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Preface

Metamaterial Physics Deserves a Nobel Prize

During the release of 2019 Nobel Prize in Physics, I was finalizing the book. This
reminds me to think about an interesting (or tongue-in-cheek) problem in order to
attract the reader: Does metamaterial physics deserve to be issued a Nobel prize?
Absolutely, my answer is “YES”. See Fig. 1. Since the seminal article by
V. G. Veselago (June 13, 1929—September 15, 2018) in 1968 and especially the
two other seminal articles by J. B. Pendry and coauthors in 1996 and 1999, the field
of metamaterial physics has grown vigorously until today. With the aid of the

Fig. 1 A large number of novel physics and applications have arisen from metamaterials with
artificial structures for wave systems and diffusion systems since 1968 and 2008, respectively.
Both waves and diffusion are two important methods for transferring energy. See also Appendix:
Brief History of the First Ten Years of Thermal Metamaterials
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concept of metamaterial, many fundamental physics have been discovered in var-
ious branches of physics, ranging from optics/electromagnetics to elasticity/
acoustics/mechanics/��� for wave systems, and from thermotics to particle dynamics
for diffusion systems. As a result, various kinds of metamaterials were theoretically
designed and experimentally fabricated in such branches. This book focuses on the
branch of thermotics, namely, thermal metamaterials. The phrase “thermal meta-
material” was first adopted in Ref. [1] to name thermal cloaks (shields) and relevant
devices designed by using transformation thermotics for heat conduction (diffusion)
studied in the five references [2–6]. Owing to the existence of three ways of heat
transfer (i.e., conduction, convection, and radiation), nowadays the connotation of
“thermal metamaterial” has naturally been extended to include metamaterials for
controlling heat convection and radiation. Incidentally, in this book, thermal
metamaterials also contain some thermal metadevices (whose novel functions are
realized mainly because of specific geometric structures), to comply with the
common usage in the literature.

Thermal Metamaterial: Past, Present, and Future

In 2008, my group and Chen’s group predicted the concept of novel thermal phe-
nomena including thermal cloaking one after another [2, 3]. At the early stage
(loosely speaking, before 2014) of thermal metamaterials, many experiments have
been conducted to demonstrate the phenomenon of thermal cloaking under various
conditions, see Refs. [5–9]. Accordingly, this field received plenty of popular
attention [10–12] (see also https://www.sciencemag.org/news/2012/05/heat-trickery-
paves-way-thermal-computers). These impacts attracted me to come back to the field
of thermal metamaterials. Since the end of 2014, my group has completely returned to
this field. So far, we have published dozens of articles.

Thermal metamaterials mean those materials or devices with artificial structures
that can be used to control heat conduction, convection, and radiation in novel
manners. In this case, geometric structure (rather than physical property) plays a
dominating role. This fact makes thermal metamaterials different from other
materials including thermoelectric materials, pyroelectric materials, magnetocaloric
materials, and photothermal conversion materials; for the latter, physical property
(rather than geometric structure) plays a dominating role instead. For a brief history
of the first 10 years (2008–2018) for thermal metamaterials, I would refer the reader
to the Appendix at the end of this book, which is a celebration article I was invited
to write.

So far, thermal metamaterials have aroused enormous research interests, as also
evidenced by Google search that shows the search of “thermal metamaterials”
occupies 29.6% of all kinds of “metamaterials” as of August 13, 2019.

To celebrate the fruitful progress of thermal metamaterials and to prepare for the
future challenges, I launched and chaired a National Conference on
Thermodynamics and Thermal Metamaterials on July 18–19, 2019, in Fudan
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University, Shanghai, China. About 40 participants attended the first national
conference, see Fig. 2. Due to the success of this national conference, I plan to not
only continue the holding of the national conference, but also launch an interna-
tional conference on the same topic starting from 2020.

Useful Theoretical Physics and Useful Theoretical Thermotics

To design thermal metamaterials in the literature, analytic theories have been
extensively developed with a special focus on transformation thermotics. In this
book, I would prefer to call the transformation thermotics and its extended theories
together as “theoretical thermotics”, with an attempt to contribute them to the
discipline of “theoretical physics (statistical physics)” that is developing very well
in China due to the efforts of many good researchers. This name could also remind
the colleagues and latecomers to figure out the microscopic mechanisms for “the-
oretical thermotics” (that, after all, mainly describes macroscopic thermal theories
for the time being), rather than to satisfy with the existing macroscopic theories; in
this direction, Chap. 8 already gives a good example. Consequently, the name
“theoretical thermotics” looks more suitable than other candidates like “structural
thermotics” or “artificial thermotics” (the latter have been kindly suggested to me
by some friends of mine).

In a word, theoretical thermotics describes the theory of transformation ther-
motics and its extended theories for the active control of macroscopic thermal
properties of artificial systems, namely, metamaterials with artificial structures.
Thus, theoretical thermotics is in sharp contrast to classical thermodynamics, which

Fig. 2 Group photo: 2019 National Conference on Thermodynamics and Thermal Metamaterials,
held on July 18–19, 2019, in Fudan University, Shanghai, China
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mainly comprises the four thermodynamic laws with a particular emphasis on the
passive description of macroscopic thermal properties of natural systems.
Incidentally, because the transformation method in transformation thermotics and
theoretical thermotics is not intended to transform (or actually cannot transform) the
four thermodynamic laws in thermodynamics, for the sake of clarity I choose the
wording “thermotics” instead of “thermodynamics” for naming transformation
thermotics or theoretical thermotics.

Clearly, theoretical thermotics can help to design thermal metamaterials, which are
further useful for engineering techniques and applications [13], say, for designing
standard printed circuit board [14, 15], daytime radiative cooling [16], and so on. This
book focuses on fundamental theories, rather than engineering techniques and appli-
cations, and it introduces 18 theories including 7 general theories and 11 special
theories.
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Chapter 1
Introduction

Abstract Classical thermodynamics pays a special attention to the passive descrip-
tion of macroscopic heat phenomena of natural systems with the theoretical frame-
work of the four thermodynamic laws. In contrast, theoretical thermotics, introduced
in this book, allows one to achieve the active control of macroscopic heat phenomena
of artificial systems with the theoretical framework of transformation thermotics and
extended theories. As a result, thermal metamaterials can be theoretically designed
at will, which have abundant application values. Thus, a hot field comes to appear.

Keywords Thermodynamics · Theoretical thermotics · Passive description ·
Active control · Transformation thermotics · Thermal metamaterials

1.1 Thermodynamics Versus Theoretical Thermotics

1.1.1 Thermodynamics Concentrating on a Passive
Description of Macroscopic Heat Phenomena of
Natural Systems

The framework of thermodynamics is composed of the four laws of thermodynamics.
Let us take the second law of thermodynamics as an example, which states “the
total entropy of an isolated system can never decrease over time”. The statement
indicates an intrinsic property of isolated systems, and this property can not be
changed by humans at all. Thus, we would say that classical thermodynamics pays
a special attention on the passive description of macroscopic heat phenomena of
natural systems.
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2 1 Introduction

1.1.2 Theoretical Thermotics Concentrating on an Active
Control of Macroscopic Heat Phenomena of Artificial
Systems

The above-mentioned passive description of macroscopic heat phenomena means
that humans can not break the four laws, but only obey them. In this regard, if one
can control heat flow at will, this control would be definitely useful for human life.
This is just the goal of theoretical thermotics. Certainly, the four laws of thermo-
dynamics also work for theoretical thermotics, but we try to establish and develop
different kinds of theories to manipulate and control the flow of heat purposefully.
Consequently, we achieve the active control of macroscopic heat phenomena of arti-
ficial systems.

1.2 Two Features of Theoretical Thermotics

1.2.1 Theoretical Framework: Transformation Thermotics
and Extended Theories

In theoretical framework, we establish and develop the theory of transformation
thermotics and its extended theories (all are analytical theories). Such theories allow
us to design artificial systemsor structures (thermalmetamaterials), in order to control
heat transfer arbitrarily.

1.2.2 Application Value: Design Thermal Metamaterials for
Macroscopic Heat-Flow Control

Thermal metamaterials pave a new way to control the transfer of heat (conduction,
convection, and radiation). For the sake of comprehensiveness, below we present
more relevant backgrounds and details according to Ref. [1].

With the advent of energy crisis, energy sources like coal, oil and natural gas are
becoming less and less. However, more and more low-grade heat energy is produced
and wasted due to various reasons including inefficient utilization. Therefore, how
to efficiently control the flow of heat energy becomes particularly important.

Heat transfer at microscopic scale has been deeply explored by many scholars,
such as Refs. [2–8], which have helped to develop the field significantly. For the
existing research at microscopic scale, a delicate review has been made by [5]. In
contrast, the topic of this chapter and this book is mainly on theories and experiments
for controlling heat transfer at macroscopic scale. Certainly, traditional Fourier’s law
(bridging heat flux and temperature gradient in a material), established by Joseph
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Fourier in his treatise “Théorie analytique de la chaleur” (1822), can be seen as
the first quantitative theory for studying heat conduction at macroscopic scale.
After 1822, about two hundred years have witnessed much more developments,
such as, applying effective medium theories from optics/electromagnetics [9, 10]
to thermotics due to the mathematical similarity between dielectric permittivities
and thermal conductivities. Such theories have been reviewed by many researchers
including [11, 12]. Meanwhile, many other macroscopic methods have also been
proposed to study heat transfer, such as phonon hydrodynamics models [13, 14],
the dual-phase-lag model [15, 16], the ballistic-diffusive model [17, 18], and so on.
Such methods can be referred to a comprehensive review by Guo and Wang [19].

Starting from ten years ago, researchers started to develop new theories for con-
trolling macroscopic heat transfer again. Reference [20] first introduced the theory
of coordinate transformation from optics/electromagnetics [21, 22] to thermotics
(steady-state heat conduction), and predicted the concept of “thermal cloak”, which
helps to guide the flow of heat around an object as if the object does not exist.
Such a thermal cloak has potential applications in thermal protection, misleading
infrared detection, and heat preservation/dissipation. As a result, a new direction
forms, which is called “transformation thermotics” (or equivalently “transformation
thermodynamics” as occasionally used by some other researchers) in the literature.

With the establishment of transformation thermotics and extended theories,
there comes a research upsurge of achieving novel thermal transport phenomena
via designing artificial structures or devices. The theoretical proposals of thermal
cloaks [20, 23–27] have further motivated experimental demonstrations [28–32] and
popular attention [33–35] (see also http://www.sciencemag.org/news/2012/05/heat-
trickery-paves-way-thermal-computers). In this book, we call transformation ther-
motics and extended theories as theoretical thermotics, which has been explained in
Part III of Preface.

The so-called “thermal metamaterial” was first adopted by [36] to name ther-
mal cloaks (shields) and relevant devices designed by using transformation ther-
motics in the five references [20, 23, 26, 28, 29], thus causing the formation of
the direction of thermal metamaterials. Incidentally, the phrase “thermal metama-
terial” was originally used for thermal conduction only [36], but its connotation
has been significantly extended afterwards. So far, thermal metamaterials also cover
those artificial structural materials for controlling thermal convection [37–39] and
radiation [40–43] with novel properties. Nowadays, as defined by [44], “thermal
metamaterials are materials composed of engineered, microscopic structures that
exhibit unique thermal performance characteristics based primarily on their physical
structures and patterning, rather than just their chemical composition or bulkmaterial
properties”.

In our eyes, the existing materials for macroscopic heat control can be generally
classified into two types. One is based on physical properties, such as thermoelectric
materials, pyroelectric materials, magnetocaloric materials, photo thermal conver-
sion materials, etc. The other is based upon geometric structures rather than physical
properties (namely, geometric structures play a more important role than materials’
physical properties). Among geometric structures, (normal) structural materials can
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be used to realize normal control of heat flow, but thermal metamaterials can be uti-
lized to achieve novel controls. So far, the field of thermal metamaterials has aroused
enormous research interests, as also evidenced by Google search that shows the
search of “thermal metamaterials” occupies 29.6% of all kinds of “metamaterials”
as of August 13, 2019.
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Chapter 2
Transformation Thermotics for Thermal
Conduction

Abstract This chapter describes the theory of transformation thermotics for thermal
conduction. We begin with the relationship between coordinate transformation and
geometric transformation and then give some basic tools of tensor analysis. Based on
Fourier’s law for heat conduction, we show how the form-invariance of an equation
under arbitrary coordinate transformation can result in a new technique tomanipulate
temperature field and heat flux. As a model application, we design a thermal cloak
to show how transformation thermotics works.

Keywords Transformation thermotics · Coordinate transformation · Geometric
transformation · Form invariance · Heat conduction

2.1 Opening Remarks

“Transformation thermotics is based on the form-invariance of the governing equa-
tions of heat transfer under coordinate transformations. It engineers thermal proper-
ties of materials like thermal conductivity, to modulate the heat flux in novel manners
like cloaking, concentrating and rotating.”

We can find similar descriptions about transformation thermotics [1, 2] in the
literature today. If one is not familiar with transformation theory on thermotics,
optics or acoustics, he/she might be puzzled by some concepts like “form-invariance
under coordinate transformations” and why this invariance can be used for heat
management. Here, we shall firstly talk about the motivation of transforming theory
and introduce some basic concepts.

Suppose light is traveling on a uniform plane and the trace of movement is a
straight line. Now one wants to let the light move on a curve, a simple idea is just to
bend the plane and then he/she may expect the light is bent accordingly. However, is
this enough and how to bend the space like bending a paper? Luckily, we have been
told in general relativity that the change of energy-momentum tensor can bend the
space so we can have a more general guess here that if one wants to manipulate some
physical fields as if the space is changed, he/she can change some important properties
of the space or the material on it, for example, the thermal conductivity tensor.

© Springer Nature Singapore Pte Ltd. 2020
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10 2 Transformation Thermotics for Thermal Conduction

Fig. 2.1 Schematic diagram showing how transformationworks, a is the original coordinate system
shown by black uniform grids, and the blue arrow represents a straight physical field, b is the new
coordinate system shown by uneven grids, which can also be seen as a twisted space so the blue
arrow is curved

Now one may ask: “Where is the coordinate transformation? You seem be talking
about geometric transformation when mentioning bending the light. What’s more,
why can this ideawork for heat transfer?” To answer these questions, we should intro-
duce transformation theory which tells how to change space or material properties
based on coordinate transformation to achieve the desired effect as the fields change
under geometric transformation; see Fig. 2.1. Also, we shall discuss the condition
when transformation theory is valid.

2.2 Coordinate Transformation and Geometric
Transformation

Let us start from the relationship between coordinate transformation and geometric
transformation. For clarity, we have to talk about some basic knowledge on tensor
analysis. Using Cartesian coordinate system in three-dimensional Euclidean space
E
3, a vector r with coordinates (x, y, z) can be written as

r = x i + y j + zk (2.1)

where {i, j , k} is the standard orthogonal basis of Cartesian coordinate system.
Consider a mapping f : E3 → E

3, satisfying

f (r) = (2x)i + (2y) j + (2z)k. (2.2)

It can be easily checked that f is a bijection or one-to-one correspondence on E
3.

The meaning of f is that the length of each vector doubles in E3 while the direction
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keeps unchanged. For a unit-ball in E3, its volume becomes 8 times under f . This is
a simple example of geometric transformation, which changes the vector r .

Naturally, we have another bijection f̂ : R3 → R
3, satisfying

f̂ ((x, y, z)) = (2x, 2y, 2z). (2.3)

If we use a new set of basis {gu, gv, gw} = {i/2, j/2, k/2}, we can see f̂ just
gives the new coordinates under this basis,

(x, y, z) · (i, j , k)′ = f̂ ((x, y, z)) · (gu, gv, gw)′. (2.4)

Here we should point out that a set of vectors {gu, gv, gw} can be a basis in E3 if
and only if they are linearly unrelated (the 3 vectors are not in the same plane). In
other words, orthogonality and normality are unnecessary. {gu, gv, gw} is also called
covariant basis. In tensor analysis, contravariant basis {gu, gv, gw} is another set of
vectors satisfying

gu · gv = δuv, (2.5)

where δuv is the Kronecker delta

δuv =
{
0 if u �= v,

1 if u = v.
(2.6)

It is obvious to see the existence of this contravariant basis andwemay decompose
the vector r as

r = xugu + xvgv + xwgw = xug
u + xvg

v + xwg
w, (2.7)

or by using Einstein summation convention, we can simplify it as

r = xugu = xug
u . (2.8)

Here {xu, xv, xw} is also known as contravariant components and {xu, xv, xw} is
called covariant components, which can be obtained by

xu = r · gu, xu = r · gu . (2.9)

In Cartesian coordinate systems, both covariant basis and contravariant basis are
{i, j , k}, so covariant and contravariant components are also the same.

To sum up, coordinate transformation means choosing a different basis while the
vector r itself is not changed. In fact, invariance under coordinate transformation is
a necessary condition for vectors.

So far, we can see geometric transformation and coordinate transformation are
two different concepts. However, it can be observed that the mapping f in geometric
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transformation andmapping f̂ in coordinate transformation have some relationships.
Mapping f can naturally induce mapping f̂ and vice versa. They both change the
coordinates (and thus length) of a vector: f changes the vector itself while f̂ changes
the measure of space instead. So, we can take f and f̂ as the same if we only care
about the mathematical forms of new coordinates after the mappings, although they
have different physical explanations indeed.

For most curvilinear coordinate systems, {gu, gv, gw} is not a set of constant
vectors and can vary with the elements in E3. Unless otherwise stated in this chapter,
indices u, v, w are used for general (curvilinear) coordinate systems while i, j, k for
Cartesian coordinate systems. For example, in spherical coordinate systems, we have
r = rgu + θgv + ϕgw where

gu = sin θ cosϕ i + sin θ sin ϕ j + cos θk,

gv = r(cos θ cosϕ i + cos θ sin ϕ j − sin θk),

gw = r sin θ(− sin ϕ i + cosϕ j).

(2.10)

In addition, we can see only gu is a unit vector. Here {gu, gv, gw} is also called
local covariant basis and we shall give the derivation for general cases below. Let
(xu, xv, xw) denote the coordinates for a vector in a curvilinear coordinate system
which has the relationship with Cartesian coordinates as

xu = xu(x, y, z),

xv = xv(x, y, z),

xw = xw(x, y, z).

(2.11)

To ensure (xu, xv, xw) can be a curvilinear coordinate, the map f̂ : (x, y, z) →
(xu, xv, xw) should be a smooth bijection, which is equivalent to the condition

det J =

∣∣∣∣∣∣∣∣∣∣∣∣

∂xu

∂x

∂xu

∂y

∂xu

∂z
∂xv

∂x

∂xv

∂y

∂xv

∂z
∂xw

∂x

∂xw

∂y

∂xw

∂z

∣∣∣∣∣∣∣∣∣∣∣∣
�= 0, det J−1 =

∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂xu
∂x

∂xv

∂x

∂xw

∂y

∂xu
∂y

∂xv

∂y

∂xw

∂z

∂xu
∂z

∂xv

∂z

∂xw

∣∣∣∣∣∣∣∣∣∣∣∣
�= 0, (2.12)

where J is the Jacobianmatrix (we use a different font to distinguish between tensors)
from coordinate (x, y, z) to (xu, xv, xw). Here, the domain (for (x, y, z)) and the
range (for (xu, xv, xw)) of f̂ are both R

3.
Since we want to obtain the local basis for vector r with coordinate (xu, xv, xw),

we write the line element for an infinitesimal displacement from r to r + dr ,

dr = ∂ r
∂xu

dxu + ∂ r
∂xv

dxv + ∂ r
∂xw

dxw. (2.13)
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On the other hand, for vector dr , its coordinate is set as (dxu, dxv, dxw), meaning

dr = gudx
u + gvdx

v + gwdx
w. (2.14)

So the local covariant basis is just

gu = ∂ r
∂xu

, gv = ∂ r
∂xv

, gw = ∂ r
∂xw

. (2.15)

It is clear that {gu, gv, gw} points out the directions in which (u, v, w) increases.
Finally we have

gu = ∂x

∂xu
i + ∂y

∂xu
j + ∂z

∂xu
k,

gv = ∂x

∂xv
i + ∂y

∂xv
j + ∂z

∂xv
k,

gw = ∂x

∂xw
i + ∂y

∂xw
j + ∂z

∂xw
k.

(2.16)

This is a very convenient choice of the basis and we can use other basis.With local
basis, we can introduce metric tensor G, whose covariant components are defined as

guv = gu · gv. (2.17)

Then we can use the form of tensor product ⊗ (the Cartesian product) as

G = guvg
u ⊗ gv. (2.18)

The determinant of
[
guv

]
is

g = ∣∣[guv

]∣∣ (2.19)

and it is a function with r or (xu, xv, xw). Since we can also write

G = guvgu ⊗ gv = guvgu ⊗ gv = gv
ug

u ⊗ gv, (2.20)

we obtain ∣∣[guv
]∣∣ = 1

g
,

∣∣[guv ]∣∣ = ∣∣[gv
u

]∣∣ = 1. (2.21)

Here what we want to emphasize is that the determinant of a rank-2 tensor is
different from the determinant of a matrix. In tensor analysis, the determinant of a
rank-2 tensor A is

det A = ∣∣[Au
v

]∣∣ = ∣∣[Av
u

]∣∣. (2.22)

For metric tensor G, we have

det G = 1, (2.23)
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and for any rank-2 tensor A, it is easy to prove

G · A = A · G = A. (2.24)

In this sense, G behaves as an identity rank-2 tensor.
The derivation for local basis mentioned above requires no specific properties

of Cartesian coordinate systems. As a result, we can directly write the relation-
ship between two curvilinear coordinates (x1, x2, x3), (x (1), x (2), x (3)) and their local
covariant bases {g1, g2, g3}, {g(1), g(2), g(3)},

g(u) = ∂xv

∂x (u)
gv, gu = ∂x (v)

∂xu
g(v). (2.25)

If we are concerned about how gu varies with r , we may resort to Christoffel
symbols of the second kind �vu

w ,

�w
vu = ∂gu

∂xv
· gw, (2.26)

which implies
∂gu

∂xv
= �w

vugw. (2.27)

One of the most useful conclusions for Christoffel symbols is

�v
vu = 1√

g

∂
√
g

∂xu
(2.28)

and the proof is left as an exercise (see Sect. 2.5).
In conclusion, we have introduced the transformation rules for the coordinates of

vectors under coordinate transformation and geometric transformation. One impor-
tant point is that the vector itself is invariant in different coordinate systems and so
is the tensor. In particular, vector is a class of rank-1 tensor. However, the covariant
and contravariant components of a tensor, which are coordinates for vectors, should
change with the choice of coordinate systems (local basis). What’s more, some fun-
damental operators on tensors should be taken into reconsideration. For example, the
gradient operator ∇ is defined as

∇ ≡ gu ∂

∂xu
(2.29)

and the divergence operator ∇· is defined as

∇· ≡ gu · ∂

∂xu
. (2.30)
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For any vector r , we can easily write

∇ · r = gu · ∂

∂xu
rvgv = ∂ru

∂xu
= ∇ur

u, (2.31)

where ∇u represents the covariant derivative, and we can find both gradient operator
and divergence operator are form-invariant under coordinate transformation.

2.3 Transforming Heat Conduction

In this section we are in a position to show how an equation will change under coor-
dinate transformation and we will take the heat conduction equation as an example.
Fourier’s law for heat conduction is

∂ρ(T )cp(T )T

∂t
− ∇ · [κ(T )∇T ] = 0, (2.32)

where ρ is the density, T is the temperature, cp is the specific heat, and t is the time.
Here κ(T ) is the thermal conductivity tensor, which, for the sake of generality, is a
function of T [3, 4]. When writing this equation, we donnot claim which coordinate
we use. The most important parameter here, κ(T ), is a rank-2 tensor and in the
Cartesian coordinate system it is

κ(T ) = κ i j (T )i ⊗ j = κi j (T )i ⊗ j , (2.33)

or in a more familiar form as matrix, it becomes

[
κ(T )

] =
⎡
⎣κ xx (T ) κ xy(T ) κ xz(T )

κ yx (T ) κ yy(T ) κ yz(T )

κ zx (T ) κ zy(T ) κ zz(T )

⎤
⎦. (2.34)

The term κ(T )∇T is the product of a tensor κ(T ) and a vector ∇T and it can be
written more strictly as an inner product,

κ(T ) · ∇T = κuv(T )gu ⊗ gv · gl ∂T

∂xl
. (2.35)

In the Cartesian coordinate system, Eq. (2.35) can be written as

⎡
⎣κ xx (T ) κ xy(T ) κ xz(T )

κ yx (T ) κ yy(T ) κ yz(T )

κ zx (T ) κ zy(T ) κ zz(T )

⎤
⎦

⎡
⎣∂x (T )

∂y(T )

∂z(T )

⎤
⎦. (2.36)
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Now, we may choose any curvilinear coordinate system and recall that gradient

is defined as ∇ ≡ gu ∂

∂xu
, thus yielding

∇ · [κ(T ) · ∇T ] = gw · ∂

∂xw

[
κuv(T )gu ⊗ gv · gl ∂T

∂xl

]

= gw · ∂

∂xw

[
κuv(T )gu

∂T

∂xv

]

= ∂κuv(T )

∂xu
∂T

∂xv
+ ∂2T

∂xu∂xv
κuv(T ) + gw · ∂gu

∂xw

[
κuv(T )

∂T

∂xv

]
= ∂u

[
κuv(T )∂vT

] + �w
wuκ

uv(T )∂vT

= ∂u
[
κuv(T )∂vT

] + 1√
g
(∂u

√
g)κuv(T )∂vT

= 1√
g
∂u

[√
gκuv(T )∂vT

]
.

(2.37)
Then we obtain

∂ρ(T )cp(T )T

∂t
− 1√

g
∂u

[√
gκuv(T )∂vT

] = 0. (2.38)

Since
√
g is independent of time, we can rewrite the heat conduction equation

Eq. (2.32) by using tensor components of any curvilinear coordinate system as

∂
√
gρ(T )cp(T )T

∂t
− ∂u

[√
gκuv(T )∂vT

] = 0. (2.39)

Now, we have proven the well-known form-invariance for tensor components of
heat conduction in different coordinate systems, or in other words, under coordinate
transformations. The only difference for different coordinate systems is the coeffi-
cient

√
g.

The next question is what this form-invariance can induce? Remember a coordi-
nate transformation can always be related with a geometric transformation so we can
see Eq. (2.39) as a result of geometric transformation. If we still use the Cartesian
coordinate system after the geometric transformation, we can write a transformed
conductivity tensor κ̃(T ) = κ̃ i j (T )i ⊗ j and its matrix is

[
κ̃(T )

] =
⎡
⎣κ̃ xx (T ) κ̃ xy(T ) κ̃ xz(T )

κ̃ yx (T ) κ̃ yy(T ) κ̃ yz(T )

κ̃ zx (T ) κ̃ zy(T ) κ̃ zz(T )

⎤
⎦ = [√

gκuv(T )
]
. (2.40)

In addition, for transient conduction, the product of density and specific heat is also
transformed as

ρ̃(T )c̃p(T ) = √
gρ(T )cp(T ). (2.41)
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To calculate the transformed physical properties, we should first know
√
g and tensor

component κuv for the curvilinear coordinate (xu, xv, xw). With Eqs. (2.12) and
(2.16), we have

gu,v = J−1
iu J

−1
iv = J−ᵀ

ui J
−1
iv , (2.42)

where J is again the Jacobian matrix for the geometric transformation or the related
coordinate transformation fromCartesian coordinate (x, y, z) to the curvilinear coor-
dinate (xu, xv, xw). Hence we obtain

√
g = 1

det J
. (2.43)

Similarly, according to the form-invariance of tensor under coordinate transforma-
tion, we have

κ(T ) = κuv(T )gu ⊗ gv = κ i j (T )i ⊗ j , (2.44)

thus leading to
κuv(T )J−1

iu J
−ᵀ
v j i ⊗ j = κ i j (T )i ⊗ j . (2.45)

This implies
κuv(T ) = Jiuκ i j (T )Jᵀ

v j . (2.46)

So, in the Cartesian coordinate system after the geometric transformation, if we
want to keep the formof Fourier’s law,we should have the transformation formaterial
as [3] [

κ̃(T )
] = J

[
κ(T )

]
Jᵀ

det J
, (2.47)

and

ρ̃(T )c̃p(T ) = ρ(T )cp(T )

det J
. (2.48)

Herewemust emphasize that Eqs. (2.47) and (2.48) are newmaterial parameters in
Cartesian coordinate system and of course they can be expressed in other coordinate
systems. Finally we can write the heat conduction equation in the space after an
inverse geometric transformation r → r ′:

ρ̃(r ′)C̃(r ′)
∂T ′(r ′)

∂t
− ∇′ · [

κ̃(r ′)∇′T ′(r ′)
] = 0. (2.49)

The nabla symbol ∇′ corresponds to the position vector r ′ in the transformed
space. In addition, the new temperature distribution T ′(r ′) = T (r(r ′)). Here we
neglect the parameter T ′ in density, specific heat and conductivity for simplicity of
notes. In fact, the T in Eqs. (2.47) and (2.48) is just T (r(r ′)) = T ′(r ′).

In fact, an equation is a combination of scalars, vectors, tensors and opera-
tors, which can all be seen as tensors and should be invariant under coordinate
transformation. As a result, an equation written without single tensor components
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is also invariant under coordinate transformation and this is consistent with a com-
mon sense that physical laws should not be influenced by the choice of different
coordinate systems. However, the equations written by tensor components are not
the same in different coordinate systems and sometimes even the form of equation
can be different. If the equation written by tensor components is form-invariant, the
transformation theory can be applied.

2.4 Application: Thermal Cloak

The most famous application of transformation theory is thermal cloaks. In transfor-
mation thermotics, obstacles inside a thermal cloak will not have any influence on
external thermal signals (temperature distributions or heat flux). For simplicity, now
we consider a two-dimensional mapping from (r, θ) to (r ′, θ ′) (see Fig. 2.2a),

r ′ = R1 + R2 − R1

R2
r,

θ ′ = θ.

(2.50)

If we take it as a geometric transformation, it turns the circle 0 < r < R2 into a
ring R1 < r ′ < R2 and the region r ′ < R1 is “missing”. The corresponding Jacobian
matrix in region R1 < r ′ < R2 is

J =
(
cos θ −r ′ sin θ

sin θ r ′ cos θ

) ⎛
⎝ R2 − R1

R2
0

0 1

⎞
⎠ (

cos θ sin θ

− sin θ

r

cos θ

r

)
. (2.51)

Fig. 2.2 Thermal cloak, a is the scheme of a thermal cloak and b is the temperature distribution
of the thermal cloak from numerical simulations
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If the original thermal conductivity is isotropic, the transformationmatrix in region
R1 < r ′ < R2 is

JJᵀ

det J
=

(
cos θ −r ′ sin θ

sin θ r ′ cos θ

)⎛
⎜⎝

r ′ − R1
r ′ 0

0
r ′

r ′ − R1

⎞
⎟⎠

(
cos θ −r ′ sin θ

sin θ r ′ cos θ

)ᵀ

=

⎛
⎜⎜⎝

r ′ − R1
r ′ cos2 θ + r ′

r ′ − R1
sin2 θ

r ′ − R1
r ′ sin θ cos θ − r ′

r ′ − R1
sin θ cos θ

r ′ − R1
r ′ sin θ cos θ − r ′

r ′ − R1
sin θ cos θ

r ′ − R1
r ′ sin2 θ + r ′

r ′ − R1
cos2 θ

⎞
⎟⎟⎠ .

(2.52)

Using the transformed thermal conductivity, finite-element simulation results of tem-
perature distribution in Fig. 2.2b show that the external temperature signals are not
disturbed since the isotherms are still straight and uniform. In addition, thermal
cloaks and other thermal metamaterial with novel functions such as concentrators
and rotators have been realized in experiments [5].

2.5 Exercises and Solutions

Exercises

1. Prove that Christoffel symbols �v
vu satisfy

�v
vu = 1√

g

∂
√
g

∂xu
. (2.53)

2. Prove transformation theory can be applied to the convection-diffusion equation

∂ρc

∂t
= ∇ · (D∇c) − ∇ · (sc) (2.54)

and give the transformation rule for diffusivity tensor D and velocity s.

3. Calculate the transformation matrix
JJᵀ

det J
for thermal concentrators (which mean

guiding heat flux into a central region without disturbing the external temperature
signals [5]):

r ′ = R1

R2
r as r < R2,

r ′ = R1 − R2

R3 − R2
R3 + R3 − R1

R3 − R2
r as R2 < r < R3.

(2.55)

Solutions

1. Proof : Since
g = ∣∣[guv

]∣∣, (2.56)
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it is easy to prove
√
g =

√∣∣[guv

]∣∣ = (
gu × gv

) · gw, (2.57)

which means
√
g is the volume of the parallelepiped whose edges are gu, gv, gw.

Then, according to Christoffel symbols �w
vu = ∂gu

∂xv · gw, we obtain (here i =
u, v, w)

∂
√
g

∂xi
=

(
gu × gv

) · gw

∂xi

=
(

∂gu

∂xi
× gv

)
· gw +

(
gu × ∂gv

∂xi

)
· gw + (

gu × gv

) · ∂gw

∂xi

= (
�k
uigk × gv

) · gw + (
gu × �k

vigk

) · gw + (
gu × gv

) · �k
wigk

= (
�u
uigu × gv

) · gw + (
gu × �v

vigv

) · gw + (
gu × gv

) · �w
wigw

= �
j
j i

[(
gu × gv

) · gw

]
= �

j
j i
√
g.

(2.58)

Finally we can complete the proof by taking j = v and i = u, and obtain

�v
vu = 1√

g

∂
√
g

∂xu
. (2.59)

2. Proof : First we note that the term D∇c can be strictly written as D · ∇c and we
have proven that

∇ · [D(c) · ∇c] = 1√
g
∂u

[√
gDuv∂vc

]
. (2.60)

Similarly, the term −∇ · (sc) under a geometric transformation is

−∇ · (sc) = −gw · ∂

∂xw
(suguc)

= −(
∂suc

∂xu
+ �w

wus
uc)

= −
[

∂suc

∂xu
+ 1√

g
(∂u

√
g)suc

]

= − 1√
g
∂u(

√
gsuc),

(2.61)

so the total equation is transformed as

∂
√
gρc

∂t
− ∂u(

√
gDuv∂vc) + ∂u(

√
gsuc) = 0. (2.62)
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Still we can obtain the transformed diffusivity matrix
[
D̃

]
[
D̃

] = J
[
D

]
Jᵀ

det J
. (2.63)

In addition, we have
s = sugu = si i, (2.64)

which implies that
suJ−1

iu i = si i . (2.65)

So the transformed velocity s̃ is

s̃ = Jᵀs
det J

. (2.66)

3. Solution: We note that this can be seen as a geometric transformation which
squeezes the region 0 < r < R2 to r ′ < R1 and then stretches the region R2 <

r < R3 to R1 < r ′ < R3. The physical field in r ′ < R1 should be enlarged (con-
centrated). In r ′ < R1 the Jacobian matrices are

J1 =
(

R1
R2

0
0 R1

R2

)
(2.67)

and
J1J

ᵀ
1

det J1
=

(
1 0
0 1

)
. (2.68)

In R1 < r ′ < R3, we have

J2 =
(
cos θ −r ′ sin θ

sin θ r ′ cos θ

) ( R3−R1
R3−R2

0
0 1

) (
cos θ sin θ

− sin θ
r

cos θ
r

)
. (2.69)

Denoting the transformation matrix in Cartesian coordinate system as

T2 = J2J
ᵀ
2

det J2
=

(
Txx Txy
Tyx Tyy

)
, (2.70)

finally we get

Txx = r ′ + R3
R2−R1
R3−R2

r ′ cos2 θ + r ′

r ′ + R3
R2−R1
R3−R2

sin2 θ,

Txy = Tyx = r ′ + R3
R2−R1
R3−R2

r ′ sin θ cos θ − r ′

r ′ + R3
R2−R1
R3−R2

sin θ cos θ,

Tyy = r ′ + R3
R2−R1
R3−R2

r ′ sin2 θ + r ′

r ′ + R3
R2−R1
R3−R2

cos2 θ.

(2.71)
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Chapter 3
Transformation Thermotics for Thermal
Conduction and Convection

Abstract In this chapter, we extend the theory of transformation thermotics for
thermal conduction described in Chap. 2 to the case of thermal convection. We adopt
a model of creeping flow in porous media where Darcy’s law is valid and heat flux
comes from both thermal conduction and convection. Here the transformation theory
is established on a set of equations governing the heat and mass transfer in porous
media. We investigate both the steady and transient cases and design a cloak, a
concentrator and a rotator for model applications.

Keywords Transformation thermotics · Thermal convection · Porous media ·
Darcy’s law

3.1 Opening Remarks

Besides thermal conduction and thermal radiation, thermal convection is another
basic formof heat transport. Thermal convection happens inmovingfluids and energy
is transferred due to both the movement of mass and the temperature gradient in
space. Since we must consider heat and mass transfer together, modulating heat flow
in thermal convection could be much more complicated than in thermal conduction.
In this chapter, we develop the transformation theory to treat thermal convection.

3.2 Transforming Thermal Convection: Steady Regime

First we consider the steady cases. The governing equation for heat transfer is

ρCp∇ · (vT ) = ∇ · (κ∇T ), (3.1)

which is the convection-diffusion equation. Here ρ, Cp, and κ are respectively the
density, specific heat at constant pressure, and thermal conductivity tensor of fluid
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materials. Also v is the velocity of fluids. Compared with conduction, the advection
term ρCp∇ · (vT ) is added.

In addition,we should consider the governing equations formass transfer,meaning
themovement of fluids. The state of the fluid is determined byNavier-Stokes equation
and the equation of continuity

(v · ∇)v = −1

ρ
∇ p + β

ρ
∇ · ∇v, (3.2)

∇ · v = 0. (3.3)

Here β denotes the dynamic viscosity and p denotes the pressure. For simplicity,
here we assume that the flow is laminar, Newtonian and the density doesn’t defend
on temperature.

Nowwemust deal with a set of coupled equations. The transformation theory can
apply tomore than one equation at the same time, such asMaxwell equations, if all the
equations can keep form invariant under coordinate transformation. Equation (3.1) or
the the convection-diffusion equation is proved satisfying such requirement (Exercise
2 of Chap. 2 is for transient equation and the conclusion can be directly applied to
steady-state equation), and Eq. (3.1) is transformed as

− ∂u(
√

gηuv∂vT ) + ρCp∂u(
√

gvuT ) = 0. (3.4)

Still we can obtain the transformed thermal conductivity matrix
[
κ′]

[
κ′] = J

[
κ

]
Jᵀ

det J
. (3.5)

In addition, we have
v = vugu = vi i (3.6)

which implies that
vuJ−1

iu i = vi i (3.7)

so the transformed velocity is

v′ = Jv
det J

. (3.8)

Another proof can be found in Refs. [1, 2], which resort to some techniques of
functional analysis.

Then, we can easily find that the equation of continuity can also be transformed
as

∂u(
√

gvu) = 0, (3.9)

which is consistent with Eq. (3.8).
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Unfortunately, the Navier-Stokes equation does not meet the requirement of form-
invariance [3]. Researchers [3] replace it with Darcy’s law in porous media, and
Darcy’s law is valid when the Reynolds number is small or the flow is creeping. Here
Darcy’s law reads

∇ p + β

k
v = 0, (3.10)

where k is the permeability. Taking Eq. (3.3) into Eq. (3.10) we have

∇ · ( k
β

∇ p) = 0, (3.11)

which has the same form as Fourier’s law, which are both diffusion equation, so the
form-invariance under coordinate transformation is obvious. We can directly write

the transformation rule for λ = k

β
as

[
λ′] = J

[
λ

]
Jᵀ

det J
. (3.12)

Without causing confusion, we neglect the symbol
[]

for matrix in the following.
Since a porous medium is a mixture of solid and fluid, Eq. (3.1) can be rewritten as

ρ f Cp, f (v · ∇T ) = ∇ · (κm∇T ). (3.13)

κm is the effective thermal conductivity of porous media and can be written as

κm = (1 − φ)κs + φκ f , (3.14)

by the volume-averaging method. Here φ denotes the porosity and κ f and κs are
the thermal conductivity of fluid and solid respectively. Since it’s difficult to directly
engineer the properties of fluid, we only transform the solid materials and finally we
have the following rules (in the following part we don’t distinguish rank-2 tensor
and matrix in Cartesian coordinate system) [4]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

κ′
m = JκmJᵀ

det J
κ′

f = κ f

κ′
s = κ′

m − φκ f

1 − φ
.

(3.15)

We should point out that the transformation of velocity is automatically reached if
we transform λ.
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(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

Fig. 3.1 Simulation results (temperature, velocity and heat flux distributions) of cloaks and
concentrators for steady thermal convection. Adapted from Ref. [4]

In Fig. 3.1, we show the simulation results for some basic applications of steady
transforming thermal convection [4]. This figure illustrates the temperature, velocity
and heat flux distributions of thermal cloak and thermal concentrator. In (a1–a3), we
plot the isotherms by using white lines. In (b1–b3), the color represents the speed
and the black arrows show the direction of velocity. Similarly, in (c1–c3), the color
denotes the volume of heat flux and the black arrows show the direction. We can see,
for example, a cloak for thermal convection actually makes it impossible to judge
if there is an object inside the cloak from detecting the external thermal or velocity
filed. Essentially, it is a bi-functional cloak with the functions of thermal cloaking
and hydrodynamic cloaking.
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3.3 Transforming Thermal Convection: Transient Regime

Now we consider the cases when the temperature, velocity and density all vary with
time. Firstly, the equation of continuity Eq. (3.3) can be rewritten as

∂(φρ f )

∂t
+ ∇ · (ρ f �v) = 0, (3.16)

where ρ f denotes the density of the fluid material. Then Eq. (3.13) is given by

∂(ρmCp,m)T

∂t
+ ∇ · (ρ f Cp, f vT

) = ∇ · (κm∇T ) , (3.17)

where
ρmCp,m = (1 − φ)

(
ρsCp,s

) + φ
(
ρ f Cp, f

)
(3.18)

and ρmCp,m is the product of the density and specific heat of the porous media while
ρsCp,s and ρ f Cp, f denote the counterpart of solid and fluid, respectively. Combining
Eqs. (3.16) and (3.17) we have

(ρmCp,m)
∂T

∂t
+ ρ f Cp, f (v · ∇T ) = ∇ · (κm∇T ) . (3.19)

It is easy to find the transformation rules for conductivity and λ [5]

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

κ′
m = JκmJᵀ

det J
κ′

f = κ f

κ′
s = κ′

m − φ′κ f

1 − φ′

λ′
m = JλmJᵀ

det J

. (3.20)

Here φ is also transformed indicated from Eq. (3.16) since ρ f is kept unchanged,
and with Eq. (3.19) we have [5]

{
φ′ = φ

detJ(
ρmCp,m

)′ = 1
det JρmCp,m

. (3.21)

Finally we have [5] {(
ρ f Cp, f

)′ = ρ f Cp, f(
ρsCp,s

)′ = 1−φ
det J−φ

ρsCp,s
. (3.22)
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Finally we talk about the transient version of Darcy’s law. In most cases, the relax-
ation process is very fast in porous media so we can still use Eq. (3.10). Also, the
afore-mentioned discussion indicates the validity of Eq. (3.8). The main difference
between steady and transient regimes is that both the porosity and the product of
density and specific heat of solid should be transformed in transient cases, which
makesmodulating thermal convectionmore complicated. In addition, for both steady
and transient regimes, we focus on forced convection. When considering natural or
mixed convection, we must consider the effect of gravity and it should be difficult
to apply the transformation theory strictly because gravity acceleration is hard to be
manipulated [5].

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

(d1) (d2) (d3) (d4)

Fig. 3.2 Simulation results (temperature distributions) of cloaks, concentrators and rotators for
transient thermal convection. Adapted from Ref. [5]
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In Figs. 3.2, 3.3 and 3.4, we also show the simulation results for some applications
of transient transformation convection [5]. We design a thermal cloak, concentrator
and rotator. Figure3.2 shows the temperature distributions varying with time while
Figs. 3.3 and 3.4 show the velocity and heat flux distributions, respectively. Again
we can see the devices can work as thermal and hydrodynamic cloaks, concentrators,
or rotators.

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

(d1) (d2) (d3) (d4)

Fig. 3.3 Simulation results (velocity distribution) of cloaks, concentrators and rotators for transient
thermal convection. Adapted from Ref. [5]
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

(d1) (d2) (d3) (d4)

Fig. 3.4 Simulation results (heat flux distribution) of cloaks, concentrators and rotators for transient
thermal convection. Adapted from Ref. [5]

3.4 Exercises and Solutions

Exercises

1. Calculate the transformation matrix for thermal rotators:
{

θ′ = θ + θ0, r < R1

θ′ = ar + b, R1 < r < R2
, (3.23)

where a = θ0
R1−R2

, b = θ + R2
R2−R1

θ0 and R1 < r < R2.

2. What is the form of Darcy’s law when considering gravity in natural convection?
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Solutions

1. Solution: For region r < R1, the Jacobian matrix is expressed as

J1 =
(
cos θ0 − sin θ0
sin θ0 cos θ0

)
(3.24)

by which we can expect the velocity and heat flux to be rotated by an angle of θ0.
We have an identity transformation matrix as

J1J
ᵀ
1

det J1
=

(
1 0
0 1

)
, (3.25)

so in this region we don’t need to do any transformation. For region R1 < r < R2,

we can also obtain a unitary Jacobian matrix as

J2 =
(
cos θ′ −r sin θ′
sin θ′ r cos θ′

)(
1 0
a 1

) (
cos θ sin θ

− sin θ
r

cos θ
r

)
. (3.26)

Then the transformation matrix in Cartesian coordinate system is

J2J
ᵀ
2

det J2
=

(
cos θ′ −r sin θ′
sin θ′ r cos θ′

) (
1 a

a a2 + 1

r2

) (
cos θ′ −r sin θ′
sin θ′ r cos θ′

)ᵀ
. (3.27)

Again we denote the transformation matrix as

T2 = J2J
ᵀ
2

det J2
=

(
Txx Txy
Tyx Tyy

)
. (3.28)

Finally we obtain

Txx = cos2 θ′ − ar sin(2θ′) + (1 + a2r2) sin2 θ′,

Txy = Tyx = ar cos(2θ′) − 1

2
a2r2 sin(2θ′),

Tyy = sin2 θ′ + ar sin(2θ′) + (1 + a2r2) cos2 θ′.

(3.29)

2. Solution: Denoting gravitational acceleration as g, we may achieve

v = −β

k

(∇ p − ρ f g
)
. (3.30)
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Chapter 4
Transformation Thermotics for Thermal
Conduction and Radiation

Abstract Apart from conduction and convection, thermal radiation is the third fun-
damental mechanism of heat transfer. Any object with a non-zero temperature can
emit thermal radiation through electromagnetic waves, which means the thermal
energy is converted into electromagnetic energy. From the insight of electromag-
netic waves, the transport of thermal radiation can be naturally incorporated into
the framework of transformation optics. However, one lacks a model dealing with
heat flux resulting from thermal conduction and radiation at the same time and also
it is necessary to efficiently control the thermal radiation described by the Stefan-
Boltzmann law by using the transformation theory. For this purpose, in this chapter
we introduce a radiation model called Rosseland diffusion approximation [1] and
establish a transformation theory for thermal radiation associated with conduction
within a single framework [2]. As model applications, we also use the theory to
develop thermal cloaking, concentrating, and rotating for thermal radiation.

Keywords Transformation thermotics · Thermal radiation · Rosseland diffusion
approximation · Cloak · Concentrator · Rotator
4.1 Rosseland Diffusion Approximation

Here we give a brief derivation of Rosseland diffusion approximation, following the
framework in Ref. [3]. Consider a beam of electromagnetic waves (light) travels
through a medium with a mass density ρ. Generally, the intensity of light should be
reduced as the media is not absolutely transparent (due to absorption and scattering).
For a monochromatic light with a frequency ν, we assume it travels along the z
direction. Now we introduce the concept of Rosseland diffusion approximation,
which is valid in optically thick media. This approximation indicates that the mean
free path of photons is far smaller than the thickness of media. A typical example is
the interiors of stars where the mean free path of photons is much smaller than the
characteristic lengths of temperature and particle density gradients. We can write a
differential equation for the local intensity of light Iν as

cos θ
d Iν
dz

= βν(Sν − Iν) (4.1)
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where Sν is the source intensity andβν is a coefficient measuring attenuation. Usually
we can write it as βν = (ραν)

−1 and αν is called the Rosseland opacity. We can see
Iν(z) demonstrates a form of e-exponential decaying as Iν(z) = Iν(z = 0)e−βν z if the

source function equals zero and we can see the opacity means 100%
(
1 − Iν (z)

Iν (z=0)

)
.

In the Rosseland diffusion approximation, we assume that Sν and Iν(z) are both
similar to black-body radiation function Bν(T ) (T denotes temperature):

I (0)
ν ≈ Sν ≈ Bν(T ), (4.2)

where I (0)
ν is the zero-order solution of local intensity and

Bν(ν, T ) = 2hν3

c2
1

e
hν
kBT − 1

. (4.3)

Here c is the speed of light in the medium, h is the Planck constant, kB is the
Boltzmann constant and it’s easy to check that Bν(T ) satisfies

∫ ∞

0
Bν(T )dν = n2 σ

π
T 4. (4.4)

Here σ is the Stefan-Boltzmann constant
(
5.67 × 10−8 Wm−2K−4

)
and n is the

relative refraction index.Take Iν ≈ I (0)
ν + I (1)

ν andwewill find thefirst-order solution
of local intensity writes

I (1)
ν = Bν(T ) − cos θβ−1

ν

∂Bν(T )

∂z

= Bν(T ) − cos θβ−1
ν

∂Bν(T )

∂T

∂T

∂z
.

(4.5)

Then we turn to calculate the radiative heat flux (density) J rad :

J rad =
∫ ∞

0
dν

∫

�0

d� Iν(T ) cos θ, (4.6)

where �0 is the unit hemispherical surface. Notice that Bν(T ) is isotropic and make
a variable replacement μ = cos θ, we have

∫

�0

d� Iν(T ) cos θ =
∫

�0

cos θ

[
2Bν(T ) − cos θβ−1

ν

∂Bν(T )

∂T

∂T

∂z

]
d�

=
∫

�0

cos2 θ

[
−β−1

ν

∂Bν(T )

∂T

∂T

∂z

]
sin θdθdψ

= −2πβ−1
ν

∂Bν(T )

∂T

∂T

∂z

∫ 1

−1
μ2dμ

= −4π

3
β−1

ν

∂Bν(T )

∂T

∂T

∂z
.

