the free dynamics of the acoustic metamate-
rial can be described by a low–dimensional Lagrangian model. All the atoms are
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Fig. 21.1 Acoustic waveguide characterized by a diatomic periodic cell realizing a minimal
nonlinear metamaterial with local resonances.

supposed to possess a single degree-of-freedom, aligned with the chain axis. The
lattice is supposed to be perfectly non-dissipative. Considering the generic cell, the
massive and stiff ring is modeled as a rigid annular body with mean radius R and
translational mass M . Consequently, the unique degree-of-freedom of the principal
atom is referred to the displacementU of the ring centroid, where the configurational
node 1 is located. The linear interactions with the principal atoms of the adjacent
cells are simulated by two linear elastic springs (principal springs), with identical
stiffness K. The springs connect the ring with the auxiliary massless nodes 2 and
3 , purposely located at the left and right sides of the cell boundary. Therefore,

two extra degrees-of-freedom are related to the displacements U2 and U3 of the
auxiliary nodes. The internal inclusion is modeled as a point body with mass Mr.
Consequently, the unique degree-of-freedom of the secondary atom can be related
to the displacement V of the configurational node 4 . In the undeformed configu-
ration, the positions of the nodes 1 and 4 coincide with each other. Considering
the ring filler embedding the inclusion as a hardening elastic medium, the nonlinear
coupling between the principal and secondary atoms can be simulated by a pair of
chain-orthogonal pre-stressed springs (secondary springs), which realize the sim-
plest retaining system exhibiting odd nonlinearities. The secondary springs have
stiffness Kr and are identically prestressed with pretension H , for the sake of static
equilibrium.

Considering known a certain dimensional length L of the periodic cell (namely
L = R in the following), it is convenient to introduce the following nondimensional
independent and dependent variables

τ =Ωt, u =
U

L
, v =

V

L
, u2 =

U2

L
, u3 =

U3

L
(21.1)

where Ω2 = K/M is the reference (squared) frequency of the simple undamped
oscillator with the ring mass and the principal spring stiffness. The displacement
difference w = v − u is an auxiliary nondimensional variable that conveniently
describes the inter-atomic drift.

A minimal set of independent nondimensional parameters, sufficient to fully
describe the geometric, elastic and inertial properties of the model, is
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"2 =
Mr

M
, μ =

H

KR
, η =

Kr

K
(21.2)

where "2 is the mass ratio between the secondary and principal atoms, while μ and
η account for the geometric and elastic stiffnesses of the secondary springs. All the
parameters are strictly positive by construction.

Adopting the undeformed prestressed configuration as initial reference for the
dynamic equilibrium, a second-order kinematic formulation can be adopted to de-
termine the elastic energy of the diatomic lattice (Lepidi and Bacigalupo, 2019).
Therefore, the Hamilton’s Principle can be applied to obtain the geometrically non-
linear equations of motion governing the free dynamics of the periodic cell

(1 + "2)ü+ "2ẅ + 2u− u2 − u3 = 0 (21.3)

"2ü+ "2ẅ + 2μw + η w3 = 0 (21.4)

where dot indicates derivative with respect to time τ . The dynamically active dis-
placements u and w can be distinguished from the passive displacements u2 and
u3. The passive displacements are related to the massless boundary nodes, which do
not develop inertial forces. The displacements u2 and u3 are quasi-statically coupled
with the active displacement u by the linear laws

u2 − u = f2, u3 − u = f3 (21.5)

where f2 = F2/(KL) and f3 = F3/(KL) are the nondimensional variables ac-
counting for the inter-cellular forces F2 and F3 exerted at the two sides of the cell
boundary by the adjacent cells.

21.3 Asymptotic Strategy

The free wave propagation through crystal lattices is classically analyzed by
means of the Floquet–Bloch theory, valid for linear periodic structures (Brillouin,
1946). Therefore, the multiple scale method can represent the proper mathematical
tool to approach the wave dispersion problem for the nonlinear acoustic metamate-
rial. Indeed, according to this asymptotic method the nonlinear equations of motion
are expanded into an ordered hierarchy of linear equations, so that the Floquet–Bloch
conditions of quasi-periodicity can be imposed at each order (Georgiou and Vakakis,
1996; Narisetti et al, 2011).

Introducing the active displacement vector ua = (u,w) and the passive displace-
ment vector up = (u2, u3), the nonlinear equations (21.3)-(21.5) can be expressed
in the partitioned matrix form[

M O

O O

](
üa

üp

)
+

[
Kn

aa Kap

Kpa Kpp

](
ua

up

)
=

(
0

fp

)
(21.6)
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where the passive force vector is fp = (f2, f3) and the governing matrices are

M =

[
1 + "2 "2

"2 "2

]
, Kn

aa =

[
2 0

0 2μ+ ηw2

]
, Kap =

[
−1 −1

0 0

]
(21.7)

with alsoKpa = K�
ap andKpp = I. The nonlinear stiffness submatrix can be written

Kn
aa = Kaa +N(ua), where N(ua) accounts for the nonlinearities.
Following a general asymptotic strategy for determining the nonlinear normal

modes through the multiple scale method (Rosenberg, 1966; Lacarbonara and Camil-
lacci, 2004), a small dimensionless parameter ε � 1 can be introduced and the
solution of the nonlinear equation (21.6) can be expanded in ε-power series as

ua = εua1(T0, T1, T2) + ε2ua2(T0, T1, T2) + ε3ua3(T0, T1, T2) + O(ε4) (21.8)
up = εup1(T0, T1, T2) + ε2up2(T0, T1, T2) + ε3up3(T0, T1, T2) + O(ε4)

fp = ε fp1(T0, T1, T2) + ε2fp2(T0, T1, T2) + ε3fp3(T0, T1, T2) + O(ε4)

where T0 = τ is the fast time-scale characterizing the harmonic wave motions at the
linear frequencies ω± and Tj = εjτ are slow time-scales (j = 1, 2). Accordingly,
the ordinary time-derivative d/dτ is expressed through the partial derivativesDj =
∂/∂Tj as D0 + εD1 + ε2D2 + ... . According to the variable expansion (21.8),
the nonlinear part of the stiffness matrix can be expanded in ε-power series as
N(ua) = ε2N2(ua1) + ε3N3(ua1,ua2) + O(ε4).

Introducing the variable expansion into the nonlinear differential equation (21.6)
and equating all terms of like ε-powers up to the third order, an ordered hierarchy of
linear differential equations (perturbation equations) is stated

• Order ε :
[
M O
O O

](
D2

0ua1

D2
0up1

)
+

[
Kaa Kap

Kpa Kpp

](
ua1

up1

)
=

(
0
fp1

)
(21.9)

• Order ε2 :

[
M O
O O

](
D2

0ua2

D2
0up2

)
+

[
Kaa Kap

Kpa Kpp

](
ua2

up2

)
=

(
fa2
fp2

)
(21.10)

• Order ε3 :

[
M O
O O

](
D2

0ua3

D2
0up3

)
+

[
Kaa Kap

Kpa Kpp

](
ua3

up3

)
=

(
fa3
fp3

)
(21.11)

where the active forcing vectors at the high orders are fa2 = −2MD0D1ua1 and
fa3 = −2MD0D1ua2 − 2MD0D2ua1−MD2

1ua1 +N2ua1. It may be worth not-
ing that the ordinary differential problems (21.9)-(21.11) are governed by the same
mass and stiffness matrices at all the ε-orders.

The Floquet–Bloch theory for the free wave propagation can be applied to the
linear perturbation equations by separately imposing independent quasi-periodicity
conditions for the passive displacements u3j = u2j exp(−ıβ) and the passive forces
f3j = −f2j exp(−ıβ) at each order (j = 1, 2, 3).

Focusing on the first order of the perturbation equations, the linear differential
problem (21.9) can be tackled by separating the dynamic (upper) part from the
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quasi-static (lower) part, yielding

• Order ε : MD2
0ua1 +Kaaua1 +Kapup1 = 0 (21.12)

Kpaua1 +Kppup1 = fp1

Imposing the quasi-periodicity conditions on the passive displacements up1 and
forces fp1 and subsequently solving the quasi-static part of the equation (21.12), the
condensation rules up1 = Lpaua1 and fp1 = (Kpa +KppLpa)ua1 are obtained.
Consequently, the homogeneous dynamic equation (21.12) can be condensed in the
active displacement vector only, reading

• Order ε : MD2
0ua1 +K(β)ua1 = 0 (21.13)

where the generalized stiffness matrix K(β) = (Kaa +KapLpa) is Hermitian and
depends on the wavenumber β through the auxiliary matrix

Lpa = B−1

(
K

(2)
pa +K

(1)
pa e−ıβ

K
(2)
pa e−ıβ +K

(1)
pa e−2ıβ

)
(21.14)

where K(k)
pa is the k-th row of the matrix Kpa (k = 1, 2) and the quantity

B=−
[
K(21)

pp +
(
K(22)

pp +K(11)
pp

)
e−ıβ +K(12)

pp e−2ıβ
]

(21.15)

where K(hk)
pp is the generic component of the matrix Kpp (h, k = 1, 2).

Repeating the procedure of imposing the periodicity conditions and condensing
the passive variables for the higher orders of the perturbation equations, the linear
dynamic problems (21.10) and (21.11) can be condensed in the active displacement
vector only, reading

• Order ε2 : MD2
0ua2 +K(β)ua2 = fa2 (21.16)

• Order ε3 : MD2
0ua3 +K(β)ua2 = fa3 (21.17)

where it can be noted that the ordinary differential problems (21.13), (21.16) and
(21.17) are governed by the same mass and condensed stiffness matrices and are also
formally identical, apart for the right-hand term.

21.3.1 Linear Dispersion Properties

The linear dispersion properties characterizing the small-amplitude waves propagat-
ing through the acoustic metamaterial can be determined by solving the equation
(21.13). To this purpose, the harmonic mono-frequent solution ua1 = φ exp(ıωτ)
can be imposed, where ω is the unknown nondimensional frequency. Eliminating
the dependence on time gives the linear eigenproblem
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(K(β)− λM)φ = 0 (21.18)

The eigensolution includes two non-defective eigenpairs (λ,φ), where the eigenvalue
λ is related to the frequency by the relation λ = ω2 and the eigenvectorφ = (φ1, φ2)
represents the corresponding waveform.

The eigenproblem (21.18) can be solved analytically. Therefore, the two linear
frequencies of the harmonic waves ua1 = φ exp(ıωτ − ıβ) that freely propagate
with a certain wavenumber β and unitary-amplitude through the diatomic lattice
characterized by the mechanical parameters ("2, μ) are

ω∓ =

[
1

2
(1− cosβ) + μ

(
1 +

1

"2

)
∓ S(β)

2"2

] 1
2

(21.19)

while the corresponding waveforms are 2-by-1 vectors

φ∓ =

(
1,

2"2(1− cosβ)

2μ (1 + "2)− "2(1− cosβ)± S(β)

)
(21.20)

whose amplitude remains undetermined. Since the β-dependent quantity

S(β) =
[
(4μ)2"2 +

(
"2(1− cosβ)− 2μ

(
1− "2

))2] 12 (21.21)

is real-valued, the waveforms are real-valued vectors. Considering positive valued
frequencies (ω∓ ≥ 0), the forward propagating waves characterized by positive
wavenumbers β ranging in the B-subdomain B1 = [0, π] can be studied. According
to the assumptions made for the physical parameters, the quantity S(β) is strictly
positive. Consequently, the strict inequalityω− < ω+ holds in the entireB1-domain.
Therefore, the dispersion functions ω−(β) and ω+(β) describe the lower-frequency
curve (acoustic branch) and the higher-frequency curve (optical branch) of the
dispersion spectrum, respectively.

The analytical solution of the eigenproblem allows to demonstrate—first—that
the acoustic and optical branches do not cross each other, so that a double frequency
(perfect 1 : 1 internal resonance) cannot occur and—second—that a total band gap
exists between the acoustic and optical frequency bands. Specifically, if the sec-
ondary springs are weakly pretensioned (namely 2μ < "2/(1 + "2)), the band gap
is caused by a veering phenomenon between the dispersion curves. This spectral
phenomenon implies strong linear interactions between the corresponding waves
(Perkins and Mote Jr, 1986; Pierre, 1988; Lacarbonara et al, 2005; Vidoli and Ve-
stroni, 2005; Lepidi, 2013). As first consequence, the dispersion curves can assume
high curvature values in the veering region. From the physical viewpoint, high dis-
persion curvatures may entail strong changes in the group velocity of the propagating
waves (Bacigalupo and Lepidi, 2016). As second consequence, the waveforms asso-
ciated with the veering dispersion curves can undergo a hybridization phenomenon,
merging their respective forms in a rapid but continuous way. From the physical
viewpoint, the waveform hybridization can determine strong variations in the flux
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of the mechanical energy transported by the propagating waves (Bacigalupo and
Lepidi, 2018). A complete analysis of the linear dispersion properties is reported in
Lepidi and Bacigalupo (2019).

21.3.2 Nonlinear Dispersion Properties

Collecting column-wise the linear mass-normalized waveforms ϕ∓ in the 2-by-2
matrix Φ =

[
ϕ−,ϕ+

]
, the change of variable ua = Φq can be introduced, with

q = (q, p) working as vector of principal coordinates, that is consistently ordered
according to the ε-power series

q = εq1(T0, T1, T2) + ε2q2(T0, T1, T2) + ε3q3(T0, T1, T2) + O(ε4) (21.22)

Therefore, applying the change of variable in the equations (21.13), (21.16) and
(21.17), the ordered hierarchy of perturbation equations read

• Order ε : D2
0 q1+Λq1 = 0 (21.23)

• Order ε2 : D2
0 q2+Λq2 =−2D0D1 q1 (21.24)

• Order ε3 : D2
0 q3+Λq3 =−2D0D1 q2−2D0D2 q1−D2

1q1+c(q1) (21.25)

where Λ = diag (λ−, λ+) collects the eigenvalues corresponding to the wave fre-
quencies. The nonlinearity vector c(q1) = −ηϕ2(ϕ

�
2 q1)(ϕ

�
2 q1)(ϕ

�
2 q1) depends

on the auxiliary vector ϕ2 = (ϕ−
2 , ϕ

+
2 ), collecting column-wise the second compo-

nents of the mass-normalized linear waveforms ϕ∓.
The differential problem stated by the coupled equations (21.23)-(21.25) in the un-

knowns q1,q2,q3 is solved in the following for the two fundamental cases occurring
in the absence of superharmonic internal resonance between the wave frequencies
(non-resonant lattices satisfying the spectral condition ω+ − 3ω− = O(1)). The
complementary fundamental case, occurring in the presence of superharmonic 3:1
internal resonance or nearly-resonance between the optical and acoustic frequencies
(internally resonant lattices satisfying the spectral condition ω+ − 3ω− = O(ε)),
is solved and analyzed in Lepidi and Bacigalupo (2019), where the parametric
conditions for the occurrence of the superharmonic resonance are also determined
analytically.

The general solution of the homogeneous equation (21.23) at the lowest ε-order is
the superposition of two real-valued, T0-periodic and mutually orthogonal solutions
q−
1 and q+

1 (generating solutions), reading

q∓
1 = A∓(T1, T2)a∓eıω

∓T0 + cc (21.26)

where a−0 = (1, 0) and a+0 = (0, 1) are the canonical base vectors of the two–
dimensional q-space, A−(T1, T2) and A+(T1, T2) are complex-valued amplitudes
and cc stands for the complex conjugate of the preceding terms.
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Therefore, substituting one or the other of the generating solutions (21.26) in the
ε2-order equations (21.24) and imposing solvability conditions to remove the secular
terms allows to determine that the oscillation amplitudes A∓ are T1-independent.
As major consequence, the inhomogeneous term of the equation (21.24) vanishes.
Hence, the second-order solution q∓

2 can be neglected, because its particular part
is null and its complementary part (parallel to the first-order solution q∓

1 ) can be
normalized to zero without loss of generality.

Substituting again one or the other of the generating solutions (21.26) in the
ε3-order equations (21.25), the solvability condition required to remove the secular
terms returns the modulation equation

D2A
∓ =

3 ı η(φ∓2 )
4

2ω∓ (A∓)2Ā∓ (21.27)

Introducing the convenient polar formA∓(T2) = 1
2a

∓(T2) exp(ı γ∓(T2)), the equa-
tion (21.27) allows to conclude that the amplitude a∓ is actually T2-independent,
while the phase γ∓ linearly depends the slow T2-time scale

γ∓ = γ∓◦ +
3

8

η(φ∓2 )
4

ω∓ (a∓)2 T2 (21.28)

where γ∓◦ is a constant depending on the initial conditions. Coming back to the real
time scale (by recalling that T0 = τ and T2 = ε2τ ), the equation (21.28) can be
reformulated as γ∓ = γ∓◦ + ε2!∓

2 τ . Therefore, the first-order solution (21.26) can
be expressed in the equivalent exponential or trigonometric forms

q∓
1 =

1

2
a∓a∓0 eıθ

∓
+ cc = a∓a∓0 cos θ∓ (21.29)

The solution is featured by mono-harmonic oscillations, governed by the time-
dependent auxiliary variable θ∓(τ) = γ∓◦ +(ω∓+ ε2!∓

2 )τ , where the τ -multiplier
can be interpreted as the nonlinear frequencies of the harmonically oscillating waves,
quadratically depending on the oscillation amplitude

!∓ = ω∓ + ε2!∓
2 = ω∓ +

3

8
ε2
η(ϕ∓

2 )
4

ω∓ (a∓)2 (21.30)

where κ∓2 = 3
8η(ϕ

∓
2 )

4/ω∓ is the (positive) effective nonlinearity coefficient.
Once the solvability condition (21.27) is satisfied, the third-order equation (21.25)

admits the multi-harmonic solution in trigonometric form

q∓
3 =

1

4
(a∓)3a∓2 cos θ∓ +

1

4
(a∓)3c∓2 cos

(
3θ∓

)
which includes nonlinear contributions from both the principal coordinates. Indeed,
a∓2 and c∓2 are linear combinations of the canonical base vectors

a∓2 = P±
2 a

∓
0 + C±

2 a
±
0 , c∓2 = D∓

2 a
∓
0 + G±

2 a
±
0 (21.31)
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where P±
2 = 0, since the complementary part of the solution q∓

3 (parallel to q∓
1 )

can be normalized to zero. The coefficient C±
2 of the ω∓-harmonic term (orthogonal

to q∓
1 ) and the coefficients D∓

2 and G±
2 of the two superharmonic 3ω∓-harmonic

terms (respectively parallel and orthogonal to q∓
1 ) contributing to the particular part

of the solution q∓
3 are

C±
2 =

3η(ϕ∓
2 )

3ϕ±
2

(ω∓)2 − (ω±)2
, D∓

2 =
η(ϕ∓

2 )
4

2(2ω∓)2
, G±

2 =
η(ϕ∓

2 )
3ϕ±

2

(3ω∓)2 − (ω±)2
(21.32)

Substituting the trigonometric form of the solutions q∓
1 and q∓

3 (and recalling that
q∓
2 = 0) in the equation (21.22), the reconstructed solution reads

q∓ = ε a∓a∓0 cos θ∓ +
1

4
ε3(a∓)3a∓2 cos θ∓ +

1

4
ε3(a∓)3c∓2 cos

(
3θ∓

)
(21.33)

where terms up toO(ε3) are retained. The reconstructed solution allows to determine
the third-order approximation of the two–dimensional invariant manifolds M− and
M+, associated with the nonlinear waveform ψ− and ψ+, respectively (Shaw and
Pierre, 1991). The manifold M− (or M+) is fully determined in the space of the
principal coordinates q = (q, p) once the second coordinate p (first coordinate q) is
analytically related to the first coordinate q (second coordinate p) in the reconstructed
solution q− (or q+). The manifolds are approximated by the coordinate relations

M− : p = H+
2 q

3+
K+

2

(ω−)2
q(q̊)2, M+ : q = H−

2 p
3+

K−
2

(ω+)2
p(p̊)2 (21.34)

where q̊ and p̊ stand for the derivatives ∂q/∂T0|T0=τ and ∂p/∂T0|T0=τ and the
parameters H±

2 = 1
4

(
C±
2 + G±

2

)
and K±

2 = 1
4

(
C±
2 − 3G±

2

)
have been used.

