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Preface

At present, technologies of creating advanced structural materials with micro- and
nanostructure are intensively developed. One example of such materials is meta-
materials—a new class of substances with a complexly organized internal structure
(microstructure) and possessing unique physical and mechanical properties [1].
They first appeared in the field of optics and photonics [2], but now they are
increasingly found in other areas. For example, acoustic metamaterials are widely
used [3–7]. In particular, they are applied as acoustic absorbers [8]. In addition,
among porous media, granular materials, polymers, composites, and crystalline
media, there are materials with a negative Poisson’s ratio (auxetic materials) [9–17].

However, the creation of metamaterials is extremely difficult without adequate
mathematical models.

In this monograph, the method of structural modeling is proposed to use for
constructing mathematical models of metamaterials. This method enables one both
revealing the qualitative effect of the internal structure of a material on its effective
elastic moduli and performing quantitative estimates of the moduli. Results of the
performed research can be used for the design of advanced metamaterials with
predetermined physical and mechanical properties.

This book has been written on the basis of studies carried out over the past two
decades in Mechanical Engineering Research Institute of the Russian Academy of
Sciences (Nizhny Novgorod, Russia), which is a branch of the Federal State Budget
Scientific Institution “Federal Research Center Institute of Applied Physics of the
Russian Academy of Sciences” since 2016.

We are very grateful to our colleagues who, unfortunately, have already passed
away:

to Prof. Alexander Ivanovich Potapov (1949–2010), who was the founder of this
scientific direction at our institute;
to Prof. Nadezhda Evgenievna Nikitina (1951–2016), who was an acoustoelasticity
specialist and made a significant contribution to obtaining the results of Chap. 7,
where prestressed media are considered;
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to Prof. Gerard A. Maugin (1944–2016) from Pierre and Marie Curie University
(French: Université Pierre-et-Marie-Curie, Paris, France), in collaboration with
whom there were obtained scientific results presented in Chaps. 3 and 4;
to Prof. Alexander Vasilievich Vikulin (1947–2017) from the Institute of
Volcanology and Seismology, Far Eastern Branch of the Russian Academy of
Sciences (Petropavlovsk-Kamchatsky, Russia), who was a specialist in geody-
namics and seismology—discussions with him helped us make the transition from
nanomaterials to geomedia;
to Prof. Leonid lsaakovich Manevitch (1938–2020) from N. N. Semenov Federal
Research Center for Chemical Physics, Russian Academy of Sciences (Moscow,
Russia), who was a specialist in nonlinear dynamics and materials science—
collaboration with him gave us new ideas to choose materials for elaboration
of their models.

We consider as a pleasant duty to thank our colleagues, in co-authorship with
whom the most important results of the monograph were obtained: Professor
I. V. Miloserdova (Nizhny Novgorod Technical State University n.a. R. E.
Alekseev, Nizhny Novgorod, Russia); Doctors V. V. Kazhaev, A. V. Leontyeva, and
A. O. Malkhanov (Mechanical Engineering Research Institute of the Russian
Academy of Sciences, Nizhny Novgorod, Russia); Prof. A. V. Porubov (Institute of
Problems of Mechanical Engineering of the Russian Academy of Sciences,
St. Petersburg, Russia); and Dr. A. A. Vasiliev (Tver State University, Tver, Russia).

We are grateful to Academician of the Russian Academy of Sciences
V. P. Matveenko; Corresponding Members of the Russian Academy of Sciences
D. A. Indeytsev and A. N. Morozov; Foreign Member of the Russian Academy of
Sciences H. Altenbach; Profs. I. V. Andrianov, S. A. Lurie, A. V. Metrikine,
W. Muller, V. M. Sadovsky, I. N. Shardakov, V. S. Shorkin, and
D. V. Tarlakovsky, for useful scientific discussions and recommendations for
improvement of our book.

We also thank the staff of Mechanical Engineering Research Institute of the
Russian Academy of Sciences: Profs. V. N. Perevezentsev, S. I. Gerasimov,
B. A. Gordeev, V. V. Mishakin, V. M. Rodyushkin, and G. F. Sarafanov for their
attention to our work.

We would like to express our special gratitude to Anastasia Demareva and
Vladimir Sadovsky, postgraduate students of Lobachevsky State University of
Nizhny Novgorod, and to Anna Muravieva, a student of Lobachevsky State
University of Nizhny Novgorod, for their contribution to the development of a
three-dimensional model of a granular medium presented in Chap. 6 of this
monograph.

Nizhny Novgorod, Russia Vladimir I. Erofeev
Igor S. Pavlov

Lobachevsky State University
of Nizhny Novgorod
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Introduction

Prediction of physical and mechanical properties of media with microstructure and
adequate description of dynamic (wave) processes necessitate mathematical models
taking into account the presence of several scales (structural levels) in a medium,
their self-consistent interaction, and the possibility of energy transfer from one level
to another. The following scales are usually distinguished [1, 2]: atomic or mi-
croscopic level (characteristic sizes are angstroms and nanometers), mesoscopic
level (from 10−8 to 10−6 m), submacroscopic level (from 10−6 to 10−4 m), and
macroscopic level (over 10−4 m).

Mental breaking of a material into parts is restricted by some limit consisting in a
qualitative change of physical properties on a given scale level; i.e., in this case, a
size effect [3, 4] arises. During studying of wave processes in materials, the size
effects start to be shown, when the characteristic spatial scale of effect (e.g., length
of an elastic or electromagnetic wave) becomes comparable with the characteristic
spatial scale of a material—the size of grain, the lattice period, etc.

In process of accumulation of knowledge about microstructure of a material,
there arises a transition to new level of knowledge—a theory is created that enables
one to explain mechanical behavior of a material from new positions. It should be
emphasized that the actual values of the “microstructure” of the medium in a
specific problem can lie both in the range of nano- or micrometers and in the larger
scales. However, from the viewpoint of the methodology of theoretical research, the
absolute values of the “microstructure” are not so important, as the smallness of
some scales with respect to others.

Frequently, different physical properties of the medium are manifested at dif-
ferent scales. For example, it concerns media such as rocks, particularly, hydro-
carbon reservoirs. The internal structure of the rocks determines at different scales
not only various elastic properties, but also physical properties such as thermal and
electrical conductivity, and hydraulic and dielectric constant [5, 6].

In the mathematical simulation of microstructured media, two approaches can be
distinguished: “from micro to meso” and “from macro to meso.” The first approach
consists in the passage from atomic-level models to mesoscale models and is based
on the laws of quantum theory. In this case, the medium is considered as a discrete
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system of particles coupled by the interaction forces determined from the first
principles (quantum postulates). This approach allows one to understand the nature
of physical laws and to explain the origin of some properties having no substan-
tiation in the classical theory.

Until the middle of twentieth century, the quantum mechanics was considered,
basically, as the microworld mechanics. Being constructed on the basis of quantum
postulates, it does not appear at all on the macroscales, where the continuum
mechanics is valid, which is created on the basis of the laws of conservation of
mass, momentum, kinetic momentum, and the thermodynamics laws (the macro-
scopic first principles). The first fundamental step of the quantum mechanics in the
field of macroscopic phenomena was the creation of the hydrodynamic theory of
superfluidity of helium-II by L. D. Landau in 1941 and the idea of L. Onsager
(1948) to quantize vortex motion in it [7]. The next step in this direction was made
by A. F. Andreev and I. M. Lifshits, who developed in 1969 the phenomenological
theory of defects in quantum crystals [8]. According to this theory, defects are
considered as delocalized excitations (defectons) that move дeфeкты almost freely
through the crystal. A crystal with defectons is neither a liquid nor a solid. Two
different types of motion are possible in it. The first type of motion is associated
with small vibrations of the lattice sites near the equilibrium states and is described
by the classical equations of elastic solid mechanics. The second type is charac-
teristic for a liquid and is associated with quantum diffusion that leads to mass
transfer by defectons, when lattice sites are fixed. At present, such studies are the
subject of quantum macrophysics [9].

The second approach to modeling of microstructured media means passing from
description of a medium on a macrolevel to mesoscale models. Within its scope, the
elaboration of mathematical models of such media proceeds in three directions. The
first of them—the continuum-phenomenological direction—is associated with the
construction of generalized continuum models (generalized continua) of the
mechanics of a deformable solid and is based on the classical physics laws. It
involves expanding of the concept of a representative volume of the medium and
taking into account the rotational degrees of freedom of microparticles (polarity
of the material), as well as affine deformations of the mesovolume and non-locality
of the material [10–11]. Polarity indicates that rigid rotation is allowed, which is not
related to the field of displacements in the general case, whereas non-locality tes-
tifies the dependence of the physical properties of the material on the influence of
environmental particles. Continual theories are elaborated by the deductive way:
All the results are consequences of a system of fundamental assumptions—axioms
or postulates. The advantages of this elaboration are logical consistency, a rigor
of the derivation of various particular versions of the models, and the possibility of
a consistent classification of theories according to selected attributes. A decisive
contribution to the development of this direction was made by the works of
E. and F. Cosserat [12], C. Truesdell and R. Toupin [13, 14], E. L. Aero and
E. V. Kuvshinskii [15, 16], R. Mindlin [17], A. C. Eringen [18–21], W. Nowacky
[22], V. A. Palmov [23, 24], L. I. Sedov [25–27], V. I. Erofeev [28], A. I. Potapov
[29], V. P. Matveenko, I. N. Shardakov, M. A. Kulesh, and E. F. Grekova [30, 31],
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S. A. Lurie [32, 33], etc. At present, structurally heterogeneous materials are fre-
quently simulated by the generalized micropolar theories of the Cosserat continuum
type [34–39]. However, these theories involve a large number of material constants,
which have to be determined experimentally. Moreover, relationships between
these constants and the material structure are not always clear.

The second direction—structural modeling, which is the subject of study of this
monograph, is devoid of such a drawback. In accordance with this method, a
material is represented by a regular or quasiregular lattice consisting of finite-sized
particles. The elaboration of a structural model starts with selection in the material of
some minimal volume—a structural cell that is an analog of the periodicity cell in a
crystalline material. The cell is capable of characterizing the basic features of the
macroscopic behavior of the material [40–43]. As a rule, a structural cell is a particle,
which behavior is characterized by interaction with the environment and is described
by kinematic variables [44–61]. The role of these body particles can be played by
domains, grains, fullerenes, nanotubes, or clusters consisting of nanoparticles.
Sometimes, particles are represented as material points, i.e., force centers possessing
the properties of mass, charge, etc. The interaction forces are assumed to be rapidly
decreased with growing distance, so they can be neglected if the distance between
the points exceeds “the radius of molecular action.” This direction originates from
Max Born’s works on the theory of crystal lattices and until recently has developed
mainly in the framework of the solid-state physics [62, 63]. The founder of the
structural modeling method in Russia is a professor of Moscow State University
Nikolai Pavlovich Kasterin (1869–1947). He was a student of a great Russian
physicist Alexander Grigorievich Stoletov (1839–1896). N. P. Kasterin studied the
dispersion of sound waves by means of this method [64, 65].

Special attention in the structural modeling method is paid to studying the
propagation and interaction of elementary excitations—quasiparticles (phonons,
magnons, excitons, etc.)—and various defects inherent in real bodies [66, 67]. Both
quantum and classical approaches to the analysis of dynamic processes coexist
organically within the scope of this direction [68].

As distinct from the continual models, the structural ones explicitly contain the
geometric parameters of the structure—the size and shape of the particles. Finally,
the effective elastic moduli of various orders depend on these parameters [69, 70].
Structural models enable one not only to reveal the qualitative influence of local
structure on the effective moduli of elasticity but also to perform numerical esti-
mations of their quantities and even to control physical and mechanical properties
of a medium, these being generally unavailable from continuum-phenomenological
theories.

The clear coupling between a structure of a medium and its macroparameters
discloses major opportunities for the purposeful design of materials with given
physical–mechanical properties. Shortcomings of the structural modeling are
absence of universality of modeling procedure and complexity of the accounting of
nonlinear and non-local effects of interparticle interactions. A significant contri-
bution to the development of the structural modeling method was made by the
works of I. A. Kunin [71], E. Kroner [72], A. Askar [73–75], G. Maugin and
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J. Pouget [76–80], E. L. Aero and A. V. Porubov [81–88], N. F. Morozov and
A. M. Krivtsov [89–94], D. A. Indeytsev [95], L. I. Manevich and V. V. Smirnov
[96–98], Askes H., A. Suiker, A. V. Metrikine, and R. de Borst [99–101], Chinyu
Li and Tsu-Wei Chou [102], A. I. Potapov [103–112], A. A. Vasiliev,
S. V. Dmitriev, and A. E. Miroshnichenko [113–116], and others.

The third direction is related to the method of statistical averaging and is used
mainly for constructing models of a medium with arbitrary packing of particles
[117]. In the framework of this direction, equations of micromotion are first made
up, i.e., equations of motion of microparticles taking into account their interaction
with the environment, and then, using averaging, “macrovariables” are introduced
that describe various types of collective forms of motion of the medium and
averaged dynamic equations are derived [118–120]. Averaged equations of motion
have much in common with the generalized continuum models. This direction
includes elements of the first two directions, and its advantage is the ability to
simulate the dynamics of disordered systems. The disadvantages include the sub-
stantial complexity of deriving the averaged equations of motion and calculating
the constants containing in these equations. The works by V. A. Lomakin,
A. A. Ilyushin [121–123], V. N. Nikolaevsky [124, 125], T. D. Shermergor [126],
and others made a significant contribution to the development of this direction.

Further, let us consider the advantages of applying the method of structural
modeling to metamaterials.
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Chapter 1
Theoretical Basis of the Structural
Modeling Method

The principles of the structural modeling method, the development of the theoretical
foundations of which this monograph is devoted, are formulated in the first chapter.
Moreover, the problem of the applicability of the classical mechanics laws to a
theoretical description of media with micro- and nanostructure is discussed here.

1.1 Review of References

One of the main hypotheses of the classical continuum mechanics is the Cauchy
stress principle, which postulates that the effect of all the internal forces applied to
an elementary area is equivalent to the effect of their resultant force applied to the
center of this area [1]. However, in the general case, the action of an arbitrary system
of forces is equivalent to the action of the main vector and the main moment. In
this case, couple stresses also appear in the medium, forming, generally speaking,
asymmetric tensors [2, 3]. Thus, the rejection of the Cauchy stress principle makes
possible taking into account the presence in the medium of internal pairs of forces
and moment interactions that arise naturally when considering a physically infinitely
small volume (over which the medium’s properties are averaged) not as a mate-
rial point, but as a more complex object with new degrees of freedom: rotational,
oscillatory, or the ability to microdeforming. The assumption about the existence of
an internal structure (microstructure) of a physically infinitesimal object, which is
providedby the discreteness or fibrous structure of realmaterials, leads to a significant
expansion of the spectrum of properties of a continuous medium. In particular, this
assumption enables one describing some experimentally observed acoustic effects,
for example, the dispersion of shear waves [4]. A brief description of the history of
studies of microstructured media is given below.
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2 1 Theoretical Basis of the Structural Modeling Method

1.1.1 Discrete and Continuum Models of Solids: A Brief
Historical Review

Isaak Newton was the first to use a discrete model in problems of the mechanics of
continuous deformablemedia [5].He considered a one-dimensional lattice consisting
of pointwise particles and calculated the speed of sound in air using this model. His
model represented a chain of particles of uniform mass located at equal distances
from each other on a straight-line coinciding with the wave propagation direction.
According to his assumption, a force proportional to their relative displacement acts
on each particle from the side of its neighboring particles.

The reason, due to which I. Newton had to consider a chain of point particles, was
that the study of continuousmediawosuld lead to partial differential equations, which
had been then unknown. Themotion of themechanical model chosen byNewtonwas
described by the set of ordinary differential equations already known at that time.
However, as it will be shown in Chap. 3, only longitudinal waves can be considered
in the framework of this model, whereas the study of transverse waves principally
necessitates taking into account either an additional degree of freedom provided by
the rotation of anisotropic particles or the initial deformation of the springs (see [6,
7] and Sect. 7.2).

A systematic study of one-dimensional lattices began in 1727 from the works
of Johann Bernoulli and his son—Daniel Bernoulli. They revealed that a one-
dimensional system of n point particles possesses n independent types of vibrations
and, as a consequence, n natural frequencies.

In 1753, D. Bernoulli established the superposition principle, according to which
any movement of the oscillatory system can be represented as a superposition of its
ownvibrations. Thismost important principle is one of the particular consequences of
Fourier expansion. Later, it was generalized. Now it is known as “Fourier theorem.”

After Johann and Daniell Bernoulli gave a complete solution to the problem about
a one-dimensional lattice consisting of point particles, and Leonard Euler solved the
problem of an oscillating string, their results were interconnected in 1759 by J. L.
Lagrange, who established the transition from the continuous model to the discrete
one. The related work was published in the Proceedings of the Turin Academy. Later,
it was developed in the famous book “Analytical Mechanics” by J. L. Lagrange
(1788).

In 1830, O. L. Cauchy, using a discrete model of the medium (ether), tried
to explain the dispersion of light under the assumption that light is elastic waves
with a very high frequency [8]. He showed that for wavelengths much larger than
the distance between neighboring particles in a one-dimensional lattice, the wave
velocity does not depend on the wavelength. For short wavelengths (i.e., at high
frequencies), the wave velocity is a function of wavelength and can vary drasti-
cally. In 1839, W.R. Hamilton, considering waves in a discrete chain, introduced the
concept of the group wave velocity.

Cauchy’s ideas expressed in [8] served as the starting point for the studies of
Baden Powell, who, based on Newton’s model of a one-dimensional lattice, derived
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a formula related the wave propagation velocity and its length [9]. However, he did
not notice one of themost important properties of such systems, namely the existence
of a maximum frequency at which the waves can still propagate in a lattice. This
discovery wasmade in 1881 by Lord Kelvin (W. Thomson), who paid attention to the
fact that frequency is a function of the wavenumber [10]. Using a model of a chain
of particles of two kinds, Kelvin was able to explain the phenomenon of dispersion,
avoiding the difficulties that arose in Cauchy’s theory.

Since the middle of nineteenth century, most of the results of the deformable solid
mechanics had been obtained in the framework of the continuum theory of elasticity,
whereas discrete models were used in the solid-state physics and in the crystal lattice
theory [11, 12]. The emphasis on continuum models was associated with successes
in the theory of functions of the real and complex variables, the theory of boundary
and initial-boundary value problems of differential equations in ordinary and partial
derivatives, with the development of the theory of integral equations, i.e., with those
branches of science that operate mainly continuous and continuously differentiable
functions.

Historically, one of the first continuummodels of an elasticmedium that cannot be
described in the framework of the classical theory of elasticity considering a medium
as a continuum of material points possessing, in general, three translational degrees
of freedom is the Cosserat medium, which consists of solid non-deformable bodies-
particles possessing three translational and three rotational degrees of freedom. The
microdisplacement tensor acquires an antisymmetric part, which can be expressed
through the vector of particle rotationwith respect to the particle axis. The role of such
rotations increases with increasing frequency, whereas as the frequency decreases,
the translational displacements of the centers of mass of the particles (elements of
the medium) become the governing factor [2]. The theoretical foundations of such
a continuum were laid by the brothers Eugène and François Cosserat [13] in 1909.
It is traditionally assumed that the work [13] exists as if in a vacuum, without any
predecessors or, until the beginning of the 1960s, followers. But this is not true.

So, yet in 1839, J. Mac Cullagh’s work [14] had been published, which was
devoted to construction of an elastic medium model capable describing both the
observed reflection and refraction. In the Mac Cullagh continuum, the strain energy
depends on the rotational components of the strain.

Ideas distinguishing from the classical continuum canonswere contained in books
by Mossoti (1851) [15], Clebsh (1862) [16], Kirchhoff (1874) [17], Duhem (1891)
[18], and Hertz (1894) [19]. So, the concepts of “couple stresses” and “the rotational
energy” were introduced in their works by A. Clebsch in 1862 [16] and by G. Kirch-
hoff in 1874 [17]. The importance of taking into account couple stresses was also
mentioned by W. Voigt in 1887 in Ref. [20], and in 1891 P. Duhem [18] introduced
the rotational measure of deformation. Thus, in 1909, the Cosserat brothers gener-
alized and developed works of G. Kirchhoff, A. Clebsch, P. Duhem, and W. Voigt.
But the Cosserat theory remained forgotten until the middle of 1960s years.

However, discrete models of media consisting of non-point particles possessing
rotational degrees of freedom began to be developed after the elaboration of the
Cosserat continuum theory. So, in the late 1930s Ya.I. Frenkel considered a model of
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a chain of oriented dipoles with fixed mass centers and showed that “waves of rota-
tional oscillations” [21] (i.e., orientational waves) can propagate in such a chain. The
first model of the interaction of translational and rotational oscillations in amolecular
lattice was proposed by Anselm and Porfiryeva in 1949 [22]. Only the linear interac-
tion of orientational waves with one type of translational oscillations—longitudinal
waves—was taken into account in this model. Nevertheless, the authors showed that,
basically, mixed orientational–translational oscillations, which frequencies depend
both on the mass and the moment of inertia of molecules, propagate in molecular
crystal lattices. There exist four branches of the rotational–translational oscillation
spectrum in a one-dimensional molecular lattice model with two molecules in a unit
cell. In the long-wavelength range, one branch (acoustic) corresponds to purely trans-
lational oscillations, the second branch—to purely rotational oscillations depending
only on the moment of inertia, and the other two ones are responsible for mixed
rotational–translational oscillations depending on both the mass and the moment of
inertia. Further research by N. N. Porfiryeva [23] showed that these results obtained
for a one-dimensional lattice model are, in general, saved for a three-dimensional
crystal lattice.