(4.7)
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Then we can see over the whole range of frequency,

J rad = −4π

3

∂T

∂z

∫ ∞

0

∂Bν(T )

∂T

1

βν
dν, (4.8)

and we can define an average absorption coefficient or so-called Rosseland mean
attenuation coefficient β as

β−1
∫ ∞

0

∂Bν(T )

∂T
dν =

∫ ∞

0

∂Bν(T )

∂T

1

βν
dν. (4.9)

Note Eq. (4.4), we can write the Rosseland mean attenuation coefficient as

β−1 = π
∫ ∞
0

∂Bν (T )

∂T
1
βν
dν

4n2σT 3
. (4.10)

Finally, the radiative flux J rad according to the Rosseland diffusion approximation is

J rad = −16

3
β−1n2σT 3 · ∇T . (4.11)

4.2 Transforming Thermal Radiation

Here we consider a transient thermal transport process with both thermal radiation
and conduction; see Fig. 4.1a. When the thermal transport process is passive, the
dominant equation becomes

ρC
∂T

∂t
+ ∇ · (J rad + J con) = 0, (4.12)

where ρ and C are the density and heat capacity of the participating media respec-
tively. The conductive flux J con is determined by the Fourier law (−κ · ∇T ), where
κ is thermal conductivity. To check the form-invariant under a coordinate transfor-
mation of Eq. (4.12), we denote

τ = −16

3
β−1n2σ (4.13)

and thus the radiation term in Eq. (4.12) is

∇ · J rad = ∇ · (τT 3 · ∇T ). (4.14)

The other terms in Eq. (4.12) are just the same as the transient Fourier’s law in heat
conduction and again we have the transformation rules for κ and ρC as

[
κ̃(T )

] = J
[
κ(T )

]
Jᵀ

det J
(4.15)
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Fig. 4.1 Schematic graph showing a thermal transport process, b thermal cloak, c thermal concen-
trator, and d thermal rotator. In a, the wavy arrow, dashed arrow, and solid arrow denote radiative
flux, conductive flux, and total flux, respectively. Adapted from Ref. [2]

and

ρ̃C̃ = ρC

det J
(4.16)

whereJ is the Jacobian transformationmatrix from theCartesian coordinate system to
the curvilinear coordinate system. So, we only need to check the radiation term under
coordinate transformation. In any curvilinear coordinate system with a contravariant
basis {gu, gv, gw}, covariant basis {

gu, gv, gw

}
and corresponding contravariant

components {xu, xv, xw}, the radiation term can be written as

∇ · [
τT 3 · ∇T

] = gw · ∂

∂xw

[
τ uvT 3gu ⊗ gv · gl ∂T

∂xl

]

= gw · ∂

∂xw

[
τ uvT 3gu

∂T

∂xv

]

= ∂τ uvT 3

∂xu
∂T

∂xv
+ ∂2T

∂xu∂xv
τ uvT 3 + gw · ∂gu

∂xw

[
τ uvT 3 ∂T

∂xv

]

= ∂u
[
τ uvT 3∂vT

] + �w
wuτ

uvT 3∂vT
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= ∂u
[
τ uvT 3∂vT

] + 1√
g
(∂u

√
g)τ uvT 3∂vT

= 1√
g
∂u

[√
gτ uvT 3∂vT

]
, (4.17)

where g is the determinant of matrix gi j = gu · gv . �w
wu is the Christoffel symbol

represented by �w
vu = ∂gu

∂xv
· gw and we should remember that �w

wu = 1√
g

∂
√

g

∂xu
. We

can find the radiation term is form-invariant under coordinate transformation if we
follow the transformation rule below

[
τ̃ (T )

] = J
[
τ (T )

]
Jᵀ

det J
. (4.18)

In fact, we may see τT 3 as η(T ) and directly write the transformed matrix
[
η̃(T )

] = J
[
η(T )

]
Jᵀ

det J just as the transformation rule of thermal conductivity. In other
words, the Rosseland diffusion approximation takes the radiation flux in the form
of heat conduction (diffusion) with an effective temperature-dependent thermal con-
ductivity η(T ). Considering that natural materials have only a small range of rela-
tive refraction indexes, we don’t transform n. Also, we can’t transform the Stefan-
Boltzmann constant. Finally we have the transformation rule for the Rosseland mean
attenuation coefficient as

[
β̃(T )

] = J
[
β(T )

]
Jᵀ

det J
. (4.19)

Thus we have established a transformation theory for thermal radiation (accompa-
nying with conduction) under the Rosseland diffusion approximation.

Now we can design thermal metamaterial in environments of both radiation and
conduction. Figure4.1b–d illustrates the schematic diagrams for cloaks, concentra-
tors and rotators respectively. We still use the familiar coordinate transformations
for cloaks {

r ′ = (r2 − r1) r/r2 + r1
θ′ = θ

, (4.20)

concentrators
⎧⎨
⎩
r ′ = r1r/rm for r < rm
r ′ = [(r2 − r1) r + (r1 − rm) r2] / (r2 − rm) for rm < r < r2
θ′ = θ

, (4.21)

and rotators
⎧⎨
⎩
r ′ = r
θ′ = θ + θ0 for r < r1
θ′ = θ + θ0 (r − r2) / (r1 − r2) for r1 < r < r2

, (4.22)
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where θ0 is rotation degree. It’s easy to see that when temperature is high, the radia-
tive flux could raise faster than conductive flux. We choose three different temper-
ature intervals, meaning (300, 320 K), (300, 1000 K) and (300, 4000 K) and set
the boundary values as the temperature of low/high source in numerical simulations
respectively. Figure4.2 shows the temperature distributions varying with time for
thermal cloaks. The first column (a)–(d) has a cold source of 300K and a heat source
of 320K so the radiative flux is much smaller than the conductive flux. The second
column (e)–(h) has a cold source of 300K and a heat source of 1000K so the radia-
tive flux is comparable with the conductive flux. The last column (i)–(l) has a cold
source of 300K and a heat source up to 4000K so the radiative flux is much larger
the conductive flux. Similarly, Figs. 4.3 and 4.4 show the temperature distribution
for concentrators and rotators, respectively. We can find for all the three cases, the
effects of cloaking, concentrating, and rotating are achieved indeed.

4.3 Exercises and Solutions

Exercises

1. Prove Eq. (4.4), meaning

∫ ∞

0
Bν(T )dν = n2 σ

π
T 4. (4.23)

Solutions

1. Solution: We can rewrite Eq. (4.3)

Bν(ν, T ) = 2hν3

c2vacuum

n2

e
hν
kBT − 1

. (4.24)

Then ∫ ∞

0
Bν(T )dν = 2hn2

c2vacuum

∫ ∞

0

ν3

e
hν
kBT − 1

= 2hn2

c2vacuum

(
kBT

h

)4 ∫ ∞

0

u3

eu − 1
du,

(4.25)

where the Bose–Einstein integral or the Riemann zeta function 6ζ(4) equals

∫ ∞

0

u3

eu − 1
du = π4

15
. (4.26)
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Fig. 4.2 Simulation results of thermal cloak. The size is 10 × 10 cm2, r1 = 2.4, r2 = 3.6 cm, and
the background parameters are n0 = 1,β0 = 100m−1,κ0 = 1Wm−1K−1, ρ0C0 = 106 Jm−3K−1.
The evolutions over time are demonstrated in a–d, e–h, and i–l, with three different temperature
intervals. The cloak parameters are set as required by Eqs. (4.15), (4.16) and (4.19), and the corre-
sponding Jacobian matrix is determined by Eq. (4.20). Adapted from Ref. [2]
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Fig. 4.3 Simulation results of thermal concentrator. The parameters are the same as those for
Fig. 4.2, except for the Jacobian transformation matrix (determined by Eq. (4.21) where rm =
3.2 cm). Adapted from Ref. [2]
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Fig. 4.4 Simulation results of thermal rotator. The parameters are the same as those for Fig. 4.2,
except for the Jacobian transformation matrix (determined by Eq. (4.22)). Adapted from Ref. [2]
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Define the Stefan–Boltzmann constant as

σ = 2π5k4B
15c2vacuumh

3
= 5.670373 × 10−8 Wm−2K−4, (4.27)

we have ∫ ∞

0
Bν(T )dν = n2 σ

π
T 4. (4.28)
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Chapter 5
Transformation Thermotics for Thermal
Conduction, Convection and Radiation

Abstract In Chaps. 2, 3 and 4, we have investigated the transformation of thermal
conduction, convection, and radiation. In fact, in our model of transforming thermal
convection or radiation, thermal conduction has also been considered; see Chaps. 3
and 4. However, we have not considered the most general case of heat transfer
consisting of conduction, convection and radiation together. Here we integrate the
relevant content of the previous chapters and give a comprehensive framework of
transforming heat transfer (conduction, convection and radiation). In this case, a
thermal cloak is also designed as an application.

Keywords Transformation thermotics · Thermal radiation · Thermal convection ·
Thermal conduction · Cloak
5.1 Transformation Theory

Using the Rosseland diffusion approximation [1], the transient process of heat trans-
fer in pure fluids with thermal conduction, convection, and radiation is governed by

∂(ρ f C f T )/∂t + ∇ ·
(
−κ f · ∇T + ρ f C f vT − 16/3β−1

f n2
f σT

3 · ∇T
)

= 0,

(5.1)
where ρ f , C f , κ f , v, β f , and n f are density, heat capacity, thermal conductivity,
velocity, the Rosseland mean attenuation coefficient, and relative refraction index of
thefluid, respectively.σ is theStefan-Boltzmannconstant

(=5.67×10−8 Wm−2K−4
)
.

T denotes temperature, and t represents time. Among them, the conductive flux
is determined by Fourier’s law J F = −κ f · ∇T ; the convective flux is given by
JC = ρ f C f v(T − TRef ) and TRef is the reference temperature; the radiative flux
given by the Rosseland diffusion approximation is J R = −16/3β−1

f n2
f σT

3 · ∇T ;
and the total flux is the summation of conductive, convective, and radiative flux
JT = J F + JC + J R .

Equation (5.1) can keep the form-invariance under a coordinate transformation
from the curvilinear space X to the physical space X ′, and its corresponding Jacobian
transformation matrix is denoted as J. Following the proofs in previous chapters, we
choose a curvilinear space X with a contravariant basis

(
gi , g j , gk

)
and correspond-
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ing contravariant components
{
xi , x j , xk

}
, and Eq. (5.1) can be rewritten as

√
g∂t (ρ f C f T ) + ∂i

(√
g

(
−κ

i j
f ∂ j T + ρ f C f v

i T − α
i j
f T

3∂ j T
))

= 0, (5.2)

where α f

(
=16/3β−1

f n2
f σ

)
is the radiative coefficient, and g is the determinant of

the matrix with components gmn = gi · g j , where
(
gi , g j , gk

)
is a covariant basis.

Equation (5.2) is expressed in the curvilinear space, which should then be rewritten
in the physical space with Cartesian coordinate system

{
xi

′
, x j ′ , xk

′}
,

√
g∂t (ρ f C f T ) + ∂i ′

∂xi
′

∂xi

(
√

g

(
−κ

i j
f
∂x j ′

∂x j
∂ j ′T + ρ f C f v

i T − α
i j
f T

3 ∂x j ′

∂x j
∂ j ′T

))
= 0,

(5.3)

where ∂xi
′
/∂xi and ∂x j ′/∂x j are just the components of the Jacobian transformation

matrix J, and
√

g = 1/ det J. Again, we can rewrite Eq. (5.3) as

1

det J
∂t (ρ f C f T ) + ∂i ′

⎛
⎝−

∂xi
′

∂xi
κ
i j
f

∂x j ′
∂x j

det J
∂ j ′T + ρ f

det J
C f

∂xi
′

∂xi
vi T −

∂xi
′

∂xi
α
i j
f

∂x j ′
∂x j

det J
T 3∂ j ′T

⎞
⎠ = 0

(5.4)

Therefore, we obtain the transformation rules as (for simplicity, we donot distinguish
the symbols for matrix

[
κ f

]
and the tensor κ f here as we start from and come back

at Cartesian coordinate system when performing geometric transformations)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ′
f = ρ f / det J,

C ′
f = C f ,

κ′
f = Jκ f Jτ/ det J,

v′ = Jv,
α′

f = Jα f Jτ/detJ.

(5.5)

Now the question is how to control the velocity and flow density of fluids? An
answer is to use porousmedia aswe did in transforming thermal convection (Chap. 3).
The flow velocity is determined by Darcy’s law and the conservation law of fluid
momentum. Here we write all the governing equations as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂(ρmCmT )/∂t + ∇ · (−κm · ∇T + ρ f C f vT − 16/3β−1
m n2

mσT 3 · ∇T
) = 0,

∂(φρ f )/∂t + ∇ · (
ρ f v

) = 0,
v = −η/μ f · ∇P,
ρmCm = (1 − φ) ρsCs + φρ f C f ,

κm = (1 − φ)κs + φκ f ,

β−1
m n2

m = (1 − φ)β−1
s n2

s + φβ−1
f n2

f .

(5.6)

where ρm , Cm , κm , βm , and nm are effective density, heat capacity, thermal con-
ductivity, the Rosseland mean attenuation coefficient, and relative refraction index
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of the porous media, respectively. Similarly, ρs , Cs , κs , βs , and ns are the density,
heat capacity, thermal conductivity, Rosseland mean attenuation coefficient, and rel-
ative refraction index of the solid material in the porous media. In addition φ is the
porosity, η is the permeability, and μ f is the dynamic viscosity coefficient. Here we
use a simple volume-average method to calculate the effective parameters of porous
media. The form-invariance of the equations above has been proven in the previous
chapters and we can directly write the complete transformation rules

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ρ f C f

)′ = ρ f C f ,

κ′
f = κ f ,(
β−1

f n2
f

)′ = β−1
f n2

f ,

μ′
f = μ f

φ′ = φ/detJ,
η′ = JηJτ/detJ,
(ρsCs)

′ = [(1 − φ) / (detJ − φ)] ρsCs,

κ′
s = (

JκmJτ − φκ f
)
/ (detJ − φ) ,(

β−1
s n2

s

)′ =
(
J

(
β−1
m n2

m

)
Jτ − φβ−1

f n2
f

)
/ (detJ − φ) .

(5.7)

Notice that here v′ = Jv/ det J and can be obtained automatically after transforming
porosity and permeability. Also, we don’t transform the properties of pure fluids.
Equation (5.7) is our comprehensive framework to handle heat transfer. There are a
total of seven situations:

(1) There is only conduction. When the velocity v is zero and there is no radiation,
the equation of heat transfer is

∂(ρmCmT )/∂t + ∇ · (−κm · ∇T ) = 0. (5.8)

We get the model of transforming thermal conduction and we only need to
transform the thermal conductivity and density (or specific heat) of solid

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
ρ f C f

)′ = ρ f C f ,

κ′
f = κ f ,

(ρsCs)
′ = ρmCm

(1 − φ′) det J
− φ′C f

1 − φ′ ,

κ′
s = JκmJτ

(1 − φ′) det J
− φ′κ f

1 − φ′ .

(5.9)

Here φ′ is not determined and can be chosen flexibly. For example, φ′ = φ.
(2) There is only radiation. The equation of heat transfer for conduction and radia-

tion is

∂(ρmCmT )/∂t + ∇ · (−16/3β−1
m n2

mσT 3 · ∇T
) = 0. (5.10)
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The transformation rules are

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
ρ f C f

)′ = ρ f C f ,(
β−1

f n2
f

)′ = β−1
f n2

f ,

(ρsCs)
′ = ρmCm

(1 − φ′) det J
− φ′C f

1 − φ′ ,

(
β−1
s n2

s

)′ = Jβ−1
m n2

mJ
τ

(1 − φ′) det J
− φ′β−1

f n2
f

1 − φ′ .

(5.11)

Again, φ′ can be chosen flexibly.
(3) There is only convection. The governing equations are

⎧⎨
⎩

∂(ρmCmT )/∂t + ∇ · (ρ f C f vT
) = 0,

∂(φρ f )/∂t + ∇ · (
ρ f v

) = 0,
v = −η/μ f · ∇P.

(5.12)

The transformation rules
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
ρ f C f

)′ = ρ f C f ,

μ′
f = μ f

φ′ = φ/detJ,
η′ = JηJτ/detJ,
(ρsCs)

′ = [(1 − φ) / (detJ − φ)] ρsCs .

(5.13)

(4) There are only conduction and radiation.When the velocity v is zero, the equation
of heat transfer for conduction and radiation is

∂(ρmCmT )/∂t + ∇ · (−κm · ∇T − 16/3β−1
m n2

mσT 3 · ∇T
) = 0. (5.14)

The transformation rules are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ρ f C f

)′ = ρ f C f ,

κ′
f = κ f ,(
β−1

f n2
f

)′ = β−1
f n2

f ,

(ρsCs)
′ = ρmCm

(1 − φ′) det J
− φ′C f

1 − φ′ ,

κ′
s = JκmJτ

(1 − φ′) det J
− φ′κ f

1 − φ′ ,

(
β−1
s n2

s

)′ = Jβ−1
m n2

mJ
τ

(1 − φ′) det J
− φ′β−1

f n2
f

1 − φ′ .

(5.15)

Again, φ′ can be chosen flexibly.
(5) There are only conduction and convection. The governing equations are
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⎧
⎨
⎩

∂(ρmCmT )/∂t + ∇ · (−κm · ∇T + ρ f C f vT
) = 0,

∂(φρ f )/∂t + ∇ · (ρ f v
) = 0,

v = −η/μ f · ∇P.
(5.16)

The transformation rules

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ρ f C f

)′ = ρ f C f ,

κ′
f = κ f ,

μ′
f = μ f

φ′ = φ/detJ,
η′ = JηJτ/detJ,
(ρsCs)

′ = [(1 − φ) / (detJ − φ)] ρsCs,

κ′
s = (

JκmJτ − φκ f
)
/ (detJ − φ) .

(5.17)

When convection exists, φ′ is determined by transformation theory.
(6) There are only convection and radiation. The governing equations are

⎧⎨
⎩

∂(ρmCmT )/∂t + ∇ · (
ρ f C f vT − 16/3β−1

m n2
mσT 3 · ∇T

) = 0,
∂(φρ f )/∂t + ∇ · (

ρ f v
) = 0,

v = −η/μ f · ∇P.
(5.18)

The transformation rules

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ρ f C f

)′ = ρ f C f ,(
β−1

f n2
f

)′ = β−1
f n2

f ,

μ′
f = μ f

φ′ = φ/detJ,
η′ = JηJτ/detJ,
(ρsCs)

′ = [(1 − φ) / (detJ − φ)] ρsCs,(
β−1
s n2

s

)′ =
(
J

(
β−1
m n2

m

)
Jτ − φβ−1

f n2
f

)
/ (detJ − φ) .

(5.19)

(7) The most general case where conduction, convection and radiation all exist. This
is just the story Eqs. (5.6) and (5.7) tell.

5.2 Applications

Again,we can check the transformation theory by considering some typical functions.
The space transformations of cloak, concentrator, and rotator can be, respectively,
expressed as

{
r ′ = (R2 − R1) r/R2 + R1,

θ′ = θ,
(5.20)
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Fig. 5.1 Transient simulations of thermal cloak. Adapted from Ref. [2]
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⎧⎨
⎩
r ′ = R1r/Rm with r < Rm,

r ′ = ((R1 − Rm) R2 + (R2 − R1) r) / (R2 − Rm) with Rm < r < R2,

θ′ = θ,
(5.21)

⎧⎨
⎩
r ′ = r
θ′ = θ + θ0 with r < R1,

θ′ = θ + θ0 (r − R2) / (R1 − R2) with R1 < r < R2,

(5.22)

where R1 and R2 are the inner and outer radiuses, Rm is a medium value determining
the concentrating ratio, and θ0 is rotation degree. Then, the Jacobian transformation
matrix of Eqs. (5.20)–(5.22) can be derived as

J =
(

∂r ′/∂r ∂r ′/ (r∂θ)
r ′∂θ′/∂r r ′∂θ′/ (r∂θ)

)
. (5.23)

We show the numerical results of cloaks in Fig. 5.1, where white lines repre-
sent isotherms. The size of each simulation is 0.1 × 0.1 m2, R1 = 0.024 m, and
R2 = 0.036 m; and the background fluid has parameters ρ f = 103 kgm−3,
C f = 103 J kg−1K−1, κ f = 1 Wm−1K−1, v f = 10−5 m s−1, β f = 100 m−1, and
n f = 1 throughout this chapter. The transformation media and velocity are designed
according to Eq. (5.20). (a)–(d) show the temperature evolutions over time with
a temperature interval 300–360 K and a background fluid velocity along the +x
axis. (e)–(h) show the temperature evolutions over time with a temperature inter-
val 300–1200 K and a background fluid velocity along the +x axis. (i)–(l) show
the temperature evolutions over time with a temperature interval 300–1200 K and
a background fluid velocity along the −x axis. Following Eq. (5.20) (which yields
Fig. 5.1), we can easily give the transient simulations of thermal concentrator and
thermal rotator according to Eq. (5.21) and Eq. (5.22), respectively, which are not
shown in this chapter.

5.3 Exercises and Solutions

Exercises

1. Prove that the choice of reference temperature shall not change the validity and
form-invariance of Eq. (5.1).

Solutions

1. Solution: Rewrite the left-hand side of Eq. (5.1) as ∂(ρ f C f (T − TRef ))/

∂t + ∇ ·
(
−κ f · ∇T + ρ f C f v(T − TRef ) − 16/3β−1

f n2
f σT

3 · ∇T
)
. We only

need to consider the term

∂(ρ f C f TRef )/∂t + ∇ · (ρ f C f vTRef
) = TRef (∂(ρ f C f )/∂t + ∇ · (

ρ f C f v
)
). (5.24)
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Notice the conservation law of momentum in pure fluids

∂ρ f /∂t + ∇ · (
ρ f v

) = 0. (5.25)

SinceC f is a constant, we can see ∂(ρ f C f TRef )/∂t + ∇ · (ρ f C f vTRef
) = 0 and

Eq. (5.1) is still valid and form-invariant. Then we obtain the same conclusion for
Eq. (5.6).
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Chapter 6
Macroscopic Theory for Thermal
Composites: Effective Medium Theory,
Rayleigh Method and Perturbation
Method

Abstract Thermal conductivity can depend on temperature (namely, nonlinear),
which is common in nature. Since composites are widely used in thermal metamate-
rials to tailor thermal conductivities and other macroscopic properties, a fundamental
problem is how to predict the effective thermal conductivity (κe) of composites. In
this chapter, we present various kinds of theories or methods to calculate both linear
and nonlinear part of κe, which include the effective medium theory, the Rayleigh
method and the perturbation method. We show their validity by comparing with the
numerical results from finite-element simulations for periodic composites with linear
or nonlinear thermal conductivities. Also, we investigate the condition for generating
nonlinearity enhancement.

Keywords Composites · Nonlinear conduction · Effective medium
approximation · The Rayleigh method · Perturbation method

6.1 Linear Part of Effective Thermal Conductivity

In this section we will give two methods, effective medium theory and the Rayleigh
method, to calculate κe for linear media, which means the thermal conductivities are
constant under different temperatures. First, we define the effective thermal conduc-
tivity κe of a thermal-diffusion system based on

〈J〉 = −κe〈∇T 〉 (6.1)

In this equation, κe is generally a tensor since the volume-average heat flux 〈J〉 and
volume-average temperature gradient 〈∇T 〉 are vectors. Usually we focus on the
conductivity on a given direction such as the x direction, we can write

κe = −〈J x 〉/〈∇Tx 〉. (6.2)

For simplicity, we shall mainly introduce the cases of binary composites in two
dimensions, and denote the thermal conductivity as κi and κh for inclusions and the
host, respectively.
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Fig. 6.1 Schematic diagram of typical composites for a Maxwell-Garnett formula and b Brugge-
man formula. Adapted from Ref. [3]

6.1.1 Effective Medium Theory

The effective medium theory gives an analytical model to predict the macroscopic
properties of composites approximately, in which the volume or area fraction of
the inclusions fi (thus the area fraction of the host satisfies fh = 1 − fi ) plays an
important role. There are two basic models of effective medium theory, theMaxwell-
Garnett [1] formula and the Bruggeman formula [2]. We give the results for two-
component composite and extensions to multi-component composite can be straight-
forward.

Maxwell-Garnett Formula

Figure6.1a illustrates a typical composite which can be described by Maxwell-
Garnett formula, where circular inclusions are embedded randomly in the host. The
Maxwell-Garnett formula for two-dimensional two-component composites is solved
from

κe − κh

κe + κh
= fi

κi − κh

κi + κh
. (6.3)

For three-dimensional cases, the Maxwell-Garnett formula writes

κe − κh

κe + 2κh
= fi

κi − κh

κi + 2κh
. (6.4)

Now we will give a brief proof of Maxwell-Garnett formula for two-dimensional
case. According to the definition of κe, we have

κe = fi 〈J i 〉 + (1 − fi ) 〈Jh〉
fi 〈∇Ti 〉 + (1 − fi ) 〈∇Th〉

= fiκi 〈∇Ti 〉 + (1 − fi )κh 〈∇Th〉
fi 〈∇Ti 〉 + (1 − fi ) 〈∇Th〉 ,

(6.5)
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where
〈
J j

〉
,
〈∇Tj

〉
are the volume/area-average heat flux and temperature and the

notes j = i, h represent the inclusions and host respectively. The Fourier law for
heat conduction for steady states writes

∇ · (
κ j∇Tj

) = 0, j = i, h. (6.6)

Nowwe assume that the inclusions are so dilute that we can only find one inclusion or
particle in an infinite (two-dimensional) plane. In addition, the inclusions are circular.
With the boundary conditions (ξ denotes the boundary between the inclusions and
the host) in polar coordinates (r , θ )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ti (r = 0) is finite,
Th(r → ∞) = ∇Th((r → ∞)) · ex
Ti (ξ) = Th(ξ),

−κi
∂T
∂ξ

∣∣∣
ξ

= −κh
∂T2
∂ξ

∣∣∣
ξ

(6.7)

we can find [4]

〈∇Ti 〉 = 2κh
κi + κh

〈∇Th〉 . (6.8)

Finally we obtain the expression for κe

κe = κh
κh(1 − fi ) + κi (1 + fi )

κh(1 + fi ) + κi (1 − fi )
, (6.9)

which is consistent with the Maxwell-Garnett formula.

Bruggeman Formula

The Bruggeman formula for two-dimensional binary composites is given by

fi
κe − κi

κe + κi
+ fh

κe − κh

κe + κh
= 0. (6.10)

Also, for the three-dimensional case, the Bruggeman formula writes

fi
κe − κi

2κe + κi
+ fh

κe − κh

2κe + κh
= 0. (6.11)

Fig. 6.1b illustrates a typical composite that can be described by the Bruggeman
formula. One difference between the Bruggeman and Maxwell-Garnett formula is
that the two components for the Bruggeman formula are symmetrical. In fact, the
indexes “i” and “h” can be exchanged and κe will not be influenced.
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6.1.2 The Rayleigh Method

TheRayleighmethod [5] is a first-principle approach to predict effective conductivity
especially for periodic composites, and it directly solves the heat conduction equation
with certain boundary conditions. To distinguish from the following nonlinear cases,
we denote the temperature distribution as T (0) in the linear case. The general solution
of Eq. (6.6) for the area occupied by the inclusions can bewritten in polar coordinates
(r , θ ) as

T (0)
i (ρ, θ) = C00 +

∞∑

m=1

C2
0mr

m cos(mθ) + C1
0mr

m sin(mθ), (6.12)

where the corresponding polar coordinate system has a pole at the core of a selected
cell in the composite. For the host, we can also write

T (0)
h (ρ, θ) = A00 +

∞∑

m=1

(A20mr
m + B2

0mr
−m) cos(mθ) + (A10mr

m + B1
0mr

−m) sin(mθ).

(6.13)
To find the coefficients (A00, A2

0m, A1
0m, B1

0m, B2
0m,C00,C1

0m and C2
0m), we should

apply both the boundary conditions between the inclusions and host (boundaries
denoted as ξ )

T (0)
i = T (0)

h |ξ , (6.14a)

κi
∂T (0)

i

∂r
= κh

∂T (0)
h

∂r

∣∣∣∣
ξ

, (6.14b)

and the Rayleigh identity for periodic composites [6]

A00 +
∞∑

m=1

ρm[A2
0m cos(mθ) + A1

0m sin(mθ)]

=
∞∑

k=1

∞∑

m=1

ρ−m
k [B2

0m cos(mθk) + B1
0m sin(mθk)] − TL − TR

L
,

(6.15)

where
ρk =

√
(x − uk)2 + (y − vk)2, (6.16a)

cos θk = (x − uk)/rk . (6.16b)

Here uk and vk are the Cartesian coordinates of the central point in the k-th cell. k is
positive and we take the cell (where the pole lies in) as the 0-th one. Again we set the
external temperature gradient to be along the x direction. We can notice that, when
only one particle is embedded, the boundary condition at infinity (see Eq. (6.7)) is
often used instead of the Rayleigh identity. By partially differentiating with respect
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to x in both sides of point Q and taking the value at Q (which can be arbitrary
with Cartesian or polar coordinates being (x0, y0) or (r0, θ0)), the Rayleigh identity
tells [6]

∞∑

m=1

m!rm−n
0 (κh + κi )

(m − n)!(κh − κi )
[A2

0m cos((m − n)θ0) + A1
0m sin((m − n)θ0)] −

∞∑

m=1

(−1)n
(m + n − 1)!

(m − 1)!

× [B2
0mW

2
m+n(Q) + B1

0mW
1
m+n(Q)] = −TL − TR

L
δ1,n

(6.17)
where

W 1
l (Q) =

∞∑

k=1

ρ−l
k sin(lθk), (6.18a)

W 2
l (Q) =

∞∑

k=1

ρ−l
k cos(lθk). (6.18b)

By truncating the series expansions [since we assume that the temperature gradient
is applied along the x direction, we only remain A2

01, A
2
03, B

2
01 and B2

03 in Eq. (6.17)],
we can write the approximate solutions in the selected cell as

T (0)
i (ρ, θ) = C00 + C2

01r cos θ + C2
03r

3 cos(3θ) (6.19)

and

T (0)
h (ρ, θ) = C00 + A2

01r cos θ + A2
03r

3 cos(3θ) + B2
01r

−1 cos θ + B2
03r

−3 cos(3θ),

(6.20)
where [6]

B2
01 = −TL − TR

L
/(

κh + κi

a2(κh − κi )
− 3a6(W 2

4 )2(κh − κi )

κh + κi
), (6.21a)

B2
03 = −a6W 2

4 (κh − κi )

κh + κi
)B2

01, (6.21b)

A2
0m = κh + κi

a2m(κh − κi )
B2
0m, (6.21c)

C2
0m = 2κh

a2m(κh − κi )
B2
0m, (6.21d)

W 2
4 = 3.13085/S2. (6.21e)

Here a is the radius of a single particle in the unit cell with area S. The only difference
from its electrical counterpart is that C00 is usually neglected in electricity because a
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constant term of electrical potentials should not change any corresponding physical
properties. Fortunately, in the linear case, C00 (though still to be determined by
more conditions) should not influence the result of effective conduction either. Also,
W 2

l (Q) is position-independent.
The effective linear thermal conductivity κe can be calculated by [7, 8]

κe = κh + (κi − κh)〈∇x T
(0)〉i/〈∇x T

(0)〉. (6.22)

In fact Eq. (6.22) is another form of Eq. (6.2). Also it is easy to see

〈∇x T
(0)〉i = C2

01 fi , (6.23)

fi = πa2/S. (6.24)

Note there exists [6]

〈∇x T
(0)〉 = 2κh

κh + κe

TR − TL
L

, (6.25)

which is consistent with the Bruggeman theory. Then we can find that κe has the
same form as its electrical counterpart in the case of linear conduction, namely,

κe = κh
(−β1 + β1 fi + f 4i )κ2

h − 2(β1 + f 4i )κhκi + (−β1 − β1 fi + f 4i )κ2
i

(−β1 − β1 fi + f 4i )κ2
h − 2(β1 + f 4i )κhκi + (−β1 + β1 fi + f 4i )κ2

i

,

(6.26)
where β1 = π4

3(W 2
4 S

2)2
= 3.31248.

Nowwe turn back to the Rayleigh identity Eq. (6.15).What’s physical figure? The
temperature distribution in the host originates from spatial infinity (the heat sources
on the boundary), host and inclusions, which is another expression different from
the general solution given by Eq. (6.13). If there are no inclusions, the infinity and
host correspond to a temperature distribution proportional to −x if the temperature
gradient is set along the x direction. Since the host and inclusions have different
conductivities, the inclusions correspond to terms decreasing when the distance of
host and an inclusion (denoted as ρk) increases. So we can write

T h
0 =

∞∑

m=1

ρ−m[B2
0m cos(mθ) + B1

0m sin(mθ)]

+
∞∑

k=1

∞∑

m=1

ρ−m
k [B2

0m cos(mθk) + B1
0m sin(mθk)] − TL − TR

L
x .

(6.27)

The term TR−TL
L x corresponds to infinity while the term

∑∞
m=1 ρ−m[B2

0m cos(mθ) +
B1
0m sin(mθ)] corresponds to the inclusion in the 0-th cell. The terms

∑∞
m=1 ρ−m

k [B2
0m

cos(mθk) + B1
0m sin(mθk)] come from the periodicity and represent the influence

from the k-th cell. Because the two expressions Eqs. (6.13) and (6.27) must give the
same result, the Rayleigh identity can be obtained.
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6.2 Nonlinear Part of Effective Thermal Conductivity

In this section, we further take temperature-dependent thermal conductivity κ(T )

into consideration. Again, for a two-component composite, either the inclusion or
the host can have a nonlinear thermal conductivity now. In the following discussion,
for simplicity, we assume that either the inclusion or host can be nonlinear with a
thermal conductivity dependent on temperature (T ) whose κ j can be written as

κ j = κ j0 + χ j (T + Trt)
α ( j = i, h). (6.28)

Here κ j0 is the linear (namely, temperature-independent) part of κ j , χ j is the non-
linearity (temperature-dependence) coefficient, Trt is the reference temperature for
measuring nonlinearity andα can be any real number. Forweak nonlinearitymeaning
χ j (T + Trt)α � κ j0, the effective conductivity can be written as

κe = κe0 + χe(T + Trt)
α + o[(T + Trt)

2α], (6.29)

where κe0 is the linear solutionwhich has been discussed in the previous section, χe is
the effective nonlinearity coefficient, and o[(T + Trt)2α] denotes higher-order terms
[which are much smaller than χe(T + Trt)α]. To see the enhancement or reduction of
nonlinearity, we consider two cases where only the inclusions or the host is nonlinear.
We define the nonlinearity enhancement ratio as

c = χe

χ j
(6.30)

where j = i for the first case (i.e., only the inclusions are nonlinear: χi �= 0 and
χh = 0) while j = h for the second (namely, only the host is nonlinear: χh �= 0 and
χi = 0). Also, Fig. 6.2 illustrates the schematic diagram for the two cases, where
(a) denotes the first and (b) denotes the second one.

6.2.1 Effective Medium Theory

Effective medium theory can be applied to nonlinear cases if we combine series
expansion with it. Cutting off the Taylor’s series expansions of Eq. (6.29), we can
find that

χe(T + Trt)
α = ∂κe

∂χi
(6.31)

where κe is a function of κ j0, f j and χ j .
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Fig. 6.2 Schematic diagrams illustrating two classes of periodic composites: the circles represent
the inclusions and the shadow lines represent the nonlinear material. a nonlinear inclusions are
periodically embedded in a linear host; b linear inclusions are periodically embedded in a nonlinear
host. Adapted from Ref. [3]

Maxwell-Garnett Formula

For the first case, only the inclusion is nonlinear and then the nonlinearity coefficient
ratio c (= χe/χi ) is given by

c = 4 fi
(
1 + κi0

κh0
+ fi − fi

κi0

κh0

)2 . (6.32)

For the second case where only the host is nonlinear, we can also obtain the nonlin-
earity coefficient ratio c (= χe/χh) as

c =
(1 − f 2i )

[
1 +

(
κi0

κh0

)2]
+ 2(1 − fi )2

κi0

κh0
(
1 + κi0

κh0
+ fi − fi

κi0

κh0

)2 . (6.33)

Bruggeman Formula

Similarly, based on the Bruggeman formula, the nonlinearity coefficient ratio
c (= χe/χi ) for the first case is

c = 1

2

[ (2 fi − 1)

(
2 fi − 2 fi

κh0

κi0
− 1 + κh0

κi0

)
+ 2

κh0

κi0√(
2 fi − 2 fi

κh0

κi0
− 1 + κh0

κi0

)
2 + 4

κh0

κi0

+ 2 fi − 1

]
(6.34)
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and the nonlinearity coefficient ratio c (= χe/χh) for the second case is

c = 1

2

[ (2 fi − 1)

(
2 fi − 2 fi

κi0

κh0
− 1 + κi0

κh0

)
+ 2

κi0

κh0√(
2 fi − 2 fi

κi0

κh0
− 1 + κi0

κh0

)
2 + 4

κi0

κh0

− 2 fi + 1

]
. (6.35)

6.2.2 The Rayleigh Method

For the nonlinear conduction, the thermal conductivity depends on the tempera-
ture (i.e., potential) while the electrical conductivity relies on the field (namely, the
gradient of potential). This difference makes it much more complicated if we still
use Rayleigh identity (for nonlinear conduction) combined with perturbation theory
to solve a nonhomogeneous equation (we will give a simple example of perturbation
theory later) following the framework in electrical conduction. Nevertheless, we can
take Eq. (6.28) into Eq. (6.26) and still use Taylor series to calculate c through

c = ∂κe

χ j (T + Trt)α∂χ j
. (6.36)

Finally, the expressions of c for the two cases we study are

c = 4β1 fiκ2
h0

[
β1(κh0 + κi0)

2 + f 4i (κh0 − κi0)
2
]

[
β1(κh0 + κi0)( fiκh0 − fiκi0 + κh0 + κi0) − f 4i (κh0 − κi0)2

]2 (6.37)

for the first case and

c = −β2
1 ( fi − 1)(κh0 + κi0)

2
[
( fi + 1)κ2

h0 − 2( fi − 1)κh0κi0 + ( fi + 1)κ2
i0

]

[
β1(κh0 + κi0)( fiκh0 − fiκi0 + κh0 + κi0) − f 4i (κh0 − κi0)2

]2

+ −2β1 f 4i (κh0 − κi0)
2
[
2( fi + 1)κh0κi0 + κ2

h0 + κ2
i0

] + f 8i (κh0 − κi0)
4

[
β1(κh0 + κi0)( fiκh0 − fiκi0 + κh0 + κi0) − f 4i (κh0 − κi0)2

]2

(6.38)
for the second case. It can be easily confirmed that c only depends on area fraction
fi and ratio κi0/κh0. In addition, the expressions of c keep the same for different α

and Trt , two additional parameters as adopted in Eq. (6.28).
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6.2.3 The Perturbation Method

The perturbation theory is another effective method to deal with nonlinear systems
such as those in nonlinear optics [7, 8]. Reference [9] gives an example about how
to deal with nonlinear heat conduction by using the perturbation theory. Again we
consider a weak nonlinear relationship which can be generally expressed as

κ = κ0 + κ1T + κ2T
2 + κ3T

3 + · · · (6.39)

where κn is the expansion parameters. To apply the perturbation theory, we should
always have the following condition,

|κ0| 	 |κ1T | 	 |κ2T 2| 	 |κ3T 3| 	 · · · (6.40)

The temperature itself can also be expanded as

T = T (0) + T (1) + T (2) + T (3) + · · · (6.41)

Similarly, the expansion of heat flux J is

J = −(κ0 + κ1T + κ2T
2 + · · · )∇(T (0) + T (1) + T (2) + · · · ). (6.42)

Now we write the first two terms of heat flux as

J (0) = −κ0∇T (0), (6.43)

and
J (1) = −κ0∇T (1) − κ1T

(0)∇T (0). (6.44)

Using the above expansions, we can also obtain conduction equations for T (n):

ρc
∂T (0)

∂t
= ∇ · (κ0∇T (0)), (6.45)

ρc
∂T (1)

∂t
= ∇ · (κ0∇T (1) + κ1T

(0)∇T (0)), (6.46)

The simplest case is embedding a nonlinear circular inclusion (with its radius
denoted as ri ) into a linear host medium and we still write κi = κi0 + χi T . The
boundary condition at r = ri is

{
T (k)
h = T (k)

i

J (k)
h · n̂ = J (k)

i · n̂ , (6.47)
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where n̂ is the unit normal vector on the surface of the inclusion. In addition, the
boundary condition at r = ∞ and r = 0 is

{∇Th(r = ∞) = H ex
|T (k)

i (r = 0)| < ∞ . (6.48)

Here Ti and J i denote temperature and heat flux density of inclusion respectively and
Th and Jh represent those of host medium. In addition, we take H as a given number
which can be seen as the outer temperature gradient applied on the composite.

It is easy to solve out the 0-order solution,

⎧
⎨

⎩
T (0)
h = G

r
cos θ + Hr cos θ

T (0)
i = Cr cos θ

, (6.49)

where the coefficients are ⎧
⎪⎨

⎪⎩

G = Hr2i
κh0 − κi0

κh0 + κi0

C = 2H
κh0

κh0 + κi0

. (6.50)

Here a constant term of temperature can be neglected because this will not change
the results below (for zero-order and 1st-order). With 0-order solution, the 1st-order
equation is solved out as

∇2T (1)
i = − χi

κi0
C2. (6.51)

To solve such a non-homogeneous equation, we first find a special solution

− χi

4κi0
C2r2 (6.52)

and then set the general solution as

⎧
⎪⎨

⎪⎩

T (1)
h = D

r2
cos 2θ

T (1)
i = Er2 cos 2θ − χi

4κi0
C2r2 + F

. (6.53)

Finally we can write all the coefficients as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F = χi

4κi0
C2r2i

D = −C2

4

χi

κi0 + κh0
r4i

E = −C2

4

χi

κi0 + κh0

. (6.54)
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To calculate the effective nonlinear conductivity, we define a constitutive rela-
tionship between average heat flux and average thermal field as

〈J〉 = −κe0〈∇T 〉 − χe〈T 〉〈∇T 〉. (6.55)

From Refs. [7, 8], we have (S denotes the area occupied by the composite)

1

S

∫

S

J − (−κh0∇T )d� = 〈J〉 + κh0〈∇T 〉. (6.56)

Using Eq. (6.55) to replace 〈J〉 in the right-hand side of Eq. (6.56), we get

1

S

∫

Si

((κh0 − κi0)∇T − χi T∇T )d�

= (κh0 − κe0)〈∇T 〉 − χe〈T 〉〈∇T 〉.
(6.57)

Substituting Eq. (6.49) into Eq. (6.57), we have

κe0 = κh0 − 2 fiκh0
κh0 − κi0

κh0 + κi0
, (6.58)

noticing fi = πr2i
S is the area fraction of inclusion. Similarly, we can see

χe = 2 fiχi
κh0

κh0 + κi0
. (6.59)

6.3 Examples

For example, we compare predictions of theories above with the simulation results
from finite-element analysis. We set up a model where circular inclusions periodi-
cally embedded into the host. Again, as shown in Fig. 6.2, we consider two cases.
In Fig. 6.2a only the inclusions are nonlinear while in Fig. 6.2b only the host is non-
linear. The size of the composite material is 20 cm × 20 cm and each unit cell is
1cm × 1cm. Also, two heat sources put on boundaries are set at TL = 313 K and
TR = 273K. If no overlapping exists, there is an upper limit of area fraction fi < π/4
for circular inclusions. Without loss of generality, we take α = 1 and Trt = 0 K in
all simulations.

For weak nonlinearity, Figs. 6.3 and 6.4 respectively illustrate the effective linear
thermal conductivity κe0 and nonlinearity coefficient ratio c for two different κi0/κh0
ratios (10 and 0.1). First, Fig. 6.3 shows the effective linear thermal conductivity κe0
as a function versus fi . In Fig. 6.3a, κi0/κh0 = 10 while κi0/κh0 = 0.1 in Fig. 6.3b. It
can be seen that κe0 is always between the values of κi0 and κh0. Also, the Rayleigh
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Fig. 6.3 The linear part of effective thermal conductivity κe0 versus concentration fi . In a, κi0 =
100 W/(m K) and κh0 = 10 W/(mK) while κi0 = 10 W/(m K) and κh0 = 100 W/(m K) in (b).
The light blue, black and red lines represent the analytical predictions of the Rayleigh method,
Maxwell-Garnett formula and Bruggeman formula respectively. The scatter plot of blue circles
shows the finite-element simulation results. Adapted from Ref. [3]

method is more accurate than effective medium theories (both Maxwell-Garnett
formula and Bruggeman formula), especially for big values of fi . This conclusion
results from the fact that the effective medium theories are derived based on the
assumption that the inclusions are randomly distributed and the multipolar interac-
tions (beyond dipolar interactions) between inclusions are neglected. However, the
Rayleigh method considers such interactions within periodic structures by taking the
Rayleigh identity as part of the boundary conditions. As we know, when fi is not
dilute, multipolar interactions between inclusions can’t be neglected.

Figure6.4a, b show the nonlinearity coefficient ratio c for nonlinear inclusions
embedded in a linear host (the first case illustrated by Fig. 6.2a) while (c, d) show the
results for linear inclusions embedded in a nonlinear host (the second case illustrated
by Fig. 6.2b). The linear part of effective conductivity for Fig. 6.4a, c (κi0/κh0 = 10)
can be found in Fig. 6.3a and that for Fig. 6.4b, d (κi0/κh0 = 0.1) can be found
in Fig. 6.3b. Again, the Rayleigh method provides more accurate predictions than
effective medium theories.

6.4 Exercises and Solutions

Exercises

1. Prove Eq. (6.8), meaning

〈∇Ti 〉 = 2κh
κi + κh

〈∇Th〉 . (6.60)
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Fig. 6.4 Nonlinearity coefficient ratio versus fi . a and b correspond to Fig. 6.2a where only
the inclusions are nonlinear while (c) and (d) correspond to Fig. 6.2b where only the host is
nonlinear. In a, κh = 10 W/(mK) and κi = 100 W/(mK) + [

0.01 W/(mK2)
] × T . In b,

κh = 100 W/(mK) and κi = 10 W/(mK) + [
0.001 W/(mK2)

] × T . In c, κh = 10 W/(mK)

+ [
0.001 W/(mK2)

] × T and κi = 100 W/(mK). In d, κh = 100 W/(mK) + [
0.01 W/(mK2)

]

× T and κi = 10 W/(mK). Adapted from Ref. [3]

2. Consider a two-dimensional structure and a thermal conduction distribution as
{

κ(r) = arb, 0 ≤ r ≤ 1
κ(r) = 1, r > 1

(6.61)

The region 0 ≤ r ≤ 1 is the inclusion and the rest area denotes the host. Calculate
κe in the x direction (b > 0).

3. What are the 2nd-order term of heat flux and governing equation for nonlinear
heat conduction?
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Solutions

1. Solution: Since the inclusions are dilute, we again obtain Eq. (6.49)

⎧
⎨

⎩
T (0)
h = G

x

x2 + y2
+ Hx

T (0)
i = Cx

, (6.62)

where ⎧
⎪⎨

⎪⎩

G = Hr2i
κh0 − κi0

κh0 + κi0

C = 2H
κh0

κh0 + κi0

. (6.63)

Notice the term G
x

x2 + y2
results from the interaction between inclusions and

the host, which can be negligible compared with Hx so we have

∇Ti = 2κh
κi + κh

∇Th, (6.64)

and thus

〈∇Ti 〉 = 2κh
κi + κh

〈∇Th〉 . (6.65)

2. Solution: In polar coordinates, temperature satisfies

1

r

∂

∂r

(
rκ(r)

∂T

∂r

)
+ κ(r)

r2
∂2T

∂θ2
= 0. (6.66)

Using separation of variables (T = R(r)(θ)), we have

r2
(
d2R

dr2
+ 1

κ(r)

dκ(r)

dr

dR

dr

)
+ r

dR

dr
− n2R = 0, (6.67)

and
d2

dθ2
+ n2 = 0. (6.68)

Taking the form of κ into Eq. (6.49) we have

r2
d2R

dr2
+ (b + 1)r

dR

dr
− n2R = 0 (6.69)

and it’s homogeneous. Then we can set R(r) = r s and get

s±(n) = 1

2

(
−b ±

√
b2 + 4n2

)
. (6.70)
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According to boundary conditions (Tr→∞ = −J0r cos(θ)), we have

Ti = T0 + A1r
s+(1) cos(θ) (6.71)

and

Tm = T0 − J0r cos(θ) + D1

r
cos(θ), (6.72)

where

A1 = − 2

sa + 1
J0, D1 = sa − 1

sa + 1
J0. (6.73)

Finally we can obtain that

2π
κe − 1

κe + 1
J0 =

∫

S

[κ(r) − 1]∂T
∂x

dS (6.74)

and

κe = a
(
s2 + (b + 2)s + 1

)

a
(
s2 + bs − 1

) + 2(s + b + 1)
. (6.75)

3. Solution: The 2nd-order nonlinear heat flux and conduction equation are respec-
tively

J (2) = −κ0∇T (2) − κ1T
(0)∇T (1) − κ1T

(1)∇T (0) − κ2(T
(0))2∇T (0), (6.76)

and

ρc
∂T (2)

∂t
= ∇ · (κ0∇T (2) + κ1T

(0)∇T (1) + κ1T
(1)∇T (0) + κ2(T

(0))2∇T (0)).

(6.77)
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Chapter 7
Heat Conduction Equation

Abstract Manipulating thermal conductivities are fundamentally important for con-
trolling the conduction of heat at will. Thermal cloaks and concentrators, which have
been extensively studied recently, are actually graded materials designed according
to coordinate transformation approaches, and their effective thermal conductivity
can be seen to equal that of the host medium outside the cloak or concentrator.
Here we attempt to investigate a more general problem: what is the effective ther-
mal conductivity of graded materials? In particular, we perform a first-principles
approach to the analytic exact results of effective thermal conductivities of materials
possessing either power-law or linear gradation profiles. On the other hand, by solv-
ing Laplace’s equation, we derive a differential equation for calculating the effective
thermal conductivity of amaterial whose thermal conductivity varies along the radius
with arbitrary gradation profiles. The two methods agree well with each other for
both external and internal heat sources, as confirmed by simulations and experiments.
This chapter provides different methods for designing new thermal metamaterials
(including thermal cloaks and concentrators), in order to control or manipulate the
transfer of heat

Keywords Laplace’s equation · Effective thermal conductivity · Graded
materials · Gradation profiles

7.1 Opening Remarks

Thermal conductivity is the fundamental physical parameter that describes the ability
of amaterial to conduct heat. How to design the distribution of thermal conductivities
is particularly important for obtaining new kinds of thermal metamaterials [1–15]
(the concept of metamaterial has been widely adopted as a material structurally
designed to have a new property or function other than naturally occurring mate-
rials or chemical compounds), like thermal cloaks [1, 2, 5, 7, 9, 16, 17], thermal
concentrators [5, 8], thermal transparency [6], macroscopic thermal diodes [10], and
energy-free thermostat [11].
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However, according to the transformation theory of thermal conduction (which is
based on the fact that the thermal conduction equation fulfills form invariance under
coordinate transformations) [1], all the thermal cloaks [1, 2, 5, 7, 9] and thermal
concentrators [5, 8] are essentially graded materials whose thermal conductivities
vary along the radius. Moreover, their effective thermal conductivities equal to those
of the host medium outside the cloak or concentrator. As a result, the existence of
cloaks or concentrators does not affect the distribution of temperature or heat flux
in the host medium, thus yielding a kind of thermal invisibility. This encourages us
to ask a more general problem: what is the effective thermal conductivity of graded
materials with arbitrary gradation profiles? This has not been touched in the literature
due to the lack of suitable methods. In this chapter, we manage to solve this problem,
in order to control or manipulate heat transfer with a different degree of freedom.