The manifoldsM− andM+ can also be expressed in the space of the configuration
vector u by recalling the change of variables u = Φq

M− : u = qϕ− + qQ+(q, q̊)ϕ+ M+ : u = pϕ+ + pQ−(p, p̊)ϕ− (21.35)

where the quadratic functions Q+(q, q̊) = H+
2 q

2 + K+
2 (q̊/ω

−)2 and Q−(p, p̊) =
H−

2 p
2+K−

2 (p̊/ω
+)2. The initial conditions q(τ◦) = a and q̊(τ◦) = 0 can be assigned

into u for M−, and analogous initial conditions p(τ◦) = a and p̊(τ◦) = 0 can be
assigned into u for M+. Therefore, dividing by a, the third-order approximation of
the nonlinear waveforms is

ψ∓ = ϕ∓ + a2H±
2 ϕ

± (21.36)

or, making explicit the dependence on the linear dispersion properties

ψ∓= ϕ∓ +
a2

4

[
3η(ϕ∓

2 )
3ϕ±

2

(ω∓)2 − (ω±)2
+

η(ϕ∓
2 )

3ϕ±
2

(3ω∓)2 − (ω±)2

]
ϕ± (21.37)
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where the nonlinear correction of each linear waveform is directly proportional
to the square oscillation amplitude multiplying the other (orthogonal) waveform.
The asymptotic consistency of the nonlinear correction can be recognized to break
down for the resonance conditions ω+ : ω− ≈ 1 (internal resonance) or ω+ :
ω− ≈ 3 (superharmonic internal resonance). The first possibility is excluded by the
systematic presence of the band gap, the second possibility is analyzed in Lepidi and
Bacigalupo (2019).

21.3.3 Parametric Analyses and Numerical Validation

The amplitude-dependence of the nonlinear frequencies !± is parametrically ana-
lyzed. The effective nonlinearity coefficient κ∓2 is positive and determines the cur-
vature of the frequency-amplitude curve (backbone curve). Therefore, the frequency
systematically increases for growing oscillation amplitudes (hardening backbone),
as expected for cubic nonlinearities. From the mechanical viewpoint, the curva-
ture mainly depends on the work done by the nonlinear waveforce N2(ϕ

∓)ϕ∓ in
the same waveform ϕ∓. Figure 21.2 shows the nonlinear frequencies !∓ versus
the mass ratio "2 for increasing amplitudes a∓. The parameter range (μ = 1/2,
1/2 < "2 < 3/2) is conveniently selected to avoid superharmonic resonances in
the limit of short wavelengths (β = π). From the quantitative viewpoint, the results
highlight that the nonlinear increment of the acoustic frequency !−/ω− (backbone
curves marked by continuous mesh lines in Figure 21.2a) is much lower than the
increment of the optical frequency!+/ω+ (backbone curves in Figure 21.2b). From
the qualitative viewpoint, a certain mass ratio maximizes the nonlinear increment of
the acoustic frequency !−/ω− at large amplitudes (iso-amplitude curves marked
by dashed mesh lines in Figure 21.2a). On the contrary, the nonlinear increment of
the optical frequency !+/ω+ monotonically increases for decreasing mass ratios
(iso-amplitude dashed curves in Figure 21.2b).

The invariant manifolds M− and M+ are portrayed in Figure 21.3 in the space
(p, q, q̊) and (q, p, p̊), respectively. The lattice parameters (μ = 1/2, η = 1/2,
β = π) are selected in the range explored for the nonlinear frequencies in Figure
21.2, while the mass ratio ("2 = 4/5) is fixed to maximize the effective nonlinearity
coefficients. The origin is the tangency points between the manifolds and the invariant

Table 21.1 Initial conditions for the nonlinear equations governing the wave motion. Master and
slave coordinates indicate independent and dependent variables in equations (21.34)

Initial conditions for M− Initial conditions for M+

Master (q0, q̇0) Slave (p0, ṗ0) Master (p0, ṗ0) Slave (q0, q̇0)

(0.10, 0) (−0.22151, 0)× 10−4 (0.10, 0) (2.06646, 0)× 10−4

(0.15, 0) (−0.74761, 0)× 10−4 (0.15, 0) (6.97429, 0)× 10−4

(0.20, 0) (−1.77211, 0)× 10−4 (0.20, 0) (16.5317, 0)× 10−4
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(a)

a−

�2
�−

ω−

(b)

a+

�2
�+

ω+

Fig. 21.2 Nonlinear frequencies of the lattice with mechanical parameters μ = 1/2, η = 1/2 at the
limit of short wavelengths (β = π).

planes (q, q̊) and (p, p̊) associated with the corresponding linear waveforms. From
the mechanical viewpoint, the principal curvatures of the manifolds mainly depends
on the work done by the nonlinear waveforce N2(ϕ

∓)ϕ∓ in the other waveform
ϕ±. As major qualitative remark, the principal curvatures of the optical manifold
M+ (normalized with respect to p) tend to be systematically higher than those of
the acoustic manifold M− (normalized with respect to q). In order to verify the
asymptotic results, numerical results are finally carried out by directly integrating
the nonlinear equations of wave motion in the space of the principal coordinate
vector q = (q, p). The free oscillation responses are determined for three different
sets of initial conditions belonging to the asymptotic approximation of the invariant
manifolds (displacement q0 and velocity q̇0 at time τ = τ0 reported in Table 21.1).
The numerical time-histories of motion q(τ) are successfully verified to describe
periodic stable orbits (red curves in Figure 21.3), sitting on the manifold surfaces
with fine approximation.

21.4 Conclusions

A one–dimensional crystal lattice, characterized by a diatomic periodic cell, is
considered as minimal physical realization of an acoustic metamaterial with weakly
nonlinear microstructure. The free undamped dynamics of the microstructured cell is
described by a Lagrangian two-degrees-of-freedom model. Cubic nonlinearities are
introduced to enrich the linear elastic coupling between the principal atom and the
secondary atom—serving as tunable local resonator. According to the Floquet–Bloch
theory, the linearized eigenproblem governing the free wave propagation in the small-
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(a)

p

q q̊

M−
(b)

q

p p̊

M+

Fig. 21.3 Comparison between numerical solutions (red curves) and analytical invariant manifolds
associated to the nonlinear waveforms: (a) manifold M−, (b) manifold M+.

amplitude oscillation regime is solved analytically to determine the linear dispersion
properties (frequencies and waveforms). The analytical eigensolution shows that the
linear waveforms are real-valued. In the frequency dispersion spectrum, a stop band
systematically separates the pass bands corresponding to the low-frequency acoustic
branch and the high-frequency optical branch.

Starting from the linear solution, a general asymptotic approach is employed
to determine the nonlinear dispersion properties. Specifically, the multiple scale
method is adopted to achieve a perturbation-based approximation of the free wave
motion up to the third order. The nonlinear frequencies and waveforms are obtained
as analytical—although asymptotically approximate—functions of the mechanical
parameters and the oscillation amplitudes. The nonlinear acoustic and optical fre-
quencies are found to quadratically depend on the wave amplitudes, with backbone
curves exhibiting the characteristic hardening behavior. Each nonlinear waveform is
analytically obtained as amplitude-dependent combination of the two linear wave-
forms. Furthermore, the invariant manifolds associated with the nonlinear waveforms
are parametrically determined in the space of the principal coordinates. Finally, the
analytical solutions are successfully validated by running out numerical simulations
of the amplitude-dependent free wave oscillations.
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Chapter 22
Deformation and Failure Onset of Random
Elastic Beam Networks Generated From the
Same Type of Random Graph

Uwe Mühlich

Abstract Deformation and failure onset of random elastic beam networks is inves-
tigated numerically. Different types of planar beam networks are generated from a
random graph for which geometrical and topological characteristics can be defined
easily. Sampling according to these characteristics is performed by means of the
Ising-model.
The networks are exposed to an overall strain and the deformation response is dis-
cussed in terms of the network’s strain energy density W . The results show, that W
correlates well with the characteristics of the underlying graph. Intensity of failure
onset, on the other hand, is examined using an energy based edge centrality measure.
The results suggest, that randomness causes in most cases a decrease in stiffness, but
it reduces as well severity of failure onset.
In addition, the results show, that for the beam networks considered here, correlations
can be discussed as well in terms of mean cell sidedness and mean product moment
of cell area, i.e., measures which do not rely on the existence of a specific underlying
graph.

Keywords: Random beam networks · Random graphs · Ising model · Strain energy

22.1 Introduction

Insight into complex physical processes such as deformation and fracture of ran-
dom cellular materials or flow through porous media is at the heart of intelligent
and targeted materials design and engineering. Network models have proven to be
convenient idealizations for studying such complex phenomena efficiently.
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Following Estrada (2015), we use the term network to express the synthesis
of a graph’s geometric representation and a mathematical model describing some
process, for instance, by virtue of differential equations defined on the graph’s edges.

For that reason, the response of a network is determined by three sets of char-
acteristics. On the one hand, it obviously depends on parameters characterizing the
process, such as order of the differential equation(s), magnitude of coefficients like
stiffness, conductivity, etc., and of course, boundary conditions. On the other hand,
the response is strongly influenced by the graph’s node-edge system as it determines
the topology of the network. Last but not least, geometrical properties of a network
are a direct consequence of the graph’s geometric realization. In short, the response
of a network is controlled by topological, geometrical and process related character-
istics. In addition, the response of random networks will be affected significantly by
the random variations of these characteristics throughout the network.

Here, we focus on deformation and failure onset of random beam networks in
the context of materials modelling. Investigations regarding elastic deformation of
random networks usually aim to derive eventually an effective continuum description
within the framework of classical continua. Such investigations were performed for
elastic truss networks in the spirit of solid state physics by Garboczi (1987) and in the
context of strength of materials and structural mechanics, respectively, by Hansen
et al (1996); Ostoja-Starzewski (2002); Zeman et al (2011). Similar investigations
for random beam networks are reported by Jang et al (2008); Zhu et al (2001);
Roberts and Garboczi (2002). In the context of generalized continua, such networks
are studied by Diebels and Steeb (2002); Tekoglu and Onck (2008).

Extensive literature exists as well on simulation of fracture in networks. Frac-
ture in regular central force networks with deterministic and randomly distributed
material properties is investigated, e.g., by Beex et al (2014); Dimas et al (2014);
Wilbrink et al (2013). Regular beam networks with randomly distributed failure
strength are considered by Herrmann et al (1989); Savija et al (2013), whereas ran-
dom beam networks are subject of investigation in Kadashevich and Stoyan (2010).
Considerable differences in the results are observed for using different failure criteria
by Schlangen and Garboczi (1997) in a study including regular as well as random
beam networks. Failure in pantographic networks is studied for instance by Turco
et al (2016). A general survey regarding the most important aspects of simulating
fracture in networks, including rigidity loss and percolation concepts, is given by
Alava et al (2006) in the context of statistical fracture mechanics. Most recently,
defect sensitivity of random brittle foams is discussed by Chen and Isaksson (2019).

It is worth noting that none of the previously mentioned contributions in the con-
text of materials research intends to investigate rigorously the influence of network’s
topology on its physical response. A possible reason may lie in the fact that topo-
logical features can hardly be controlled independently in more complex random
networks. However, their importance is reported implicitly by Roberts and Garboczi
(2002) and pointed out explicitly in the general context of materials science by Gupta
and Saxena (2014). Topological effects are addressed explicitly by Vogel (2002) re-
garding permeability of porous media. The effect of topology on elastic properties
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of foams and bone scaffolds is studied by Nachtrab et al (2012). Both contributions
focus, however, exclusively on variations in the Euler characteristic.

Topological effects for truss networks with fixed Euler characteristic are system-
atically studied by Mühlich et al (2015) using a particular planar graph which allows
for controlling directly topological features. The results show, that also second order
topological properties can affect significantly the overall response. In this paper, we
extend this study towards deformation and failure onset of random beam networks.
Therefore, the graph proposed by Mühlich et al (2015) is briefly revisited and graphs
derived from it for generating random beam networks are introduced. The method-
ology employed here in terms of load cases and definitions used to evaluate results is
presented afterwards before discussing the numerical results of this study in detail.

22.2 Graph Construction and Characterization

We consider a regular square lattice, assigning exactly one diagonal with random
direction (/ or \) to each of the M ×M squares, as shown in Fig. 22.1. This type
of graph is called “0 graph” in the sequel. There are 2M

2 possible realizations of
this “0 graph”. For every realization Xk (k = 1...2M

2

) there exists a corresponding
discrete field {ξi,j} with i, j = 1, ..,M and

ξi,j =

{
0
1

if diagonal i, j /\ . (22.1)

Therefore, a “0”graph can be described by corresponding random field characteris-
tics. The first-order characteristic is the empirical mean of {ξi,j}

ρ = 〈ξi,j〉 = 1

M2

∑
i,j

ξi,j . (22.2)

Geometrically, ρ is a directional characteristic, the ratio between the numbers of “/”
and “\” diagonals. All problems considered here are invariant under the operation
of flipping all diagonals, formally expressed by ξi,j = 1− ξi,j , ξi,j ∈ {0, 1}. This is
tantamount to symmetry with respect to ρ = 0.5. Therefore, according to Mühlich
et al (2015),

ρ̄ = min(ρ, 1− ρ) (22.3)

is used instead of ρ. A simple second-order characteristic is

μ = 〈μi,j〉 (22.4)

with
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μi,j =
∑
k,l

d=1

(ξi,j − ξk,l)
2 (22.5)

where d = |i − k| + |j − l|, i.e., the summation goes over the nearest neighbour
cells. Hence, μi,j is a nearest neighbour correlation measure. Its empirical mean, μ,
captures to some extent the irregularity of a configuration.

Certain values forμ and ρ̄ indicate perfectly regular configurations. If all diagonals
are of the same type, either / or \, then μ evaluates to zero. The configuration with
perfectly alternating diagonals corresponds to μ = 4 and ρ̄ = 0.5.

This type of graph is used here, because it is easy to generate and to charac-
terize. Furthermore, varying diagonal directions affects directly the topology of the
graph, i.e., topological characteristics can be varied systematically. In addition, the
construction principle guarantees a constant total number of edges. In the context of
elastic deformation, this is tantamount to ensuring the same amount of material for
all possible realizations of a particular network.

0 graph 4/5 graph0 dual graph

ρ̄, μ

a

x1

x2

Fig. 22.1 Example of a “0”graph with M = 6 and graphs derived from it: “0 dual”graph and the
“45”graph. The ratio between diagonals of different type is denoted by ρ̄ and the regularity measure
μ is the empirical average of the local regularity measure (22.5) based on nearest neighbour
regularity.

As already mentioned above, there are 2M
2 possible configurations, which is

intractable even for moderate values of M . Therefore, samples of “0 graphs" are
generated, as reported in Mühlich et al (2015) by making use of the M ×M Ising
model with fixed magnetization as defined in Gulminelli et al (2003), Carmona et al
(1998). The spin variables in this model are interpreted as the directions of diagonals.
According to Honerkamp (2012), we write the probability distribution of the model
as

P (X = Xk) =
1

Z
exp(−βμ(Xk)) (22.6)

with partition function Z. As above, Xk denotes a configuration, μ(Xk) is μ as in
(22.4) for Xk, whereas β is the control parameter of the model. By means of β,



22 Deformation and Failure Onset of Random Elastic Beam Networks 397

the degree of regularity/irregularity of the configurations can be controlled. Here,
“regularity” refers to regularity in terms of the directions of the diagonal edges.

Samples are generated by simulating according to (22.6) employing the Metropo-
lis algorithm constraint by ρ̄ as described in Carmona et al (1998). The number of
iterations NMR is set according to NMR = 10000(1 + 100|β|)M . While ρ̄ can be
controlled directly, μ is only controlled indirectly via β in (22.6). Thus, we arrive at
a two-parameter model, with the parameters β and ρ̄.

As illustrated in Mühlich et al (2015), bijective relations exist between β and μ
for given ρ̄ �= 0. The most irregular configurations are obtained for β = 0, whereas
high degree of regularity is enforced in the limits β → ±∞. Given ρ̄ = 0.5, for
instance, β → ∞ generates configurations consisting of exactly two clusters, one
cluster of “/” diagonals and a second cluster of “\” diagonals. On the other hand,
β → −∞ samples perfectly regular configurations with alternating diagonals which
corresponds to μ = 4 and ρ̄ = 0.5, see above.

Different graphs can be constructed from a “0”graph as shown in Fig.22.1. A
natural choice is the corresponding dual graph. In addition, a so-called “45”graph
is obtained from the initial graph by shorten the diagonals and connecting their
endpoints with the center points of those edges which define the squares.

22.3 Methodology

22.3.1 Deformation

Here, networks are interpreted as periodic arrangements of a basic pattern derived
from a M × M “0”graph with a = 10mm as shown in Fig.22.1. M = 20 and
M = 15 are used for “0 dual”graphs and “45”graphs, respectively. Nodes are
interpreted as rigid connections between compressible Euler-Bernoulli beams, i.e.,
classical beams with additional axial force. Beams with quadratic cross section of
side length h = 1mm and Young’s modulus E = 1000N/mm2 are considered.

Representative network patterns are exposed to an effective strain state by pre-
scribing the nodal displacements

u = E · x (22.7)

at the corner nodes of the pattern. E is an effective strain tensor and the position vec-
tor x refers to the Cartesian coordinate system shown in Fig. 22.1. For “0 dual”based
networks, corner nodes are the first and last nodes on a line defining a segment of the
boundary ∂B. The rotation at the corner nodes is prescribed to zero. For all remain-
ing nodes, periodicity is enforced for displacements, rotations and corresponding
reaction forces by extending straightforwardly the approach described in Mühlich
et al (2015).



398 Mühlich

Three load cases are considered: uni-axial tension in x1 direction (E11 =
ε, E22 = E12 = 0), shear (E12 = ε, E11 = E22 = 0) and combined loading
(E11 = E22 = E12 = ε). In all simulations, ε = 0.01 is used.

In order to compute the response of the networks, a finite-element scheme has
been developed specifically for this purpose, following the standard procedure as
given e.g. in Zienkiewicz and Taylor (2005). It is worth noting that deviations from
the exact solution are only due to floating point operations because the loading is
exclusively applied at the nodes.

The response of the networks is discussed in terms of total strain energy perM2,
denoted byW , for it allows to classify the networks’ mechanical response by a single
scalar measure regardless of the degree of anisotropy. Note that for the displacement
controlled tests, a lowerW implies lower stiffness. Since all networks are eventually
constructed out of a “0" graph with characteristics ρ̄ and μ, the hypothesis

W = fW (ρ̄, μ,E, αk) (22.8)

is proposed and examined, where the αk are parameters like Young’s modulus, cross
section area. The latter are not varied in this study.

Table 22.1 Possible descriptors for characterizing geometric realizations of planar graphs. The first
three measures are purely topological whereas the remaining ones are purely geometrical. Given
values indicate, that the corresponding measure evaluates always to this value for the considered
type of graph, which renders it useless for distinguishing between different configurations.

0 graph 0 dual graph 4/5 graph

measure symbol mean var mean var mean var

node degree nd 6 � 3 0 3.5 0.25

cell degree cd 3 0 6 4.5 0.25

sidedness sR 3 0

(nearest neighbours)

cell area AC A� 0∗ 100†
A4 +A5

2

(A4 −A5)2

2

area moments I11, I22, I12

edge angle tan γ =

∑
le sinαe∑
le cosαe

�

*) without varying node coordinates †) for dimensions used here
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22.3.2 Failure Onset

Fracture simulations are rather expensive for a variety of reasons. However, consid-
erable insight regarding the onset of failure, and even beyond, can be gained already
from inspecting the deformation results accordingly. We assume brittle failure based
on the hypothesis, that an edge fails if its strain energy reaches a given critical value.
In this case, the importance of an edge for failure onset is due to its strain energy
in comparison with the highest individual strain energy in the network. The more
edges of high importance exist in a network, the more sever the onset of failure will
be, because more edges will fail at once. Hence, we define an importance measure
for the edge i by

CW
i =

Wi

We,max
, (22.9)

where the strain energy of edge i is denoted by Wi and We,max is the maximum
edge strain energy in the network. In the language of graph theory, CW

i could be
interpreted as a kind of energy based centrality measure.

22.3.3 Testing Selected General Descriptors

Since for networks commonly used in materials modelling a “0" graph does not exist,
the measures ρ̄ and μ are not available in such cases. Therefore, correlations between
physical response and graph characteristics like ρ̄ and μ are of rather limited value.
Deducing useful indications from these studies requires the transition to descriptors
applicable for general planar graphs such as planar Voronoi or Laguerre tessellations.

The fundamental entities of a planar graph are nodes and edges also called vertexes
and bonds, respectively. Although the cell structure is a direct consequence of the
relations between nodes and edges, sometimes it is rather the cell structure which
provides insight. This suggests some simple and obvious descriptors, such as node
degree nd, i.e., the number of edges connected by a node, and cell degree cd, i.e.,
the number of edges which form a cell.