From the beginning of the 1960s generalized models of the Cosserat continuum
are intensively developed [24]: the theory of orientedmedia, asymmetric, multipolar,
micromorphic, gradient theories of elasticity. So, on the basis of assumption of the
rotational interaction of particles of elongated shape in an anisotropic elasticmedium,
Aero and Kuvshinsky [25, 26] generalized the phenomenological theory of elasticity
in order to explain some anomalies in the dynamic behavior of plastics, to which
the classical theory of elasticity did not provide a satisfactory treatment. Later, the
idea of an “oriented” continuum, each point of which is assigned a direction (the
field of a director), was developed in the theory of liquid crystals [27–29], where the
director waves in liquid crystals are, in fact, analogs of rotational waves in solids,
like spin waves in ferromagnets [30]. A significant contribution to the development
of moment theories was also made by the works of Hermann and Gunther [24],
Green and Rivlin [31], Koiter [32], Ilyushin and Lomakin [33–35], Mindlin [36],
Nowacky [3], Palmov [37, 38], Savin [39], Toupin and Truesdell [40, 41], Eringen
[42–45], Kunin [2], and others (see also the List of references in [46]). By the middle
of 1960s, a new direction was formed that was closely related to the theory of the
crystal lattice—the nonlocal theory of elasticity, containing generalized Cosserat
continuum models as a long-wavelength approximation (Kroner [47], Krumhansl
[48], Kunin [2]). The nonlocal theory of elasticity was further developed by Green
et al. [49], Eringen [44, 50], and other authors [2, 47, 51].

On the other hand, the classical theory of elasticity was shown to be insufficient
in the solid-state physics when studying the thermodynamic properties of materials.
In 1952, Lifshits [52], when considering the thermal properties of chain and layered
structures at low temperatures, paid attention to the influence of the transverse rigidity
of atomic layers or chains on the dispersion law of acoustic oscillations of a layered
crystal in the long-wavelength section of the spectrum, where it should be absent
according to the laws of the theory of elasticity. In this paper, the dispersion laws
for longitudinal and transverse (bending) waves are given. Later on, bending waves
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in the crystal lattice were studied in more detail by Kosevich [53]. He remarked
that bending waves, in contrast to longitudinal waves provided by central forces of
interaction, are caused byweaker noncentral forces arising due to transverse displace-
ments of particles. He also showed that a more accurate description of the nonlinear
dynamics of the crystal lattice necessitates taking into account in the governing equa-
tions the couple stresses described by the fourth spatial derivatives of the transverse
displacements of the particles. It should be noted that couple stresses can also be
taken into account if one considers the rotational degree of freedom of particles
and then, using the method of step-by-step approximations, reduces the three-mode
system to a two-mode system admitting only translational displacements of particles
(see Chap. 4).

In mechanics, interest in discrete models has resumed since the mid-twentieth
century (see, for example, the works of M.Ya. Leonov [54], L.I. Slepyan [55, 56],
M.R. Korotkina [57], S.A. Nazarov and M.V. Paukshto [58]) and continues in the
current century (see, particularly, the works of A.M. Krivtsov and N.F. Morozov
et al. [59–62], A.V. Porubov et al. [63–67], A.A. Vasiliev, S.V. Dmitriev, and A.E.
Miroshnichenko [68–71], A. Suiker, A.V. Metrikine and R. de Borst [72, 73]).

According to N.F. Morozov and M.V. Paukshto [74], interest in discrete models
is associated with the following circumstances:

• A lot of scientists believed that employing of discrete methods is more justified
due to discreteness of computing processes.

• The development of personal computers currently enables one solving systems
containing great amount of equations. This fact partially disproves hypothesis
about the inadequacy of real and computing situations.

• Discrete methods had allowed, for example, in problems of fracture [54–56, 75,
76], to discover some effects that could not be found by continual methods. And
this is not accidental, because a continuummodel is a certain concept of the long-
wavelength approach of the discrete model, whereas the destruction occurs at the
microstructure level and is described by the long-wavelength asymptotics only
approximately.

• Discrete models simulate a real atomic structure of substances.

1.1.2 Development of Models of Microstructured Solids
with Account of Particle Rotation

In recent decades, more and more models are being developed taking into account
the rotational degrees of freedom of particles and the moment interactions between
them. For example, in [77], J. Pouget and G. Maugin studied the nonlinear dynamics
of oriented media using the microscopic theory, modeling the medium as a system of
material objectswith translational and rotational degrees of freedom.M.Sayadi and J.
Pouget proposed a one-dimensional chain of rotating dipoles as amodel of an oriented
medium [78]. But this model took into account only one of the possible types of
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anharmonic interactions between the nearest neighbors in the chain, associated only
with the rotational movements of dipoles (dipole interaction). A lattice consisting of
identical particles with both transverse and rotational degrees of freedomwas studied
by A. Askar [79, 80]. The central forces of interaction between the particles were
simulated by tensile springs, whereas the noncentral forces were modeled by flexible
beams (rods). Later, this model was generalized to the case of a lattice consisting of
particles of two types with different masses and moments of inertia [81]. The cubic
lattice, consisting of identical dipoles, was considered by Japanese scientists K. Fujii,
T. Fuka, H. Kondo, and K. Ishii in [82], where the interaction between the particles
was described by the Lennard–Jones potential. In the linear approximation, a three-
dimensional model of a granular medium consisting of spherical particles interacting
by means of elastic springs of three types was constructed by K. Berglund [83].

One of the variants of the theory describing themoment dynamics of a deformable
solid has been proposed by A.G. Ugodchikov in [84]. Based on the physical and
mechanical properties of geomaterials with complex structure, V.N. Nikolaevsky
[85–87] elaborated mathematical models of the deformation and destruction of
mountain massifs and layers under external influences.

The academician of the Russian Academy of Sciences V.E. Panin and his students
were actively developing an alternative way to construct mathematical models of
microstructured media—the method of movable cellular automata [88–92]. This is
a discrete modeling method that describes the behavior of materials at the meso-
and macrolevels. In its framework, a rotation is taken into account as an independent
degree of freedom of the automat along with the translational motion of its mass
center.

At present, the concept of the existence of rotational degrees of freedom and
various types of interactions in a crystal lattice is widely used in the study of dynamic
processes in microstructured media [7, 14, 71, 77, 78, 93–101].

1.1.3 Experimental Research of Dynamic Properties
of Microstructured Media

In the middle of 1930s and early 1940s, experimental physicists paid attention to the
importance of taking into account the rotational degrees of freedom of the elements
(particles) of the medium. Thus, the experiments of B. Bauer and M. Mag are very
interesting (see References in [102]). They compared the scattering spectra for heavy
and light water. From the comparison of spectra of these two substances, which
molecules have approximately the same mass, but different moments of inertia,
the authors made a conclusion about existence of both translational and rotational
oscillations of molecules. J. Bernal and J. Tamm [103] explained the differences
between some physical properties of light and heavy water under the assumption
about the existence of rotational oscillations.
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In 1940 E.F. Gross [102] observed the effect of variation of the wavelength of
scattered light in a liquid associated with orientation fluctuations of anisotropic
molecules. He remarked that the axes of molecules can rotate by a significant
angle, if the oscillation period is much larger than the relaxation time. Later, E.F.
Gross and A.V. Korshunov established experimentally [104] that in crystals of some
organic substances (for instance, benzene and naphthalene) the scattering spectrum
of small frequencies is associated with rotational vibrations of molecules. The scat-
tering spectrum is the most intensive in substances, which molecules have a large
optical anisotropy (carbon disulfide, naphthalene, benzene). The crystal lattices of
such substances consist of large molecules. In them, the intermolecular forces are
usually much larger than the van der Waals forces acting between the molecules;
therefore, the molecules can be regarded as solid bodies oscillating with respect
to each other. Among molecular crystals, the most popular objects for study are
naphthalene crystals [104–106]. There are translational oscillations of molecules,
rotational oscillations, as well as mixed translational–rotational oscillations. Experi-
mental studies of oscillations in such crystals, carried out by Raman scattering, have
shown that in the vicinity of the Rayleigh lines there are characteristic scattering lines
due to the rotational nature of molecular oscillations [105, 106]. In experiments on
spectrograms of light scattering in organic substances, estimates have been obtained
for the threshold frequency of benzene and naphthalene [105].

In the late 1950s, some experiments were performed to observe the optical–
acoustic effect in liquids and solids. So, in [107], experiments are described to study
the spectral dependence of the optical-acoustic effect in ferroelectric crystals (in
particular, Rochelle salt). The study of the spectral dependence of such an effect in
a Rochelle salt crystal and the comparison of the results with the infrared absorption
spectrum was interesting from the viewpoint of problems associated with the molec-
ular mechanism of the piezoelectric phenomenon. However, the degree of influence
of oscillation types on the excitation of the optical–acoustic effect has not been still
studied.

The first experiments on acoustics ofmicrostructured solidswere performed yet in
1970 by G.N. Savin et al. [4, 108]. The authors established the correlation between
the grain size in different metals and aluminum alloys and the dispersion of the
acoustic wave. In these works, they used the Cosserat and Mindlin models. Based on
the Mindlin model [36], where each of the material points of an elastic continuum
can both rotate and be deformed, the presence of wave dispersion for both shear and
longitudinal waves propagating in a microstructured medium was explained in [4].
A nonlinear problem for an isotropic elastic Cosserat continuum was considered in
[108]. The inclusion of microrotations caused the appearance of an additional elastic
constant with the dimension of length, as well as to the dispersion of shear waves.

Dispersion of the ultrasound waves was observed by V.I. Erofeev and V.M.
Rodyushkin in an artificial composite—ferrite pellets in epoxy resin [109]. The
appearance of a wave dispersion “forbidden” by the classical theory of elasticity
can be explained, in particular, by the influence of rotational modes. Moreover,
A.I. Potapov and V.M. Rodyushkin [110] experimentally observed the transfer of
momentum in a microstructured material with the velocity that is distinct from the



8 1 Theoretical Basis of the Structural Modeling Method

longitudinal wave velocity. A clear separation of the impact pulse into two compo-
nents was observed in this case. This fact indicates that pulse is carried by two
types of oscillations differing from each other in velocity. Nevertheless, still nobody
could observe experimentally the propagation of rotational waves in “laboratory
conditions.”

It should be noted that inmicrostructuredmedia there are several types of waves—
the so-called acoustic and optical phonons, and it is possible to transfer energy from
one type of wave to another [111]. This fact should be taken into account both for
theoretical and experimental studies. So, in the monograph by V.E. Lyamov [112],
it was shown that the account of microrotations in crystals leads to the appearance
of the spatial dispersion and new wave modes. Chapter 4 of the monograph [30]
by A.I. Akhiezer, V.G. Barjahtar, and S.V. Peletminsky deals with the analysis of
coupled spin and acoustic waves in ferromagnets. Elastic waves are considered in
the framework of the classical theory without taking into account microrotations,
but it is shown that, due to the relatedness of the elastic deformations with the
magnetic field of spins, the stress tensor is no longer symmetric; i.e., in an elastic
ferromagnet, there appear couple stresses at the excitation of the spin waves. The
analysis of the dispersion properties showed that the acoustic wave with the “left”
circular polarization interacts with the spin wave much stronger than the acoustic
wave with the “right” polarization.

In the last thirty years, the processes of propagation and interaction of elastic
(acoustic) waves in microstructured solids have been extensively studied theoreti-
cally and experimentally (see, e.g., [110, 113–118]). However, the main attention is
paid to the analysis of the propagation of the longitudinal and shift waves, and the
propagation of rotational waves (waves of microrotations) is studied less. Thereby,
some articles by V.N. Nikolaevsky et al. [85, 86], where the nonlinear interactions
of longitudinal and microrotational waves were studied in relation to seismic acous-
tics problems (in the framework of a gradient-consistent model of a medium with
complex structure, they attempted to explain the generation of ultrasound during the
propagation of seismic waves), and by A.I. Potapov et al. [7, 119–123], including a
co-author of thismonograph, inwhich the processes of propagation and interaction of
longitudinal, transverse, and rotational waves in crystalline media were investigated,
should be remarked.

1.2 Methods of Description of Different Scale Levels

An adequate description of wave processes in a structurally heterogeneous mate-
rial necessitates, as a rule, consideration of several scale levels, which continuously
interact with each other due to internal connections [124]. The following scales are
usually distinguished [125]: atomic or microscopic level (characteristic sizes are
angstroms and nanometers), mesoscopic level (from 10–8 to 10–6 m), submacro-
scopic level (from 10–6 to 10–4 m), and macroscopic level (over 10–4 m). Their brief
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Table 1.1 Methods for mathematical description of a continuous medium

The structural level of a
substance

The spatial structure of a medium Mathematical model

Microscopic (atomic)
level
(10–10–10–8 m)

A discrete medium consisting of
interacting particles, which sizes
are much smaller than the lattice
period

Quantum theories based on the
first principles
Semi-empirical quantum models
containing fitting parameters
Molecular dynamics models

Mesoscopic
(nanostructural) level
(10–8–10–6 m)

A microinhomogeneous medium
consisting of structural elements
(particles, clusters, domains)
with internal degrees of freedom

Phenomenological theory of the
crystal lattice. Multipolar
continual theories

Submacroscopic level
(10–6–10–4 m)

A piecewise-inhomogeneous
medium represented by structural
elements (domains, grains)
without internal degrees of
freedom

Statistical theory of elasticity
Nonlocal and higher-order
gradient theories of elasticity

Macroscopic level (over
10–4 m)

A continuous medium, where
discreteness is ignored and only
averaged effects are taken into
account

Classical (continual) theory of
elasticity

description is given in Table 1.1. Let us start with extreme situations, as they are the
most developed.

Microscopic (atomic) level: a physical solid body is represented as a set of a large
number of particles—atoms interacting with each other and with a field of external
forces [125]. An atom is considered as a point mass (nucleus) enclosed in an elastic,
almost inertialess sphere simulating an electron cloud. The properties of the atom
model can be refined by introducing a charge, mechanical, and magnetic moments,
etc. The interaction between two arbitrary particles of the system does not admit their
collision, but enables them to be removed at any distance.Amodel of a solid at normal
temperature and pressure is a system of almost densely packed particles that perform
small thermal vibrations near the equilibrium states [126, 127]. The task of modeling
the system at this level is the derivation of equations of motion based on the first
principles (laws) of quantum theory [128] and the analysis of interatomic interactions
[125]. Atomic-molecular systems are assumed to be simulated within the scope of
Schrödinger models. The Hamiltonian of such models contains the kinetic energy
of nuclei and electrons, the potential energy of the Coulomb interaction between
electrons, between nuclei and electrons, and between all nuclei.

The complete realization of this approach would enable us revealing the reasons
for the existence of many properties and phenomena that have no justification in the
classical theory. However, a meaningful analysis of quantum–mechanical models for
real systems consisting of a large number of particles is a very difficult problem even
for modern computing tools. One of the main problems along this path is that the
direct calculation of the Schrödinger equations for a systemofmanyparticles requires
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gigantic computational resources. When the number of particles grows, the required
calculation time increases exponentially. Therefore, for real systems consisting of
108–1010 particles, this approach does not allow solving this problem even using
high-performance computers [129].

Themacroscopic (phenomenological) level of description of amaterial is a subject
of the continuum mechanics. At this level, a material is regarded as a continuous
medium, its discreteness is ignored, and only averaged macroeffects are taken into
account. A solid is represented as a continuous substance that is called the material
continuum and continuously fills a geometric space volume. On the base of experi-
ence, the concept of a physically infinitesimal volume of a solid is introduced and
the number of variables, which are necessary for description of the system, is deter-
mined. “The macroscopic first principles” (i.e., the laws of conservation of mass,
momentum, kinetic moment and energy, as well as the first and second principles of
thermodynamics) are used to derive the motion equations [1]. In order to close the set
of motion equations, equations of state of the medium should be used, which estab-
lish relationships between strains, internal stresses, and temperature and ultimately
reflect the averaged statistics of motion and interaction of atoms. Since phenomeno-
logical theories are much simpler than microscopic ones, they are usually used, if it
is known that they are true in this case. The brightest examples of this are the Landau
hydrodynamic theory of superfluidity and theGinzburg–Landau–Abrikosov–Gorkov
phenomenological theory of superconductivity. So, L.D. Landau was awarded the
Nobel Prize in 1962 for creating the hydrodynamic theory of superfluid helium. The
great importance of the phenomenological theory of superconductivity for modern
physics was noted by awarding of the Nobel Prize in 2003 to V. L. Ginzburg and A.
A. Abrikosov for the pioneer contribution to its development, whereas L. Cooper, J.
Bardin, and J. R. Schriffer were already awarded by the Nobel Prize in 1972 for the
development of the microscopic theory of superconductivity.

The mesoscopic level of the description of a medium is intermediate. At this
level, the medium is assumed to be composed of small-sized structural elements
(clusters) possessing internal degrees of freedom. In this case, the task of mathemat-
ical modeling is to derive equations of motion of a medium taking into account the
self-consistent interaction between micro-, meso-, and macroscale processes. The
difficulty in constructing models of this level consists in that, on the one hand, they
must take into account the quantum–mechanical properties of small particles, and,
on the other hand, they must degenerate into the classical macrocontinuum models,
when the scales of the studied phenomenon are much larger than the scales of the
“microstructure” of the medium. Since in most practical situations they are dealing
not with individual quantum events, but with large ensembles of particles, collective
processes begin to play a leading role that can be fairly accurately described in the
framework of semi-empirical and classical representations [60, 130]. Mathematical
models of this level can be continual [42, 131–133] or structural [64–68, 77, 83, 98,
122, 123, 134–146].

At the submacroscopic level, the spatial structure of a medium is considered to be
piecewise-inhomogeneous and represented by structural elements (domains, grains)
that do not have internal degrees of freedom. The methods of statistical averaging of
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Fig. 1.1 Regular structure
consisting of spherical silica
particles [151]

“microinhomogeneous” media are used for constructing of mathematical models of
this level [33–35, 147].

Frequently, in structurally inhomogeneous materials, a qualitative change in their
physical properties occurs at a certain scale level; i.e., a size effect [148, 149] arises.
There are materials, where qualitative changes occur gradually, but inmetamaterials
this limit is expressed rather accurately and takes place in the field of nanometers. A
metamaterial is a complex periodic structure [150] with small-sized bodies (rather
than material points) possessing internal degrees of freedom occupying the lattice
sites. Granules, domains, fullerenes, nanotubes, or clusters of nanoparticles can play
the role of such bodies.

Figure 1.1 shows a typical regular structure—a dense packing of spherical silica
particles with a diameter of 250 nm, formed by centrifugal deposition.

Another example of metamaterials is fullerites—solid-state structures formed on
the base of fullerenes (both C60 and higher fullerenes—C70, C76, C78, C80, C82, etc.)
[152]. As fullerites belong to crystals of the molecular type, it is possible to consider
the fullerenes forming them like molecules.

Usually, the determining parameters for forming fullerites are pressure and
temperature [153]. So, in the case of the formation of fullerites based onC60 fullerenes
at pressure of 1.5 GPa, dimers C60 = C60 are formed even at room temperature
(Fig. 1.2). As the temperature grows, a crystal lattice consisting of dimers begins to
form.

A further increase in temperature leads to the decomposition of dimers and to the
generation of polymer structures [154], the same is for increase in pressure.

A distinctive property of fullerites is orientational disorder associated with the
ability of fullerenes to easily change relative spatial orientation during thermalmotion
even in presence of crystalline environment, i.e. to make the so-called orientation
phase transitions. This ability of fullerenes is provided by their highly symmetric,
almost spherical shape. The orientation of fullerenes changes when they, performing
torsional vibrations, overcome a certain energy barrier and pass to pseudorotation. In
particular, C60 fullerenes are in a crystal in a state of almost free rotation with three
degrees of freedom [152]. The nature of the rotational movements of a fullerene with
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Fig. 1.2 Fullerene dimers C60 = C60 [111]

account of influence of the constant thermal motion of other fullerenes in the crystal
resembles the jump-like movement of the ratchet of a clockwork.

Super- and ultrahard fullerites are characterized by uniquely high longitudinal
elastic wave velocities and by a wide range of these values from 11 km/s to 26 km/s
depending on their structure determined by the synthesis conditions [155, 156]. The
value of 26 km/s measured in one of the fullerite phases is a record—it is almost 20%
higher than the longitudinal wave velocity in graphite along atomic layers, equal to
21.6 km/s (until recently, this value was the highest one for all known substances) and
40% more than the corresponding velocity in diamond (18.6 km/s). The shear wave
velocities in solid fullerite phases are also great (their values are in the interval from
7 km/s to 9.7 km/s), but still they are lower than ones in diamond (11.6–12.8 km/s)
that still remain a record for all the currently known substances.

Experimental data show [152] that C60-fullerenes crystallize at room temperature
and form a face-centered cubic lattice (fcc) with the lattice constant a = 1.417 nm.1

This is themost densely packed lattice among all cubic lattices. The distance between
the centers of the nearest C60 fullerenes in the crystal structure equals 1.002 nm, the
fullerite density is 1.72 g/sm3. As the temperature decreases till 250 K, there occurs
a first-order phase transition of the crystal structure of fullerite C60, during which
a fcc lattice is rearranged into a simple cubic (sc) lattice [157]. At the same time,
dynamics of fullerene movement changes substantially, namely fullerenes lose two
of the three rotational degrees of freedom, and the rotation axes corresponding to the
remaining degree of freedom acquire a certain average direction with respect to the
coordinate system of the crystal.

For C60 with sc-lattice, the following values of second-order elasticity constants
were theoretically determined in [158]: C11 = 14.9 GPa, C12 = 6.9 GPa, C44 =
8.1GPa. The data on the elastic constants for C60 with fcc lattice at temperature
of 300 K, given in various sources and obtained by different (both experimental
and theoretical) methods, differ markedly from each other [159]. So, C11 ranges
from 11.76 [159] to 16.1 GPa [160], C12—from 6.0 [161] to 8.86 GPa [159], and
C44—from 5.88 [159] to 8.2 GPa [160].

1For comparison—a = 0.54 nm in silicon and a = 0.57 nm in germanium.
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A 3D model of a crystalline medium, similar in structure to fullerite, will be
considered in Chapter 6 of this monograph. Using experimental data on the second-
order elasticity constants in C60 with sc-lattice, numerical estimates of the velocity
and threshold frequency of rotational waves, as well as nonlinear coefficients of such
a medium will be also obtained in this chapter.