7.2 Analytic Theory Based on a First-Principles Approach

We consider a graded circular material with radius r0 subjected to a uniform density
of heat flux J0 along the x-axis, the temperature distribution of the system satisfies
the thermal conduction equation depending on time t , ∇ · J + ρc ∂T

∂t = Q. Here, J ,
T and Q represent the density of heat flux, temperature, and heat energy generated
per unit volume per unit time, respectively. ρ denotes the mass density of the object
and c is the specific heat capacity. Using the Fourier law, J = −κ(r)∇T (where κ(r)
is the thermal conductivity of the material, which is a function of the position r along
the radius, r ≤ r0), for static cases without internal heat sources, the above thermal
conduction equation reduces into

∇ · [κ(r)∇T ] = 0. (7.1)

According to Eq. (7.1) in polar coordinates (r, θ ), the temperature T satisfies

1

r

∂

∂r

(
rκ(r)

∂T

∂r

)
+ κ(r)

r2
∂2T

∂θ2
= 0. (7.2)

If we write T = R(r)�(θ) to achieve the separation of variables, we obtain

r2
(
d2R

dr2
+ 1

κ(r)

dκ(r)

dr

dR

dr

)
+ r

dR

dr
− n2R = 0, (7.3)

and
d2�

dθ2
+ n2� = 0. (7.4)

Without loss of generality, we set both r0 and the thermal conductivity outside the
material to be unit. If the thermal conductivity of the material has specific gradation
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profiles, the exact solution can be obtained by using the first-principles approach.
For example, we give two examples in the following.

7.2.1 Exact Solution for Thermal Conductivity Distributed in
a Power-Law Profile

Assume that the thermal conductivity of the material increases outwards in a power-
law form. In this case, κ(r) = arb (here a and b are two coefficients, b ≥ 0; 0 ≤
r ≤ 1), then Eq. (7.3) becomes

r2
d2R

dr2
+ (b + 1)r

dR

dr
− n2R = 0. (7.5)

Since this equation is homogeneous, the solution has the form as R(r) = r s . Substi-
tuting it into Eq. (7.5) yields

s±(n) = 1

2

(
−b ±

√
b2 + 4n2

)
. (7.6)

In the far field where the host medium has a thermal conductivity of κm = 1,
the temperature is only determined by

−→
J0 , which means Tr→∞ = −J0r cos(θ). In

the material, the condition of convergence ensures that Tr→0 = finite value. So the
terms for s ≥ 2 vanish. The temperature fields in the material and host medium are
respectively given by

Ti = T0 + A1r
s+(1) cos(θ), (7.7)

and

Tm = T0 − J0r cos(θ) + D1

r
cos(θ). (7.8)

The coefficients are determined by the associated boundary conditions,

Ti |r=1 = Tm |r=1, κ(r)
dTi
dr

|r=1 = dTm
dr

|r=1. (7.9)

As a result, we obtain

A1 = − 2

sa + 1
J0, D1 = sa − 1

sa + 1
J0. (7.10)

Since both the gradation profile and the temperature boundary condition are sym-
metric, we concern more about the space variation of the temperature field along the
x-axis, which can be written as
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∂T

∂x
= −A1r

s−1((s − 1) cos2(θ) + 1). (7.11)

To analyze the response of the material to the external temperature field, we
introduce the effective thermal conductivity κe. If the thermal conductivity distributed
in the material is replaced by the uniform thermal conductivity κe, the value and
gradient of the temperature at the boundary between the material and host medium
will not change. In this case, the thermal medium with κe shows a dipolar effect on
the external temperature field. So we obtain

2π
κe − 1

κe + 1
J0 =

∫
S
[κ(r) − 1]∂T

∂x
dS, (7.12)

where S denotes the area occupied by the material. Calculating the above equation
gives

κe = a
(
s2 + (b + 2)s + 1

)
a

(
s2 + bs − 1

) + 2(s + b + 1)
. (7.13)

If b = 0, κ(r) is a constant, and s = 1. Then we achieve the desired result,

κe = a. (7.14)

7.2.2 Exact Solution for Thermal Conductivity Distributed in
a Linear Profile

We consider a linear gradation profile κ(r) = cr + d for the gradedmaterial, where c
and d are two coefficients. The analytic procedure is much the same as in Sect. 7.2.1.
For the sake of simplicity, we set r̂ = d

c r . Then, the radial function follows

d2R

dr̂2
+

(
1

r̂
+ 1

r̂ + 1

)
dR

dr̂
− n2R

r̂2
= 0. (7.15)

The power series solution can be expressed as

fn
(
r̂
) =

∞∑
k=0

Cn
k r̂

k+ρ. (7.16)

Substituting it into Eq. (7.15) yields

∞∑
k=0

Cn
k

[
(k + ρ − 1)(k + ρ) + (k + ρ) − n2

]
r̂ k+ρ−2 −
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∞∑
k=0

Cn
k

[
(k + ρ − 1)(k + ρ) + 2(k + ρ) − n2

]
r̂ k+ρ−1 = 0.

The coefficient of each term should vanish. After solving the lowest term, we can
easily get

ρ = ±n, (7.17)

and the recursion relation

Cn
k+1 = − (k + n)(k + n + 1) − n2

(k + n + 1)2 − n2
Cn
k . (7.18)

The series should be convergent for seeking the exact solution. Therefore, we require
the condition of linear profiles with a small slope, which means

∣∣ d
c

∣∣ > 1.Whereafter,
the temperature fields in the material (Ti ) and host medium (Tm) are respectively
given by

Ti = T0 + A1

∞∑
k=0

C1
k

( c

d

)k+1
cos(θ), (7.19)

Tm = T0 + D1 cos(θ)

r
− J0r cos(θ), (7.20)

where

A1 = − 2

V2(c + d) + V1
J0, D1 = V2(c + d) − V1

V2(c + d) + V1
J0. (7.21)

Here

V1 =
∞∑
k=0

C1
k

( c

d

)k+1
, V2 =

∞∑
k=0

(k + 1)C1
k

( c

d

)k+1
. (7.22)

On the other hand, solving the temperature field along the x-axis yields

∂T

∂x
= −A1

∞∑
k=0

C1
k

( c

d

)k+1
rk

(
k cos2(θ) + 1

)
. (7.23)

The substitution of Eq. (7.23) into Eq. (7.12) yields the effective thermal conductivity

κe = c (V2 + V3) + d (V1 + V2)

c (V2 − V3) − (d − 2)V1 + dV2
, (7.24)

where

V3 =
∞∑
k=0

(k + 2)C1
k

(
c
d

)k+1

k + 3
. (7.25)
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Fig. 7.1 Effective thermal conductivity κe for two gradation profiles: a κ(r) = arb and b κ(r) =
cr + d. a κe versus a for different b; b κe versus d for different c. The solid lines denote the results
calculated from the DAM (Eq. 7.30); the symbols are exact results predicted from a Eq. (7.13) and
b Eq. (7.24). Adapted from Ref. [18]

When c = 0, κ(r) is a constant, and Eq. (7.24) reduces to the known case,

κe = d. (7.26)

Now we are allowed to compare the exact solutions (Eqs. 7.13 and 7.24) with
the results obtained from the differential equation (Eq. 7.30), in order to validate the
above DAM. The numerical integration has been done by the fourth-order Runge-
Kutta algorithm. Figure7.1 shows power-law and linear gradation profiles of κ(r)
with various coefficients. Clearly the DAM (Eq. 7.30) agrees with the exact results
predicted from Eq. (7.13) (Fig. 7.1a) and Eq. (7.24) (Fig. 7.1b), as expected. It is
worth noting that the linear solutions should satisfy the small slope condition, which
causes the lack of solutions when d is relatively small; see Fig. 7.1b.

7.3 Differential Approximation Method (DAM):
A Differential Equation Approach

A graded material may be regarded differentially as a multi-layer structure. Let us
start by considering a simple material that is composed of a homogeneous circular
core (with thermal conductivity κc) plus a homogeneous circular shell (with κs). Solv-
ing Laplace’s equation and the associated boundary conditions yields the following
expression for its effective thermal conductivity κe,

κe = κs
κc(1 + p) + κs(1 − p)

κc(1 − p) + κs(1 + p)
, (7.27)



7.3 Differential Approximation Method (DAM): A Differential Equation Approach 75

where p is the area fraction of the core. For the sake of convenience, we re-write
Eq. (7.27) as

κe − κs

κe + κs
= p

κc − κs

κc + κs
. (7.28)

On the other hand, we construct a gradedmaterial with radius r . Then, we encircle the
material with a shell of infinitesimal thickness dr . The effective thermal conductivity
changes from κe(r) to κe(r + dr). In this case, Eq. (7.28) helps to obtain

κe(r + dr) − κ(r)

κe(r + dr) + κ(r)
= r2

(r + dr)2
κe(r) − κ(r)

κe(r) + κ(r)
. (7.29)

Here κ(r) is the thermal conductivity of the shell. Then, we obtain a differential
equation,

dκe(r)

dr
= κ(r)2 − κe(r)2

rκ(r)
. (7.30)

Given the gradation profile κ(r) and the initial condition when radius is close to
zero, the effective thermal conductivity of the whole graded circular material, κe(r),
can be achieved according to Eq. (7.30). This differential equation requires that the
thermal conductivity of each shell cannot be zero, of which the first-order derivative
should be continuous.

Incidentally, the differential equation for the effective thermal conductivity of a
graded spherical material can be readily obtained on the same footing [19],

dκe(r)

dr
= 2κ(r)2 − κ(r)κe(r) − κe(r)2

rκ(r)
. (7.31)

7.4 Computer Simulations Based on a Finite-Element
Method

By using COMSOL (https://www.comsol.com), we perform two-dimensional finite-
element simulations to further confirm the validity of DAM. In the mean time, more
detailed thermal responses of gradedmaterials can be revealed. The basic parameters
of our simulation system are set as follows. A graded circular material with the radius
of 6cm is embedded in the center of a square host medium with the side length of
20 cm. To maintain a uniform density of heat flux, the left side of the host medium
holds a line hot source with temperature 313 K, while the right side 273 K.

Figure7.2a, d, g show the simulation results for three different power-law grada-
tion profiles. Figure7.2b, e, h represent effective thermal materials of
Fig. 7.2a, d, g respectively, whose thermal conductivities are computed according
to both Eqs. (7.30) and (7.13) (the two equations give the same results). The thermal
conductivity of the host medium in Fig. 7.2a, b, d, e, g, h has the same value, which

https://www.comsol.com
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Fig. 7.2 Finite-element simulations for power-law gradation profiles. The color surfaces denote the
distribution patterns of a, b, d, e, g, h temperature and c, f, i temperature difference, as represented
by the associated color bar. The thermal conductivity of thematerials is a 1.0r2, b 10.36Wm−1K−1,
d 1.0r1, e 3.09 Wm−1K−1, g 0.5r1, and h 1.74 Wm−1K−1; in a, b, d, e, g, h, the host medium has
a thermal conductivity of 3.09 Wm−1K−1. c, f, and i show the temperature difference between a
and b, d and e, and g and h, respectively. Adapted from Ref. [18]

equals the effective thermal conductivity of the graded material shown in Fig. 7.2d.
Accordingly, we observe the different temperature patterns within the host medium
areas in Fig. 7.2a, d, g or Fig. 7.2b, e, h. For more detailed comparison, Fig. 7.2c,
f, i display the calculated difference between Fig. 7.2a and b, d and e, and g and h,
respectively. Clearly, Fig. 7.2c, f, i show the zero value outside the circular material
region, which further confirms the validity of (and agreement between) Eqs. (7.13)
and (7.30).

The layout of Fig. 7.3 is roughly the same as Fig. 7.2, but for the graded mate-
rial with linear gradation profiles in Fig. 7.3a, d, g. The thermal conductivities of
materials in Fig. 7.3b, e, h are different, which respectively equal to the effective
thermal conductivity of Fig. 7.3a, d, g according to Eq. (7.30) or Eq. (7.13). Simi-
larly, Fig. 7.3c, f, i display the zero value outside the circle area, which also helps to
validate Eqs. (7.30) and (7.13).
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Fig. 7.3 Finite-element simulations for linear gradation profiles. The thermal conductivities of
the host medium and the material are a 5.64 Wm−1K−1 and 0.5r + 4, b 5.64 Wm−1K−1 and
5.64 Wm−1K−1, d 7.23 Wm−1K−1 and 1.0r + 4, e 7.23 Wm−1K−1 and 7.23 Wm−1K−1, g
10.39 Wm−1K−1 and 2.0r + 4, and h 10.39 Wm−1K−1 and 10.39 Wm−1K−1. c, f and i dis-
play the temperature difference between a and b, d and e, and g and h, respectively. Adapted from
Ref. [18]

So far, both Figs. 7.2 and 7.3 have shown that the DAM (Eq. 7.30) works well
under the conditions of power-lawor linear gradation profiles of thermal conductivity.
Actually, theDAMis applicable for arbitrary gradation profiles, includingmulti-layer
structures. See Fig. 7.4. Figure7.4 has the same layout as Fig. 7.3, but displaying three
multi-layer structures in Fig. 7.4a, d, g. The thermal conductivities adopted for the
circular materials in Fig. 7.4b, e, h are educed by the DAM (Eq. 7.30) for the multi-
layer structures displayed in Fig. 7.4a, d, g respectively. Note that by choosing the
layer thicknesses appropriately, the effective thermal conductivities of the threemulti-
layer structures are exactly the same in Fig. 7.4(a,d,g), as calculated by Eq. (7.30).
Clearly, Fig. 7.4c, f, i also display the zero value outside the multi-layer structure,
which validates Eq. (7.30) for the multi-layer structure indeed.
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Fig. 7.4 Finite-element simulations for multi-layer profiles. In a, d, g, the multi-layer material
is made of two materials (with thermal conductivity 10 and 90 Wm−1K−1) in alternation: a two
layers, d six layers, and g ten layers; the central layer of a, d, g has the thermal conductivity of
10 Wm−1K−1. In a, b, d, e, g, h, the thermal conductivity of the host medium is 60 Wm−1K−1.
c, f and i represent the temperature difference between a and b, d and e, and g and h, respectively.
Adapted from Ref. [18]

7.5 Experiments Based on a Multi-layer Circular Structure

In order to further confirm the validity of theDAM(Eq. 7.30), herewe experimentally
investigate a multi-layer material. Our experimental design is shown in Fig. 7.5a, d.
Figure7.5a contains a six-layer material, which is made of twomaterials (copper and
phosphor bronze) in alternation. For comparison, Fig. 7.5d includes a homogeneous
material (brass) with the thermal conductivity (109 Wm−1K−1) equal to the effec-
tive thermal conductivity of the multi-layer material shown in Fig. 7.5a calculated
according to Eq. (7.30). The left-hand side of the host medium (copper) is connected
with hot water, and the right-hand side immerged into cold water. A thermal imager
is emplaced right above the multi-layer material. The experiment is conducted in
the air. Air convection and thermal contact resistance are two possible factors affect-
ing experimental accuracy, which, however, can be reduced by using appropriate
approaches (e.g., fine welding). Figure7.5b, e show the finite-element simulations of
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Fig. 7.5 Experimental results of a multi-layer material. a Experimental structure, b finite-element
simulation of a, and c experimental measurement results of a. d, e and f are the reference group
of a, b and c, respectively. The thickness of the experimental structures shown in a, d is 0.03 cm;
other parameters are indicated in the figure. Adapted from Ref. [18]

Fig. 7.5a, d, respectively. Figure7.5c, f exhibit the experimental results of Fig. 7.5a, d,
respectively. Clearly the experimental results (Fig. 7.5c, f) echo with the simulation
results (Fig. 7.5b, e). Importantly, the temperature distribution patterns in Fig. 7.5b,
c are similar to those in Fig. 7.5e, f. This behavior indicates that our experimental
results support the DAM (Eq. 7.30) indeed.

7.6 Discussion and Conclusions

We have derived both a first-principles approach and a DAM (differential approx-
imation method; Eq. 7.30) for calculating the effective thermal conductivity of a
circular material whose thermal conductivity varies along the radius with specific
or arbitrary gradation profiles. This Equation (7.30) has been confirmed by ana-
lytic theory (based on a first-principles approach), computer simulations (based on a
finite-element method), and experiments (based on a multi-layer circular structure).

Self-heating objects are common in nature, such as human bodies or electric
equipments. Our DAM Eq. (7.30) may hold for such self-heating cases under some
conditions. For example, let us introduce a kind of self-heating multi-layer material
and deduce the effective thermal conductivity. Here the self-heating means that the
center of the multi-layer material is keeping at a constant temperature, which can be
seen as another boundary condition in the thermalmodel.Meanwhile, themulti-layer
material is located in a uniform density of heat flux along x-axis. What we aspire
herein is that the thermal response of the self-heating multi-layer material is just the
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Fig. 7.6 Finite-element simulations for self-heating multi-layer materials. In a, b, d, e, g, h, the
thermal conductivity of the host medium is 300 Wm−1K−1. In a, d, g, the 4-layer structure is made
of materials with thermal conductivity 300, 275, 390 and 275 Wm−1K−1 from inside-out. a A
4-layer material (without self-heating) subjected to a uniform density of heat flux; d a self-heating
4-layer material; g a self-heating 4-layer material subjected to a uniform density of heat flux. In b,
the homogeneous circle’s thermal conductivity (300 Wm−1K−1) is equal to the effective thermal
conductivity of themulti-layer material shown in a determined by Eq. (7.30); in e, the homogeneous
circle’s thermal conductivity (300 Wm−1K−1) equals the effective thermal conductivity of the
multi-layer material shown in d determined by Eq. (7.32); in h, the homogeneous circle’s thermal
conductivity (300 Wm−1K−1) equals the effective thermal conductivity of the multi-layer material
shown in g determined by either Eq. (7.30) or Eq. (7.32). c, f and i display the temperature difference
between a and b, d and e, and g and h, respectively. Adapted from Ref. [18]

same as a homogeneous material. On one hand, when there is no self-heating, we
may resort to the DAM Eq. (7.30). The corresponding simulation results are shown
in Fig. 7.6a–c. On the other hand, we need to make sure that the self-heating multi-
layermaterial can be replaced by a homogeneousmaterial. Considering the boundary
conditions, we may derive the effective thermal conductivity κe at the view of the
center of material as

κe = ln
rn
r1

(
n−1∑
i=1

1

κi
ln

ri+1

ri

)−1

, (7.32)
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in which n is the total number of layers, and i is the serial number of each layer (with
radius ri and conductivity κi ) of themulti-layermaterial from inside-out. Figure7.6d–
f show the simulation results. If the effective thermal conductivities calculated from
the above two approaches (namely, Eqs. 7.30 and 7.32) are coincidently identical,
we can safely superpose the thermal effects induced by these two kinds of heat
sources adopted in Fig. 7.6a, d. As a result, Fig. 7.6g depicts a self-heating multi-
layer material subjected to a uniform density of heat flux, which behaves just like a
homogeneous material as shown in Fig. 7.6h, i.

This chapter is useful for designing new thermalmetamaterials (including or going
beyond thermal cloaks and thermal concentrators) for controlling/manipulating heat
transfer, say, yielding the behavior of thermal transparency [6] when thermal con-
ductivities depend on temperature or not [20]. Also, it is helpful for interdisciplinary
researches on other kinds of gradation profiles when Laplace’s equation governs the
system [21–23].

7.7 Exercises and Solutions

Exercises

1. Prove Eq. (7.31).

Solutions

1. Solution: Refer to the article “L. Dong, J. P. Huang, K. W. Yu, and G. Q. Gu,
Multipole polarizability of a graded spherical particle, Eur. Phys. J. B 48, 439–444
(2005)”, where the Eqs. (13)–(16) just show the desired solution by taking the l = 1
limit.
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Chapter 8
Thermal Band Theory

Abstract In non-metal materials, phonon transport is the main mechanism of heat
transfer and contributes to the most of thermal conductivity. This chapter describes
the heat conduction from microscopic and mesoscopic levels, and presents some
basic ideas of calculating thermal conductivities from theBoltzmann equation and the
concept of engineeringphononband structure. Finally, thermocrystals are introduced,
which have potential applications in guiding heat flux.

Keywords Thermal conductivity · Phonon transport · Phononic crystal ·
The Boltzmann equation · Band gap · Thermocrystals

8.1 Opening Remarks

This chapter mainly introduces the concept of thermocrystal proposed by Maldovan
in Ref. [1]. It used a familiar periodic-composites structure of phononic crystal or
sonic crystal while its lattice constant is at 10nm level, which is much smaller than
sound wavelength. Such a thermocrystal might be used to control heat in the manner
of controlling wave.

Artificial periodic structures have been widely used to manipulate light and sound
wave, which are known as photonic and phononic crystals respectively, as Bragg
scattering can generate a photonic or phononic band gap to forbidden the transport
of photons or phonons at some certain frequencies. A question is that can we also
use artificial periodic structures called thermocrystals to control heat flux?

Firstwe shouldmake clear the carriers of heat. Phonons,which are the quantization
of collective vibration of the lattices, contribute tomost of the thermal conductivity in
non-metallic materials. However, is a phononic crystal equivalent to a thermocrystal?
What is the difference between phonons carrying heat and sound waves?

It can be noticed that soundwaves are formed by the vibration of continuousmedia
while phonons come from lattice vibration, a discrete model. In fact, only when
wave vector or frequency is very small, lattice vibration can be approximately seen
as a continuum mechanics model. Also, sound waves usually have low frequencies
while in common materials heat is carried mainly by high-frequency phonons (more
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than THz at room temperature). The corresponding wavelengths of thermal phonons
are usually about 2nm and it is hard for current nanotechnology to manufacture a
phononic crystal with such a small periodicity.

In addition, high-frequency phonons behave more like particles and can be scat-
tered more easily than low-frequency phonons. As we can see in paragraphs below,
thermal conductivity should be infinite without scattering because mean free paths
are infinite in that case. In fact, scattering can be seen as anharmonic interaction
between atoms and it is usually neglected in sound wave equation. So if we want
to use a periodic phononic crystal to manipulate thermal phonons just like manipu-
lating waves, we should enhance the proportion of low-frequency phonons in heat
transfer and then take the lattice as continuous media. This is what Maldovan did
in his article on thermocrystal [1]. To get a narrow phonon spectrum for heat trans-
fer in bulk material silicon, he introduced impurities (nanoparticles) to shorten the
mean free paths (which is proportional to thermal conductivity) of high-frequency
phonons and enhance boundary scattering to shorten the mean free paths of extra
low-frequency phonons. In this way, low-frequency phonons at about 100–300 GHz
contribute most of the thermal conductivity and can be approximately taken as elastic
waves. By arranging periodic holes in the bulk Si–Ge material, a phononic crystal
with a band gap at about 180–300 GHz can be fabricated.

8.2 Boltzmann Transport Equation

To understand how phonons can affect heat transport, we will firstly talk about
how to calculate thermal conductivities from the Boltzmann transport equation of
phonons. The Boltzmann transport equation offers a method for calculating thermal
conductivity from a mesoscopic level. Let us consider a three-dimensional crystal
with N primitive cells and there are n atoms in each cell. Firstly, there exist 3
acoustic phonon modes or branches. The number 3 means 3 kinds of polarization:
one longitudinal mode and two transverse modes. Besides, there are 3n − 3 optical
phonon modes if each primitive cell has n different atoms (sometimes the same kind
of atoms in a cell can also generate optical modes). For each mode, wave vector k
can have N discrete values in the first Brillouin zone when the total crystal has N
primitive cells. For an ideal crystal with infinite primitive cells, k can be regarded as
a continuous value and we can write the summation over all phonons with different
k and polarization j as an integral form:

1

V

∑

j,k

→ 1

(2π)3

∑

j

∫

BZ
dk, (8.1)

where V is the volume of the whole lattice and “BZ” denotes the first Brillouin zone.
Let indices j = 1, 2, 3 represent acoustic phonon polarization, and then the Boltz-

mann transport equation for phonons distribution fk, j (r, t) reads
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∂ fk, j (r, t)
∂t

+ v j (k) · ∇ fk, j (r, t) =
(

∂ fk, j (r, t)
∂t

)

scatt

. (8.2)

Here t denotes time, v j (k) is the group velocity that equals
∂ω j (k)

∂k
, and ω j (k)

is the frequency of phonon for the j-th mode or branch at a given k. In addition,(
∂ fk, j (r,t)

∂t

)

scatt
is the scattering or collision term.

With relaxation-time approximation (theCallaway-Hollandmodel), the scattering
term has a simplified form as

(
∂ fk, j (r, t)

∂t

)

scatt

= − fk, j (r, t) − f eqk, j (r)

τ j (k)
, (8.3)

where f eqk, j (r) is the equilibriumdistribution orBose-Einstein distribution of phonons

f eqk, j (r) = 1

exp
(
�ω j (k)/kBT (r)

) − 1
. (8.4)

In addition, we assume fk, j (r) is near f eqk, j (r) in steady states, meaning

fk, j (r) = f eqk, j (r) + δ f eqk, j (r), (8.5)

and thus

∇ fk, j (r) � ∇ f eqk, j (r) = ∂ f eqk, j
∂T

∇T . (8.6)

So we can rewrite

fk, j � f eqk, j − τ j (k)
∂ f eqk, j
∂T

v j (k) · ∇T . (8.7)

The heat current density vector is

q = 1

V

∑

k, j

�ω j (k)v j (k) fk, j , (8.8)

or in the integral form as

q = 1

(2π)3

∑

j

∫
�ω j (k)v j (k) fk, jdk. (8.9)

Because heat flux is zero in equilibrium

∑

k, j

f eqk, j�ω j (k)v j (k) = 0, (8.10)
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we can rewrite heat flux density as

q = − 1

(2π)3

∑

j

∫
�ω j (k)v j (k)τ j (k)

∂ f eqk, j
∂T

v j (k) · ∇T dk

= − 1

(2π)3

∑

j

∫
v j (k)τ j (k)v j (k) · ∇T

(�ω j (k))2 exp
(
�ω j (k)/kBT

)

kBT 2
[
exp

(
�ω j (k)/kBT

) − 1
]2 dk.

(8.11)
Since the Fourier law of heat conduction writes

q = −λ · ∇T, (8.12)

the thermal conductivity tensor is

λ(T ) = 1

(2π)3

∑

j

∫
v j (k) ⊗ v j (k)τ j (k)

(�ω j (k))2 exp
(
�ω j (k)/kBT

)

kBT 2
[
exp

(
�ω j (k)/kBT

) − 1
]2 dk

(8.13)
or

λαβ(T ) = 1

(2π)3

∑

j

∫
(v j (k))α(v j (k))βτ j (k)

(�ω j (k))2 exp
(
�ω j (k)/kBT

)

kBT 2
[
exp

(
�ω j (k)/kBT

) − 1
]2 dk.

(8.14)
Note that the phonon specific heat can be expressed as

Cph(ω j (k)) � ∂

∂T

[
�ω j (k)( f

eq
k, j + 1

2
)

]

= (�ω j (k))2 exp
(
�ω j (k)/kBT

)

kBT 2
[
exp

(
�ω j (k)/kBT

) − 1
]2 .

(8.15)

And we add a useful approximation that the thermal conductivity is isotropic,

(v j (k))α(v j (k))β � v j (k)2〈cos2 θ〉 = 1

3
(v j (k))2, (8.16)

where θ is the angle between v j (k) and temperature gradient. Then, the final form
of the Callaway-Holland model in the wave vector space can be written as

λ(T ) = 1

3

1

(2π)3

∑

j

∫
(v j (k))2τ j (k)Cph(ω j (k))dk

= 1

3

1

(2π)3

∑

j

∫
v j (k)� j (k)Cph(ω j (k))dk.

(8.17)
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Here � j (k) = v j (k)τ j (k) is the mean free path. We can see that for a phonon with
wave vector k and polarization j (and thus the frequency is determined), its con-
tribution to thermal conductivity is proportional to the group speed, mean free path
and phonon specific heat. As a result, if we want to block the phonon transport at a
certain frequency range for reducing its contribution to the thermal conductivity, a
convenient method is to shorten its mean free path by using enhanced scattering.

8.3 Scattering

If there is no scattering or collision, thermal conductivities would be infinite as
relaxation time τ = ∞ (herewe neglect the indices k, j). Usually, the total relaxation
time given by Matthiessen’s rule is

1

τ
= 1

τU
+ 1

τM
+ 1

τB
+ 1

τph−e
+ · · · (8.18)

Here τU, τM, τB, τph−e is the relaxation time caused by Umklapp scattering, mass-
difference impurity scattering,boundary scattering, phonon-electricity scattering
respectively. Umklapp scattering is the anharmonic phonon interaction (usually con-
sider third-order interaction or 3-phonons process only) which allows the violation
of the conservation of phonon momentum. Umklapp scattering is stronger in high
temperature and for high-frequency phonons, and usually we can write

1

τU
= ATeB/Tω2, (8.19)

where A and B are two coefficients. Mass-difference impurity scattering results
from the impurities and lattice dislocation and can have a linear relationship with
higher-order of phonon frequency:

1

τM
= Dω4. (8.20)

Here D is a coefficient determinedby the density difference of thematrix and impurity
embedded, impurity particles radius and group speed. Boundary scattering is the
result of irregular grain boundaries. Phonon-electricity scattering is quite complicated
and often neglected for simplicity in studies.Matthiessen’s rule also implies that these
scattering processes are independent of each other.

However, sometimes Matthiessen’s rule might not be so accurate especially for
boundary scattering. Umklapp scattering, mass-difference impurity scattering and
phonon-electricity scatteringhappen in thebulkwhile boundary scattering is a surface
effect and relatively independent of the bulk effect. To improve the accuracy of
prediction, Maldovan defined the (reduced) mean free path as
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Fig. 8.1 Schematic graph showing boundary scattering and internal scattering in a thin film

� j (k) = �0 j (k)

[
1 − [1 − p(k)] exp [−L1(k)/�0 j (k)

]

1 − p(k) exp
[−L2(k)/�0 j (k)

]
]

, (8.21)

where �0 j (k) is the bulk mean free path when boundary scattering is not considered,
p(k) is the boundary specularity and L1(k), L2(k) are characteristic lengths of the
material. In a thin film, we can take L1(k) = MQ′ and L2(k) = QQ′ as shown in
Fig. 8.1 [2].

8.4 Narrow Thermal Phonon Spectrum

Remember that our purpose is to construct a thermocrystal that can manipulate ther-
mal phonons in the manner as manipulating waves like electromagnetic waves in
photonic crystals or elastic waves in phononic crystals. To enhance the wave proper-
ties of phonons carrying heat, the corresponding frequencies should be low. Accord-
ing to Eq. (8.20), mass-difference impurity scattering is stronger for high-frequency
phonons soMaldovan introduced Ge nanoparticles (with small diameters at nanome-
ter level) in Ref. [1], which are embedded in bulk Si material. The filling fraction is
10% and thus a nano-structured alloy called Si90Ge10 is fabricated.

Next,Maldovan uses boundary scattering to selectively block extra low-frequency
phonons and further narrow the thermal phonon spectrum. If the thickness of Si90Ge10
thin film is larger than medium-frequency and high-frequency phonons, only ultra-
low frequency phonons will be significantly subjective to boundary scattering effect.
Maldovan calculated the cumulative thermal conductivity for different thicknesses
including 10, 100 and 1000µm.The simulation results are shown in Fig. 1 of Ref. [1].
We can see that, for Si90Ge10 with nanoparticles (np), high-frequency phonons ( f >

1 THz) contribute only about 15% of the conductivity while in the bulk Si they
contribute about 80%. Also, the effect of blocking high-frequency phonons are better
in nano-structured Si90Ge10 than in normal Si90Ge10. In addition, when the film gets
thicker, extra-low frequency phonons carry less heat, yielding a narrower thermal
phonon spectrum. When the thickness is 1000 μm, thermal phonons with frequency
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from 100 to 300GHz carry 60% of the heat. In such a narrow hypersonic range, the
mean free path of phonons is about 200–700 µm, which means the phonons can
propagate relatively large distances and thus behave more like waves.

8.5 Thermal Band Gap

Now we have obtained a nano-structured Si90Ge10 alloy in which low-frequency
phonons carrying heat can be regarded as elastic waves. The last step to design a
thermocrystal is to use periodic composites just like phononic crystals. Firstly, since
the phonon spectrum is about 100–300 GHz, we are allowed to write the elastic
(sound) wave equation in an isotropic medium,

ρ
∂2ui
∂t2

= ∇ · (
ρc2t ∇ui

) + ∇ ·
(

ρc2t
∂u
∂xi

)
+ ∂

∂xi

[(
ρc2l − 2ρc2t

)∇ · u]
, (8.22)

where ρ is the density, u = ∑
ui i is the displacement, and ct (orcl) is the transverse

(or longitudinal) speed of sound. In addition, with Poisson’s ratio σ and Young’s
modulus E , we have

cl =
√

E(1 − σ)

ρ(1 + σ)(1 − −2σ)
(8.23)

and

ct =
√

E

2ρ(1 + σ)
. (8.24)

In such an (three-dimensional) isotropic medium, there are 3 acoustic modes, one
longitudinal wave and two transverse waves, and each has a simple linear dispersion
relationship. To obtain a phononic band gap, a commonly-used technique is placing
periodic air holes in the medium and the periodicity should be near the wavelength
of sound. By this way, the engineered material has more phonon modes. In Ref. [1],
the lattice constant is set to be 10 and 20nm and the air holes can be circular or other
optimized shapes. From Fig. 2 of Ref. [1] that is the result of FEM simulation, we
can see the band gap is just located in the narrow hypersonic frequency range of
thermal phonons.

Based on such a thermocrystal, there are some potential applications including
heat wave-guides and thermal diodes as illustrated in Fig. 3 of Ref. [1]. However,
here we must point out that the band structure in Fig. 2 of Ref. [1] is not strict
because we take the lattice wave as elastic wave as an approximation. This approx-
imation can be used when phonons carrying heat are restricted to low-frequency
range and the assumption of continuum mechanics is still valid. Luckily, a recent
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experiment tailoring thermal conductance with phononic crystal below 1K shows
that the measurement data are consistent with finite-element analysis of continuum
mechanics [3].

8.6 Exercises and Solutions

Exercises

1. Phonon density of states (DOS) or vibration DOS for a certain frequency g(ω)

is defined as

g(ω) = lim
�ω→0

1

�ω

ω�ω j (k)�ω+�ω∑

j,k

=
∑

j

∑

k

δ
(
ω − ω j (k)

)
(8.25)

or

g(ω) = lim
�ω→0

1

�ω

V

(2π)3

∑

j

∫

ω�ω j (k)�ω+�ω

dk, (8.26)

which satisfies ∫
g(ω)dω = 3nN . (8.27)

Also we can define the DOS g j (ω) for a certain mode or branch as

g j (ω) = lim
�ω→0

1

�ω

ω�ω j (k)�ω+�ω∑

k

=
∑

k

δ
(
ω − ω j (k)

)
. (8.28)

Here we take g j (ω) and g(ω j ) as the same. Prove that the Callaway-Holland
model in frequency space tells

λ(T ) = 1

12π4V

∑

j

∫
g(ω j )v

2
j (ω j )τ j (ω j )Cph(ω j )dω. (8.29)

2. DOS of phonon is usually obtained by numerically simulation as the dispersion
relationship can be quite complicated. Debye model is a useful approximation
for low temperature limit, which takes the discrete lattice as continuous medium
and use a linear dispersion relationship for acoustic modes

ωl = clk, ωt = ctk. (8.30)

Prove that: (i) phonon DOS has the expression as
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g(ω) = V

2π2

(
1

c3l
+ 2

c3t

)
ω2; (8.31)

(ii) to guarantee the total number of states satisfies

∫ ωD

0
g(ω)dω = 3nN , (8.32)

the cut-off angular frequency called the Debye frequency ωD is

ωD =
(
6π2nN

V

)1/3

vmean (8.33)

where
3

v3
mean

= 1

c3l
+ 2

c3t
; (8.34)

(iii) the volume specific heat of the lattice is

CV � ∂

∂T

[∫ ωD

0
g(ω j (k))�ω j (k) f

eq
k, jdω

]

= 9nNkB

(
T

TD

)3 ∫ TD
T

0

x4ex

(ex − 1)2
dx

(8.35)

where TD is the Debye temperature defined as

TD = �ωD

kB
. (8.36)

Solutions

1. Solution: We have obtained the expression of thermal conductivity in wave
vector k space

λ(T ) = 1

3

1

(2π)3

∑

j

∫
(v j (k))2τ j (k)Cph(ω j (k))dk

= 1

3

1

(2π)3

∑

j

∫
v j (k)� j (k)Cph(ω j (k))dk.

(8.37)
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Note that ∑

j

∫
dk =

∑

j

∫
4πk2dk

=
∑

j

∫
4πω2(k/ω)2

dk

dω
dω

=
∑

j

∫
4πω2(vphase)

−2(vgroup)
−1dω

(8.38)

and

g j (ω)/V = d
∫
k(ω, j)2dk

2π2dω
= d

∫
k2dk

dk

dk

2π2dω
= ω2

2π2vphase(ω, j)2
1

vgroup(ω, j)
.

(8.39)
Since vgroup(ω, j) is just v2

j (ω j ) in previous text, finally we have

λ(T ) = 1

12π4V

∑

j

∫
g(ω j )v

2
j (ω j )τ j (ω j )Cph(ω j )dω. (8.40)

2. Solution:
(i) for each mode, DOS is

g j (ω)dω = V

(2π)3
4πk2dk = V

(2π)3
4π

(ω

v

)2 dω

v
. (8.41)

In Debye model, we have one longitudinal wave and two transverse waves, so
we can write

g(ω) = V

2π2

(
1

c3l
+ 2

c3t

)
ω2, (8.42)

and thus the effective mean group speed vmean can de defined by

3

v3
mean

= 1

c3l
+ 2

c3t
; (8.43)

(ii) Since ∫ ωD

0
g(ω)dω = 3nN , (8.44)

we have ∫ ωD

0

V

2π2

3

v3
mean

ω2dω = 3nN , (8.45)
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so we can see

ωD =
(
6π2nN

V

)1/3

vmean. (8.46)

(iii) The total thermal energy is

U =
∫

dωg(ω) f eqk, j�ω =
∑

j

∫ ωD

0
dω

Vω2

2π2v3
group

�ω

e�ω/kBT − 1
(8.47)

or using the mean group velocity is

U = 3V�

2π2v3
mean

∫ ωD

0
dω

ω3

e�ω/kBT − 1

= 3Vk4BT
4

2π2v3
mean�

3

∫ xD

0
dx

x3

ex − 1

= 9NkBT (
T

TD
)3

∫ xD

0
dx

x3

ex − 1

(8.48)

where TD is the Debye temperature defined as

TD = �ωD

kB
(8.49)

and x = �ω/kBT . Then we can easily have

CV = ∂U

∂T
= 9NkB(

T

TD
)3

∫ xD

0
dx

x4ex

(ex − 1)2
. (8.50)
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Chapter 9
Temperature-Dependent Transformation
Thermotics for Thermal Conduction:
Switchable Cloak and Macroscopic Diode

Abstract By establishing temperature-dependent transformation thermotics for
treating materials whose conductivity depends on temperature, we show analytical
and simulation evidences for switchable thermal cloaking and amacroscopic thermal
diode based on the cloaking. The latter allows heat flow in one direction but prohibits
the flow in the opposite direction, which is also confirmed by our experiments. Our
results suggest that the temperature-dependent transformation thermotics could be
useful for achieving macroscopic heat rectification, and provide guidance both for
macroscopic control of heat flow and for the design of the counterparts of switch-
able thermal cloaks or macroscopic thermal diodes in other fields like seismology,
acoustics, electromagnetics, or matter waves.

Keywords Temperature-dependent coordinate transformation · Thermal cloak ·
Thermal diode

9.1 Opening Remarks

In 2008, Fan et al. [1] adopted a coordinate transformation approach to propose a
class of thermal metamaterial where heat is caused to flow around an “invisible”
region at steady state, thus called thermal cloaking. The cloaking originates from the
fact that the thermal conduction equation remains form-invariant under coordinate
transformation. So far, the theoretical proposal of steady-state thermal cloaking [1]
and its extensions (say, bifunctional cloaking of heat and electricity [2] or nonsteady-
state thermal cloaking [3]) have been experimentally verified and developed [4–8].
The theoretical treatment based on coordinate transformation [1–3, 9–13], which is
called transformation thermotics (or transformation thermodynamics), has a poten-
tial to become a fundamental theoretical method for macroscopically manipulating
heat flow at will.

However, in order to realize desiredmacroscopic thermal rectification, say, switch-
able thermal cloaking and macroscopic thermal diodes, the existing transformation
thermotics [1–3] is not enough since it only holds for materials whose conductiv-
ity is independent of temperature (thus called linear materials). For instance, the
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desired thermal diode should conduct heat in one direction, but insulate the heat in
the opposite direction. This is a kind of asymmetric behavior of heat current. For
this purpose, nonlinear materials (whose conductivity relies on temperature) must
be adopted. Actually, it is long known that for many materials, their thermal con-
ductivities (κ) vary with temperature (T ): (1) κ increases as T increases. Say, for
noncrystalline solids, a series of experiments on glass [14] showed that at low tem-
perature the thermal conductivity is proportional to T 1.6 ∼ T 1.8; (2) κ increases as T
decreases. For example, measurements on single crystals of silicon and germanium
from 3K to their melting point [15] showed that their thermal conductivity decreases
faster than 1/T .

9.2 Temperature-Dependent Transformation Thermotics
for Thermal Conduction

Nowwe are in a position to develop a theory of transformation thermotics for treating
nonlinear materials, thus called temperature-dependent transformation thermotics.
The details of the theory are given in Sect. 2.3, see Eq. (2.47). Further, we obtain the
following key formula,

κ̃(T ) = J̃ (T )κ0 J̃ t(T )

det[ J̃ (T )] . (9.1)

This Eq. (9.1) is equivalent to Eq. (2.47), and it denotes that instead of construct-
ing materials for a background whose thermal conductivity is T -dependent, we may
apply a T -involved transformation to the original thermal conduction equation. This
process allows us to design switchable thermal cloaks and then macroscopic ther-
mal diodes. The former serve as an extension of the extensively investigated cloaks
without switches [1–8, 16]; the latter are actually a useful application of the former
in this chapter. We proceed as follows.

9.3 Switchable Thermal Cloak

9.3.1 Design

A traditional thermal cloak can protect a central region from an external heat flux and
permits the region to remain a constant temperature without disturbing the tempera-
ture distribution outside the cloak (Fig. 9.1). To achieve this cloaking effect, a simple
radial stretch transformation of polar coordinates may be performed. As schemat-
ically shown in Fig. 9.1, the circular region with radius R2 is compressed to the
annulus region with radius between R1 and R2, and the geometrical transformation
can be written as
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Fig. 9.1 Schematic graph
depicting a thermal cloak
between radius R1 and R2.
The two lines, each with
three arrows, denote the flow
of heat: the cloak does not
disturb the heat flow at the
region with radius larger
than R2; the heat flux cannot
enter the central region with
radius smaller than R1.
Adapted from Ref. [25]

r ′ = r
R2 − R1

R2
+ R1, (9.2)

where r ∈ [0, R2] and r ′ ∈ [R1, R2]. Here r ′ is the radial coordinate in physical space.
In order to realize different responses to heat flow on the two sides of a thermal

diode, we need two types of thermal cloaks: one functions at high temperature (here-
after indicated as type-A cloaks), and the other works at low temperature (type-B
cloaks). Unlike some previous proposed switchable electromagnetic cloaks [17–19],
the switching effect should be triggered automatically by temperature changes. For
this purpose, an idea is to modify Eq. (9.2) as

r ′ = r
R2 − R̃1(T )

R2
+ R̃1(T ), (9.3)

where R̃1(T ) = R1[1 − (1 + eβ(T−Tc))−1] for type-A cloaks and R̃1(T ) = R1/(1 +
eβ(T−Tc)) for type-B cloaks. Here Tc is a critical temperature around which the cloak
is switched on or off, and β is a scaling coefficient which is set to be 2.5K−1 in this
chapter.

So far, for obtaining thermal cloaks with switching phenomena, we need to com-
bine Eqs. (9.3) and (9.1). As a result, for the area with radius r ′ ∈ [R1, R2] in Fig. 9.1,
we achieve the thermal conductivities in polar coordinates, diag[κ̃r (T ),κ̃θ (T )], as

κ̃r (T ) = κ0
r ′ − R̃1(T )

r ′ , κ̃θ (T ) = κ0
r ′

r ′ − R̃1(T )
. (9.4)

Here κ0 represents the T -independent thermal conductivity of the background.
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9.3.2 Finite-Element Simulation

Then we perform finite-element simulations based on the commercial software
COMSOL Multiphysics (http://www.comsol.com/). A thermal cloak with R1 =
1 cm and R2 = 2 cm is set in a box with size 8 cm × 7 cm as shown in Fig. 9.2.
Heat diffuses from the left boundary with high temperature TH to the right bound-
ary with low temperature TL . Meanwhile, the upper and lower boundaries of the
simulation box are thermally isolated.

Fig. 9.2 Switchable thermal cloaks obtained by two-dimensional finite-element simulations: a, c
switch on for the temperature above 340K and b, d switch off for the temperature below 320K.
The color surface denotes the distribution of temperature, where isothermal lines are indicated; heat
diffuses from left to right; the upper and lower boundaries are thermal insulation. a and b show
the results of thermal conductivities calculated according to Eq. (9.4); c and d show the results of
10 alternating layers of two sub-layers with κ1(T ) and κ2(T ) given by Eq. (9.5) (effective medium
theory). In a–d, an object with thermal conductivity 0.01W/mK is set in the central region with
radius R1. Parameters: κ0 = 1W/mK, κa = 0.1W/mK, κb = 10W/mK, R1 = 1 cm, R2 = 2 cm,
and Tc = 330K. Adapted from Ref. [25]

http://www.comsol.com/
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The simulation results of a type-A cloak are shown in Fig. 9.2a, b. In Fig. 9.2a, at
high temperature (T = 340K ∼ 360K), we observe that the cloak is functioning and
thermally hiding the object located at the central region with radius R1. However,
when the environment is changed to low temperature (T = 300K ∼ 320K), the
cloak is turned off. That is, the temperature distribution outside the object is distorted,
just as the cloak (located between R1 and R2) is absent. Owing to the antisymmetry
between type-A and type-B cloaks, the type-B cloaks exhibit the behavior similar to
Fig. 9.2a, b, but switching on (or off) at low (or high) temperature.

9.3.3 Theoretical Realization Based on an Effective Medium
Theory

The materials designed according to Eq. (9.4) is anisotropic and inhomogeneous,
which is difficult to be realized in experiments. In fact, for constructing such materi-
als, we can simply utilize alternating layers of two homogeneous isotropic sub-layers
with thicknesses d1 and d2 and conductivities κa and κb. For simplification, in this
chapter, we set d1 = d2. According to the theoretical analysis and effective medium
theory [2–4, 16, 20], the conductivities of two sub-layers should satisfy κaκb ≈ κ2

0
for a traditional cloak. In order to endue conventional cloaks with the switching
effect, some mathematical operations must be carried out on κa and κb in the way
analogous to what we did on R̃1(T ). Therefore, we obtain κ1(T ) and κ2(T ) as the
new temperature-dependent thermal conductivities of the sub-layers,

κ1(T ) = κa + κ0 − κa

1 + eβ(T−TC )
, κ2(T ) = κb − κb − κ0

1 + eβ(T−TC )
. (9.5)

The two expressions yield: κ1(T ) → κa and κ2(T ) → κb when T � TC ; κ1(T ) →
κ0 and κ2(T ) → κ0 as T � TC . That is, the cloaking effect is switched on (or off) for
high (or low) temperature environment T � TC (or T � TC ). Equation (9.5) offers
a convenient tool to help experimentally realize our theoretical design of Eq. (9.4).
Next, we plot Fig. 9.2c, d, which shows the simulation results of 10 alternating
layers for constructing type-A cloaks. Evidently, Fig. 9.2c, d displays the switching
phenomenon similar to Fig. 9.2a, b. The procedure holds the same for achieving
type-B cloaks.

9.4 Macroscopic Thermal Diode

9.4.1 Design

The above thermal cloakingmay help to design a kind ofmacroscopic thermal diodes.
As shown in Fig. 9.3a, the diode device contains Regions I, II and III: Region I (II)
is a segment of the type-A (type-B) cloak, and Region III is a thermal conductor.
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Fig. 9.3 a Sketch of a thermal diode, which is the rectangular area enclosed by the solid black
lines. The blurred area outside is a reference and actually does not exist in the design. I, II, and III
represent three regions, respectively. Here the arrows indicate the direction of heat flow; the length
of arrows represents the amount of heat flux: the heat flux transferred from right to left (upper panel:
the insulating case) is much smaller than that from left to right (lower panel: the conducting case).
b Heat current J versus temperature bias �T . c, d Thermal diode obtained by two-dimensional
finite-element simulations: c the insulating case and d the conducting case. The color surface denotes
the distribution of temperature; white arrows represent the direction of heat flow; the length of white
arrows indicates the amount of heat flux; the upper and lower boundaries are thermal insulation.
Thermal conductivities are calculated according to Eq. (9.4); an object with thermal conductivity
10W/mK is set in the central region with radius R1. Parameters: κ0 = 1W/mK, R1 = 3.6 cm,
R2 = 4 cm, and Tc = 330K. Adapted from Ref. [25]

Compared with a full system, the cloaking effect still exists in our diode but is not
perfect. There will be a small amount of heat flux conducting through the central
region for the insulating case. However, the truncation of a whole cloak is necessary
to separate the type-A part and the type-B part. The antisymmetry of type-A and
type-B cloaks is expected to cause different behaviors of heat conducting from the
two opposite directions. The transformation plays an important role in introducing
anisotropic effect to the structure, which guides the heat flux to the boundaries to
enhance the thermal insulating effect.
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9.4.2 Finite-Element Simulation

Then we perform finite-element simulations. Figure9.3c, d shows the simulation
results of the device, which helps to insulate heat from right to left but conduct the
heat from left to right. That is, the behavior of diode can be achieved indeed due
to the antisymmetry of type-A and type-B cloaks (namely, Region I and Region II).
Moreover, for different temperature biases (obtained by subtracting the temperature
at the left boundary from that at the right boundary), �T , we also calculate the total
heat current J by integrating the x component of heat flux across the line x = 0; see
Fig. 9.3b. The device displays a significant rectifying effect, which has a maximum
rectification ratio of 30 for the current parameter set.