For random networks, these descriptors are not represented by a single number
but by a discrete probability distribution. Simple global measures can be obtained by
computing empirical mean, empirical variance etc. of these descriptors for a given
configuration.

A more elaborated measure is the so-called sidedness ratio sR, see, e.g., Hilhorst
(2006), which is defined as the average cell degree of the neighbouring cells divided
by the degree of the cell under consideration. The sidedness-ratio depends whether or
not next nearest neighbours are included. Next nearest neighbours share only a node
whereas nearest neighbours share an edge. Here, only nearest neighbours are taken
into account. Other possible descriptors exist, such as shortest path length, centrality
measures of different kind, etc., which are not considered here. The interested reader
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is referred, for instance, to Chiu et al (2013), Ranjan and Zhang (2013) or Costa et al
(2007).

The descriptors discussed so far are purely topological. Geometrical properties
can be captured, for instance, by means of edge angle, variation in cell size and
shape, etc.

The descriptors considered here are summarized in Table 22.1. Given values
indicate, that the corresponding measure evaluates always to this value for the con-
sidered type of graph, which renders it useless for distinguishing between different
configurations.

22.4 Results and Discussion

22.4.1 Deformation

Results for W are plotted against ρ̄ and β. The graphs are shown for “0 dual”and
“45”networks in Fig. 22.2 and Fig. 22.4, respectively. Every point in a graph cor-
responds to the strain energy per M2 for a configuration with given ρ̄ and β. In
addition polynomial approximations obtained from the data points are visualized by
means of grids.

Fairly good correlations between ρ̄, β and W can be observed for all cases.
Due to the existence of a bijective relation between β and μ, the results confirm
hypothesis (22.8). Loading conditions affect the correlation functions qualitatively
and quantitatively.

For the “0 dual”networks the lowest stiffness is obtained for ρ̄ = 0.5 and β = −1
in shear but for ρ̄ = 0.5 and β = 1 in uni-axial tension. Please note, that both
configurations are regular or of high degree of regularity, respectively. In all cases,
the perfectly regular configurations with ρ̄ = 0 are the stiffest.

“45”networks behave in certain aspects considerably different. For instance, the
variation in magnitude is considerably smaller for uni-axial tension (≈ 25%) com-
pared to shear (≈ 75%). Contrary to the “0 dual”networks, perfectly regular “45”net-
works with ρ̄ = 0 exhibit the lowest stiffness under combined loading.

Testing more general descriptors revealed, that the results forW correlate reason-
ably well with mean sidedness ration 〈sR〉 and mean product moment 〈I12〉 as shown
in Fig. 22.4. The results suggest, that certain combinations between 〈sR〉 and 〈I12〉
are not possible. The limit curve which separates the 〈sR〉− 〈I12〉 plane accordingly
appears to be linear for “0 dual”networks and at least quadratic for “45”networks,
respectively. The reasons for this are unclear at the moment and further theoretical
investigation regarding this question is required. In addition, the correlation func-
tions, especially for “0 dual”networks, are significantly more complex compared to
all other correlation functions observed in this research. Based on the results, we
propose the hypothesis
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Fig. 22.2 Strain energy density W of the networks based on “0”graphs as functions of ρ̄ and β for
uni-axial tension (E11 = 0.01) (upper left), shear (E12 = 0.01) (upper right) and combined
loading (E11 = E22 = E12 = 0.01) (lower right). Dots represent data points. Corresponding fit
functions are visualized by their surface grid representations. The data are normalized with respect
to W (ρ̄ = 0, β), i.e., the strain energy density of the perfectly regular networks. In addition a
configuration for ρ̄ = 0.227 and β = −0.111 is shown exemplary.

W = f̄W (〈sR〉 , 〈I12〉 ,E, αk) (22.10)

for planar beam networks.

22.4.2 Failure Onset

Onset of failure is discussed by means of the importance measure CW
i defined by

(22.9). Results are shown exemplary for “0 dual”networks with ρ̄ = 0.5 under shear
loading in Fig. 22.5. The results indicate a transition from a bi-modal or even multi-
modal distribution to a uni-modal distribution. The mean of CW

i correlates well
only within certain limits but not for the whole range of ρ̄ and μ considered here. A
possible reason is seen in the fact, that the empirical average underestimates severity
of failure onset for cases with bi-modal distributions. This subject requires further
investigation.

The effect of a small random variation of the node coordinates is shown in
Fig. 22.5. The positions of the inner nodes of the network are randomly displaced
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Fig. 22.3 Strain energy density W of the networks based on “45" graphs as functions of ρ̄ and β for
uni-axial tension (E11 = 0.01) (upper left), shear (E12 = 0.01) (upper right) and combined
loading (E11 = E22 = E12 = 0.01) (lower right). Dots represent data points. Corresponding fit
functions are visualized by their surface grid representations. The data for uniaxial tension and
combined loading are normalized with respect to W (ρ̄ = 0, β), i.e., the strain energy density of the
perfectly regular networks. The data for shear loading are normalized by W (ρ̄ = 0.5, β = −1). In
addition a configuration for ρ̄ = 0.5 and β = 1 is shown exemplary.

by a · Δ/10 with Δ uniformly distributed in the interval [−1, 1]. Especially for
configurations with β < −0.75, a significant smoothening in the CW

i distribution
can be observed, which will decrease the severity of the failure process at least at the
beginning.

One of the most remarkable networks in the context of failure onset is the “45”net-
work with ρ̄ = 0.5 and β = −1. The uni-axial deformation of a typical representative
is shown in Fig. 22.7. Although, there is a considerable amount of edges with CW

i

equal or close to one, respectively, these edges are all separated by small substruc-
tures. In the event, that all edges with CW

i equal or close to one fail, the remaining
structure is still connected and consists of edges with reasonably low CW

i values,
i.e., the structure can still bear load. The implications are twofold. First, provided,
the structure is monitored, onset of failure will cause a significant signal. Second, al-
though the structure is significantly damaged after onset of failure, it still has certain
structural integrity to avoid complete collapse.
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Fig. 22.4 Strain energy density W as functions of 〈SR〉 and 〈I12〉 for uni-axial tension
(E11 = 0.01) (left) and shear (E12 = 0.01) (right). Dots represent data points. Corresponding fit
functions are visualized by their surface grid representations. The data are normalized with respect
to W (ρ̄ = 0, β), i.e., the strain energy density of the perfectly regular networks. The results for the
“0”graph based networks and the “45”graph based networks are shown in the top and in the second
row, respectively.

22.5 Summary and Outlook

The investigation strategy proposed in Mühlich et al (2015) for truss networks is
equally applicable for planar random beam networks. Exactly one topological and
one geometrical descriptor is necessary to correlate the deformation response with
corresponding network properties for the cases considered here.

For the truss networks investigated in Mühlich et al (2015), irregularity implies
always a decrease in stiffness compared to perfectly regular configurations. Although
this observation can be confirmed here for most cases, there exist exceptions for which
regular configurations exhibit the lowest stiffness.

Randomness in topology is beneficial for moderating onset of failure. Similarly,
randomizing node positions leads to less severe initial failure behaviour.

A hypothesis for more general planar beam networks, i.e., networks derived from
Voronoi tessellations, is proposed. Verification of this hypothesis, however, requires
to sample planar Voronoi tessellations according to sidedness ratio and product
moment.

Some useful information emerged from this study regarding damage tolerant
design of regular beam networks.
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Fig. 22.5 Histogram of the edge importance measure CW
i for “0 dual”networks with ρ̄ = 0.5 and

different values of β together with a corresponding example configurations for ρ̄ = 0.5 and
β = −1. The magnitude of CW

i is indicated in the example configuration by edge thickness and
color, i.e., highest values of CW

i correspond to thick red lines.
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Fig. 22.6 Histogram of the edge importance measure CW
i for “0 dual”networks with ρ̄ = 0.5 and

different values of β together with a corresponding example configurations for ρ̄ = 0.5 and
β = −1. The magnitude of CW

i is indicated in the example configuration by edge thickness and
color, i.e., highest values of CW

i correspond to thick red lines. The results are obtained for a small
random variation of the node coordinates.
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Fig. 22.7 CW
i distribution in a “45”network with ρ̄ = 0.5 and β = −1 in uni-axial tension. The

magnitude of CW
i is indicated by edge thickness and color, i.e., highest values of CW

i correspond
to thick red lines. Edges with CW

i = 0 are displayed in green.
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Chapter 23
Mechanical Behavior Investigation of 3D Printed
Pantographic Unit Cells via Tension and
Compression Tests

Nima Nejadsadeghi, Marco Laudato, Michele De Angelo, and Anil Misra

Abstract In this work we present the results of an experimental parametric investi-
gation of the mechanical behavior of the pantographic unit cells. The main goal is
to determine extreme configurations of the geometric parameters of the microstruc-
ture. This work extends the set of measurements presented in a previous paper by
analyzing a larger set of samples with different geometrical features. The considered
set of 3D printed pantographic unit cells reveals local extremum configurations that
are different from the ones observed in the previous paper. A discussion regarding
these differences and concluding remarks are provided.
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23.1 Introduction

Mechanical metamaterials are a class of dynamical systems whose macroscopic
behavior is determined by the features of their underlying microstructure (Barchiesi
et al, 2019b; Del Vescovo and Giorgio, 2014). Following the metamaterial paradigm,
indeed, it is possible to obtain a desired macroscopic behavior by tailoring the
geometric properties of a precise microstructure made of mechanical elements. The
range of application for this class of mechanical system is therefore determined by
the amount of control which is possible to exercise during the fabrication procedure
and on the forecasting power that the available mathematical models can provide
(Di Cosmo et al, 2018; dell’Isola et al, 2019a; Andreaus et al, 2018).

During the last few decades, the framework of fast-prototyping methods (such as
3D printing) has experienced an exceptional growth and it is nowadays possible to
produce fine-tuned specimens in a reasonable amount of time, providing researchers
with a powerful and reliable trial and error mechanism. On the other hand, the ef-
forts to obtain solid mathematical and numerical tools to investigate the behavior
of such complex systems have brought a new understanding on their multi-scale
nature (e.g., homogenization procedures as done in Boutin et al (2017); Placidi et al
(2020); Abdoul-Anziz and Seppecher (2018); Abdoul-Anziz et al (2019)). How-
ever, the challenging problems that current research on mechanical metamaterials is
tackling in the last years seem to require a shift from classical approaches to more
general ones. An example are the so-called generalized continua (dell’Isola et al,
2015a; Seppecher et al, 2011; Nejadsadeghi and Misra, 2019b,a; Nejadsadeghi et al,
2019b; Poorsolhjouy and Misra, 2019; Misra and Nejadsadeghi, 2019; Misra and
Poorsolhjouy, 2016; Chróścielewski et al, 2020; Auffray et al, 2015). This class of
mechanical metamaterials shows a macroscopic behavior that cannot be framed in
the setting of classical elastic theory (Alibert et al, 2003). The main reason is the
complex geometric features of their microstructure (Turco et al, 2017a,b; Giorgio
et al, 2018; Scerrato and Giorgio, 2019).

A paradigmatic example of generalized continua is the pantographic material
(dell’Isola et al, 2019b). The microstructure of this metamaterial is made of two
arrays of straight fibers oriented with a relative angle of 90◦ (dell’Isola et al, 2015b,
2016). The fibers are arranged on two parallel planes and in the intersection points
they are connected by means of cylinders called pivots. It has been shown by several
theoretical (Eremeyev et al, 2019, 2018; Steigmann and dell’Isola, 2015; Abali, 2019)
and experimental results that the macroscopic behavior of pantographic structure
cannot be effectively described by classical theory of elasticity (dell’Isola et al,
2017, 2016; Giorgio et al, 2017; Misra et al, 2018; Abali et al, 2017). Indeed, to
produce correct forecasts, a generalization of classical elasticity theory in which also
the second gradient of the displacement field is considered must be used (Barchiesi
et al, 2019a). This mechanical metamaterial shows some interesting features that
could be exploited for technological applications. For example, it is able to stretch
in a large deformation regime keeping an elastic behavior and from the first to the
ultimate rupture it can store the same amount of energy needed for the first rupture
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(Golaszewski et al, 2019; Placidi et al, 2018; dell’Isola et al, 2019c; Turco et al,
2016b; Spagnuolo et al, 2017).

In this work, we analyze the mechanical behavior of the pantographic unit cells
via tensile and compression tests. We aim at extending the results on the behavior
of this system obtained in Nejadsadeghi et al (2019a); Yang et al (2018); Abali et al
(2016); Placidi et al (2015) by analyzing a larger set of specimens showing different
geometric features. The main goal is to determine extreme configurations in the
space of the microstructure’s geometric parameters and, at the same time, to exclude
the role of the particular material used to produce the specimens. For this reason, a
different polyamide powder has been used during the printing phase. The paper is
organized as follows. In section 2, the preparation procedure of the samples and the
experimental setup is described in detail. In section 3, the results of the experimental
campaign are presented and discussed. Finally, in the conclusion section, we discuss
some possible applications of the results and future perspectives.

23.2 Fabrication and Experimental Setup

The specimens considered in this paper characterize the unit cells of a larger panto-
graphic metamaterial sheet. A scheme of a pantographic unit cell and its geometric
parameters are presented in Fig. 23.1. Experimental testing results on pantographic
unit cells with specific geometrical parameter values have been previously presented
in Nejadsadeghi et al (2019a). In this paper, we consider a broader range for the
variation of geometrical parameters involved in describing such pantographs. The
considered range for such geometrical parameters encompasses the ones reported
in Nejadsadeghi et al (2019a). However, as the properties of the powder and the
3D printer parameters used to fabricate the samples alters the mechanical properties
of the unit cells, the measured values of the forces for these samples may differ
from the ones presented before. The fabrication procedure of the samples is as fol-
lows. Firstly, the 3D geometry of the pantographic unit cells was modelled in the
commercial CAD software SolidWorks (Dassault System SolidWorks Corporation,
Waltham, MA, USA). A 3D printed Formiga P 100 (EOS GmbH, Munich, Germany)
was then utilized to fabricate the pantographic unit cells from Polyamide powder
(PA2200) with an average grain size of 0.06 mm, using a selective laser sintering
(SLS) technology. The considered pantographic unit cells share several constant ge-
ometrical parameters provided in Table 23.1. The differences between the current set
of pantographic unit cells lie in their spacing, p, and pivot heights, h (see Fig. 23.1).
The naming prescription used in Nejadsadeghi et al (2019a) is adopted here for
conciseness in referring to the samples with different geometrical parameters. We
refer to the samples using a compound name made up of a letter in the beginning
and a number at the end. We label the specimens as A, B, C, D, and E, depending
on their geometrical parameter p value being 5 mm, 8 mm, 12 mm, 15 mm, and
18 mm, respectively. Numbers of 1, 2, 3, and 4, corresponding to the values of 1
mm, 1.5 mm, 2 mm, and 3 mm, respectively, follow the alphabetic labels in order to
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differentiate samples with different values for their geometrical parameter h. As an
example, the sample B3 has its p and h values, respectively, as 8 mm and 2 mm. The
tensile and compression experiments on the specimens were conducted using a Bose
ElectroForce 3200 testing device. The software WinTest Material Testing System
was used to control the testing device. The reaction force was measured with a load
cell with a measurement range of ±22 N, a measurement uncertainty of 0.1% and
precision of 0.001 N. The displacement was measured with the built-in transducer
with a range of ±6.5 mm, a measurement uncertainty of 0.1% and precision of
0.001 mm. Using a Mojo 3D printer (FDM Fused Deposition Modeling, by Strata-
sys), two clamps were fabricated to facilitate gripping of the specimens. The clamps
were made of acrylonitrile butadiene styrene (ABS) thermoplastic and are shown in
Fig. 23.2. All the experiments were done in displacement control, meaning that one
end of the pantographic unit cell is fixed, and the other end undergoes a predefined
displacement. The reaction force then is read from the load cell attached to the fixed
end of the specimen. The studied pantographic unit cells display viscoelastic behav-
ior, therefore, the measured force-displacement curves are specific to a loading rate
of 0.1 mm/s.

Fig. 23.1 Geometric parameters characterizing the pantographic structure.

Fig. 23.2 Experimental setup
of the tests.
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Table 23.1 Constant geometric parameters for all the specimens.

a b d L θ φ

1.2 mm 1 mm 1 mm 5 mm π/2 π/4

23.3 Results and Discussion

The assigned deformation values for the pantographic unit cells in both the tension
and compression tests were chosen such that the unit cells do not experience rupture
(in tension) or major change in deformation mode Nejadsadeghi et al (2019a) (in
compression) during the experiment, while also ensuring that the limits of the testing
machine are not exceeded. Fig. 23.3 shows the results for the tensile tests performed
on the pantographic unit cells, grouped for different spacing, p, values. It can be
observed that force vs displacement plots of sample A2, A3, A4 exhibit a linear
elastic behavior while sample A1 has a non-linear trend (Fig 23.3(a)). Similar results
appear by looking at plots of group B-D (Fig 23.3(b-d) respectively) where samples
B1, C1, D1 show non-linear behavior with hardening starting at higher displacement
values, while samples B(2-4), C(2-4) and D(2-4) have linear trend. Differently, the
mechanical behavior of group E (Fig. 23.3(e)) indicate a non-linear behavior for all
the samples (Fig. 23.3(e)). Overall, the result depicted in Fig. 23.3 reveal an indirect
proportionality between the slope of the curves and the pivot length, but an aberration
can be noted for group B and group D. In order to analyze how each geometrical
parameter alters the stiffness of the pantographic unit cells, one can plot for particular
displacements and constant p values, the reaction force values associated with unit
cells with different h values. The plots corresponding to this analysis are presented in
Fig. 23.4, which shows that for a given displacement the measured reaction force is
decreasing with the length of the pivot. A slight difference emerges from the plot in
Fig. 23.4(b) and Fig. 23.4(d) for group B and D respectively, where samples B2 and
D2 represent a local minimum. However, their values are very similar to what has
been calculated for the samples B3 and D3. Alternatively, one can plot for particular
displacements and constant pivot heights, h, the reaction force values associated with
unit cells with different spacing, p. The latter analysis is reported in Fig. 23.5. It can
be observed that in each plot of Fig. 23.5 - where the abscissa reports the specimens
of each group having the same height of the pivot while ordinate reports the force
level - there is an indirect proportionality between the measured tension force and
the spacing, p. In this case, there is no local extremum. Fig. 23.6 shows the results for
the compression tests performed on the pantographic unit cells, grouped for different
spacing, p. Overall, the samples exhibit a linear behavior for the very initial values
of imposed displacement, then a softening branch can be observed. Additionally,
for groups A and B a hardening part occurs after a compression displacement of
6 mm and 10 mm respectively, which is related to the contact of the beams. The
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rapid increase of the force level is not present in the plots for groups C, D, E
(Fig. 23.6 (c-e)) because the instrumentation used did not allow the attainment of
a deformation capable of bringing the beams into contact. As for tension test, the
samples of group A show an indirect proportionality between compression force and
pivot length (Fig. 23.6(a)). Similar considerations can be made for group D and E,
whose results under compression are reported in Fig. 23.6(d) and Fig. 23.6(e). A
substantial deviation emerges from the result plotted in Fig. 23.6(b) and Fig. 23.6(c),
for groups B and C respectively. Indeed, sample B2 does not follow the mentioned
inverse proportionality, and it exhibits the minimum reaction force. Similarly, in Fig
23.6(c) the curve of sample C1 has a reaction force comparable to sample C4, while
the curve of sample C2 and C3 present higher values. Fig. 23.7 shows the reaction
force values associated with unit cells for selected displacement values and constant
spacing, p, for different pivot heights, h. It is remarkable that for group A, D and
E the force measured for a fixed displacement decreases for higher values of pivot
length while groups B and C reveal extremum configurations. Indeed, sample B2
shows minimum reaction force while samples C2 and C3 exert the highest reaction
force values. Further, one can plot for particular displacements and constant pivot
heights, h, the reaction force values associated with unit cells with different spacing,
p. These plots are shown in Fig. 23.8. It can be observed that in each plot of Fig. 23.8
- where the abscissa reports the specimens of each group having the same height of
the pivot while ordinate reports the force level- there is an indirect proportionality
between the measured compression force and the parameter p. In this case, we do
not observe any local extremum in the behavior of specimens.