1.3 Limits of Applicability of the Classical Mechanics Laws
to Modeling of Generalized Continua

In this section, we will find out whether the classical mechanics laws are applicable
to modeling of nanostructures.

1.3.1 Quantum and Classical Descriptions of Microparticles

The classical physics introduces us to two types of motion—corpuscular and wave.
The first one is characterized by the localization of an object in space and the exis-
tence of a certain trajectory of movement, which can be calculated using Newton’s
equations. For a wave motion, on the contrary, delocalization in space is typical. This
motion is associated with the propagation of a certain disturbance in the medium that
arose due to displacement of particles from the equilibrium state [162]. This type
of motion is described using wave equations. From the viewpoint of the corpuscular
concept, the properties of macroscopic solid bodies can be considered as the proper-
ties of a set ofmaterial particles interactingwith each other. In physics andmechanics
of continuousmedia, the concept of corpuscles is achieved during “fragmentation” of
bodies into small particles. Each such particle is usually called a physically infinites-
imal particle or a representative volume of a medium [42, 139]. According to the
definition, such a particle must possess all the physical properties of the original
material. Therefore, there is no sense to break the body into separate molecules or
atoms, since the properties of the original material are lost. Hence, in the macro-
scopic description, there must be a certain spatial scale, beyond which the process
of fragmentation of a body becomes physically senseless.

If in classical physics a corpuscle (particle) and a wave are two mutually exclu-
sive opposites—either a particle or a wave, then at the microlevel these opposites
are unified in a single object—a microparticle. On the one hand, a microparticle is
characterized by a certain rest mass and charge, which brings it closer to the clas-
sical corpuscle; on the other hand, it does not have a trajectory, which is an oblig-
atory attribute of a classical particle. The use of such characteristics as coordinate,
momentum,moment, and energy for description of amicroparticle is restricted by the
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framework of Heisenberg’s uncertainty relations. In the quantum theory, microparti-
cles are neither “pure” particles, nor “pure” waves. This circumstance is commonly
called a wave-particle dualism [128].

The idea of dualism was originally applied to electromagnetic radiation. In 1917,
A. Einstein proposed to consider the radiation quanta introduced by M. Planck as
especial particles possessing both an energy and a momentum. Later, these particles
began to be calledphotons. In 1924, deBroglie suggested to extend the idea of dualism
not only to radiation, but also to all microobjects in general; namely, he offered to
associatewith eachmicro-object, on the onehand, corpuscular characteristics (energy
E and momentum p), and on the other hand,—wave characteristics (frequency ω and
wavelength λ). The relationship between the characteristics of different types is
provided by Planck’s constant h ≈ 6.626 × 10−34 J · s = 4.136 × 10−15 eV · s:

E = hω/2π, p = h/λ = hk/2π. (1.1)

In quantum mechanics, a particle has a certain probability distribution described
by a complex wave function ψ(r, t) satisfying the Schrödinger equation

i�
∂ψ

∂t
=

[
− �

2

2m
∇2 +U (r, t)

]
ψ, (1.2)

where U is the potential energy of the particle, m is the particle mass, � = h/2π
is the reduced Planck constant (� ≈ 1, 055 · 10−34J · sec == 6, 582 · 10−16eV · sec).
In quantum mechanics, the Schrödinger equation plays the same role as the Newton
equation in classical mechanics [128]. It is a linear partial differential equation with
a variable coefficient. If to take into account that the particle operator p corresponds
to the differential operator −i�∇ in quantum mechanics, then the expression in the
right-hand side of Eq. (1.2) can be considered as a quantum analog of the system
Hamiltonian, which equals to the sum of the kinetic energy E = p2/2m and the
potential energy of the particle. Solution of Eq. (1.2) in the form of a traveling
harmonic wave

ψ(x, t) = ψ0 exp[i(kr − ωt)] = ψ0 exp

[
i

�
(pr − Et)

]
(1.3)

corresponds to a freely moving particle (U(r) = 0) with momentum p and energy E
and is called de Broglie wave. Substitution of (1.3) into (1.2) leads to the dispersion
relation between its frequency and wavenumber

ω = �k2

2m
. (1.4)

Using Eq. (1.1), it is possible to obtain from Eq. (1.4) the relationship between
the energy and momentum of the de Broglie wave
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Table 1.2 Quantum–mechanical characteristics of microparticles

The
particle

Rest mass, g Energy,
eV

De Broigle
wavelength,
nm

Initial
width
x0, nm

«Life time»
T, sec

Mean free
path L(x0)

Electron 10–27 1 1.171 3 ×
10–5

3 × 10–26 4.4 ×
10–5 x0

Atom 1.66 × 10–24 1 0.029 0.1 10–13 6.0 x0

Molecule
C60

1.195 × 10–21 1 1.072 × 10–3 0.714 1.59 × 10–9 1154 x0

E(p) = p2

2m
, (1.5)

which is also called the dispersion relation. This implies the relationship between
the wavelength and the microparticle energy

λ = 2π�/p = 2π�/
√
2mE . (1.6)

Here we meet with the first difference of the quantum description of micropar-
ticle motion from the wave theory. In the wave theory, the length of a linear wave
does not depend on energy, whereas the de Broglie wavelength depends on energy,
although the Schrödinger equation is linear. Estimates of the characteristic de Broglie
wavelengths for some microparticles are given in Table 1.2 (see Sect. 1.3.3).

1.3.2 The Uncertainty Relation

In the classical mechanics, the movement of a microparticle (material point) is
uniquely described by values of its coordinate and velocity (momentum). In the case
of quantum microparticles, it is necessary to take into account their wave nature, so
the situation is another: a microparticle is “smeared” in space and its motion cannot
be described by a trajectory of a point in the classical sense. In 1927, on the base
of quantum mechanical calculations, Werner Heisenberg showed that the coordinate
andmomentum of amicroparticle can be determined only with some accuracy [128]:

�x�p ≥ �. (1.7)

Here�x and�pmean not measurement errors, but fundamentally unrecoverable
uncertainties, deviations of the coordinate and momentum from their average values.
Quantities �x and �p cannot be equal to zero at the same time. This means that
the coordinate and momentum cannot have completely definite values at the same
time, for example, de Broglie wave with a definite momentum (i.e., �p → 0)
must fill the entire space (�x → ∞ and �p → 0). The classical concepts of a
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spatial location and a momentum magnitude are applicable to a microparticle only
within the scope of Heisenberg’s relations. This circumstance is related to the very
nature of microparticles, namely to their particle-wave properties. The uncertainty
relation plays an important heuristic role, since many results of problems considered
in quantummechanics can be obtained and understood on the basis of a combination
of the classical mechanics laws and the uncertainty relation [128]. States minimizing
the uncertainty relation (i.e., corresponding to the equal sign) are called coherent
states of the system.

1.3.3 A Microparticle as a Localized Wave Packet

At first view, it may seem unclear how the motion of the wave (1.3) is associated
with the mechanical laws of the microparticle motion. However, there is an exact
quantitative analogy between the Heisenberg uncertainty relations and the wave
properties. The de Broglie wave cannot describe a localized particle, since |ψ |2 =
const for it. Therefore, the probability of detecting a particle is the same for all
points of space. It is known from the wave theory [162, 163] that a localized particle
is described by a wave packet occupying a small area of space. It is possible to
construct a group of de Broglie plane waves with an amplitude different from zero
in a narrow range of wavenumbers:

ψ(x, t) =
k0+�k/2∫

k0−�k/2

F(k) exp{−i[ω(k)t − kx]} dk.

Figure 1.3 shows a wave packet with a normal (Gaussian) density distribution
|ψ |2 = ψ2

0 exp(−x2/x20 ), where x0 = �x/2—is the initial half-width of the pulse.
The spatial spectrum of such a packet F(k) = (x0/

√
2π) exp (−k2x20/2) has a width

�k = √
2/x0.

The movement of the envelope of a wave packet in space occurs with a group
velocity

vgr = dω

dk
= 1

�

dE

dk
= dE

dp
. (1.8)

Taking into account relation ω(k) = �k2/2m = p2/2�m, from Eq. (1.8), one
can obtain an equality vgr = �k/m = v, which means that the group velocity of
the packet of de Broglie waves is equal to the microparticle velocity v. From the
spectral analysis, the relationship is known between the wave packet width �x and
its spectrum width �k:

�x · �k ≥ 1.
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Fig. 1.3 Wave packet ψ , square of its envelope |ψ |2 (a) and spectrum (b)

If we now use the second relation in (1.1), then the spread of the coordinate �x
will correspond to the spread of momentum�p = � �k and, therefore,�x ·�p ≥ �

that coincides with the Heisenberg uncertainty relation (1.8). Since the wave packet
velocity is equal to the particle velocity and the uncertainty relation is valid for it,
there appears an idea of representing the particle as a wave packet. This idea seems
especially attractive because it enables unifying a wave and a particle in one object.
Another argument in its support is the Ehrenfest theorem, according to which the
dynamic equations for average values of quantum–mechanical operators have the
form of Newton’s equations for a classical particle [128]. However, this idea turned
out to be wrong, as a particle is a stable formation and does not change during
its motion, but a wave packet does not possess this property. Due to dispersion, it
spreads over time, since the phase velocity of the variousmonochromatic components
of the wave packet is different. The condition for the applicability of the group
approximation is known from the theory of waves [163]. The characteristic distance
L and time T, when the spreading of the wave packet can still be neglected, are equal
to [162]

L ≤ vgrT = πvgr(k0)

(dvgr(k0)/dk) (�k)2
,

where k0 = √
2mE/� is the wavenumber of the central component of the packet

spectrum and �k is its width. If the dispersion law and the wave packet width are
known, one can estimate the characteristic time of spreading of the wave packet. For
a wave packet with a Gaussian density distribution, its width will be doubled in time.



18 1 Theoretical Basis of the Structural Modeling Method

T =
√
3mx20
2π�

, L = T vgr =
√
3mEx20√
2π�

=
√
3x20
λ

, (1.9)

where λ is the de Broigle wavelength (see Eq. (1.6) and Table 1.2).
Expressions (1.9) can be considered as conditions, underwhich a quantumparticle

is described by a wave packet. Or, in other words, they determine the applicability
limits of the classical description of a microparticle. Estimates of characteristic “life-
times” and mean free paths (1.9) of some microparticles are listed as examples in
Table 1.2.

These examples show that if for a particle with an atomic mass the applicability
time of classical consideration is comparable with the “lifetime” of phonons in a
solid, and the mean free path of such a particle is comparable with its initial width,
then for electrons, the classical wave consideration is unsatisfactory from the very
beginning [111]. Perhaps, the situation can be corrected due to consideration of
nonlinear wave packets, in which the lifetimes can theoretically be infinite, but this
is beyond the scope of this research.

1.3.4 The Conformity Principle

The quantum mechanics contains the classical mechanics as a limiting case. If the
particle wavelength is small in comparison with the characteristic sizes L, which
determine the conditions of this particular problem, then the properties of the system
should be close to classical ones. These requirements constitute the correspondence
principles in quantum mechanics [128]. For simplicity, we will consider the motion
of one particle in an external field with a potential U (r). The wave function of a
particle in the limiting case λ → 0 should have the form:

ψ(r, t) = a(r, t) exp
(
i

�
S(r, t)

)
, (1.10)

where a is the amplitude, S is the action. Substituting in Eq. (1.2) the limiting
expression of the wave function (1.10), one can find:

a
∂S

∂ t
− i�

∂a

∂ t
+ a

2m
(∇S)2 − i�

2m
a � S − i�

m
∇S ∇a − �

2

2m
�a +Ua = 0.

Equating the imaginary and real parts separately to zero,we receive two equations:

∂S

∂t
+ 1

2m
(∇S)2 +U − �

2

2ma
�a = 0,

∂a

∂t
+ a

2m
�S + 1

m
∇S∇a = 0.
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Neglecting the term containing �
2 in the first of these equations, one can obtain

the Hamilton–Jacobi equation for the material particle action S:

∂S

∂ t
+ 1

2m
(∇S)2 +U = 0. (1.11)

The second of the obtained equations after multiplying by 2a can be rewritten in
the form of a continuity equation:

∂ a2

∂ t
+ ∇

(
a2

∇S

m

)
= 0. (1.12)

Equation (1.12) shows the probability density of a particle in space a2 = |ψ |2 to
“move” according to the classical mechanics laws with velocity v = ∇S/m = p/m.
In the classical limit, the particle trajectory is determined by the action minimum.
The generalized momentum p and the Hamilton function H of the particle are equal
to:

p = ∇S, H = −∂S

∂t
.

Thus, at S/� 	 1, the classical mechanics is valid up to the first-order values
with respect to the parameter � inclusive, but it does not describe the second-order
effects with respect to �. Hence, the criterion for the applicability of the methods of
classical mechanics can be formulated.

If in a physical system the numerical value of a dynamic variable having the
dimension of action S (J·sec) is large in comparison with the Planck constant,
then it can be described with sufficient accuracy by the classical physics laws.

As an example, let us estimate this quantity for a nanostructure representing a
lattice of fullerenes. The most commonmolecule of fullerene C60 contains 60 carbon
atoms. Its diameter equals 0.714 nm [152]. Under certain conditions, C60 molecules
can order and form molecular crystals with fcc lattice (see Fig. 1.4 and Sect. 1.2)
with parameter a = 1.417 nm. The dimension of the action S in such a system is the
product of the oscillation period T and the oscillation energy E. It was proved by
nuclear magnetic resonance that at room temperature, C60 molecules rotate around
the equilibrium state with frequency ω = 2π/T = 1012 s−1, and the energy E has
an order of 0.1 eV = 1.6 × 10–20 J. Then, the magnitude of the action is equal to
S = 2πE/ω ≈ 10−31J sec, and its relation to Planck’s constant is large—S/� ≈ 103.
Consequently, elastic vibrations of such a lattice can be described with a sufficient
degree of accuracy by the classical physics laws.
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Fig. 1.4 Fcc lattice of
fullerite C60

1.4 Principles of the Structural Modeling Method

The closely related to each other mechanics of media with microstructure and theory
of generalized continua remained unclaimed for many years due to their complexity
and lack of practical needs. Now there is a next stage of development of these
theories after the Cosserat brothers work [13] and after the boom of the 1960s,
when great success was expected from them in the field of the continuous theory
of dislocations and the mechanics of composites. Interest in these theories began to
increase again from the middle of 1990s (fracture mechanics [54–56, 74–76, 164],
geomechanics [87, 165], mechanics of granular materials [166–168], higher-order
gradient theory of plasticity [169]). This interest continued in the first decade of the
twenty-first century, primarily, due to development of nanotechnology and creation of
metamaterials [150, 170–177]—a new class of substances with a complex internal
structure (see Sect. 1.2). At present, generalized continua, such as micropolar or
oriented media, higher-order gradient materials, micromorphic media, composites,
solids with weak or strong nonlocal interactions, are intensively studied by both theo-
rists and experimenters specializing in various branches of mechanics and physics
[178, 179]. The wave dynamics of microstructured media is developed [116, 123,
180] that allows, in particular, to propose new methods of non-destructive testing of
the stress–strain state, structure, and properties of materials [6, 75, 122, 181, 182].
However, an adequate description of intense two-dimensional and three-dimensional
processes in structured materials by means of the nonlinear wave dynamics necessi-
tates development of new mathematical models. The method of structural modeling
should be used to construct such models [83, 124, 139, 141, 142, 183], since the
structural models contain parameters characterizing the geometry of a material (a
lattice period, sizes and a shape of the particles, etc.), and therefore, they are the most
suitable models for studying the influence of size effects on the macroproperties of
a material.
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During the structural modeling, penetration into the depth of a material is multi-
level (multiscale), although it is often difficult to attribute one or another theory
(model) to any specific scale expressed in units of distance. Nevertheless, such clas-
sifications exist and they are useful for assessing the areas of applicability of various
theories [124].

The structural theory of the continuum mechanics is based on the molecular,
atomistic, or subatomistic structure of a solid. Most of the early structural theories,
which are used in the solid mechanics, considered particles of a medium as centers of
forces possessing mass. These elements of a solid act on each other using the central
forces. It is assumed that the forces of interaction between the structural elements
of a solid rapidly decrease with distance and they can be neglected if the distance
between the elements exceeds “the radius of molecular action.” Applying of the
method of central forces to crystalline media, depending on their symmetry, leads to
certain relations between the second-order elasticity constants. These relations are
called Cauchy relations. Within the scope of structural models, the Cauchy relations
between the elasticity constants can be not valid.

It should be noted that as early as in 1842, Poisson made the assumption that
molecules of a crystal can be not points, but small solid bodies possessing both trans-
lational and rotational degrees of freedom [184]. In 1887, this idea was developed by
Voigt [20]. In 1890, W. Thomson (Lord Kelvin) remarked that the Cauchy relations
could be eliminated if to represent a crystal as two homogeneous point formations
(two sublattices) penetrating into each other. In 1915, Max Born proposed more
general structural schemes of crystalline materials, where each crystal element—
the unit cell—consists of attracting and repelling particles [11]. Inside each cell,
the particles are uniformly located with respect to each other. Crystal structures are
classified according to the type of crystal lattice and the nature of the interparticle
(interatomic) connections. The classification by crystalline systems gives an idea of
the geometric characteristics of crystals, but does not consider the question about the
nature of the forces holding particles (atoms, ions, molecules, or nanoclusters) in the
lattice sites. The classification based on the types of connection forces enables one
performing some generalizations of the properties and behavior of crystals that was
impossible by considering only the geometry of the lattices.

Elaboration of a structural model starts with the selection of a certain minimum
volume—a structural cell (that is analog of the periodicity cell in the crystalline
material) in the bulk of a material. Such a cell is capable of reflecting the main
features of the macroscopic behavior of this material. As a rule, a structural cell
represents a particle, which behavior is characterized by interaction with its envi-
ronment and is described by kinematic variables [83, 136, 185]. In contrast to the
standard theory of crystal lattices [11, 53], the structural modeling involves the pres-
ence in the lattice sites of finite-size bodies having internal degrees of freedom instead
of material points. For instance, domains, granules, fullerenes, nanotubes, or clusters
of nanoparticles can play the role of such bodies. If to consider their micromotions,
then new types of motion arise in a microstructured medium. For example, account
of microrotations with respect to the mass centers of particles leads to the appearance
of microrotations in granular media [140].
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The force interaction between elements is described bymeans of model potentials
used in the molecular mechanics and the solid-state physics. Due to the presence
of finite-sized bodies in lattice sites, it is possible to introduce into consideration
the central and moment interactions between particles. The method of structural
modeling takes into account the parameters characterizing the lattice period, the
size, and shape of particles. Therefore, this is the most suitable method for studying
the influence of size effects on material properties.

The discreteness of a medium can be taken into account in two ways. In one
of them, the medium is represented as a regular lattice, which sites contain finite-
sized bodies rather than material points [77, 97, 98, 119, 122, 140, 141, 143, 186,
187]. Bodies, unlike points, possess not only translational, but also rotational degrees
of freedom that significantly expands the kinematic capabilities of the model. In the
secondmethod [114, 166, 167], a representative volume of the medium is considered
as an ensemble of N contacting bodies. The tangential and normal forces in the
contact area are introduced, and the equations of particle motion are derived from
Newton’s laws. As a result, the movement of a representative volume of the medium
is described by a set of N interrelated equations, which can be reduced to partial
differential equations using the averaging procedure.

Let us formulate basic principles of the structural modeling [135]:

1. Minimality of generalizations. Such generalizations are necessary, which would
lead to qualitatively new results. At the same time, the number of new parameters
containing in a model should be as small as possible.

2. Variability of the model. The possibility of a fairly wide variation of linear and
nonlinear parameters of the model due to the choice of kinematic and force
schemes of the interaction of structural elements.

3. Identification and verification of the model. Verification of the adequacy of the
constructed model to real systems and determination of relationships between
the model parameters and the physical constants of a material (density, porosity,
macro- and microelasticity modules, etc.). For this purpose, the relationships
between the parameters of themicromodel and themain physical andmechanical
characteristics of a medium should be found.

4. The principle of compliance. In the limiting cases, a new model, as a rule, should
be degenerated into the known (classical) theories of a deformable solid.

The advantages of the structural modeling are the clear coupling between a struc-
ture and macroparameters of a medium and the possibility of purposeful design
of materials with specified properties. Shortcomings of the structural modeling are
absence of universality of modeling procedure and complexity of the accounting of
nonlinear and nonlocal effects of interparticle interactions.

The structural modeling consists of the following stages.
1st stage. The geometric description of a structure. In a regular lattice consisting

of particles of a given shape, a periodicity cell is determined, and its characteristic
sizes and kinematic variables describing the current state of the cell are introduced.
A kinetic energy is calculated.
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2nd stage. The simulation of force interactions. Since small deviations of the
particles from the equilibrium states are considered, the force and moment interac-
tions of the particles can be described by a power-law potential. In the harmonic
approximation, the interaction potential is a quadratic form of the variables of a state
of the system. The potential energy per lattice cell is equal to the potential energy
of the particle interacting with its neighbors and, particularly, for a system with two
spatial variables it can be represented by the following expression:
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Here qk = {
q1, q2

} = {
ui, j , wi, j

}
are the components of the vector of the

mass center displacements of a particle located at a site with indices (i, j), �nrqk =(
qk
i+n, j+r − qk

i, j

)/
a are quantities for the relative variation of the distances between

the interacting particles, �nrϕ = (
ϕi+n, j+r − ϕi, j

)/
a are quantities for the relative

variation of the orientation angles of the particles, and coefficients n and r, as well
as l and m determine the spatial positions of neighbouring particles. Summarizing is
performed over all quasi-elastic connections in the cell. The second-order derivatives
of the potential energy are the constants of quasi-elastic interactions of the particles
and represent elements of force matrices of the crystalline structure [188].