9.4.3 Experimental Realization Based on an Effective
Medium Theory

In order to realize such a macroscopic thermal diode, we can also adopt the effective
medium theory. As discussed above, the switchable thermal cloak can be constructed
with alternating layers. The thermal conductivities of the sub-layers are required to be
sensitive to the temperature change around the critical point. This kind of behaviors
can be found in the phase transitions of some materials [21–23]. However, inspired
by the spirit of metamaterials (yielding novel functions by assembling conventional
materials into specific structures), we manage to realize the macroscopic thermal
diode with materials of constant conductivities. Our method is that instead of directly
resorting to the transitions ofmaterials’ physical properties,we use the structural tran-
sition to trigger the switching effect. According to the demands of our design, the
geometrical configuration of the device should change rapidly as temperature varies.
Fortunately, we found that the shape-memory alloy (SMA) [24] may be able to help.
As shown in the schematic diagrams of our design [see Fig. 9.4a and b; more details
of the experiment can be found in Part II of Supplemental Material of Ref. [25]],
the sub-layers of the cloak segments are coppers and expanded-polystyrene (EPS).
Around the critical temperature, the deformations of the SMA slices drive the copper
slices to connect or disconnect the copper layers. The connection and disconnection
can be equivalently regarded as transitions of the local thermal conductivities. Thus
a temperature-dependent thermal metamaterial is realized with materials of constant
thermal conductivities (a whole switchable thermal cloak can also be built with the
same method). The experimental results are shown in Fig. 9.4c and d. Figure9.4c
displays the temperature distribution within the central region, which is almost con-
stant. That is, in this case, heat almost cannot flow through this central region. Thus,
Fig. 9.4c corresponds to the insulating case of the diode. In contrast, Fig. 9.4d repre-
sents the conducting case of the diode. This is because Fig. 9.4d shows a significant
temperature gradient within the central region. Also, the temperature distribution
appears to be horizontal. As a result, we can conclude that an evident heat flow
comes to appear within the central region of Fig. 9.4d.
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Fig. 9.4 a, b Scheme of experimental demonstration of themacroscopic thermal diode: a insulating
case and b conducting case. Both the copper-made concentric layered structure and the central
copper plate (both displayed in orange) are placed on an expanded-polystyrene (EPS) plate which
is not shown for clarity. The left and right sides of the diode are stuck in water to have constant
temperature boundary conditions. a When cold water is filled in the left container (light blue) and
hot water the right container (pale red), the bimetallic strips of SMA and copper (white) warp up
and the device blocks heat from right to left. b When the two containers swap their locations, the
bimetallic strips (white) flatten and the device conducts heat from left to right. c, d Experimentally
measured temperature distribution of the device: c insulating case and d conducting case. Adapted
from Ref. [25]

9.5 Conclusions

We have established a theory of temperature-dependent transformation thermotics
for dealingwith thermalmaterials whose conductivity is temperature-dependent. The
theory serves as a fundamental theoretical method for designing switchable thermal
cloaking.We have also shown that the switchable thermal cloaks can be employed for
achieving a macroscopic thermal diode, which has also been experimentally realized
by assembling homogeneous and isotropic materials according to the design based
on the effectivemedium theory. The diode has plenty of potential applications related
to heat preservation, heat dissipation, or even heat illusion [26, 27] in many areas like
efficient refrigerators, solar cells, energy-saving buildings, and military camouflage.
Thus, by using temperature-dependent transformation thermotics to tailor nonlinear
effects appropriately, it becomes possible to achieve desired thermal metamaterials
with diverse capacities for macroscopic thermal rectification. On the same footing,
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our consideration (for cloaks and diodes) adopted in this chapter can be extended to
obtain the counterparts of both switchable thermal cloaks and macroscopic thermal
diodes in other fields like seismology, acoustics, electromagnetics, or matter waves.

9.6 Exercises and Solutions

Exercises

1. Prove both Eq. (9.1) and its equivalence with Eq. (2.47).

Solutions

1. Solution: See Part I of Supplemental Material of the article “Y. Li, X. Y. Shen,
Z. H.Wu, J. Y. Huang, Y. X. Chen, Y. S. Ni, and J. P. Huang, Temperature-dependent
transformation thermotics: From switchable thermal cloaks to macroscopic thermal
diodes, Phys. Rev. Lett. 115, 195503 (2015)”, where Eq. (S14) and its proof serve
as the solution.
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Chapter 10
Temperature Trapping Theory:
Energy-Free Thermostat

Abstract It is crucial to maintain constant temperatures in an energy-efficient way.
Herewepresent a temperature-trapping theory for asymmetric phase-transitionmate-
rials with thermally responsive thermal conductivities. Then we theoretically intro-
duce and experimentally demonstrate a concept of energy-free thermostat within
ambient temperature gradients. The thermostat is capable of self-maintaining a
desired constant temperature without the need of consuming energy even though
the environmental temperature gradient varies in a large range. As a model appli-
cation of the concept, we design and show a different type of thermal cloak that
has a constant temperature inside its central region in spite of the changing ambient
temperature gradient, which is in sharp contrast to all the existing thermal cloaks.
This chapter has relevance to energy-saving heat preservation, and it provides guid-
ance both for manipulating heat flow without energy consumption and for designing
new metamaterials with temperature-responsive or field-responsive parameters in
many disciplines such as thermotics, optics, electromagnetics, acoustics, mechanics,
electrics, and magnetism.

Keywords Thermostat · Thermal cloak · Temperature trapping

10.1 Opening Remarks

It is known that humans are faced with a global energy crisis, namely, an increas-
ing shortage of non-renewable energy resources, such as coal, petroleum, and nat-
ural gas [1]. However, much of the energy generated from non-renewable energy
resources is used for temperature preservation in many areas ranging from industrial
fields to our daily lives. Therefore, it is meaningful and challenging to reduce such
energy consumption.

Heat conduction exists in matter as long as there is a temperature gradient. In
recent years, researchers have been devoted to understanding and controlling the
conduction of heat, putting a particular emphasis on its nonlinear feature. Their
fundamental interests focus on the nonlinear conduction phenomenon at the micro-
scopic scale to have a better understanding [2, 3], to improve thermoelectric effects
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[4–6], or to achieve novel thermal rectification [7–9]. However, the nonlinear heat
conduction at the macroscopic scale is seldom touched in the field of fundamental
research even though it was already reported long time ago [10]. In this chapter,
by tailoring the nonlinear effect of macroscopic heat conduction [10, 11], namely,
manipulating thermally responsive thermal conductivities appropriately, we estab-
lish a temperature-trapping theory and then propose a novel concept of energy-free
thermostat. The thermostat can self-maintain a desired constant temperature without
the need of consuming energy even though the environmental temperature gradi-
ent changes in a large range. As a proof of concept, we experimentally fabricate
a prototype device by assembling commercially available materials according to a
multistep approximation method, which enables us to effectively realize the desired
thermal conductivities on the same footing as thermalmetamaterials [11–18] ormeta-
materials in other fields [19–22]. Then we apply the thermostat concept to thermal
cloaking [11–18] as amodel application, and show an improved thermal cloak whose
central region serves as an ideal thermal environment with a constant temperature
even though the environmental temperature gradient varies significantly. This fea-
ture makes the improved thermal cloak distinctly different from the existing thermal
cloaks [11–18].

10.2 Temperature-Trapping Theory: Concept of
Energy-Free Thermostat

It is known that thermal conductivities essentially dependon temperature, T [10]. Par-
ticularly, in a phase-transition process, the thermal conductivity can change sharply
[23]. For simplicity, let us consider a one-dimensional steady-state heat conduction
along x-direction with temperature-dependent thermal conductivities, κ(x, T ). The
conduction follows the differential equation,

d

dx

(
κ(x, T )

dT

dx

)
= ∂κ(x, T )

∂x

dT

dx
+ ∂κ(x, T )

∂T

(
dT

dx

)2

+ κ(x, T )
d2T

dx2
= 0.

(10.1)
Then we are in a position to find a specific value or function of κ(x, T ) for our
purpose: the temperature at a specific region should keep (almost) unchanged even
though the associated boundary conditions change significantly. In other words, we
expect that the desired material should be able to automatically maintain a constant
temperature within changing ambient temperature gradients without the need of
adding additional work.

For more details, let us consider the one-dimensional model, where the right-
hand (left-hand) side of the model is the heat (cold) source with a fixed high (low)
temperature of TH (TL ). We set Tc as an arbitrary value between TH and TL . As
TH increases (or TL decreases), we expect that the temperature at the middle point
(located between the hot and cold sources) should always be Tc. Now, suppose the
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model is divided into two parts from the middle point: the temperature of Part I
ranging from TH to Tc, and Part II from Tc to TL . In case of increasing TH only, for
any κ(x, T ), the temperature in Part II should always range from Tc to TL . Therefore,
in Part II, the temperature gradient remains unchanged, yielding a corresponding heat
flow. Since TH may increase and it has no effect on the temperature at the middle
point, the heat flowmust be independent of TH . Owing to the continuity of heat flow,
we obtain

q = −κ(x, T )
dT

dx
≡ C, (10.2)

where q is the density of heat flow, and C is a constant. Clearly, if only considering
a decreasing TL , we may obtain a same equation as Eq. (10.2). This fact means
that our model is centrosymmetric: κ(x, T ) is symmetrical with respect to T =
Tc. Equation (10.2) is the key for giving a rough sketch of κ(x, T ). As T → Tc,
dT/dx → 0. Thus, κ(x, T ) should tend to infinity and reach the highest value. On
the contrary, for T � Tc or T � Tc, the temperature gradients are large, so κ(x, T )

tends to zero. Moreover, the middle point with T = Tc is the inflection point of
function κ(x, T ). To sum up, the temperature-dependent function, κ(x, T ), should
satisfy the following rules: κ(x, T − Tc) = κ(x, Tc − T ); κ(x, T ) → ∞ as T → Tc;
and κ(x, T ) → 0 as T � Tc or T � Tc. The second requirement is not realistic for
extant materials and some approximation should be adopted instead.

In consideration of mathematical simplicity for easy analysis and modeling, we
design an alternative one-dimensional heat-conductionmodel as shown in Fig. 10.1a,
where T3, T2, T1, and T0 (or x3, x2, x1, and x0) are the corresponding temperatures
(or positions) along the direction of heat diffusion, where we set x1 − x0 = x3 − x2.
Two types of nonlinear materials (type-A and type-B) are located at the left-hand
and right-hand sides respectively, and a common material with a high and constant
conductivity κη is placed in the middle region. In this model, the conductivities of
type-A and B are related to the temperature, and the relations are chosen to hold
the same form as the Logistic functions L(T ) widely used in Logistic regressions.
We believe the combination of a pair of axial symmetry Logistic functions may give
a good approximation of the aforementioned requirements of thermal conductiv-
ity. Furthermore, these two types of materials are much more practicable because
the sigmoid curves indicated by Logistic functions are similar to those “S” shape
curves in phase-transition materials describing physical properties as a function of
temperature [23–25].

More explicitly, the type-A nonlinear material is designed with thermal conduc-
tivity κA as a conductor (or an insulator) at high (or low) temperature. An inverse
behavior happens for the type-B material with thermal conductivity κB . For a given
phase-transition temperature Tc, both κA and κB may be assumed as

κA = L(Tc − T ) = δ + εeT−Tc

1 + eT−Tc
, κB = L(T − Tc) = δ + ε

1 + eT−Tc
, (10.3)
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Fig. 10.1 a Schematic graph showing the design of energy-free thermostat, which consists of three
parts: common material (2 cm width and 2 cm height), type-A and type-B nonlinear materials (each
with 3 cm width and 2 cm height). b–d Finite-element simulations of (a) according to Eq. (10.3)
where δ = 0.4W/mK, ε = 49.6W/mK, and Tc = 293.2K. e Schematic diagram of a reference
model. f–h Finite-element simulations of (e), where the thermal conductivity of the reference
material (denoted byblue color in e) is 50W/mK.For all the simulations (b–d, f–h), the temperature
at the center (markedwith+) is extracted and showed above each panel. The thermal conductivity of
the central commonmaterial is 400W/mK. The left boundary is kept at a constant low temperature,
273.2K, while the right boundary is kept at different high temperatures: 323.2K (b, f), 338.2K
(c, g), and 353.2K (d, h). The upper and lower boundaries are thermally insulated. Adapted from
Ref. [29]

where δ is a small value and ε is high enough.According to the Fourier lawq = −κ dT
dx

or qdx = −κdT together with the geometrical relation (x1 − x0 = x3 − x2) and con-
tinuity of conduction

∫ x1
x0

qdx = ∫ x3
x2

qdx or
∫ T1
T0

κAdT = ∫ T3
T2

κBdT , we obtain (under
the assumption that eT0−Tc and eTc−T3 are close to zero)

(ε + δ)(T3 − T2) − ε(T3 − Tc) − δ(T1 − T0) = ε ln

(
1 + eT1−Tc

1 + eT2−Tc

)
. (10.4)

It should be remarked that the thermal conductivity in the middle region should be
much higher (κη � ε) to make T1 ≈ T2. As a result, the relation T1 ≈ T2 ≈ Tc can
be obtained according to Eq. (10.4). Therefore, the temperature preserved in our
device is approximately the phase-transition temperature, Tc. The above discussion
shows that adopting two Logistic functions is enough for energy-freely maintaining
constant temperatures as ambient temperature gradients change.
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Then we perform finite-element simulations according to Eq. (10.3). In Fig. 10.1,
the central temperatures at the positions marked with + show a strong contrast
between the thermostat (Fig. 10.1b–d) and the reference system (Fig. 10.1f–h). The
former are close to Tc (within 0.3K) for the three cases. On the contrary, the latter
deviate from Tc as far as 20K when the boundary condition changes within the same
range. It is worth noting that the temperature of the cold source in Fig. 10.1b–d, f–h
remains constant (273.2 K) for the sake of comparison. Actually, if this temperature
varies as well, the behavior of the central temperatures will keep unchanged due to
the fixed value of Tc.

10.3 Experimental Demonstration of the Energy-Free
Thermostat Concept

Themajor challenge in realizing the thermostat is to find the type-A and type-Bmate-
rials with nonlinear (temperature-dependent) conductivities (Eq. (10.3)). Although
phase transitions may generate such variations of conductivities, the transition pro-
cess is lack of convenience in operations. We believe that a simplest temperature-
dependent conductivity is to switch between two values, which can be achieved
by connecting two thermal conductors or not. This process may be described by a
step function. To make the conductivity vary as a step function, a practical way is
to assemble a still part and a movable part. Figure10.2 shows the relevant details.
In our experiment, the still part is constructed by placing three phosphor copper
(QSn6.5-0.1) films (κp = 54W/mK) at regular intervals; each interval is filled
with silicon grease (κs = 4W/mK). All the phosphor copper films and their inter-
vals (filled with silicon grease) hold the same dimensions. As a result, the effec-
tive thermal conductivity of this alternating layered structure can be derived as
κe f f = [(

κ−1
p + κ−1

s

)
/2

]−1 = 7.4W/mK [26]. On the other hand, a bimetallic strip
composed of phosphor copper and shape memory alloy (SMA) [27, 28] serves as
the movable part.

The SMA is capable of changing its shape as the temperature varies. Specifically,
a two-way SMA chosen for building the type-A material is able to tilt up an angle
below 278.2K and completely level above 297.2K. For the type-B material, the
transition temperature is the same but the deformation is opposite. Therefore, as
we change the temperature of the hot or cold source, the bimetallic strips will be
driven up and down. In general, due to the deformation of SMA, 0–3 metal films will
fill the gaps between the two connective layers of phosphor copper (Fig. 10.2a–b),
and change the effective conductivity of type-A or type-B material according to the
effective medium theory [26]. The calculated thermal conductivities are displayed
in Fig. 10.2c. It should also be noted that the transition temperature Tc of the Type-A
and Type-B materials is actually 297.2K, since at this temperature, the three SMAs
are all flat (or warped) for type-A (or type-B).



112 10 Temperature Trapping Theory: Energy-Free Thermostat

Fig. 10.2 a Schematic graph showing the type-A and type-B nonlinear materials of the energy-free
thermostat fabricated in our experiment. For the type-A part, the bimetallic strips will tilt up and
result in a low effective thermal conductivity κe f f of the layered structure when the temperature is
below 297.2K. Upon heating, the bimetallic strips will become level and replace the silicon grease
layers with phosphor copper when the temperature is above 297.2K. As a result, κe f f increases. The
opposite behavior happens for the deformationof the type-Bpart.When a temperature gradient exists
in the device, the bimetallic strips show different degrees of deformation; see b. The dimensions
indicated in b: L1 = 3 cm, L2 = 2 cm, and H = 2 cm. Since κe f f of the type-A or type-B part
depends on the shapes of the bimetallic strips, which vary with the temperature TS of the heat/cold
sources, we can achieve a relationship κe f f (TS) that is similar to κA(T ) or κB(T ) in Eq. (10.3).
This similarity serves as the main principle of our experiment; see c. The solid curves indicated
by “Experiment” are calculated with the effective medium theory by assuming the leveling of 0–3
bimetallic strips; the dashed curves indicated by “Theory” are the result of Eq. (10.3). Adapted
from Ref. [29]
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In addition, a copper filmwith κη = 394W/mK is located in themiddle to assem-
ble the whole device; see Fig. 10.2b. Moreover, all the metal surfaces are covered
by polydimethylsiloxane, which helps against heat dissipation and makes the whole
device “visible” for the thermal camera.

As shown in Fig. 10.3, the experiment is carried out for three different boundary
conditions, where the temperature of the heat source is changed significantly while
the temperature of the cold source keeps almost unchanged. Figure10.3a–c shows
the measured temperatures at the three centers, which are almost constant as pre-
dicted by the theory. The constant value is a little lower than the phase-transition
temperature (297.2K) due to the dissipation of heat to the environment. Meanwhile,
the temperature distributions of the device without the SMA are also presented in
Fig. 10.3d–f for comparison. In this case, the temperatures within the central areas
vary significantly (Fig. 10.3d–f).

Fig. 10.3 Experimental results. The temperature at each center is displayed above the corresponding
panel. For the energy-free thermostat (a–c), the bimetallic strips are indicated with white dashed
lines. As the temperature of the heat source varies in a wide range (322.6–353.5K), the central
temperature keeps almost unchanged (a–c). In contrast, for the reference system (d–f), themeasured
central temperature varies evidently. Adapted from Ref. [29]
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10.4 Apply the Energy-Free Thermostat Concept to Design
a New Thermal Cloak

To make our thermostat concept more useful, we try applying it to thermal cloak-
ing [11–18]. As a result, we shall achieve an improved thermal cloak whose central
region serves as an ideal thermal environment with a constant temperature even
though the environmental temperature gradient changes significantly. This feature
makes the improved thermal cloak distinctly different from the existing thermal
cloaks (whose central temperatures vary evidently as environmental temperature
gradients change significantly) [11–18].

A thermal cloak helps to steer heat flow around an object without the need of
disturbing the temperature distribution outside the object, and it has two basic char-
acteristics: an undisturbed temperature field outside and a uniform temperature field
inside [11–18]. To design our improved thermal cloak, we resort to the structure of
bilayer thermal cloak [18] by using four types of materials; see Fig. 10.4a which
shows Regions I–VI for the new device in a background with thermal conductivity
κ0. Regions I–IV have a height of 2R1, and they are occupied by the four types of
materials, whose thermal conductivities are respectively given by

κI = κ0 − (κ0 − κi )

1 + eT−TC
, κI I = κ0 − (κ0 − κi )eT−TC

1 + eT−TC
,

κI I I = κ0 + (κe − κ0)

1 + eT−TC
, κI V = κ0 + (κe − κ0)eT−TC

1 + eT−TC
.

(10.5)

These conductivities may be manufactured by utilizing the multistep approximation
method as employed in the experimental design (Fig. 10.2c). In Eq. (10.5), κi and
κe are the parameters of bilayer cloak: thermal conductivity of inner ring κi → 0
and thermal conductivity of outer ring κe = κ0(R2

3 + R2
2)/(R

2
3 − R2

2). On the other
hand, Regions V and VI in Fig. 10.4a are occupied by two common materials with
conductivities

κV → 0 and κV I = κ0(R
2
3 + R2

2)/(R
2
3 − R2

2) (10.6)

according to the requirement of bilayer thermal cloaks [18]. The simulation results
in Fig. 10.4b–d show that as the temperature of heat source is increased from 323.2 to
338.2K and to 353.2K, the improved thermal cloak is able to energy-freely maintain
an approximately constant temperature inside it indeed; see 293.5, 294.0K, and
294.7K as indicated in Fig. 10.4b–d. We obtain this conclusion by comparing the
“293.5, 294.0 and 294.7K” with their counterpart values of the common cloaking
(namely, “298.2, 305.7 and 313.2K”, which are calculated by averaging the two
temperatures of the cold and hot sources when the cloak is located in the center
between the two sources).
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Fig. 10.4 a Schematic graph showing the improved bilayer thermal cloak in a background. The
thermal conductivities in Regions I–IV (or V–VI) are determined by Eq. (10.5) (or Eq. (10.6)).
b–d Finite-element simulations of the improved thermal cloak, where the white lines denote the
isothermal lines. b–d Show a central circular region where the temperature keeps approximately
unchanged even though the temperature of the heat source increases significantly. Parameters:
κ0 = 2.3W/mK, κV = 0.03W/mK, R1 = 6 cm, R2 = 9.5 cm, and R3 = 12 cm. Adapted from
Ref. [29]

10.5 Discussion and Conclusions

We have established a temperature-trapping theory for asymmetric phase-transition
materials with thermally responsive thermal conductivities, and introduced a concept
of energy-free thermostat. The thermostat is capable of self-maintaining a desired
constant temperature without energy consumption even though the environmental
temperature gradient varies in a large range. (On the same footing, a so-called
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negative-energy thermostat [30] can also be designed by introducing thermoelec-
tric effects, which generates electricity associated with energy-free maintenance of
a constant ambient temperature.) By using a multistep approximation method, we
have experimentally fabricated a prototype device. In the experiment, we employed
homogenous isotropic materials and SMAs (shape memory alloys), which are com-
mercially available. Since no heat engine or temperature sensor is used, the device
is light-weighted and can be used as components of larger facilities or buildings
without interference. For instance, inspired by this concept, we have theoretically
designed and showed a different type of thermal cloak that has a constant temper-
ature inside its central region in spite of changing ambient temperature gradients,
which is in sharp contrast to all the existing thermal cloaks [11–18]. Our results have
relevance to energy-saving temperature preservation, and they are indicative of a
great freedom in extensibility, e.g., for controlling the flow of heat with zero-energy
consumption and for designing new metamaterials with temperature-responsive or
field-responsive parameters in many disciplines such as thermotics, optics, electro-
magnetics, acoustics, mechanics, electrics, and magnetism.

10.6 Exercises and Solutions

Exercises

1. Prove Eq. (10.4).

Solutions

1. Solution: Refer to the article “J. Wang, J. Shang, and J. P. Huang, Negative
energy consumption of thermostats at ambient temperature: Electricity generation
with zero energy maintenance, Phys. Rev. Appl. 11, 024053 (2019)”, where the
Eqs. (1)–(10) just show the proof for Eq. (10.4).
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Chapter 11
Coupling Theory for
Temperature-Independent Thermal
Conductivities: Thermal Correlated
Self-Fixing

Abstract It is a challenge to design intelligent thermal metamaterials due to the lack
of suitable theories. Here we propose a kind of intelligent thermal metamaterials by
investigating a core-shell structure, where both the core and shell have an anisotropic
thermal conductivity.We solveLaplace’s equation for deriving the equivalent thermal
conductivity of the core-shell structure. Amazingly, the solution gives two coupling
relations of conductivity tensors between the core and shell, which cause the whole
core-shell structure to counter-intuitively self-fix a constant isotropic conductivity
even when the area or volume fraction of core changes within the full range in two
or three dimensions. The theoretical findings on fraction-independent properties are
in sharp contrast to those predicted by the well-known effective medium theories,
and they are further confirmed with our laboratory experiments and computer simu-
lations. This chapter offers two coupling relations for designing intelligent thermal
metamaterials, and they are not only helpful for thermal stabilization or camou-
flage/illusion, but also offer hints on how to achieve similar metamaterials in other
fields.

Keywords Correlated self-fixing · Coupling · Core-shell structure · Intelligent
thermal metamaterials

11.1 Opening Remarks

Thermal metamaterials [1, 2] are actually artificial materials or devices that exhibit
novel thermal properties based on their geometrical structures or patterns. The ear-
liest example of thermal metamaterials is thermal cloaks designed by coordinate
transformation, which guide the heat flow around an object as if the object does not
exit [3–8]. In principle, thermal metamaterials are useful to efficiently control the
heat flow. However, almost all the existing thermal metamaterials are non-intelligent,
which means that the corresponding thermal metamaterials cannot feel and respond
to the change of external or internal stimuli in a controlled fashion. On the contrary,
if such metamaterials can do so, they can be called intelligent thermal metamaterials.
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Owing to the lack of suitable theories, intelligent thermal metamaterials have not
been touched in the literature, except for those with dual functions [9–15] or with
thermal responsiveness [16, 17]. For example, in ref. [16], Li et al. developed a
theory of temperature-dependent transformation thermotics, and designed an intelli-
gent thermal cloak. The cloak can feel the change of environmental temperatures, and
then it can be automatically switched on or off. Nevertheless, this kind of intelligent
thermal cloaks feel and respond to a kind of external stimuli (namely, the change of
environmental temperatures), rather than internal stimuli (e.g., the change of internal
states). In fact, for external stimuli, similar intelligence appears in all the other exist-
ing intelligent thermal metamaterials [9–17]. Regarding the internal stimuli, no work
has been reported to date. Thus, in this chapter, we start to propose a class of intel-
ligent thermal metamaterials that can feel and respond to a type of internal stimuli,
namely, the change of area/volume fractions. In practice, area or volume fractions
can be changed due to either expansion caused by heat or contraction caused by
cold. For simplicity, this chapter focuses only on the cases corresponding to the pure
change of area or volume fractions in a core-shell structure, where both the core and
shell have an anisotropic thermal conductivity.

Then we theoretically reveal two coupling relations for counter-intuitively self-
fixing a constant isotropic thermal conductivity of the core-shell structure as the
area or volume fraction varies within the full range. To this end, our theoretical
results (namely, fraction-independent properties) are validated by both experiments
and simulations in two or three dimensions, which are in sharp contrast to the
fraction-dependent properties predicted by the well-known effective medium the-
ories including the Bruggeman formula and the Maxwell-Garnett formula. Such
effective medium theories have been extensively adopted in the field of metamateri-
als from optics/electromagnetics, to acoustics, to mechanics, and to thermotics.

11.2 Theory for Two Dimensions

Let us start by considering a core-shell structure embedded in a host, whose center
is located in the origin of coordinates. See Fig. 11.1a. The core (or shell) has radius
r1 (or r2) and thermal conductivity κ1 (or κ2). κ3 denotes the host’s thermal conduc-
tivity. For the sake of generality, we assume the core and shell to be anisotropic. In
cylindrical coordinates (r, θ), κ1 and κ2 are both tensorial, which can be represented
by diag

(
κrr1 , κθθ1

)
and diag

(
κrr2 , κθθ2

)
, respectively.

In this case, for a passive and stable heat transport process, Laplace’s equation
has the following form

1

r

∂

∂r

(
rκrr

∂T

∂r

)
+ 1

r

∂

∂θ

(
κθθ

r

∂T

∂θ

)
= 0, (11.1)

where T denotes temperature. The general solution of Eq. (11.1) is given by

T = A0 + B0 ln r
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(a) (b)

Fig. 11.1 Schematic graph showing the core-shell structure in a two dimensions and b three
dimensions. Adapted from Ref. [20]

+
∞∑

m=1

[Am cos (mθ) + Bm sin (mθ)] rm
√

κθθ
κrr

+
∞∑

n=1

[Cn cos (nθ) + Dn sin (nθ)] r−n
√

κθθ
κrr . (11.2)

It is worth noting that Eq. (11.2) is valid under the condition that both κrr and κθθ

are either positive or negative. Here it is necessary for us to remark that apparently
negative thermal conductivities can only be achieved by adding external work as
required by the second law of thermodynamics, which mean that the heat (e.g., in
electric refrigerators) can be driven to transport from a region with a low temperature
to another region with a high temperature; more relevant comments can be found in
the Supplementary Information.

For clarity,we use T1, T2 and T3 to denote the temperature distribution in core, shell
and host. To focus on the core-shell structure,we simplify the host to be homogeneous
and isotropic. As a result, we obtain T3 as

T3 = A0 + A1r cos θ + C1r
−1 cos θ. (11.3)

Meanwhile, this system has the corresponding boundary conditions [18],

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T1 is finite
T1 (r1) = T2 (r1)
T2 (r2) = T3 (r2)
−κrr1

∂T1
∂r

∣∣
r=r1

= −κrr2
∂T2
∂r

∣∣
r=r1−κrr2

∂T2
∂r

∣∣
r=r2

= −κ3
∂T3
∂r

∣∣
r=r2

T3 (r → ∞) = −|∇T0|r cos θ

(11.4)

where ∇T0 represents the external thermal field.
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For the convenience of comparison, throughout this chapter we set κ3 to have the
same value as the equivalent thermal conductivity κe of the core-shell structure. The
temperature distribution in the host is given by Eq. (11.3). By applying the boundary
conditions, we can derive the undetermined constants A1 and C1. Then we set C1 to
be zero to ensure the temperature distribution in the host undistorted. Namely, the
∇T0 is maintained uniform without being affected by the core-shell structure. As a
result, we obtain the expression for κe as

κe = κ3 = c2κrr2
c1κrr1 + c2κrr2 + (

c1κrr1 − c2κrr2
)
pc2

c1κrr1 + c2κrr2 − (
c1κrr1 − c2κrr2

)
pc2

. (11.5)

Here p = r21/r
2
2 is the area fraction of the core in the core-shell structure, and ci =√

κθθi /κrri with i = 1 or 2. In view of Eq. (11.5), if we set

c1κrr1 − c2κrr2 = 0, (11.6)

c1κrr1 + c2κrr2 = 0, (11.7)

they yield respectively

κe = c1κrr1 = c2κrr2 , (11.8)

κe = c1κrr1 = −c2κrr2 . (11.9)

Clearly, Eqs. (11.8) and (11.9) show that the resulting equivalent thermal conduc-
tivity κe is independent of the core’s area fraction, thus being a constant. In other
words, the area fraction can take any value within the full range from 0+ to 1, which,
however, does not affect the value of κe. More remarks can be added herein: in case of
an isotropic core and shell, Eq. (11.9) predicts an equivalent thermal conductivity of
the core-shell structure that equals the thermal conductivity of the core, which echoes
with the condition required for the phenomenon of partial resonance in electromag-
netic fields [19]. Here it is worth mentioning that Ref. [19] discuss only isotropic
cases, which differ from anisotropic cases considered in this chapter.

Since thermal conductivities of the core and shell are coupled in Eqs. (11.6) and
(11.7),wemay call the two equations as two coupling relations. To distinguish the two
relations, we name Eq. (11.6) [or Eq. (11.7)] as positive (or negative) relation. The
physical meanings of both relations are to make the equivalent thermal conductivity
of the core-shell structure independent of the area/volume fraction p.

11.3 Theory for Three Dimensions

The above theory for two dimensions (Fig. 11.1a) can be extended to three dimen-
sions (Fig. 11.1b). Now κ1 and κ2 can be reformulated as κ1 = diag

(
κrr1 , κθθ1 , κϕϕ1

)

and κ2 = diag
(
κrr2 , κθθ2 , κϕϕ2

)
in spherical coordinates (r, θ, ϕ). For simplicity, we
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assume the system has an axial symmetry, namely, κθθ = κϕϕ . So, T is independent
of ϕ. Then, the governing Laplace’s equation can be written as

1

r2
∂

∂r

(
r2κrr

∂T

∂r

)
+ 1

r sin θ

∂

∂θ

(
sin θκθθ

∂T

r∂θ

)
= 0. (11.10)

Similar to the procedure for two dimensions, the equivalent thermal conductivity of
the core-shell structure in three dimensions can be obtained as

κe = κ3 = κrr2

× l21
(
l11κrr1 − l22κrr2

) − l22
(
l11κrr1 − l21κrr2

)
p(l21−l22)/3

(
l11κrr1 − l22κrr2

) − (
l11κrr1 − l21κrr2

)
p(l21−l22)/3

, (11.11)

where p = r31/r
3
2 is the volume fraction of the core in the core-shell structure,

li1 = (−1 + √
1 + 8κθθi /κrri

)
/2, and li2 = (−1 − √

1 + 8κθθi /κrri
)
/2. Here

i = 1 or 2.
Similarly, Eq. (11.11) yields two coupling relations

l11κrr1 − l21κrr2 = 0, (11.12)

l11κrr1 − l22κrr2 = 0, (11.13)

which, respectively, lead to

κe = l11κrr1 = l21κrr2 , (11.14)

κe = l11κrr1 = l22κrr2 . (11.15)

Clearly, the equivalent thermal conductivity κe in Eq. (11.14) [or Eq. (11.15)] is
also independent of the core’s volume fraction. Also, for clarity, we call Eq. (11.12)
[or Eq. (11.13)] as positive (or negative) coupling relation.

11.4 Laboratory Experiments and Computer Simulations

In order to validate our theoretical analysis, now we are in a position to perform
corresponding laboratory experiments and computer simulations.

In general, Eqs. (11.5) and (11.11) can predict the equivalent thermal conductivity
of the core-shell structure in twoor three dimensions.When the twocoupling relations
are satisfied [namely, Eqs. (11.6)–(11.7) for two dimensions andEqs. (11.12)–(11.13)
for three dimensions], the equivalent thermal conductivity of the core-shell structure
will not change with the area or volume fraction. For comparison, we first utilize the
commercial software COMSOL Multiphysics (https://www.comsol.com/) to per-
form finite-element simulations (Figs. 11.2 and 11.3a3–c3), which is followed by
laboratory experiments (Fig. 11.3a1–c1 and 11.3a2–c2).

https://www.comsol.com/
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Fig. 11.2 Two-dimensional simulations for a1–c1 positive relation [Eq. (11.6)] and a2–c2 negative
relation [Eq. (11.7)]. The color surface represents the temperature distribution, and the white lines
represent the isotherms. The core and shell have anisotropic thermal conductivities and the host
has an isotropic thermal conductivity. For reference, the pure core material is used in c1 and
c2 instead, which has the same radius as the whole core-shell structure. Parameters: for a1 and
a2, r1 = 1.8 and r2 = 6.0cm; for b1 and b2, r1 = 4.2 and r2 = 6.0cm; for a1 and b1, κ1 =
diag (194, 304) W/(mK), κ2 = diag (300, 197) W/(mK), and κ3 = 243 W/(mK); for (a2) and
(b2), κ1 = diag (194, 304) W/(mK), κ2 = diag (−300,−197) W/(mK), and κ3 = 243 W/(mK).
Adapted from Ref. [20]

Figure11.2 shows the finite-element simulations for two dimensions. We inves-
tigate the effects of both the positive relation [Eq. (11.6)] in Fig. 11.2a1, b1 and the
negative relation [Eq. (11.7)] in Fig. 11.2a2, b2. Note that Fig. 11.2a2, b2 has a shell
with apparently negative thermal conductivity. For reference, Fig. 11.2c1, c2 only
has a core (without shell). All the hosts in the six panels Fig. 11.2a1–c2 are set to
be the same, but the area fraction of the core is increased from Fig. 11.2a1 to c1 [or
from Fig. 11.2a2 to c2]. Clearly, Fig. 11.2a1–c2 displays that the host’s temperature
distribution is identical to each other in the six panels. This behavior confirms the
theoretical prediction that the equivalent thermal conductivity of the core-shell struc-
ture is independent of the core’s area fraction under the two conditions described by
Eq. (11.6) (positive relation) and Eq. (11.7) (negative relation).

Meanwhile, we perform experimental demonstration for the simulation results
shown in Fig. 11.2a1–c1; see Fig. 11.3. Figure11.3a1–c1 displays our three exper-
imental samples, which are fabricated with copper by laser cutting. The left (or
right) edges of the three samples are respectively put into the hot (or cold) sinks
with constant temperatures. Then we use the FLIR E60 infrared camera to detect
the temperature distribution of the samples, and the measurement results are shown
in Fig. 11.3a2–c2, accordingly. By analyzing the temperature distribution in the host
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Fig. 11.3 Experimental demonstrations of Fig. 11.2a1–c1. a1–c1 Are three experimental samples,
each having a size of 24×24cm and a thickness of 0.3mm. The core-shell structure in a1 or b1 is
composed of arrays made of ellipses with two different sizes: the large size is for the core, and the
small size is for the shell. The core (or shell) is composed of red copper drilled with air ellipses,
each having a major/minor semi-axis of 0.24/0.09cm (or 0.18/0.045cm). For reference, the pure
core is used in (c1), which has the same radius as the core-shell structure shown in (a1) and (b1).
The host in a1–c1 is composed of red copper drilled with 204 air circular holes, each with radius
0.415cm. In a1–c1, the thermal conductivities of the core and shell are diag (194, 304) W/(mK)
and diag (300, 197) W/(mK). a2–c2 [or a3–c3] are experimental measurements [or simulation
results] of the three samples shown in a1–c1, respectively. Other parameters: thermal conductivity
of red copper and air is 397 W/(mK) and 0.026 W/(mK), respectively; for a1, r1 = 1.8 and r2 =
6.0cm; for b1, r1 = 4.2 and r2 = 6.0cm. dDisplays the experimental setup with a sample. Adapted
from Ref. [20]
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(see Fig. 11.3a2–c2), we confirm that the equivalent thermal conductivities of the
core-shell structures shown in Fig. 11.3a1–c1 are (approximately) the same indeed.
Furthermore, Fig. 11.3a3–c3 shows the computer simulations corresponding to the
three samples shown in Fig. 11.3a1–c1, which just echoes with the experimental
results (Fig. 11.3a2–c2) and the theoretical analysis (Fig. 11.2a1–c1). Figure11.3d is
an experimental setup.

As far as Fig. 11.2a2–c2 is concerned, we have adopted a shell with apparently
negative thermal conductivity. Actually, one may resort to external energy to achieve
apparently negative thermal conductivities [21–23]; see also Figs. 11.5 and 11.6 in the
Supplementary Information. Apparently negative thermal conductivities and adding
extra sources are equivalent only on the level of phenomena. In other words, appar-
ently negative thermal conductivity can automatically generate a local high (or low)
temperature which is impossible. To make it possible, we manually give a local high
(or low) temperature to achieve the same phenomena without violating the second
law of thermal dynamics. The shells with additional linear heat sources (Fig. 11.5a1,
b1) or point heat sources (Fig. 11.5a2, b2) work the same effect as the shell with
apparently negative thermal conductivity (Fig. 11.2a2, b2). The temperatures of the
sources are presented in Tables11.1, 11.2 and 11.3 in the Supplementary Informa-
tion.

Besides,weperformfinite-element simulations for three dimensions; seeFig. 11.4.
Figure11.4a1–c1 [or Fig. 11.4a2–c2] is simulation results based on Eq. (11.12) [or
Eq. (11.13)]. Evidentally, the temperature distribution outside the core-shell struc-
ture is also identical from Fig. 11.4a1 to c2, which agrees with the results shown in
Fig. 11.2 for two dimensions.

Table 11.1 The required temperature value of each point heat source at the outside boundary of
the shell in Fig. 11.5a2, b2: there are 24 point heat sources at the outside boundary and the point
heat sources are numbered in a clockwise direction from 1 to 24

Source Temp (K) Source Temp (K)

1 293.0 13 293.0

2 290.4 14 295.6

3 288.0 15 298.0

4 286.0 16 300.1

5 284.3 17 301.7

6 283.3 18 302.7

7 283.0 19 303.0

8 283.3 20 302.7

9 284.3 21 301.7

10 286.0 22 300.1

11 288.0 23 298.0

12 290.4 24 295.6
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Table 11.2 The required temperature value of each point heat source at the inside boundary of the
shell in Fig. 11.5a2: there are 16 point heat sources at the inside boundary and the point heat sources
are numbered in a clockwise direction from 1 to 16

Source (r1 = 1.8cm) Temp (K)

1 293.0

2 282.9

3 274.3

4 268.5

5 266.5

6 268.5

7 274.3

8 282.9

9 293.0

10 303.1

11 311.7

12 317.5

13 319.5

14 317.5

15 311.7

16 303.1

Table 11.3 The required temperature value of each point heat source at the inside boundary of the
shell in Fig. 11.5b2: there are 16 point heat sources at the inside boundary and the point heat sources
are numbered in a clockwise direction from 1 to 16

Source (r1 = 4.2cm) Temp (K)

1 293.0

2 287.9

3 283.6

4 280.7

5 280.0

6 280.7

7 283.6

8 287.9

9 293.0

10 298.1

11 302.4

12 305.3

13 306.4

14 305.3

15 302.4

16 298.1
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Fig. 11.4 Three-dimensional simulations for a1–c1 positive relation [Eq. (11.12)] and a2–c2 nega-
tive relation [Eq. (11.13)].Others are the sameas those inFig. 11.2, but someparameters are changed:
for a1 and b1, κ1 = diag (100, 417, 417) W/(mK) and κ2 = diag (200, 269, 269) W/(mK); for a2
andb2,κ1 = diag (100, 417, 417)W/(mK)andκ2 = diag (−200,−269,−269)W/(mK). Adapted
from Ref. [20]

11.5 Discussion and Conclusion

This chapter proposed a scheme of correlated self-fixing behavior in thermal con-
duction. It has potential applications in thermal stabilization, for which one needs to
overcome thermal fluctuations resulted from the changes of area/volume fractions
due to thermal expansion or contraction, thermal stress concentration, etc.

Also, the uniform temperature distribution in the host of Figs. 11.2, 11.3 and 11.4
can help to hide the core-shell structure from being detected by infrared camera,
which is useful for thermal camouflage or illusion [24–34].

Moreover, as aforementioned, the coupling mechanisms of Eq. (11.7) for two
dimensions and Eq. (11.13) for three dimensions are similar to the partially resonant
composites in electrostatics [19]. In Ref. [35], Milton et al. studied the cloaking
effects associated with such partially resonant composites in electrostatics. Due to
the similar dominant equation, related cloaking effects can be expected in thermotics
as well.

In summary, we have solved Laplace’s equation associated with appropriate
boundary conditions, which helps to propose a class of intelligent thermal metamate-
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rials based on a core-shell structure with anisotropic thermal conductivities. We have
revealed two coupling mechanisms [i.e., Eqs. (11.6) and (11.7) for two dimensions
or Eqs. (11.12) and (11.13) for three dimensions], which counter-intuitively cause
the equivalent thermal conductivity of the core-shell structure to be always fixed at
a constant value when the area or volume fraction of the core is changed within the
full range (namely, from 0+ to 1). Our theoretical results have been verified by both
experiments and finite-element simulations. Nevertheless, our results are valid for
steady states, rather than for unsteady states since we did not take into account the
effects of mass density and heat capacity [36]. Besides thermotics, the present work
also offers a different method on how to achieve similar intelligent metamaterials
in other fields including electrostatics, magnetostatics and particle dynamics, which
mathematically share the same dominant equation.

11.6 Supplementary Information

11.6.1 Approaches to Achieving Apparently Negative
Thermal Conductivities: Computer Simulations

Since the negative coupling relations [Eqs. (11.7) and (11.13)] contain apparently
negative thermal conductivities, we have to adopt external energy to obtain them, in
order not to violate the second lawof thermodynamics.By considering the uniqueness
theorem, we can get the exact temperature values on the two boundaries of the shell.
As a result, Fig. 11.5 shows that adding appropriate linear heat sources (Fig. 11.5a1,
b1) or point heat sources (Fig. 11.5a2, b2) works the same as the shell with apparently
negative thermal conductivity (Fig. 11.2a2, b2).

11.6.2 Approaches to Achieving Apparently Negative
Thermal Conductivities: Laboratory Experiments

We further perform experiments to show the feasibility of applying external heat
sources to achieve apparently negative thermal conductivities; see Fig. 11.6.
Figure11.6a is an experimental setup. In the experiment, the conductivity of the
whole sample is made of copper with thermal conductivity 54 W/(mK), but we add
external line heat sources to keep the temperature constant on the boundaries of X =
4.5 and X = 17cm. Figure11.6b is the temperature distribution of the sample shown
in Fig. 11.6a, which is detected by using the FLIR E60 infrared camera. Figure11.6c
is the simulation result corresponding to the sample shown in Fig. 11.6a,which agrees
with Fig. 11.6b. Figure11.6d shows the simulation result of the temperature distri-
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Fig. 11.5 Two-dimensional simulations for verifying Fig. 11.2a2, b2 [where apparently negative
thermal conductivities have been adopted for the shell]. In a1 and b1, we add external linear heat
sources at the outside and inside boundaries of the shell, and the temperature at the outside (or
inside) boundary can be determined by the function 293–50x (or 293–95.3827x), where x is the
horizontal axis of each point on the boundary. In a2 and b2, we add external point heat sources
at the outside and inside boundaries of the shell, and the temperatures at the boundaries are given
in Tables11.1, 11.2 and 11.3. Parameters: for a1, a2, r1 = 1.8 and r2 = 6.0cm; for b1, b2, r1
= 4.2 and r2 = 6.0cm; κ1 = diag (194, 304) W/(mK), κ2 = diag (300, 197) W/(mK), and κ3 =
243 W/(mK). Adapted from Ref. [20]

bution, where the thermal conductivity of the middle material has a negative value,
–40 W/(mK). Clearly, both Fig. 11.6c and d have the same temperature distribu-
tion. This behavior means that one can use additional energy to achieve apparently
negative thermal conductivities indeed.
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Fig. 11.6 Experimental demonstrations of apparently negative thermal conductivities. a Displays
the experimental setup with a sample, whose size is 20×6cm with thickness 0.3mm. The thermal
conductivity of the whole sample (made of copper) is 54W/(mK).We apply two linear heat sources
at the locations indicated by X = 4.5 and X = 17cm. b Shows the temperature distribution of the
sample shown in (a), which is experimentally detected by using the Flir E60 infrared camera. c Is
simulation result of temperature distribution in the sample shown in (a). d Shows the simulation
result of temperature distribution in the same sample (but without linear heat sources on the bound-
aries at X = 4.5 and X = 17cm), whose middle region between X = 4.5 and X = 17cm has been
set to have a thermal conductivity with negative value, –40W/(mK). Adapted from Ref. [20]

11.7 Exercises and Solutions

Exercises

1. Consider a two-dimensional case, a core-shell structure embedded in a host,whose
center is located in the origin of coordinates; see Fig. 11.1a. The core (or shell)
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has radius r1 (or r2) and thermal conductivity κ1 (or κ2). For the sake of gener-
ality, we assume the core and shell to be anisotropic. In polar coordinates (r, θ),
κ1 and κ2 are both tensorial, which can be represented by diag

(
κrr1 , κθθ1

)
and

diag
(
κrr2 , κθθ2

)
, respectively. To focus on the core-shell structure, we simplify

the host to be homogeneous and isotropic. In this case, for a passive and stable
heat transport process, please derive the equivalent thermal conductivity κe of the
core-shell structure and find out the condition under which κe is independent of
the core’s area fraction in the core-shell structure. (κθθi /κrri > 0, i = 1, 2).

2. The above Question 1 can be extended to three dimensions; see Fig. 11.1b.
Now κ1 and κ2 can be reformulated as κ1 = diag

(
κrr1 , κθθ1 , κϕϕ1

)
and κ2 =

diag
(
κrr2 , κθθ2 , κϕϕ2

)
in spherical coordinates (r, θ, ϕ). For simplicity, we assume

the system has an axial symmetry, namely, κθθ = κϕϕ . So, T is independent of ϕ.
Similarly, please derive the equivalent thermal conductivity κe of the core-shell
structure and find out the condition under which κe is independent of the core’s
volume fraction in the core-shell structure.

Solutions

1. Solution: See Eq. (11.5) for the equivalent thermal conductivity and Eqs. (11.8)
and (11.9) for the condition. Their derivations can be found in this chapter.

2. Solution: See Eq. (11.11) for the equivalent thermal conductivity and Eqs. (11.14)
and (11.15) for the condition. Their derivations can be found in this chapter.
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Chapter 12
Coupling Theory for
Temperature-Dependent Thermal
Conductivities: Nonlinearity Modulation
and Enhancement

Abstract Thermal metamaterials based on core-shell structures have aroused wide
research interest, e.g., thermal cloaks. However, almost all the relevant studies only
discuss linear materials whose thermal conductivities are temperature-independent
constants. Nonlinear materials (whose thermal conductivities depend on tempera-
tures) have seldom been touched, which, however, are important in practical appli-
cations. This situation largely results from the lack of a theoretical framework for
handling such nonlinear problems. Here we study the nonlinear responses of thermal
metamaterials with a core-shell structure in two or three dimensions. By calculating
the effective thermal conductivity, we derive the nonlinear modulation of a nonlin-
ear core. Furthermore, we reveal two thermal coupling conditions, under which this
nonlinear modulation can be efficiently manipulated. In particular, we reveal the phe-
nomenon of nonlinearity enhancement. Then this theory helps us to design a kind
of intelligent thermal transparency devices, which can respond to the direction of
thermal fields. The theoretical results and finite-element simulations agree well with
each other. This chapter not only offers a different mechanism to achieve nonlinearity
modulation and enhancement in thermotics, but also suggests potential applications
in thermal management including illusion.

Keywords Nonlinearity modulation · Nonlinearity enhancement · Core-shell
structure · Temperature-dependent thermal conductivity · Coupling condition ·
Intelligent thermal transparency

12.1 Opening Remarks

Heat management has aroused intensive research interest due to its wide applications
for human beings. One core problem of heat management is to tailor thermal con-
ductivities effectively. Fortunately, thermal metamaterials have provided a powerful
method to tailor thermal conductivities with delicately designed structures. Based
on thermal metamaterials, a large amount of novel thermal phenomena have been
realized, such as thermal cloaks [1–8], thermal concentrators [3, 4], thermal rota-
tors [9, 10], thermal transparency [11–16], thermal camouflage [17–23], thermal
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bending [24–27], etc. For achieving these phenomena, the core-shell structure serve
as a typical scheme. However, the existing research does not consider the nonlinear
effect (nonlinear thermotics) except for some piecemeal studies [28–32]. Compared
with nonlinear optics [33–38], nonlinear thermotics has attracted much less atten-
tion. This situation largely results from the lack of a general theoretical framework
to handle nonlinear effects in thermotics.

To solve this problem, here we investigate the thermal properties of a core-shell
structure embedded in a finite matrix. The core is nonlinear, and the shell and the
matrix are linear. Here, the nonlinear core (or linear shell/matrix) means that the core
(or shell/matrix) material has a temperature-dependent (or temperature-independent)
thermal conductivity; in this case, corresponding Fourier’s law of thermal conduc-
tion shows a nonlinear (or linear) relation between the heat flux density and the
temperature gradient, thus called “nonlinear core” (or “linear shell/matrix”). Then
we establish a general theoretical framework to deal with nonlinear effects in both
two and three dimensions. To achieve nonlinearity enhancement, we discuss the
nonlinear modulation under two thermal coupling conditions after establishing the
general theory. This is because under thermal coupling conditions, the core property
can be extended to the shell. In this way, the core nonlinearitymay also be extended to
the shell, which is beneficial for our purpose. Moreover, thermal coupling conditions
largely simplify the mathematical form of the nonlinear modulation. Results indicate
that the nonlinearity enhancement can appear under one of the coupling conditions.
Further, the theory helps us to propose a kind of intelligent thermal transparency
devices, which become automatically switchable to external temperatures. We also
perform finite-element simulations to validate our theoretical predictions, and they
agree well with each other.

12.2 Theory

12.2.1 Two-Dimensional Case

We first consider the two-dimensional case; see Fig. 12.1a. The core-shell structure
is embedded in a finite square matrix with width a and temperature-independent
(namely, linear) thermal conductivity κm . The shell with radius r2 has an anisotropic
linear thermal conductivity κ̄s = diag (κrr , κθθ) in cylindrical coordinates (r, θ).
The core with radius r1 owns a temperature-dependent (i.e., nonlinear) thermal con-
ductivity κc (T ) given by [32]

κc (T ) = κ(0)
c + χcT

α, (12.1)

where κ(0)
c is the temperature-independent (or linear) part, χc and T , respectively,

represent nonlinear coefficient and temperature, and α can be any real number.
We assume that the core is weakly temperature-dependent (or nonlinear), say
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Fig. 12.1 Schematic diagrams of a two-dimensional or b three-dimensional core-shell structure
in Cartesian coordinate system; b only shows one eighth of the structure for the sake of clarity. The
core or shell radius is r1 or r2; the core, shell and matrix have a thermal conductivity of κc(T ), κ̄s ,
and κm , respectively. Other details can be found in the text. Adapted from Ref. [46]

χcT α � κ(0)
c . Regarding of Eq. (12.1), it becomes necessary for us to add two

remarks as follows. On one hand, we need to point out that in nonlinear optics,
dielectric permittivities have a similar nonlinear expression because of their depen-
dence on the electric-field component of electromagnetic waves. But, this electric
field is mathematically analogous to the temperature gradient in thermotics, rather
than the temperature (T ) as adopted in Eq. (12.1). This fact implies that new physics
may be expected from Eq. (12.1). On the other hand, Eq. (12.1) has realistic impli-
cations because almost all materials have temperature-dependent thermal conduc-
tivities (certainly, the dependence could be weak or strong). Particularly, thermal
conductivity κc could increase as T either increases [39] or decreases [40].