Fig. 23.3 Plots of the data from experimental tensile tests for (a) group A (b) group B (c) group C
(d) group D and (e) group E.
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Fig. 23.4 Interpolation plots of the force values with respect to the length of the pivots for tensile
tests. Each line refers to a specific value of the imposed displacement (“disp” in the legend) for (a)
group A (b) group B (c) group C (d) group D and (e) group E.

23.4 Conclusions and Future Perspectives

In this work, we have analyzed the mechanical behavior of pantographic unit cells
by means of tensile and compressing tests. The unit cells under investigation are
characterized by different values of the microstructure’s geometrical parameters p,
the spacing between two pivots, and h, the height of the pivots (see Fig. 23.1).
Based on figures, when we fix the h value and compare p values for specimens (as
in Fig. 23.5 and Fig. 23.8), there is no aberration in behavior and for specimens
with larger spacing, p, we observe a decreased value of reaction force. However,
for the case where we fix the p value and compare specimens with different pivot
heights, h (as in Fig. 23.4 and Fig. 23.7), there is local extremum observed for
some specimens. Interestingly, the observed aberration for samples in group B is
different from the one reported in Nejadsadeghi et al (2019a). The sample B1 is
reported to be more compliant than the sample B2 in both tension and compression
in Nejadsadeghi et al (2019a), making specimen B2 to be a local maximum in its
group. On the other hand, we observe here the sample B2 as a local minimum in both
tension and compression tests in its group. These differences have been consistent in
each 3D printed set of unit cells, as the results of multiple tests on different group B
samples revealed (not shown here), but as noted, are not consistent in different sets of
prints. Further, we remark the difference in the mechanical behavior of geometrically
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Fig. 23.5 Interpolation plots of the force values with respect to the parameter p for tensile tests.
Each line refers to a specific value of the imposed displacement (“disp” in the legend). Specimens
are grouped for equal values of the parameter h, being the length of the pivot equal to (a) 1 mm (b)
1.5 mm (c) 2 mm and (d) 3 mm.

identical specimens in each 3D printed set of samples. Fig. 23.9 shows the tensile
test results for 10 geometrically identical samples with particular chosen geometric
parameters. Based on the results shown in Fig. 23.9, the average reaction force read
for a total of 4 mm displacement is 3.39 N while the minimum and maximum
forces are reported as 2.75 N and 3.82 N, respectively, which are lower and higher
than the average force value by 19% and 13%. This range of value may be enough
for some of the local extremum observed here to disappear, and may be pertinent
to the inhomogeneity of the constituent powder used to fabricate the specimens,
experimental setup, the feature size of the 3D printer, and the effect of relaxation of
the samples when being mounted on the testing machine. However, it is unlikely that
the differences between the group with spacing, p = 8 mm, in the current paper and
the previous paper be a result of this dispersion. One convincing reason for the change
in mechanical behavior in the mentioned group of specimens is that the mechanical
behavior of the pantographic unit cells is not changing linearly with the change of
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Fig. 23.6 Plots of the data from experimental compression tests for (a) group A (b) group B (c)
group C (d) group D and (e) group E.

Fig. 23.7 Interpolation plots of the force values with respect to the length of the pivots for
compression tests. Each line refers to a specific value of the imposed displacement (“disp” in the
legend) for (a) group A (b) group B (c) group C (d) group D and (e) group E.
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Fig. 23.8 Interpolation plots of the force values with respect to the parameter p for compression
tests. Each line refers to a specific value of the imposed displacement (“disp” in the legend).
Specimens are grouped for equal values of the parameter h, being the length of the pivot equal to
(a) 1 mm (b) 1.5 mm (c) 2 mm and (d) 3 mm.

Fig. 23.9 Tensile test results
for 10 geometrically identi-
cal samples with particular
chosen geometric parameters.
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their constituent powder. In other words, the deformation mechanisms involved in
the mechanical behavior of the pantographic unit cells may change in a nonlinear
fashion if the constituent material is changed. The results of this analysis could
be usefully exploited to better determine and characterize computationally efficient
mesoscopic models such as the so-called Hencky-type models Turco et al (2016a,
2017c, 2018). This kind of approach is very promising from the computational point
of view since it allows to determine equilibrium configurations of pantographic
structure by studying mesoscopic discrete systems directly inspired by the discrete
nature of the microstructure without introducing a continuous description (see also
Turco, 2018; Baroudi et al, 2019; Giorgio and Del Vescovo, 2019; Giorgio, 2020;
Wang et al, 2015). Of course, the outcomes obtained from the analysis presented in
this work can be exploited to optimally calibrate this kind of models (Turco, 2019).
Starting from the results discussed in this paper, in a future work we aim at analyzing
the viscoelastic properties of the pantographic unit cell by imposing a dynamical
load on the system (the first experimental observation of the dynamical behavior
of pantographic material is discussed in Laudato et al (2018, 2019)). This analysis
would provide a clearer understanding on the microscopic dynamical behavior of
this kind of system and to yield new indications on how to build effective mesoscopic
models for dynamical simulations which encompass also the viscoelastic behavior.
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Chapter 24
DIC Measurements on Single Struts of Ni/PU
Hybrid Foams—Damage Behaviour During
Three-Point Bending

Martin Reis, Stefan Diebels, and Anne Jung

Abstract Hybrid foams are an evolution of classic metal foams. They consist of
an open-cell foam template coated with a second material. Thereby, the coating
material dominates the material behaviour of the hybrid foams. Ni/PU hybrid foams
are a suitable example of hybrid foams. An inexpensive polyurethane (PU) foam is
coated with nanocrystalline nickel (Ni). The coating strongly increases the stiffness
of the material while the price is lower than for an aluminium alloy open-cell foam.
The relatively low costs and the high stiffness of the structure are promising to be
actually used in real-world applications. But first, a mechanical characterisation of the
macroscopic hybrid structure is needed. The macroscopic deformation results in pore
deformation on the mesoscale. Pore deformation consists of bending and buckling
of struts, therefore, the damage behaviour of single struts during three-point bending
needs more investigation. In this contribution, these experiments are presented and
the influence of the individual geometry of each single strut on the measured force
is shown. For a better comparability of the experiments, a simplification using the
Euler–Bernoulli beam theory and the assumption of a constant triangular strut cross
section is applied. The resulting stress-strain-curves show matching slopes in the
linear elastic part of the curves, which proves the used strategy.
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24.1 Introduction

Open-cell foams can find their use in a wide field of applications. They can be used
as filters or crash absorbers. For hybrid foams, the field of application is determined
by the coating material. A Ni/PU hybrid foam is a polyurethane (PU) foam coated
with nanocrystalline nickel (Ni). The inexpensive PU foam is the template material
with almost no influence on the material behaviour of the hybrid foam. Due to the Ni
coating, the stiffness of the material strongly increases, without a rise in weight in the
same rate. The low weight and high stiffness allows the use of these structures in crash
absorbers for high performance applications. For a mechanical valid design and the
use in real applications, a full knowledge of the material behaviour is needed. Macro-
scopic foams are hierarchically structured, consisting of pores on the mesoscale and
struts on the microscale. For a detailed understanding of the characteristic material
behaviour mechanical tests in all scales are required. Thereby, the main deformation
modes for individual struts are bending and buckling. Nevertheless, in literature only
one three-point bending experiment on a specimen extracted from a cell wall of a
closed-cell foam can be found in Fíla et al (2014). Due to the complex structure of
the struts and the scattering in grain orientation, the load case has a strong influence
on the material behaviour. Hence, bending experiments are needed to allow material
characterisation. For this reason, the contribution presents three-point bending tests
on single struts. The small strut dimensions and rough surface of the samples only
allow digital image correlation (DIC) for strain evaluation. DIC is a common tool to
measure inhomogeneous deformation fields on macroscopic samples as used by Jung
and Diebels (2017) and dell’Isola et al (2019). The complex geometry and small
size of the struts are thereby extremely challenging for the evaluation and require a
high precession in the measurement system (Reis et al, 2019). Although this is very
complex, successful full-field strain measurements on individual struts are presented
in this work. For the evaluation a simplification to linear bending theory shows good
potential for further investigations.

24.2 Experiments and Discussion

The electrochemical coating of an electrically non conductive material such as PU
is a two step process. The PU foam has a pore size of 20 pores per inch (ppi) and is
purchased from Jumpinoo Schaumstoff Direkt, Enger, Germany. In the first step of
the coating process a layer of conductive material is needed. For the presented foams
graphite lacquer (Graphit 33, CRC INDUSTRIES Deutschland GmbH, Iffezheim,
Germany) is applied in a dip coating process. All surplus lacquer was removed with
compressed air. The method produces a fine layer of graphite all over the PU foam
sample. In the second step, the conductive foam is connected to a power supply and
immersed in an electrolyte. The current flow between the foam and a nickel cathode
initiates an electrodeposition process. For a detailed description of the process see
Jung et al (2010), Jung and Diebels (2016). A custom-build micro mechanical testing



24 DIC Measurements on Single Struts of Ni/PU Hybrid Foams 425

Fig. 24.1 Experimental setup: (a) total view with (1) sample holder, (2) camera with telecentric
lens, (3) precision screw drive; (b) detail view of three-point bending setup with (4) bending
mandrel, (5) idealised strut, (6) lower bearings

device, constructed for the special requirements of pore and strut testing, is used. The
translational movement is realised by a stepper motor (mDrive 23, Schneider Electric
GmbH, Rating, Germany) in combination with a high precision screw drive. The
stroke accuracy of the device is 0.1μm with a reproducibility of 0.02μm. The setup is
controlled by a custom-build software based on LabVIEWTM (National Instruments
Germany GmbH, Munich, Germany). The software controls the motion, records the
forces and captures the images during the experiment. Using different bearings, the
device allows to perform tensile and compression tests on pores and single struts as
well as three-point bending tests on single struts (Jung et al, 2015). For the three-
point bending tests two blades are fixed on the lower moving part of the setup (see
Fig. 24.1). The blades are fixed with a distance of 2.2 mm from mid-to-mid. The
specimen is placed on the blades without any fixation. A third blade is used as
bending mandrel. The blades have a bottom width of 1.05 mm and a double facet
top with an angle of 108 degrees.

The commercial software Istra4DTM (Dantec Dynamics, Skovlunde, Denmark)
is used for the DIC evaluation. To achieve high accuracy, the ideal parameters
(lighting, subset size, etc.) were found using a three-step routine by Reis et al (2019).
Before each experiment 20 images without any movement of camera or specimen are
captured and the displacement is measured. The resulting displacement can be taken
as quality indicator for this experiment. A 9MPx CCD camera (Manta 917B, Allied
Vision Technologies GmbH, Stadtroda, Germany) in combination with a telecentric
lens (DCTM16.6-110, VICO Technology CO., Guangdong, China) having a pixel
size of 3.69 × 3.69 μm2 takes the images. Due to small dimensions of the strut
(0.4×2mm2) small pixels are needed to get a valid number of pixels over the strut’s
surface. Resulting from that, a full-field strain and displacement measurement can
be achieved.
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For the evaluation of the bending stress, the real geometry of the strut is needed.
Therefore, a photogrammetric method is used. The method requires a special pattern
below the specimens to calculate the rotation angle in each image. The shadows on
the specimen’s surface and the edges of the specimen combined with the rotation
information from the pattern enable the geometric reconstruction of the sample.
Thereby, the resolution of the method is comparable to the resolution of computed
tomography models.

The analysis of photogrammetric geometrical models shows a triangular cross
section area of all struts (see Fig. 24.2). Hence, in a rough approximation struts can
be seen as triangular shaped beams. Using the Euler–Bernoulli beam theory allows

Fig. 24.2 (a) real strut geometry (top) with real cross section(bottom); (b) idealised beam with
force of bending mandrel F and lower bearings B (top), simplified triangular cross section with
height h, width a and α as horizontal distance to the neutral phase (bottom)

to compare the first bending tests performed on individual struts. The theory for
three-point bending starts with the bending moment Mb by

Mb =
F l

4
, (24.1)

using the measured forceF and the distance between the lower bearings l. In addition,
the section modulus WΔ is defined as

WΔ =
I
α

, (24.2)

with the area moment of inertia I and the distance between the neutral phase and the
searched section modulus α. The bending stress σb can be calculated as quotient of
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the bending moment (Eq. 24.1) and the section modulus (Eq. 24.2)

σb =
Mb

WΔ
. (24.3)

With the assumption that the height h of the triangle is similar to the width a, the
bending stress σb results in

σb =
18F l

A
√
A

, (24.4)

with A = h a / 2 as cross sectional area of the individual strut. This assumption is
only valid during the linear elastic deformation of the strut due to the simplification
to Euler–Bernoulli beam theory, allowing the estimation of homogeneous material
parameters from experimental data. Furthermore, it can only be used for a rough
estimation and comparison of the results of the different experiments of individual
struts. Besides the stress, the strain is needed to generate a stress-strain-curve. For
this purpose a DIC measurement is used. The strain is exported as gauge line strain
in the area with the largest positive strain close to the lower bearings. Different
deformation steps of an exemplary strut can be found in Fig. 24.3.

Fig. 24.3 Full-field strain measurement on a single strut in six steps of the deformation during
three-point bending test: starting steps with small strains from −0.07 to 0.07 strain (top), steps with
bigger deformation with strains from −0.1 to 0.2 strain (bottom)

During the deformation, the main strain appears near the bending mandrel with
only small deformations in the remaining strut. This is affected by the brittle mate-
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rial characteristic of the nanocrystalline Ni coating. A similar strut behaviour can
be found during the deformation of a macroscopic foam sample and seems to be
realistic. The experimental results of four struts are shown in Fig. 24.4. Regarding
the force-strain-curves, a huge scattering of the slope in the linear elastic region
is recognisable. The struts vary in their geometry which makes the comparison of
slope and maximums in force-strain-curves unreliable. The stress-strain-curves are
similar for all experiments. The scattering of the stiffness’s, which are equal to the
slope in the linear elastic area of the curves, is smaller as for the force-strain-curves.
The stiffness’ can be found in Table 24.1, with a mean of 830.75GPa ± 193.27GPa,
the scattering is at around 23%. The use of an elastic theory, only allows the inves-
tigation of this elastic part of the curves. The improvement and the comparability
of the results confirm the use of the simplified geometrical models. Nevertheless, in
future, the evaluation should be changed to the real geometry of the struts taking the
correct area moment of inertia into account.

Table 24.1 Stiffness of specimen 1-4 from linear part of stress-strain diagrams in Fig. 24.4 (bottom)

specimen stiffness [GPa]

1 702

2 1089

3 867

4 665

24.3 Conclusion

The custom-build device can be used for large range of experiments on pores and
struts of open-cell foams. Here, three-point bending tests on single struts and the
post processed full-field DIC measurement is described. To reach an accuracy high
enough to perform DIC measurements on single struts the setup was improved and
the measurement quality enhanced. Due to the optimisations of the setup and the
measurement quality full-field strain measurements on individual struts during a
three-point bending test were possible for the first time. The individual geometry of
each strut is a particular challenge during the stress calculation. A first simplification
using Euler–Bernoulli beam theory and the assumption of a constant triangular cross
section over the whole strut show an agreement for the stiffness of the different struts.
Nevertheless, the evaluation should be changed to the real geometry of the strut and
the real area moment of inertia.
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Fig. 24.4 Force-strain-diagrams of four individual struts recorded during three-point bending (top),
stress-strain-diagrams of four individual struts recorded during three-point bending (bottom)



430 Reis, Diebels, Jung

References

dell’Isola F, Seppecher P, Spagnuolo M, Barchiesi E, Hild F, Lekszycki T, Giorgio I, Placidi L,
Andreaus U, Cuomo M, et al (2019) Advances in pantographic structures: design, manufactur-
ing, models, experiments and image analyses. Continuum Mechanics and Thermodynamics pp
1–52
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Chapter 25
Apparent Bending and Tensile Stiffness of
Lattice Beams with Triangular and Diamond
Structure

Yury Solyaev, Sergey Lurie, and Anastasia Ustenko

Abstract In this study we examine apparent elastic properties of slender lattice
structures consist of triangular and diamond unit cells. We reveal that mechanical
response of such structures can be described by using non-classical Euler–Bernoulli
beam theories developed in the framework of strain gradient elasticity. At first,
we evaluate the size-dependent behavior of long and narrow lattice sheets under
pure bending, cantilever bending and uniaxial tension tests by using finite element
modeling and classical Cauchy continuum model. Apparent elastic properties are
introduced based on the direct approach and estimated for the lattices of different
length and thickness. Secondly, from the comparison of obtained numerical results
and corresponding analytical solutions for the gradient Euler–Bernoulli beams we
get an assessment for the standard and gradient materials constant of the last ones. As
result, we show that the non-classical size-dependent elastic response of considered
structures with diamond unit cells can be described by using so-called gradient beam
theories with “uniaxial stress state.”

Keywords: Lattice beams · Second gradient elasticity · Gradient beam theories ·
Apparent elastic properties · Size effects

25.1 Introduction

Development of new structural metamaterials with non-trivial mechanical behavior is
a challenging task related to a lot of important industrial applications, such as damage
resistant and lightweight structures in aerospace and civil engineering (Barchiesi
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et al, 2019), intelligent materials for robotics (Mirzaali et al, 2018), damping and
sound absorption materials in acoustics (Del Vescovo and Giorgio, 2014) etc.

Considering special metamaterials with incorporated long-range interactions pro-
vided by the internal structural crosslinks, one have to apply a non-classical models
different from the Cauchy continuum which does not allow to study, e.g., size effects
or chirality effects, and can not provide a precise description of such structures in all
range of material parameters and configurations of their microstructure. Examples
of such structures have been widely studied recently. Stochastic fiber networks is
one of non-classical materials which exist in nature and exhibit strong size effects
(Shahsavari and Picu, 2013). Mechanical behavior of such materials was described
by using second gradient elasticity and couple stress theories (Berkache et al, 2019,
2017). Another example are auxetic foams and granular systems, which can be de-
scribed by using micropolar continuum (Rueger and Lakes, 2016; De Angelo et al,
2020). Three-dimensional printing was used recently to obtain a non-isotropic mi-
cropolar structures made of small metallic unit cells with chirality effects (Frenzel
et al, 2017). Lattice metamaterials with micro-dilatation effects were studied in Lurie
et al (2018); Solyaev et al (2019b). Pantographic metamaterials is an important class
of artificial structures which exhibit non-classical behavior, such as large elastic
deformations and high damage resistance, and can be described based on the strain
gradient elasticity theory (Della Corte et al, 2016; Eremeyev et al, 2018; Yang et al,
2018; dell’Isola et al, 2019a,b; Boutin et al, 2017).

In the present work we determine the apparent elastic properties of long and
narrow sheets of lattice materials consisting of triangular and diamond unit cells.
From a macroscopic point of view, such structures can be modeled by using beam-
type theories, e.g., the most simple Euler–Bernoulli beam model can be involved
to predict deformations of such structures under the actions of concentrated and
distributed loads and moments. Note, that similar problems have been considered
recently in a number of works. Different models of the generalized continuum
mechanics have been used for the refined analysis of sandwich structures, lattice
beams, truss beams etc (see Abdoul-Anziz and Seppecher, 2018; Romanoff and
Reddy, 2014; Khakalo et al, 2018; Karttunen et al, 2019). Modified couple stress,
micropolar, strain gradient theories have been used in these works.

In the present study we use the two variants of the strain gradient Euler–Bernoulli
beam theory. The first one is the so-called model with "uniaxial stress state" of
the gradient beam, which was proposed in Papargyri-Beskou et al (2003). Another
formulation with “general stress state” of gradient beams was developed later in
Lazopoulos and Lazopoulos (2010). Recently, the correctness of these theories and
their comparison was widely studied in literature (Lurie and Solyaev, 2019, 2018;
Niiranen et al, 2019; Jafari et al, 2016). Main differences between these theories
appear in bending problems, where the size-dependent bending stiffness arise in
the formulation of the theory with “general stress state.” However, in Lurie and
Solyaev (2018), it was shown that this effect does not arise in the semi-inverse three-
dimensional solutions for the pure bending problems. Refined variational formulation
for the gradient beam theory with “uniaxial stress state” has been proposed later in
Lurie and Solyaev (2019). In the present study we show that the lattices with diamond
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unit cells behave in bending in accordance with gradient beam theory proposed by
Papargyri-Beskou et al (2003), in opposite to the triangular unit cells that corresponds
to the gradient beams proposed by Lazopoulos and Lazopoulos (2010) (this was also
shown earlier in Khakalo et al (2018)). Additionally, we consider the uniaxial tension
problem to show that the length-related size effect, which arises under conditions
of non-uniform uniaxial deformations, can be described by the strain gradient beam
theory.