In the phenomenological theories, the force constants should be found experi-
mentally. Their connection with the geometrical structure and with the scheme of
force interactions in a concrete crystalline lattice is not clear. From general energy
reasoning and the requirements of symmetry of the lattice, it is possible to receive
only some restrictions on the values of the force constants. Usage of the structural
approach enables one to find an explicit dependence between the elements of the
force matrices and the parameters characterising the inner structure of the lattice,
i.e., its period, sizes, and shape of its particles.

For structural modeling of solids, an equivalent force scheme is introduced as a
system of rods, beams, or springs that incorporates the transmission of forces and
moments between the structural elements instead of a field description of the inter-
action of the particles [71–73, 76, 83, 100, 146, 189]. The mechanical characteristics
of the connecting rods and springs should be generally determined from the require-
ment of equality of the strain energy in the investigated object and in its model.
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Spring models are used in this monograph. When introducing the scheme of force
interactions, round particles are replaced for convenience by inscribed polygons,
which shape repeats the cell shape. Springs simulating transmission of force interac-
tions between particles are assumed to be fixed at the vertices of polygons and have
different elasticity constants [97, 122]. Next, mainly, two-dimensional models of
media will be considered, in which sites there are bodies possessing internal degrees
of freedom.

3rd stage.Derivation of dynamical equations for a discrete system. Due to expres-
sions for the kinetic and potential energy thatwere obtained at the previous stages, it is
possible tomake up differential–difference equations describing the lattice dynamics.
Such equations represent Lagrange equations of the second kind.

d

dt

(
∂L

∂q̇(l)
i, j

)
− ∂L

∂q(l)
i, j

= 0, (1.14)

where L = Ti, j − Ui, j is the Lagrange function, which is equal to the difference
between the kinetic and potential energy of a cell, q(l)

i, j are the generalized coordinates,

(q(1)
i, j = ui, j , q

(2)
i, j = wi, j ,q

(3)
i, j = ϕi, j ), q̇

(l)
i, j are the generalized velocities.

4th stage. The continuum approximation. A transition from discrete models to
continual ones is performed by extrapolating the functions specified at discrete points
by continuous fields of displacements and microrotations. For long-wavelength
perturbations, when λ >> a (where λ is a characteristic spatial scale of defor-
mation), discrete labels i and j can be changed by means of a continuous spatial
variables x = ia and y = ja. In this case, the functions specified at discrete points are
interpolated by the continuous functions and their partial derivatives in accordance
with the standard Taylor formula. Depending on the number of interpolation terms,
one can consider various approximations of a discrete model of a microstructured
medium and elaborate a hierarchy of quasi-continuum models.

5th stage. Identification of a model. The goal of identification is the construction
of the best (optimal) model on the basis of experimental observations. Identification
is divided by structural and parametric. The structural identification is a choice of
the optimal form of equations for a mathematical model. The parametric identifi-
cation is a determination by the experimental data of the values of the parameters
of the mathematical model ensuring the agreement of the model values with the
experimental data, provided that the model and the object are subjected to similar
influences. Such identification also includes a numerical simulation of experiment
and a choice of the model parameters from the condition of the best coincidence of
calculation and experimental results.

Themain problemof parametric identification is the choice of variables possessing
information about the medium. Such variables should be measured experimentally.
For example, in acoustic spectroscopy, the measured values are the acoustic charac-
teristics of a microstructured medium, using which the parameters of its micromodel
can be determined. In the linear approximation, the acoustic characteristics of the
medium can be determined due to dispersion dependences between the frequency and
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the length of the elastic wave. In order to determine the nonlinear characteristics of
themedium, it is necessary to consider the anharmonic interactions of acoustic waves
of various types with each other [119, 121, 123, 180], as well as their interaction
with the magnetic [190] and electric fields [191].

1.5 Conclusions

In this chapter, methods for describing a continuous medium at various scale levels
and the basic principles of the structural modeling are formulated, and applicability
of the classical mechanics laws for a theoretical description of media with micro-
and nanostructure is justified.

The following chapters of the monograph are devoted to construction, in accor-
dance with the principles of structural modeling described here, of a hierarchy of
mathematical models of microstructured media (generalized continua) for various
periodic structures, frequencies, and wavelengths. Moreover, by the microstructure,
we mean not so much the smallness of the absolute values, but the smallness of some
scales of the medium with respect to others.

Based on the foregoing, the models constructed in this work can be applied both
to nanocrystalline materials and to media which particle sizes are several orders of
magnitude greater than the characteristic sizes of nanoparticles. The only condition is
that the particles are supposed to be non-deformable and homogeneous, not having
their own internal structure inherent in real materials. In other words, the models
proposed here are applicable in those cases when microstructure of particles of a
medium can be neglected. Moreover, a wave dissipation and effects of wave reflec-
tion from a boundary of a medium are not considered in in this monograph. It should
be noted that the generalized variational principle for taking into account dissipative
effects in continuum mechanics was proposed by G.A. Maksimov in Ref. [192].
In addition, all the media simulated here are assumed to be boundless. When it is
necessary to consider boundedmedia, the boundary conditions can be taken as for the
Cosserat medium, since the models of microstructured media considered in Chap-
ters 2–5 generally coincide with the Cosserat continuum equations. For example,
the conditions of the absence of forces and moments directed along the normal line
are taken in Ref. [193] as the boundary conditions of a half-space composed of the
Cosserat medium.
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Chapter 2
A 2D Lattice with Dense Packing
of the Particles

Mechanical properties of a granular consolidated medium depend on the geometry
of the microparticles, their location, and the forces of interaction between them. One
of the main goals of mathematical modeling of such media is obtaining equations of
motion and equations of state, which are capable to describe a discrete nature of a
medium. Investigations of the dynamic behavior of granular media with regular and
random packings without taking into account the rotation of particles were carried
out in Refs. [1–3]. Models of granular media with allowance for particle rotation
were considered in Refs. [4–9].

In this chapter, discrete and continual models of a crystalline medium with a
hexagonal symmetry are elaborated, and the analytical interrelation between the
medium macroparameters and the parameters of its microstructure is determined
and dispersion properties of the developed models are analyzed.

2.1 The Discrete Model for a Hexagonal Lattice Consisting
of Round Particles

Wewill start the structural modeling with consideration of a two-dimensional hexag-
onal closed-packed lattice [10] (or triangle, as it is mentioned in [11]) consisting of
homogeneous round particles1 with masses M and diameter d. In the initial state (t
= 0), they are located in the lattice sites and the distance between the mass centers of
the neighboring granules is equal to a, see Fig. 2.1a. It is assumed that each particle
interacts only with six nearest neighbors in the lattice, whichmass centers are located
at the vertices of a regular hexagon inscribed in a circle of radius a (the first coordi-
nation sphere) (Fig. 2.1a, b). Simulation of the central and non-central interactions

1Hereinafter, we will use the terms “grains” and “granules” as synonyms for the word “particles.”
However, these terms do not have such a meaning, as in materials science.
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Fig. 2.1 Hexagonal lattice consisting of round particles (a) and scheme of force interactions (b)

between the particles is performed by means of the so-called spring model [8, 12–
16]. The interactions of the neighboring granules are simulated by elastic springs of
three types [17–20]: Central (the corresponding spring is designated in Fig. 2.1b by
number 1 and has rigidity K0), non-central (2 and 3 with rigidity K1), and “diag-
onal” (4 and 5 with rigidity K2). The interactions of tension/compression type are
modeled by the central and non-central springs. Figure 2.1b Besides, the torques of
the particles are provided by the springs of the K1 type. Springs with the rigidity K2

characterize the force interactions of the particles at the shear deformations in the
material. The points of junctions of the springs K1 and K2 coincide with the apexes
of the regular hexagon inscribed in the round particle Fig. 2.1b.

It should be noted that six pairs of diagonal springs connecting the central particle
with the six nearest neighbors in the lattice have the same rigidityK2. But if the rigidi-
ties of the diagonal springs in pairs are different, then there is a lattice with a chiral
microstructure. Dynamical properties of such lattices were discussed, particularly,
in Refs. [21, 22].

Eachparticle has three degrees of freedom,when itmoves in its plane: the displace-
ment of the mass center of the particle with the number N = N(i, j) po oc�m x i y
(translational degrees of freedom ui, j and wi, j ) and the rotation with respect to the
mass center (the rotational degree of freedom ϕi, j (Fig. 2.2). The kinetic energy of
the particle N(i, j) equals

Ti, j = M

2

(
u̇2i, j + ẇ2

i, j

) + J

2
ϕ̇2
i, j . (2.1)

Here, J = Md2/8 is the moment of inertia of the particle about the axis passing
through its mass center. The upper dot denotes derivatives with respect to time.

The displacements of the granules are supposed to be small in comparison with
the sizes of the elementary cell of the lattice. The energy of each particle provided by
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Fig. 2.2 Kinematic scheme

deviation of the particle from the equilibrium state is determined by the strain energy
of the springs connecting this particle with the six nearest neighbors in the lattice.
These six particles can be numbered by two ways: either by the number of the row,
where the particle is located (Fig. 2.1b), or by the coordinates of the mass centers of
these particles on the circle of unit radius. In order to construct a discrete model, it is
more convenient to use the first method. In this case, 1 is added to the first index of
the particles, if they are located to the right of the particle N(i, j) (in Fig. 2.1b, these
particles have the numbers n = 0, 1, 5), and −1 is added, if the particles are to the
left of it (these are particles n = 2, 3, 4). Similarly, 1 is added to the second index
of the particles located above the particle N(i, j) and −1 is added, if the particles are
below it (respectively, for particles with numbers n = 0 and n = 5, the second index
remains equal to j). Thus, the potential energy due to the interaction of the particle
N(i, j) with six nearest neighbors in the lattice (i +m1, j +m2), where m1 = ±1 is
the shift of the number along the horizontal axis and m2 = 0, ±1 is the shift of the
number along the vertical axis and is described by the formula

Ui, j = 1

2

∑

(m1,m2)

(
K0

2
D2

1(m1,m2)
+ K1

2

(
D2

2(m1,m2)
+ D2

3(m1,m2)

)

+K2

2

(
D2

4(m1,m2)
+ D2

5(m1,m2)

))
(2.2)

Here, Dl(m1, m2) (l = 1, 2, 3, 4, 5) are the elongations of the springs connecting
the central particle N with its six neighbors, l is the spring number in Fig. 2.1b.
Equation (2.2) contains an additional factor 1/2, since the potential energy of each
spring is equally divided between two particles connected by this spring. Expres-
sions for the elongations of the springs, Dl(m1, m2), calculated in the approxima-
tion of smallness of the quantities �um1m2 = (ui+m1, j+m2 − ui, j )/a ∼ �wm1m2 =
(wi+m1, j+m2 −wi, j )/a ∼ ϕi, j ∼ ε (here ε � 1 is a measure of the cell deformation)
and �m1m2 = (

ϕi, j + ϕi+m1, j+m2

)
/2 = ϕi, j − 0, 5a�ϕm1m2 � π/2 are given in
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Appendix A, see Eq. (A.1). Substitution of these expressions into Eq. (2.2) leads to
the following expression for the potential energy per cell with the number N = N(i,
j) with accuracy up to quadratic terms:

Ui, j = γ1(�u210 + �u2−10) + γ2(�u211 + �u2−1−1 + �u21−1 + �u2−11)

+ γ3(�w2
10 + �w2

−10 + �2
10 + �2

−10 + �2
11 + �2

−1−1 + �2
1−1 + �2

−11

+ �w11�11 − �w−1−1�−1−1 + �w1−1�1−1 − �w−11�−11)

+ √
3γ3(−�u11�11 + �u−1−1�−1−1 + �u1−1�1−1 − �u−11�−11)

+ 2γ3(�w10�10 − �w−10�−10) + γ4(�w2
11 + �w2

−1−1 + �w2
1−1 + �w2

−11)

+ γ5d
2(�ϕ2

10 + �ϕ2
−10 + �ϕ2

11 + �ϕ2
−1−1 + �ϕ2

1−1 + �ϕ2
−11)

+ γ6(�u11�w11 + �u−1−1�w−1−1 − �u1−1�w1−1 − �u−11�w−11).

(2.3)

Here, the coefficients γ 1,…, γ 6 are determined in terms of the parameters of the
internal structure of a material:

γ1 = a2

2

(
K0 + 2K1 + (2a − d)2

2r20
K2

)
,

γ2 = a2

8

(
K0 + 2K1 + 2a2 − 2ad + 5d2

r20
K2

)
,

γ3 = 3a2d2

4r20
K2, γ4 = 3

8
a2

(
K0 + 2K1 + 2a2 − 2ad + d2

r20
K2

)
,

γ5 = 3a2

16
K1, γ6 =

√
3

4
a2

(
2K1 − 2a2 − 2ad − d2

r20
K2

)
, (2.4)

where r0 = √
a2 − ad + d2 is the length of the undisturbed spring K2.

Differential–difference equations describing the lattice dynamics, as it has been
mentioned above, can be obtained from the Lagrange equations of the second kind
(1.14) using Eqs. (2.1) and (2.3):

Müi, j − 2γ1
a2

(ui+1, j − 2ui, j + ui−1, j )

− 2γ2
a2

(ui+1, j+1 + ui−1, j−1 + ui+1, j−1 + ui−1, j+1 − 4ui, j )

− γ6

a2
(wi+1, j+1 + wi−1, j−1 − wi+1, j−1 − wi−1, j+1)

−
√
3γ3
2a

(−ϕi+1, j+1 + ϕi−1, j−1 + ϕi+1, j−1 − ϕi−1, j+1) = 0,

Mẅi, j − 2

a2
γ1(wi+1, j − 2wi, j + wi−1, j )
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− 2

a2
γ2(ui+1, j+1 + ui−1, j−1 + ui+1, j−1 + ui−1, j+1 − 4ui j )

− 1

a2
γ6(wi+1, j+1 + wi−1, j−1 − wi+1, j−1 − wi−1, j+1)

− 1

a
γ3(ϕi+1, j − ϕi−1, j )

− 1

2a
γ3(ϕi+1, j+1 − ϕi−1, j−1 + ϕi+1, j−1 − ϕi−1, j+1) = 0, (2.5)

M ϕ̈i, j −
(
16d2

a2
γ5 − 4γ3

)
(ϕi+1, j + ϕi−1, j + ϕi+1, j+1

+ ϕi−1, j−1 + ϕi+1, j−1 + ϕi−1, j+1 − 6ϕi, j )

+ 48γ3ϕi, j − 4
√
3

a
γ3(ui+1, j+1 − ui−1, j−1 − ui+1, j−1 + ui−1, j+1)

+ 8

a
γ3(wi+1, j − wi−1, j )

− 4

a
γ3(−wi+1, j+1 + wi−1, j−1 − wi+1, j−1 + wi−1, j+1) = 0.

Differential–difference Eq. (2.5) can be used for numerical simulation of the
response of the system to the external dynamic forcing in the wide range of frequen-
cies up to the threshold values [23]. However, for a comparison of the proposed
mathematical model of a crystalline medium with the known theories of solids, it is
convenient to pass over from the discrete to the continuous description.

2.2 The Continual Approximation

For long-wavelength perturbations, when λ � a (where λ is a characteristic spatial
scale of deformation) discrete labels i and j can be changed by means of continuous
spatial variables x = ia and y = ja. In this case, the functions specified at discrete
points are interpolated by the continuous functions and their partial derivatives in
accordance with the standard Taylor formula:

ui+l1, j+l2(t) = u(x + l1a, y + l2a, t) = u(x, y, t) + a

(
l1

∂u

∂x
+ l2

∂u

∂y

)

+ a2

2

(
l21

∂2u

∂x2
+ 2l1l2

∂u

∂x

∂u

∂y
+ l22

∂2u

∂y2

)

+ a3

6

(
l31

∂3u

∂x3
+ 3l21l2

∂2u

∂x2
∂u

∂y
+ 3l1l

2
2
∂u

∂x

∂2u

∂y2
+ l32

∂3u

∂y3

)
+ . . . ,

(2.6)
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where l1 = cos πn
3 is the abscissa of the center of the nth particle (among the six

nearest neighbors) on a circle of unit radius, l2 = sin πn
3 is the ordinate of the center

of this particle, n = 0, 1, 2, 3, 4, 5 (Fig. 2.1b). Thus, l1(0) = 1, l2(0) = 0; l1(1) =
1/2, l2(1) = √

3/2; l1(2) = −1/2, l2(2) = √
3/2; l1(3) = −1, l2(3) = 0; l1(4) = −

1/2, l2(4) = −√
3/2; l1(5) = 1, l2(5) = −√

3/2. Similar expansions are also used
for functions wi±1, j±1(t) and ϕi±1, j±1(t). Depending on the number of terms kept
in Eq. (2.6), one can consider various approximations of the discrete model for a
granular medium. If only quantities of order O(a) are taken into consideration in
expansions (2.6) (it corresponds to the local theory of elasticity), then, after substi-
tuting these expansions into Eq. (2.3), the 2D Lagrange function L (Lagrangian)
takes on the form:

L = ρ

2

(
u2t + w2

t + R2ϕ2
t

) − ρ

2
[c21(u2x + w2

y) + c22(w
2
x + u2y) + R2c23(ϕ

2
x + ϕ2

y)

+ s2(uxwy + uywx ) + 2β(wx − uy)ϕ + R2ω2
0ϕ

2]. (2.7)

Here, the following notations have been introduced: ci (i = 1 to 3)—are the
velocities of propagation of longitudinal, transverse, and rotational waves ϕ(x, y, t),
respectively, s is the coefficient of coupling between the longitudinal and transverse
deformations, β is the parameter of coupling of microrotations with the transverse
and longitudinal waves, ω0 is the threshold frequency of the microrotation wave,
below which it does not propagate, R = d/

√
8 is the radius of the mass moment of

inertia of the medium microparticles relative to the mass center, and ρ = 2M/a2
√
3

is the surface density of a 2D medium with a hexagonal symmetry [11].
Using the Lagrange function (2.7), a set of differential equations of the first

approximation describing the dynamic processes in a crystalline medium is derived
in agreement with Hamilton’s variational principle:

utt = c21uxx + c22uyy + s2wxy − βϕy,

wtt = c22wxx + c21wyy + s2uxy + βϕx ,

ϕt t = c23(ϕxx + ϕyy) − ω2
0ϕ + β

R2
(uy − wx ). (2.8)

The squares of the wave velocities containing in Eq. (2.8) are expressed in terms
of the density, ρ, force constants of the micromodel, K0, K1, K2, K3, the distance
between the particles a, and their diameter d:

c21 = 3
√
3

4ρ

(
K0 + 2K1 + (2 − d2

a2 − ad + d2
)K2

)
,

c22 =
√
3

4ρ

(
K0 + 2K1 +

(
2 + 3d2

a2 − ad + d2

)
K2

)
,

c23 = 3
√
3

4ρ

(
2K1 + a2

a2 − ad + d2
K2

)
,
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β = 3d2
√
3

2ρ(a2 − ad + d2)
K2, s2 = c21 − c22. (2.9)

The threshold frequency ω0 depends on parameter β and on the radius of gyration
of particles, R = d/

√
8:

ω0 =
√
2|β|/R2 = 4

√|β|/d2, (2.10)

and parameters c2, β, and s are interrelated by the following relationship:

β = c22 − s2/2. (2.11)

And due to the last Eq. (2.9)

β = 1

2

(
3c22 − c21

)
. (2.12)

Equation (2.8) describe the dynamics of a granular (crystalline) medium
accounting for local interactions of granules and coincidewith the dynamic equations
of a two-dimensional Cosserat continuum consisting of centrally symmetric parti-
cles (see Sect. 4.3). This system differs from the equations of the classical theory of
elasticity by the appearance of an additional equation for the rotational wave. This
equation differs from the first two equations, as it has a solution that is homogeneous
in space and oscillating in time with frequency ω0. In the continuous approach, this
equation follows from the conservation law of moment of momentum (or angular
momentum), if the internal moments of the particles of the medium are introduced
into the consideration [24, 25].

It should be also noted that due to substitution of expansions (2.6) into differen-
tial–difference Eq. (2.5), it is possible to obtain differential Eq. (2.8) immediately,
bypassing the stage of derivation of the Lagrange function (2.7).

2.3 Influence of Microstructure on Acoustic Properties
of a Medium

The question arises as to what new features the structural modeling gives us as
compared with the phenomenological description. The structural approach estab-
lishes a one-to-one relation between parameters of the microstructure and macro-
scopic properties of themedium,whereas it is impossible for phenomenological theo-
ries. Next, let us analyze the relationships between the microstructure of a medium
with dense packing of particles and its macroparameters, which have been obtained
in the previous section.

The dependencies (2.9) of the velocities of the longitudinal (c1), transverse (c2),
and rotational (c3) waves on the relative size of particles d/a are given in Fig. 2.3 for
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Fig. 2.3 Dependencies of
elastic wave velocities on the
relative size of particles in a
hexagonal lattice for K1/K0
= 0,1, K2/K0 = 0,1 (curves
1), and K2/K0 = 0,5 (curve
2)

K1/K0 = 0.1. The curves 1 correspond to the valueK2/K0 = 0.1, while curves 2 stand
for the value K2/K0 = 0.5. All velocities are normalized by the longitudinal wave

velocity c0 =
√
3K0

√
3/4ρ taking account only of the central interactions. From

these figures, it is clear that the longitudinal wave velocity decreases monotonically
as the grains grow in size, while the transverse wave velocity, c2, on the contrary,
increasesmonotonously. The rotational wave velocity has amaximum for some value
of d/a. In the range of small coupled interactions (K2 � K0), the grain size does not
essentially affect the quantities of the wave velocities (see curves 1).