Then, the effective thermal conductivity of the core-shell structure κe1 (T ) [15]
reaches

κe1 (T ) = uκrr
κc (T ) + uκrr + [κc (T ) − uκrr ] pu1
κc (T ) + uκrr − [κc (T ) − uκrr ] pu1

, (12.2)

and that of the core-shell structure plus the matrix κe2 (T ) [14] turns to be

κe2 (T ) = κm
κe1 (T ) + κm + [κe1 (T ) − κm] p2
κe1 (T ) + κm − [κe1 (T ) − κm] p2

, (12.3)

where p1 = r21/r
2
2 , p2 = πr22/a

2 and u = √
κθθ/κrr . The direct use of the results

from Refs. [14] and [15] is valid in the paper. The reasons lie in that (i) the nonlinear
term is smaller than the linear term, and thus the spatial fluctuations of the thermal
conductivity are small; (ii) we assume that T is the temperature at the center of the
structure. So the assumptions can average over the spatial fluctuations of the thermal
conductivity. Therefore, the results from Refs. [14] and [15] are approximately valid
and still contributing.

Equation (12.3) allows us to do Taylor expansion up to infinite terms. In the
following, we keep the terms up to T 3α, and neglect the other terms,
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κe2 (T ) = κ(0)
e2 + χeT

α + βeT
2α + γeT

3α + O
(
T 4α

)
, (12.4)

where κ(0)
e2 , χe, βe, and γe are respectively

κ(0)
e2 = κm

κ(0)
e1 + κm +

(
κ(0)
e1 − κm

)
p2

κ(0)
e1 + κm −

(
κ(0)
e1 − κm

)
p2

, (12.5)

χe = 16u2κ2
rrκ

2
m p2 pu1χc

{
uκrr (p2 − 1)

[
κ(0)
c + uκrr + (κ(0)

c − uκrr )p1u
]

+ κm (p2 + 1)
[
κ(0)
c + uκrr − (κ(0)

c − uκrr )p1u
]}2 ,

(12.6)

βe = 16u2κ2
rrκ

2
m p2 pu1χ2

c

[
uκrr

(
pu1 + 1

)
(p2 − 1) + κm

(
pu1 − 1

)
(p2 + 1)

]

{
uκrr (p2 − 1)

[
κ(0)
c + uκrr + (κ(0)

c − uκrr )p1u
]

+ κm(p2 + 1)
[
κ(0)
c + uκrr − (κ(0)

c − uκrr )p1u
]}3 ,

(12.7)

γe = 16u2κ2
rrκ

2
m p2 pu1χ3

c

[
uκrr

(
pu1 + 1

)
(p2 − 1) + κm

(
pu1 − 1

)
(p2 + 1)

]2
{
uκrr (p2 − 1)

[
κ(0)
c + uκrr + (κ(0)

c − uκrr )p1u
]

+ κm (p2 + 1)
[
κ(0)
c + uκrr − (κ(0)

c − uκrr )p1u
]}4 .

(12.8)

Here κ(0)
e2 is the linear part of the thermal conductivity of the core-shell structure

and the matrix, and κ(0)
e1 = uκrr

[
κ(0)
c + uκrr + (

κ(0)
c − uκrr

)
pu1

]
/
[
κ(0)
c + uκrr−(

κ(0)
c − uκrr

)
pu1

]
is the the linear part of the thermal conductivity of the core-shell

structure.
Equation (12.4) clearly shows that the low-order nonlinearity (Eq. (12.1)) can

induce not only the same order nonlinearity χeT α, but also the high-order nonlinear-
ities (i.e., βeT 2α and γeT 3α). Nevertheless, owing to χcT α � κ(0)

c in Eq. (12.1), it is
evident to conclude that χeT α � βeT 2α � γeT 3α in Eq. (12.4). So, in what follows,
we only focus on χeT α. To proceed, we define the nonlinear modulation η = χe/χc,
which is given by

η = 16u2κ2
rrκ

2
m p2 pu1{

uκrr (p2 − 1)
[
κ
(0)
c + uκrr + (κ

(0)
c − uκrr )p1u

]
+ κm(p2 + 1)

[
κ
(0)
c + uκrr − (κ

(0)
c − uκrr )p1u

]}2 .

(12.9)
This equation is the general expression of nonlinear modulation in two dimensions.
Thenwe are allowed to discuss the nonlinearmodulation η in some special cases, say,
under thermal coupling conditions. Namely, when the core-shell structure satisfies

κ(0)
c + uκrr = 0, (12.10)

κm = κ(0)
c , (12.11)

the nonlinear modulation η is simplified as

η = p−u
1 p2. (12.12)
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On the other hand, when the core-shell structure satisfies

κ(0)
c − uκrr = 0, (12.13)

κm = κ(0)
c , (12.14)

the nonlinear modulation η becomes

η = pu1 p2. (12.15)

Equations (12.10, 12.11) and (12.13, 12.14) are two different thermal coupling
conditions because they establish the relations among the core, shell, and matrix.

12.2.2 Three-Dimensional Case

The above theory can be extended to three dimensions; see Fig. 12.1b. Then κ̄s

should be redefined as κ̄s = diag
(
κrr , κθθ, κϕϕ

)
in spherical coordinates (r, θ,ϕ)

with κθθ = κϕϕ for simplicity. The effective thermal conductivity of the core-shell
structure [15] in three dimensions can be expressed as

κe1 (T ) = κrr
v1 [κc (T ) − v2κrr ] − v2 [κc (T ) − v1κrr ] pw1

[κc (T ) − v2κrr ] − [κc (T ) − v1κrr ] pw1
, (12.16)

and that of the core-shell structure plus the matrix [14] is,

κe2 (T ) = κm
κe1 (T ) + 2κm + 2 [κe1 (T ) − κm] p2
κe1 (T ) + 2κm − [κe1 (T ) − κm] p2

, (12.17)

where p1 = (r1/r2)
3, p2 = 4πr23/3a3, v1, 2 = −1/2 ± √

1/4 + 2κθθ/κrr , and w =√
1 + 8κθθ/κrr/3.

Similar to the procedure in two dimensions, the nonlinear modulation is

η = 81κm
2κ2

rrw
2 p2 pw1{

κrr (1 − p2)
[
v1(κ

(0)
c − v2κrr ) − v2(κ

(0)
c − v1κrr )pw1

]
+ κm (2 + p2)

[
(κ

(0)
c − v2κrr ) − (κ

(0)
c − v1κrr )pw1

]}2 .

(12.18)

Equation (12.18) is the general expression of nonlinearmodulation in three dimen-
sions. Then we will also discuss the nonlinear modulation under thermal coupling
conditions.

When the core-shell structure satisfies

κ(0)
c − v2κrr = 0, (12.19)

κm = κ(0)
c , (12.20)
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the nonlinear modulation turns to be

η = p−w
1 p2. (12.21)

On the other hand, when the core-shell structure meets

κ(0)
c − v1κrr = 0, (12.22)

κm = κ(0)
c , (12.23)

the nonlinear modulation reaches

η = pw1 p2. (12.24)

Alike, Eqs. (12.19, 12.20) and (12.22, 12.23) are also two different thermal cou-
pling conditions in three dimensions.

12.3 Theoretical Calculation Versus Finite-Element
Simulation

We have established a theoretical framework to handle the nonlinear modulation
(η) in both two and three dimensions, especially under thermal coupling conditions.
Now we are in a position to validate the predicted η with finite-element simulations.
For this realization, we first calculate the effective thermal conductivity κe2 (T )with
J/|∇T0|, where J is the overall average heat flux obtained from COMSOL Multi-
physics (http://www.comsol.com/). In Eq. (12.4), κ(0)

e2 can be theoretically calculated
with Eq. (12.5). T can be approximately regarded as the temperature at the center
since the nonlinearity of the system is not that strong. In this way, we can derive

η with
[
κe2 (T ) − κ(0)

e2

]
/(χcT α) based on finite-element simulations; see symbols

in Figs. 12.2 and 12.3. Then we explore the nonlinear modulation η when thermal
coupling conditions are satisfied, namely, Eqs. (12.12, 12.15) for two dimensions and
Eqs. (12.21, 12.24) for three dimensions in theory; see lines in Figs. 12.2 and 12.3.

Firstwe analyze the two-dimensional casewhose results are presented in Fig. 12.2.
Figure12.2a1–c1 shows the nonlinear modulation under the thermal coupling con-
dition determined by Eqs. (12.10, 12.11). According to the theoretical analysis of
Eq. (12.12), the nonlinear modulation is related to three key parameters, say, the
degree of shell anisotropy κθθ/κrr , the core fraction in the shell p1, and the core-shell
fraction in the matrix p2. It is noted that the maximum value of p2 is π/4 because a
circle cannot fill up a square. The nonlinearmodulation η can bewellmanipulated and
enhanced under the thermal coupling condition determined by Eqs. (12.10, 12.11).
Here the word “enhanced” means η > 1, which indicates that χe (effective nonlinear
coefficient) is counter-intuitively larger than χc (core’s nonlinear coefficient). How-
ever, the nonlinear modulation η cannot be enhanced (namely, η is always smaller

http://www.comsol.com/
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(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

Fig. 12.2 Two-dimensional simulation results. a1–c1 Show the nonlinear modulation η (=χe/χc)
under the thermal coupling conditions determined by Eqs. (12.10, 12.11) with three variables: a1
κθθ/κrr , b1 p1, and c1 p2. The solid lines in a1–c1 are calculated from Eq. (12.12), and the
symbols are obtained from finite-element simulations. The solid lines in a2–c2 are calculated from
Eq. (12.15) under the thermal coupling conditions determined by Eqs. (12.13, 12.14). Other parame-
ters: a1,a2 p1 = 0.25 and p2 = π/16; b1,b2 κθθ/κrr = 2 and p2 = π/16; c1,c2 κθθ/κrr = 2 and
p1 = 0.25; a1–c1 κc(T ) = 400 + 0.05T W/(mK), κs = −√

κrrκθθ = −400W/(mK) is the effec-
tive scalar thermal conductivity, and κm = 400 W/(mK); a2–c2 κc(T ) = 400 + 0.05T W/(mK),
κs = √

κrrκθθ = 400 W/(mK), and κm = 400 W/(mK). Adapted from Ref. [46]

than 1) under the thermal coupling condition determined by Eqs. (12.13, 12.14), no
matter how one adjusts the three associated parameters.

Then we discuss the three-dimensional case whose results are displayed in
Fig. 12.3. Figure12.3a1–c1 (or Fig. 12.3a2–c2) displays the thermal coupling con-
dition determined by Eqs. (12.19, 12.20) (or Eqs. (12.22, 12.23)). Similar conclu-
sion can be obtained. That is, only the thermal coupling condition determined by
Eqs. (12.19, 12.20) succeeds in achieving nonlinearity enhancement (i.e., η > 1),
whereas the thermal coupling condition determined by Eqs. (12.22, 12.23) fails.

As shown in Figs. 12.2 and 12.3, the finite-element simulation results agree well
with the theoretical calculations, and the nonlinearity can be enhanced up to one
order of magnitude when the physical parameters are chosen appropriately.
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(a1) (b1) (c1)

(a2) (b2) (c2)

Fig. 12.3 Three-dimensional simulation results. The solid lines in a1–c1 (or (a2–c2)) are calcu-
lated from Eq. (12.21) (or Eq. (12.24)), and the symbols are obtained from finite-element simu-
lations. Other parameters are the same as those in Fig. 12.2 except for (a1,a2) p1 = 0.125 and
p2 = π/48, b1,b2 κθθ/κrr = 2 and p2 = π/48, and c1,c2 κθθ/κrr = 2 and p1 = 0.125. Adapted
from Ref. [46]

12.4 Application of Nonlinearity

In addition, based on the proposed theory, here we design an intelligent (switchable)
thermal transparency device; see Fig. 12.4.

Traditional thermal transparency can ensure the external thermal fields undis-
torted [11–16]. However, it is independent of the direction of the thermal fields,
which may lack the intelligence for controllability between “open” and “close” state.
Here the nonlinear property helps to control the thermal transparency with respect
to different directions of the thermal fields, thus being called intelligent thermal
transparency.

In Fig. 12.4a–c, the device has a nonlinear core and a linear shell. To achieve the
effect of switching, here we split the core into two parts. Two kinds of nonlinear
thermal conductivities can respond to different boundary conditions (the direction
of heat flux) automatically. When the heat flux goes from left to right (Fig. 12.4b),
the temperature is uniformly distributed in the matrix, thus yielding the phenomenon
of thermal transparency. In this case, the device is on “open” state; see Fig. 12.4b.
Conversely, if the heat flux moves from right to left (Fig. 12.4c), the core-shell struc-
ture will affect the temperature distribution of matrix, thus eliminating the behavior
of thermal transparency. As a result, the device is on “close” state; see Fig. 12.4c.
Namely, the switching function of the thermal transparency device is achieved as
expected.
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(a) (b) (c)

(d) (e) (f)

Fig. 12.4 Switchable thermal transparency device: a is the schematic diagram based on the non-
linear core and linear shell and b,c are corresponding finite-element simulation results. b is on
open state and c is on close state. d is the schematic diagram based on the linear core and non-
linear shell and e, f are corresponding finite-element simulation results. e is on open state and f is
on close state. Other parameters in a–f : κca = 400 + 70 × (T − 293)W/(mK), κcb = 400 − 70 ×
(T − 293)W/(mK), κs = 100W/(mK), κc = 20W/(mK), κsa = 400 + 8 × (T − 293)W/(mK),
κsb = 400 − 8 × (T − 293) W/(mK), and κm = 200 W/(mK). Here both κca , κcb, κsa and κsb
are temperature-dependent, which could, in principle, be designed by using shape memory alloys
according to the method proposed in Refs. [28, 31]. Adapted from Ref. [46]

Also, in Fig. 12.4d–f, we design a nonlinear shell and a linear core. The similar
results can also be achieved; see Fig. 12.4e, f. A comment on Fig. 12.4a–c and d–f
is that in spite of the similar switching phenomena, the nonlinearity of the shell
(Fig. 12.4d) can be smaller than that of the core (Fig. 12.4a), which means that the
manipulation of the shell nonlinearity is more efficient.

12.5 Discussion and Conclusion

Nonlinearity (namely, thermally-responsive thermal conductivity) is of great signif-
icance to achieve thermal management. Although natural materials such as copper
may exhibit weak nonlinearity, they are still not strong enough to achieve practi-
cal nonlinear effects in certain situations. In this chapter, we have investigated the
nonlinear modulation of a core-shell structure embedded in a finite matrix (only
the core is nonlinear). Under two thermal coupling conditions, the nonlinear mod-
ulation can be largely simplified, and only depends on three key parameters: the
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(a) (b) (c)

Fig. 12.5 Replacing a apparent negative thermal conductivity with b line sources and c point
sources. The simulation box of a–c is 16 × 16 cm. The radius of shell rs and core rc is 3.2 cm
and 1.6 cm, respectively. The thermal conductivities of background material and core in a–c are
50W/(mK). The thermal conductivities of the shells in a and b,c are−50W/(mK) and 20W/(mK),
respectively. Line sources are applied on the twoboundaries of the shell inb. The temperatures of line
sources obey T = 293 − 250r2c, s x/

(
x2 + y2

)
K, where (x, y) represent the Cartesian coordinates

whose origin locates in the center of the simulation box. Point sources with radius 0.1cm are applied
on the two boundaries of the shell in c. The temperatures of point sources can be calculated with
T = 293 − 250r2c, s x/

(
x2 + y2

)
K according to the source positions, respectively. Adapted from

Ref. [46]

degree of shell anisotropy, the core fraction in the shell, and the core-shell fraction in
the matrix. Therefore, we can achieve the aim of regulating the nonlinearity by the
three tunable parameters. In particular, the nonlinear modulation will be effectively
enhanced under the thermal coupling conditions determined by Eqs. (12.10, 12.11)
and Eqs. (12.19, 12.20). Our work lays the foundation for studying the nonlinear
property of a core-shell structure, and further work can be expected to explore more
complicated cases like nonlinear shells or nonlinear matrices.

In the process to achieve nonlinearity enhancement, apparent negative thermal
conductivities [41–44] are applied, which means that the direction of heat flux is
from low temperature to high temperature. For this realization, a reliable way is
to add external energy to avoid violating the second law of thermodynamics. We
also perform finite-element simulations to verify the feasibility of apparent negative
thermal conductivities; see Fig. 12.5. We add external line sources (Fig. 12.5b) and
point sources (Fig. 12.5c) on the two boundaries of the shell, and set the thermal
conductivity of the shell to be positive. The temperature distributions in Fig. 12.5b, c
are the same as that in Fig. 12.5a. Therefore, it is contributing to add external energy.
Such point sources can be realized by experiment; see the experimental setup shown
in Fig. 1 of Ref. [45].

In summary, this chapter extends nonlinearity research from optics to ther-
motics, but with essential difference in the definition of nonlinearity (Eq. (12.1)).
We have proposed a different mechanism to modulate nonlinear thermal responses,
and achieved both thermal nonlinearity enhancement and intelligent thermal trans-
parency under various kinds of conditions. We expect that the nonlinearity studied
in this chapter could also have potential applications in heat management including
illusion.
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12.6 Exercises and Solutions

Exercises

1. Consider a two-dimensional case; see Fig. 12.1. The core-shell structure is embed-
ded in a finite square matrix with width a and temperature-independent (namely,
linear) thermal conductivity κm . The shell with radius r2 has an anisotropic linear
thermal conductivity κ̄s = diag (κrr , κθθ) in cylindrical coordinates (r, θ). The
core with radius r1 owns a temperature-dependent (i.e., nonlinear) thermal con-
ductivity κc (T ) given by κc (T ) = κ(0)

c + χcT α, where κ(0)
c is the temperature-

independent (or linear) part, χc and T , respectively, represent nonlinear coeffi-
cient and temperature, and α can be any real number. We assume that the core
is weakly temperature-dependent (or nonlinear), say χcT α � κ(0)

c . Please derive
the equivalent thermal conductivity κe2 (T ) of the core-shell structure plus the
matrix. (κθθ/κrr > 0).

2. Base on the above Question 1, please expand κe2 (T ) in Taylor series and keep
the terms up to T α, namely, κe2 (T ) = κ(0)

e2 + χeT α. Please give the concrete
expression of χe.

Solutions

1. Solution: Based on Eq. (12.2), the effective thermal conductivity of the core-shell
structure κe1 (T ) reads

κe1 (T ) = uκrr
κc (T ) + uκrr + [κc (T ) − uκrr ] pu1
κc (T ) + uκrr − [κc (T ) − uκrr ] pu1

,

and that of the core-shell structure plus the matrix κe2 (T ) turns to be

κe2 (T ) = κm
κe1 (T ) + κm + [κe1 (T ) − κm] p2
κe1 (T ) + κm − [κe1 (T ) − κm] p2

,

where p1 = r21/r
2
2 , p2 = πr22/a

2 and u = √
κθθ/κrr .

2. Solution:

χe = 16u2κ2
rrκ

2
m p2 pu1χc

{
uκrr (p2 − 1)

[
κ(0)
c + uκrr + (κ(0)

c − uκrr )p1u
]

+ κm (p2 + 1)
[
κ(0)
c + uκrr − (κ(0)

c − uκrr )p1u
]}2 .
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Chapter 13
Theory for Isotropic Core and
Anisotropic Shell: Thermal Golden
Touch

Abstract This chapter introduces the phenomenon of golden touch from myth to
thermotics. We define golden touch as extending the core property to shell with
extremely small core fraction. We obtain the requirement of golden touch by making
the effective thermal conductivity of the core-shell structure equal to the thermal
conductivity of the core. We summarize three types (A, B, and C) of golden touch in
two dimensions, and only two types (A and B) of golden touch in three dimensions.
We theoretically analyze the distinct properties of different types of golden touch
by delicately designing the anisotropic thermal conductivity of the shell. Golden
touch is also validated by finite-element simulations, which echo with the theoretical
analyses. Golden touch has potential applications in thermal camouflage, thermal
management, etc. This chapter not only lays the foundation for golden touch in
thermotics, but also provides guidance for exploring golden touch in other diffusive
fields like electrostatic and magnetostatic fields.

Keywords Thermal golden touch · Core-shell structure · Anisotropic thermal
conductivity

13.1 Opening Remarks

Golden touch is a long standing dream of human beings which only exists in myth.
To uncover the secret of golden touch, we should firstly define what golden touch is.
We refer to the core-shell structure as our research object; see the middle structure
in Fig. 13.1. For simplicity of understanding, we may imagine the shell as “stone”,
and the core as “gold”. And then golden touch can be defined as extending the core
property to shell with zero core fraction, i.e., an imaginary core. Such definition is
what the golden touch in myth describes.

In spite of the difficulty, we do not give up the exploration of golden touch.
Although we cannot extend the core property to shell with zero core fraction, we
may resort to some loosened requirements which are physical. And hence, here we
define golden touch as extending the core property to shell with extremely small core
fraction. We only replace the requirement of zero core fraction with extremely small
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Fig. 13.1 Schematic diagram of golden touch (vs. normal case). “Gold” and “stone” are metaphors
for simplicity of understanding. Adapted from Ref. [1]

core fraction. The redefinition of golden touch does not affect the inconceivable
phenomenon, and makes it possible for realization. Concretely speaking, normal
case only presents a slow increment with core fraction; see the black (lower right)
line in Fig. 13.1. In other words, if the effective core-shell property is expected to
exhibit the core property, core fraction should be 1, which echoes with the common
sense of effective medium theories [2–5]. By contrast, golden touch presents a steep
increment with core fraction; see the red (upper left) line in Fig. 13.1. In other words,
“stone” can become “gold” with extremely small “gold” fraction. This is what we
expect to obtain.

In this chapter, we focus on the thermal property of the core-shell structure,
i.e., effective thermal conductivity. In fact, researches on artificial structures have
realized many unique phenomena, such as thermal cloak [6–11], thermal concentra-
tor [7, 12–15], thermal camouflage [16–22], etc. Differently, we delicately design the
anisotropic shell to realize golden touch, especially when the thermal conductivity of
the shell is abnormal (κθθ/κrr < 0 for two dimensions and κθθ/κrr < −1/8 for three
dimensions). The potential application of golden touch is to dramatically reduce the
use of special materials (only with extremely small core fraction). Moreover, golden
touch may also provide guidance for thermal camouflage, such as size misleading.
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13.2 Theory of Golden Touch

We firstly discuss the golden touch in two-dimensional core-shell structure; see
Fig. 13.2a. We set the core with radius rc and scalar thermal conductivity κc, and
the shell with radius rs and tensorial thermal conductivity κs = diag (κrr , κθθ). We
can derive the effective thermal conductivity of the core-shell structure κe as

κe (κθθ/κrr > 0) = mκrr
κc + mκrr + (κc − mκrr )

(√
p
)2m

κc + mκrr − (κc − mκrr )
(√

p
)2m , (13.1)

κe (κθθ/κrr < 0) = nκrr
κc + nκrr tan

(
n ln

√
p
)

nκrr − κc tan
(
n ln

√
p
) , (13.2)

where m = √
κθθ/κrr , n = √−κθθ/κrr , and p = (rc/rs)

2 is the core fraction.
Detailed derivation can be found in the Supplementary Proof.

We calculate the limit of Eqs. (13.1, 13.2) to discuss the property when κθθ/κrr =
0, and find that they tend to the same value

κe (κθθ/κrr = 0) = κrr
κc − κθθ ln

√
p

κrr − κc ln
√
p
. (13.3)

Fig. 13.2 Golden touch in a,b two dimensions and c,d three dimensions. a,c and b,d respectively
present the structures and classifications of golden touch. Adapted from Ref. [1]
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To be mentioned, κe is still dependent on κθθ despite of κθθ/κrr = 0, because there
is a condition of κrr � κθθ ( �= 0) to satisfy κθθ/κrr = 0. Moreover, κθθ/κrr = 0 can
be regarded as the demarcation point according to Eqs. (13.1–13.3).

As the definition suggests, golden touch should firstly ensure that the core property
can be extended to shell, which can be mathematically expressed as

κe = κc. (13.4)

Noticing κe (p = 0) �= κc, otherwise the shell is just the same as the core, which is
trivial.

And secondly, the golden touch should ensure the extremely small core fraction,
which can be mathematically expressed as

p = 0+. (13.5)

Eqs. (13.4, 13.5) can be regarded as the mathematical definition of golden touch.
After delicately investigatingEqs. (13.1–13.3),wefind three types (A,B, andC) of

golden touch in two dimensions which satisfy the requirements of Eqs. (13.4, 13.5).
They are

Type A → κθθ/κrr > 0 : κc + mκrr = 0, (13.6)

Type B → κθθ/κrr < 0 : √−κθθ/κrr ln
√
p = −Z+π, (13.7)

Type C → κθθ/κrr ≈ 0 : κθθ ≈ 0 with κrr � κ1, (13.8)

where Z+ (= 1, 2, 3, . . .) is positive integers. The three types (A, B, and C) of
golden touch are clearly presented in Fig. 13.2b, which respectively correspond to
>, <, and ≈ demarcation point.

We then discuss the golden touch in three-dimensional core-shell structure; see
Fig. 13.2c. We set the core with radius rc and scalar thermal conductivity κc, and the
shell with radius rs and tensorial thermal conductivity κs = diag

(
κrr , κθθ, κϕϕ

)

with κθθ = κϕϕ for brevity. We can derive the effective thermal conductivity of the
core-shell structure κe as

κe

(
κθθ

κrr
> −1

8

)
= κrr

u1 (κc − u2κrr ) − u2 (κc − u1κrr )
(

3
√
p
)u1−u2

(κc − u2κrr ) − (κc − u1κrr )
(

3
√
p
)u1−u2

,(13.9)

κe

(
κθθ

κrr
< −1

8

)
= κrr

4vκc + [
2κc + (

1 + 4v2
)
κrr

]
tan

(
v ln 3

√
p
)

4vκrr − 2 (2κc + κrr ) tan
(
v ln 3

√
p
) ,(13.10)

whereu1,2 = (−1 ± √
1 + 8κθθ/κrr

)
/2,v = √−1 − −8κθθ/κrr/2, and p = (rc/rs)3

is the core fraction. Detailed derivation can be found in the Supplementary Proof.
We calculate the limit of Eqs. (13.9, 13.10) to discuss the propertywhenκθθ/κrr =

−1/8, and find that they tend to the same value
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κe (κθθ/κrr = −1/8) = κrr
4κc + (2κc + κrr ) ln 3

√
p

4κrr − 2 (2κc + κrr ) ln 3
√
p
. (13.11)

Here κθθ/κrr = −1/8 can be regarded as the demarcation point according to
Eqs. (13.9–13.11).

We also calculate the effective thermal conductivitywhenκθθ/κrr = 0 as a special
case

κe (κθθ/κrr = 0) = κrr
κc

3
√
p

κrr + κc
(
1 − 3

√
p
) . (13.12)

Here κe is independent of κθθ which is different from the two-dimensional result of
Eq. (13.3).

According to the mathematical definition of golden touch Eqs. (13.4, 13.5), we
delicately investigate Eqs. (13.9–13.12), but only find two types (A and B) of golden
touch. They are

Type A → κθθ

κrr
> −1

8
: κc − u2κrr = 0, (13.13)

Type B → κθθ

κrr
< −1

8
:

(√−1 − −8κθθ/κrr

2

)
ln 3

√
p = −Z+π, (13.14)

where Z+ (= 1, 2, 3, . . .) is positive integers. The two types (A and B) of golden
touch are clearly presented in Fig. 13.2d, which respectively correspond to > and <
demarcation point. Different from two-dimensional system, there is no type C golden
touch in three-dimensional system, even though we carefully calculate the effective
thermal conductivity of the core-shell structure when κθθ/κrr = −1/8 (demarcation
point in three dimensions; Eq. 13.11), or κθθ/κrr = 0 (Eq. 13.12).

13.3 Theoretical Analyses of Golden Touch

We further analyze the distinct properties of different types of golden touch. For
clarity, we discuss the dimensionless thermal conductivity κe/κc. When κe/κc = 1,
the core property is extended to shell.

The two-dimensional results of type A, type B, and type C golden touch are
respectively demonstrated in Fig. 13.3a–i. We will give detailed discussions of the
three types of golden touch in the following.

Type A: When the requirement of Eq. (13.6) is strictly satisfied, there is a dis-
continuous change from −1 to 1 at p = 0; see Fig. 13.3a. In other words, the core
property can be extended to shell with arbitrarily small core fraction once p �= 0.
We increase the thermal conductivity of the shell; see Fig. 13.3b, and the variation
curves become similar to a hyperbolic function.When the increment is small enough,
golden touch still works; see the green (lightest) line in Fig. 13.3b. However, when
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Fig. 13.3 Theoretical analyses of two-dimensional golden touch for a–c type A, d– f type B, and
g– i type C. Concrete parameters: a–c κc = 5Wm−1K−1, and the thermal conductivity of the shell
is a scalar denoted as κs ; d– f κc = 5Wm−1K−1, κrr = 5Wm−1K−1, d n = 1, e n = √

5, and
f n = 5; g– i κc = 5Wm−1K−1 for solid lines, κc = 10Wm−1K−1 for dashed lines, g mκrr =
0.1Wm−1K−1, h mκrr = −20Wm−1K−1, and i nκrr = 20Wm−1K−1. It should be noted that
there are three lines in the left bottom of (b), which are very close to each other. Adapted from
Ref. [1]

the increment is big, golden touch turns into the normal case; see the black (darkest)
line in Fig. 13.3b. We decrease the thermal conductivity of the shell; see Fig. 13.3c,
and the variation curves become monotonically increasing without a discontinuous
change. When the decrement is small enough, golden touch still works; see the green
(lightest) line in Fig. 13.3c. However, when the decrement is big, golden touch turns
into the normal case; see the black (darkest) line in Fig. 13.3c. Therefore, type A
golden touch can work perfectly with arbitrarily small core fraction, but requires a
special relation of thermal conductivities between the core and shell.

Type B: In fact, as long as κθθ/κrr < 0, the phenomena of golden touch will
exist, for the curve value ranges from −∞ to +∞ and presents quasi-periodicity;
see Fig. 13.3d–f. The quasi-periodicity is determined by the shell anisotropy: from
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left to right of Fig. 13.3d–f, the smaller κθθ/κrr is (or the bigger n is), the denser
quasi-periodicity is. Therefore, type B golden touch can work perfectly without
requirement of thermal conductivities between the core and shell, but with certain
core fraction determined by Eq. (13.7); see the dots in Fig. 13.3d–f. To be mentioned,
we use ln p (ranging from −∞ to 0) as the abscissa to show the infinite numbers of
quasi-periodicity, and hence the core fraction can also be set as arbitrarily small.

Type C: The parameters of Eq. (13.8) are distributed in four quadrants; see
Fig. 13.2b. When κθθ/κrr is in the third quadrant, type C golden touch possesses
all the properties of type A golden touch. When κθθ/κrr is in the second (or forth)
quadrant, type C golden touch possesses all the properties of type B golden touch.
Even so, we still regard type C golden touch as a separate classification, for it pos-
sesses different properties from typeAand typeBgolden touch.Concretely speaking,
type A and type B golden touch require certain thermal conductivity (Eq. 13.6) or
core fraction (Eq. 13.7), but these requirements disappear in type C golden touch.
In other words, any thermal conductivity can be extended with any core fraction.
The costs are (I) the requirement of Eq. (13.8), and (II) the core fraction can only
be extremely small rather than arbitrarily small, which is dependent on the shell.
We take the parameters in the first quadrant as an example; see Fig. 13.3g. Solid and
dashed lines respectively correspond to the different thermal conductivities of cores.
With the decrement of m

(= √
κθθ/κrr → 0

)
, the core property can be extended to

shell regardless of the core conductivities; see the green (lightest) solid and dashed
lines in Fig. 13.3g. We also investigate parameters in the third and forth quadrants,
and the results are respectively shown in Fig. 13.3h, i which are similar to those in
Fig. 13.3g. To be mentioned, the reason why the variation curves in Fig. 13.3i do not
present the quasi-periodicity with κθθ/κrr < 0 is that the quasi-periodicity becomes
sparsewith small n (as discussed in typeB golden touch), and thus exists in extremely
small core fraction, which cannot be shown under the abscissa of p.

The three-dimensional results of type A and type B golden touch are respectively
demonstrated in Fig. 13.4a–f. Except for that there is no type C golden touch in three
dimensions, type A and type B golden touch in three dimensions are similar to those
in two dimensions.

Type A: When the requirement of Eq. (13.13) is strictly satisfied, there is a dis-
continuous change from −0.5 to 1 at p = 0; see Fig. 13.4a. We increase the thermal
conductivity of the shell; see Fig. 13.4b, and the variation curves become similar
to a hyperbolic function. When the increment is small enough, golden touch still
works; see the green (lightest) line in Fig. 13.4b. However, when the increment is
big, golden touch turns into the normal case; see the black (darkest) line in Fig. 13.4b.
We decrease the thermal conductivity of the shell; see Fig. 13.4c, and the variation
curves become monotonically increasing without a discontinuous change. When the
decrement is small enough, golden touch still works; see the green (lightest) line in
Fig. 13.4c. However, when the decrement is big, golden touch turns into the normal
case; see the black (darkest) line in Fig. 13.4c. Therefore, type A golden touch can
work perfectly with arbitrarily small core fraction, but requires a special relation of
thermal conductivities between the core and shell.
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Fig. 13.4 Theoretical analyses of three-dimensional golden touch for a–c type A and d– f type
B. Concrete parameters: a–c κc = 5Wm−1K−1, and the thermal conductivity of the shell is a
scalar denoted as κs ; d– f κc = 5Wm−1K−1, κrr = 5Wm−1K−1, d v = √

7/2, e v = √
39/2, and

f n = √
199/2. Adapted from Ref. [1]

Type B: As long as κθθ/κrr < −1/8, the phenomena of golden touch will exist,
for the curve value ranges from −∞ to +∞ and present quasi-periodicity; see
Fig. 13.4d–f. The quasi-periodicity is determined by the shell anisotropy: from left
to right of Fig. 13.4d–f, the smaller κθθ/κrr is (or the bigger v is), the denser quasi-
periodicity is. Therefore, typeBgolden touch canwork perfectlywithout requirement
of thermal conductivities between the core and shell, but with certain core fraction
determined by Eq. (13.14); see the dots in Fig. 13.4d–f. We also use ln p (ranging
from −∞ to 0) as the abscissa to show the infinite numbers of quasi-periodicity, and
hence the core fraction can also be set as arbitrarily small.

13.4 Finite-Element Simulations of Golden Touch

We have theoretically analyzed the distinct properties of different types of golden
touch in both two and three dimensions. Now we are in the position to demonstrate
finite-element simulations for intuitive understanding of golden touch. We put the
core-shell structure into a matrix (κm) with the same thermal conductivity of the
core (κm = κc). If golden touch does extend the core property to shell, the external
thermal field will keep unchanged, namely uniform temperature gradient. To be
mentioned, although the core fraction of type A and type B golden touch can be
arbitrarily small, we have to set the core fraction as a reasonable finite small value
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Fig. 13.5 Finite-element simulations of two-dimensional golden touch for a type A, b type B,
c type C, and d reference. Concrete parameters: a–d simulation box is 20 × 20cm, rs =
6.4cm, rc = 0.64cm, κc = κm = 5Wm−1K−1, a κs = −5.001Wm−1K−1, b κs = diag(5,
−9.308)Wm−1K−1, c κs = diag(400, 2.5 × 10−6)Wm−1K−1, and d κs = 5Wm−1K−1. Dashed
lines in d are used to show the imaginary location of the core-shell structure for simplicity of com-
parison. The left and right boundaries are respectively set at 313 and 273K, and other boundaries
are insulated. White lines represent isotherms. Adapted from Ref. [1]

to perform finite-element simulations based on the commercial software COMSOL
Multiphysics (http://www.comsol.com/).

The results of two-dimensional golden touch are presented in Fig. 13.5. We set
the core fraction as 0.01. Type A, type B, and type C golden touch are respectively
designed according to Eqs. (13.6–13.8). For type C golden touch is not an exact
result (extremely small rather than arbitrarily small), the parameters applied for
finite-element simulation echo with the green (lightest) solid line in Fig. 13.3g. The
same uniform temperature gradient between matrix in Figs. 13.5a–d validates the
theoretically-predicted golden touch.

The results of three-dimensional golden touch are presented in Fig. 13.6. We set
the core fraction as 0.008. Type A and type B golden touch are respectively designed
according to Eqs. (13.13, 13.14). It is found that the external temperature distribution
in Fig. 13.6a–c is totally the same, which validates the golden touch again.

http://www.comsol.com/
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Fig. 13.6 Finite-element simulations of three-dimensional golden touch for a type A,
b type B, and c reference. Concrete parameters: a–c simulation box is 20 × 20 ×
20cm, rs = 6.4cm, rc = 1.28cm, κc = κm = 5Wm−1K−1, a κs = −2.501Wm−1K−1, b κs =
diag (−10, 77.455, 77.455)Wm−1K−1, and c κs = 5Wm−1K−1. The left and right boundaries
are respectively set at 463K and 423K, and other boundaries are insulated. Adapted from Ref. [1]

13.5 Discussion and Conclusion

When discussing golden touch, a puzzling phenomenon is that type C golden touch
cannot be extended from two dimensions to three dimensions. In other words, type
C golden touch is a unique phenomenon which only exists in two dimensions. In
fact, low-dimensional heat transfer at microscopic scale has been foundmany unique
properties, such as the nonconvergence effect and size effect of the thermal conduc-
tivity [23]. However, the uniqueness of low-dimensional heat transfer has never been
discovered at macroscopic scale, such as thermal metamaterials including but not
limited to thermal cloak [6–11], thermal concentrator [7, 12–15], and thermal cam-
ouflage [16–22]. Therefore, type C golden touch might open a gate to explore unique
properties in low-dimensional heat transfer at macroscopic scale.

Moreover, type C golden touch in the first quadrant also seems to be distinct, for
it is the only golden touch which requires no apparent negative thermal conductivity;
see Fig. 13.2b–d. Although apparent negative thermal conductivity does not exist in
nature, it can be realized by active materials containing heat sources [24–26]. We
take two-dimensional type A golden touch (Fig. 13.5a) as an example. We set the
thermal conductivity of the shell with a positive value which is different from that
of the core. To realize the same effect of golden touch, we add continuous sources
(Fig. 13.7a) and discontinuous sources (Fig. 13.7b) on the boundaries of the shell. The
same temperature profile between Figs. 13.5a and 13.7a, b validates that the scheme
of adding sources works indeed. For experimental realization, Ref. [27] demonstrates
a device to realize the discontinuous sources, whichmakes apparent negative thermal
conductivities feasible for experiments.
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Fig. 13.7 Realization of apparent negative thermal conductivity by adding a continuous sources
and b discontinuous sources. The parameters are the same as those in Fig. 13.5a, except for
the shell which is set as κs = 1Wm−1K−1. a Continuous sources are applied on the inner
and outer boundaries of the designed shell which obey the continuous temperature distribution
T = −81.92x/r2c, s + 293, where rc = 0.64 cm (rs = 6.4 cm) is the inner (or outer) radius of the
designed shell. x represents abscissa whose origin locates in the center of the simulation box. For
the inner boundary, x ranges from −rc to rc which makes the temperature T range from 421 to
165K; for the outer boundary, x ranges from −rs to rs which makes temperature T range from
306 to 280 K. b Twelve discontinuous sources (with radius 0.05cm) and thirty-six discontinuous
sources (with radius 0.15cm) are respectively applied on the inner and outer boundaries. The dis-
continuous temperatures are calculated from the continuous temperature distribution in a according
to the source abscissas. Adapted from Ref. [1]

We also first derive the effective thermal conductivity under the demarcation
point, i.e., κθθ/κrr < 0 for two dimensions Eq. (13.2), and κθθ/κrr < −1/8 for
three dimensions Eq. (13.10). This helps to reveal the quasi-periodic variation with
core fraction; see Figs. 13.3d–f and 13.4d–f, which is dramatically different from the
well-known effective medium theories like the Maxwell-Garnett formula [28] and
the Bruggeman formula [29]. This may further provide guidance for exploring non-
linear effects [30] beyond the framework ofMaxwell-Garnett formula or Bruggeman
formula. Moreover, one reliable approach to realize these special thermal conduc-
tivities is to design multilayer structures with effective medium theory. In this way,
the complex parameters can be obtained with several homogeneous and isotropic
materials which are easy to get.

In summary, golden touch proposed in this chapter can extend the core prop-
erty to shell with extremely small core fraction, which has potential applications in
thermal camouflage, thermal management, etc. Furthermore, golden touch can be
directly extended to electrostatics and magnetostatics where permittivity and per-
meability play the same role as thermal conductivity in thermotics. Golden touch in
magnetostatics may also offer guidance for magnetostatic camouflage [31–33].
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13.6 Supplementary Proof

The dominant equation of heat conduction is

∇ · (−κ∇T ) = 0, (13.15)

where κ and T are respectively tensorial thermal conductivity and temperature.
We firstly discuss the two-dimensional core-shell structure, and put it into an

infinite matrix with thermal conductivity κm . Equation (13.15) can be expanded in
cylindrical coordinates as

∂

∂r

(
rκrr

∂T

∂r

)
+ ∂

∂θ

(
κθθ

∂T

r∂θ

)
= 0. (13.16)

The general solution of Eq. (13.16) is

T (κθθ/κrr > 0) = A0 + B0 ln r +
∞∑

i=1

[Ai sin (iθ) + Bi cos (iθ)] r
im1

+
∞∑

i=1

[Ci sin (iθ) + Di cos (iθ)] r
im2 , (13.17)

T (κθθ/κrr < 0) = E0 + F0 ln r +
∞∑

i=1

[Ei sin (iθ) + Fi cos (iθ)] sin (in ln r)

+
∞∑

i=1

[Gi sin (iθ) + Hi cos (iθ)] cos (in ln r) , (13.18)

where m1, 2 = ±√
κθθ/κrr , and n = √−κθθ/κrr . Here κθθ/κrr = 0 is the demarca-

tion point.
The temperature distribution of the core (Tc), shell (Ts), and matrix (Tm) can then

be determined by the following boundary conditions,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Tc < ∞,

Tc (rc) = Ts (rc) ,
Ts (rs) = Tm (rs) ,
(−κc∂Tc/∂r)rc = (−κrr∂Ts/∂r)rc ,
(−κrr∂Ts/∂r)rs = (−κm∂Tm/∂r)rs ,∇Tm (r → ∞) = ∇T0,

(13.19)

where ∇T0 represents the external uniform thermal field gradient.
For the symmetric core-shell structure and boundary conditions , we only require

to keep several terms of i = 1 in Eqs. (13.17, 13.18),
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T (κθθ/κrr > 0) = A0 + B1r
m1 cos θ + D1r

m2 cos θ, (13.20)

T (κθθ/κrr < 0) = E0 + F1 cos θ sin (n ln r) + H1 cos θ cos (n ln r) . (13.21)

Therefore, for isotropic matrix, we can obtain Tm = A0 + B1r cos θ + D1r−1 cos θ.
We set D1 as zero to ensure the external thermal field undistorted. Thenwe can derive
the effective thermal conductivity of the core-shell structure κe as Eqs. (13.1, 13.2).

We secondly discuss the three-dimensional core-shell structure, and also put it into
an infinite matrix with thermal conductivity κm . Equation (13.15) can be expanded
in spherical coordinates as

1

r

∂

∂r

(
r2κrr

∂T

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θκθθ

∂T

r∂θ

)
= 0. (13.22)

The general solution of Eq. (13.22) is

T (κθθ/κrr ≥ 0) = A0 + B0r
−1 +

∞∑

i=1

(
Air

s1 + Bir
s2
)
Pi (cos θ) , (13.23)

T (0 > κθθ/κrr > −1/8) = C0 + D0r
−1 +

j∑

i=1

(
Cir

s1 + Dir
s2
)
Pi (cos θ)

+
∞∑

i= j+1

r−1/2 [Ei sin (t ln r) + Fi cos (t ln r)] Pi (cos θ) , (13.24)

T (κθθ/κrr < −1/8) = G0 + H0r
−1

+
∞∑

i=1

r−1/2 [Gi sin (t ln r) + Hi cos (t ln r)] Pi (cos θ) , (13.25)

where s1,2 = (−1 ± √
1 + 4i (i + 1)κθθ/κrr

)
/2, t = √−1 − −4i (i + 1)κθθ/κrr /2,

and j = INT
[(−1 + √

1 − κrr/κθθ

)
/2

]
, where i is the summation index in

Eqs. (13.23–13.25), and INT [· · · ] is the integral function with respect to . . .. Pi
is Legendre polynomials.

We find that Eqs. (13.23, 13.24) are essentially the same with similar boundary
conditions of Eq. (13.19), for we only require to keep several terms of i = 1,

T

(
κθθ

κrr
> −1

8

)
= A0 + (

A1r
s1 + B1r

s2
)
cos θ, (13.26)

T

(
κθθ

κrr
< −1

8

)
= G0 + r−1/2 [G1 sin (t ln r) + H1 cos (t ln r)] cos θ. (13.27)

Therefore, κθθ/κrr = −1/8 is the real demarcation point. For isotropic matrix, we
can obtain Tm = A0 + (

A1r + B1r−2
)
cos θ. We set B1 as zero to ensure the external

thermal field undistorted. Then we can derive the effective thermal conductivity of
the core-shell structure κe as Eqs. (13.9, 13.10).
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Chapter 14
Theory for Isotropic Core and
Anisotropic Shell or for Two Isotropic
Shells: Thermal Chameleon

Abstract Intelligence has become one of the developing trends of thermal meta-
materials in order to meet different practical requirements. By considering the
temperature-dependent and specially-designed thermal conductivities, chameleon-
like behaviors have been revealed to realize adaptive responses to nearby objects.
However, the existing schemes are approximately valid only for a small working
range of nearby thermal conductivities. This fact limits practical applications. To
solve this problem, herewe propose two exact schemes to realize thermal chameleon-
like behaviors, say, monolayer schemes and bilayer schemes. By carefully designing
the thermal conductivities of the metashells, we find that the effective thermal con-
ductivities can exactly changewith those of nearby objects. In both schemes, apparent
negative thermal conductivities are required,which can be realized by adding external
heat sources. Theoretical derivations are validated by finite-element simulations. We
further extend the monolayer schemes to three dimensions. The proposed schemes
can work as a type of multifunction materials to meet different requirements of
thermal conductivities. This chapter provides intelligence to thermal conductivities,
which may inspire further development of intelligent thermal metamaterials.

Keywords Thermal chameleon · Monolayer schemes · Bilayer schemes ·
Intelligent thermal metamaterial

14.1 Opening Remarks

Thermal metamaterials have made a considerable impact on the field of heat man-
agement due to their specially-designed structures and conductivities. Some repre-
sentative examples are thermal cloaks [1–10], thermal transparency [11–14], thermal
bending [15–18], thermal camouflage/illusion [19–25], thermal Janus structures [26],
etc.

However, these schemes almost exhibit no intelligence, which means that they
cannot adapt to the change of nearby objects. Recentworks havemade some advances
in intelligence, and designed chameleonlike metashells in different diffusion fields
[27–29]. However, these results are almost approximately valid, which rely on a
small working range of nearby objects.
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To solve this problem, here we propose two exact schemes to realize metashells
with thermal chameleonlike behaviors. Concretely speaking, the designedmetashells
can always imitate the thermal conductivity of nearby objects, thus yielding an undis-
torted temperature profile outside the metashell (as if the metashell were the same
as the objects in the vicinity). Our method depends on the exact derivation of the
effective thermal conductivity of core-shell structures.

14.2 Theory for Thermal Chameleonlike Metashells

14.2.1 Anisotropic Monolayer Schemes

We discuss the properties of the core-shell structure presented in Fig. 14.1a. We set
the radius and the thermal conductivity of the core to be rc and κc, and those of the
shell to be rs and κs = diag (κrr , κθθ) with κθθ/κrr < 0 in cylindrical coordinates
(r, θ). The dominant equation in heat conduction is

∇ · (−κ∇T ) = 0, (14.1)

where κ and T are tensorial thermal conductivity and temperature, respectively.
Equation (14.1) can be expressed in cylindrical coordinates as

∂

∂r

(
rκrr

∂T

∂r

)
+ ∂

∂θ

(
κθθ

∂T

r∂θ

)
= 0. (14.2)

The general solution of Eq. (14.2) is

T (κθθ/κrr < 0) = A0 + B0 ln r

+
∞∑
i=1

[Ai sin (iθ) + Bi cos (iθ)] sin (im ln r)

+
∞∑
i=1

[Ci sin (iθ) + Di cos (iθ)] cos (im ln r) , (14.3)

T (κθθ/κrr > 0) = E0 + F0 ln r

+
∞∑
i=1

[Ei sin (iθ) + Fi cos (iθ)] r
in

+
∞∑
i=1

[Gi sin (iθ) + Hi cos (iθ)] r
−in, (14.4)

where m = √−κθθ/κrr , and n = √
κθθ/κrr .
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(a)

(c)

(b)

Fig. 14.1 Schematic diagrams of a core-shell structure or b core-shell-shell structure in two dimen-
sions. c Shows the functional relationship between κe/κc and κc when the thermal chameleonlike
metashells work. Adapted from Ref. [33]

The temperature distributions of the core (Tc), the shell (Ts), and the matrix (Tm)
can then be determined by the following boundary conditions,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Tc < ∞,

Tc (rc) = Ts (rc) ,
Ts (rs) = Tm (rs) ,
(−κc∂Tc/∂r)rc = (−κrr∂Ts/∂r)rc ,
(−κrr∂Ts/∂r)rs = (−κm∂Tm/∂r)rs ,∇Tm (r → ∞) = ∇T0,

(14.5)

where ∇T0 represents the external uniform potential gradient.
We only require to keep several terms with i = 1 in Eqs. (14.3) and (14.4) because

of the symmetric boundary conditions of Eq. (14.5),

T (κθθ/κrr < 0) = A0 + B1 cos θ sin (m ln r)

+ D1 cos θ cos (m ln r) , (14.6)
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T (κθθ/κrr > 0) = E0 + F1r
n cos θ

+H1r
−n cos θ. (14.7)

Therefore,we canobtainTm = E0 + F1r cos θ + H1r−1 cos θ for an isotropicmatrix.
We set H1 to be zero to ensure the external field undistorted. Then we can derive the
effective permeability of the core-shell structure κe as

κe = mκrr
κc + mκrr tan

(
m ln

√
p
)

mκrr − κc tan
(
m ln

√
p
) , (14.8)

where m = √−κθθ/κrr , and p = (rc/rs)
2 is the core fraction. As defined in this

chapter, thermal chameleonlike metashells are characterized by the adaptive
responses to inside objects. Namely, the effective thermal conductivity of the shell
(κs) is always equal to that of the inside object,

κs = κc. (14.9)

Based on the requirement of Eq. (14.9), the effective thermal conductivity of the
core-shell structure (κe) must be

κe = κc. (14.10)

Then, we should find some special relations to make Eq. (14.8) turn into
Eq. (14.10). Fortunately, we find one

√−κθθ/κrr ln
√
p = −N+π, (14.11)

where N+ (=1, 2, 3, . . .) can be any positive integer. Clearly, the requirement of
Eq. (14.10) is strictly satisfied with Eq. (14.11).