25.2 Finite Element Models of the Lattice Beams

We consider long and narrow sheets of lattice materials made of repeated unit cells
of diamond and triangular structure (Fig. 25.1). Mechanical behavior of considered
lattices was studied at first by using finite element (FE) simulations realized in
Femap/Nastran. In this numerical analysis we used the classical Euler–Bernoulli
model, i.e. the one-dimensional beam-type model derived based on the first order
Cauchy continuum. Thus, in numerical simulations we consider the lattice geometry
and take into account the behavior of each individual structural element. In the
following estimations we consider the structures made of unit cells, which size is d =
40 mm. Beams inside the unit cells are made of polyamide PA6 (Young’s modulus
2.5 GPa, Poisson’s ratio 0.35) and have circular cross section, which diameter is 1
mm. Beams are connected to each other with a clamp constraints. Angle between
beams in the diamond unit cells is chosen to be 90 deg. and they are rotated 45 deg.,
such that the realized structure has orthotropic symmetry with principal directions
along and perpendicular to the beam axis. The difference between diamond and
triangular unit cells is the presence of horizontal cross links in the last ones (see
Fig. 25.1b). As result, boundaries of the sheets with diamond unit cells are formed
by the vertices, which are the intersections of the nearest beams, while in the sheets
with triangular unit cells upper and lower boundaries are formed with the added
horizontal beams. This difference in the boundaries structure is the main reason that
results in the different mechanical response and size effects in these structures that
will be shown below.

a b

Fig. 25.1 Lattice structures with diamond (a) and triangular (b) unit cells

Apparent elastic properties of the lattice beams is found by using direct approach.
From the FE simulations we determine the displacements of the specimen under
prescribed loading and use the classical mechanics of materials analytical solutions
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to evaluate its apparent elastic properties. In such approach we compare only the tip
displacements of the considered lattice beam and corresponding classical beam with
the same dimensions and under the same magnitude of loading. From this comparison
we find the value of the Young’s modulus of classical beam, which will have the
same displacements as the lattice beam. Generally say, the determined apparent
characteristic depends on the boundary conditions, on the type of loading and on the
dimensions of the specimen. That’s why the found value of the Young’s modulus
is called "apparent" for the lattice beam as it is not only a material characteristic,
but also a structural. Note, that such approach is convenient and can be used for the
analysis of experimental data with non-classical materials (see, e.g.Rueger and Lakes
(2016)) and it is also used in the mechanics of composites, e.g. when the apparent
interlaminar shear strength is determined from the short beam shear test according
to ASTM D2344. Thus, under the pure bending, cantilever bending and uniaxial
tension we can find the corresponding apparent elastic modulus of the lattice beam
by using following well known solutions:

EPB =
ML2

2Iu3(L)
, ECB =

PL3

3Iu3(L)
, ET =

FL

Au1(L)
, (25.1)

where M is the total bending moment applied at the beam end in the pure bending
test (Fig. 25.2a); P is the total bending force applied at the cantilever beam end (Fig.
25.2b); F is the total tensile force applied at the beam end under tension (Fig. 25.2c);
L is the length of the lattice beam, I = bh3

12 and A = bh is the apparent moment
of inertia and cross section area of the lattice beam, which thickness is h and width
is b; u1 and u3 are the displacements of the beam end, which are found by using
numerical FE simulations in Nastran.

Boundary conditions which were used in the FE simulations are shown in Fig.
25.2a-c. Illustrations are given for the beams with diamond unit cells and for the
triangular lattices they are the same. Presented conditions are standard and usually
used in the FE modeling of similar problems. However, in Fig. 25.2d we show
the non-classical type of constraints, which provide zero displacements of the first
several segments of the lattice beams. Length of this constrained area of the beam
is denoted as x0. Such type of boundary conditions results in a non-uniform strain
state of the lattice beam even under uniaxial tension. In this case apparent elastic
modulus determined by using Eq. (25.1) becomes size-dependent. However, as it
is shown below, this type of constraint (Fig. 25.2d) is related with additional high-
order boundary conditions, which arise in the strain gradient theories for the normal
gradient of displacements.

25.3 Strain Gradient Beam Theories

Let’s consider a straight beam of length L with rectangular cross section h× bmade
of centrosymmetric linear elastic second gradient material. Equilibrium equations
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a

b

c

d

Fig. 25.2 Constraints and loads used in the FE simulations for the pure bending (a), cantilever
bending (b), tension (c) and non-uniform tension (d) problems with lattice beams. Total bending
moment in the pure bending, transverse force in cantilever bending and axial force in tension are

defined as: M =
n∑

i=1

ziPi, P =
n∑

i=1

Pi and F =
n∑

i=1

Fi, where zi are the distances between loaded

nodes and neutral axis of the beam. Value of x0 in (d) identify the length of the beam’s segments,
which horizontal displacements are constrained.

of gradient model can be presented in the following form (Papargyri-Beskou et al
(2003); Lurie and Solyaev (2019); Alibert et al (2003)):

M ′′ −M ′′′
h + q = 0, x ∈ (0, L)

N ′ −N ′′
h + f = 0, x ∈ (0, L)

(25.2)

where M = −EIw′′ is bending moment, Mh = −�2EIw′′′ is high order bending
moment,N = EAu′ is the resultant axial force, andNh = l2EAu′′ is the high order
axial force, respectively; E is Young’s modulus of the beam; l is the length scale
parameter; u = u1(x) and w = u3(x) are the axial displacements and deflections
of the beam, respectively; q and f are the distributed transverse and axial loading.
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Note, that above in (25.2) we use the definition of bending momentM according
to the so-called model with “uniaxial stress state” developed in Papargyri-Beskou
et al (2003), which correctness was validated recently in Lurie and Solyaev (2018,
2019). In the following we will denote this model as USS. Another formulation
of Euler–Bernoulli gradient beam model with "general stress state" was proposed
in Lazopoulos and Lazopoulos (2010), which formulation results in the another
definition of bending moment M = −E(I + l2A)w′′. In the following we will call
this model GSS. Definitions of other resultants are the same in both models, as well
as the form of boundary conditions in terms of resultants:

x = 0, L :

N −N ′
h = N0 or u = u0,

Nh = Nh0 or u′ = ε0,

M −M ′
h =M0 or w′ = θ0

M ′ −M ′′
h = Q0 or w = w0

Mh =Mh0 or w′′ = κ0

(25.3)

whereN0, u0, Nh0, ε0,M0, θ0, Q0, w0,Mh0 andκ0 are the axial load, axial displace-
ment, axial high order force, axial strain, bending moment, rotation angle, transverse
force, deflection, high order moment and curvature, which can be prescribed on the
beam ends in the strain gradient theory.

Uniaxial tension and bending of lattices, considered in previous section, can be
described by using one-dimensional beam type model (25.2)-(25.3). Solution for the
pure bending problem, obviously, has the form:⎧⎪⎪⎪⎨⎪⎪⎪⎩

x ∈ (0, L) : M ′′ −M ′′′
h = 0,

x = 0, L : M −M ′
h =M0,

M ′ −M ′′
h = 0,

Mh = 0

=⇒ M ≡M0, Mh ≡ 0 (25.4)

Thus, for the USS model we obtain that the apparent elastic modulus of the beam
under pure bending loading should be constant and equals to the Young’s modulus
that can be determined from the uniaxial tension EPB = ET . In the GSS model we
have a size dependent behavior of the beam even under the pure bending, such that
EPB = ET (1 + l2A/I) = ET (1 + 12 l2

h2 ).
Let us consider then the cantilever beam bending problem with the following

statement: ⎧⎪⎨⎪⎩
x ∈ (0, L) : M ′′ −M ′′′

h = 0,

x = 0 : w = 0, w′ = 0, w′′ = 0

x = L : M −M ′
h = 0, M ′ −M ′′

h = P, Mh = 0

(25.5)

Solution of this problem can be found analytically and provides us the following
results for the apparent elastic modulus of the cantilever beam in USS model (Lurie
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and Solyaev (2018)):

ECB = ET
L̄3 cosh L̄

L̄(3 + L̄2) cosh L̄+ 3(1− L̄2) sinh L̄− 6L̄
(25.6)

and in GSS model:

ECB = ET

L̂3

√
1 + 12 l2

h2 cosh L̂

L̂(3 + L̂2) cosh L̂+ 3(1− L̂2) sinh L̂− 6L̂
(25.7)

where L̄ = L/l is the normalized length of the beam and L̂ = L̄
√

1 + 12 l2

h2 .
From the obtained results one can see that in GSS model the non-classical bending

behavior of gradient beam significantly depends on its thickness (more precisely, on
the ratio between thickness and length scale parameter h/l). In opposite, in USS
model all non-classical effects defined by the normalized length of the beam L/l,
that can be treated as an influence of the boundary conditions.

It is easy to find the solutions for the uniaxial tension problems, which coincide
in both considered gradient models. Homogeneous uniaxial tension can be used to
determine the Young’s modulus ET of the lattice according to the solution of the
following problem:⎧⎪⎨⎪⎩

x ∈ (0, L) : N ′ −N ′′
h = 0,

x = 0 : u = 0, Nh = 0

x = L : N −N ′
h = F, Nh = 0

=⇒ N ≡ N, Nh ≡ 0 (25.8)

that means the absence of size-effects under homogeneous uniaxial deformations.
Non-homogeneous uniaxial deformations of the beam are realized in the case of

prescribed restriction for strain at the fixed end of the beam:⎧⎪⎨⎪⎩
x ∈ (0, L) : N ′ −N ′′

h = 0,

x = 0 : u = 0, u′ = 0

x = L : N −N ′
h = F, Nh = 0

=⇒ N = F (1− cosh(L̄−x̄)
cosh L̄

), Nh = l F
sinh(L̄−x̄)

cosh L̄

(25.9)

In this case one can find the following solution for the apparent elastic modulus of
the beam (similar solution was used, e.g. in Solyaev et al (2019a)):

ET = E
L̄

L̄− tanh L̄
(25.10)
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25.4 Size-Dependent Mechanical Behavior of the Lattice Beams

Now we can compare the size-dependent behavior of the lattices (Section 25.2)
and corresponding continuum models (Section 25.3). From the comparison of the
apparent elastic properties determined from the numerical solutions for the beams
with lattice structures (25.1) and analytical solutions for the gradient Euler–Bernoulli
beams (25.6), (25.7), (25.10) we can identify the material parameters of the last one.
In such a way, we can realize a homogenization of the lattice structures for the
effective continuum media described by the second gradient elasticity.

At first, let us consider the behavior of lattice beams under cantilever bending.
In Figure 25.3 we present the dependences of the effective bending modulus ECB

on the dimensions of the beams with different type of the unit cells. In this figure
points indicate the FE solution for the lattice structure and lines correspond to the
gradient beam solutions, which were fitted by choosing the length scale parameter l.
Presented values of the apparent moduli are normalized to the Young’s modulus ET

of the lattices, which was found from the uniaxial tension test with homogeneous
deformations (Fig. 25.2c). For the diamond-celled lattices we haveET = 8 MPa and
for the triangular unit cells ET = 62 MPa.

a b

Fig. 25.3 Apparent elastic modulus of lattice beams with diamond (a) and triangular (b) structure
evaluated based on the cantilever bending test. Points – FE solution, lines – analytical solution of
the gradient beam theories (solid line – USS model, dashed lines - GSS model)

In the Fig. 25.3a we present the results for the beams with diamond unit cells. It is
seen, that the effective properties of these structures correspond to the USS model:
apparent modulus in the cantilever beam test ECB significantly depends only on
the length of the beam and almost independent on its thickness (see (25.6)). Length
scale parameter identified for this structure equals to l = 15 mm. This value was
found for the thin beams with two unit cells across thickness. Some deviations for the
thicker beams arise between numerical and fitted analytical USS solutions for very
short beams with length-to-thickness ratio smaller than 10, which is inappropriate
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for the Euler–Bernoulli theory. Nevertheless, one can see that the GSS model can
not be applied for the diamond-celled lattices, because it predicts the significant
dependence of the apparent modulus on its thickness even for the slender beams
(see dashed lines in Fig. 25.3a), which does not arise in FE simulations with these
structures.

For the beams with triangular unit cells we have the results similar to those one
presented in Khakalo et al (2018). These type of lattices obey the behavior of the GSS
model and their effective moduli significantly depends on the beam thickness. This
dependence is shown in Fig. 25.3b. Determined value of the length scale parameter
for these structures is l = 31 mm.

For the pure bending loading (Fig. 25.2a) we found that for the diamond lattices
EPB is independent on the sheet dimensions and equals toET , while in the triangular
lattices EPB becomes thickness-dependent and equals to ECB for these structures.
This result one more time confirms our conclusions about correspondence between
unit cells geometry and USS/GSS gradient beams models.

Next, let us consider the uniaxial tension test with non-uniform deformations
across beams length (Fig. 25.2d). Found apparent elastic moduli E′

T of the lattices
for this type of loading are presented in Fig. 25.4. One can see that that size effects are
similar in both type of lattices – apparent modulusE′

T increases with decrease of the
length of the beam. In diamond-celled lattices (Fig. 25.4a) there exist some deviations
between numerical solutions for the thick beams and fitted analytical solution (25.10).
As it was mentioned above, it is the consequence of the considered simplified beam
theory, which can not be applied to the short beams. For the triangular structures
coincidence between numerical and analytical solutions are exact (Fig. 25.4b). These
structures are much stiffer then the diamond-celled lattices and deviations between
1D solutions and 3D FE simulations are not so large.

Note, that the length scale parameters used in the analytical solutions for uniaxial
tension (25.10) were the same to those one found previously in the bending tests.
Interesting result here is the found values of the length x0 which was constrained in
the FE simulations to provide the non-uniform state of the lattices (see Fig. 25.4d). It
is found that obtained consistency between FE simulations and beam-type theories
is realized when the constrained length x0 equals to the length scale parameter l,
which was identified in previous bending tests. In other words, the physical meaning
of additional boundary conditions for the strain of gradient beam (in our case it was
x = 0 : u′ = 0 in (25.9)) is that in real structure the length of the fixed segment at
the boundary of the beam is of the order of its length scale parameter.

25.5 Conclusion

Two main contributions of the present study are the following:

1. We present an example of the lattice structure with diamond unit cells which
exhibit the mechanical behavior related to the gradient elastic beam theory with
“uniaxial stress state.” Previously such examples were given only for GSS model.
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a b

Fig. 25.4 Apparent elastic modulus of lattice beams with diamond (a) and triangular (b) structure
evaluated based on the uniaxial tension test. Points – FE solution, lines – analytical solution of the
gradient beam theories.

2. We show that additional boundary conditions of gradient beam theory for strains
imply that there exist a constrained area in the corresponding three-dimensional
structure, which has zero-value displacements and which length is equal to the
length scale parameter of the gradient model.

In the present study, found values of the length scale parameters for considered lattices
are rather small (of the order of unit cells size). Use of the similar pantographic-type
lattices (Della Corte et al, 2016) will provide more extensive gradient effects and
non-classical behavior of these materials, thought remain the same nature of the
thickness-related and length-related size effects.

Acknowledgements This work was supported by the RFBR grants 18-08-00643, 18-01-00553 and
President Grant MK-2856.2019.8.

References

Abdoul-Anziz H, Seppecher P (2018) Strain gradient and generalized continua obtained by homog-
enizing frame lattices. Mathematics and mechanics of complex systems 6(3):213–250

Alibert JJ, Seppecher P, dell’Isola F (2003) Truss modular beams with deformation energy depend-
ing on higher displacement gradients. Mathematics and Mechanics of Solids 8(1):51–73

Barchiesi E, Spagnuolo M, Placidi L (2019) Mechanical metamaterials: a state of the art. Mathe-
matics and Mechanics of Solids 24(1):212–234

Berkache K, Deogekar S, Goda I, Picu R, Ganghoffer JF (2017) Construction of second gradi-
ent continuum models for random fibrous networks and analysis of size effects. Composite
Structures 181:347–357

Berkache K, Deogekar S, Goda I, Picu RC, Ganghoffer JF (2019) Identification of equivalent
couple-stress continuum models for planar random fibrous media. Continuum Mechanics and
Thermodynamics 31(4):1035–1050



25 Apparent Bending and Tensile Stiffness of Lattice Beams 441

Boutin C, Giorgio I, Placidi L, et al (2017) Linear pantographic sheets: asymptotic micro-macro
models identification. Mathematics and Mechanics of Complex Systems 5(2):127–162

De Angelo M, Placidi L, Nejadsadeghi N, Misra A (2020) Non-standard timoshenko beam model
for chiral metamaterial: Identification of stiffness parameters. Mechanics Research Communi-
cations 103:103,462

Del Vescovo D, Giorgio I (2014) Dynamic problems for metamaterials: review of existing models
and ideas for further research. International Journal of Engineering Science 80:153–172

Della Corte A, Giorgio I, Scerrato D, et al (2016) Pantographic 2d sheets: Discussion of some
numerical investigations and potential applications. International Journal of Non-Linear Me-
chanics 80:200–208

dell’Isola F, Seppecher P, Alibert JJ, Lekszycki T, Grygoruk R, Pawlikowski M, Steigmann D,
Giorgio I, Andreaus U, Turco E, et al (2019a) Pantographic metamaterials: an example of
mathematically driven design and of its technological challenges. Continuum Mechanics and
Thermodynamics 31(4):851–884

dell’Isola F, Seppecher P, Spagnuolo M, Barchiesi E, Hild F, Lekszycki T, Giorgio I, Placidi L,
Andreaus U, Cuomo M, et al (2019b) Advances in pantographic structures: design, manufac-
turing, models, experiments and image analyses. Continuum Mechanics and Thermodynamics
31(4):1231–1282

Eremeyev VA, dell’Isola F, Boutin C, Steigmann D (2018) Linear pantographic sheets: existence
and uniqueness of weak solutions. Journal of Elasticity 132(2):175–196

Frenzel T, Kadic M, Wegener M (2017) Three-dimensional mechanical metamaterials with a twist.
Science 358(6366):1072–1074

Jafari A, Shah-enayati SS, Atai AA (2016) Size dependency in vibration analysis of nano plates;
one problem, different answers. European Journal of Mechanics-A/Solids 59:124–139

Karttunen AT, Reddy J, Romanoff J (2019) Two-scale constitutive modeling of a lattice core
sandwich beam. Composites Part B: Engineering 160:66–75

Khakalo S, Balobanov V, Niiranen J (2018) Modelling size-dependent bending, buckling and
vibrations of 2d triangular lattices by strain gradient elasticity models: applications to sandwich
beams and auxetics. International Journal of Engineering Science 127:33–52

Lazopoulos K, Lazopoulos A (2010) Bending and buckling of thin strain gradient elastic beams.
European Journal of Mechanics-A/Solids 29(5):837–843

Lurie S, Solyaev Y (2018) Revisiting bending theories of elastic gradient beams. International
Journal of Engineering Science 126:1–21

Lurie S, Solyaev Y (2019) On the formulation of elastic and electroelastic gradient beam theories.
Continuum Mechanics and Thermodynamics pp 1–13

Lurie SA, Kalamkarov AL, Solyaev YO, Ustenko AD, Volkov AV (2018) Continuum micro-
dilatation modeling of auxetic metamaterials. International Journal of Solids and Structures
132:188–200

Mirzaali M, Janbaz S, Strano M, Vergani L, Zadpoor AA (2018) Shape-matching soft mechanical
metamaterials. Scientific reports 8(1):965

Niiranen J, Balobanov V, Kiendl J, Hosseini S (2019) Variational formulations, model comparisons
and numerical methods for euler–bernoulli micro-and nano-beam models. Mathematics and
Mechanics of Solids 24(1):312–335

Papargyri-Beskou S, Tsepoura K, Polyzos D, Beskos D (2003) Bending and stability analysis of
gradient elastic beams. International Journal of Solids and Structures 40(2):385–400

Romanoff J, Reddy J (2014) Experimental validation of the modified couple stress timoshenko
beam theory for web-core sandwich panels. Composite Structures 111:130–137

Rueger Z, Lakes RS (2016) Cosserat elasticity of negative poisson’s ratio foam: experiment. Smart
Materials and Structures 25(5):054,004

Shahsavari A, Picu R (2013) Size effect on mechanical behavior of random fiber networks. Inter-
national Journal of Solids and Structures 50(20-21):3332–3338

Solyaev Y, Lurie S, Barchiesi E, Placidi L (2019a) On the dependence of standard and gradi-
ent elastic material constants on a field of defects. Mathematics and Mechanics of Solids p
1081286519861827



442 Solyaev, Lurie, Ustenko

Solyaev Y, Lurie S, Ustenko A (2019b) Numerical modeling of a composite auxetic metamaterials
using micro-dilatation theory. Continuum Mechanics and Thermodynamics 31(4):1099–1107

Yang H, Ganzosch G, Giorgio I, Abali BE (2018) Material characterization and computations of
a polymeric metamaterial with a pantographic substructure. Zeitschrift für angewandte Mathe-
matik und Physik 69(4):105



Chapter 26
On the Relations between Direct and Energy
Based Homogenization Approaches in Second
Gradient Elasticity

Yury Solyaev, Sergey Lurie, and Anastasia Ustenko

Abstract In this chapter we consider Eshelby integral formulas in the framework
of second gradient elasticity theory (SGET). Based on these formulas we provide
a comparison between direct and energy based homogenization approaches for the
second gradient elastic media containing inhomogeneities. These approaches are
widely used in micromechanics for the estimation of the effective properties of
composites assuming the equivalence of averaged field variables (direct approach)
or the equivalence of strain energy (energy based approach) in heterogeneous and
equivalent homogeneous media. Equivalence between these approaches in classical
elasticity can be proven by using Eshelby formulas. In the present work we use
these formulas generalized for SGET to show, that the direct and energy based
homogenization approaches are equivalent in SGET only in the case of homogeneous
boundary conditions, while for the more general type of loading these approaches
may provide different predictions, resulting, e.g., in different values of the effective
high-order material constants estimated for the composite materials and mechanical
metamaterials.