Due to relations (2.9) and (2.11), the parameters of force interactions can be
expressed in terms of the acoustic characteristics of the medium:

K2 = ρ(a2 − ad + d2)

3d2
√
3

(
3c22 − c21

)
,

K1 = ρ

3
√
3

(
2c23 − βa2

d2

)
,

K0 = 4ρ

3
√
3

(
c21 − c23 − (a − d)2

2d2
β

)
. (2.13)

Moreover, the particle size can be also expressed in terms of the acoustic
characteristics of the medium due to Eqs. (2.10) and (2.11):

d =
√
8
∣∣2c22 − s2

∣∣/ω0 =
√
8
∣∣3c22 − c21

∣∣/ω0. (2.14)

Thus, Eqs. (2.9)–(2.12), on the one hand, and Eqs. (2.13)–(2.14), on the other
hand, establish one-to-one correspondences between the micromodel parameters
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and macrocharacteristics of a medium. This interrelation can be used, in particular,
for diagnostics of metamaterials due to data of wave (acoustic) experiments [18, 26].

2.4 Dispersion Properties of Normal Waves

The physical properties of a medium can be determined by the dispersion depen-
dences of the waves propagating in such a medium. Therefore, let us consider this
problem more in detail both for the discrete and continual models.

2.4.1 Dispersion Properties of the Discrete Model

The term “photonic crystals” appeared in the early 1990s for media having a periodic
system of dielectric inhomogeneities giving rise to emergence of zones opaque both
for light and electromagnetic waves [27–29]. From a general viewpoint, a photonic
crystal is a superlattice or a medium, in which an additional field has been artifi-
cially created, and its period is of some orders greater than the basic lattice period.
The behavior of photons is radically different from their behavior in the ordinary
crystal lattice if the optical superlattice period is comparable with the length of the
electromagnetic wave. They do not transmit the light with a wavelength comparable
with the lattice period of the photonic crystal and determine the effect of the light
localization. Photonic lattices are in the gap between the atomic crystal lattices and
the macroscopic artificial periodic structures.

Subsequently, natural or artificial periodic structures became known as
“phononic” crystals (acoustic superlattices) by analogy if they consist of non-
pointwise particles, in which the length of the acoustic waves is comparable with the
lattice period [27, 30, 31]. The velocity of propagation of elastic waves in solids is
about 105 times less than the light wave velocity. Therefore, all effects inherent to
photonic crystals should take place in acoustics, but for significantly lower frequen-
cies. High interest in materials of this type is caused by the unique properties of
the materials that enables one to apply them in many fields, primarily, in nano-
electronics. At present, the propagation characteristics of acoustic waves of various
types, both bulk and surface, are intensively studied in artificial two-dimensional and
three-dimensional composite materials.

The ordering of the geometric structure is typical for the periodic (crystalline)
media. It is a decisive factor leading to anisotropy of the properties of crystals and
to the predominance of the collective motions of the wave type in the crystal lattice
[31]. It is usually assumed that particles located in lattice sites do not have their
own degrees of freedom. However, in artificial periodic structures (for example, in
synthetic opals [32]), like in themedium considered in this chapter, nodes can contain
non-point particles possessing rotational degrees of freedom, for example, molecular
clusters or nanoparticles [27, 33].
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The lattice with round particles considered in this chapter represents a systemwith
N degrees of freedom,which is describedby coupledEq. (2.5). Introductionof normal
mode variables makes equations of motion independent [34]. Each of them describes
one normal vibration, and the arbitrary motion of the system can be represented as
a superposition of normal vibrations. This approach is very convenient both for the
theoretical analysis of the problem and for the physical interpretation of the obtained
results. Similar concepts can be also introduced for distributed systems, where inter-
acting waves of various types can propagate. A generalization of the concept of the
normal vibrations of concentrated systems to “not closed” wave systems (boundless
media, waveguides, tubes, rods, strings, etc.) gives rise to the normal waves [35–38].

The normal waves are called traveling harmonic waves in the linear systems
with constant parameters, in which an absorption and scattering of energy are negli-
gible. The normal waves retain their transverse structure and polarization, when they
propagate along the direct line [35].

In the hexagonal lattice under consideration, all particles are physically equivalent;
therefore, the excitation of any of the particles must be redistributed throughout
the medium. In other words, any motion of an individual particle will stimulate the
correspondingmovements of neighboring particles; as a result, a wavewill run across
the lattice that is a typical collective motion. In order to study the collective motions
arising in an arranged crystalline structure,wewill pass to the normal oscillations. Let
us consider solutions of the equations of motion representing plane monochromatic
waves, for which the displacements can be represented in the following form:

u
(−→
N , t

)
= u0 exp

[
i
(
ω(�q) t − �q−→

N
)]

w
(−→
N , t

)
= w0 exp

[
i
(
ω(�q) t − �q−→

N
)]

ϕ
(−→
N , t

)
= ϕ0 exp

[
i
(
ω(�q) t − �q−→

N
)]

(2.15)

Here, ω = ω(�q) is a wave frequency regarded as a continuous function of the
wave vector �q = (q1, q2) that defines both the direction of the wave propagation
in the Cartesian coordinate system (x, y) and the wavelength λ = 2π

/
q (q = |�q|).

The vector
−→
N = (i, j) fixes the lattice sites. Arbitrary collective motions can be

represented as a superposition of monochromatic waves. Substitution of solutions
(2.15) into Eqs. (2.5) results in a set of equations in the matrix form for determination
of the amplitudes of displacements

⎛

⎝
Mω2 − d11 d12 d13

d21 Mω2 − d22 d23
d31 d32 Mω2 − d33

⎞

⎠ ×
⎛

⎝
u0
w0

ϕ0

⎞

⎠ = 0, (2.16)

where the matrix elements are:

d11 = 8γ1
a2

sin2
(q1a

2

)
+ 8γ2

a2

(

1 − cos
(q1a

2

)
cos

(
q2a

√
3

2

))

,
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d22 = 16γ3
a2

sin2
(q1a

2

)
+ 8γ4

a2

(

1 − cos
(q1a

2

)
cos

(
q2a

√
3

2

))

,

d33 = 8

a2

[
8γ5 + 4a2γ3

d2
+

(
γ6

√
3 − γ3

(
1 + 2a

d

))(

sin2
(q1a

2

)
− cos

(q1a
2

)
cos

(
q2a

√
3

2

))]

,

d12 = d21 = 8
√
3

3a2
(γ3 − γ4) sin

(q1a
2

)
sin

(
q2a

√
3

2

)

,

d13 = − d2

8
d31 = i

2
√
3γ3
a

cos
(q1a

2

)
sin

(
q2a

√
3

2

)

,

d23 = − d2

8
d32 = −i

2γ3
a

sin
(q1a

2

)(

cos

(
q2a

√
3

2

)

+ 2 cos
(q1a

2

))

. (2.17)

The solvability condition for Eqs. (2.16) with coefficients defined by Eq. (2.17)
leads to a bi-cubic dispersion equation for

M3ω6 + F1ω
4 + F2ω

2 + F3 = 0, (2.18)

where F1,2,3 are the wave vector functions:

F1 = d11 + d22 + d33,

F2 = d11d22 + d11d33 + d22d33 − d12d21 − d13d31 − d23d32,

F3 = −d11d22d33 + d11d23d32 + d22d13d31
+ d33d12d21 + d12d23d31 + d13d32d21. (2.19)

Thus, the left-hand side of Eq. (2.18) contains three variables: frequency ω and
the components of the wave vector, q1 and q2. Moreover, the coefficients (2.19) of
Eq. (2.18) depend on the relative particle size d/a and on two parameters of the force
and couple interactions: K1/K0 and K2/K0.

Two lattices correspond to each of the crystal structure: a direct lattice and a
reciprocal one. A direct lattice is a lattice in ordinary space and a reciprocal one
is a lattice in abstract reciprocal space, where distances have a dimension of the
reciprocal length, in fact, it is the Fourier transform of the direct lattice [39]. The
diffraction pattern represents a reciprocal crystal lattice map, just as the microscopic
image is a map of the real crystal structure.

The primitive unit cells which constitute the periodic reciprocal lattice in the
Bloch wave vector space are referred to as Brillouin zones [39]. The first Brillouin
zone can be regarded as a primitive cell of the reciprocal lattice that possesses point
symmetry of this lattice. Indeed, if we construct the first Brillouin zone around each
node of the reciprocal lattice (the origin should be located in the node), then such
zone would entirely fill the entire space without overlapping with each other. From
this fact, it follows, in particular, that the volume of the first Brillouin zone is equal
to the volume of the primitive cell of the reciprocal lattice.

The structure of the Brillouin zones is defined only by crystal structure and
depends neither on the type of particles forming the crystal, nor on their interaction.
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The physical meaning of the Brillouin zone boundaries consists in that they show
the following values of the wave vectors or the electron quasipulses, in which the
electron wave cannot propagate in a solid [39]. Next, we will analyze the dispersion
properties of the medium in the first Brillouin zone and on its boundary depending
on the values of the microstructure parameters.

Like in the solid-state physics, each normal lattice vibration can be associated
with a certain type of quasiparticle—phonon [39, 40]. The considered system has a
longitudinal acoustic (LA) phonon, a transverse acoustic (TA) one, and a rotational
optical (RO) phonon (Fig. 2.4) [41, 42]. We pass to the polar coordinate system
q1 = q cos θ , q2 = q sin θ , in Eq. (2.18), where q is the wave vector module and the
angle θ indicates the direction of the plane wave propagation with respect to x-axis
in the direct lattice. In particular, in the case of propagation of the plane waves, when
q2 ≡ 0 and, hence, d12 ≡ d13 ≡ d21 ≡ d31 ≡ 0, Eq. (2.14) is substantially simplified
since the longitudinal phonons become independent in it:

(
� 2 − d11

K0

)((
� 2 − d22

K0

)(
� 2 − d33

K0

)
− d23

K0

d32
K0

)
= 0, (2.20)

where � = ω/ω0, ω0 = √
M/K0, and coefficients of Eq. (2.20) have the form:

Fig. 2.4 Dispersion curves
of the discrete model
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d11 = 8

a2

[
γ1 sin

2
(qa
2

)
+ γ2

(
1 − cos

(qa
2

))]
,

d22 = 8

a2

[
2γ3 sin

2
(qa
2

)
+ γ4

(
1 − cos

(qa
2

))]
,

d33 = 8

a2

[
8γ5 + 4a2γ3

d2
+

(
γ6

√
3 − γ3

(
1 + 2a

d

))(
sin2

(qa
2

)
− cos

(qa
2

))]
,

d23 = −d2

8
d32 = −i

2γ3
a

(
sin

(qa
2

)
+ sin(qa)

)
. (2.21)

FromEqs. (2.20) and (2.21), it follows that eachwavemodehas bothminimumand
maximum, which values depend on microstructure parameters. Thus, for example,
along the G-K-axis the frequency of the longitudinal phonons has a local maximum

ωmax
L A =

√
2
(
4(γ1 + γ2) + γ 2

2

/
γ1

)
/Ma2 at the point qa = 2(π − arccos(γ2/2γ1))

and the frequency of the rotational phonons has a local minimum ωmin
RO =√

8
(
8γ5 + γ3(1 + 2a/d + 4a2/d2) − γ6

√
3
)
/Ma2 at the point q=0.Consequently,

by varying the microstructure parameters (see Eq. (2.4)), it is possible to specify
certain dispersion properties of the phonon crystal [23, 26].

Let us perform analysis of solutions of the dispersion Eq. (2.18) for the following
values of the microstructure parameters: d/a = 0.1, K1/K0 = 0.5, K2/K0 = 0.3.
The dispersion curves calculated along directions θ = 30° (G–K), θ = 30◦ (G–M)
and along the boundary of the Brillouin zone (K–M) are shown in the dimensionless
coordinates (qa, �), where � = ω

/
ω0 and ω0 = √

K0/M , in Fig. 2.4.
From Fig. 2.4, it is visible that in the G-M-direction the frequencies of all three

phonons increasemonotonically, when thewavenumber grows, up to the boundary of
the Brillouin zone. In the G-K-direction, the frequency of the longitudinal phonons

has a local maximum � ≈ 3.63 located at the point qa = 2
(
π − arctg

(
3
√
7
))

.

In the interval 2
(
π − arctg

(
3
√
7
))

< qa < 4π/3, the group velocity of rotational

phonons is negative: vgr = dω/dq < 0. This area is called a backward-wave region
[39]. Usually, a field of the negative group velocity exists for optical phonons in
lattices with a complex structure, when more than one particle is present in the
Bravais lattice [43]. Here, a similar situation takes place for acoustic phonons in a
simple lattice. The presence of a backward wave in a medium is associated with the
phenomenon of negative refraction provided that the surface of equal frequencies
is convex. The longitudinal mode has the maximum frequency � ≈ 3.93 that is
achieved on the boundary of the first Brillouin zone at point M (qa = 2π/

√
3).

At this point, the group velocity is equal to zero and therefore a signal with such a
frequency cannot propagate in a crystal lattice. This restriction can be dropped only
for nonlinear perturbations [37], when anharmonic terms are taken into account in
equations of motion (2.5). The frequency of the transverse phonons has the maximal
value � ≈ 3.36 at the point K. The rotational (optical) mode has two threshold
frequencies: the minimum �(0) ≈ 3.45 and maximum � ≈ 4.18 ones. In the
frequency range 0 ≤ � ≤ 3.36, the system has LA- and TA-modes. In the interval
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LA - mode TA – mode RO – mode

Fig. 2.5 Maps of equal frequencies of acoustic and optical phonons

3.36 < � < 3.45 there is only a longitudinal mode and for frequencies 3.45 ≤ � ≤
3.93 there are longitudinal and rotational modes. And, finally, in the high-frequency
range 3.93 < � ≤ 4.18, only the rotational mode is present in the system (Fig. 2.4).

Figure 2.5 shows maps of equal frequencies for longitudinal, transverse, and
rotational phonons (for LA-mode � = 1.0, 1.5, 2.1, 2.7, 3.0, 3.3, 3.6, 3.8, for TA-
mode � = 0.7, 1.0, 1.5, 2.1, 2.7, 3.0, and for RO-mode � = 3.65, 3.75, 3.85,
3.95, 4.05, 4.15) [44]. The horizontal axis represents the projection qx , of the wave
vector, and along the vertical axis—qy . The boundaries of the first Brillouin zone are
indicated by a dashed line.

Figure 2.5 shows that lines of equal frequencies are circles for small values of the
wavenumber. Hence, the crystal structure behaves like an isotropic medium in the
long-wavelength range. However, when the wavelength decreases (the magnitude
of the wave vector increases); the properties of acoustic anisotropy begin to appear.
In this case, the transverse waves become anisotropic ones faster than the longitu-
dinal waves do. For a certain frequency, the map of equal frequencies of each mode
reproduces completely the structure of the hexagonal lattice at issue.

2.4.2 Dispersion Properties of the Continual Model

After consideration of the dispersion properties of the discrete model, let us analyze
the dispersion properties of the continual model. We will seek solutions to Eqs. (2.8)
in the form of plane harmonic waves

(u,w, ϕ)T = (Au, Aw, Aϕ)T exp[i(ωt − k · r)], (2.22)

where Au, Aw, and Aϕ are the complex amplitudes of the harmonic waves; ω is the
oscillation frequency; andk = {kx , ky} is thewave vector. Substitution of expressions
(2.22) into Eq. (2.8) yields a system of equations for the amplitudes Au, Aw, and Aϕ .
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By setting the determinant of its matrix to zero, we obtain the dispersion relation:

∣
∣∣∣∣∣∣

−ω2 + c21k
2
x + c22k

2
y s2kxky −iβky

s2kxky −ω2 + c22k
2
x + c21k

2
y iβkx

iβky −iβkx R2(−ω2 + c23k
2 + ω2

0)

∣
∣∣∣∣∣∣
= 0. (2.23)

After calculating the determinant, Eq. (2.23) takes on the form:

ω6 − H1ω
4 + H2ω

2 + H3 = 0. (2.24)

Here, the coefficients H1, H2, and H3 depend on the scalar square of the wave
vector k2 = k2x + k2y (i.e., k is the wavenumber) as follows [18, 26]:

H1 = (c21 + c22 + c23)k
2 + ω2

0,

H2 = (c21c
2
2 + c21c

2
3 + c22c

2
3)k

4 + ((c21 − c22)
2 − s4)k2x k

2
y + ω2

0(c
2
1 + c22 − β/2)k2,

H3 = ω2
0c

2
1(β/2 − c22)k

4 + ω2
0[β(c22 − c21 + s2) − (c21 − c22)

2 + s4]k2xk2y
− c21c

2
2c

2
3k

6 + c23(s
4 − (c21 − c22)

2)k2k2xk
2
y . (2.25)

Transformation into the polar coordinate system kx = k cos θ and ky = k sin θ

yields k2x k
2
y = k4

4 sin2 2θ . It is necessary to note that equality c21 − c22 = s2 is valid
for the hexagonal lattice, and coefficients of the k2xk

2
y term are equal to zero in this

case. This fact indicates isotropy of the medium with hexagonal symmetry. For an
isotropic medium, the dispersion Eq. (2.25) can be written in a much simpler form:

(ω2 − c21k
2)[R2(ω2 − c22k

2)(ω2 − c23k
2 − ω2

0) − β2k2] = 0. (2.26)

It is also possible to derive the same equation by consideration of the wave prop-
agating only along the axis of symmetry, when θ = 0 (i.e., k = kx ) [45]. Disper-
sion curves determined by Eq. (2.26) are represented in the normalized form (in
(k/k0, ω/ω0)-coordinates, where k0 = ω0/c2) in Fig. 2.6, whereL,T, andR indicate
the longitudinal, transverse, and rotational modes, respectively. The graphics have
been plotted for numerical data corresponding to cadmium crystals: c1/c2 = 1.80,
c3/c2 = 0.69, ω0d/c2 = 1.34 (see Sect. 4.1).

It follows fromEq. (2.26) and Fig. 2.6 that the dispersion properties of Eq. (2.8) are
independent of the wave propagation direction, i.e., in the continuous approximation,
the crystal structure is isotropic. The curves for the R- and T-modes have oblique
asymptotes ω = ±c2k and ω = ±c3k, respectively.

Equation (2.26) also yields expressions that relate the phase velocity v = ω/k to
the wavenumber k [26]:

(v2 − c21)[R2(v2 − c22)(v
2 − c23 − ω2

0/k
2) − β2/k2] = 0. (2.27)

Equation (2.27) specifies the following dispersion curves
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Fig. 2.6 Dispersion curves
for the hexagonal lattice

v2 = 1

2

⎡

⎣c22 + c23 + ω2
0

k2
±

√(
c22 − c23 − ω2

0

k2

)2

+ ω4
0d

2

8k2

⎤

⎦ (2.28)

presented in the normalized form in Fig. 2.7 in the coordinate system (k/k0, v/v0),
where v0 = ω0/k0 (the curves for negative v are symmetric to these curves with
respect to the axis k). It follows from (2.28) that, as k → ∞, v2 → 1

2 (c
2
2 + c23 ±

(c22 − c23)), i.e., phase velocities of the R- and T-modes have horizontal asymptotes
v = ±c2 and v = ±c3, accordingly. Phase velocity of the R-mode also has a vertical
asymptote k = 0, whereas the phase velocity of the T-mode takes at k = 0 the

maximum value—v = c2. As d → 0 v2 → 1
2

(
c22 + c23 + ω2

0
k2 ±

(
c22 − c23 − ω2

0
k2

))
,

i.e., in a medium consisting of material points, the phase velocity of the R-mode has
the form of horizontal curves v = ±c2, while the phase velocity of the T-mode has

the form v(k) = ±c3
√
1 + ω2

0/c
2
3k

2.
Equation (2.27) yields the following relation between complex amplitudes of the

transverse and rotational waves [26]:

Fig. 2.7 Phase velocities of
normal waves as a function
of wavenumber at the same
parameters as shown in
Fig. 2.6
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Fig. 2.8 Amplitude ratio of
the transverse and rotational
oscillations in the normal
modes as a function of
dimensionless frequency

(
RAϕ

Aw

)

ω j (k)

= i
R(c22k

2 − ω2
j (k))

βk
≡ i

βk

R(c23k
2 + ω2

0 − ω2
j (k))

= ig
(
ω j (k), k

)
,

where g
(
ω j (k), k

)
is the distribution factor of the transverse and rotational oscil-

lations in the normal modes. Frequency behavior of this coefficient is shown in
Fig. 2.8.

Curves R and T characterize the relative contribution of rotational oscillations to
the transverse (T ) and rotational (R) normal modes of the system. From Fig. 2.8,
it is visible that in the interval of low frequencies ω/ω0 < 0.6, transverse motion
prevails in the T-mode, while in the region of high frequencies ω/ω0 > 2, the
rotational motion becomes dominating. In other words, at long wavelengths, the T-
mode is a purely transverse wave. As the wavelength becomes shorter, it increasingly
degenerates into the microrotation wave. In the neighborhood of the synchronism
point ω0 = 1, contributions of both types of waves to the T-mode are approximately
the same. The R-mode is a propagating wave at high frequencies ω/ω0 > 1. At long
wavelengths, the R-mode is mostly a wave of microrotations; at short wavelengths, a
transverse wave. Thus, the transverse and rotational waves retain their identity only
far from the synchronism point. In its neighborhood, they cannot be separated and
must be regarded as a coupled state [34].

2.5 Conclusions

In this chapter, the discrete and continual models have been elaborated that describe
the dynamics of a hexagonal lattice of circular particles with a quadratic potential of
interaction between them. These models can be used to study the physicomechanical
properties of photonic crystals, for example, synthetic opals based on silicon, which
consist of spherical particleswith a diameter of 200–1000 nm forming a close-packed
lattice [32].
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The transition from a discrete model to a continuum model makes sense when
long-wavelength processes are studied [46–48]. In this case, it also becomes possible
to compare the obtained model with well-known continual theories. But if we study
short-wavelength processes, it is necessary either to remain within the scope of a
discrete model, or to pass to generalized continua, for example, in the framework of
the multifield approach [49–52] or on the basis of Pade-approximations [53].

In the framework of the models elaborated in this chapter, the dependences of
the elastic wave velocities and the dispersion parameter on the particle size and the
parameters of the interactions between them have been found in an analytical form.