14.2.2 Isotropic Bilayer Schemes

Wealso discuss the properties of the core-shell-shell structure presented in Fig. 14.1b.
We set the core with radius rc and thermal conductivity κc, and the two shells with
radius rs1 and rs2, and thermal conductivities κs1 and κs2, respectively. The effective
thermal conductivity of the core-shell-shell structure κe can be expressed as

κe = κs2
κ12 + κs2 + (κ12 − κs2) p12
κ12 + κs2 − (κ12 − κs2) p12

, (14.12)

where p12 = (rs1/rs2)
2. κ12 is the effective thermal conductivity of the core plus the

first shell, which can be calculated by
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κ12 = κs1
κc + κs1 + (κc − κs1) pc
κc + κs1 − (κc − κs1) pc

, (14.13)

where pc = (rc/rs1)
2.

We also find a special relation to make Eq. (14.12) turn into Eq. (14.10),

(κs1 + κs2)
2 + (pc − p12)

2 = 0. (14.14)

which gives that κs1 + κs2 = 0 and pc − p12 = 0 should be simultaneously satisfied.
Clearly, the requirement of Eq. (14.10) is strictly satisfied with Eq. (14.14).

So far, we have theoretically analyzed the thermal chameleonlike metashells in
two dimensions, say Eq. (14.11) for monolayer schemes and Eq. (14.14) for bilayer
schemes. The presence of thermal chameleonlike metashells can ensure that the
effective thermal conductivity of the whole structure corresponds with the core, see
Fig. 14.1c.

14.2.3 Three-Dimensional Counterpart of Anisotropic
Monolayer Schemes

The theory for two-dimensional anisotropic monolayer schemes can be extended to
three-dimensional schemes. Equation (14.1) in spherical coordinates is expressed as

1

r

∂

∂r

(
r2κrr

∂T

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θκθθ

∂T

r∂θ

)
= 0. (14.15)

The general solution of Eq. (14.15) is

T (κθθ/κrr < −1/8) = A0 + B0r
−1

+
∞∑
i=1

r−1/2 [Ai sin (s ln r) + Bi cos (s ln r)]

×Pi (cos θ) , (14.16)

T (−1/8 < κθθ/κrr < 0) = C0 + D0r
−1

+
j∑

i=1

(
Cir

t1 + Dir
t2
)
Pi (cos θ)

+
∞∑

i= j+1

r−1/2 [Ei sin (s ln r) + Fi cos (s ln r)]

×Pi (cos θ) , (14.17)

T (0 ≤ κθθ/κrr ) =
∞∑
i=0

(
Gir

t1 + Hir
t2
)

×Pi (cos θ) , (14.18)
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where s = √−1/4 − i (i + 1)κθθ/κrr , t1, 2 = −1/2 ± √
1/4 + i (i + 1)κθθ/κrr , i

is the summation index, j = INT
[−1/2 + √

1/4 − κrr/ (4κθθ)
]
, and INT [· · · ] is

the integral function with respect to · · · . Pi is Legendre polynomials.
In fact, Eqs. (14.17) and (14.18) turn to be the same with similar boundary con-

ditions of Eq. (14.5) because we only require to keep several terms of i = 1. Thus,
Eqs. (14.16)–(14.18) can be simplified as

T (κθθ/κrr < −1/8) = A0

+r−1/2 [A1 sin (u ln r) + B1 cos (u ln r)] cos θ, (14.19)

T (κθθ/κrr > −1/8) = G0

+ (G1r
v1 + H1r

v2) cos θ, (14.20)

where u = √−1/4 − 2κθθ/κrr , and v1, 2 = −1/2 ± √
1/4 + 2κθθ/κrr ,

We set the core with radius rc and scalar thermal conductivity κc, and the shell
with radius rs and tensorial thermal conductivity κs = diag

(
κrr , κθθ, κϕϕ

)
with

κθθ = κϕϕ for brevity. It should be noted that κθθ/κrr < −1/8.
We can obtain Tm = G0 + (

G1r + H1r−2
)
cos θ for an isotropic matrix. We set

H1 to be zero to ensure the external field undistorted. Thenwe can derive the effective
thermal conductivity of the core-shell structure κe in three dimensions as

κe = κrr
4uκc + [

2κc + (
1 + 4u2

)
κrr

]
tan

(
u ln 3

√
p
)

4uκrr − 2 (2κc + κrr ) tan
(
u ln 3

√
p
) , (14.21)

where p = (rc/rs)
3 is the core fraction.

We also find a special relation to make Eq. (14.21) to satisfy the requirement of
Eq. (14.10) √−1/4 − 2κθθ/κrr ln 3

√
p = −N+π, (14.22)

where N+ (= 1, 2, 3, . . .) can be any positive integer. Clearly, with Eq. (14.22), the
requirement of Eq. (14.10) is perfectly satisfied. Therefore, thermal chameleonlike
metashells can be achieved in three dimensions with anisotropic monolayer scheme.

14.2.4 Explanation for the Failure of Isotropic Bilayer
Schemes in Three Dimensions

Then we consider the isotropic bilayer schemes in three dimensions. We set the core
to have radius rc and scalar thermal conductivity κc, and the two shells to have radii
rs1 and rs2 and scalar thermal conductivities κs1 and κs2. Then we can derive the
effective thermal conductivity of the core-shell-shell structure κe as

κe = κs2
κ12 + 2κs2 + 2 (κ12 − κs2) p12
κ12 + 2κs2 − (κ12 − κs2) p12

, (14.23)
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where p12 = (rs1/rs2)
3. κ12 is the effective thermal conductivity of the core plus the

first shell, which can be calculated as

κ12 = κs1
κc + 2κs1 + 2 (κc − κs1) pc
κc + 2κs1 − (κc − κs1) pc

, (14.24)

where pc = (rc/rs1)
3.

Although we find a special relation to make Eq. (14.23) turn into Eq. (14.10)

[(p12 − 2pc + pc p12)κc − (pc − 2p12 + pc p12)κs1]
2

+ (κs1 + 2κs2)
2 = 0, (14.25)

Equation (14.25) is dependent on κc. This means that the chameleonlike behavior is
dependent on the core property, which is not what we expect. Therefore, isotropic
bilayer schemes fail in three dimensions.

14.3 Simulations of Thermal Chameleonlike Metashells

We perform finite-element simulations to validate the two proposed schemes with
COMSOL Multiphysics (http://www.comsol.com/). To perform simulations, we set
the thermal conductivities of the inside core and outside background to be the same.
Then, we compare the results of thermal chameleonlike metashells (Fig. 14.2a, b), a
normal shell (Fig. 14.2c), and a reference shell (Fig. 14.2d). Clearly, the same temper-
atureprofilesareobtainedoutside the thermalchameleonlikemetashells (Fig. 14.2a,b)
and the reference shell (Fig. 14.2d). Thus, thermal chameleonlikemetashells do adap-
tively change their effective thermal conductivity according the nearby changes as
expected. In contrast, the different background thermal profiles between the normal
shell (Fig. 14.2c) and the reference shell (Fig. 14.2d) show that a normal shell does not
possess the ability to change adaptively.

To validate the robustness, we change the thermal conductivities of the inside core
and outside background, and keep those of the thermal chameleonlike metashells
unchanged, to create a different condition; see Fig. 14.3. As expected, thermal
chameleonlike metashells change their effective thermal conductivities adaptively
according to the nearby changes. As a result, the temperature distributions outside
the chameleonlike metashells (Fig. 14.3a, b) and the reference shell (Fig. 14.3d) are
the same. However, that outside the normal shell (Fig. 14.3c) is different, which
exhibits no adaptivity.

Finally, we consider an anisotropic case to show the capability of the thermal
chameleonlike metashells. Similarly, we keep the thermal chameleonlike metashells
unchanged, and change the thermal conductivities of the inside core and outside
background to be anisotropic; see Fig. 14.4. The same conclusion can be obtained
from the samebackground temperature distributions betweenFig. 14.4a–d.Certainly,
the normal shell fails again Fig. 14.4c.

http://www.comsol.com/
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Fig. 14.2 The simulation box is 10 × 10 cm2. The inner and outer radius in a, c, and d is 2 and 3 cm.
The three radius in b are 2,

√
6, and 3 cm. The thermal conductivities of the thermal chameleonlike

metashells are κs = diag (10, −600.33)Wm−1K−1 for a, and −10 Wm−1K−1 inner shell and 10
outer shell for b. Those of the inside core and outside background are 0.1 Wm−1K−1. That of the
normal shell is 5 Wm−1K−1 throughout this chapter. Adapted from Ref. [33]

14.4 Discussion and Conclusion

Wehaveproposed andconfirmed theperformanceof twokinds of thermal chameleon-
like metashells by both theoretical analyses and finite-element simulations. Our
results have shown that the two schemes are exactly valid, indicating that they can
work for various changes of nearby objects.

In this chapter, apparent negative thermal conductivities have been applied in our
design. Although they do not occur in nature, they can be artificially realized by
adding extra heat energy [30–32]. Thus, these two schemes have practical signifi-
cance.
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Fig. 14.3 All the parameters are the same as those for Fig. 14.2 except for the thermal conductivities
of the inside core and outside background, say 100 Wm−1K−1. Adapted from Ref. [33]

In summary, we have presented two types of schemes to realize the thermal adap-
tive responses to the change of objects in the vicinity. Such schemes can work as
multifunctionmaterials tomeet various requirements of thermal conductivities under
different conditions. This chapter also provides guidance to other diffusive fields.



174 14 Theory for Isotropic Core and Anisotropic Shell …

Fig. 14.4 All the parameters are the same as those for Fig. 14.2 except for the thermal conductivities
of the inside core and outside background, say diag (10, 20)Wm−1K−1. Adapted from Ref. [33]
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Chapter 15
Theory for Anisotropic Core
and Isotropic Shell: Isothermal Rotation

Abstract Architected structures have aroused widespread research interest for they
possess unique properties in mechanics. However, a fundamental theory has not been
established to understand their thermal properties. This chapter describes a theoret-
ical framework in thermotics to predict thermal properties of architected structures.
Then, by experiment and simulation, we show its applications in the field of heat
management. By assembling two radically different materials, we design two types
of Janus structures. The different rotation degrees of the Janus structures can flexibly
control the switch between different functions, such as, from partial concentration
to uniform concentration and from rotation to concentration. These functions are
realized in the structure made of heterogeneous core plus homogeneous shell, which
is contrary to the existing structures made of homogeneous core plus heterogeneous
shell designed by the theory of transformation thermotics. This chapter lays a theo-
retical foundation in thermotics for further research on heterogeneously architected
structures, and it proposes the concept of thermal Janus structures for flexible heat
control, which may open an avenue for intelligent thermal metamaterials.

Keywords Architected structure · Janus structure · Intelligent thermal
metamaterial · Rotation · Concentration

15.1 Opening Remarks

Heat manipulation is of growing significance due to the universality of heat energy.
Fortunately, with delicate design of architected structures, many unique thermal phe-
nomena have been realized,which include cloaking or camouflage [1–15], concentra-
tion [4, 9, 16, 17], rotation [4, 18], transparency [19], and their combinations [20–25].
These functions are mostly based on the structure of a coated core, which is generally
featured by a homogeneous core and a heterogeneous (architected) shell according
to the theory of transformation thermotics [1–3]. Even so, heterogeneously archi-
tected structures have aroused less attention in thermotics than in mechanics (e.g.,
see Ref. [26] and references therein). This situation mainly results from the lack
of enough fundamental thermal theories for handling heterogeneously architected
structures.
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As a meaningful attempt, here we introduce the structure of a coated core, which
is, however, composed of a heterogeneously architected core and a homogeneous
shell. A theoretical framework will be established to predict the effective thermal
response of the coated core.

In addition, another challenge is to realize multi-functions in a single field. Com-
paredwithmulti-functions inmulti-fields [20–24], there is onlyone adjustable param-
eter in a single field (such as thermal conductivity in the single thermal field), so the
realization of multi-functions in a single field becomes relatively more difficult.
Although Shen et al. [25] have realized a type of cloak-concentrator in thermotics
by tailoring the temperature-dependent effect of thermal conductivities, different
mechanisms for multi-functions still remain to be investigated.

To overcome this challenge, here we further propose a concept of thermal Janus
core on the basis of the aforementioned theoretical framework, which can be seen
as a typical kind of heterogeneously architected core. Generally speaking, such a
Janus core is composed of two radically different materials, which has been widely
studied in soft matter (e.g., see Refs. [27–29]). Then we experimentally fabricate two
samples to realize the flexible control of isotherm concentration by rotating the core.
We further propose another concept of generalized thermal Janus core, which is also
composed of two radically different materials, but with more flexible structures. As
a result, the switch between thermal rotation and concentration can be achieved by
rotating the core.

15.2 Theory

Let us start by investigating the effective thermal conductivity of a two-dimensional
coated core with circular shape; see Fig. 15.1a. The thermal property of the core
is represented by a heterogeneous, anisotropic and diagonal thermal conductivity
tensor κ̄c (x, y),

κ̄c (x, y) =
[
κxx (x, y) 0

0 κyy (x, y)

]
. (15.1)

We then write down the boundary condition [heat flux Jb (x, y)] on Boundary I [see
Fig. 15.1b] in Cartesian coordinates according to Fourier’s law,

Jb (x, y) =
[
Jx (x, y)
Jy (x, y)

]
= −κ̄c (x, y) ∇Tb (x, y)

= −
[
κxx (x, y) ∂Tb (x, y) /∂x
κyy (x, y) ∂Tb (x, y) /∂y

]
, (15.2)

where Tb (x, y) is the temperature distribution on Boundary I (see Fig. 15.1b). We
rewrite the heat flux Jb (x, y) in polar coordinates for the convenience of discussion,
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Fig. 15.1 Schematic diagrams (a–c) and simulation settings (d, e) of a coated core. a For struc-
tures and parameters, b for boundary conditions (heat flux and temperature), and c for calculating
method. d for simulation box, and e for thermal conductivities of the core. f Shows the simulation
result with κ̄c = diag

[
50, 20 + 30000

(
x2 + y2

)]
, κs = 400, and κe = 242Wm−1K−1. Parame-

ters: Th = 313K, Tc = 273K, d0 = 20cm, rc = 3.6cm, and rs = 6.4cm. White lines represent
isotherms. Adapted from Ref. [32]

Jb (r, θ) =
[
Jr (r, θ)
Jθ (r, θ)

]
=

[
Jx (x, y) cos θ + Jy (x, y) sin θ

−Jx (x, y) sin θ + Jy (x, y) cos θ

]
, (15.3)

where x = r cos θ, y = r sin θ.
Now we pay attention to the radial component Jr (r, θ) (see Fig. 15.1b), for heat

flux is always conservative along the radial direction of Boundary I,

Jr (r, θ) = −κxx (x, y) cos θ∂Tb (x, y) /∂x − κyy (x, y) sin θ∂Tb (x, y) /∂y.
(15.4)

For further discussion, we have to make an approximation for boundary condition
[temperature Tb (x, y)]. Namely, when the direction of external thermal field is along
x axis and κxx (x, y) is a constant, the temperature distribution on Boundary I is
uniform,

Tb (x, y) = Ax + B, (15.5)

where A and B are two constants. We suppose that Eq. (15.5) holds approximately
when κxx (x, y) experiences a small variation. Therefore, the radial component of
heat flux Eq. (15.4) can be simplified as
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Jr (r, θ) = −κxx (x, y) A cos θ. (15.6)

The most important feature of Eq. (15.6) is that Jr (r, θ) is independent of
κyy (x, y), which means that the effective thermal conductivity of the coated core
is independent of κyy (x, y). In other words, we only need to calculate the effec-
tive thermal conductivity of κxx (x, y) (denoted by scalar κc), and then the effective
thermal conductivity of the coated core can be obtained. Therefore, as long as the
variation of κxx (x, y) is small enough, Eq. (15.5) is rational and contributing.

Now we are in a position to calculate the effective thermal conductivity of
κxx (x, y), namely κc. The concrete approximation method is as follows.

We first separate the core into strips whose width dy is small enough; see
Fig. 15.1c. Then we calculate the effective thermal conductivity of each strip κxx (y)
through series connection,

κxx (y) = 2
√
r2c − y2∫ √

r2c −y2

−
√

r2c −y2

dx

κxx (x, y)

, (15.7)

where rc is the radius of the core.
We further calculate the effective thermal conductivity of these strips through

parallel connection,

κc =
∫ rc

−rc

2κxx (y)
√
r2c − y2 dy

πr2c
. (15.8)

We finally calculate the effective thermal conductivity of the coated core κe

through the single-particle effective medium theory, namely Eq. (11) in Ref. [30],

κe = κs
κc + κs + (κc − κs)p

κc + κs − (κc − κs)p
, (15.9)

where κs is the thermal conductivity of the shell, and p = (rc/rs)
2 is the area fraction

of the core.
The final results Eqs. (15.7)–(15.9) are independent of κyy (x, y) under the

approximation condition of Eq. (15.5). To be mentioned, the influence of the con-
ductivity variation on the accuracy of Eqs. (15.7)–(15.9) is analyzed in section III
via finite-element simulations.

Similarly, we can derive the effective thermal conductivity for a three-dimensional
coated core with spherical shape, as shown in the Supplementary Proof.
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15.3 Simulation

We simulate the two-dimensional coated core (see Fig. 15.1d) to observe the perfor-
manceofEqs. (15.7)–(15.9). For arbitraryκxx (x, y),well-defined (or strict) effective
thermal conductivity of a coated core probably does not exist. Therefore, we define
a relative error � to indirectly examine the performance of Eqs. (15.7)–(15.9) on
predicting the effective thermal conductivity,

� =
∮
�

|∇T − ∇T0| dl
|∇T0|

∮
�
dl

, (15.10)

where ∇T0 is the external thermal field, |∇T0| = (Th − Tc) /d0, and the integrate
boundary � is the outer periphery of the coated core (denoted by Boundary II);
see Fig. 15.1d. Clearly, better performance of Eqs. (15.7)–(15.9) corresponds to less
influence of the coated core on the matrix, which is represented by a smaller value
of �. For our purpose, we calculate Eq. (15.10) by using the finite-element simula-
tion based on the commercial software COMSOLMultiphysics (http://www.comsol.
com/).

We have mentioned that when κxx (x, y) is a constant, Eq. (15.5)
is strictly satisfied and κe is independent of κyy (x, y). To validate the statement,
we setκxx (x, y) = 50Wm−1K−1, and arbitraryκyy (x, y) = 20 + 30000

(
x2 + y2

)
Wm−1K−1; see Fig. 15.1e. The thermal conductivity of the shell κs is set to be
400Wm−1K−1, and the effective thermal conductivity of the coated core is calcu-
lated from Eqs. (15.7)–(15.9). We find that the temperature gradient in the core is
uniform; see Fig. 15.1f, and obtain � = 0 according to Eq. (15.10). The results indi-
cate that when κxx (x, y) is a constant, Eqs. (15.7)–(15.9) can be reduced to account
for the known case of uniform thermal conductivities.

Nowwe discuss a position-dependent κxx (x, y). Our theory [Eqs. (15.7)–(15.9)]
does not consider the effect of κyy (x, y), so we set κyy (x, y) = κxx (x, y) with-
out loss of generality. We choose two typical functions: F (w) = 20 + |100w|C
and G (w) = 20 + 60/

(
1 + e−100Dw

)
, which are respectively even-symmetric and

odd-symmetric; see Fig. 15.2a, d. To distinguish the contribution, we respectively
set κxx (x, y) = F (x), κxx (x, y) = F (y), κxx (x, y) = G (x), and κxx (x, y) =
G (y). The effective thermal conductivities and relative errors are respectively shown
in Fig. 15.2b, e and c, f. The maximum relative error is below 1.9%, which shows
the ability of our theory to predict the effective thermal conductivities. In F (w)

and G (w), C can reflect the variation amplitude, and ln D can reflect the varia-
tion speed. Comparing Fig. 15.2c, f, we find that the relative errors increase as the
variation amplitude (C) and variation speed (ln D) increase. In addition, the relative
errors of even-symmetric distribution [F (w)] of thermal conductivities are smaller
than those of odd-symmetric distribution [G (w)].

http://www.comsol.com/
http://www.comsol.com/
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Fig. 15.2 Simulation results of a coated core. a, d are two typical functions which will be set as
the thermal conductivities of the core. b, e are the predicted effective thermal conductivities of the
coated corewith Eqs. (15.7)–(15.9). c, f are the relative errors of the predicted thermal conductivities
with Eq. (15.10). Other simulation settings are same as those for Fig. 15.2d. Adapted from Ref. [32]
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15.4 Application: Experiment and Simulation

15.4.1 Thermal Janus Core

The above theories and simulations pave the way to propose a concept of thermal
Janus core which is composed of two radically different materials (material A and
material B); see Fig. 15.3a. Here we apply such thermal Janus core to realize the
manipulation of isotherm concentration; see Fig. 15.3b, c. We can observe the partial
concentration of the isotherms in Fig. 15.3b. The isotherms become concentrated in
the left part of the core, while sparse in the right. Then we anticlockwise rotate the
thermal Janus core by 90 ◦, andweobserve the uniformconcentration of the isotherms
in Fig. 15.3c. Concrete concentration ratio is shown in Fig. 15.3j. To ensure that the
rotation will not disturb the external field, the thermal conductivity of the core is
required to satisfy

(κc)0 = (κc)90 , (15.11)

where the subscripts 0 and 90 respectively represent the anticlockwise rotation angle
of the core, and they can be calculated from Eqs. (15.7)–(15.9). When calculat-
ing (κc)90, the κyy (x, y) in Eq. (15.1) actually works, and hence κxx (x, y) in
Eqs. (15.7)–(15.9) should be replaced by κyy (x, y).

In the mean time, we also conduct experiments for demonstration. We drill dif-
ferent holes on a copper plate to design practical structures of the core, and fabricate
two samples with laser engraving; see Fig. 15.3d, e, f. Detailed parameters of the
two experimental samples are designed according to the periodic-particle effective
medium theory, namely Eq. (4) in Ref. [31], which are shown in Fig. 15.3g. We use
water baths to act as hot or cold sources, and an infrared camera Flir E60 to detect the
thermal profile. The measurements are conducted at standard atmosphere pressure
and room temperature. The measured and simulated results based on the two sam-
ples are respectively shown in Fig. 15.3h, i and k, l. Clearly, good agreement with
our theory has come to appear.

Then we rotate the core by 22.5, 45, 67.5 ◦ to observe the switch progress from
partial concentration to uniform concentration: Fig. 15.4a–c for anticlockwise rota-
tion, Fig. 15.4d–f for clockwise rotation. Owing to Eq. (15.11), the external field is
not disturbed as expected.

15.4.2 Generalized Thermal Janus Core

We further propose another concept of generalized thermal Janus core which is
also composed of two radically different materials (material A and material B),
but with more flexible structures; see Fig. 15.5a. Here we apply such generalized
thermal Janus core to realize the switch between concentration and rotation; see
Fig. 15.5b, c. Figure15.5b shows that the heat flux in the core has a rotation of
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Fig. 15.3 Thermal Janus core. a, d for ideal thermal Janus core and practical thermal Janus macro-
crystal. b is the simulated result of partial concentration (left part of the core). c is the simulated
results of uniform concentration where the core is anticlockwise rotated by 90 ◦. e, f are two fab-
ricated samples whose measured and simulated results are respectively shown in h, i and k, l. The
detailed parameters are displayed in g. j shows the concentration ratio in the core along x axis (where
y = 0). Parameters: κ̄A = diag [100, 150]Wm−1K−1, κ̄B = diag [300, 150]Wm−1K−1, Copper:
400Wm−1K−1, Air: 0.026Wm−1K−1, and other parameters are same as those for Fig. 15.2d.
Adapted from Ref. [32]
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Fig. 15.4 Simulated results for anticlockwise (a–c) and clockwise (d–f) rotating the core by 22.5,
45, 67.5 ◦. Other parameters are same as those for Fig. 15.3b. Adapted from Ref. [32]

about 62◦, when compared with that in the matrix. Then we anticlockwise rotate the
generalized thermal Janus core by 90 ◦, and we can observe the switch from rotation
to concentration in Fig. 15.5c. Incidentally, when designing the generalized thermal
Janus core, Eq. (15.11) should be satisfied as well.

To experimentally demonstrate the validity of Fig. 15.5b, c, one might also drill
different holes on a copper and plumbum plate to design practical structures of the
core, and then design two samples; see Fig. 15.5d, e, f. Detailed parameters of the
two samples are shown in Fig. 15.5g. The simulated results based on the two samples
are shown in Fig. 15.5h, i, which agree well with our theoretical prediction as shown
in Fig. 15.5b, c.

In addition, when we rotate the core by 22.5, 45, and 67.5 ◦, we can observe
the switch progress from rotation to concentration: Fig. 15.6a–c for anticlockwise
rotating the core and Fig. 15.6d–f for clockwise rotating the core. We also adjust
the parameters of h1, h2, w1 and w2 to observe the change in the rotation of heat
flux; see Fig. 15.6g–i. To be mentioned, these parameters may affect κe according to
Eqs. (15.7)–(15.9), but their influence is small enough to be neglected. The rotation
degrees of heat flux in Fig. 15.6a–i are about 26, –20, –18, 55, 38, 18, 68, 60, and
48 ◦. The results show that the generalized thermal Janus core has a flexible control
of heat flux rotation while keeping the external field undisturbed.
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Fig. 15.5 Generalized thermal Janus core. Purple lines in b, c, h, i represent the flow of heat.
a, d for ideal generalized thermal Janus core and practical generalized thermal Janus macro-
crystal, respectively. b is the simulated result of heat flux rotation. c is the simulated results of
concentration where the core is anticlockwise rotated by 90 ◦. e, f are two designed samples
whose simulated results are shown in h, i. The detailed parameters are displayed in g. Param-
eters: κ̄A = diag [8, 26]Wm−1K−1, κ̄B = diag [380, 26]Wm−1K−1, Plumbum: 35Wm−1K−1,
h1 = h2 = 2.12cm, w1 = w2 = 1.11cm, and other parameters are same as those for Fig. 15.2d.
Adapted from Ref. [32]

15.5 Conclusion

In summary, we have presented a theoretical framework to predict the effective ther-
mal conductivity of a coated core with a heterogeneously architected core plus a
homogeneous shell, which differs from the structure of homogeneous core plus a
heterogeneously architected shell as extensively adopted for thermal rotation and
concentration according to the theory of transformation thermotics. Based on the
theory, we have proposed two kinds of Janus structures, which enable flexible heat
manipulation for thermal rotation and concentration. Our theory has been confirmed
by numerical simulations and our design of Janus structures has been validated by
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Fig. 15.6 Simulated results for other parameters. Anticlockwise (a–c) and clockwise (d–f) rotating
the core by 22.5, 45, 67.5 ◦. g–i for changing the parameters of h1, h2, w1 and w2. Parameters:
h1 = h2 = 2.50cm and w1 = w2 = 0.75cm for g, h1 = h2 = 2.31cm and w1 = w2 = 0.99cm
for h, h1 = h2 = 2.01cm and w1 = w2 = 1.35cm for i, and other parameters are same as those
for Fig. 15.5b. Adapted from Ref. [32]

both experiment and simulation. This chapter has not only potential applications in
heat management, but also instructive meanings for exploring novel thermal phe-
nomena of thermal metamaterials.
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15.6 Supplementary Proof

Here we extend the theory from two dimensions (circular shape) to three dimensions
(spherical shape). Then, the thermal property of the core can be represented by a
heterogeneous, anisotropic and diagonal thermal conductivity tensor κ̄c (x, y, z),

κ̄c (x, y, z) =
⎡
⎣κxx (x, y, z) 0 0

0 κyy (x, y, z) 0
0 0 κzz (x, y, z)

⎤
⎦ . (15.12)

By imitating the two-dimensional results, Eqs. (15.7)–(15.9), we separate the core
into sticks and calculate the effective thermal conductivity of each stick κxx (y, z)
through series connection pattern,

κxx (y, z) = 2
√
r2c − y2 − z2∫ √

r2c −y2−z2

−
√

r2c −y2−z2

dx

κxx (x, y, z)

, (15.13)

where rc is the radius of the core.
We further calculate the effective thermal conductivity of these strips through

parallel connection pattern,

κc =
∫ rc

−rc

2κxx (y, z)
√
r2c − y2 − z2 dy dz

(4/3) πr3c
. (15.14)

We finally calculate the effective thermal conductivity of the coated core κe

through the single-particle effective medium theory, namely Eq. (11) in Ref. [30],

κe = κs
κc + 2κs + 2(κc − κs)p

κc + 2κs − (κc − κs)p
, (15.15)

where κs is the thermal conductivity of the shell, and p = (rc/rs)
3 is the volume

fraction of the core.

15.7 Exercises and Solutions

Exercises

1. Consider a two-dimensional Janus core with radius rc, whose left part is with
tensorial thermal conductivity κ̄A = diag [100, 150]Wm−1K−1, and the right part
is with that κ̄B = diag [300, 150]Wm−1K−1, which are expressed in Cartesian
coordinates. Please calculate the approximate effective thermal conductivity along
the x axis.
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Solutions

1. Solution: κxx (y) = 2
√
r2c − y2/

∫ √
r2c −y2

−
√

r2c −y2

dx

κxx (x, y)
= 2

1/100 + 1/300
=

150Wm−1K−1, and then κc =
∫ rc

−rc

2κxx (y)
√
r2c − y2 dy

πr2c
= 150Wm−1K−1.
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Chapter 16
Theory for Anisotropic Core
and Anisotropic Shell: Thermal
Transparency, Concentrator and Cloak

Abstract In the existing literatures of thermal metamaterials or metadevices, many
properties or functions are designed via coordinate transformation theory (transfor-
mation thermotics), including thermal concentrating and cloaking. But other proper-
ties or functions, say, thermal transparency, are designed by using theories differing
from the transformation thermotics. Here we put forward an effective medium theory
in thermotics by considering anisotropic layered/graded structures, andwe reveal that
the theory can unify transparency, concentrating, and cloaking into the same theoret-
ical framework. Furthermore, the theory not only gives the criterion of transparency,
concentrating, and cloaking, but also helps to predict a type of ellipses-embedded
structures which can achieve transparency, concentrating, and cloaking, respectively.
The prediction is confirmed by our finite-element simulations and/or experiments.
This chapter provides a different theory to understand and design thermal meta-
materials or metadevices, which might be extended into other disciplines, such as
optics/electromagnetics and acoustics.

Keywords Effective medium theory · Thermal transparency · Thermal
concentrator · Thermal cloak

16.1 Opening Remarks

Since 2008, thermalmetamaterials ormetadevices [1–22] have been intensively stud-
ied, in order to achieve invisibility [1–13], illusion [15–21] and other inconceivable
thermal properties or functions, such as concentrators [4, 5, 11, 12], macroscopic
diodes [10] and energy-free thermostats [22].

On the onehand,most of the devices are designedbasedon the theory of coordinate
transformation [1–6, 10–12, 18–20], which originates from the pioneering work on
electromagnetic waves in 2006 [23]. For example, this theory helps to predict and
realize the effect of thermal cloaking (which helps to let the heat flow around an
object as if the object does not exist) [1–12] and concentrating (which corresponds
to the concentration of the heat into a specific region) [4, 5, 11, 12].
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On the other hand, some thermal metamaterials with other properties or functions
are designed by using theories beyond transformation. Typically, thermal trans-
parency (which means that heat flows across a region without disturbing outside
thermal signatures) [13, 14] was proposed and designed by introducing the concept
of neutral inclusion with computable effective thermal conductivities.

Here, we raise a question: does there exist a thermal theory which is capable of
unifying thermal transparency, concentrating and cloaking into the same theoretical
framework? If so, onewould be able to design transparency, concentrating and cloak-
ing from a different aspect, which may be convenient. Nevertheless, since thermal
metamaterials with different properties or functions are composed of different struc-
tures andmaterials, it seems difficult to unify the theories. As an initial work, here we
attempt to overcome the difficulty through developing an effective medium theory
in thermotics, which considers anisotropic layered/graded structures. Our simula-
tions show that the theory can not only unify thermal transparency, concentrating
and cloaking into the same theoretical framework, but also help to design practical
devices on the basis of an ellipses-embedded structure according to the resulting the-
oretical criterion. The desired effects are confirmed by simulation and/or experiment.

16.2 Theoretical Analysis of Two-Dimensional Circular
Structures Constructed by Anisotropic Materials

16.2.1 Exact Solution for a Multi-layered Structure

First of all, we consider a bilayer structure which is composed of two anisotropic
materials (see Fig. 16.1a). The thermal conductivities of themare second-order diago-
nal tensors which have radial elementκrr (radial thermal conductivity) and tangential
element κθθ (tangential thermal conductivity). Considering the structure presented
in a uniform thermal gradient field without heat sources, the conduction equation
satisfies the Laplace equation

∇ · (−κ · ∇T ) = 0. (16.1)

We conduct variable separation and derive the expression in polar coordinates since
the thermal conductivity tensors have no items, κrθ and κθr . Then, we obtain

1

r

∂

∂r

(
rκrr

∂T

∂r

)
+ 1

r

∂

∂θ

(
κθθ

r

∂T

∂θ

)
= 0. (16.2)
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Fig. 16.1 Schematic diagram of a bilayer and b graded structures, c multi-layered and d graded
rings. a For the bilayer structure, the circular core and annular shell are composed of anisotropic
materials,with radial (κrr,1 andκrr,2) and tangential (κθθ,1 andκθθ,2) thermal conductivities, respec-
tively. b The graded structure is composed of a circular core with uniform thermal conductivity κc
and an annular shell with radial (κrr (r)) and tangential (κθθ(r)) thermal conductivities, respectively.
The multi-layered ring in c is composed of n layers of concentric rings. The i-th ring with inner
radius ri is composed of material with radial (κrr,i ) and tangential (κθθ,i ) thermal conductivities,
respectively. The graded ring with internal radius a and external radius b is composed of graded
material with radial (κrr (r)) and tangential (κθθ(r)) thermal conductivities, respectively. Adapted
from Ref. [24]

The general solution of the above equation is

T = A0 + B0 ln r +
∞∑

m=1

[Am cos (mθ) + Bm sin (mθ)] rm
√

κθθ
κrr

+
∞∑
n=1

[Cn cos (nθ) + Dn sin (nθ)] r−n
√

κθθ
κrr . (16.3)

When the structure shown in Fig. 16.1a is presented in a background with thermal
conductivity κ3 and uniform thermal gradient field ∇T (along x direction), we can
write the associated boundary conditions as
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(16.4)

T1, T2 and T3 represent the temperature of the core, shell and background, respec-
tively. Since the device is presented in an external temperature gradient along x axis,
the last boundary condition in Eq. (16.4) means that the thermal gradient field is
uniform along x axis (r cos θ = x) at infinity (the device can’t affect the temperature
gradient at the infinity). Then, we can write down the solution of Eq. (16.2) by taking
into account the boundary conditions,

T3 = (
A1r + B1r

−1
)
cos θ. (16.5)

Equation (16.5) partially keeps the first-order terms (m = 1 and n = 1) in Eq. (16.3)
(general solution) to match the boundary conditions in Eq. (16.4).When the effective
thermal conductivity of the structure (κe) is equal to that of the background (κ3), there
is no thermal contrast between the structure and background. Hence, B1 is expected
to be zero. Thus, we obtain the effective thermal conductivity of the structure,

κe = c2κrr,2
(1 + pc2) c1κrr,1 + (1 − pc2) c2κrr,2

(1 − pc2) c1κrr,1 + (1 + pc2) c2κrr,2
, (16.6)

where p = r21/r
2
2 , c1 = √

κθθ,1/κrr,1, and c2 = √
κθθ,2/κrr,2. When c1 = c2 = 1

(isotropic material), Eq. (16.6) is reduced to the known Maxwell-Garnett theory.
So far, we have deduced the effective thermal conductivity of the bilayer circular

structure which is composed of two anisotropic materials. For the multi-layered
circular structure, we can firstly calculate the effective thermal conductivity (we
define it as κe1) of the innermost two layers using the above conclusion. Then,
by regarding the innermost two layers as one layer which possesses the uniform
thermal conductivity of κe1, we can calculate the effective thermal conductivity of
the innermost three layers. This procedure allows us to derive the effective thermal
conductivity of the whole multi-layered structure by continuous iteration.

16.2.2 Exact Solution for a Graded Structure

Based on the above deduction, our theory can also be extended into calculating the
effective thermal conductivity of a graded structure. The graded structure is com-
posed of continuous medium whose anisotropic thermal conductivity varies along
the radius. Considering a simple structure; see Fig. 16.1b, which is composed of
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a homogeneous circular core (with thermal conductivity of κc) and an anisotropic
annular shell (with radial and tangential thermal conductivity of κrr (r) and κθθ(r),
respectively). By solving the Laplace equation, we obtain the effective thermal con-
ductivity (κe) of the graded structure

κe = cκrr (r)
(1 + pc)κc + (1 − pc) cκrr (r)

(1 − pc)κc + (1 + pc) cκrr (r)
, (16.7)

where p is the area fraction of the core and c is
√

κθθ(r)/κrr(r). For convenience,
we rewrite Eq. (16.7) as

κe − κrr (r)c

κe + κrr (r)c
= pc

κc − κrr (r)c

κc + κrr (r)c
. (16.8)

For a shell with infinitesimal thickness of dr encircling the graded structure, the effec-
tive thermal conductivity changes from κe(r) to κe(r + dr). In this case, Eq. (16.8)
helps to obtain

κe(r + dr) − κrr (r)c

κe(r + dr) + κrr (r)c
=

[
r2

(r + dr)2

]c
κe(r) − κrr (r)c

κe(r) + κrr (r)c
. (16.9)

As a result, we obtain a differential equation

dκe(r)

dr
= [cκrr (r)]2 − κe(r)2

rκrr (r)
. (16.10)

Given the gradation profiles [κrr (r) and κθθ(r)] and the boundary condition (when
the radius is close to zero), the effective thermal conductivity of the whole graded
structure, κe(r), can be calculated according to Eq. (16.10).

16.2.3 Criterion for Transparency, Concentrating
and Cloaking

So far, we have calculated the effective thermal conductivities of layered and graded
structures which are composed of anisotropic materials. Based on these calculations,
we are now in a position to provide the criterion of thermal transparency, concen-
trating and cloaking, and then these devices can be designed by using anisotropic
materials accordingly. Let us consider two ringswhich are composed ofmulti-layered
(Fig. 16.1c) and graded (Fig. 16.1d) anisotropic materials embedded in backgrounds
with thermal conductivity κ0. The following criterions hold truewhen κrr,iκθθ,i = κ2

0
(for multi-layered materials) and κrr (r)κθθ(r) = κ2

0 (for graded materials) are satis-
fied. Namely,
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(1) When κ
e f f
rr = κ

e f f
θθ , the structures shown in Fig. 16.1c, d are serving as thermal

transparency devices.
(2) When κ

e f f
rr > κ

e f f
θθ , the structures shown in Fig. 16.1c, d are serving as thermal

concentrators.
(3) When κ

e f f
rr < κ

e f f
θθ , the structures shown in Fig. 16.1c, d are serving as thermal

cloaks. Especially, they tend to be perfect cloaks when κ
e f f
rr → 0.

κ
e f f
rr and κ

e f f
θθ are the effective radial and tangential thermal conductivities respec-

tively. For the multi-layered structure described in Fig. 16.1c, we have

κe f f
rr = ln

rn+1

r1

(
n∑

i=1

1

κrr,i
ln

ri+1

ri

)−1

,

κ
e f f
θθ =

(
ln

rn+1

r1

)−1 n∑
i=1

κθθ,i ln
ri+1

ri
. (16.11)

For the graded structure described in Fig. 16.1d, we obtain

κe f f
rr = ln

b

a

(∫ b

a

dr

κrr (r)r

)−1

,

κ
e f f
θθ =

(
ln

b

a

)−1 ∫ b

a

κθθ(r)dr

r
. (16.12)

16.3 Design of Thermal Transparency Devices,
Concentrators and Cloaks via a Finite-Element
Method

According to the above theory, we firstly design two thermal transparency devices
based on two-dimensional simulations by using the solid heat transfer module of
commercial software COMSOL (https://www.comsol.com). The physics-controlled
mesh is adjusted to be extremely fine in each simulation model. The left and right
sides are fixed at constant temperatures playing the roles of heat and cold sources.
The boundary conditions of upper and bottom sides are heat insulation. Besides,
in our simulations, the air convection is not considered. Figure16.2a, b shows the
simulation results of an anisotropic (Fig. 16.2a) and a graded-anisotropic (Fig. 16.2b)
annular devices with internal diameter 2 cm and external diameter 4 cm embedded
in square hosts with side length 9 cm. The basic parameters are described in the
figure caption. To maintain uniform densities of heat flux, the left sides of the hosts
hold linear hot sources with temperature 323 K, and the right sides are linear cold
sources with temperature 273 K. The color surfaces display the distribution of the
temperature, and the white lines represent the isotherms. The isotherms inside and

https://www.comsol.com
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Fig. 16.2 Two-dimensional simulation results of a, c, e anisotropic and b, d, f graded-anisotropic
thermal transparency devices, concentrators and cloaks presented in uniform backgroundswith ther-
mal conductivity 30 Wm−1K−1. a The anisotropic transparency device is composed of two layers
of materials with the radial (36 and 24.293 Wm−1K−1) and tangential (25 and 37.047 Wm−1K−1)
thermal conductivities, respectively. b The graded-anisotropic transparency device is composed of
graded material with the radial ( 900

(29ln2)r−1 Wm−1K−1) and tangential ((29ln2)r − 1 Wm−1K−1)
thermal conductivities, respectively. c The anisotropic concentrator is composed of material with
the radial (100 Wm−1K−1) and tangential (9 Wm−1K−1) thermal conductivities, respectively. d
For the graded anisotropic concentrator, the ring is composed of graded material with the radial
(100r − 30 Wm−1K−1) and tangential ( 900

100r−30 Wm−1K−1) thermal conductivities, respectively.
The parameters of the two cloaks (e, f) are same as those used in the two concentrators (c, d)
respectively, except the interchanging parameters of tangential and radial thermal conductivities.
Adapted from Ref. [24]
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outside the devices are straight (which is not affected by the devices) as if there
is no devices presented in the backgrounds, demonstrating the behavior of thermal
transparency.

Then, we further design two thermal concentrators (Fig. 16.2c, d) and two ther-
mal cloaks (Fig. 16.2e, f) which have the same geometrical parameters with that
discussed in transparency devices. Figure16.2c, d show the simulation results of an
anisotropic (Fig. 16.2c) and a graded-anisotropic (Fig. 16.2d) thermal concentrators.
The isotherms outside the devices are straight reflecting the zero thermal contrast
between the concentrators and the hosts. However, the isotherms inside the devices
are bent and compressed to the center of the devices, exhibiting the phenomenon of
thermal concentrating. Figure16.2e, f shows the simulation results of an anisotropic
(Fig. 16.2e) and a graded-anisotropic (Fig. 16.2f) thermal cloaks. In order to prevent
the heat flux from entering the cloak regions, the tangential thermal conductivities are
set to be much larger than the radial ones. The straight isotherms outside the devices
reflect that the outer temperature gradients can hardly affect the cloak regions as the
heat flows around the inner cloak regions through the anisotropic mediums.

16.4 Design of Thermal Transparency Devices,
Concentrators and Cloaks Based on
Ellipses-Embedded Structures

16.4.1 Thermal Transparency Device Based on an
Ellipses-Embedded Structure

By taking advantage of the geometrical anisotropy of the air ellipses, we further
design a thermal transparency device based on an ellipses-embedded structure; see
Fig. 16.3b, c, d, verifying the above theory in both experiment and simulation. The
thermal transparency device is composed of four concentric rings with multiple air
ellipses embedded. The basic parameters of the structure are depicted in the figure
caption. According to Ref. [21], we can achieve the effective thermal conductivity
of a two-dimensional ellipse-embedded square host along the i-th axis of the ellipse,

κi = κn
[p + (1 − p) Li ]κm + (1 − p) (1 − Li )κn

(1 − p) Liκm + [p + (1 − p) (1 − Li )]κn
. (16.13)

Here, we consider a binary composite where an air ellipse of thermal conductivity κm

and area fraction p is embedded in a host medium of κn , in the presence of a uniform
external thermal gradient field. To be mentioned, Li (i = a, b) is the shape factor of
the two-dimensional ellipse, while a and b are the semi-axes of the air ellipses. We
have
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(a) (b) (c)

(d) (e) (f)

Fig. 16.3 Experimental a setup and b sample of thermal transparency device. The transparency
device is composed of 100 air ellipses, eachwithmajor (minor) semi-axis 0.33 cm (0.04 cm), which
are drilled in brass of 109 Wm−1K−1. The distance between nearby ellipses equals to 0.83 cm.
The host background is occupied by brass drilled with 312 air circles with radius 0.23 cm, pro-
viding thermal conductivity 80 Wm−1K−1. Two-dimensional experimental and simulation results
of ellipses-embedded structures: c, d thermal transparency device, e concentrator, and f cloak. c
Shows the experimental result of a transparency device (d) is the simulation result corresponding
to (c). e Shows the simulation result of the concentrator in the presence of a uniform background
with the thermal conductivity of 120 Wm−1K−1. The concentrator is composed of five layers of
air ellipses, each with major (minor) semi-axis 0.3 cm (0.03 cm), which are embedded in the
background 270 Wm−1K−1. The width of the concentrator equals 3 cm. f Shows the simulation
result of the thermal cloak. The cloak is composed of five layers of air ellipses embedded in the
background of 380 Wm−1K−1; their major semi-axes are 0.3 cm, 0.355 cm, 0.415 cm, 0.48 cm
and 0.54cm respectively, and their minor semi-axes are all 0.05 cm. Other parameters are same as
those used in (c). Adapted from Ref. [24]

Li = ab

2

∫ ∞

0

ds(
i2 + s

) √(
a2 + s

) (
b2 + s

) . (16.14)

Then, we extend the above results into a two-dimensional ring which contains
many air ellipses. It is easy to verify that as long as the distances between nearby
ellipses are equal to the ring’s width and one of the axes of the air ellipses is set along
the ring’s radius, the radial and tangential thermal conductivities of the ring can be
approximately calculated by using Eq. (16.13). Thus, for the thermal transparency
device depicted in Fig. 16.3b, c, d, the calculated results of the radial and tangen-
tial thermal conductivities of the four rings are 68 Wm−1K−1 and 101 Wm−1K−1,
respectively. Hence, the effective thermal conductivity of the whole device can be
obtained by utilizing the above theory, which is equal to 84 Wm−1K−1.
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In addition, we also conduct an experiment to verify the above calculation. The
sample (Fig. 16.3b) is fabricated by chemical etching of 0.03cm brass board with
thermal conductivity 109 Wm−1K−1, and 0.1 mm-thick polydimethylsiloxane film
is covered on the sample in order to eliminate the infrared refection. A plastic foam
board with the same size of sample is stuck on the back of the sample in order to
weaken the air convection. Twowater tanks,which are respectively filledwith hot and
icewater (shown in Fig. 16.3a), serve as heat and cold sources, respectively. The room
temperature is tuned to be the middle temperature between the heat and cold sources,
which can minimize the air convection. Then we use FLIR E60 infrared camera with
resolution of 240 × 240 pixels to detect the temperature profile. The experimental
result is displayed in Fig. 16.3c. The straight isotherms reflect that there is no thermal
contrast between the device and host background; that is to say, the effective thermal
conductivity of the device is the same as that of background. In the experiment, the
thermal conductivity of the background is set to be 80Wm−1K−1, which is nearly the
same with the above calculated result. Figure16.3d is the simulation result, which is
consistent with the corresponding experimental result.

16.4.2 Thermal Concentrator and Cloak Based on
Ellipses-Embedded Structures

By using the simulationmethod, we further design a thermal concentrator and a cloak
with the radius of 5.5cm based on the ellipses-embedded structures. To be different
from the above equidistant distribution of the air ellipses, the air ellipses are equal-
angle-distributed in the annular structures. The detail parameters are described in the
figure caption. Figure16.3e, f show the two-dimensional simulation results of the
thermal concentrator and cloak. The white isotherms clearly show that the thermal
concentrating (Fig. 16.3e) and cloaking effect (Fig. 16.3f) are achieved. In principle,
thermal concentrator and cloak can be experimentally fabricated on the basis of
the two designs. However, the thermal contact resistance of the welded junctions
(which connect different materials) must be carefully eliminated, in order to keep
the performance of the samples.

16.5 Conclusion

To sum up, we have proposed an effective medium theory in thermotics, which
allows us to unify transparency, concentrating and cloaking into the same theoretical
framework. The resulting theoretical criterion has helped us to design transparency,
concentrating and cloaking, and we have confirmed the three functions via finite-
element simulations. Furthermore, with the aid of the theory, we have introduced an
ellipses-embedded structure for transparency, concentrating and cloaking; the desired
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effects have been verified in simulations and/or experiment. Our theory and the
corresponding ellipses-embedded structure may be applied to achieve other thermal
metamaterials like rotators, which are practically and commercially available for
potential applications. In addition, our theory, together with the criterion, might be
extended into other disciplines, such as optics/electromagnetics and acoustics.

16.6 Exercises and Solutions

Exercises

1. Consider a two-dimensional core-shell structure. The core is with radius rc and
scalar thermal conductivity κc, and the shell is with radius rs and nonuniform
tensorial thermal conductivity κs = diag [κrr (r) , κθθ (r)]. Please derive the dif-
ferential equation to calculate the effective thermal conductivity of the core-shell
structure κe. (Note that if the shell is uniform, the effective thermal conductiv-
ity of the core-shell can be calculated as κe = mκrr

κc+mκrr+(κc−mκrr )pm

κc+mκrr−(κc−mκrr )pm
, where

m = √
κθθ/κrr and p = (rc/rs)

2.)

Solutions

1. Solution: For convenience,we rewrite the given equation as κe−mκrr
κe+mκrr

= pm κc−mκrr
κc+mκrr

.
Considering a shell with infinitesimal thickness of dr encircling the graded struc-
ture, the effective thermal conductivity changes from κe(r) to κe(r + dr). In this

case, we can obtain κe(r+dr)−mκrr (r)
κe(r+dr)+mκrr (r)

=
[

r2

(r+dr)2

]m
κe(r)−mκrr (r)
κe(r)+mκrr (r)

. Thus, we obtain a

differential equation dκe(r)
dr = [mκrr (r)]2−κe(r)2

rκrr (r)
.
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Chapter 17
Theory for Periodic Structure: Thermal
Transparency

Abstract Almost all thermal metamaterials are essentially achieved by tailoring
asymmetric interaction between matrices and embedded particles. However, the
asymmetric interaction results in the noncommutativity of matrices and particles,
which may reduce the flexibility for heat management. To solve this problem, this
chapter describes a different mechanism by tailoring symmetric interaction between
particles arranged in periodic lattices, thus being called periodic interparticle in-
teraction. For practical application, the representative thermal transparency is intro-
duced, which, however, is realized by tailoring periodic interparticle interaction. The-
oretical analysis, finite-element simulation, and laboratory experiment all validate
the proposed mechanism. Moreover, the Maxwell–Garnett theory and the Brugge-
man theory are re-visited from their scope and relation with theoretical analysis and
finite-element analysis. Comparedwith the existing thermal transparency, the present
scheme looks more feasible to handle many-particle systems. This chapter opens a
gate to exploring periodic interparticle interaction, and further work can be expected:
(I) exploring periodic interparticle interaction with different lattice types and relative
positions for particle arrangement; (II) applying periodic interparticle interaction to
achieve other functions, such as thermal camouflage.