26.1 Introduction

Integral formulas derived by Eshelby in his celebrated work Eshelby (1956) is an
important result of classical elasticity that allow to estimate the difference between
strain energy of heterogeneous material (consisting of matrix and inclusions) and
corresponding pure matrix under the same loading conditions. In classical microme-
chanics Eshelby formula is used to prove the equivalence between so-called direct
and energy based homogenization approaches (Aboudi, 2013; Christensen, 2012).
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In direct approach one should use the relations between averaged stress and strain
fields to find the effective properties of heterogeneous media. In energy based ap-
proach effective properties are determined based on the assumption of equivalence
between strain energies stored in the composite and equivalent homogeneous media.
Considering basic relations of the direct approach one can obtain Eshelby integral
formulas by using simple algebraic manipulations and in such a way the equiva-
lence between direct and energy based approaches can be proven (Aboudi, 2013;
Christensen, 2012).

Direct approach is widely used in classical micromechanics, e.g. in the framework
of Mori–Tanaka method, self-consistent method, differential scheme, dilute approx-
imation etc. (Aboudi, 2013; Benveniste, 1987; Kachanov and Sevostianov, 2018)
because it provides a simple evaluation of the effective properties of composites,
that can be found in some cases analytically in a closed form. Direct approach is
also widely used in homogenization problems in more general framework of elasto-
placticity, thermoelasticity, electroelasticity (Lagoudas et al, 1991; Dunn and Taya,
1993; Siboni and Benveniste, 1991) etc.

Energy approach may be more complicated than the direct one as it involves
a volumetric integration of the field variables. However, energy approach is also
widely used in classical micromechanics, e.g. in generalized self consistent method,
in which Eshelby formula is applied to reduce the volumetric integration of strain
energy to the simple surface integral of special type (Christensen, 2012). Such energy
based approach is also used in homogenization problems with viscoelastic materials
(Gusev and Lurie, 2009; Lurie et al, 2014, 2019), in piezoelectricity (Jiang et al,
2001), etc.

In classical micromechanics it is well known that different homogenization meth-
ods (Mori–Tanaka, self-consistent, Maxwell etc.) may provide significantly different
predictions for the effective properties of composites (Christensen, 1990; Dunn and
Taya, 1993; Aboudi, 2013; Lurie et al, 2018a). Thus, the choice of homogenization
method (scheme) is important and should be validated by using, e.g., experimental
data. However, the choice between direct and energy approach for estimation of the
effective properties is not significant as their equivalence is proven. In other words,
in classical models considering certain homogenization scheme and representative
element of composite material one can estimate its effective properties as the ratio
between corresponding averaged field variables or by estimating its total potential
energy and results will be the same.

In the present work we derive Eshelby integral formulas in the framework of
second gradient elasticity theory (SGET). This theory attract high attention during
last decades as it allows to obtain size-dependent solutions in micromechanics (Fleck
and Hutchinson, 1993; Ma and Gao, 2014; Lurie et al, 2006), non-singular solutions
in linear elastic fracture mechanics (Lurie and Belov, 2008; Askes and Aifantis, 2011;
Lurie and Belov, 2014; Mousavi and Aifantis, 2016), in contact problems (Vasil’ev
and Lurie, 2017) and in dislocation problems (Lazar and Maugin, 2006a; Lazar
and Po, 2018), it provides a continuous description of mechanical metamaterials
(Alibert et al, 2003; dell’Isola et al, 2019a,b; Boutin et al, 2017; dell’Isola et al,
2017; Eremeyev et al, 2018; Scerrato and Giorgio, 2019), refinement analysis of
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thin structures (Papargyri-Beskou et al, 2003; Askes and Aifantis, 2009; Lurie and
Solyaev, 2019, 2018) and mesh independent FE solutions for the problems with
non-smooth geometries and concentrated loads (Lazar and Maugin, 2006b; Vasil’ev
and Lurie, 2017; Andreaus et al, 2016; Reiher et al, 2017).

In the previous work of authors (Lurie et al, 2018b), it was found that different
homogenization methods of micromechanics may provide significantly different
predictions for the effective properties of elastic composites, which constituents
exhibit strain gradient effects. The reason of this difference is not obvious, namely,
it may be the consequence of considered different homogenization methods (Mori–
Tanaka/generalized self consistent) or the consequence of different homogenization
approaches (direct/energy)1. In the present work we show, that the equivalence
between direct and energy based homogenization approaches in SGET is realized
only in the case of so-called homogeneous boundary conditions (Hashin, 1983).
This type of boundary conditions provides a uniform strain and stress fields in the
corresponding equivalent homogeneous media, which elastic moduli can be found
then from the solution of the problem. However, it will be shown that in the case
of more general boundary conditions (non-homogeneous Forest, 1998, 2002; Forest
and Trinh, 2011) the equivalence between direct and energy homogenization is not
valid in SGET. This result may be important in the case of evaluation of the effective
high-order material constants and apparent length scale parameters of composite
materials and mechanical metamaterials that are widely studied in recent years (Ma
and Gao, 2014; Delfani and Latifi Shahandashti, 2017; Bacca et al, 2013; Forest,
1998; Goda and Ganghoffer, 2016; Auffray et al, 2010; Trinh et al, 2012; Turco et al,
2018; Giorgio et al, 2018; dell’Isola et al, 2019a; Abali et al, 2017).

26.2 Second Gradient Elasticity

Let us consider an isotropic linear elastic body occupying the regionΩ with smooth
boundary ∂Ω without any edge. The strain energy density of isotropic second gra-
dient material is given by Mindlin (1964); Mindlin and Eshel (1968),

w(ε,∇ε) =
1

2
ε : C : ε+

1

2
η

... A
...η (26.1)

where C and A are the fourth- and sixth-order tensors of the elastic moduli; ε =
1
2 (∇u + (∇u)T ) is an infinitesimal strain tensor, η = ∇ε is the strain gradient
tensor, u(r) is the vector of mechanical displacements at a point r = {x1, x2, x3};
∇ is the 3D nabla operator.

Constitutive equations for the Cauchy stress tensor τ , and third-order double
stress tensor μ:

1Note, that Mori–Tanaka method is related to the direct homogenization approach and it involves the
averaged filed quantities in estimations of the effective properties, while generalized self consistent
method is realized following energy based approach
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τ =
∂w

∂ε
= C : ε, μ =

∂w

∂η
= A

...η (26.2)

Boundary value problem statement of gradient theory can be obtained based on the
variational approach and can be presented as follows (Mindlin and Eshel, 1968; Gao
and Park, 2007; Polizzotto, 2015):

∇ · σ + b̄ = 0, x ∈ Ω
t = t̄, or u = ū, x ∈ ∂Ω (26.3)

m = m̄ or ∂nu = ḡ, x ∈ ∂Ω

where the edge boundary conditions and corresponding line loads along surface
edges are omitted as we assume that the entire surface ∂Ω is smooth (Gao and Park,
2007); b̄ is the body force within Ω; t̄, m̄, ū and ḡ are the traction, double traction,
displacement vector and normal gradient of displacement, respectively, prescribed
on ∂Ω; total stress tensor σ, traction vector t and double traction vector m that
persist in (26.3) are given by

σ = τ −∇ · μ,
t = n · σ −∇S · (n · μ)−H nn : μ, (26.4)
m = nn : μ

where n is the vector of the external unit normal to ∂Ω; H = −∇S · n is the mean
curvature of ∂Ω; ∇S = ∇− n∂n is the surface gradient operator.

26.3 Eshelby Formulas

In classical elasticity Eshelby formulas allow to estimate the strain energy of the
media containing inhomogeneities by using particular type of surface integration
(Eshelby, 1956). In this section we derive the generalized variant of Eshelby formula
suitable for SGET. We follow Christensen (1979), where this formula was involved
in the classical micromechanics problems, and Lurie et al (2011), where this formula
was derived in the framework of gradient theory of interphase layer that is the special
case of SGET.

Let us consider a body containing single inclusion and subjected to the externally
applied surface traction t̄ and double traction m̄ (Fig. 26.1, a). Body occupies region
Ω which can be divided into inclusion phase Ω1 and matrix phase Ω2, such that
Ω = Ω1∪Ω2. External surface ∂Ω and interface ∂Ω1 are smooth and do not contain
edges. Total strain energy of the body Ω in SGET is given by

W =
1

2

∫
Ω

(τ : ε+ μ
...η)dv (26.5)
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For the purpose of the following derivations let us consider three auxiliary problems:

1. Body Ω consisted of entirely matrix material subjected to the same external
loading t̄, m̄ (Fig. 26.1b). Field variables of this problem will be denoted with
subscript “0” as u0, τ 0 etc. Strain energy of this body is given by:

W0 =
1

2

∫
Ω

(τ 0 : ε0 + μ0

...η0)dv (26.6)

2. Body Ω consisted of entirely matrix material subjected to the same external
loading t̄, m̄ with additional set of body forces b̄ acted inside the inclusion
region Ω1 and produced exactly the same state of the field variables in the
region outside the inclusion (Fig. 26.1c). In this problem, field variables, which
will be denoted with subscript “1”, satisfy following conditions:

u1 = u, ε1 = ε, η1 = η, τ 1 = τ , μ1 = μ, x ∈ Ω2 (26.7)

3. Body Ω consisted of entirely matrix material subjected only to the set of body
forces b̄ acted inside the inclusion regionΩ1 (Fig. 26.1d). Field variables in this
problem will be denoted with subscript “2” as u2, τ 2 etc. In this problem, stress
free boundary conditions are prescribed on the external surface of the body:

t2 = 0, m2 = 0, x ∈ ∂Ω (26.8)

Using (26.6), strain energy of the inhomogeneous body (26.5) can be evaluated
as

W =W0 +
1

2

∫
Ω

(τ : ε− τ 0 : ε0 + μ
...η − μ0

...η0)dv (26.9)

Taking into account symmetry of stress tensors and by using chain rule, from
(26.9) we obtain:

W =W0 +
1

2

∫
Ω

(τ : ∇u− τ 0 : ∇u0 + μ
...∇∇u− μ0

...∇∇u0dv

=W0 +
1

2

∫
Ω

(∇ · (τ · u)− (∇ · τ ) · u−∇ · (τ 0 · u0) + (∇ · τ 0) · u0

+∇ · (μ : ∇u)− (∇ · μ) : ∇u−∇ · (μ0 : ∇u0) + (∇ · μ0) : ∇u0)dv
(26.10)

Accounting for the definitions of total stress tensor σ, σ0 (26.4.1) and equilibrium
equations (26.3.1), we can simplify (26.10) as follows:
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Fig. 26.1 To the derivation of Eshelby formula in second gradient elasticity

W =W0 +
1

2

∫
Ω

(∇·(σ · u)−∇·(σ0 · u0) +∇·(μ :∇u)−∇·(μ0 :∇u0))dv

(26.11)
By using divergence theorem, (26.11) becomes

W =W0 +
1

2

∫
∂Ω

(n · σ · u− n · σ0 · u0 + n · μ : ∇u− n · μ0 : ∇u0)ds

(26.12)
Last two terms under the integral in (26.12) can be simplified by using identities,
similar to those one used by Mindlin in Mindlin (1964) and proven by Gao and Park
(2007),

n · μ : ∇u = n · μ : ∇Su+ nn : μ · ∂nu
= ∇S · (n · μ · u)−∇S · (n · μ) · u+ nn : μ · ∂nu (26.13)

= −Hnn : μ · u+ n · ∇ × (n × (n · μ · u))
− ∇S · (n · μ) · u+ nn : μ · ∂nu

and the same one for the field variables with “0” subscript.
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By using Stokes’s theorem, surface integration of terms with cross products that
arise in (26.13) can be replaced by the line integration, and as far as the considered
surfaces are smooth, these terms are vanished. As result, based on (26.12), (26.13),
we obtain

W =W0 +
1

2

∫
∂Ω

(t · u− t0 · u0 +m · ∂nu−m0 · ∂nu0)ds, (26.14)

in which the definitions of tractions t, t0 and double tractions m, m0 are used
according to (26.4).

Finally, taking into account that the boundary conditions for the problems pre-
sented in Fig. 26.1a and Fig. 26.1b are the same, i.e. that t = t0 = t̄ and
m = m0 = m̄ if x ∈ ∂Ω, from (26.14) we found the variant of Eshelby for-
mula generalized for SGET in the case of body with smooth surface

W =W0 +
1

2

∫
∂Ω

(t̄ · (u − u0) + m̄ · (∂nu − ∂nu0))ds. (26.15)

Following Christensen (2012), we will derive the variant of Eshelby formula that is
more suitable for the homogenization problems. To do this let us consider the second
and the third auxiliary problems presented in Fig. 26.1c, d. At first we note, that
the field variables in the problem presented in Fig. 26.1c can be decomposed into
the sum of those ones of the problems presented in Fig. 26.1b and in Fig. 26.1d.
Therefore, we can write

u1 = u0 + u2,

ε1 = ε0 + ε2,

η1 = η0 + η2, (26.16)
τ 1 = τ 0 + τ 2,

μ1 = μ0 + μ2

Energy of the homogeneous media with equivalent state in matrix phase (Fig. 26.1c)
can be presented then in the following form:

W1 =
1

2

∫
Ω

(
(τ 0 + τ 2) : (ε0 + ε2) + (μ0 + μ2)

... (η0 + η2)

)
dv

= W0 +W2 +Wint (26.17)

where the total strain energy of the third auxiliary problem W2 (Fig. 26.1d) and the
interaction energy of the two stress states Wint are defined by
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W2 =
1

2

∫
Ω

(τ 2 : ε2 + μ2

...η2)dv

Wint =
1

2

∫
Ω

(τ 0 : ε2 + τ 2 : ε0 + μ0

...η2 + μ2

...η0)dv (26.18)

Taking into account symmetry conditions

τ 2 : ε0 = ε2 : C : ε0 = ε0 : C : ε2 = τ 0 : ε2

μ2

...η0 = η2

... A
...η0 = η0

... A
...η2 = μ0

...η2 (26.19)

and providing the similar derivations as it was done in (26.9)-(26.15), from (26.18)
we obtain

Wint =
∫
Ω

(τ 0 : ε2 + μ0

...η2)dv =
∫
∂Ω

(t̄ · u2 + m̄ · ∂nu2)ds (26.20)

Next, we notice that on the external boundary ∂Ω field variables of the initial
problem with inhomogeneous body (Fig. 26.1a) are coincides with those one of the
second auxiliary problem (Fig. 26.1c), such that decomposition (26.16) gives us
u2 = u1 − u0 = u − u0 and ∂nu2 = ∂nu1 − ∂nu0 = ∂nu − ∂nu0, if x ∈ ∂Ω.
Therefore, integrals in (26.20) and in (26.15) coincide, and we can state that

W =W0 +
1

2
Wint, (26.21)

Then we consider a closed surfaceΣ outside of the inclusion that separate the domain
Ω into internal part ΩI containing inclusion (Ω1 ⊂ ΩI ) and external part ΩII . As
result, representation of Wint (26.20) can be rewritten as follows:

Wint =

∫
ΩI

(τ 0 : ε2 + μ0

...η2)dv +

∫
ΩII

(τ 0 : ε2 + μ0

...η2)dv

=

∫
ΩI

(τ 0 : ε2 + μ0

...η2)dv +

∫
ΩII

(τ 2 : ε0 + μ2

...η0)dv

=

∫
Σ

(t0 · u2 +m0 · ∂nu2)ds−
∫
Σ

(t2 · u0 +m2 · ∂nu0)ds

+

∫
∂Ω

(t̄ · u0 + m̄ · ∂nu0)ds

(26.22)

where we use the symmetry conditions (26.19) and take into account different signs
of the unit normal, which it has on Σ in domains ΩI and ΩII .

Stress free boundary conditions for the third auxiliary problem (26.8) provide us
that the last integral in (26.22) vanishes. Then, taking into account relations (26.4),
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(26.7) and (26.16), from (26.22) we obtain

Wint =
∫
Σ

(t0 · u− t · u0)ds+
∫
Σ

(m0 · ∂nu−m · ∂nu0)ds (26.23)

Finally, substituting (26.23) into (26.21) we find another variant of Eshelby formula
generalized for the second gradient elasticity:

W =W0 +
1

2

∫
Σ

(t0 · u− t · u0)ds+
1

2

∫
Σ

(m0 · ∂nu−m · ∂nu0)ds (26.24)

Note, that considering other sets of boundary conditions on the external surface ∂Ω,
one can obtain, generally say, four different variants of Eshelby formula in SGET.
Formula (26.24) is given for the prescribed traction and double traction t = t̄,
m = m̄ on ∂Ω. For example, if instead of the boundary conditions for traction, we
prescribe the displacements, i.e. u = ū, m = m̄ on ∂Ω, we will have

W =W0 +
1

2

∫
Σ

(t · u0 − t0 · u)ds+ 1

2

∫
Σ

(m0 · ∂nu−m · ∂nu0)ds (26.25)

(the differences arise in the placement of subscripts “0” in the first integral).
Classical variants of Eshelby formulas follows from (26.24), (26.25) if we assume

the absence of gradient effects in the media. In this case gradient moduli equals to
zero in (26.2), double stresses do not arise m = m0 = 0 and we have classical
definitions of tractions t = tclas = n · τ and t0 = (t0)clas = n · τ 0.

26.4 Relations between Direct and Energy Based
Homogenization in SGET

Based on derived Eshelby formulas we can compare the direct and energy based
homogenization approaches that can be applied for the estimation of the effective
properties of non-homogeneous materials in SGET.

Let us consider a body Ω, consisting of inclusion Ω1 and matrix Ω2, which
volumes are V1 and V2, respectively. Volume fraction of the inclusion is defined by
c = V1/V , where V = V1 + V2. For this two-phase composite the average Cauchy
stress 〈τ 〉 and strain 〈ε〉 can be defined by

〈τ 〉 = c〈τ (1)〉+ (1− c)〈τ (2)〉,
〈ε〉 = c〈ε(1)〉+ (1− c)〈ε(2)〉 (26.26)

where the averaged quantities are defined by relations
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〈τ 〉 = 1

V

∫
Ω

τdv, 〈τ (1)〉 = 1

V1

∫
Ω

τ (1)dv, ...

By using constitutive relations of phases ε(1,2) = S(1,2) : τ (1,2), in which S(1,2)

are the compliance tensors, from (26.26.2) we obtain

〈ε〉 = cS(1) : 〈τ (1)〉+ (1− c)S(2) : 〈τ (2)〉 (26.27)

Then we introduce the stress concentration tensors, that define the relations between
averaged Cauchy stress in phases and averaged Cauchy stress in a whole composite:

〈τ (1)〉 = T (1) : 〈τ 〉
〈τ (2)〉 = T (2) : 〈τ 〉 (26.28)

Additionally we use the general definition of the effective propertiesS∗(compliances)
of the composite that are defined in the framework of direct approach as follows:

〈ε〉 = S∗ : 〈τ 〉 (26.29)

Substituting (26.28) and (26.29) into (26.27) we finally find the relations between
the effective properties of composite material and properties of its phases

S∗ = S(2) + c (S(1) − S(2)) : T (1) (26.30)

where we take into account the relation between stress concentration tensors cT (1)+
(1− c)T (2) = I , that follows from (26.26.1), (26.28); and I is an identity tensor.