Dispersion properties of such a medium have been analyzed for some values of
the microstructure parameters. The analysis showed that if in the long-wavelength
(continuum) approximation (when the characteristic length of an acoustic wave is
much larger than the lattice period) the hexagonal lattice with round particles is
isotropic in terms of acoustic properties, then in the short-wavelength (discrete)
approximation it is anisotropic, and the transverse waves become anisotropic ones
faster than the longitudinal waves do.

In the discrete model, all three wave models have two threshold frequencies:
maximum and minimum. In the ranges of low (0 ≤ � < 2.33) and high (2.98 <

� ≤ 3.28) frequencies, there are two wave modes in the system, whereas for 2.33 <

� ≤ 2.98, all three wave modes (longitudinal, transverse, and rotational) are present
in the system. The greatest value of the frequency of longitudinal phonons is reached

at the boundary of the Brillouin zone at the point M (q = 2π
/

(a
√
3)). Moreover,

in the discrete model, there exists a backward wave, i.e., the wave whose phase and
group velocities are oppositely directed.

In the continuum approximation, all three wave modes increase indefinitely, and
the transverse and rotational modes have oblique asymptotes. The rotational wave
possesses dispersion of the wave-guide (Klein-Gordon) type, and therefore c3 repre-
sents an asymptotic value of the phase and group velocities of the wave for large
frequencies. Analysis of the amplitude ratio of the transverse and rotational oscilla-
tions in normal modes showed that the transverse and rotational waves retain their
identity only far from the synchronism point. In its neighborhood, they cannot be
separated and must be regarded as a coupled state.
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Chapter 3
A Two-Dimensional Lattice
with Non-dense Packing of Particles

In this chapter, we consider a model of a granular medium as a rectangular lattice
of rigid ellipse-shaped particles. Each particle of such a lattice possesses two trans-
lational and one rotational degrees of freedom. The space between the particles is a
massless medium through which the force and coupled interactions are transmitted.
In limiting cases, this model degenerates either into a chain of ellipse-shaped parti-
cles or into a square lattice of round particles. The main objectives of this chapter are
to derive dynamic equations of a granular medium consisting of anisotropic particles
and to identify the relationships between the physicomechanical properties of a gran-
ularmaterial and the parameters of itsmicrostructure.Using the results obtained in the
chapter, it is possible to determine the elastic properties of an anisotropic nanocrys-
talline (granular) material with non-dense packing of particles by measuring the
velocities of elastic waves propagating along different crystallographic directions
[1].

3.1 The Discrete Model for an Anisotropic Medium
Consisting of Ellipse-Shaped Particles

As a model of a medium with non-dense packing of particles, let us consider a
two-dimensional rectangular lattice consisting of homogeneous particles (grains or
granules) with massesM having the form of an ellipse with axis lengths equal to d1
and d2. In the initial state, they are located in the lattice sites and the distance between
the mass centers of the neighboring granules along the x-axis is denoted by a, while
b corresponds to the distance along the y-axis; see Fig. 3.1. Each particle, when it
moves in its plane, has three degrees of freedom: the displacement of the mass center
of the particle with the number N = N(i, j) along the axes x and y (translational
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Fig. 3.1 Rectangular lattice consisting of ellipse-shaped particles

degrees of freedom ui, j andwi, j ) and the rotation with respect to the mass center (the
rotational degree of freedom ϕi, j ) (Fig. 3.2). The kinetic energy of the particle N(i,
j), as in the model of a medium with dense packing, is described by Eq. (2.1), but
the moment of inertia of the particle about the axis passing through its mass center
is equal to J = M(d2

1 + d2
2 )/16.

It is assumed that the particle N interacts only with eight nearest neighbors in the
lattice. The distance betweenmass centers of four of them and the considered particle
is equal to a along x-axis and is equal to b along y-axis (these are the particles of
the first coordination sphere). The mass centers of the other four lie at the diagonals
of the rectangular lattice (these are the particles of the second coordination sphere);
see Fig. 3.2. The central and non-central interactions of the neighboring granules
are simulated by elastic springs of four types [2–5]. The springs of the first three
types (with rigidity K0, K1, and K2) were also present in the medium with dense
packing of particles (see Chap. 2). The springs of the fourth type—with rigidity
K3—simulate the interaction with the grains of the second coordination sphere. The
points of junctions of the springs with the particles are in the apexes of the rectangle
of the maximum area inscribed in the ellipse (Fig. 3.2). Each rectangle has the size
h1 × h2, where h1 = d1/

√
2 and h2 = d2/

√
2.

The displacements of the granules are supposed to be small in comparison with
the sizes of the elementary cell of the lattice. Interactions of the particles when they
deviate from the equilibrium states are determined by relative elongations of the
springs (Fig. 3.2). The potential energy provided by the interaction of the particle
N(i, j) with eight nearest neighbors in the lattice equals
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UN = 1

2

(
K0

2

4∑
n=1

D2
0n + K1

2

8∑
n=1

D2
1n + K2

2

8∑
n=1

D2
2n + K3

2

4∑
n=1

D2
3n

)
, (3.1)

where Dln (l = 0, 1, 2, 3) are the elongations of the springs with rigidity K0, K1, K2,
and K3, respectively. The springs are numbered in the arbitrary order and connect
the considered particle with its neighbors. The elongations of the central springs
are determined by the changes of the distances between the geometrical centers of
the rectangles inscribed in the ellipses (Fig. 3.2), and the tensions of other springs
are characterized by the variations of the distances between the apexes of these
rectangles. Expression (3.1), similar to Eq. (2.2), contains an additional factor 1/2,
since the potential energy of each spring is equally divided between two particles
connected by this spring.

We denote �ui = ui, j − ui−1, j = �u−10 and �u j = ui, j − ui, j−1 = �u0−1,
then �ui+1 = ui+1, j −ui, j = �u10 and �u j+1 = ui, j+1 −ui, j = �u01. In addition,
�m1m2 = (ϕi, j + ϕi+m1, j+m2)/2, where m1 and m2 can take values 0, 1, or −1.
Therefore, �−10 = (ϕi−1, j + ϕi, j )/2 = ϕi, j − (ϕi, j − ϕi−1, j )/2 = ϕi, j − �ϕi/2 and
�10 = (ϕi+1, j + ϕi, j )/2 = ϕi, j + (ϕi+1, j − ϕi, j )/2 = ϕi, j + �ϕi+1/2.

Fig. 3.2 Scheme of the force interactions between the particles and introduced notations
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The expressions for the elongations of the springs, which have been calculated
for small quantities �ui ∼ �wi ∼ aε, �u j ∼ �wj ∼ bε, �m1m2 ∼ ε << π

/
2,

where ε is a measure of the cell deformation, are given in Appendix B; see Eq. (B.
2). If in Eq. (B.2) to take into account only linear terms for spring extensions, then
it is possible to obtain the following formula for the potential energy per particle
numbered as N = N(i, j), up to quadratic terms (cubic terms are taken into account
in Chap. 5) [6]:

UN = K0

2

(
�u210 + �u2−10 + �w2

01 + �w2
0−1

)
+ K1

(
�u210 + �u2−10 + �w2

01 + �w2
0−1 + h22

4

(
�ϕ2

10 + �ϕ2
−10

)
+ h21
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01 + �ϕ2
0−1

)
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r21
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r22
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2
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)
+ (b − h2)

2
(
�w2

11 + �w2
−1−1 + �w2

1−1 + �w2
−11
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+ (ah2 − bh1)

2
(
�2

11 + �2
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+ 2(a − h1)(b − h2)(�u11�w11 + �u−1−1�w−1−1

− �u1−1�w1−1 − �u−11�w−11)

+ 2(a − h1)(ah2 − bh1)(−�u11�11 + �u−1−1�−1−1

+ �u1−1�1−1 − �u−11�−11)

+2(b − h2)(ah2 − bh1)(−�w11�11 + �w−1−1�−1−1)

−�w1−1�1−1 + �w−11�−11)). (3.2)

Here, r1 =
√

(a − h1)2 + h22, r2 =
√

(b − h2)2 + h21, and r3 =√
(a − h1)2 + (b − h2)2 are the distances between the neighboring particles at the

initial time moment along the x-axis, the y-axis, and the diagonal, respectively; see
Fig. 3.2.
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As for themodel of amediumwith a dense packing of the particles, one can obtain
differential–difference equations similar to Eq. (2.4) from the Lagrange equations
of the second kind (1.14) to describe the dynamics of the rectangular lattice with
anisotropic particles in the linear approximation [6]:

Mü − B1(u1,0 − 2u0,0 + u−1,0) − 2B ′
2(u0,1 − 2u0,0 + u0,−1)

− B5(u1,1 + u−1,−1 + u1,−1 + u−1,1 − 4u0,0) − B4(w1,1

+ w−1,−1 − w1,−1 − w−1,1)

+ 2bB ′
2(ϕ0,1 − ϕ0,−1) + RB6

2
(ϕ1,1 − ϕ−1,−1 − ϕ1,−1 + ϕ−1,1) = 0,

Mẅ − B ′
1(w0,1 − 2w0,0 + w0,−1) − 2B2(w1,0 − 2w0,0 + w−1,0)

− B ′
5(w1,1 + w−1,−1 + w1,−1 + w−1,1 − 4w0,0)

− B4(u1,1 + u−1,−1 − u1,−1 − u−1,1) − 2aB2(ϕ1,0 − ϕ−1,0)

− RB ′
6

2
(ϕ1,1 − ϕ−1,−1 + ϕ1,−1 − ϕ−1,1) = 0, (3.3)

MRϕ̈ − RB3(ϕ1,0 − 2ϕ0,0 + ϕ−1,0) − RB ′
3(ϕ0,1 − 2ϕ0,0 + ϕ0,−1)

+ a2B2

R
(ϕ1,0 + 2ϕ0,0 + ϕ−1,0) + b2B ′

2

2R
(ϕ0,1 + 2ϕ0,0 + ϕ0,−1)

+ RB7(ϕ1,1 + ϕ−1,−1 + ϕ1,−1 + ϕ−1,1 + 4ϕ0,0)

− bB ′
2

R
(u0,1 − u0,−1) − B6

2
(u1,1 − u−1,−1 − u1,−1 + u−1,1)

+ aB2

R
(w1,0 − w−1,0) − B ′

6

2
(w1,1 − w−1,−1 + w1,−1 − w−1,1) = 0.

Here, R = √
J/M =

√
d2
1 + d2

2/4 is the radius of inertia of the microparticles

of the medium with respect to the mass center (obviously, R = d/
√
8 for the round

particles with the diameter d = d1 = d2) and, for brevity, designations um1,m2 ,wm1,m2 ,
and ϕm1,m2 are used instead of quantities ui+m1, j+m2 , wi+m1, j+m2 , and ϕi+m1, j+m2 ,
where m1 = 0, ±1 and m2 = 0, ±1. Equations (3.3) can be used for numerical
simulation of the response of the system to the external dynamic effects in a wide
range of frequencies up to the threshold values. The coefficients in Eq. (3.3) have
the form:

B1 = K0 + 2K1 + 2K2
(a − h1)2

r21
, B ′

1 = K0 + 2K1 + 2K2
(b − h2)2

r22
,

B2 = K2
h22
r21

, B ′
2 = K2

h21
r22

, B3 = K1h22
2R2

, B ′
3 = K1h21

2R2

B4 = K3
(a − h1)(b − h2)

r23
,
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B5 = K3
(a − h1)2

r23
, B ′

5 = K3
(b − h2)2

r23
,

B6 = K3
(a − h1)(ah2 − bh1)

Rr23
, B ′

6 = K3
(b − h2)(ah2 − bh1)

Rr23
,

B7 = K3
(ah2 − bh1)2

4R2r23
. (3.4)

Next, we shall consider more in detail a continuum approximation of the model
at issue.

3.2 The Continuum Approximation

The transition to the continuum approximation is carried out according to the same
procedure as in Sect. 2.2, with one exception: In Eq. (2.6), l1 and l2 denote shifts of
the numbers of eight particles interacting with the central one. Obviously, l1 = 0,±1
and l2 = 0, ±1. Then, if in expansions (2.6) only the rems of O(a)-order are taken
into account, then the two-dimensional density of the Lagrange function, L, of the
medium of anisotropic particles takes on the form:

L = ρ

2

(
u2t + w2

t + R2ϕ2
t

) − ρ

2
[c21(u2x + δ1w

2
y) + c22(w

2
x + δ2u

2
y)

+ R2c23(ϕ
2
x + δ3ϕ

2
y) + s2(uxwy + δ4uywx ) + 2β1(wx − δ5uy)ϕ + 2β2ϕ

2].
(3.5)

Using the Hamilton–Ostrogradsky variational principle, a set of the first approx-
imation differential equations describing the dynamic processes in the anisotropic
crystalline medium is deduced from Lagrangian (3.5) [2]:

utt = c21uxx + δ2c
2
2uyy + 1 + δ4

2
s2wxy − δ5β1ϕy,

wtt = c22wxx + δ1c
2
1wyy + 1 + δ4

2
s2uxy + β1ϕx ,

ϕt t = c23(ϕxx + δ3ϕyy) + β1

R2
(δ5uy − wx ) − 2β2

R2
ϕ. (3.6)

Here, the following notations are introduced: c1 = √
(B1 + 2B5)/ρ is the

longitudinal wave velocity, c2 = √
2(B2 + B ′

5)/ρ is the transverse wave velocity,
c3 = √

(B3 + a2B2/(2R2) + 2B7)/ρ is the rotational wave velocity, s = 2
√
B4/ρ is

the coefficient of the linear coupling between the longitudinal and shift deformations
in the material, β1 = 2(aB2 + RB ′

6)/ρa and β2 = (
a2B2 + b2 B ′

2 +R2B7
)
/ρa2

are the dispersion parameters, ρ = M/ab is the average value of the density of the
studied two-dimensional medium, and δi (i = 1 ÷ 5) are the correction coefficients
appearing due to the anisotropy of the studied medium:
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δ1 = b2r21
a2r22

· r
2
2r

2
3 (K0 + 2K1) + 2(b − h2)2(r23K2 + r22K3)

r21r
2
3 (K0 + 2K1) + 2(a − h1)2(r23K2 + r21K3)

,

δ2 = b2r21
a2r22

· h
2
1r

2
3K2 + (a − h1)2r22K3

h22r
2
3K2 + (b − h2)2r21K3

,

δ3 = b2r21
a2r22

· h
2
1r

2
2r

2
3K1 + b2h21r

2
3K2 + (ah2 − bh1)2r22K3

h22r
2
1r

2
3K1 + a2h22r

2
3K2 + (ah2 − bh1)2r21K3

δ4 = b2

a2
,

δ5 = br21
ar22

· bh
2
1r

2
3K2 + (a − h1)(ah2 − bh1)r22K3

ah22r
2
3K2 + (b − h2)(ah2 − bh1)r21K3

. (3.7)

In the case, when δi �= 1 at least for one i, Eq. (3.6) becomes non-invariant
with respect to the rotation of the crystalline lattice by 90° and, therefore, they
are a mathematical model of a strongly anisotropic medium [7]. If all anisotropy
parameters δi are equal to 1, then Eq. (3.6) coincides with Eq. (2.8) for the hexagonal
lattice of round particles with accuracy to coefficients.

3.2.1 Dependence of the Anisotropy of the Medium on Its
Microstructure

The structural modeling allows one to establish the interrelation between the
microstructure and the macroproperties of the medium. In mechanics, this refers,
first of all, to the dependence of the anisotropy and moduli of macroelasticity
of the medium on its geometrical structure. These problems remain open in the
phenomenological theories.

It is seen from expressions (3.7) that the dependences of the anisotropy parameters
δi on the microstructure parameters are rather complicated, since they contain four
force constants (K0, K1, K2, and K3) and four geometrical parameters (a, b, h1,
and h2). To simplify these expressions, we decrease the number of the geometrical
parameters twice by assuming that the condition of similarity of the form of the
particles to the lattice form holds

d2
d1

= b

a
(3.8)

and introducing two new dimensionless quantities: f = b/a = h2/h1 is the simi-
larity coefficient (or the shape parameter), and p = d1/a = h1

√
2/a = h2

√
2/b =

d2/b is the relative particle size. Then, we consider the analysis of the dependence
of δi on these two quantities in more detail. Under these assumptions, Eq. (3.7) takes
on the form [2]:
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Fig. 3.3 Dependence of the anisotropy parameters δi on the relative particle size p (a) and on the
shape parameter f (b)

δ1 = f 2r21
r22

· r
2
2 (K0 + 2K1) + f 2(

√
2 − p)2a2(K2 + (r22/r

2
3 )K3)

r21 (K0 + 2K1) + (
√
2 − p)2a2(K2 + (r21/r

2
3 )K3)

,

δ2 = p2(r23/r
2
2 )K2 + (

√
2 − p)2K3

p2(r23/r
2
1 )K2 + (

√
2 − p)2K3

, δ3 = K1 + ( f 2a2/r22 )K2

K1 + (a2/r21 )K2
,

δ4 = f 2, δ5 = r21
r22

= (
√
2 − p)2 + f 2 p2

f 2(
√
2 − p)2 + p2

.

Here, r1/a =
√
1 − p

√
2 + p2( f 2 + 1)/2, r2/a =√

f 2(1 − p
√
2) + p2( f 2 + 1)/2, r3/a =

√
( f 2 + 1)(

√
2 − p)2/2.

Figure 3.3a, b shows the dependences of δi (i = 1, 2, 3, 4, 5) on the relative
particle size 0 ≤ p ≤ 1 for f = 0.7 (Fig. 3.3a) and on the similarity coefficient f for
p = 0.6 (Fig. 3.3b). In both figures, K1/K0 = 0.1, K2/K0 = 0.3, K3/K0 = 0.5. It
can be seen from Fig. 3.3a, b that variation of f affects deviations of δi from 1 (i.e.,
increasing in the medium anisotropy) more significantly than variation of p. If f = 1,
then all δi = 1 and β1 = β2; i.e., Eq. (3.6) degenerates into Eq. (2.8), which, in turn,
coincide with the equations of the Cosserat two-dimensional continuum consisting
of the central-symmetric particles (see Sect. 4.3).

The coefficients of Eq. (3.6) are expressed in terms of the force constants K0, K1,
K2, K3, the lattice parameters a and b, and the particle sizes h1 and h2 as follows:

c21 = a2

M

(
K0 + 2K1 + 2(a − h1)2

(a − h1)2 + h22
K2 + 2(a − h1)2

(a − h1)2 + (b − h2)2
K3

)
,

c22 = 2a2

M

(
h22

(a − h1)2 + h22
K2 + (b − h2)2

(a − h1)2 + (b − h2)2
K3

)
,
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c23 = a2

2MR2

(
h22K1 + a2h22

(a − h1)2 + h22
K2 + (ah2 − bh1)2

(a − h1)2 + (b − h2)2
K3

)
,

s2 = 4a2

M

(a − h1)(b − h2)

(a − h1)2 + (b − h2)2
K3,

β1 = 2a2

M

(
h22

(a − h1)2 + h22
K2 + (b − h2)(ah2 − bh1)

a((a − h1)2 + (b − h2)2)
K3

)
,

β2 = 1

M

(
(

a2h22
(a − h1)2 + h22

+ b2h21
(b − h2)2 + h21

)K2 + (ah2 − bh1)2

(a − h1)2 + (b − h2)2
K3

)
.

(3.9)

It is seen from relations (3.9) that, in the nanocrystalline (granular) media, the
velocity of the wave propagation depends on four force constants K0, K1, K2, and
K3, and on four geometric parameters: a, b, h1, and h2. To simplify the analysis of
such dependence, we assume as above that the condition of similarity of the shape
of the particles to lattice form (3.8) holds and substitutes four geometric parameters
by two dimensionless quantities: the shape parameter f and the relative particle size
p. In this case, expressions (3.9) take the form:

c21 = a2

M

(
K0 + 2K1 + 2(

√
2 − p)2

(
√
2 − p)2 + f 2 p2

K2 + 2

1 + f 2
K3

)
,

c22 = 2a2

M

(
f 2 p2

(
√
2 − p)2 + f 2 p2

K2 + f 2

1 + f 2
K3

)
,

c23 = 4a2 f 2

M(1 + f 2)

(
K1 + 2

(
√
2 − p)2 + f 2 p2

K2

)
,

s2 = 4a2

M

f

1 + f 2
K3,

β1 = 2a2

M

(
f 2 p2

(
√
2 − p)2 + f 2 p2

K2

)
,

β2 = a2

M

(
(

f 2 p2

(
√
2 − p)2 + f 2 p2

+ f 2 p2

f 2(
√
2 − p)2 + p2

)K2

)
. (3.10)

It follows from (3.10) that c22 = β1 + f s2/2. This means that c22 ≥ β1 and the
equality is achieved only in two cases: when f = 0 (particles are rods elongated
along the x-axis) or K3 = 0 (one-dimensional model). If the particles are round, then
β1 = β2 = β and, independent of the lattice type, c22 = β + s2/2.

Next, we will consider the degeneracy of this model into a square lattice of round
particles and into a one-dimensional chain of ellipse-shaped particles.
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3.2.2 A Square Lattice of Round Particles

For a square lattice of round particles (a= b, h1 = h2 = h), in contrast to the previous
case, β1 = β2 = β and the dynamic equations will take on the form of Eq. (2.8)—as
for a medium with hexagonal symmetry and round particles. Differences will be
observed only for the coefficients of these equations:

ρc21 = K0 + 2K1 + 2(a − h)2

h2 + (a − h)2
K2 + K3,

ρc22 = 2h2

h2 + (a − h)2
K2 + K3, ρc

2
3 = 2

(
K1 + a2

h2 + (a − h)2
K2

)
,

ρs2 = 2K3, β1 = β2 = β = c22 − s2/2 (3.11)

Here, ρ = M/a2 is the surface density of the studied medium. The analysis of
relations (3.9)–(3.11) shows that if in the square lattice (a = b) consisting of round
particles (f = 1) the rotational wave velocity c3 and the dispersion parameter β do
not depend on the parameterK3 of the force interaction with the second coordination
sphere, then there appears such a dependence for c3, β1 and β2, when the condition
(3.8) of similarity of the particle shape to the lattice form does not hold. On the other
hand, this analysis implies that this dependence is absent not only in the case of the
square lattice of round particles, but also for the rectangular lattice of ellipse-shaped
particles under the similarity condition b/a = d2/d1, although in this case β1 �= β2

still. It is also interesting to note that the last equality (3.11) coincides with (2.11);
however, relation s2 = c21−c22, which is valid for the hexagonal lattice, is not satisfied
for rectangular and square lattices. Consequently, in the linear dynamic equations
for the rectangular lattice, besides the radius of the particle inertia, R, which makes
equal the dimensionality of the translational displacements and rotations, there are
six independent constants (c1, c2, c3, s, β1, and β2) even if similarity condition (3.8)
holds; for the square lattice of round particles, there are five constants (c1, c2, c3, s,
β); for the hexagonal lattice of the same particles which is isotropic in the acoustic
properties in the long-wave approximation, there are only four independent constants
(c1, c2, c3, and β).