Keywords Periodic structure · Symmetric interaction · Thermal transparency ·
Maxwell–Garnett theory · Bruggeman theory

17.1 Opening Remarks

Thermal metamaterials have attracted wide research interest since 2008 [1–3]. The
related mechanism is mainly to tailor asymmetric interaction between matrices and
embedded particles. For example, thermal transparency in Refs. [4–7] considers the
asymmetric interaction between shell and inside core; thermal invisibility in Refs. [8,
9] tailors the asymmetric interaction between matrix and inside particles. The two
phenomena are featured by the same thermal conductivities between the device and
background. For core-shell structure, background is the region outside the shell; for
matrix plus inside particles, background is the region outside the matrix. Therefore,
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background can be generally regarded as the region excluding the device (say, the
designed structure). Note that the background may also possess uniform microstruc-
tures. Other thermal metamaterials for heat management, such as thermal cloak [1,
2, 10–14], thermal concentrator [10, 15, 16], and thermal camouflage [17–23], are
all in the framework of asymmetric interaction. Although asymmetric interaction has
been well manipulated, the noncommutativity of matrices and inside particles may
restrict the flexibility for heat management.

To solve this problem, here we reveal the mechanism of symmetric interaction
between periodic particles, say periodic interparticle interaction. For practical appli-
cation, we take the representative thermal transparency in Refs. [4–7] as an example,
but realize the phenomenon beyond the asymmetric interaction between shell and
inside core (an equivalent expression is the neutral inclusion which was raised by
Ref. [4]). Instead, we carefully tailor periodic interparticle interaction to remove the
influence of periodic particles [say, particles A and particles B in Fig. 17.1a] on the
background, thus thermal transparency is also achieved. Here particles A and parti-
cles B are the designed structure, thus background is the region excluding particles
A and particles B. Note that if the background is a pure material, it is just the matrix
where particles A and particles B are embedded. If the background possesses mi-
crostructures, it can be regarded as the matrix plus microstructures. Then the scheme
will be validated by theoretical analysis, finite-element simulation, and laboratory
experiment.

Moreover, we find that the formula describing periodic interparticle interaction
is mathematically the same as the well-known Bruggeman formula. Although the
Bruggeman formula can indeed explain symmetric interaction, the understanding is
completely different in our work, which will be discussed as well.

17.2 Theory for Periodic Interparticle Interaction

Let us start from considering the two-dimensional periodic composite material pre-
sented in Fig. 17.1a. Two types of particles are alternately embedded in the matrix
with distance d0; see Fig. 17.1b. Particle A is featured by material anisotropy and
geometry isotropy (a red graded circle with radius r ), whereas particle B is charac-
terized by material isotropy and geometry anisotropy (a blue ellipse with semi-minor
axis s and semi-major axis t); see Fig. 17.1c, d. We set the thermal conductivities
of particle A, particle B, and matrix to be κ̄a = diag

(
κρρ, κθθ

)
, κb, and κm , respec-

tively. κ̄a is written in the cylindrical coordinates (ρ, θ) whose origin locates in the
center of particle A. In what follows, we focus on the horizontal properties of the
periodic composite material except for additional statements. In the presence of a
thermal field E0 (defined as negative temperature gradient) along horizontal direc-
tion, the effective thermal conductivity of the periodic composite material κe can be
calculated by Fourier’s law,

κe = 〈J 〉
〈E〉 , (17.1)
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Fig. 17.1 Schematic diagrams of a periodic composite material and b–d basic structures. Adapted
from Ref. [29]

where J and E represent the heat flux and thermal field in the periodic composite
material, respectively. In Eq. (17.1), 〈· · · 〉 denotes the area average over the whole
region. Considering the local heat fluxes (and local thermal fields) in particles A Ja
(Ea), particles B Jb (Eb), and matrix Jm (Em), Eq. (17.1) can be rewritten as

κe = pa 〈Ja〉 + pb 〈Jb〉 + pm 〈Jm〉
pa 〈Ea〉 + pb 〈Eb〉 + pm 〈Em〉 , (17.2)

where pa
[= πr2/

(
2d2

0

)]
, pb

[= πst/
(
2d2

0

)]
, and pm = 1 − pa − pb are the area

fraction of particles A, particles B, and matrix, respectively.
Then we require to calculate the average heat fluxes 〈Ja〉, 〈Jb〉, and 〈Jm〉 in

Eq. (17.2). Due to translation invariance, the calculations can be simplified to the
two basic structures presented in Fig. 17.1c, d. Although the matrix in Fig. 17.1c, d
is finite with size d0 × d0, we can still make a reasonable and contributing approxi-
mation that the matrix is infinite, when the particles are small enough. The influence
of infinite-matrix approximation will be analyzed after the theory for periodic inter-
particle interaction is established.
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We firstly calculate the average heat flux in particle A; see Fig. 17.1c. For infinite-
matrix approximation, the temperature distribution in particleA, Ta , can be expressed
as [24]

Ta = −2r1−vE0κm

vκρρ + κm
ρv cos θ + T0, (17.3)

where v = √
κθθ/κρρ, and T0 is a constant temperature. The average heat flux in

particle A can be calculated by

〈Ja〉 =
�

�
ex · (κ̄aEa) dS�

�
dS

=
�

�

(
κxx Eax + κxy Eay

)
dS�

�
dS

, (17.4)

where ex is the horizontal unit vector, and � represents the closed integration area,
i.e., particle A. κxx = κρρ cos2 θ + κθθ sin2 θ, κxy = (

κρρ − κθθ

)
sin θ cos θ, Eax =

−∂Ta/∂x , and Eay = −∂Ta/∂y. After calculating the integration, Eq. (17.4) can be
reduce to

〈Ja〉 = κa 〈Ea〉 = vκρρ
2E0κm

vκρρ + κm
, (17.5)

where κa
(= vκρρ

)
is the effective scalar thermal conductivity of particle A with the

tensorial κ̄a . In what follows, we will use κa , if κ̄a is not necessary.
We secondly calculate the average heat flux in particle B; see Fig. 17.1d. For

infinite-matrix approximation, the temperature distribution in particle B, Tb, can be
expressed as [25]

Tb = −E0κm

κbL + κm (1 − L)
ρ cos θ + T0, (17.6)

where the horizontal shape factor L is given by

L = st

2

∫ ∞

0

du
(
t2 + u

) √(
s2 + u

) (
t2 + u

) . (17.7)

It is found that the thermal field in particle B is uniform, and hence the average heat
flux in particle B can be directly expressed as

〈Jb〉 = κb 〈Eb〉 = κb
E0κm

κbL + κm (1 − L)
. (17.8)

We finally calculate the average heat flux in the matrix, and take the matrix in
Fig. 17.1c as an example. For infinite-matrix approximation, the temperature distri-
bution in the matrix Tm can be expressed as [24]

Tm = −E0ρ cos θ + r2E0 (κa − κm)

κa + κm
ρ−1 cos θ + T0. (17.9)
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The average heat flux in the matrix is then determined by

〈Jm〉 = κm 〈Em〉 = κmE0, (17.10)

where 〈Em〉 = E0 is because the effect of the term containing ρ−1 in Eq. (17.9) is
local, which can be neglected due to infinite-matrix approximation. Equation (17.10)
can also describe the average heat flux in the matrix as shown in Fig. 17.1d.

Considering Eqs. (17.5), (17.8), (17.10), we can rewrite Eq. (17.2) as

κe = paκa 〈Ea〉 + pbκb 〈Eb〉 + pmκm 〈Em〉
pa 〈Ea〉 + pb 〈Eb〉 + pm 〈Em〉 = paηaκa + pbηbκb + pmκm

paηa + pbηb + pm
,

(17.11)
where ηa = 〈Ea〉 / 〈Em〉 = 2κm/ (κa + κm) and ηb = 〈Eb〉 / 〈Em〉 = κm/[κbL +
κm(1 − L)]. The κe determined by Eq. (17.11) can describe the effective thermal
conductivity of the whole system composed of particles A, particles B and the ma-
trix. For physical understanding, Eq. (17.11) is, in a sense, the average of κa , κb,
and κm with respect to paηa , pbηb, and pm . Note that the weight of κm (only with
pm) is different from those of κa and κb, which agrees with the comment that the
interaction between the matrix and inside particles is asymmetric.

To exclude the thermal effect of the matrix, we further set the κe in Eq. (17.11)
to be κm to consider the periodic interparticle interaction between particles A and
particles B, and derive the only physical solution,

κm = −B + √
B2 − 4AC

2A
, (17.12)

where A = p (1 − 2L) + 1, B = −κa [p (3 − 2L) − 1] + κb [p (1 + 2L) − 1],C =
κaκb [p (1 − 2L) − 1], p = pa/pa+b, and pa+b = pa + pb. The κm determined by
Eq. (17.12) can describe the periodic interparticle interaction between particles A
and particles B, because the right-hand side of Eq. (17.12) is independent of the
matrix property. In other words, particles A plus particles B have the same thermal
property as the matrix according to Eq. (17.12). Therefore, thermal transparency can
be realized by tailoring periodic interparticle interaction between particles A and
particles B with the aid of Eq. (17.12). For completeness, we present the theory for
three-dimensional thermal transparency in the Supplementary Proof.

17.3 Validating the Infinite-Matrix Approximation by
Comparing with the Finite-Element Simulation

In the process to derive Eqs. (17.11), (17.12), we have adopted the infinite-matrix
approximation, which assumes that particles are small enough. So we perform finite-
element simulation to analyze the influence of area fractions on predicting the ef-
fective thermal conductivities. We consider the isotropic case with κρρ = κθθ for
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Fig. 17.2 Thermal conductivities of a periodic composite material κe and b periodic interparticle
interaction κm , which are both given as a function of the area fraction of the particles. The solid
lines in a [or b] are derived from Eq. (17.11) [or Eq. (17.12)], and the symbols are obtained with
finite-element simulation. The size of the periodic composite material is 10 × 10cm, d0 = 1cm,
κa = 400Wm−1K−1, andκb = 1Wm−1K−1.Other parameters: a κm = 20Wm−1K−1, pb = 0.16
for κe − pa curve, and pa = 0.16 for κe − pb curve; b pa+b = 0.24 for κm − p curve, p = 0.5
for κm − pa+b curve, and the symbols are derived by putting the periodic particles into the matrix
determined by Eq. (17.12) and calculating κm with 〈Ja+b〉 / 〈Ea+b〉. Adapted from Ref. [29]

particle A and s = t for particle B. κa and κb are set to be 400 and 1Wm−1K−1,
respectively. We compare the values of κe and κm derived from the infinite-matrix
approximation [Eqs. (17.11), (17.12)] and finite-element simulation based on the
software COMSOL Multiphysics (http://www.comsol.com/).

When discussing the influences of pa and pb onκe, we construct the periodic com-
posite material with 5 × 5 array of the basic structure presented in Fig. 17.2a. κm is
set to be 20Wm−1K−1. The solid lines in Fig. 17.2a are derived from Eq. (17.11),
which result from the infinite-matrix approximation. Then we put the periodic com-
posite material into a thermal field, and derive the values of 〈J 〉 and 〈E〉 with the
finite-element simulation. We further calculate κe with 〈J 〉 / 〈E〉, and the results
are presented by the symbols in Fig. 17.2a. The maximum value of pa (and pb) is
π/8 (≈0.39), for a circle cannot fill the whole square. Clearly, the infinite-matrix
approximation underestimates the effect of particle A (high thermal conductivity
400Wm−1K−1) about 5.8% at pa = 0.39, and overestimates the effect of particle B
(low thermal conductivity 1Wm−1K−1) about 6.2% at pb = 0.39.

The results obtained from Fig. 17.2a illustrate that the infinite-matrix approxima-
tion is still contributing in spite of the large area fractions. The main reason is that the
large area fractions (against infinite-matrix approximation) do change the theoreti-
cally predicted temperature distributions Ta , Tb, and Tm [Eqs. (17.3), (17.6), (17.9)],
but we only focus on their average effects when calculating the average heat fluxes
〈Ja〉, 〈Jb〉, and 〈Jm〉 [Eqs. (17.5), (17.8), (17.10)]. As a result, the influence of large
area fractions is reduced.

http://www.comsol.com/
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Then we discuss the influence of p and pa+b on κm ; see Fig. 17.2b. We construct
the periodic particles with 5 × 5 array of the basic structure. The solid lines in
Fig. 17.2b are derived from Eq. (17.12) (infinite-matrix approximation). Then we
put these periodic particles into the matrix determined by Eq. (17.12) to analyze
the practical κm . We derive the average heat flux 〈Ja+b〉 and average thermal field
〈Ea+b〉 in particles A and particles B with the finite-element simulation. We further
calculate the κm with 〈Ja+b〉 / 〈Ea+b〉, and the results are presented by the symbols
in Fig. 17.2b. The value of p ranges from 0 to 1, for it describes the relative area
fraction of particles A with particles B. The maximum value of pa+b is π/4 (≈0.79),
for a circle cannot fill the whole square. Again, the infinite-matrix approximation
is well behaved with both p ranging from 0 to 1 and pa+b ranging from 0 to 0.79.
An intuitive reason is that the underestimation of high thermal conductivity and the
overestimation of low thermal conductivity, as discussed in Fig. 17.2a, cancel each
other out when particles are big, e.g., pa+b = 0.79.

Based on the results in Fig. 17.2, we feel it necessary to reunderstand the two fa-
mous effective medium theories, i.e., the Maxwell–Garnett formula and the Brugge-
man formula. In terms ofmathematical form, Eq. (17.11) is the generalizedMaxwell–
Garnett formula [26], and Eq. (17.12) is the generalized Bruggeman formula [27],
by considering particle anisotropy. However, in this chapter, the understanding of
Eqs. (17.11), (17.12) is totally different from the previous opinions [26–28] on three
perspectives. (I)Randomversus periodic: It is accepted that the two formulas can only
explain completely random systems. However, the results in Fig. 17.2 illustrate that
they are also well behaved in explaining periodic systems. (II) Small versus big: The
Maxwell–Garnett formula is thought to be applicative only when particles are small
enough. However, the results in Fig. 17.2a demonstrate that the Maxwell–Garnett
formula is still contributing when particles are big. (III) Independent versus depen-
dent: The two formulas are believed to be independent to describe different systems.
However, we unify the two previously-thought independent formulas together, and
clarify that the Bruggeman formula may be a direct result of the Maxwell–Garnett
formula, i.e., from Eqs. (17.11) to (17.12). Anyway, periodicity is the key to under-
stand these results. On one hand, it helps to simplify the calculations to the two basic
structures presented in Fig. 17.1c, d. On the other hand, it avoids the overlap between
particles, especially when area fractions are big.

17.4 Finite-Element Simulation and Laboratory
Experiment for Thermal Transparency

Now we are in the position to present the finite-element simulation and laboratory
experiment of thermal transparency by tailing the periodic interparticle interaction
between particles A and particles B with Eq. (17.12).

Figure17.3 shows the finite-element simulation of thermal transparency. The ther-
mal conductivity of the region excluding particlesA and particlesB are set as required
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Fig. 17.3 Finite-element simulation of thermal transparency for a–d, e–h, i–l isotropic cases and
m–p anisotropic case. κm is set as required by Eq. (17.12). The size of the simulation box is
20 × 20cm, and that of the periodic compositematerial is 10 × 10cm.The solid line is located at x =
−6cm, and the origin is located in the center of the simulation box.White lines represent isotherms.
All particles are presented with 50% opacity in simulation boxes (particle color does not correspond
to temperature). Blue, green, red, and black lines in d,h, l,p are the results with only particles A,
only particles B, particles A plus particles B, and no particle, respectively. The thermal gradients
in a–d, i–l, m–p and e–h are 2 K/cm and 1 K/cm, respectively. Other parameters: a–d d0 = 1cm,
κa = 400Wm−1K−1,κb = 1Wm−1K−1, pa = 0.25, pb = 0.25, andκm = 20Wm−1K−1; e–h are
the same as a–d except for the thermal gradient. i–l are the same as a–d except for d0 = 1/3cm;m–
p d0 = 1cm, κ̄a = diag (2, 0.5)Wm−1K−1, κb = 400Wm−1K−1, pa = 0.18, pb = 0.34, t/s =
1.2, and κm = 136Wm−1K−1. Adapted from Ref. [29]

byEq. (17.12).Weonly put particlesA into the background, andhigh thermal conduc-
tivity repels isotherms; see Fig. 17.3a. We only put particles B into the background,
and low thermal conductivity attracts isotherms; see Fig. 17.3b.We put both particles
A and particles B into the background, and thermal transparency is achieved with the
periodic interparticle interaction between particles A and particles B; see Fig. 17.3c.
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The heat fluxes on the solid black lines, Js , in Fig. 17.3a–c are presented in Fig. 17.3d.
The red line (with some fluctuation) echoes with the black line in Fig. 17.3d, which
validates the existence of thermal transparency. Then we only change the thermal
gradient; see Fig. 17.3e–g. The shapes of isotherms are exactly the same as those in
Fig. 17.3a–c, although the concrete temperature and heat flux (Fig. 17.3h) are dif-
ferent. In fact, the thermal gradient can be any value because the thermal property
determined by Eq. (17.12) is independent of the thermal gradient. We further change
the parameter d0 and keep other parameters unchanged; see Fig. 17.3i–l. The results
are basically the same as those in Fig. 17.3a–d, but with smaller fluctuation. There-
fore, d0 dose not affect theκm predicted byEq. (17.12), but affects fluctuation. Finally
we discuss an anisotropic case with material anisotropy of particle A and geometry
anisotropy of particle B; see Fig. 17.3m–p. Anisotropic particle A with low thermal
conductivity attracts isotherms, whereas anisotropic particle B with high thermal
conductivity repels isotherms. Thermal transparency is still obtained when particles
A and particles B are put together; see Fig. 17.3o. Hence the red line (with some
fluctuation) agrees with the black line as shown in Fig. 17.3p.

Figure17.4 shows the laboratory experiment of thermal transparency. For exper-
imental realization, κa , κb, and κm are three related thermal conductivities, which
are all set to be isotropic for feasibility. We use copper and air as the material of
particle A and particle B, respectively. κm is determined by Eq. (17.12), and realized
by carving air holes on a copper plate with effective medium theory [8]. Therefore,
we only use twomaterials (copper and air) to realize three thermal conductivities (κa ,
κb, and κm). Note that the background possesses microstructures which is composed
of copper (matrix) and air holes (microstructures) with area fraction 0.33. The three
samples are fabricated by laser cutting, and measured between hot and cold baths
by using the infrared camera (FLIR E60); see Fig. 17.4a–c). The upper and lower
surfaces are respectively covered with transparent plastic and foamed plastic (both
insulated) to reduce the influence of infrared reflection and thermal convection. A
real product of Fig. 17.4c is presented in the Supplementary Proof; see Fig. 17.5.
The measured results are presented in Fig. 17.4d–f. We also perform finite-element
simulations based on the three samples, and the results are presented in Fig. 17.4g–i.

Moreover, we directly set κm = 200Wm−1K−1 to perform simulation, rather than
the structure of a copper plate carved with air holes, and the corresponding results
are presented in Fig. 17.4j–l. The accordance between the laboratory experiment
(Fig. 17.4d–f) and finite-element simulation (Fig. 17.4g–i or Fig. 17.4j–l) validates
the scheme of tailoring periodic interparticle interaction for achieving thermal trans-
parency.

According to results presented Fig. 17.4i, we also change the thermal gradient,
matrix thermal conductivity, and matrix area fraction to study the changes of thermal
transparency (particles A and particles B are kept unchanged). The results are pre-
sented in the Supplementary Proof; see Fig. 17.6, which conclude that the thermal
gradient will not affect thermal transparency, but matrix properties will affect. The
physical understanding is that the dominant Eq. (17.12) is independent of the thermal
gradient, but dependent on the matrix properties.
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Fig. 17.4 Laboratory experiments for thermal transparency for a–c three samples, d–f measured
results, g–i corresponding finite-element simulation results, and j–l finite-element simulations by
directly setting κm = 200Wm−1K−1. The sample size is 20 × 20cm, and the size of the periodic
composite material is 10 × 10cm. Hot and cold baths are set at 313K and 273K, respectively.
The thermal conductivities of copper and air are 400 and 0.025Wm−1K−1, respectively. κa =
400Wm−1K−1, κb = 0.025Wm−1K−1, d0 = 1cm, pa = 0.33, and pb = 0.11. The area fraction
of air holes (excluding particles A and particles B) in a–c is 0.33, and the distance between these
air holes is 0.25cm. All particles are presented with 50% opacity in simulation boxes except for
experimental results (particle color does not correspond to temperature). Adapted from Ref. [29]
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17.5 Discussion and Conclusion

In this chapter, we have investigated the periodic interparticle interaction between
particles A and particles B, which are commutable. However, this is just a beginning
for exploring periodic interparticle interaction, and deeper mechanisms remain to be
studied, at least from two aspects. (I) Lattice type: Here we arrange the particles with
the simplest square lattice; see Fig. 17.1a. A question is how to calculate other lattice
types. For example, a rectangle lattice is sure to bring anisotropy compared with
the square lattice, let alone the more complicated orthorhombic lattice. (II) Relative
position: Here the particles are alternately arranged along both horizontal and vertical
directions; see Fig. 17.1a. A question is how to calculate other relative positions. For
example, if the particles are alternately arranged only along horizontal direction, the
new relative position will also bring anisotropy.

In summary, we have proposed a distinct mechanism for achieving thermal trans-
parency which is induced by the symmetric interaction between periodic particles,
namely periodic interparticle interaction, rather than neutral inclusions [4]. Theoret-
ical analysis, finite-element simulations, and laboratory experiments all validate the
proposedmechanism.Moreover, we reunderstand theMaxwell–Garnett formula and
the Bruggeman formula from three aspects. That is, the two formulas can explain (I)
periodic systems (II) with large area fractions of particles, and (III) they depend on
each other. Our mechanism is feasible to handle many-particle systems for removing
thermal stress concentration, preventing infrared detection, etc. On the same foot-
ing, periodic interparticle interaction proposed in this chapter can also be extended
to realize other functions, such as thermal camouflaging.

17.6 Supplementary Proof

To realize the three-dimensional thermal transparency, Eqs. (17.5), (17.8), (17.10)
correspondingly become

〈
J ′
a

〉 = κ′
a

〈
E ′
a

〉 = v′κ′
ρρ

3E ′
0κ

′
m

v′κ′
ρρ + 2κ′

m

, (17.13)

〈
J ′
b

〉 = κ′
b

〈
E ′
b

〉 = κ′
b

E ′
0κ

′
m

κ′
bL

′ + κ′
m (1 − L ′)

, (17.14)

〈
J ′
m

〉 = κ′
m

〈
E ′
m

〉 = κ′
mE

′
0, (17.15)

where the symbols ′ represent the case of three dimensions. κ′
a

(= v′κ′
ρρ

)
is the effec-

tive scalar thermal conductivity of the particle with tensorial κ̄′
a

[= diag
(
κ′

ρρ, κ′
θθ,

κ′
ϕϕ

)
with κ′

θθ = κ′
ϕϕ

]
, and v′ = −1/2 +

√
1/4 + 2κ′

θθ/κ
′
ρρ. The horizontal shape

factor L ′ can be calculated by
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L ′ = s ′t ′w′

2

∫ ∞

0

du
(
t ′2 + u

)√(
s ′2 + u

) (
t ′2 + u

) (
w′2 + u

) , (17.16)

where w′ is the third semi axis of the ellipsoid.
Owing to Eqs. (17.13), (17.14), (17.15), (17.11), (17.12) should respectively be-

come
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κ′
m = −B′ +

√
B′2 − 4A′C ′
2A′ , (17.18)
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)
. Theκ′

m determinedbyEq. (17.18)
can describe the three-dimensional periodic interparticle interaction, because the
right-hand side of Eq. (17.18) is independent of the matrix property.

The real product of Fig. 17.4c is presented in Fig. 17.5.
According to result in Fig. 17.4i, we keep particles A and particles B unchanged,

and change the thermal gradient andmatrix properties to study the changes of thermal
transparency. We change the thermal gradient to be 1 K/cm (Fig. 17.6a) and 3 K/cm
(Fig. 17.6b), and thermal transparency keeps unchanged. We change the matrix
thermal conductivity from 400 to 1000Wm−1K−1 (Fig. 17.6c) and 100Wm−1K−1

(Fig. 17.6d). The isotherms are attracted and repelled, respectively. Finally, we
change the area fraction of the voids from 0.33 to 0.05 (Fig. 17.6e) and 0.66
(Fig. 17.6f). The isotherms are also attracted and repelled, respectively.

17.7 Exercises and Solutions

Exercises

1. Consider a two-dimensional ellipse with major semi-axis s = 1 and minor semi-
axis t = 2. Please calculate the shape factors along the major and minor axes.

Solutions

1. Solution: For major axis, L = st

2

∫ ∞

0

du
(
t2 + u

) √(
s2 + u

) (
t2 + u

) = t/ (s + t)

= 2/3. Forminor axis, L = st

2

∫ ∞

0

du
(
s2 + u

)√(
s2 + u

) (
t2 + u

) = s/ (s + t) =

1/3.
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Fig. 17.5 Real product of
Fig. 17.4c with a side view, b
top view, and c bottom view.
Adapted from Ref. [29]
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Fig. 17.6 Simulations results of other conditions. The parameters are the same as those in Fig. 17.4i
except for a thermal gradient is 1 K/cm; b thermal gradient is 3 K/cm; cmatrix thermal conductivity
is 1000Wm−1K−1; d matrix thermal conductivity is 100Wm−1K−1; e area fraction of the voids is
0.05; and f area fraction of the voids is 0.66. Adapted from Ref. [29]
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Chapter 18
Theory with Uniqueness Theorem:
Thermal Camouflage

Abstract Cloaks can protect objects without disturbing heat signatures outside, and
hence objects are invisible to the external detection. However, cloaks themselves are
visible to inside detection because they possess different heat signatures from the
outside. This fact limits applications. This problem is solved by developing a dif-
ferent theory in thermotics, and then a scheme of thermal supercavity is proposed,
which is a cavity without disturbing heat signatures outside. Then different super-
cavities are introduced with various shapes in two or three dimensions, and they are
also validated by using simulations and experiments. A scheme of super-invisibility
is further designed, which makes the cavity itself also invisible to inside detection.
Moreover, the scheme simplifies the complicated parameters of non-circle shaped
cloaks, which requires only two natural materials with simple layer structure. This
chapter is useful for achieving new kinds of thermal devices including thermal cam-
ouflage and designing similar supercavities in magnetostatics, electrostatics, particle
diffusion, etc.

Keywords Uniqueness theorem · Thermal camouflage · Thermal supercavity ·
Super-invisibility · Cloak

18.1 Opening Remarks

Invisibility is a long-standing dream of human beings. Since the theory of transfor-
mation optics was put forward [1, 2], electromagnetic invisibility has attracted much
attention (e.g., see Refs. [3–5]). In the duration, the physical fields have also been
extended from those described bywave equations (say, in electromagnetics/optics [1–
5] and acoustics [6, 7]) to those determined by diffusion equations (e.g., in ther-
motics [8–10]). Furthermore, the theories have been developed from the original
transformation optics to others (e.g., directly solving the Laplace equation [11–20]),
in order to design practical structures.

However, the existing thermal cloaks [12–14, 21, 22] are faced with a common
problem: cloaks themselves are visible to inside detection. Let us take a thermal
cloak (designed by transformation thermotics) as an example; see Fig. 18.1a. Thermal
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(a) (b)

(c) (d)

Fig. 18.1 Schematic diagram showing our concept: a the traditional circular cloak contains a
distorted temperature field in the shell, thus causing the shell to be “visible” to inside thermal
detection; b our circular supercavity proposed in this chapter has an undistorted temperature field
in the shell, thus yielding the shell to be “invisible”. Besides the circular case depicted in (b), our
supercavity can be non-circular as well: c shows an example of square supercavity, whose details
are indicated in (d). Brown lines and red arrows represent isotherms and heat flux, respectively.
Adapted from Ref. [23]

cloak (a shell surrounding the cavity) can guide heat to flow around the cavity (in
which arbitrary objects can be placed) without disturbing heat signatures outside
the cloak (or in the background). Thus, objects located in the cavity are “invisible”
to outside detection (Fig. 18.1a). However, thermal cloaks themselves are “visible”
to inside detection (Fig. 18.1a) since they have different heat signatures from the
outside as determined by the associated theories (say, the theory of transformation
thermotics) [21, 22]. This fact limits applications, e.g., in the cases of misleading
infrared detection.

To solve this problem, here we establish a different theory, which allows us to
propose the scheme of supercavity as schematically shown in Fig. 18.1b, c. Clearly,
the cavity does not disturb external heat signatures including those in the region of
shell.

We further design the super-invisibility which makes both shell and cavity invisi-
ble to inside detections. Therefore, as pioneered by the work in Ref. [16], the whole
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system is invisible to whatever detections, which will contribute to thermal camou-
flage or illusion [15, 16, 24–26].

The aforementioned behaviors will be confirmed by simulations and experiments
in this chapter. To proceed, let us first present the theory.

18.2 Theory Based on Uniqueness Theorem

We start by presenting the Fourier law that governs the process of heat conduction,

J = −κ∇T, (18.1)

where J , κ, and T are respectively heat flux, thermal conductivity, and temperature.
As shown in Fig. 18.1b–d, our system contains three parts: shell (constructed

by anisotropic materials in this chapter), cavity (in which arbitrary objects can be
placed), and background.Comparingwith traditional cloakswhere temperature fields
are distorted in the shell (Fig. 18.1a), we expect to keep the temperature fields of both
shell and background the same (Fig. 18.1b, c), no matter what kinds of objects are
placed in the cavity. In fact, if we can artificially match the boundary conditions
(temperature T and normal heat flux J) between the shell and background, our
expectation could be achieved indeed. In what follows, we give a proof to verify our
idea.

Let us consider the background with two solutions of temperatures (T ′ and
T ′′) and heat fluxes (J ′ and J ′′), and introduce an auxiliary function Z (r) =(
T ′ − T ′′) (

J ′ − J ′′). Supposing that we have artificiallymatched the boundary con-
ditions between background and shell,

T ′
� = T ′′

�(
J ′ · en

)
�

= (
J ′′ · en

)
�

, (18.2)

where � represents the boundary, and en is the unit normal vector of the boundary.
So the integral value of Z (r) on the boundary � must be zero,

∫

�

Z (r) · ds =
∫

V
∇ · Z (r) dτ = 0. (18.3)

We then calculate the divergence of Z (r),

∇ · Z (r) = (∇T ′ − ∇T ′′) · (
J ′ − J ′′) + (

T ′ − T ′′) · (∇ · J ′ − ∇ · J ′′) . (18.4)

For the same background, we obtain

∇ · J ′ = ∇ · J ′′ = q, (18.5)
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where q is the energy generated per unit volume and per unit time. Then Eq. (18.4)
becomes

∇ · Z (r) = (∇T ′ − ∇T ′′) · (
J ′ − J ′′) . (18.6)

And Eq. (18.3) reads

∫

V

(∇T ′ − ∇T ′′) · (
J ′ − J ′′) dτ = 0. (18.7)

We further reduce Eq. (18.7) according to Eq. (18.1),

−
∫

V
κ

(∇T ′ − ∇T ′′)2 dτ = 0. (18.8)

Since κ is always positive, we achieve

∇T ′ = ∇T ′′. (18.9)

Then we can conclude that if one can match the boundary conditions between the
background and shell, the temperature profile of background can remain unchanged.
To match the boundary conditions between background and shell, we can design the
temperature distribution as follows,

(Gradient T )x = ∇T0,

(Gradient T )y = 0, (18.10)

where (Gradient T )x (or (Gradient T )y) is the horizontal (or vertical) thermal gra-
dient in the shell, and ∇T0 is the thermal gradient in the background. We do not
consider the boundary conditions of heat flux because the normal heat flux is zero;
see red arrows in Fig. 18.1c.

Now, we need to design the parameters of the shell to satisfy the required tem-
perature distribution [Eq. (18.10)]. According to the conservation of heat flux in the
shell; see red arrows in Fig. 18.1c, we obtain

− κxx [g (x) − f (x)] | (Gradient T )x | = −κbg (x) |∇T0|,
−κyy | (Gradient T )y | = δ, (18.11)

where δ should be a non-zero (finite) variable, and κxx (or κyy) is the horizontal
(or vertical) thermal conductivity of the shell (or anisotropic material), and κb is the
thermal conductivity of background. f (x) and g (x) describe the length of the cavity
and shell at the position x respectively, which have been depicted in Fig. 18.1d. Then
we derive the thermal conductivity κani1 of the shell (anisotropic material) as

κani1 =
( g(x)κb

g(x)− f (x) 0
0 κyy

)
, (18.12)
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where κyy should be ∞ to ensure a non-zero δ. Equation (18.12) just helps to design
our desired shell which itself is also invisible; see Figs. 18.2, 18.3 and 18.4.

Moreover, our theory can even make the cavity invisible (say, super-invisibility)
with some sacrifice; see Fig. 18.5. The cloak designed according to Eq. (18.12) works
regardless of the change of objects in the cavity. However, if we expect to make the
cavity also invisible, the shell should be designed according to the cavity (object).
We can design as follows.

Fig. 18.2 Simulations of square shaped cavity: the color surface displays the distribution of tem-
perature (a–f) or temperature difference (g–i), and the white lines in a–f represent the isotherms. a
Background material (silica gel) with thermal conductivity 3.6W/(mK) and size 8 × 8cm; b The
same background material whose central square area is occupied by an object (red copper) with
397W/(mK) and 1.5× 1.5cm; c same as b, but the object is wrapped in air with 0.026W/(mK) and
2× 2cm. d–f Are same as c, but the air is further wrapped in a square shell (that is constructed by an
anisotropic material) with 4 × 4cm. For the square shell (or the anisotropic material), the thermal
conductivity is determined according to Eq. (18.12): κyy = 20 (d), 200 (e), and 2000 (f)W/(mK).
The temperature difference between d–f and a is shown in g–i, respectively. In g–i, the central
white square with 2 × 2cm denotes the area involving both the object and air in d–f ; this area just
corresponds to the cavity as indicated in Fig. 18.1. Adapted from Ref. [23]
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(a1) (a2)

(b1) (b2)

Fig. 18.3 Experiments of square shaped cavity: thermal images of experimental samples a1 and
b1 are displayed in a2 and b2, respectively. a1 is the fabricated sample which is composed of a
middle square (red copper) with size 1.5 × 1.5cm; out of the middle square is air with 2 × 2cm;
out of the air is the shell composed of anisotropic material with 4 × 4cm, which is made up of red
copper and thermal grease; outermost is the background (silica gel) with 8 × 8cm. b1 Shows the
sample of uniform background, namely, silica gel. Thermal conductivities of red copper, thermal
grease, air, and silica gel are 397, 1.6, 0.026, and 3.6W/(mK), respectively; the thickness of the
two samples is about 0.3mm. Adapted from Ref. [23]

Similar to the scheme of supercavity (the conservation of heat flux), we obtain

{−κxx [n (x) − m (x)] − κcm (x)} | (Gradient T )x | = −κbn (x) |∇T0|,
−κyy | (Gradient T )y | = δ, (18.13)

wherem (x) and n (x) are the length of the cavity and shell, which have been depicted
inFig. 18.5a. Thenwederive the thermal conductivityκani2 of the shell (or anisotropic
material)

κani2 =
( n(x)κb−m(x)κc

n(x)−m(x) 0
0 κyy

)
, (18.14)

where κyy should also be ∞, and κc is the thermal conductivity of cavity (object).
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Fig. 18.4 Simulations of various shaped cavities. a1–a4 Show a rectangular case: a1, a2 are respec-
tively the same as Fig. 18.2b, f, but for the rectangular shape; for experimentally demonstrating a2,
a3 shows simulation results of the structure designed in (a4) according to Fig. 18.3 and Eq. (18.15).
Similar to a1–a4,b1–b4 show the circular shape, c1–c4 the elliptic shape,d1–d4 the irregular shape,
and e1–e4 the cuboid shape. For clarity, a small cuboid in the middle of e4 is removed to display
the inner structure. The results (namely, the uniform thermal gradients in shells) obtained from this
figure are independent of sizes of the shells due to the generality of Eqs. (18.12) and (18.15). Thus
here we omit such specific values of sizes adopted for simulation. Adapted from Ref. [23]
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 18.5 Simulations of super-invisibility. a Schematic diagram of the design; b background
material (silica gel)with thermal conductivity 3.6W/(mK) and size 8× 8cm; c the same background
material whose central square area is occupied by an object with 7W/(mK) and 2 × 2cm; d–f the
same as (b), but the object is wrapped in a square shell (that is constructed by an anisotropic
material) with 4 × 4cm. For the square shell, the thermal conductivity is determined according to
Eq. (18.14): κyy = 20 (d), 200 (e), and 2000W/(mK) (f). The temperature difference between d–f
and b is shown in g–i, respectively. Adapted from Ref. [23]

18.3 Simulations and Experiments of Square-Shaped
Cavity

We perform finite-element simulations based on the commercial software COM-
SOL Multiphysics (http://www.comsol.com/) to show the validation of the afore-
mentioned theory. Without loss of generality, we take square shape as an example,
and display the simulations in Fig. 18.2a–f. Figure18.2a shows the homogeneous
background with uniform thermal field. Then we put an object (whose thermal con-
ductivity is different from the background) into the background, and the temperature
profile is distorted; see Fig. 18.2b. To remove the distortion, we add air outside the

http://www.comsol.com/
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object to construct an insulation cavity (Fig. 18.2c). However, the thermal profile is
still not recovered; see Fig. 18.2c. In Fig. 18.2d–f, three shells (anisotropic materi-
als) with κyy = 20, 200 and 2000 W/(mK) according to Eq. (18.12) are applied to
remove the temperature distortion. Figure18.2d–f exhibits almost the same tempera-
ture profile as that in Fig. 18.2a; certainly larger κyy yields better comparison, which
echoes with the prediction of Eq. (18.12). So the object is well hidden and the shell
itself is also invisible. We further calculate the difference between Fig. 18.2a and
d–f; see Fig. 18.2g–i. Clearly, the temperature distortion in the shell is well removed,
especially for the case of larger κyy .

On the other hand, we also fabricated two samples (Fig. 18.3a1, b1) to verify
the simulation results in Fig. 18.2. The anisotropic thermal conductivity of the shell,
which is determined by Eq. (18.12), is designed with layer structures,

κ =
(

(a/b+1)κaκb

(a/b)κb+κa
0

0 (a/b)κa+κb

a/b+1

)

, (18.15)

where a (or b) is the length of uniformmaterial with thermal conductivity κa (or κb).
Then we choose red copper and thermal grease with appropriate ratio accord-

ing to Eq. (18.15) to fabricate the shell, and we utilize silica gel as the background
material (Fig. 18.3a1). Figure18.3a2 is the measured result of the sample shown in
Fig. 18.3a1. Figure18.3b1, b2 shows a reference group. Figure18.3b2 is the exper-
imental result of the homogeneous background shown in Fig. 18.3b1. Clearly the
comparison between Fig. 18.3a2 and b2 is satisfactory. Small difference between
experiments and simulations is caused by the thermal convection, and the experi-
ments show the qualitative results.

18.4 Simulations of Various Shaped Cavities in Two or
Three Dimensions

To show the robustness and generality of our theory, we further perform simulations
for other shapes like rectangle, circle, ellipse, and irregular shape in two dimen-
sions; we also investigate the shape of three-dimensional cuboid. See Fig. 18.4. In
Fig. 18.4a1–e1,we place the objectswith the shapes of rectangle, circle, ellipse, irreg-
ular shape and cuboid into the thermal field respectively. As a result, the temperature
profile is undoubtedly distorted. Then we put these objects into the cavity associated
with the shells [designed according to Eq. (18.12) where κyy = 2000 W/(mK)]; see
Fig. 18.4a2–e2 that shows the desired effects (namely, the temperature gradient in
the shell is the same as that in the background). Figure18.4a3–e3 shows the simula-
tion results of the practical structures displayed in Fig. 18.4a4–e4, respectively. The
parameters of these structures are determined according to Eq. (18.15). The simula-
tion results show that the shells themselves are invisible indeed while the objects are
hidden in the central regions.
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18.5 Simulations of Super-Invisibility

Similar simulationswithFig. 18.2 are also conducted tovalidate the super-invisibility;
see Fig. 18.5. The cavity is fully filled with object, and there is no longer insulation
material (air) between object and shell. Therefore, the shell is specific, which only
works for certain object. Figure18.5b shows a uniform thermal field in the homo-
geneous background. Then we put an object into the background; see Fig. 18.5c.
In Fig. 18.5d–f, three shells with κyy = 20, 200 and 2000 W/(mK) according to
Eq. (18.14) are applied to cancel out the temperature distortion. We also calculate
the difference between Fig. 18.5b and d–f; see Fig. 18.5g–i. Clearly, the temperature
distortion in the shell and cavity is both removed indeed, and hence super-invisibility
is realized.

18.6 Discussion and Conclusion

Our supercavity is essentially a unidirectional passive cloak, for the boundary con-
ditions are artificially matched. If the cavity is rotated or the uniform external field is
changed, our scheme does not work again. Compared with the existing unidirectional
active cloak [27–29], our scheme does not require extra sources, which is no doubt
more applicable.

Our scheme also simplifies the extremely complicated parameters of non-circle
shaped cloaks. As designed by transformation thermotics [10], non-circle shaped
cloaks require extreme materials including inhomogeneity, anisotropy, and singular-
ity, which are almost impossible to experimentally realize regardless of the devel-
opment of thermal metamaterials. In contrast, our design requires only two natural
materials with simple layer structure, which will bring great convenience and poten-
tial applications.

We have investigated the case of steady states only. Certainly, the unsteady states
is subjected to further research because of the specific role of heat capacity [10, 30].

So far, we have established a theory and then proposed the scheme of thermal
supercavity which makes the shell itself also invisible to inside detection. The effect
has been confirmed in simulations and experiments. Only two natural materials (red
copper and thermal grease, which are commercially available) were used to fabricate
the shell in our experiment, which overcomes parameter complexity. Our theory is
general for designing different shaped shells in both two and three dimensions. We
also design the super-invisibilitywhichmakes thewhole system invisible towhatever
detections.

Our scheme enriches the research scale of thermal devices including thermal cam-
ouflage. It is useful for directly designing similar supercavity and super-invisibility
in disciplines like magnetostatics [11], electrostatics [31] and particle diffusion [32],
where electric conductivities, magnetic permeabilities and diffusion coefficients
respectively play the same role as thermal conductivities in thermotics.
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18.7 Exercises and Solutions

Exercises

1. Please prove the uniqueness theorem in theomotics. That is, if the sources, thermal
conductivities, and boundary conditions are given, the thermal field is determined
uniquely.

Solutions

1. Solution: The derivations are clearly shown in this chapter.
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Chapter 19
Theory for Thermal Radiation:
Transparency, Cloak, and Expander

Abstract The existing thermal metamaterials are almost designed to work at room
temperature where thermal conduction is the dominant way of heat transfer. Unfor-
tunately, as the temperature increases, thermal radiation becomes more and more
important, and hence these metamaterials no longer work. The inability to handle
thermal radiation largely limits practical applications at high temperature, such as
thermal protection. To solve this problem, here we describe an effective medium the-
ory tomanipulate thermal radiationwith theRosseland diffusion approximation. This
theory helps to design three types of radiative metamaterials even with anisotropic
geometries, including transparency, cloak, and expander. Theoretical analyses are
further confirmed by finite-element simulations, which indicate that these radia-
tive metamaterials perform well at both steady and transient states. This chapter
not only introduces an effective medium theory to manipulate thermal radiation,
but also designs three types of radiative metamaterials. These results may provide
hints on novel thermal management and have potential applications in radiative illu-
sion/camouflage, radiative diode, etc.

Keywords Radiative metamaterials · Rosseland diffusion approximation ·
Thermal transparency · Thermal cloak · Thermal expander

19.1 Opening Remarks

Since the proposal of transformation thermotics [1], thermal metamaterials have
experienced prosperous developments and made abundant achievements. The capa-
bility of thermal management is largely improved with thermal metamaterials, such
as thermal transparency [2–5], thermal cloak [6–11], thermal expander [12], etc.
Thermal transparency aims to design a shell according to the inside core and ensure
the temperature field outside the shell undistorted. Thermal cloak can protect any
object inside it from being detected, which can be realized by setting the core in trans-
parency scheme to be insulated. Thermal expander can efficiently enlarge a small
source into a large one, which is based on two thermal cloaks. Moreover, the theory
of transformation thermal convection [13–15] was also established, thus yielding
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Fig. 19.1 Schematic
diagrams of a thermal
transparency, b thermal
cloak, and c thermal
expander. d and e
Qualitatively show the
radiative emittance j ,
conductive flux Jcon , and
radiative flux Jrad as a
function of temperature T .
Adapted from Ref. [39]

similar convective metamaterials. The revelation of the anti-parity-time symmetry
in thermal convective systems [16] also largely promotes developments. These ther-
mal metamaterials provide powerful methods to manipulate thermal conduction and
thermal convection.

Unfortunately, none of these thermal metamaterials can work at high temperature
where thermal radiation becomes the dominant way of heat transfer. In fact, thermal
radiation is of great significance, which has attracted lots of research interest, such
as radiative cooling [17–19], thermal memory [20, 21], etc. However, metamaterials
designed for manipulating thermal radiation have been rarely touched due to the
lack of appropriate theories. In consideration of practical applications like thermal
protection at high temperature, it is urgent to establish a theory to manipulate thermal
radiation efficiently.

Here, we propose an effective medium theory to design radiative metamaterials
with theRosseland diffusive approximation. By designing the parameters (mainly the
thermal conductivity andRosselandmean extinction coefficient) of a core-shell struc-
ture, we realize three types of radiative metamaterials even with anisotropic geome-
tries, including transparency, cloak, and expander; see Fig. 19.1a–c. Finite-element
simulations confirmour theoretical analyses,which indicate that these radiativemeta-
materials are well-behaved in both steady and transient states. In what follows, let
us proceed with theory.

19.2 Theory

We consider a passive and steady process of heat transfer, where the total heat
flux J total (composed of the conductive flux J con and the radiative flux J rad ) is
divergency-free,
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∇ · J total = ∇ · (J con + J rad) = 0. (19.1)

The conductive flux J con is dominated by the Fourier law,

J con = −κ∇T, (19.2)

where κ is the thermal conductivity. The radiative flux J rad is given by the Rosseland
diffusion approximation,

J rad = −16n2σT 3

3β
∇T, (19.3)

wheren is the relative refraction index,β is theRosselandmean extinction coefficient,
and σ is the Stefan-Boltzmann constant

(= 5.67 × 10−8 Wm−2K−4
)
.

We consider a three-dimensional core-shell structure (Fig. 19.1a) which has a
core with thermal conductivity κc, relative refraction index nc, and Rosseland mean
extinction coefficient βc coated by a shell with corresponding parameters κs , ns , and
βs . The subscript c (or s) indicates the core (or shell) throughout this chapter. The
semi-axis lengths of the core and shell are λci and λsi (i = 1, 2, 3), respectively.
We introduce ellipsoidal coordinates (ρ, ξ, η) to proceed,

⎧
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, (19.4)

where λ1, λ2, and λ3 are three constants, satisfying ρ > −λ2
1 > ξ > −λ2

2 > η >

−λ2
3. Then, the Laplace equation ∇ · (−κ∇T ) = 0 can be expressed as

∂

∂ρ

[
g (ρ)

∂T

∂ρ

]
+ g (ρ)

ρ + λ2
i

∂T

∂ρ
= 0, (19.5)

where g (ρ) =
√(

ρ + λ2
1

) (
ρ + λ2

2

) (
ρ + λ2

3

)
. Equation (19.5) has a solution as

T =
⎡

⎣u + v

ρ∫

0

(
ρ + λ2

i

)−1
g (ρ)−1 dρ

⎤

⎦ xi , (19.6)

where u and v are arbitrary constants, and (x1, x2, x3) denotes Cartesian coordinates.
We define the temperatures of the core, shell, and background as Tc, Ts , and Tb,
respectively. They can be expressed as
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⎧
⎪⎪⎪⎨
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Tc = ucxi
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(
ρ + λ2

i

)−1
g (ρ)−1 dρ

]

xi

Tb = ubxi

, (19.7)

where uc, us , and vs can be determined by boundary conditions. The exterior surfaces
of the core and shell are denoted by ρc and ρs , where boundary conditions are given
by continuities of temperatures and normal heat fluxes, thus yielding

⎧
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uc = us

ub = us + vs

ρs∫

ρc

(
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g (ρ)−1 dρ

uc = 2vsκs (κc − κs)
−1 g (ρc)

−1

ub = 2vsκs (κei − κs)
−1 g (ρs)

−1

, (19.8)

where κei is the effective thermal conductivity of the core-shell structure along the
direction of xi . Solving Eq. (19.8) can directly derive the expression of κei . Never-
theless, it is a complex formula which requires simplification. Thus, we define the
semi-axis lengths of the core λci and shell λsi as

⎧
⎨

⎩
λci =

√
λ2
i + ρc

λsi =
√

λ2
i + ρs

, (19.9)

where i = 1, 2, 3. Thus, the volume fraction f can be expressed as

f = λc1λc2λc3/ (λs1λs2λs3) = g (ρc) /g (ρs) . (19.10)

We also define the shape factor dwi along the direction of xi as

dwi = λw1λw2λw3

2

∞∫

0

(
α + λ2

wi

)−1 [(
α + λ2

w1

) (
α + λ2

w2

) (
α + λ2

w3

)]−1/2
dα,

(19.11)
where w can take c or s, representing the shape factor of the core or shell. Thus, we
have

ρs∫

ρc

(
ρ + λ2

i
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g (ρ)−1 dρ =
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(
ρ + λ2

i
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(
ρ + λ2

i

)−1
g (ρ)−1 dρ

= 2dci g (ρc)
−1 − 2dsi g (ρs)

−1 .

(19.12)
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Finally, we can derive the brief expression for κei as

κei = κs

[
f (κc − κs)

κs + (dci − f dsi ) (κc − κs)
+ 1

]
. (19.13)

This is a standard result for calculating the effective thermal conductivity [22].
The shape factors satisfy the sum rule dw1 + dw2 + dw3 = 1. Then, the effective
thermal conductivity of any core-shell structure can, in principle, be derived with
Eq. (19.13). However, only when the core-shell structure is confocal or concen-
tric, can Eq. (19.13) predict the effective thermal conductivity strictly. Moreover,
Eq. (19.13) can also be reduced to handle the cylindrical (two-dimensional) cases by
taking λw3 = ∞, thus yielding dw1 = λw2/ (λw1 + λw2), dw2 = λw1/ (λw1 + λw2),
and dw3 = 0 (dw1 + dw2 + dw3 = 1 is still satisfied).