Note, that the main difference between derived relation (26.30) and similar one in
classical micromechanics (see, e.g., Hashin, 1983; Christensen, 2012; Aboudi, 2013)
lies in the definition of the stress concentration tensor T (1). In classical elasticity it
is well known that the stress field inside the inclusion is uniform under prescribed
homogeneous boundary conditions, such that components of the stress concentration
tensor can be defined asT (1) : 〈τ (1)〉 = τ (1) (without averaging of stress field inside
the inclusion).

However in SGET, boundary layer effects leads to the non-uniform strain and
stress fields inside the inclusions even under prescribed homogeneous boundary
conditions (Lurie et al, 2005; Gao and Ma, 2010; Ma and Gao, 2014; Lurie et al,
2018b), such that 〈τ (1)〉 �= τ (1), and concentration tensors becomes position de-
pendent. Thus, in opposite to classical elasticity, in SGET, averaging procedure of
the field variables inside the inclusion becomes important. Considering the direct
homogenization approach in the framework of SGET one should find the averaged
values of concentration tensorT (1) = 〈T (1)(r)〉 and use it to find the effective elastic
constants based in relation similar to (26.30). Such an approach for the strain concen-
tration tensor was used, e.g., in Lurie et al (2018b), and by using its representation
through the components of averaged Eshelby tensor in Ma and Gao (2014).

Now, let us compare a direct and energy based homogenization approaches in
SGET. In classical elasticity Eshelby formula can be derived from (26.30) and this
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proves the equivalence between these homogenezation approaches (Aboudi, 2013;
Christensen, 2012; Eremeyev and Konopińska-Zmysłowska, 2019). Thus, let us try
to derive the Eshelby formula from the relation (26.30) in the case of SGET. To do
this, let us assume that the following static boundary conditions are prescribed on
the body surface (Fig. 26.1a),

t = t̄, m̄ = 0, r ∈ ∂Ω (26.31)

Such type of boundary conditions can be defined as “homogeneous” and they should
be used to estimate the classical effective elastic constants of the composite because
they produce the uniform stress field 〈τ 〉 = τ 0, μ ≡ 0 inside the homogeneous
media Lurie et al (2018b); Ma and Gao (2014). Contracting (26.30) twice with τ 0

and taking into account (26.28.1), we obtain

τ 0 : S∗ : τ 0 = τ 0 : S(2) : τ 0 + c τ 0 : (S(1) − S(2)) : 〈τ (1)〉 (26.32)

This equation contains the strain energy density of inhomogeneous body 2w =
τ 0 : S∗ : τ 0 (Fig. 26.1a) and homogeneous body 2w0 = τ 0 : S(2) : τ 0 (Fig.
26.1b) evaluated through the effective compliance constants and matrix compliance
constants, respectively. Double stress do not arise in these definitions of the strain
energy density due to their vanishing for the considered type of boundary conditions
(26.31). Integrating (26.32) over the body volume V and using the definition of
averaged stress field 〈τ (1)〉, we obtain

W =W0 +
1

2

∫
Ω1

τ 0 : (S(1) − S(2)) : τ (1) dv (26.33)

Substituting constitutive equations for the matrix and inclusion materials in (26.33)
yields the relation:

W =W0 +
1

2

∫
Ω1

(τ 0 : ε− τ : ε0)dv (26.34)

where the field variables without indexes are related to the problem with inhomo-
geneous body (Fig. 26.1a), because inside the inclusion domain Ω1 it is valid that
τ (1) = τ and ε(1) = S(1) : τ (1) = ε; however, stress τ 0 and strain ε0 = S(2) : τ 0

are related to the problem with pure matrix (Fig. 26.1b).
Relation (26.34) can be rewritten by using the similar procedure as we used during

derivation of Eshelby formula in Section 26.3. After using the chain rule, divergence
theorem and accounting for the symmetry conditions (26.19), equilibrium equations
(26.3.1), identities (26.13) and definitions (26.4) we can arrive in (26.34) to the
following relation:

W =W0 +
1

2
Wint +

1

2
W ′

int (26.35)
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where the interaction energy Wint is defined by (26.23) in which we should assume
Σ = ∂Ω1 and additional interaction energy W ′

int is related with gradient effects as
follows:

W ′
int =

∫
Ω1

(μ
...η0 − μ0

...η)dv (26.36)

As it was mentioned above, for the prescribed type of boundary conditions (26.31),
solution for the homogeneous media will contain zero values of double stresses and
strain gradients in whole region Ω, i.e. μ0 ≡ 0, η0 ≡ 0. Therefore, in considered
problem we have W ′

int = 0 and the direct approach implied by the relation (26.30)
will provide us the equivalence of strain energies stored in composite media and in
the equivalent homogeneous media which can be presented in the form of Eshelby
formula (26.24).

Thus, we prove the equivalence between energy and direct homogenization ap-
proaches in SGET for the case of classical elastic constants estimations, that can
be done by using homogeneous boundary conditions (26.31). However, in the case
of more general boundary conditions (with prescribed m̄ �= 0 or ∂nu on ∂Ω) the
differences between approaches may arise due to non-zero interaction term W ′

int

that persist in (26.35). For example, such type of non-uniform boundary conditions
should be used to find the effective gradient moduli of composite materials or the
apparent length scale parameters of mechanical metamaterials (Bacca et al, 2013;
Forest and Trinh, 2011).

26.5 Conclusions

In this work we derived generalized variant of Eshelby integral formulas (26.15),
(26.24), (26.25) that can be used in micromechanics applications, namely, it can be
used in the generalized self consistent method realized for the inclusion problems in
SGET (Lurie et al, 2018b, 2016).

Based on the derived Eshelby formulas we compare a direct (“straightforward”
Auffray et al (2010)) and energy based homogenization approaches in SGET. We
found that, similarly to classical elasticity, these approaches are equivalent in SGET
when one consider a homogeneous boundary conditions and estimate classical elastic
properties of composite material. However, in the case of more general loading and,
e.g. non-homogeneous boundary conditions, that one should apply to estimate the
effective high-order material constants of composite materials, direct and energy
based approaches may provide different results. Deviations between these approaches
may be treated as errors of direct approach as it can not take into account a portion
of strain energy related with high order interactions persisting in the media.

Derived Eshelby formulas can be additionally generalized for the second gradient
media with multiple inclusions and for the bodies with non-smooth geometry. In the
last case additional edge-type boundary conditions and line loads will be important
and should be taken into consideration (dell’Isola et al, 2016, 2015).
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Chapter 27
The Mechanical Diode: On the Tracks of James
Maxwell Employing Mechanical–Electrical
Analogies in the Design of Metamaterials

Mario Spagnuolo & Daria Scerrato

Abstract Following the pioneering idea of James Clerk Maxwell, who first intro-
duced mechanical-electrical analogies in the 19th century, we want to exploit his
innovative vision in the design of new metamaterials. Indeed, metamaterials can be
defined as engineered materials designed to implement one or more specific function-
alities. In particular, we have in mind to realize a mechanical system whose behavior
is characterized by a useful response, which is typical of an electrical system. In
other words, we want to design a mechanical system whose constitutive behavior is
the same as an electrical system, namely a diode. To this end, a pantographic material
with perfect pivots can be seen as a mechanical diode. Indeed, it is constituted by
two families of straight fibers, with remarkable deformation due to the presence of
the hinges and a threshold behavior when the fibers tend to be aligned.

27.1 Introduction

Nowadays, the 3D printing process offers an unparalleled possibility to realize
highly complex mechanical systems characterized by internal structures that pro-
vide “exotic” (not present in nature) behaviors (dell’Isola et al, 2015b; Milton et al,
2017). From this point of view, the technological advancement we are witnessing
is particular fruitfully for the development of new materials so-called metamaterials
(Del Vescovo and Giorgio, 2014; Barchiesi et al, 2019b). Indeed, metamaterials
are artificially conceived materials that inherit the macroscopic behavior by their
microstructure rather than the material of which they are made. Among the panoply
of mechanical metamaterials, we want to focus on pantographic sheets, namely me-
chanical systems, which can experience a very high deformation in the elastic range.
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The microstructure of a pantographic sheet is at a microscopic level of observation,
a mechanism—namely, a pantograph—periodically repeated that allows a local mo-
tion spreading above the majority of the unit cells of which the system is made of and
accordingly results in a considerable deformation on a macroscopic scale (Barchiesi
and Placidi, 2017; dell’Isola et al, 2019a,b; Turco et al, 2017a; Misra et al, 2018).
To be more precise, the architecture of the system at hand consists of two parallel
fiber families that are joined each other in correspondence to the intersection points
of the fibers. In particular, these connections can be realized by pin devices, which
are equivalent to hinges (characterized by free rotations). Details of this research are
given in (dell’Isola et al, 2015b; Scerrato et al, 2017; Turco et al, 2017b; Placidi
et al, 2016; Giorgio et al, 2017; Turco et al, 2016; Boutin et al, 2017; Steigmann and
dell’Isola, 2015; Barchiesi et al, 2019a; Giorgio et al, 2018; Turco et al, 2020).

In this paper, we resort to mechanical-electrical analogies to support in developing
mechanical systems that can provide behaviors typical of electrical networks. Since
the first proposal from James C. Maxwell in the 19th century, as it has been already
done in the past, this analogy is very useful in the design of a system of one of
these two domains using the achievements of the other one. Hence, for example, one
can design mechanical systems that are realized and developed by means of electric
networks (Bloch, 1945; Kron, 1945). A further example can be found in Bloch
(1944), where a purely mechanical coupler, i.e. the gyroscopic, is discussed and a
better understanding of its behavior is attained by a translation into the electrical
analogy.

Pursue this line of thought, the results obtained for pantographic sheets from
experimental tests and numerical simulations shown an analogy between the force-
displacement diagram curve and the constitutive law voltage-current characteristic of
electric diodes. We observed that this is particularly valid when the connections are
perfect hinges. Indeed, if the connections are made with deformable elastic cylinders
this specific behavior is less evident (Turco et al, 2018).

27.2 Experimental Observations: A Mechanical Diode

A diode is an electric component characterized by an asymmetric conductance. The
current that flows in it is almost null in the case that the applied voltage is less or
equal than a certain threshold. On the other hand, when the external voltage exceeds
that value, the diode behaves like a voltage generator. Therefore, the current will be
a consequence of the electric network where the diode is placed (provided that the
maximum allowed current is not exceeded).

The same behavior exhibited by an electric diode can be reproduced in the me-
chanical field by a pantographic sheet with connections, also called pivots, realized
by “perfect” hinges (Fig. 27.1).

Indeed, in the case of a bias extension test, the force-displacement curve of a
pantographic sheet can be summarized into two principal steps: firstly, the reaction
force is caused by a locally spread bending deformation of fibers, which has a very
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Fig. 27.1 A three-dimensional scheme of a pantographic structure with perfect pivots and a zoom
of the connections.

low value (almost negligible) compared to the maximum value of the exerted force;
secondly, the deformation turns to an elongation of the fibers and the slope of the
force increases drastically, especially after the fibers come into contact each other.

In this mechanical case, therefore, the response of the system resembles that
of an electric diode. Here, the macroscopic deformation is a consequence of the
deformation of the fundamental constituents at the micro-level, namely fibers and
pivots. Specifically, it is worth noticing that when the pivots are almost perfect
(see Fig. 27.5), and the energy associated with their deformation is negligible, the
macroscopic behavior is mainly driven by the deformation of the fibers which can
only bend and stretch (see Fig. 27.2).

To be more precise, in the bias extension test the presence of perfect pivots allows:
(i) the relative rotation of the fibers belonging to the different families connected
by the pivot itself with very small deformation energy due to the pantographic
architecture; (ii) initially only a flexion of the fibers is triggered in narrow localized
strips, which is related to almost negligible storage of elastic energy, (iii) then, when
the fibers become increasingly aligned, in the central portion of the structure, the
elongation of them becomes predominant, and the increase of reaction force needed
to deform the sample rises considerably (see Fig. 27.3).

To illustrate what has been explained before, some experimental tests were per-
formed together with some numerical simulations that corroborate the theoretical
formulations already developed in the literature about pantographic sheets with per-
fect pivot. The experiments were carried out on a specimen made of polyamide. The
results of the bias extension test are reported as a force-displacement plot shown in
Fig. 27.4.

The plot of Fig. 27.4 shows that the reaction force is negligible until the imposed
displacement reached a value of about 35mm, namely ca. 16.7% of the specimen
length which is 210mm. Indeed in this first part of the experiment, the level of the
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Fig. 27.2 Pantographic sheet
with perfect pivots under a
bias extension test. Reference
configuration (left), deformed
configuration with the char-
acteristic hourglass shape
(right).

force is of the same order of magnitude of the experimental noise. After this phase,
the force increases as in the case of an electric diode.

Fig. 27.3 Force-displacement
plot of a pantographic sheet
obtained by FEM numerical
simulations.
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27.3 Modeling Metamaterials: Deformation Energy of
Pantographic Sheets

To design a new metamaterial, the first step to be done is to establish the perfor-
mance required in the ordinary functioning of it. Subsequently, the microstructure
that characterizes the macroscopic behavior should be synthesized to get the pre-
scribed requirements, namely the desired mechanical response. In the case of the
pantographic sheet, the desired behavior consists of large deformation of the material
with a zero expense of energy, or negligible. In Seppecher et al (2011); Alibert et al
(2003) it is proven that such a material can be obtained by utilizing a pantographic
microstructure (see Fig. 27.1).

According to the innovative ideas of Germain, Tupin, Sedov, and Piola (dell’Isola
et al, 2017), and following the seminal work of Seppecher et al (2011), an assembly
of fibers as shown in Fig. 27.1 can be proved to have a homogenized macroscopic
model with a term of energy that involves the presence of the second gradient of
the displacement (Auffray et al, 2015; dell’Isola et al, 2015a, 2012; Eugster and
dell’Isola, 2017, 2018a,b). The model resulting from the homogenization has the
following properties:

1. it consists of two infinite distributions of mutually orthogonal fibers, that are
linked in their intersecting points with the so-called pivots (see Fig.27.1);

2. the pivots behave as perfect hinges, i.e no energy is involved in their deforma-
tions;

3. when clamping the short sides of a rectangular sample, its deformation is due
to elongation and flexion of the fibers; in particular, the latter is modeled by a
second gradient energetic term.

From a mathematical point of view, the macroscopic model can be expressed as
a continuum elastic surface characterized by some second-order derivatives of the
displacement field. It is worth noticing that the considered plate is actually a second
gradient continuum however not all the second derivatives of displacement are
present, some of them miss. For this reason, the solution to the problem under

Fig. 27.4 Force-displacement
plot of a pantographic sheet
obtained by experiments (grey
solid line) and interpolation
(red dash-dotted line).
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Fig. 27.5 Real sample of
a pantographic sheet with
perfect pivots printed with
Polyamide and zoom of the
pivot.

study can be difficult to handle some times from a numerical viewpoint if the proper
precautions are not taken (Eremeyev et al, 2018; Pideri and Seppecher, 1997; Camar-
Eddine and Seppecher, 2003; Bouchitté et al, 2019; dell’Isola et al, 2016a; Eugster
et al, 2014, 2019).

Specifically, let us consider a rectangular sample in the reference configuration
given by the domain Ω =

[
0, L1

] × [
0, L2

] ⊂ R2 (see Fig. 27.1) where L1 and
L2 are the lengths of the sides of the rectangle which contains the pantographic
specimen) and assume that the motion is planar, thus the current configuration of Ω
is described by the macro-placement

χ : Ω → R2 (27.1)

According to dell’Isola et al (2016b), the continuum deformation energy U stored in
a pantographic fabric can be postulated as

U(χ(·)) =
∫
Ω

∑
α

Ke

2
(‖FDα‖ − 1)2 dΩ+

+

∫
Ω

∑
α

Kb

2

[∇F |Dα ⊗ Dα · ∇F |Dα ⊗ Dα

‖FDα‖2 −

−
(

FDα

‖FDα‖ · ∇F |Dα ⊗ Dα

‖FDα‖
)2]

dΩ

(27.2)

where F = ∇χ is the classical deformation gradient tensor, while Dα are the unit
vectors along the fibers in the reference configuration, α = {1, 2} being the index
representing the particular family of fibers. The material parameters Ke and Kb are
the elongation and bending stiffnesses, respectively. It should be noticed that in the
expression of the energy (27.2) are identifiable the elongation measure of the fibers
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εα = ‖FDα‖ − 1 (27.3)

in the two principal directions of fibers, and the curvature of them

κα =

√
∇F |Dα ⊗ Dα · ∇F |Dα ⊗ Dα

‖FDα‖2 −
(

FDα

‖FDα‖ · ∇F |Dα ⊗ Dα

‖FDα‖
)2

(27.4)

In the case that the interconnecting pivots are not perfect hinges, a further term must
be added into the energy. Deformable pivots realized as small cylinders, indeed, can
be considered alternately to the perfect hinges, and therefore they introduce a torsion
stored energy at micro-level which corresponds to a shear deformation at macro-
level of observation. Moreover, it could be also considered another term in the energy
that models the relative sliding between the two fiber layers in correspondence of
the interconnections. In this paper, the sliding effect is neglected, while it has been
experimentally observed and theoretically investigated in previous works (Spagnuolo
et al, 2017; Andreaus et al, 2018).

27.4 Conclusions and Future Perspectives

In this paper, we show that a particular mechanical system, namely the pantographic
sheet, is characterized by a constitutive behavior force-displacement that resembles
very closely to that of an electric diode concerning the voltage-current curve. From
this point of view, we can interpret the pantographic sheet, when the internal con-
nections are made of perfect pivots, as a mechanical diode. The presence of this
kind of connection, indeed, implies vanishing shear energy, at a macroscopic scale,
in the homogenized model responsible for an almost zero reaction force below a
particular threshold. Above that threshold, the terms of energy associated with the
elongation of the fibers become predominant and therefore the reaction force arises
significantly.

This kind of new material can be used in applications that need to provide a
reaction force above a certain threshold. This behavior can be useful in the field of
automotive, aerospace as a sort of suspension, bumpers, i.e. shock absorbers, as well
as in civil engineering for structural elements in earthquake-proof constructions.

The particular behavior of such a system can be employed in connection with
other materials to form composites with enhanced performance, for instance using
granular materials (Jia et al, 2017; Misra and Poorsolhjouy, 2017; Turco et al, 2019;
Eremeyev, 2018), laminate plates (Cazzani et al, 2018; Altenbach et al, 2015; Al-
tenbach and Eremeyev, 2008), micropolar materials (Pietraszkiewicz and Eremeyev,
2009; Altenbach and Eremeyev, 2009; Eremeyev and Pietraszkiewicz, 2016), multi-
physics materials (Abali and Zohdi, 2020; Abali and Queiruga, 2019; Abali and
Reich, 2018, 2017).
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As a future development, the behavior of the proposed pantographic structure can
be also investigated in the plastic regime and in case of damage (see, e.g., Placidi
and Barchiesi, 2018; Placidi et al, 2018b,a).