3.2.3 A Chain of Ellipse-Shaped Particles

To degenerate the two-dimensional model (3.6) into the one-dimensional one—a
chain of ellipses—we should set K3 = 0 and b = 0 in coefficients (3.9). Then, s = 0
and β1 = 2β2 = 2c22. As a result, the dynamic equations of the chain consisting of
anisotropic particles take on the form:

utt − c21uxx = 0,
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wtt − c22wxx − βϕx = 0,

R2(ϕt t − c23ϕxx ) + β(ϕ + wx ) = 0. (3.12)

Coefficients of Eq. (3.12) have the following form:

c21 = a2

M

(
K0 + 2K1 + 2(a − h1)2

(a − h1)2 + h22
K2

)
,

c22 = 2a2

M

(
h22

(a − h1)2 + h22
K2

)
, β = 2c22,

c23 = a2

2MR2

(
h22K1 + a2h22

(a − h1)2 + h22
K2

)
. (3.13)

Thus, the linear dynamic equations of a chain of ellipses contain only three
independent constants: c1, c2, and c3. With allowance for nonlinear terms, similar
equations for a chain of rectangular particles were obtained in Lisina et al. [8].

3.3 Influence of Microstructure on Acoustic Properties
of the Medium

The interrelation between the microstructure of the anisotropic medium with non-
dense packing of particles and its macroparameters was established in the previous
section due to the structural modeling method. Now, we will use this interrelation
for analysis of the dependence of the acoustic characteristics of the medium on the
shape of the particles (using the example of a one-dimensional chain of ellipses), as
well as on the parameters of interparticle interaction, particle sizes, and the structure
of the lattice (using an example of a square lattice of round particles).

3.3.1 Dependence of the Elastic and Rotational Wave
Velocities on the Shape of the Particles in the 1D Lattice

Using the example of a one-dimensional lattice of ellipse-shaped particles, we will
analyze the influence of their shape on the velocities of longitudinal, transverse, and
rotational waves.

From Eq. (3.10), it is possible to obtain expressions for the velocities of such
waves, normalized to the longitudinal wave velocity c0 = √

K0/M in the chain in
the absence of moment interactions between the particles, i.e., when K1 = K2 = 0:
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Fig. 3.4 Dependence of the velocities of longitudinal (c1), transverse (c2), and rotational waves
(c3) on the shape parameter f at the relative particle size p = 0.5 (a) and p = 0.9 (b)

c1
c0

=
√
1 + 2K1

K0
+ 2(

√
2 − p)2

(
√
2 − p)2 + p2 f 2

K2

K0
,

c2
c0

=
√

2p2 f 2

(
√
2 − p)2 + p2 f 2

K2

K0
,

c3
c0

=
√

4 f 2

1 + f 2

(
K1

K0
+ 2

(
√
2 − p)2 + p2 f 2

K2

K0

)
. (3.14)

It is interesting to note that the limit transitions f → 0 (i.e., when h2/h1 → 0)
and f → ∞ are not equivalent, since in the first case c2/c0 → 0 and c3/c0 → 0,
whereas in the second case c2/c0 → √

2K2/K0 and c3/c0 → 2
√
K1/K0. Thus, in

a chain of rods connected by springs, transverse waves can propagate only in the
presence of non-central interactions (K2) or by taking into account the preliminary
tension of the springs [9, 10].

Figure 3.4a, b shows the dependence of the dimensionless values of the velocities
of longitudinal (c1), transverse (c2), and rotational waves (c3) on the shape parameter
f (if f < 1, then the particles are elongated along x-axis, if f > 1—along y-axis, and
at f = 1 the particles are round) for K1/K0 = 0,1, K2/K0 = 0,3 and two values of p:
p = 0.5 (Fig. 3.4a) and p = 0.9 (Fig. 3.4b).

From Fig. 3.4, it is visible that in a chain of ellipse-shaped particles the longitu-
dinal wave velocity decreases and the transverse wave velocity grows monotonously
with increase in the shape parameter. Both velocities tend to some limiting values
depending on the force constants K1 and K2. The rotational wave velocity has a
local maximum at a certain value of f depending on the particle size and the param-
eters of the force interactions. The point of the maximum is shifted to the left with
increase in the particle size. For small particle sizes, variations of the wave veloci-
ties are smoother than at large values of p. If f → ∞, then all three velocities tend
to some limiting values: c1/c0 → √

1 + 2K1/K0, c2/c0 → √
2(K2 + K3)/K0, and
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c3/c0 → 2
√
K1/K0, whereas for f → 0 (i.e., when h2/h1 → 0) c2 → 0 and c3 → 0.

It also follows from Fig. 3.4 that the longitudinal wave velocity always exceeds the
transverse wave velocity, which, in turn, can be either larger or smaller than the rota-
tional wave velocity. The first fact is well known in theory. The second fact is favored
by experimental data [11, 12] indicating that in artificial granular materials the rota-
tional wave velocity can exceed the translational wave velocity. However, it should be
noted that the practical lack of evidence on the material constants of microstructured
media and the poor development of methods for their experimental research [13–
15] are the main factors constraining the study of models of non-classical media and
their application for calculating the dynamic and strength characteristics of structural
materials.

3.3.2 Dependence of the Acoustic Characteristics of the 2D
Anisotropic Medium on the Microstructure Parameters

Now let us analyze the dependence of the acoustic characteristics of the medium on
the parameters of interparticle interaction, the particle size, and the lattice structure.

In the case of a square lattice of round particles, the squares of the wave velocities
contained in Eq. (3.6) are expressed in terms of the force constants of themicromodel
K0, K1, K2, and K3, the distance a between the particles, and their diameter d as
follows:

c21 = 1

ρ

(
K0 + 2K1 + 2(a

√
2 − d)2

d2 + (a
√
2 − d)2

K2 + K3

)
,

c22 = 1

ρ

(
2d2

d2 + (a
√
2 − d)2

K2 + K3

)
,

c23 = 2

ρ

(
K1 + a2

d2 + (a
√
2 − d)2

K2

)
,

β = 2d2

ρ(d2 + (a
√
2 − d)2)

K2, s
2 = 2K3

ρ
, (3.15)

where ρ = M/a2 is the surface density of this medium (since the hexagonal lattice
has a density ρ = 2M/a2

√
3 (see Sect. 2.2), it represents a denser packing in

comparison with a square lattice).
For a medium with hexagonal symmetry, relations similar to Eq. (3.15) have the

form of Eq. (2.9). The dependence of the threshold frequency ω0 on the parameter
β and the particle inertia radius R = d/

√
8, as well as the relationship between the

parameters c2, β, and s are the same for both models and are described by Eqs. (2.10)
and (2.11). But relation (2.12) is not satisfied for the square lattice [5].

Dependences of the longitudinal (c1), transverse (c2), and rotational wave veloci-
ties (c3) on the relative particle size d/a atK1/K0 = 0.1 in the square lattice are plotted
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Fig. 3.5 Dependence of the wave velocities on the relative particle size in a square lattice forK1/K0
= 0.1, K2/K0 = 0.1 (curves 1), K2/K0 = 0.5 (curves 2), K3/K0 = 0.65 (a) and K3/K0 = 1 (b)

inFig. 3.5a, b,where curves 1 correspond tovalueK2/K0 =0.1 and curves 2—tovalue
K2/K0 = 0.5. It is assumed that K3/K0 = 0.65 (Fig. 3.5a) or K3/K0 = 1 (Fig. 3.5b).
All velocities are normalized to the longitudinal wave velocity c0 = √

K0/ρ, taking
into account only central interactions. It can be seen from Fig. 3.5a, b that the longi-
tudinal wave velocity monotonously decreases with increasing grain size d/a, the
shear wave velocity monotonically increases, and the rotational wave velocity has
a maximum for some value of d/a. For small values of moment interactions (K2


 K0), the grain size does not significantly affect the wave velocities (see curves 1).
From relations (3.15), one can express the parameters of force interactions in

terms of the acoustic characteristics of the medium:

K3 = ρs2/2, K2 = ρ(d2 + (a
√
2 − d)2)

4d2

(
2c22 − s2

)
,

K1 = ρ

2

(
c23 − a2

d2
(2c22 − s2)

)
, K0 = ρ

(
c21 − c22 − c23

) + ρa
√
2

d

(
2c22 − s2

)
(3.16)

In addition, the particle size is expressed in terms of the acoustic characteristics
of the medium from Eqs. (2.10) to (2.11) by the same way as in the hexagonal lattice:

d =
√
8
∣∣2c22 − s2

∣∣/ω0. (3.17)

Thus, expressions (3.15) and (3.16)–(3.17) establish one-to-one correspondences
between the micromodel parameters and the macrocharacteristics of the medium.
Such a relationship can be used, in particular, for testing nanomaterials on the base
of wave (acoustic) experiments.
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3.4 Dispersion Properties of Normal Waves

This section is devoted to analysis of the dispersion properties of the developed
models of a granular medium with non-dense packing of particles under the assump-
tion that the similarity condition (3.8) is valid. Then, as follows from the last three
equalities (3.4), B6 = B ′

6 = B7 = 0.

3.4.1 Dispersion Properties of the Discrete Model

As in Sect. (2.4.1), we consider solutions of the equations of motion that are plane
monochromatic waves, for which the displacement can be represented in the form
(2.15). Substitution of solutions (2.15) into Eq. (3.3) yields Eq. (2.16) in a matrix
form for determining the displacement amplitudes, where the matrix elements have
the following form [6]:

d11 = 2B1(cos(q1a) − 1) + 2B ′
2(cos(q2b) − 1) + 4B5(cos(q1a) cos(q2b) − 1),

d12 = −4B4 sin(q1a) sin(q2b), d13 = ibB ′
2 sin(q2b), d21 = d12,

d22 = 2B ′
1(cos(q2b) − 1) + 2B2(cos(q1a) − 1) + 4B ′

5(cos(q1a) cos(q2b) − 1),

d23 = −iaB2 sin(q1a), d31 = −d13
R2

, d32 = −d23
R2

,

d33 = 1

R2

[(
2B3 − a2

B2

2

)
(cos(q1a) − 1)

+
(
2B ′

3 − b2
B ′
2

2

)
(cos(q2b) − 1) − a2B2 − b2B ′

2)

]
. (3.18)

The solvability condition for Eq. (2.16) with coefficients (3.18) leads to dispersion
Eq. (2.18):

M3ω6 + F1ω
4 + F2ω

2 + F3 = 0,

where F1, 2, 3 are the wave vector functions defined by relations (2.19). Dividing
Eq. (2.18) by K 3

0 and introducing the substitution � = ω
√
M/K0, one can obtain

the dispersion equation in the dimensionless form (2.20):

� 6 − f1�
4 + f2�

2 + f3 = 0,

in which f1 = F1
K0

, f2 = F2
K 2

0
, f3 = F3

K 3
0
.

Next, we will analyze the dispersion properties of the considered medium in the
first Brillouin zone (see Sect. 2.4.1 and [16]) and on its boundary.

The left-hand side of the dispersion Eq. (2.20) contains three variables: the
frequency ω and the wave vector components q1 and q2. In addition, coefficients
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Fig. 3.6 Dependence of the oscillation frequency on the wave vector module for f = 1

(3.18) of Eq. (2.20) depend on two geometric parameters: the relative particle size
d̃ = h1/a = h2/b and the lattice shape parameter f = b/a = h2/h1 and three
parameters of the force interactions of the springs, K1/K0, K2/K0, and K3/K0.
Analysis of the dispersion Eq. (2.20) will be carried out for the case when

d̃ = 1

2
√
2
,
K1

K0
= 0.6,

K2

K0
= 0.2,

K3

K0
= 0.3. (3.19)

As in the hexagonal lattice (see Sect. 2.4.1), the system under consideration
contains acoustic longitudinal (LA) and transverse (TA) phonons, as well as an
optical rotational (RO) phonon (Fig. 3.6). In Eq. (2.20), we pass to the polar coor-
dinate system by setting q1 = q cos θ and q2 = q sin θ, where q is the wave vector
module, and angle θ indicates the direction of propagation of the plane wave with
respect to x-axis in the direct lattice.

The dispersion curves calculated with account of conditions (3.19) along direc-
tions θ = 0◦ (G–K), θ = arctg f (G–M), and along the Brillouin zone boundary
q1 = π/a (K–M) are plotted in Fig. 3.6 (in this case f = 1, i.e., the lattice is square
and the particles are round) and in Fig. 3.7 (in this case, the lattice is rectangular, the
particles are ellipse-shaped, and f = 1.5).

Fig. 3.7 Dependency of the wave frequency on the wave vector module for f = 1.5
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From Fig. 3.6, it is seen that the frequency increases monotonically along G–
K- and G–M-directions with the wave number growing up to the Brillouin zone
boundary. At point (q1 = π/a, q2 = 0), the frequency of the rotational mode has a
maximum

� RO
max = 2

√
(B1 + 2B5)/K0

= 2
√
1 + 2K1/K0 + 2(a − h)2K2/(r2K0) + K3/K0. (3.20)

In K-M-direction, the group velocity of rotational phonons is negative: vgr =
dω

/
dq < 0; i.e., this is a backward-wave region (see Sect. 2.4.1). The rotational

mode has theminimum threshold frequency that is achieved at point (q1 = 0, q2 = 0)
[17]:

� RO
min = a

R

√
2B2

K0
= 2a

h

√
2h2K2

((a − h)2 + h2)K0
=

√
8a2K2

((a − h)2 + h2)K0
. (3.21)

It follows from Eq. (3.21) that� RO
min =

√
8K2
K0

�= 0 for degeneration of the medium

particles in the material points (h → 0), if K2 �= 0. On the other hand, when there
are no couple interactions (K2 = 0), then � RO

min = 0, even if the particles are not
material points. Under assumptions (3.19), the maximum and minimum frequencies
of the rotational mode are � ≈ 3.35 and � ≈ 2.42, respectively (see Fig. 3.6).

Both acoustic modes have the largest value at the boundary point of the Brillouin
zone (q1 = π/a, q2 = π/b). The maximum frequency of the longitudinal mode
equals [17]

� L A
max = 2

√
B1 + B2

K0
= 2

√
1 + 2K1

K0
+ K2

K0

(
1 + (a − h)2

(a − h)2 + h2

)
≈ 3.22, (3.22)

and the maximum frequency of the transverse mode is equal to

� T A
max = 2

√
K1/K0 ≈ 3, 09. (3.23)

At this point, the group velocity is equal to zero and therefore a signal with such a
frequency cannot propagate in a crystal lattice. This restriction can be dropped only
for nonlinear perturbations [18], when anharmonic terms are taken into account in
equations of motion (3.3). In the frequency ranges 0 ≤ � < 2.42 and 3.09 < � ≤
3.22, the system has two wave modes (LA and TA at low frequencies, and LA and
RO in the high-frequency field) and all three wave modes (LA, TA, and RO) are
present in the system, when 2.42 < � ≤ 3.09; see Fig. 3.6.

It is possible to obtain inverse dependences from Eqs. (3.20) to (3.23), i.e.,
to express the parameters of force and couple interactions through the threshold
frequencies of the acoustic and optical phonons [6]:
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K0

a
= ρa2

4

(
ωLA
max

)2 − ρa2

2

(
ωTA
max

)2 − ρ
(
h2 + 2(a − h)2

)
8

(
ωRO
min

)2
,

K1

a
= ρa2

4

(
ωTA
max

)2
,

K2

a
= ρ((a − h)2 + h2)

8

(
ωRO
min

)2
,

K3

a
= ρa2

4

(
ωRO
max

)2 − ρa2

4

(
ωLA
max

)2 + ρh2

8

(
ωRO
min

)2
. (3.24)

On the other hand, these parameters are expressed in terms of elasticity constants
C11, C12, and C44 of the classical theory of elasticity:

K3

a
= C12,

K2

a
= (C44 − C12)

(
1 +

(a
h

− 1
)2

)
,

K0 + 2K1

a
= C11 − C12 − 2(C44 − C12)

(a
h

− 1
)2

. (3.25)

It should be noted that four parameters of force and couple interactions in the
short-wavelength approximation are uniquely expressed in terms of the macropa-
rameters of the medium, namely, through four threshold frequencies of the acoustic
and optical phonons [see Eq. (3.24)], whereas there are only three macroparame-
ters in the long-wavelength approximation—elasticity constants C11, C12, and C44.
A fourth parameter is needed to account for the rotational degrees of freedom of
anisotropic particles. Therefore, it is possible to relate only three threshold frequen-
cies to the elastic moduli of the second order without any additional assumptions
using Eqs. (3.24) and (3.25):

ωRO
min = 4

√
C44 − C12

ρd2
,

ωRO
max = 2

√
C11 + (C44 − C12)(a/h − 1)2

ρa2
,

ωL A
max = 2

√
C11 + C44 − 2C12

ρa2
. (3.26)

Introducing an additional assumption about the relationship between K1 and K0

in the third equality (3.25) enables one to calculate also the maximum frequency of
the transverse waves. In particular, if K1 = K0/4, then

ωT A
max =

√
2
(
C11 + C12 − 2C44 + 2(C44 − C12)

(
2a/h − a2/h2

))
3ρa2

. (3.27)
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Analysis of Eqs. (3.26) and (3.27) shows that the minimum frequency of the
rotational phonons can exceed the maximum frequency of the transverse phonons or
be lower than it.

Thus, Eq. (3.24) can be used for estimation of predetermined dispersion properties
of artificial periodic structures (metamaterials): One can estimate the values of the
threshold frequencies for metamaterials due to Eq. (3.26). In addition, by choosing
the elasticity constants it is possible to vary the threshold frequencies.

In contrast to the case, when f = 1, for f = 1.5 the frequency of the rotational
vibrations takes the maximal value at the point (q1 = π/a, q2 = π/b) (Fig. 3.7) [6]:

� RO
max = 2

√
B ′
1 + B2

K0
= 2

√
1 + 2K1

K0
+

(
2(b − h2)2

r22
+ h22

r21

)
K2

K0
≈ 3.29. (3.28)

A minimal value of the rotational phonon frequency is achieved, like in the
previous case, in the zero point and still does not depend on the parameters of force
interactions K1 and K3:

� RO
min =

√
a2B2 + b2B ′

2

R2 · K0
=

√
a2h22r

2
2 + b2h21r

2
1

Rr1r2

√
K2

K0
≈ 2.29. (3.29)

The greatest value of the longitudinal mode is also located on the Brillouin zone
boundary at the point (q1 = π , q2 ≈ 2.4), and its value is equal to � ≈ 3.2. In fact,
this point divides the backward-wave field between the longitudinal and rotational
modes; see Fig. 3.7. The maximum of transverse vibrations does not change its
position and quantity: � = 2

√
K1/K0 ≈ 3.09 at the point (q1 = π/a, q2 = π/b).

Thus, the system has two wave modes (longitudinal LA and transverse TA acoustic
modes at low frequencies, and longitudinal acoustic LA and rotational optical RO in
the high-frequency field) in the frequency ranges 0 ≤ � < 2.29 and 3.09 < � <

3.2, and all three wave modes (LA, TA, and RO) are present in the system, when
2.29 < � < 3.09.

It should be also noted that the maximum values of all three modes and the
minimum value of the rotational mode vary insignificantly in comparison with the
considered ones in the previous case.

It is convenient to study isotropic and anisotropic properties of this lattice using
the maps of equal frequencies. Such maps for longitudinal, transverse, and rotational
phonons at different fixed values of the frequency are shown in Fig. 3.8 (for f = 1)
and in Fig. 3.10 (for f = 1.5).

Figure 3.8 shows that anisotropy of the longitudinal mode is most evident when
� > 2.7, and the longitudinal mode is almost isotropic for � < 1.5, whereas the
transverse mode is anisotropic even for small � . The rotational mode is isotropic
for 2.42 < � < 2.8. However, all modes are anisotropic even in the low-frequency
range in the case of the rectangular lattice with ellipse-shaped particles; see Fig. 3.10.
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Fig. 3.8 Maps of equal frequencies for the square lattice of round particles (f = 1): a LA-mode;
bTA-mode; cRO-mode. Curves 1 correspond to� = 1.2; 2−� = 1.5; 3−� = 1.9; 4−� = 2.5;
5 − � = 2.65; 6 − � = 2.75; 7 − � = 2.85; 8 − � = 2.95; 9 − � = 3.1

Two modes (LA and RO) are presented at frequency � = 3.1 in Fig. 3.10 in
addition to Fig. 3.9, where all three modes are separately plotted in the frequency
range 1.2 < � < 3.05. Here, small “rectangles” correspond to the LA-mode and
large “rectangles” stand for the RO-mode. As it wasmentioned above, the thirdmode
(TA) is absent in the system at this frequency.