Since thermal radiation with the Rosseland diffusion approximation has the simi-
lar equation form as thermal conduction [Eqs. (19.2) and (19.3)], the radiative coef-
ficient (denoted by γ = n2/β) can be similarly calculated by

γei = γs

[
f (γc − γs)

γs + (dci − f dsi ) (γc − γs)
+ 1

]
, (19.14)

where γei is the effective radiative coefficient of the core-shell structure along the
direction of xi . Equations (19.13) and (19.14) can predict the effective thermal con-
ductivity and effective radiative coefficient. The only requirement is to keep κ/γ
of different regions as a constant, for realizing the same effect of conduction and
radiation.

19.3 Finite-Element Simulations

Further, we perform finite-element simulations with COMSOL MULTIPHYSICS
(http://www.comsol.com/) to validate the theoretical analyses. Without loss of gen-
erality, we consider two-dimensional cases, set the simulation box to 10 × 10 cm2,
set the relative refraction index of all regions to 1, and set the thermal conductivity
and Rosseland mean extinction coefficient of the background to 1 Wm−1K−1 and
100 m−1, respectively. These parameters meet the requirement of optically thick
media where the Rosseland diffusion approximation is reasonable.

The Stefan-Boltzmann law suggests that the radiative emittance j is proportional
to T 4, as qualitatively shown in Fig. 19.1d. In the presence of a same temperature
gradient, the conductive flux Jcon is independent of concrete temperatures, whereas
the radiative flux Jrad is proportional to T 3, as qualitatively presented in Fig. 19.1e.
These qualitative analyses illustrate that thermal radiation is of great significance
at high temperature. Thus, three types of temperature settings are applied in our
finite-element simulations. (I) 273–313 K, indicating a small upper temperature limit
where conduction (Con.) is dominant. (II) 273–673 K, indicating a medium upper

http://www.comsol.com/
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Fig. 19.2 Steady simulations of thermal transparency. a–c: λc1 = λc2 = 2 cm, λs1 = λs2 =
3 cm, κc = 2 Wm−1K−1, βc = 50 m−1, κs = 0.62 Wm−1K−1, and βs = 161.1 m−1. d–f :
λc1 = 2.5 cm, λc2 = 1.25 cm, λs1 = 3 cm, λs2 = 2.08 cm, κc = 0.5 Wm−1K−1, βc = 200 m−1,
κs = 1.61 Wm−1K−1, and βs = 62 m−1. g–i are references with pure background parameters.
Circular (or elliptical) dashed lines are plotted for comparison with the circular (or elliptical) trans-
parency. Adapted from Ref. [39]

temperature limit where conduction and radiation (Rad.) are roughly equal. (III)
273–4273 K, indicating a large upper temperature limit where radiation is dominant.

Thermal transparency (Tra.) is to design a shell according to the object, ensuring
the temperature profile outside the shell undistorted; see Fig. 19.2. When parame-
ters are delicately designed according to Eqs. (19.13) and (19.14), the temperature
profile outside the shell is undistorted (Fig. 19.2a–c or 19.2d–f) as if there wasn’t
a core-shell structure in the center (Fig. 19.2g–i). With a small upper temperature
limit where conduction is dominant (see the first row of Fig. 19.2), the temperature
gradient outside the shell is uniform. With the increment of the upper temperature
limit, radiation starts exerting an influence, thus yielding the nonuniform temperature
gradients outside the shell (see the last two rows of Fig. 19.2).
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Fig. 19.3 Steady simulations of thermal cloaks. An inner object is coated by an insulated layer with
κ = 10−5 Wm−1K−1 and β = 105 m−1. Since the heat flux cannot enter into the insulated layer,
the inner object plus the insulated layer can be equivalently regarded as an insulated core with κc =
10−5 Wm−1K−1 and βc = 105 m−1. Other parameters are as follows. a–c: λc1 = λc2 = 2.5 cm,
λs1 = λs2 = 3 cm, κs = 5.54Wm−1K−1, and βs = 18.1 m−1. d–f : λc1 = 2.5 cm, λc2 = 1.25 cm,
λs1 = 3 cm, λs2 = 2.08 cm, κs = 2.35 Wm−1K−1, and βs = 42.5 m−1. Adapted from Ref. [39]

Thermal cloak can protect any object inside it from being detected, whose param-
eters are independent of the object. For this purpose, an insulated layer is required
to keep the heat flux off the object. Then, the object plus the insulated layer can
be equivalently regarded as an insulated core, say, κc = γ = 0. Further, we design
a shell according to Eqs. (19.13) and (19.14) to remove the effect of the insulated
core. The simulation results are presented in Fig. 19.3a–c and 19.3d–f. Clearly, the
isotherms are kept off the object, indicating that the heat flux cannot enter into the
object.
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Fig. 19.4 Steady simulations of thermal expander. The sizes are λc1 = 2.08 cm, λc2 = 4.17 cm,
λs1 = 3.46 cm, λs2 = 5 cm, and the width between hot and cold sources is 6 cm. Other parameters
are as follows. a–c: κs = 4.91 Wm−1K−1 and βs = 20.3 m−1. d–f : pure background parameters.
Adapted from Ref. [39]

Thermal expander can efficiently enlarge a small source into a large one based on
the design of two elliptical cloaks. Concretely speaking, we put two elliptical cloaks
together, and take out a quarter of the whole structure as an expander; see Fig. 19.1c.
As ensured by the uniqueness theorem in thermotics [23], the temperature distribution
of the background isn’t distorted, thus yielding the expander effect. Finite-element
simulations are presented in Fig. 19.4a–c. Clearly, the isotherms of the background
are straight, indicating a perfect performance. However, a pure background material
strongly distorts the isotherms of the background; see Fig. 19.4d–f. Such device is
flexible to adjust source sizes and has applications in uniform heating and effective
dissipation.
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Fig. 19.5 Transient simulations of transparency, cloak, and expander. The sizes andmaterial param-
eters of a–c, d–f, and g–i are the same as those of Figs. 19.2d–19.2f, 19.3d–19.3f, and 19.4a–19.4c,
respectively. The density and heat capacity of the background are ρC = 106 Jm−3K−1. Other
parameters are as follows. a–c: (ρC)c = 5 × 105 Jm−3K−1 and (ρC)s = 1.61 × 106 Jm−3K−1.
d–f : (ρC)s = 2.35 × 106 Jm−3K−1. g–i: (ρC)s = 5 × 105 Jm−3K−1. Adapted from Ref. [39]

The above results only consider steady states. These radiative metamaterials can
also be extended to transient states if we consider the density and heat capacity. For
designing the transient transparency and cloak, we set the heat diffusivity κ/ (ρC) to
be a constant. Although it is an approximate method, its performance is still satisfy-
ing. The corresponding results at t = 10, 20, 60 mins are presented in Fig. 19.5a–
19.5c and 19.5d–19.5f, respectively. For designing a transient expander, we use
the optimization method and set the diffusivity of the shells larger than that of
the background to achieve the best transient effect. The corresponding results at
t = 6, 10, 20 mins are presented in Fig. 19.5g–i.
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19.4 Discussion and Conclusion

In this chapter, thermal conduction is dealt with the Fourier law [Eq. (19.2)] which
is an appropriate hypothesis at the macroscale. However, at the nanoscale, if the
phonon effect is taken into consideration [24–28], the Fourier law may be invalid.
Meanwhile, the thermal radiation under our consideration is handled with the Rosse-
land diffusion approximation [Eq. (19.3)] which requires the participating media to
be optically thick. Namely, thermal radiation only propagates a short distance before
being absorbed or scattered. Lots of other radiativemodels, such as those considering
near-field radiation [29–32], remain to be further explored.

In summary, we have proposed an effective medium theory to manipulate ther-
mal radiation and designed three types of metamaterials including transparency,
cloak, and expander. All theoretical analyses are confirmed by finite-element simu-
lations. These radiative metamaterials are well-behaved in both steady and transient
states. Certainly, they have broad potential applications in designing thermal illu-
sion/camouflage [33–35] and other thermal metamaterials [36–38] for the regime
with high temperature where thermal radiation is the dominating effect.
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Chapter 20
Summary and Outlook

Abstract A summary of the book is presented. In particular, several key open ques-
tions are raised, which may help to encourage the reader to consider how to develop
the field efficiently.

Keywords Theoretical thermotics · Transformation thermotics ·
Extended theories · Thermal metamaterials · The Stefan–Boltzman law ·
Nonlinear thermotics

20.1 Summary

In this book, we have presented eighteen theories (transformation thermotics and
extended theories) for designing thermal metamaterials. The main research pro-
gresses have been introduced accordingly. In general, the concept of thermal meta-
materials can help to design plenty of functional materials or devices with novel
functions, which have broad potential applications in thermal protection, detection,
treatment, and management.

20.2 Outlook: Future Directions and Open Questions

It is known that heat transfer has three basic ways: conduction, convection and
radiation. So far, the role of thermal metamaterials in convection is still to be
exploredbecauseof the difficulty in controllingmass diffusion atwill.Moreover, even
though the transformation method has been extended to treat thermal radiation (see
Chaps. 4 and 5), we have only considered the Rosseland diffusion approximation [1],
derived from the Stefan–Boltzman law, to deal with thermal radiation directly, which
supposes that the mean free path of photons is far smaller than the system size.
Therefore, the propagation of thermal radiation can be regarded as the diffusion
of photons. In fact, there are many models to handle thermal radiation [2], and the
Rosseland diffusion approximation is only one of them. The present establishment of
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transformation thermotics including radiation (Chaps. 4 and 5) benefits from the dif-
fusive behavior of photons in optically thick media. Therefore, thermal radiation in
Chaps. 4 and 5 is essentially a far-field effect. Certainly, it is also promising to extend
the transformation theory into other radiativemodels, such as those considering near-
field effects [3–6].

Although thermal metamaterials have achieved great attention within the past
decade, several key scientific problems remain to be solved. For example, how to
control thermal conduction, convection and radiation simultaneously by designing
certain thermal metamaterials? Clearly, the existing progress is far from being sat-
isfactory. Also, how to completely overcome the three limitations associated with
transformation thermotics (anisotropic, inhomogeneous, and singular) is still an open
question. In addition, how to freely tune thermal conductivities via thermal metama-
terials, e.g., based on locally resonant nano-structures or periodic nano-structures, is
still facedwith challenges.Answers to these problemsmay promote future researches
on theoretical thermotics and thermal metamaterials.

Furthermore, in the light of nonlinear optics, can one develop its counterpart in
thermotics, nonlinear thermotics [7, 8]? Fundamentally, electric permittivities are
a function of electric fields in nonlinear optics, and thermal conductivities are a
function of temperatures in nonlinear thermotics. Since electric fields (or electric
potentials) in nonlinear optics are only mathematically analogous to temperature
gradients (or temperatures) in nonlinear thermotics, new physics and applications
may be expected in this direction.

Last but not least, all the heat-conduction-related researches summarized in this
book canbe readily extended to other diffusionfields in electrostatics,magnetostatics,
and particle diffusion, where electric conductivities, magnetic permeabilities and
diffusion constants respectively play the same role as thermal conductivities in heat
conduction.
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Appendix
Brief History of the First Ten Years of
Thermal Metamaterials

Abstract This appendix is an English version of the invitation article for celebrating
the first ten years (2008–2018) of thermal metamaterials, whose original Chinese
version was published in Physics, a Chinese counterpart of Physics Today, namely
“J. P. Huang, Physics 47, 685–694 (2018)”. In this appendix, I introduce the brief
history of thermal metamaterials for the first ten years. For this purpose, I choose
24 articles according to the chronological order of publication. I present the novel
physics and new applications in the field. I expect this appendix could help the reader
to quickly understand the whole field as well as its developing trend.

Keywords Thermal metamaterial · Thermal cloak · Thermal concentrator · Thermal
rotator · Thermocrystal · Thermal diode · Energy-free thermostat · Daily radiation
cooling

A.1 Opening Remarks

It has alreadybeen an accepted fact that 2008 is thefirst year of thermalmetamaterials.
The field of thermal metamaterials is ten years old by 2018, if she is a child.

According to Chinese customs, this is a year to celebrate. Therefore, I am glad to
accept the invitation from “Physics”, and write the history of the past ten years for
her. The review has two main purposes: one is to commemorate the past, and the
other is to prospect for the future. Throughout China, there are two genres in writing
history: one is chronology, which is based on the happening time of historical events,
such as “Spring and Autumn”; and the other is biography, which is based on a series
of biographies, such as “Records of History”. Compared with biography, chronology
helps to present the order of different events and provide references for readers to
rethink and innovate independently, although it seems to be slightly scrappy. In view
of this, now I choose the chronological narrativemode towrite the history for thermal
metamaterials.

© Springer Nature Singapore Pte Ltd. 2020
J.-P. Huang, Theoretical Thermotics,
https://doi.org/10.1007/978-981-15-2301-4

245

https://doi.org/10.1007/978-981-15-2301-4


246 Appendix: Brief History of the First Ten Years …

In fact, the so-called metamaterials are a kind of artificially designed struc-
tural materials. Because of their special structures, metamaterials can possess
some properties that do not exist in ordinary materials. Metamaterials (for optics/
electromagnetism) can be traced back to the 1960s, but the rapid development was in
the 1990s. Metamaterials can demonstrate new phenomena such as optical negative
refraction. Since the 21st century, metamaterials have made great progress in the
fields of acoustics, elastic wave, seismic wave, and mechanics, which is mainly due
to the huge application demands in these fields. Because the aforementioned areas
are mainly dominated by wave equations, their basic theories are similar. Differently,
the theme of this appendix is thermal metamaterials (metamaterials in thermotics),
which should be mainly described by diffusion equations. Thermal metamaterials
give researchers a powerfulmethod formanipulatingmacroscopic heat transfer. Over
the past decade, hundreds of articles have been published. Considering the limited
space, I would have to choose the following 24 research or review articles for the
reader. In what follows, I will introduce these articles one by one in chronological
order, in order to show the general situation of thermal metamaterials.

A.2 The Brief History of Ten Years: 2008–2018

(1) June 24, 2008: There is a white belly in the east, and the theory of thermal
cloak firstly appeared.
Reference 1: C. Z. Fan, Y. Gao, and J. P. Huang, “Shaped graded materials with an
apparent negative thermal conductivity”, Applied Physics Letters 92, 251907 (2008).

Invisibility cloaks have always been a dream of human beings. In 2006, Pendry
et al. and Leonhardt put forward the theory of electromagnetic cloak (wave systems),
respectively. In 2008, Fan et al. (Ref. 1) firstly introduced the concept of electromag-
netic cloak into the field of thermal conduction (diffusion systems). By referring to
the theory of transformation optics, they established the theory of transformation
thermotics and proposed the concept of thermal cloak, which can protect internal
objects from thermal interference and does not disturb the temperature distribution
outside the cloak, as if the internal objects do not exist. They further predicted the
reverse of heat flux in the system, which is quite different from the traditional view
that heat transfers from the region with high temperature to that with low temper-
ature. Then they proposed the concept of apparent negative thermal conductivity
based on the phenomenon. The relevant research results have potential applications
in thermal protection, infrared deception, accurate temperature control, etc. Ref. 1
is the first article in the field of transformational thermotics. It had attracted little
research interest in the first four years since its publication.

(2) September 15, 2008: The road is stepped out, and the second article of
thermal cloak appeared.
Reference 2: T. Y. Chen, C.-N. Weng, and J.-S. Chen, “Cloak for curvilinearly
anisotropic media in conduction”, Applied Physics Letters 93, 114103 (2008).
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Chen et al. (Ref. 2) also used themethod of coordinate transformation to realize the
thermal cloak. The difference is that Fan et al. (Ref. 1) studied isotropic background
materials, while Chen et al. discussed the possibility of realizing thermal cloaks in
anisotropic background materials. Their research showed that coordinate transfor-
mation theory is still applicable in this case. This work broadens the application of
thermal cloak, and is of particular significance for specific nonuniform background.

(3) October 1, 2010: The third article of thermal cloak put forward the theory
to design a bifunctional cloak in both thermal and electric fields.
Reference 3: J. Y. Li, Y. Gao, and J. P. Huang, “A bifunctional cloak using transfor-
mation media”, Journal of Applied Physics 108, 074504 (2010).

With the development of transformation thermotics, the existing thermal cloak
cannot satisfy the curiosity of researchers. Li et al. (Ref. 3) proposed a coordinate
transformation to design a bifunctional cloak. Except for the function of thermal
cloak, the bifunctional cloak can also act as an electric cloak. Bifunctional cloak
provides a different idea for the miniaturization of bifunctional devices.

(4) March 2011: The fourth article on theoretical research of thermal cloak.
Reference 4: G. X. Yu, Y. F. Lin, G. Q. Zhang, Z. Yu, L. L. Yu, and J. Su, “Design
of square-shaped heat flux cloaks and concentrators using method of coordinate
transformation”, Frontiers of Physics 6, 70 (2011).

With the development of thermal cloaks, other methods to control heat flux were
explored intensively. In Ref. 4, Yu et al. proposed amethod to design a square thermal
cloak and thermal concentrator by using coordinate transformation theory. It is worth
mentioning that thermal concentrator was theoretically predicted for the first time
in this article. Most of the existing researches on thermal devices are based on the
circular or spherical structure, so Ref. 4 provided the possibility to design arbitrarily
shaped thermal devices.

(5) March 26, 2012: The fire becomes more blazing with more woods, and
the fifth article on theoretical research of thermal cloak appeared.
Reference 5: S. Guenneau, C. Amra, and D. Veynante, “Transformation thermody-
namics: cloaking and concentrating heat flux”, Optics Express 20, 8207 (2012).

Fan et al. (Ref. 1) put forward the theory of transformation thermotics which is
applicable to the steady-state thermal conduction equation. Guenneau et al. (Ref. 5)
firstly proposed the unsteady-state transformation thermotics, and proved the reliabil-
ity of the unsteady-state transformation thermotics based on the analytical theory and
finite-element simulations. Importantly, they successfully designed transient thermal
cloaks and thermal concentrators, and proposed a method to prepare thermal cloaks
by using multilayer homogeneous structure instead of anisotropic materials, which
provides theoretical guidance to experimental fabrication and practical application.

(6) May 21, 2012: Let the flame burn more fiercely, and the sixth article on
thermal cloak, also the first experimental article, came to appear.
Reference 6: S. Narayana and Y. Sato, “Heat flux manipulation with engineered ther-
mal materials”, Physical Review Letters 108, 214303 (2012). Selected for Editors’
suggestion.

In this article, Fan et al.’s (Ref. 1) theoretical prediction of both thermal cloak
and apparent negative thermal conductivity was verified experimentally for the first
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time. This article and Ref. 5 were published in 2012, and both of them immediately
aroused researches on thermal cloaks. It is worth mentioning that the previous Refs.
1–4 did not attract enough attention when they were published. Since 2012, they
have also received widespread attention, especially Refs. 1–3.

Because of the strict limitation of transformation thermotics on the nonuniformity
and extreme anisotropy, this kind ofmaterials barely exists in nature,whichmakes the
thermal cloak and other novel thermal devices face great challenges in experimental
verification. In 2012, Narayana and Sato (Ref. 6) experimentally designed thermal
cloak and other thermal devices for the first time. According to the effective medium
theory, the radial and tangential thermal conductivities require different values. That
is, the radial thermal conductivity can be regarded as the series connection of two
kinds of thermal conductivities, while the tangential can be seen as the parallel
connectionof twokinds of thermal conductivities, so as to realize the different thermal
conductivities in different directions and achieve the equivalent anisotropic thermal
conductivity. Based on this method, they successfully overcome the requirement of
anisotropy in thermal conductivities. By using the uniform isotropic materials, they
can design thermal cloaks, thermal concentrators, and thermal rotators. Their work
has opened a way for the control and realization of macroscopic heat transfer.

It is worth mentioning that after Ref. 6 was published, the Science magazine
published a piece of news for it (http://www.sciencemag.org/news/2012/05/heat-
trickery-paves-way-thermal-computers). The title is “Heat trickery pays way for
thermal computers”, which also contains some of my viewpoints in the field. In the
news, I made some prospects for the future development of this field.

(7) June 21, 2012: Commentary on Refs. 1 and 6
Reference 7: P. Ball, “Against the flow”, Nature Materials 11, 566 (2012).

In this review, Ball introduced the experimental verification (Ref. 6) and the theo-
retical predictions (Ref. 1) in detail, including thermal cloaking and apparent negative
thermal conductivity. The experimental verification of the thermal concentrator was
also commented in this review. More importantly, the compatibility between the
apparent abnormal phenomenon and the laws of physics was discussed in the end
of this review, which is helpful to eliminate doubts and promote the development of
thermal metamaterials.

(8) January 11, 2013: A monument: controlling thermal phonons by using
band gaps of periodic structure
Reference 8: M. Maldovan, “Narrow low-frequency spectrum and heat management
by thermocrystals”, Physical Review Letters 110, 025902 (2013).

Inspired by the modulation of electromagnetic waves by using photonic crystals,
Maldovan proposed the concept of thermal crystals firstly, which can be used to
regulate heat transfer arbitrarily. By using the coherent reflection of phonons, he
calculated the band gap of the thermal crystal and found that the transport process
of the thermal phonons can be precisely controlled at the microscopic level. He fur-
ther theoretically designed the periodic structure in the nanoscale and calculated the
corresponding band structure. Based on the theory, he proposed that such nanostruc-
tures could be used to design thermal devices or systems such as thermal waveguides,
thermal imaging, thermal diodes, thermal clocks, and thermal super-lattices. In this
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work, the concept of thermal crystal was first proposed theoretically. This work also
inspired many new researches.

(9) May 10, 2013: Experimental verification of transient thermal cloak
Reference 9: R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments
on transformation thermodynamics: molding the Flow of Heat”, Physical Review
Letters 110, 195901 (2013). Selected for Editors’ suggestion.

In this article, ten concentric rings with alternating thermal conductivities were
used to realize the anisotropic thermal conductivity. The tangential conductivity is
much larger than the radial one, and polydimethylsiloxane was used to fill the holes
within copper. This structure canhelp to realize the thermal conductivitywhich is hard
to achieve by using conventional materials, so that this structure could conform to
the spatial distribution of thermal conductivity derived by coordinate transformation.
This work experimentally verified the transient thermal cloak for the first time. It is
worth mentioning that such thermal cloaks can be used to protect sensitive areas in
circuits or chips from overheating damage in industry.

(10) June 27, 2013: The latest development in the field of thermal cloak was
reviewed
Reference 10: U. Leonhardt, “Cloaking of heat”, Nature 498, 440 (2013).

Professor Leonhardt is one of the pioneers in the field of transformation optics.
The principle of optical cloak proposed by him and J. B. Pendry et al. was selected
as the top ten scientific breakthroughs in 2006 by the Science magazine. He (Ref.
10) published a review article on the Nature magazine in 2013 which introduced the
latest progress in the field of thermal cloak. This article plays an important role in
promoting the development of thermal cloaks and thermal metamaterials.

(11) November 14, 2013: The original connotation of the name “thermal
metamaterial”
Reference 11:M.Maldovan, “Sound and heat revolutions in phononics”, Nature 503,
209 (2013).

Maldovan’s article (Ref. 11) gave the field a formal name, namely, thermal meta-
material. What’s more, the physical connotation contained in the name has a clear
description, rather than a general summary. There is a special chapter in this article,
whose title is “thermal metamaterials and the heat cloaking”. In the chapter, for Refs.
1, 2, 5, 6 and 8, the author used “thermal metamaterial” to name the functions or
devices such as thermal cloaks and other thermal devices which were designed by
using the transformation thermotics. This article contributed to the formation of the
direction “transformation thermotics and thermal metamaterial”, and made the name
“thermal metamaterial” widely recognized. In the article, the author gave a perti-
nent assessment of the existing research in this field, and described the researches
as “innovative theoretical concepts”, “exciting new technologies”, “unprecedented
control of heat flux”, and “revolutionary developments”.

Here, it must be noted that there is no doubt that Maldovan’s review article (Ref.
11) plays an irreplaceable role in promoting the development of thermalmetamaterial
after 2013, and this article has also become a recognized source of the nameof thermal
metamaterial. However, in fact, the phrase “thermal metamaterial” first appeared in a
collection of conference proceedings, which corresponded to the annual meeting of
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the American Society for Experimental Mechanics held in Indianapolis from June 7
to 10, 2010. The conference proceedings of the annual meeting include a paper with
the title of “Thermal management and metamaterials” written by C. T. Roman, R. A.
coutu and J. L. A. Starman. In the paper, the first two words in the abstract are just
“thermal metamaterials”. Unfortunately this paper did not attract great influences in
the academic community as Ref. 11 did. So, it is a pity that this paper did not play a
due role in promoting the development of thermal metamaterials.

(12) November 22, 2013: The latest development in thermal cloak was
reviewed
Reference 12:M.Wegener, “Metamaterials beyond optics”, Science 342, 939 (2013).

In this review, Wegener introduced the latest development of thermal cloak, and
pointed out that the thermal diffusion length in the process of heat conduction can
be compared with the optical wavelength (the characteristic length of the optical
metamaterial). The square of thermal diffusion length is equal to the product of the
thermal diffusion coefficient and the thermal diffusion time.Moreover, in this review,
he pointed out that the negative thermal conductivity in the design of external thermal
cloaks cannot exist because of the limitation of the second law of thermodynamics.
But in active systems, the negative thermal conductivity can exist and does not violate
the second law of thermodynamics because of the existence of heat source or cold
source. These discussions on negative thermal conductivity provided a theoretical
idea for the later design of thermal metamaterials. It is worth mentioning that his
discussions on negative thermal conductivity are consistent with the discussions at
the end of the article “EPL 104, 44001 (2013)”.

(13) February 3, 2014: Theoretical design and experimental verification of
the first three-dimensional thermal Cloak
Reference 13: H. Y. Xu, X. H. Shi, F. Gao, H. D. Sun, and B. L. Zhang, “Ultra-
thin three-dimensional thermal cloak”, Physical Review Letters 112, 054301 (2014).
Selected for Editors’ suggestion and a Viewpoint in Physics.

Xu et al. (Ref. 13) designed the first three-dimensional thermal cloak. The previous
experiments of thermal clocks are two-dimensional devices, and three-dimensional
devices could have extensive applicability undoubtedly. They successfully fabri-
cated a three-dimensional ultra-thin thermal cloak by using sophisticated three-
dimensional metal processing technology, where the thickness of copper is 100 µm
and the internal area radius is 0.5 cm.

(14) February 3, 2014: Theoretical design and experimental verification of a
bilayer thermal cloak
Reference 14: T. C. Han, X. Bai, D. L. Gao, J. T. L. Thong, B. W. Li, and C.-W. Qiu,
“Experimental demonstration of a bilayer thermal cloak”, Physical Review Letters
112, 054302 (2014). Selected for Editors’ suggestion and a Viewpoint in Physics.

The thermal cloaks based on the coordinate transformation theory generally
require anisotropic thermal conductivities and extremely large range of thermal con-
ductivities. Therefore, it is difficult to find corresponding materials in nature, which
limits the preparation and application of thermal cloaks. To solve this problem, Han
et al. (Ref. 14) designed a kind of bilayer thermal cloak. This cloak only needs two
layers of uniform and isotropic materials. The thermal conductivities of the materials
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are calculated according to the Laplace equation. The temperature distributions in
the cloak can be calculated by considering the associated boundary conditions, while
the temperature distributions outside the cloak is not disturbed by the objects inside
the cloak. This method works both for two-dimensional/three-dimensional cases and
for steady/transient states. They have successfully fabricated a two-dimensional ther-
mal cloak. Its inner (or outer) layer is made of polystyrene (or alloy) with a low (or
high) thermal conductivity. The thickness of the inner and outer layers is 3.5mm and
2.5 mm, respectively. The radius of the inner area is 6 mm. The background material
of the cloak is thermal conductive silicone. Based on the sample, they measured the
experimental data that are consistent with the theoretical prediction.

(15) March 2014: This article is the beginning of the research upsurge of
thermal camouflage and thermal illusion
Reference 15: T. C. Han, X. Bai, J. T. L. Thong, B.W. Li, andC.-W.Qiu, “Full control
and manipulation of heat signatures: cloaking, camouflage and thermal metamateri-
als”, Advanced Materials 26, 1731 (2014).

On the basis of bilayer thermal cloaks, Ref. 15 designed a kind of thermal cam-
ouflage structure by directly solving the Laplace equation. The theory was verified
by finite-element simulations and experiments. There are two semicircles on the left
and right sides of the structure, which is the key to the design. The semicircles with
low thermal conductivities help to insulate the heat flux. Therefore, whether there is
an object inside the bilayer thermal cloak between the two semicircle structures or
not, the temperature distribution in the background is the same. So the device can
camouflage objects inside. This work also has potential applications in military and
industry.

(16) November 12, 2014: The theoretical prediction of invisibility cloak with
thermoelectric dual function is verified by experiments
Reference 16: Y. G.Ma, Y. C. Liu,M. Raza, Y. D.Wang, and S. L. He, “Experimental
demonstration of a multiphysics cloak: manipulating heat flux and electric current
simultaneously”, Physical Review Letters 113, 205501 (2014).

In 2010, Li et al. (Ref. 3) theoretically designed a type of cloak that works for
thermal and electric fields, respectively. Subsequently, Ma et al. (Ref. 16) experi-
mentally fabricated such a cloak. They used the idea of bilayer thermal cloak for
reference, and found that the bilayer cloak structure can have the dual functions as
long as the ratio between background thermal conductivity and electric conductivity
is equal to the ratio between outer layer thermal conductivity and electric conduc-
tivity. In the experiment, they abandoned the traditional metal-insulator composite
structure and adopted semiconductor silicon to realize their idea. The outer layer of
the thermal cloak is low-density doped n-type silicon, and the inner layer is air film,
and the background material is silicon with periodic holes. The holes are filled with
polydimethylsiloxane. According to the effective medium theory, the ratio of back-
ground thermal conductivity to electric conductivity can meet the requirement when
the hole/silicon area fraction is appropriate. The experimental results verified their
idea. Their work, together with the previous articles of Li et al. (Ref. 3) and Moccia
et al. [Physical Review X 4, 021025 (2014)], successfully extended the cloak from
the single physical (thermal) field to the multiphysical (thermal and electric) fields,
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and provided a reliable theoretical basis and experimental methods for subsequent
researches.

(17) November 27, 2014: Another monument: the principle and prototype of
daytime radiative cooling came out
Reference 17: A. P. Raman, M. A. Anoma, L. X. Zhu, E. Rephaeli, and S. H. Fan,
“Passive radiative cooling below ambient air temperature under direct sunlight”,
Nature 515, 540 (2014).

The energy consumption of refrigeration system accounts for 15% of the global
energy consumption [E. A. Goldstein, A. P. Raman, and S. H. Fan, Nature Energy
2, 17143 (2017)], and the proportion is even as high as 50% in the United States.
Compared with the “active refrigeration” devices such as refrigerators and air con-
ditioners that usually need energy input, a “passive refrigeration” device needs no
energy input. So the passive refrigeration device can greatly reduce the proportion of
refrigeration system in energy consumption, so as to effectively alleviate the energy
crisis. Fortunately, as early as 1967, the concept of radiation cooling was proposed
by F. Trombe, which was verified by experiments in 1975 [S. Catalanatti, V. Cuomo,
G. Piro, D. ruggi, V. silvestrini, and G. Troise, “The radiation cooling of selective
surfaces”, Solar Energy 17, 83 (1975)]. However, the devices work only at night. A
large number of researchers try to find an effective way to achieve passive cooling in
the daytime, but there had been no substantial progress for a long time, and even some
people predicted that it is impossible to achieve radiation cooling in the daytime.

However, the results reported by Ref. 17 successfully broke the above prediction.
The final stable temperature of an object is determined by the absorbed heatminus the
emitted heat. Except for the thermal conduction and convection between the refrig-
eration system and the environment, the input energy comes from the solar radiation
(corresponding to the wavelength of 0.3–2.5 µm), and the output energy is emitted
by the thermal radiation (this part of energy can radiate the heat to the vast universe
through the atmospheric window 8–13 µm). By designing the absorption and emis-
sion spectrum of the material, the “absorptivity/emissivity” in the 0.3–2.5 µm band
range of the material can be as small as possible, while the “absorptivity/emissivity”
in the 8–13 µm band range can be as large as possible. Thus the “passive cooling”
in the daytime can be realized. The authors (Ref. 17) used SiO2, HfO2, and other
materials to fabricate the photonic-crystal thin film that meets the above theoreti-
cal requirements. Their results show that the surface temperature of the film can be
4.9 ◦C lower than the ambient temperature when it is exposed to direct sunlight in
the daytime. This is the first time to realize “daytime passive cooling”. If such tech-
nology can be applied for large scales (such as covering the top of residential houses
with this kind of material), it can greatly reduce the dependence on air conditioning
in summer. Definitely, this could reduce energy consumption significantly.

(18) July 17, 2015: Learn from nature how to design thermal metamaterials
Reference 18: N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner,
“Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan
silver ants”, Science 349, 298 (2015).

The method of designing photonic crystals in Ref. 17 needs to control the thick-
ness and growth of each film layer, which is not convenient for large-scale production
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and applications. The silver ants in the Sahara Desert can maintain a temperature of
48–51 ◦C in summer when the ambient temperature is as high as 60–70 ◦C. Organ-
isms usually do not have a large number of SiO2, HfO2 and other substances, not
to mention the above-mentioned artificial photonic crystal structure, so the study of
the heat dissipation mechanism of silver ant is helpful to develop a more effective
radiation refrigeration mechanism. Through scanning electron microscope observa-
tion of the head of silver ant, Shi et al. (Ref. 18) found that there are a large number
of tiny triangular hairs, which can reflect the solar radiation and emit the energy
through atmospheric window, thus maintaining a relatively low temperature. This
kind of microstructure matched with the wavelength of solar radiation can be com-
pleted without complicated photonic crystal structure design. The tiny triangular hair
structures of the silver ant are of great significance to the excavation of new radiation
refrigeration mechanism.

(19) November 5, 2015: Nonlinear transformation theory and macroscopic
thermal diode
Reference 19: Y. Li, X. Y. Shen, Z. H. Wu, J. Y. Huang, Y. X. Chen, Y. S. Ni, and
J. P. Huang, “Temperature-dependent transformation thermotics: from switchable
thermal cloaks tomacroscopic thermal diodes”, Physical ReviewLetters 115, 195503
(2015). Cover Article.

Common materials used in the existing transformation thermotics are not enough
to solve the problem of macroscopic thermal rectification by designing macroscopic
thermal diodes. This is because the thermal conductivity of common materials is
generally independent of temperature, while the thermal diodes need to transfer heat
flux in one direction and prohibit heat flux in the opposite direction. Therefore, it
is necessary to use nonlinear materials, that is, the thermal conductivity depends on
temperature. In Ref. 19, the authors proposed a switchable thermal cloak based on
the nonlinear materials, and obtained the selective response of the thermal cloak to
the ambient temperature. Therefore, it is also called intelligent thermal cloak. At
the same time, they also designed a kind of macroscopic thermal diode. This diode
has potential applications, such as heat preservation, heat dissipation, and energy
conservation. Moreover, if macroscopic thermal triodes can be designed based on it,
the macroscopic thermal logic gate can also be expected, which provides a different
idea for efficient utilization of heat energy.

(20) July 29, 2016: Energy-free maintenance of constant temperatures as
ambient temperature gradients change.
Reference 20: X. Y. Shen, Y. Li, C. R. Jiang, and J. P. Huang, “Temperature trapping:
energy-free maintenance of constant temperatures as ambient temperature gradients
change”, Physical Review Letters 117, 055501 (2016). Selected as Focus in APS
Physics.

Heat energy is a kind of low-quality energy for most of the time, which cannot
be fully utilized. If people can make full use of the heat energy in the environment,
it would be greatly beneficial for energy conservation and environmental protec-
tion. Shen et al. (Ref. 20) proposed a temperature trapping theory by using phase
change materials. The so-called phase change means that the thermal conductivity
of the materials can respond to temperature. Then they designed a new type of ther-
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mostat, which can maintain the required constant temperature without the need of
additional energy as ambient temperature changes. As an application of the concept,
the authors designed a different thermal cloak. Although the ambient temperature
gradient changes significantly, the temperature in the central area of the cloak is still
a constant, which is significantly different from the existing thermal cloaks. Their
work provides a different idea for controlling heat flux with energy saving.

(21) March 10, 2017: Breakthroughs in basic research and industrialization
of daytime radiative cooling
Reference 21: Y. Zhai, Y. G. Ma, S. N. David, D. L. Zhao, R. N. Lou, G. Tan, R.
G. Yang, and X. B. Yin, “Scalable-manufactured randomized glass-polymer hybrid
metamaterial for daytime radiative cooling”, Science 355, 1062 (2017).

The principle of daytime cooling refrigeration has been generally accepted, which
is to reduce the absorption of solar radiation and increase the thermal radiation
through the atmosphericwindow.However, how to achieve such a theoretical require-
ment? The main experimental methods rely on photonic crystal method (Ref. 17)
and polymer photon method (Ref. 21). Among them, the polymer photon method
is receiving more and more attention, which is mainly because it has the following
advantages: the experimental process is relatively simple, the technical requirements
are low, and the preparation cycle is short. The specific details of the method are
as follows: the randomly distributed SiO2 particles with a volume fraction of about
6% are doped in the polymer, so that the polymer can have a strong scattering effect
with the wavelength of 8–13µm, and the polymer is transparent with the wavelength
of 0.3–2.5 µm. The sunlight through the polymer is reflected by the silver film on
the back. In this way, the theoretical requirements are satisfied well. Based on the
composite structure of organic polymer and silver film, Zhai et al. (Ref. 21) fabri-
cated the samples which can reflect 96% of the solar radiation, and the emissivity in
the range of atmospheric window reaches 0.93. Because their method does not have
many restrictions on experimental process, the materials can be prepared rapidly and
massively, which have been put into production and commercialized in reality.

(22) August 29-September 1, 2017: Thermal metamaterials begin to have
practical applications in printed circuit boards
Reference 22: E. M. Dede, F. Zhou, P. Schmalenberg, and T. Nomura, “Thermal
metamaterials for heat flow control in electronics”, Proceedings of the ASME 2017
International Technical Conference and Exhibition on Packaging and Integration of
Electronic and Photonic Microsystems, article No. IPACK2017-74112 (2017).

In 2014, Dede and his collaborators proposed a kind of thermal metamaterial with
“thermal fiber” structure. In 2017, they (Ref. 22) applied this thermal fiber structure
to the electronic components. By using theoretical calculation and experimental
research, they found that the geometrically optimized copper fiber can be grown
on the printed circuit board. This design can protect the thermal elements on the
circuit board effectively. Compared with the circuit board without any copper fiber
structure, the optimized structure can reduce the temperature of the thermistor by 10.5
◦C, which is the first time to apply thermal metamaterial to the electronic circuits.
This structure can also be used for heat collection, so as to improve the efficiency of
thermoelectric conversion and heat dissipation.
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(23) January 18, 2018: How to make objects emit false infrared thermal
radiation signals
Reference 23: Y. Li, X. Bai, T. Yang, H. Luo, and C.-W. Qiu, “Structured thermal
surface for radiative camouflage”, Nature Communications 9, 273 (2018).

Based on the blackbody radiation theory, it is known that any object can radiate
different wavelengths of electromagnetic waves according to different temperatures.
Infrared imaging technology has been used in many fields, such as temperature mea-
surement, night vision, and infrared guided missiles. Therefore, thermal radiation
camouflage has high academic significance and application value. When the temper-
ature of an object is different from that of the background or its thermal radiation is
stronger or weaker than that of the background, the object can be detected by infrared
imaging devices. Therefore, the current common practice to achieve thermal radia-
tion camouflage is to cover the surface of the object with a carefully designed film, so
as to adjust the thermal radiation from the object to match that from the background.
For this approach, one has to know the background temperature and the properties
of the object in advance, which limits the application. In contrast, Li et al. (Ref. 23)
designed a special thermal metamaterial for thermal radiation camouflage. This kind
of thermal metamaterial can be directly applied to the objects and backgrounds to
change the properties of thermal radiation without the need to know the background
temperature in advance. This method is convenient and useful for applications.

(24) May 29, 2018: To hide heat sources.
Reference 24. R. Hu, S. L. Zhou, Y. Li, D.-Y. Lei, X. B. Luo, and C.-W. Qiu, “Illusion
thermotics”, Advanced Materials 30, 1707237 (2018).

Thermal metamaterials make many novel thermal phenomena possible, and ther-
mal illusion is one of them. In fact, any object in nature can be regarded as a heat
source, because they all emit thermal radiation. Nevertheless, there is surprisingly
little research on heat source illusion. In Ref. 24, Hu et al. proposed that a single
heat source can be disguised into multiple virtual heat sources, and the observer can-
not distinguish the actual heat source through the external temperature distribution.
In other words, the location, shape, size, and quantity of the actual heat source are
hidden. They (Ref. 24) developed a transformation location method based on the
transformation thermotics [Q. W. Hou, X. P. Zhao, T. Meng, and C. L. Liu, Applied
Physics Letters 109, 103506 (2016)]. They gave the analytical results, and verified
the theory by conducting finite-element simulations and experiments. The illusion
device reported in this article is simple and convenient for practical applications.

A.3 Outlook

The past is for a better look to the future. I hope that the introduction of the above 24
articles can help the reader to understand the general situation of the field, “theoretical
thermotics and thermal metamaterials”.

It can also be seen that the development of a field requires the joint efforts of many
factors, such as the international cooperation among researchers, the analogybetween
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different research methods, the cooperation between theory and experiment, and so
on. I think the combination of basic researches and industrial applications would
become a major development trend of thermal metamaterials. An excellent example
is about daytime radiative cooling: Professor Ronggui Yang and his team from the
University of Colorado have made outstanding achievements. In fact, researchers in
this field have published many articles in the journals of engineering thermophysics,
which shows that peers from the engineering field make great contributions to this
field as well. On the other hand, the theoretical methods in this field need to be fur-
ther developed and mined. For example, how to develop the corresponding theory of
nonlinear optics into the field of thermotics based on the temperature-dependence of
thermal conductivities? How to simultaneously control the three basic ways for heat
transfer (thermal conduction, convection and radiation) by developing transforma-
tion thermotics? How to improve the utilization efficiency of energy materials (such
as thermoelectric materials) through the unprecedented control of thermal metama-
terials? To solve these problems, we need more young people who are willing to
accept the challenge to join us. Of course, we also need the input and persistence of
peers.

Writing the outlook is essentially a prediction of the future, and I hope this outlook
could become the historical material of the future future.


	Preface
	Metamaterial Physics Deserves a Nobel Prize
	Thermal Metamaterial: Past, Present, and Future
	Useful Theoretical Physics and Useful Theoretical Thermotics
	Acknowledgement and Some Additional Notes
	Bibliography

	Contents
	1 Introduction
	1.1 Thermodynamics Versus Theoretical Thermotics
	1.1.1 Thermodynamics Concentrating on a Passive Description of Macroscopic Heat Phenomena of Natural Systems
	1.1.2 Theoretical Thermotics Concentrating on an Active Control of Macroscopic Heat Phenomena of Artificial Systems

	1.2 Two Features of Theoretical Thermotics
	1.2.1 Theoretical Framework: Transformation Thermotics and Extended Theories
	1.2.2 Application Value: Design Thermal Metamaterials for Macroscopic Heat-Flow Control

	References

	Part I General Theories
	2 Transformation Thermotics for Thermal Conduction
	2.1 Opening Remarks
	2.2 Coordinate Transformation and Geometric Transformation
	2.3 Transforming Heat Conduction
	2.4 Application: Thermal Cloak
	2.5 Exercises and Solutions
	References

	3 Transformation Thermotics for Thermal Conduction and Convection
	3.1 Opening Remarks
	3.2 Transforming Thermal Convection: Steady Regime
	3.3 Transforming Thermal Convection: Transient Regime
	3.4 Exercises and Solutions
	References

	4 Transformation Thermotics for Thermal Conduction and Radiation
	4.1 Rosseland Diffusion Approximation
	4.2 Transforming Thermal Radiation
	4.3 Exercises and Solutions
	References

	5 Transformation Thermotics for Thermal Conduction, Convection and Radiation
	5.1 Transformation Theory
	5.2 Applications
	5.3 Exercises and Solutions
	References

	6 Macroscopic Theory for Thermal Composites: Effective Medium Theory, Rayleigh Method and Perturbation Method
	6.1 Linear Part of Effective Thermal Conductivity
	6.1.1 Effective Medium Theory
	6.1.2 The Rayleigh Method

	6.2 Nonlinear Part of Effective Thermal Conductivity
	6.2.1 Effective Medium Theory
	6.2.2 The Rayleigh Method
	6.2.3 The Perturbation Method

	6.3 Examples
	6.4 Exercises and Solutions
	References

	7 Heat Conduction Equation
	7.1 Opening Remarks
	7.2 Analytic Theory Based on a First-Principles Approach
	7.2.1  Exact Solution for Thermal Conductivity Distributed in a Power-Law Profile
	7.2.2 Exact Solution for Thermal Conductivity Distributed in a Linear Profile

	7.3 Differential Approximation Method (DAM):  A Differential Equation Approach
	7.4 Computer Simulations Based on a Finite-Element Method
	7.5 Experiments Based on a Multi-layer Circular Structure
	7.6 Discussion and Conclusions
	7.7 Exercises and Solutions-1
	References

	8 Thermal Band Theory
	8.1 Opening Remarks
	8.2 Boltzmann Transport Equation
	8.3 Scattering
	8.4 Narrow Thermal Phonon Spectrum
	8.5 Thermal Band Gap
	8.6 Exercises and Solutions
	References

	Part II Special Theories
	9 Temperature-Dependent Transformation Thermotics for Thermal Conduction: Switchable Cloak and Macroscopic Diode
	9.1 Opening Remarks
	9.2 Temperature-Dependent Transformation Thermotics for Thermal Conduction
	9.3 Switchable Thermal Cloak
	9.3.1 Design
	9.3.2 Finite-Element Simulation
	9.3.3 Theoretical Realization Based on an Effective Medium Theory

	9.4 Macroscopic Thermal Diode
	9.4.1 Design
	9.4.2 Finite-Element Simulation
	9.4.3 Experimental Realization Based on an Effective Medium Theory

	9.5 Conclusions
	9.6 Exercises and Solutions
	References

	10 Temperature Trapping Theory: Energy-Free Thermostat
	10.1 Opening Remarks
	10.2 Temperature-Trapping Theory: Concept of Energy-Free Thermostat
	10.3 Experimental Demonstration of the Energy-Free Thermostat Concept
	10.4 Apply the Energy-Free Thermostat Concept to Design a New Thermal Cloak
	10.5 Discussion and Conclusions
	10.6 Exercises and Solutions
	References

	11 Coupling Theory for Temperature-Independent Thermal Conductivities: Thermal Correlated Self-Fixing
	11.1 Opening Remarks
	11.2 Theory for Two Dimensions
	11.3 Theory for Three Dimensions
	11.4 Laboratory Experiments and Computer Simulations
	11.5 Discussion and Conclusion
	11.6 Supplementary Information
	11.6.1 Approaches to Achieving Apparently Negative Thermal Conductivities: Computer Simulations
	11.6.2 Approaches to Achieving Apparently Negative Thermal Conductivities: Laboratory Experiments

	11.7 Exercises and Solutions
	References

	12 Coupling Theory for Temperature-Dependent Thermal Conductivities: Nonlinearity Modulation and Enhancement
	12.1 Opening Remarks
	12.2 Theory
	12.2.1 Two-Dimensional Case
	12.2.2 Three-Dimensional Case

	12.3 Theoretical Calculation Versus Finite-Element Simulation
	12.4 Application of Nonlinearity
	12.5 Discussion and Conclusion
	12.6 Exercises and Solutions
	References

	13 Theory for Isotropic Core and Anisotropic Shell: Thermal Golden Touch
	13.1 Opening Remarks
	13.2 Theory of Golden Touch
	13.3 Theoretical Analyses of Golden Touch
	13.4 Finite-Element Simulations of Golden Touch
	13.5 Discussion and Conclusion
	13.6 Supplementary Proof
	References

	14 Theory for Isotropic Core and Anisotropic Shell or for Two Isotropic Shells: Thermal Chameleon
	14.1 Opening Remarks
	14.2 Theory for Thermal Chameleonlike Metashells
	14.2.1 Anisotropic Monolayer Schemes
	14.2.2 Isotropic Bilayer Schemes
	14.2.3 Three-Dimensional Counterpart of Anisotropic Monolayer Schemes
	14.2.4 Explanation for the Failure of Isotropic Bilayer Schemes in Three Dimensions

	14.3 Simulations of Thermal Chameleonlike Metashells
	14.4 Discussion and Conclusion
	References

	15 Theory for Anisotropic Core  and Isotropic Shell: Isothermal Rotation
	15.1 Opening Remarks
	15.2 Theory
	15.3 Simulation
	15.4 Application: Experiment and Simulation
	15.4.1 Thermal Janus Core
	15.4.2 Generalized Thermal Janus Core

	15.5 Conclusion
	15.6 Supplementary Proof
	15.7 Exercises and Solutions
	References

	16 Theory for Anisotropic Core  and Anisotropic Shell: Thermal Transparency, Concentrator and Cloak
	16.1 Opening Remarks
	16.2 Theoretical Analysis of Two-Dimensional Circular Structures Constructed by Anisotropic Materials
	16.2.1 Exact Solution for a Multi-layered Structure
	16.2.2 Exact Solution for a Graded Structure
	16.2.3 Criterion for Transparency, Concentrating  and Cloaking

	16.3 Design of Thermal Transparency Devices, Concentrators and Cloaks via a Finite-Element Method
	16.4 Design of Thermal Transparency Devices, Concentrators and Cloaks Based on Ellipses-Embedded Structures
	16.4.1 Thermal Transparency Device Based on an Ellipses-Embedded Structure
	16.4.2 Thermal Concentrator and Cloak Based on Ellipses-Embedded Structures

	16.5 Conclusion
	16.6 Exercises and Solutions -1
	References

	17 Theory for Periodic Structure: Thermal Transparency
	17.1 Opening Remarks
	17.2 Theory for Periodic Interparticle Interaction
	17.3 Validating the Infinite-Matrix Approximation by Comparing with the Finite-Element Simulation
	17.4 Finite-Element Simulation and Laboratory Experiment for Thermal Transparency
	17.5 Discussion and Conclusion
	17.6 Supplementary Proof
	17.7 Exercises and Solutions
	References

	18 Theory with Uniqueness Theorem: Thermal Camouflage
	18.1 Opening Remarks
	18.2 Theory Based on Uniqueness Theorem
	18.3 Simulations and Experiments of Square-Shaped Cavity
	18.4 Simulations of Various Shaped Cavities in Two or Three Dimensions
	18.5 Simulations of Super-Invisibility
	18.6 Discussion and Conclusion
	18.7 Exercises and Solutions
	References

	19 Theory for Thermal Radiation: Transparency, Cloak, and Expander
	19.1 Opening Remarks
	19.2 Theory
	19.3 Finite-Element Simulations
	19.4 Discussion and Conclusion
	References

	20 Summary and Outlook
	20.1 Summary
	20.2 Outlook: Future Directions and Open Questions
	References

	Appendix  Brief History of the First Ten Years of Thermal Metamaterials
	A.1  Opening Remarks
	A.2  The Brief History of Ten Years: 2008–2018
	A.3  Outlook