The pantographic sheet can be considered as a particular example of a second
gradient material, thus, like many metamaterials of new conception, it needs proper
numerical tools to handle in an efficient way the issues related to its formulation (see
for more details Cazzani et al, 2016; Luongo et al, 2008; Giorgio, 2016; Placidi et al,
2017; Greco et al, 2019b,a; Niiranen et al, 2019; Balobanov and Niiranen, 2018;
De Angelo et al, 2019).
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Chapter 28
Tailoring 3D Buckling and Post Contact in
Microlattice Metamaterials

Zacharias Vangelatos, Kyriakos Komvopoulos, and Costas P. Grigoropoulos

Abstract Mechanical metamaterials have been established as the paragons of en-
hanced mechanical performance, due to their properties inherited by their architected
microstructure. The rapid progress in additive manufacturing has enabled the fabri-
cation of complex geometries even at the microscale, with nanoscale features. For
the case of ultra-light, ultra-stiff mechanical metamaterials, the high stiffness and in-
creased energy dissipation is associated with the controlled buckling and subsequent
post contact of the lattice members. In addition, architected defects, scaled up in the
microscale, inspired by the structural defects in the crystal structure, have accom-
plished tailoring the plasticity mechanisms and localized deformation in a similar
manner as slip planes through dislocation motion and vacancies in bulk crystalline
materials. This chapter will focus on the design principles that must be addressed
to effectively fabricate novel geometries possessing these intrinsic properties. These
principles will be instantiated through the design of intertwined microlattices, in-
spired by crystal in-growth mechanisms, and architected 3D vacancies, inspired by
crystal defects. All of the structures were fabricated through multiphoton lithog-
raphy, the most suitable technique for fabrication of complex geometries at the
micrometer-nanometer length scale. Through finite element analysis and nanoinden-
tation experiments, we delineate how the mechanical behavior is manifested and can
be tailored.
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28.1 Introduction

The advances in additive manufacturing utilizing techniques such as multiphoton
lithography (MPL) (Sakellari et al, 2012) and numerical modeling (Yildizdag et al,
2018, 2019; Milton et al, 2017), has provided the inexorable progress in the de-
sign of architected mechanical metamaterials. Mechanical metamaterials possess
properties bestowed by their engineered structure. Indisputable paradigms are the
ultra-light, ultra-stiff metamaterials for extremely low weight and enhanced strength
(Bauer et al, 2015; dell’Isola et al, 2019b), plate structures for stiffness reaching
the theoretical limit of bulk materials (Berger et al, 2017), malleable structures for
tailored deformations (dell’Isola et al, 2019b; Barchiesi et al, 2018; dell’Isola et al,
2015, 2018, 2019a) and controlled wave propagation (Berezovski et al, 2018). More
specifically, microlattice structures are among the most studied architectures because
of their simple design and scalability. Post-processing techniques, such as plasma
etching, can provide hollow beams with tens of nanometers thickness with unique
scale effects (Meza et al, 2014). The reason behind the objective to achieve nanoscale
complex features is to imitate nature. Natural materials, through structural hierarchy
can exhibit enhanced strength and resilience to large deformations, even if the initial
bulk material is brittle (Gao et al, 2003). The primary mechanisms that must be fine-
tuned, are the controlled buckling of the lattice members (delI’Isola et al, 2016; Misra
et al, 2018), which will initiate large deformations and the subsequent post contact of
them (Virgin, 2018). The contact of the lattice members through friction will enhance
the energy dissipation and increase the stiffness and strength of the structure (Gib-
son and Ashby, 1999). Many different buckling and post contact mechanisms can
commence during the deformation, rendering their design characterization crucial
for a functional design (Giorgio et al, 2017; Vangelatos et al, 2019b).Furthermore,
another design principle that has provided remarkable mechanical performance is
the elevation of crystal structural defects. More specifically, by the tactical removal
of lattice members from specific unit cells, we can architect defected unit cells which
will localize the buckling and plasticity in the structure (Gross et al, 2019). It was
proven that when FCC and BCC unit cells deform in macroscale, they substantiate
mechanisms such as twin boundaries and slip planes with specific orientation, where
localized failure can be isolated (Pham et al, 2019). For the first case, the challenge
to imitate natural hierarchy is the constraint to create arbitrary complex features with
high resolution, restrained by Abbe’s diffraction limit (Vicidomini et al, 2018). Up to
this point, functional complex geometries with nanometer length scale features have
not been fabricated without post-processing techniques such as pyrolysis (Bauer et al,
2016). For the latter, there are myriad of possible orientations and designed defects
that can be potentially utilized, and thus far they have only been tacitly studied. In
this chapter we will present a novel approach to design hierarchically assembled unit
cells at the same length scale to alleviate the fabrication challenge. By intertwining
simple polyhedral structures, we create a complex unit cell with controlled buckling
behaviour (Vangelatos et al, 2019a). Moreover, we assemble neighboring unit cells
such that the lattice members of each one penetrate the others. Therefore, the buckled
lattice members will come into contact with a large number of internal members,
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enhancing the energy dissipation through friction and the intrinsic geometric stiff-
ness of the structures. This design principle is inspired by crystal twinning, where
the crystals form in such a way that they penetrate each other, enhancing the strain
hardening of the structure (Liang et al, 2015). The fundamental geometry is based on
the first stellation of rhombic dodecahedron (Cromwell, 1999). To validate the new
design, it is compared with one of the most thoroughly studied mechanical meta-
materials, the octet-truss (Bonatti and Mohr, 2017). Finite element analysis (FEA)
and nanoindentation experiments were performed to evaluate and measure the strain
hardening and stiffness of the structures. In the next section, we present how 3D
vacancies can be designed in octet truss unit cells to isolate large deformations at
specific positions of the structure on demand, controlling where the structure will
fail. Through nanoindentation experiments, we proved that test specimens designed
on the basis of this principle have higher energy dissipation compared to the unblem-
ished octet truss structures and lower buckling load (Vangelatos et al, 2019a). The
experimental results were ratified by comparison with eigenvalue buckling analysis.

28.2 Design of Intertwinned Microlattice Structures

To elucidate the principles of controlled buckling and post contact, a novel design
strategy was introduced. The design steps are delineated in Fig. 28.1 The fundamental
unit cell is the first stellation of a rhombic dodecahedron. This geometry belongs
to a vast group of 3D geometries, the stellation of regular polyhedral. Myriads of
different geometries can be employed by this design space, as the regular icosahedron
only can generate 472 stellated geometries (Shephard, 2000). The unit cells are
assembled utilizing octahedra with a height-to-base ratio of 1:2. To control the
buckling mechanism, the coalescence of the unit cells is organized such that the
edges of each octahedron penetrate the neighboring ones. Figures 28.1A and 28.1B
illustrate that the first stellation unit cell is comprised of three octahedra, rotated by
90◦ with respect to each other. To create a hierarchical structure, a second design
step must be introduced. Hence, two unit cells are amalgamated by sharing their
edges to form an intermediate structure (Fig. 28.1C). Following the same procedure
to the other vertical direction, a hyper unit cell is constructed (Fig. 28.1D). This
pattern can be utilized to form an array in the 2D space, and then expanded in the
third dimension to form a multi-block structure (Fig. 28.1E). This design strategy
can provide a substantial number of more plausible architected structures, regarding
the spatial orientation of the intertwined unit cells with respect to the adjacent ones.
The inspired in-grown mechanism of the lattice members can be produced by the
perpetual intertwining of hyper unit cells. SEM micrographs of the hyper unit cell,
with each octahedron colorized, are shown in Fig. 28.1F, and an SEM capture of a
three-layer specimen is presented in Fig. 28.1G.

For the case of stretching dominated structures, the equivalent elastic modulus
Ē and the equivalent yield strength σY of the structure are functions of the relative
density of the geometry as following (Ashby, 2005):
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Fig. 28.1 (Vangelatos et al, 2019a). Conceptual design of a new mechanical metamaterial. (A-D)
The conceptual process to design intertwined lattice structures, through the conglomeration of
regular polyhedra. (E) The expanded metamaterial structure consisting of three layers of four-unit
cell assemblies. (F) SEM micrograph of a fabricated unit cell. For improved legibility, each
octahedron is distinguished by a different color in the whole assembly. (G) SEM micrograph of a
fabricated three-layer hyper unit cell. Each subunit cell of the hyper unit cell is distinguished by a
different color. The novelty of the design is the increase in strength of each unit cell through the
mutual sharing of truss members between neighboring unit cells and the enhancement of strain
hardening by introducing a deformation mechanism in the interior of each hyper unit cell to tailor
the buckling behavior of the whole structure. Reprinted with permission from SAGE publishing.

Ē/E ∼= ρ̄ ,

σ̄Y /σY ∼= ρ̄ .
(28.1)

where E and σY are the elastic modulus and yield strength of the bulk material,
respectively. For the case of the octet truss, the relative density (defined as the volume
ratio of the structure to the corresponding bulk material) (Deshpande et al, 2001) is
given by,

ρ̄OT =
6π

√
2R2

L2
. (28.2)

The relative density ρ̄ can be used as a measure to compare the mechanical per-
formance of metamaterials with others. The first stellation consists of 12 beams of
length L and 24 beams of length equal to (

√
3/2)L. The volume of the bulk material

occupying the same space as the first stellation is equal to
√
2 L× √

2 L × L μm3.
Thus, the relative density of the first stellation ρ̄FS is is given by
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ρ̄OT =
(12 + 24

√
3/2)LπR2

2L3
= 6π(1 +

√
3)
R2

L2
. (28.3)

For the same parameters, ρ̄FS � 1.93ρ̄OT . This indicates that the space occupied
by the stiffer and stronger first stellation is two times larger than the octet truss.
However, a novelty of this design is the dramatic decrease of the space occupied
through unit cell intertwining. More specifically, if L = 10 μm the base area of the
hyper unit cell of 4 × 4 unit cells is 14.5 × 14.5 μm2, whereas the base area of an
octet truss are with the same number of unit cells has a base area of 40 × 40 μm2.
The deformed stellated geometries can facilitate the buckling of proximal beams,
accommodating large strains while the structural failure is limited. To evaluate the
efficiency of the structure, it was compared with one of the primordial and most
thoroughly studied mechanical metamaterials, the octet-truss. To study the buckling
mechanism on each structure, an eigenvalue buckling analysis was performed. For
the case of large deformations, the overall stiffness of the structure is the sum of the
elastic stiffness Ke and the initial stiffness Kσ . From the theory of elastic stability,
buckling initiates when the displacement is x �= 0, even though the product of the
stiffness with the displacement is equal to 0 (i.e. the force f = 0), which implies
that the stiffness matrix becomes semi positive definite, and instability commences.
Palpably, for the case that the stiffness matrix is a scalar, buckling is initiated when
the slope in the force displacement curve becomes 0, a notion which can be expanded
in semi positive definiteness for higher degrees of freedom. Mathematically, this can
be expressed utilizing the following equation (Krenk, 2009).

[λKσ[σo] +Ke]x = f = 0 . (28.4)

Since the vector x cannot be zero, Eq. (28.4) represents an eigenvalue-eigenvector
problem. Therefore, the following eigenvalue equation must be solved

det[K−1
σ [σo]Ke + λI] = 0 . (28.5)

The physical interpretation of λ is that buckling occurs when the structure is loaded
with force of magnitude equal to λ times a unit compressive load. The ratio of the
load multipliers of the octet truss (OT) structure λOT to that of the first stellation
(FS) structure λFS , obtained from an eigenvalue buckling FEA, was calculated to
be λOT /λFS = −0.55. The reason for the negative sign is the negative load mul-
tiplier of the octet truss, indicating that buckling commences under tensile loading.
Therefore, the first stellation structure will have the proclivity to buckle at lower
loads compared to the octet truss. Hence, strain hardening, manifested by buckling
events at relatively high loads, will have a predilection in the first stellation hyper
unit cell. Furthermore, to investigate how buckling is evinced in the hyper unit cell,
an elastic-plastic (large deformation) FEA was also performed. Fig. 28.2 depicts the
plastic buckling of beams in one layer of the hyper unit cell deformed 40% in height.
The plastic beam bending will increase the structure stiffness, as the bended beams
will come in close proximity and simultaneously the plastic deformation will provide
strain hardening.
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Fig. 28.2 (Vangelatos et al, 2019a). FEA results of an elastic-plastically compressed single-layer
structure consisting of four first stellation unit cells. Compression by a distance of 4 μm promoted
beam buckling in two of the three octahedra of the unit cells, a mechanism observed with octet
truss structures at much larger deformations. The first stellation structure together with the specific
arrangement of the unit cells are responsible for the significant enhancement of the mechanical
behavior compared to the octet truss structure. Reprinted with permission from SAGE publishing.

To examine the validity of the simulation results, both of the structures, along
with the bulk material, were fabricated by MPL. The fabricated structures are shown
in Fig. 28.3A and 28.3B. To inquire the mechanical performance, nano-indentation
experiments were performed utilizing the Hysitron TI 950 triboindenter. This in-
dentation apparatus provides high precision, localized nano-mechanical testing with
measurement errors up to 10-6 μN. Each structure was compressed by a distance of
4.5 μm (15% height decrease) three consecutive times and each force-displacement
response is shown in Fig. 28.3C. Even though both structures demonstrated strain
hardening after each loading cycle, due to the increase in the energy dissipation of
each cycle, the first stellation structure has superior energy dissipation and strain
hardening. More specifically, the octet-truss structure had 67% percentage increase
in the energy dissipation, while the first stellation structure has 95%. Moreover, the
strain energy per unit volume ratio for both structures was 12.16, one order of magni-
tude higher for the case of the first stellation. In addition, the first stellation sustained
higher load before fracture and had a much steeper slope in the unloading section
(i.e. ratio 1.99), despite the 30% higher volume and 4 times more unit cells of the
octet truss structure. Furthermore, the residual strain (permanent height decrease)
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of the first stellation structure did not change significantly after the second loading
cycle compared to the octet truss structure, indicating more pronounced strain hard-
ening of the former structure. Finally, for the case of the bulk material the energy
increase was 30%. Therefore, it can be concluded that the tactical coalescence of the
lattice structures and the enhanced buckling mechanism and post contact, provided
approximately 3 times higher strain hardening than the bulk material. Hence, the
controlled assembly and spatial orientation of basic polyhedral structures can pro-
vide a new class of ultra-light, ultra-stiff mechanical metamaterials with enhanced
strain hardening behavior. Random foams can provide these mechanical effects,
because their random structure provides as massive number of fibre features con-
glomerated together (Ashby, 2005). Nevertheless, their inherent complexity renders
their fabrication and design process challenging, whereas lattice structures, utilizing
simple polyhedra, are easy to be fabricated, scalable and have a rigorous design
methodology to be designed and improved.

28.3 Design of of Architected Vacancies in Metamaterial
Structures

In this section we will introduce how to design three-dimensional (3D) metamaterial
architectures containing vacancies in their lattice structures, using as geometry of
reference the octet-truss structure. To facilitate localized buckling and plasticity in
the structures, specific lattice members must be selectively removed from unit cells
at locations of high deformation. Characteristic examples of the defected unit cells,
along with the original octet truss, are presented in Fig. 28.4. From the first design
(Fig. 28.4B) the internal octahedron is removed, while for the second design (Fig.
28.4C) the lattice members of two faces and the internal octahedron were removed
by a set of two unit cells. The octet-truss is a convenient structure to examine
this principle, as it consists of two parts. A regular octahedron at the core of the
geometry and two lattice members forming an “X” on each face. Therefore, the
lattice members can be removed from these two geometric groups, transcending the
structure from stretching to bending dominated or even a hybrid design. As bending
dominated structures sustain larger deformations and have higher energy dissipation,
they can be positioned of locations of higher deformation in the structure to enhance
their effects, while stretching dominated unit cells may be positioned in locations
where high resilience to large deformations and high strength are required (i.e. stress
concentration areas) (Khakalo et al, 2018).

Characteristic designs of octet truss arrays, including the distorted unit cells,
defined as D1, D2, D3, and D4 respectively, are shown in Fig. 28.5. As it has
been proven that these structures sustain failure in orientations that resemble slip
planes for dislocation motion, the architected vacancies were positioned in a sloped
arrangement in the structure. This non-orthonormal planar orientation is expected to
sustain excessive shear stress during compression. The hollow unit cell shown in Fig.



478 Vangelatos, Komvopoulos, Grigoropoulos

Fig. 28.3 (Vangelatos et al, 2019a). (A) SEM micrograph of the first stellation structure fabricated
by MPL. (B) SEM micrograph of the octet truss structure. (C) Force-displacement responses of
first stellation and octet truss structures. The three sequential load/unload cycles of each structure
reveal a more significant increase in stiffness, strength, and strain hardening of the first stellation
(FS) structure than the octet truss (OT) structure, despite the 30% higher volume and 4 times more
unit cells of the octet truss structure. Reprinted with permission from SAGE publishing.

28.4B was used for the structures D1, D3, and D4, whereas the unit cell presented
in Fig. 28.1C was employed to architect the D2 structure.

All of the structures were fabricated utilizing MPL, as in the previous section.
Characteristic samples, such as the octet-truss and D4 are presented Fig. 28.6A
and 28.6B. The height of the unit cells is 10 μm and the thickness of the lattice
members is 0.5 μm. It must be noted that this design procedure is advantageous for
the fabrication process, as it becomes faster and the non-polymerized material can
be dissolved easier, as the structure has more voids).
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Fig. 28.4 (Vangelatos et al, 2019a). The unit cells used to design the metamaterial structures of this
study. (A) The original octet-truss unit cell (scale bar = 10 μm). (B) A design consisting of two
octet-truss unit cells where the lattice members of the top and bottom half of the two unit cells have
been removed to increase the instability of the whole assembly (scale bar = 10 μm). (C) A design in
which the internal octahedron of the octet-truss structure has been removed (scale bar = 5 μm).
Reprinted with permission from SAGE publishing.

Fig. 28.5 The 5 × 5 × 4 array of unit cells used in each metamaterial structure: (A) octet-truss
structure, (B) D1 structure, (C) D2 structure, (D) D3 structure, and (E) D4 structure. Even though
the D1, D3, and D4 structures have the same 3D vacancy, the edges contacting the neighboring unit
cells are aligned differently. The scale bar in each figure is 20 μm.

To validate the mechanical performance of the fabricated structures, quasi-static
nanoindentation experiments were performed. The force-displacement curves after
one loading cycle for each structure are presented in Fig. 28.7. For all of the structures
with the vacancies, the maximum load is much higher for the same maximum
deformation reached and the energy dissipation has been increased substantially. To
provide the performance metrics, for each new design the energy dissipation ratio,
with respect to the original octet truss structure, u/uOT is equal to 2.35, 1.35, 1.24
and 1.61. Notably, for the design D1 the energy dissipation is two times larger than
the original structures, a corollary of the localized buckling in the designated unit
cells.
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Fig. 28.6 (A) Isometric view of an octet-truss structure with 5× 5× 4 unit cells and (B) isometric
view the structure D4, comprised of the same number of unit cells.

Fig. 28.7 (Vangelatos et al, 2019a). Indentation force versus displacement response of the various
metamaterial structures. Reprinted with permission from SAGE publishing.

A possible explanation why D1 has higher energy dissipation than the rest of the
structures is that it is comprised of fewer vacancies than the D2 and D3 and the
fact that the array of vacancies must converge to the maximum shearing direction
encountered during compression than any other structure. However, the D3 and D4
structures have vacancy architected unit cells at the top and the bottom of their
respective structure. Therefore, the unit cell array with vacancies in the D1 structure
has higher resilience to large deformation, as the neighboring unit cells function as
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escutcheons, protecting the vacancies from fracture while localized buckling occurs.
This parameter ameliorates the mechanical response of this structure compared
to the others. In addition, eigenvalue buckling FEA analysis provided an insight at
which load buckling will commence for each structure, an indicator of localized large
deformation. For each geometry, the load multiplier was calculated utilizing equation
(28.2). The values of the load multiplier λ of each structure were normalized with
respect to the load multiplier of the octet-truss structure. The ratios for each design
were calculated equal to 0.780, 0.377, 0.698 and 0.782, respectively. The substantially
smaller buckling load for the case of D1–D4 structures than that of the octet-truss
designate for the case of the defected structures, buckling commenced earlier than
the octet-truss. This is the evidence that the goal of tailoring localized buckling in the
designed structures was achieved. A potential cause for the lowest load multiplier of
the D2 structure is that its unit cell at the boundary edge of the structure is the least
supported, with the smallest number of lattice members. Since this unit cell is not
augmented by any bordering unit cells, it has higher predilection for buckling. The
localized buckling in the sloped arrays of the structures can be observed in the large
deformation FEA of Fig. 28.8. The localized buckling, attributed to the designed
vacancies, is not observed in the original octet-truss array (Fig. 28.8A).

Fig. 28.8 Quasi-static FEA simulation results of compressed structures. Side view of (A)
octet-truss, (B) D1, (C) D2, (D) D3, and (E) D4 metamaterial structures. The scale bar is 20 μm.

28.4 Conclusion

In this chapter we demonstrated two design paradigms to create arbitrary mechanical
metamaterial lattice structures. By either assembling regular polyhedral structures
to form a more complicated geometry or removing members of an already existing
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structure, we enhanced the energy dissipation and the strain hardening of the final
design. The principal mechanisms that must be controlled are the localized buckling
of the lattice members and their subsequent post contact. Through simulations,
fabrication and indentation experiments, the validity of these design concepts was
proven. This research paves the way for the expansion of the design space of ultra-
light metamaterial structures. It also illuminated the importance of optimization
techniques (Chen et al, 2018; Gu et al, 2018) to determine the optimum intertwining
and the optimum aphaeresis of lattice members from a structure. This field is still
incipient. Nevertheless, its advance can lead more efficient architected geometries
that can be utilized for engineering applications.
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