Figure 3.10 shows that the map of equal frequencies reproduces completely the
structure of the rectangular lattice at issue. Figure 3.11 contains squares instead of
rectangles for the square lattice.
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Fig. 3.9 Maps of equal frequencies for the rectangular lattice of ellipse-shaped particles (f = 1.5):
a LA-mode; b TA-mode; c RO-mode. Curves 1 correspond to� = 1.2; 2−� = 1.5; 3−� = 1.9;
4 − � = 2.45; 5 − � = 2.65; 6 − � = 2.95; 7 − � = 3.05

3.4.2 Dispersion Properties of the Continual Model

As it was mentioned in Sect. 3.2.2, dynamic Eq. (2.8) is valid both for the hexagonal
lattice and for the square lattice of round particles. If to search for their solutions in
the form of plane harmonic waves (2.22)

(u,w, ϕ)T = (Au, Aw, Aϕ)T exp[i(ωt − k · r)],

where Au, Aw, and Aϕ are the complex amplitudes of harmonic waves, ω is the
oscillation frequency, and k = {kx , ky} is the wave vector, then, according to the
procedure described in Sect. 2.4.2, it is possible to derive Eq. (2.24)
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Fig. 3.10 Isolines of frequency � = 3.1

Fig. 3.11 Isolines of frequency � = 3.1
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ω6 − H1ω
4 + H2ω

2 + H3 = 0,

where the dependences of the coefficientsH1,H2, andH3 on the scalar square of the
wave vector k2 = k2x + k2y (k is the wavenumber) are determined by relations (2.25):

H1 = (c21 + c22 + c23)k
2 + ω2

0,

H2 = (c21c
2
2 + c21c

2
3 + c22c

2
3)k

4 + ((c21 − c22)
2 − s4)k2x k

2
y + ω2

0(c
2
1 + c22 − β/2)k2,

H3 = ω2
0c

2
1(β/2 − c22)k

4 + ω2
0[β(c22 − c21 + s2) − (c21 − c22)

2 + s4]k2xk2y
− c21c

2
2c

2
3k

6 + c23(s
4 − (c21 − c22)

2)k2k2xk
2
y .

It should be noted that if equality c21 − c22 = s2 is valid in the hexagonal lattice
and the coefficients of k2x k

2
y vanish that indicates the isotropy of the medium with

hexagonal symmetry, then the medium with cubic symmetry is anisotropic in this
approximation. The dispersion curves determined by Eq. (2.24) are represented in
the normalized form (in the reference frame (k/k0, ω/ω0), where k0 = ω0/c2) in
Fig. 3.12.

Here, the following designations are introduced: L is the longitudinal mode, T
is the transverse mode, and R is the rotational one. Graphs have been plotted for
numerical data corresponding to sodium fluoride crystals: c1/c2 = 1.79, c3/c2 =
0.69, β/c22 = 0.158 (see Fig. 3.12 and Table 4.1 in Sect. 4.2). R- and T-mode curves
have oblique asymptotes ω = ±c2k and ω = ±c3k, respectively. The dispersion
dependences for the waves propagating along x-axis (θ = 0) are plotted in Fig. 3.12
in the left-hand half plane, and for the waves traveling at angle θ = π/6 to x-axis are
shown in the same figure in the right-hand half plane. It is visible from this figure
that the transverse mode dispersion is more pronounced when the waves propagate
at angle θ = π/6.

Fig. 3.12 Dispersion curves
for the square lattice
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Fig. 3.13 Experimentally
measured dependencies of
dispersion curves of
magnons and phonons in a
ferromagnet FeF2. TA and
LA are the transverse and
longitudinal acoustic
phonons, respectively, and M
are magnons

The dispersion curves plotted in Fig. 3.12 qualitatively coincide with the depen-
dences of the energy of magnons and phonons in ferromagnet FeF2 on the magni-
tude of the wave vector at temperature of 4.2 K (Fig. 3.13), which were obtained
experimentally by the method of inelastic neutron scattering [19].

Comparison of plots 3.12 and 3.13 yields coincidence of the dispersion curves for
themicrorotationwave and for the spinwave (magnons1). This fact is not unexpected,
if to take into account that in a ferromagnetic material a change in the angular
momentum of a system of microparticles leads to a change in the magnetic moment
of this system (the Barnett effect [21]), and vice versa, a change in the magnetic
moment of a free body causes this body to rotate (the Einstein–de Haas effect [22]).
It was shown in Akhiezer et al. [23] that the antisymmetric part of the stress tensor
determines an additional moment of elastic forces arising from a local rotation of the
crystallographic axes with respect to magnetization. This leads to appearance of the
non-reciprocity effect consisting in the fact that the velocities of two transverse sound
waves, in which the directions of the wave vectors and polarizations are mutually
changed, turn out to be different. The existence of such magnetoacoustic phenomena
in solids is another argument for revising the basic concepts of continuummechanics
and constructing new models of media that take into account their internal structure
and rotational degrees of freedom of particles. The fourth chapter in the book [24]
by A.I. Akhiezer, V.G. Baryakhtar, and S.V. Peletminsky is devoted to theoretical
analysis of coupled spin and elastic waves in ferromagnets.

1Magnon is a quasiparticle corresponding to a quantum of spin waves in magnetically ordered
systems [20]. Magnon plays the same role with respect to spin vibrations as phonon plays with
respect to crystal lattice vibrations.
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3.5 Conclusions

In this chapter, the discrete and continuous models describing the dynamics of the
rectangular lattice of ellipse-shaped particles with a quadratic interaction potential
between them have been elaborated. Analytical dependences of the elastic wave
velocities on the size of the particles and the parameters of the interaction between
them have been found. The longitudinal wave velocity is shown to be always greater
than the transverse wave velocity, which, in its turn, can be either larger or less than
the rotational wave velocity.

In the particular case of such a lattice—a chain of anisotropic particles—the longi-
tudinal wave velocity monotonously decreases with growing the shape parameter,
whereas the transverse wave velocity monotonically increases, and both velocities
tend to certain limit values depending on force constants K1 and K2. The rotational
wave velocity has a local maximum for a certain value of f depending on the size
of the particles and the parameters of the force interactions. With increasing particle
size, the point of this maximum shifts to the left. For small particle sizes, changes in
the wave velocities occur more smoothly than for large values of p. The longitudinal
wave velocity monotonously decreases with increasing grain size d/a, the shear wave
velocity monotonically increases, and the rotational wave velocity has a maximum
at some d/a. For small moment interactions (K2 
 K0), the grain size does not exert
significant influence on the wave velocities.

The dispersion properties of the discrete medium have been analyzed in this
chapter for various values of the lattice shape parameters. For a square lattice with
round particles, there are two wave modes in the frequency ranges 0 ≤ � < 2.42
and 3.09 < � ≤ 3.22 (the longitudinal and transverse modes in the low-frequency
region and the longitudinal and rotational modes in the high-frequency region). And
all three wave modes (the longitudinal, transverse, and rotational ones) are present
in the medium in the interval 2.42 ≤ � ≤ 3.09. In the case of a rectangular lattice
of anisotropic particles, the picture is qualitatively remained, but the length of the
three abovementioned intervals changes.

For any values of shape parameter f , the rotational mode has two threshold
frequencies: the minimal—at zero—and the maximal—at the boundary of the
Brillouin zone, and the magnitude of the minimal frequency does not depend on
parameters K1 and K3.

When the lattice degenerates into a square lattice with round particles, the longitu-
dinal mode remains isotropic for� < 1.5 and the rotational mode does for� < 2.8.
In the arbitrary case, all three modes are anisotropic even in the low-frequency range.

Comparison of the dispersion properties of the hexagonal and square lattices
consisting of round particles in the long-wavelength (continuum) approximation
showed that the hexagonal lattice is isotropic in acoustic properties, whereas the
square lattice of round particles is anisotropic. When waves propagate in the square
lattice at angle θ = π/6, the dispersion of the transverse mode is more pronounced.

In the continuum approximation, the dispersion curves of the square lattice
qualitatively coincide with the experimentally obtained dependences of the energy
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of magnons and phonons in FeF2 ferromagnet on the reflected wave vector at
temperature 4.2 K [19].

The results, which have been obtained in this chapter, can be used for construction
of artificial periodic structures with predetermined dispersion properties, namely,
taking into account the given maximal and minimal values of the rotational mode
frequency, due to the relations obtained in this work, one can find values of the
microstructure parameters of the medium at issue.
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Chapter 4
Application of the 2D Models of Media
with Dense and Non-dense Packing
of the Particles for Solving
the Parametric Identification Problems

Theoretical estimates [1] and experimental data [2–5] show that rotational waves
can exist in solids in the high-frequency field (>109 – 1011 Hz), where it is rather
difficult to carry out acoustic experiments with the technical viewpoint. The ques-
tion arises: is it possible to obtain some information about the microstructure of a
medium from acoustic measurements in the low-frequency range (106 –107 Hz),
when the rotational waves do not propagate in the medium? To this purpose, we will
consider in this chapter the low-frequency approximation of Eqs. (2.8) and (3.6), in
which the microrotations of the particles of the medium are not independent and are
determined by the displacement field. Further, by comparing the obtained equations
describing the propagation and interaction of longitudinal and transverse waves in a
granular medium in the low-frequency approximation with the equations of the clas-
sical theory of elasticity, we will consider the problem of parametric identification
of the developed models.

4.1 Reduced (Gradient) Models of the Theory of Elasticity

In the Cosserat theory, rotation of the N th element of a medium is divided into
two types: macrorotation θN (rotation of the representative volume of a medium as a
whole) given by the antisymmetric (common asymmetric) part of the strain tensor and
microrotation of themedium element (local rotations ofmicroelements relative to the
mass center of the representative volume),which is describedby independent quantity
φN [6, 7]. It can be shown that in the long-wave approximation, the potential energy
density of the medium depends only on the difference between the macrorotation
andmicrorotation angles [8], since in the small-strain approximation, themacrostrain
and microstrain tensors, ekl = 1

2

(
uk,l + ul,k

)
and εkl = uk,l+ ∈klN φN (here, ∈klN is

the Levi-Civita antisymmetric tensor), respectively, are not independent—they are
interconnected by the following relation:
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εkl = ekl+ ∈klN (θN − φN ),

where θN = 1
2 ∈Ni j ui, j [6, 7]. In the coincide with the rotation of the representative

volume as a solid whole, i.e., θN = φN , the microstrain and macrostrain tensors are
equal: εkl = ekl . Then, the Cosserat continuum model is simplified and called the
continuum with constrained particle rotation or the Cosserat pseudo-continuum [6,
7, 9]. In this case, the microrotations of the particles of the medium are not indepen-
dent and are determined by the displacement field, and the relationship between the
microrotations ϕ and the displacements u and w can be found from the equation for
the rotational mode by the successive approximation method. So, for a rectangular
lattice of ellipse-shaped particles, one can obtain in the first approximation from the
third Eq. (3.6):

ϕ(x, t) ≈ β1

2β2

(
δ5uy − wx

)
. (4.1)

It should be remarked that for the square and hexagonal lattices consisting of
round particles, relation (4.1) has a simpler form:

ϕ(x, t) ≈ 1

2

(
uy − wx

) = −1

2
rotz �U , (4.1a)

where �U is the displacement vector. Relation (4.1a), which relates the rotations
of the particles of the medium with the vorticity of the displacement field, is a
characteristic feature of the Cosserat pseudo-continuum model. Taking this relation
into account leads to a “freezing” of the rotational degree of freedom. As a result,
perturbations caused by microrotations do not propagate; however, microrotations
affect the propagation of longitudinal and shear waves. In this case, the Lagrange
function L is simplified and for a rectangular lattice of anisotropic particles looks
like [10]

L = M

2

(
u2t + w2

t + R2β2
1

4β2
2

(δ5uyt − wxt )
2

)

− M

2

[
c21(u

2
x + δ1w

2
y) + c22(w

2
x + δ2u

2
y)

+ R2β2
1

4β2
2

c23((δ5uxy − wxx )
2 + δ3(δ5uyy − wxy)

2)

+s2(uxwy + δ4uywx ) − β2
1

2β2
(wx − δ5uy)

2

]
. (4.2)

In Lagrangian (4.2), there appear additional terms containing the second-order
derivatives of the displacement field, which are absent in the classical theory of
elasticity. They contain information about the medium microstructure. The terms
with mixed derivatives with respect to time and space, uyt and wxt , take into account
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the contribution of rotational motions into the kinetic energy, and the terms with
spatial derivatives uxy , wxx , etc., describe the contribution of the stresses caused by
bending of the lattice into the potential energy.

From Lagrange function (4.2), one can obtain the so-called equations of
the second-order gradient elasticity [11–13] that contain terms with high-order
derivatives (in this case, the fourth order):

utt − c21uxx − (δ2c
2
2 − δ25β

2
1

2β2
)uyy −

(
1 + δ4

2
s2 + δ5β

2
1

2β2

)
wxy

= R2β2
1

4β2
2

∂

∂y

[
∂2

∂t2
(
δ5uy − wx

) − c23	
(
δ5uy − wx

)
]
,

wtt −
(
c22 − β2

1

2β2

)
wxx − δ1c

2
1wyy −

(
1 + δ4

2
s2 + δ5β

2
1

2β2

)
uxy

= − R2β2
1

4β2
2

∂

∂x

[
∂2

∂t2
(
δ5uy − wx

) − c23	
(
δ5uy − wx

)]
. (4.3)

Here, the symbol 	 denotes a differential operator 	 = ∂2/∂x2 + δ3 ∂2/∂y2,
which is transformed into a two-dimensional Laplacian at δ3 = 1.

For the square and hexagonal lattices consisting of round particles, the equations
of the higher-order gradient theory of elasticity (4.3) take the following form:

utt − c21uxx −
(
c22 − β

2

)
uyy −

(
s2 + β

2

)
wxy

= R2

4

∂

∂y

[
∂2

∂t2
(
uy − wx

) − c23	
(
uy − wx

)]
,

wtt −
(
c22 − β

2

)
wxx − c21wyy −

(
s2 + β

2

)
uxy

= − R2

4

∂

∂x

[
∂2

∂t2
(
uy − wx

) − c23	
(
uy − wx

)
]
. (4.4)

FromEq. (4.4), it follows that in this low-frequency approximation, the transverse
wave velocity is diminished by quantity β/2, and the coupling parameter s2 increases
by the same quantity.

It should be noted that non-neighboring interactions are frequently introduced,
even if the particles are the material points. It also leads to appearance of the fourth-
order derivatives in the governing equations [14]. So, the corresponding terms take
into account the coupled stresses arising at the translational displacements of the
particles.

Applying to Eq. (4.4), the algorithm given in Sect. 2.4.2, it is possible to derive
a dispersion equation for this approximation:
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(
4 + R2k2

)
ω4 − (

R2(c21 + c23)k
4 + (5c21 + c22)k

2
)
ω2

+ c21(c
2
1 + c22)k

4 + R2c21c
2
3k

6 = 0 (4.5)

Equation (4.5) defines the following dispersion curves:

ω = ±c1k (4.6a)

for the longitudinal mode L and

ω = ±k

√
8(c21 + c22) + c23d

2k2

32 + d2k2
(4.6b)

for the transverse mode T. These curves are presented in the normalized form in
the reference frame (k/k0, ω/ω0) in Fig. 4.1. Graphs are plotted for numerical data
corresponding to cadmium crystals: c1/c2 = 1.80, c3/c2 = 0.69, ω0d/c2 = 1.34
(see Table 4.1 in Sect. 4.2.1). The T-mode curves have oblique asymptotes (in the
dimensionless form ω

ω0
= ± c3

c2
k
k0
) and are located below the L-mode curve.

It should be noted that the dispersion properties of the equations of the low-
frequency long-wavelength approximation (4.4), as in the case of the complete three-
mode system (2.8), are independent on the direction of wave propagation, i.e., the
crystal structure under consideration is isotropic in this approximation.

Fig. 4.1 Dispersion curves
for the two-mode model (4.4)
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Table 4.1 Structure parameters for crystals with hexagonal symmetry

The structure parameters Crystals

Be Cd Mg Zn

Experimental
data

Density (kg/m3) ρV 1816 8642 1740 7140

Elasticity
constants (GPa)

C11 292.3 114.5 58.6 161.1

C12 26.7 39.5 25.0 34.2

Calculated
characteristics

Wave velocities
(m/s)

c1 12,687 3640 5803 4750

c2 11,470 2027 2223 3603

c3 9317 1404 880 2823

The normalized
threshold
frequency of the
rotational waves
ω0d (m/s)

ω0d 43,239 2721 12,280 11,450

The Cosserat
constants (GPa)

λ 26.7 39.5 25.0 34.2

μ 132.8 37.5 16.8 63.5

γ /R2 157.7 17.0 1.35 56.9

κ 212.2 −4.0 −16.4 58.5

Parameters of
force interactions
between the
particles (GPa)

K0/a 83.81 61.28 36.05 65.28

K1/a 8.381 6.128 3.605 6.528

K2/a 74.921 −1.412 −5.79 20.654

4.2 Problems of the Material Identification

An identification problem is a construction of a mathematical model of a material on
the base of experimental observations. There are structural and parametric identifi-
cations. The first identification consists in the choice of the type of equations of the
mathematical model, and the second one is to find the values of the parameters that
ensure consistency of the values calculated due to the model with the experimental
data. The following approaches to model identification are distinguished:

1. Selection of model parameters from experimentally obtained material deforma-
tion diagrams.

2. Numerical simulation of the experiment and selection of model parameters from
the conditionof the bestmatchbetween the calculation results and the experiment.

3. The optimization problem of selecting the constants included in the model from
the condition of approaching of the analytical curve to experimental points.

Let us consider a problem of finding the values of parameters ensuring the consis-
tency of the two-dimensional models of granular media considered above with the
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classical theory of elasticity. It should be noted that the effective moduli of macroe-
lasticity are determined experimentally for three-dimensional media in the frame-
work of the classical theory. The role of a “bridge” from two-dimensional to three-
dimensional models can be played by equations that are two-dimensional degener-
ation of the classical Lame equations. Next, we will consider the parametric iden-
tification problems for media with hexagonal (Sect. 4.2.1) and cubic (Sect. 4.2.2)
symmetry.

4.2.1 Identification of the Medium with Hexagonal Symmetry

Lame equations for media with hexagonal symmetry have the form [15, 16]:

ρV utt = C11uxx + C66uyy + 1

2
(C11 + C12)wxy,

ρVwtt = C66wxx + C11wyy + 1

2
(C11 + C12)uxy . (4.7)

Here, ρV = ρ
√
6/2a is a “volume” density of the medium (note that in this case

the volume of the two-dimensional unit cell is equal to V2 = 0.5a2
√
3, and the

volume of the three-dimensional unit cell equals V3 = 0.5a3
√
2 [17]).

The main Eq. (2.8) for the hexagonal lattice was shown in the previous section to
degenerate into Eq. (4.4) in the long-wavelength low-frequency range, and those, in
turn, coincide with Eq. (4.7) up to the terms containing the fourth-order derivatives.
Fromcomparison of the coefficients in Eq. (4.7) and in the left-hand sides of Eq. (4.4),
relationships can be found between the longitudinal and shear wave velocities, c1
and c2, and the parameters s and β, on the one hand, and the elastic constants of the
second-order C11, C12, and C66, on the other hand:

c21 = C11

ρV
, c22 − β

2
= C66

ρV
= C11 − C12

2ρV
. (4.8)

Hence, it is possible to express the elastic constants in terms of the parameters of
a material microstructure:

C11 = 9
√
2

8

(
K0 + 2K1

a
+ 2(a2 − ad) + d2

a2 − ad + d2

K2

a

)
,

C12 = 3
√
2

8

(
K0 + 2K1

a
+ 2(a2 − ad) − d2

a2 − ad + d2

K2

a

)
. (4.9)

If the following conditions

(1) all the forces of interaction between the particles making up a crystal are central
(i.e., they are directed along the line connecting themass centers of the particles);
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(2) the particles are spherically symmetric and are located at the centers of symmetry
of the structure;

(3) in the initial state, there are no stresses in the crystal
are valid for the crystal, then six additional relations between the elastic constants
(Cauchy relations) yield, which are reduced in the two-dimensional case to
equality C11 = 3C12 for crystals with hexagonal symmetry [18].

Obviously, in the problem under consideration, the first of the above conditions
is not satisfied. However, as follows from Eq. (4.9), for media consisting of material
points (d = 0), in which all the interaction forces are obviously central (K1 = K2 =
0), this equality is really achieved.

In a general case, the equality

C11 − 3C12 = 9d2
√
2

4(a2 − ad + d2)

K2

a
(4.10)

is valid for particles with non-zero sizes.
Inequality C11 < 3C12 is valid for many crystals with hexagonal symmetry. In this

case, as follows from Eq. (4.10), the force constant K2 is negative (see Table 4.1).
Hence, parameterβ = 3d2

√
3

2ρ(a2−ad+d2)
K2 is also negative (seeEq. (2.9)). Such a situation

takes place, for example, for some molecular crystals [19].
From Eqs. (4.10) and (4.9), the force constants of the model can be expressed in

terms of elastic moduli as follows:

K2

a
= 2

(
1 − p + p2

)√
2

9p2
(C11 − 3C12),

K1

a
= 2

√
2

9(K + 2)

[
C11 + 3C12 + 2(p − 1)

p2
(C11 − 3C12)

]
. (4.11)

Here, K = K0/K1 is the relation between the central and non-central forces of
interaction, p = d/a is the relative size of the particle.

Relationships (4.11) can be useful for the estimation of quantities of the force
constants contained in the discrete models of microstructured media, if the macroe-
lasticitymoduli and typical particle sizes are known.And then, using the found values
of the force constants K1 and K2, one can calculate those macroparameters of the
medium, whose values are absent among the initial data of the considered problem.
This is especially true for those macroparameters that are rather difficult to measure
experimentally. These, in particular, include the velocity and critical frequency of
the rotational wave. At present, there is no direct experimental proof of the existence
of microrotational waves in solids. But it is known that spin waves in ferromagnetics
[20], dispersion properties of which were considered in Sect. 3.4.2, are close analogs
of microrotation waves in solids with a granular structure. So, an estimate of the
values of the velocity and critical frequency of such a wave in a granular medium
would be of great interest.
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An expression for the velocity of a microrotation wave in the medium with
hexagonal symmetry can be obtained from Eq. (4.11) and the third relation (2.9):

c3 =
√

1

ρV (K + 2)

(
C11 + 3C12 + 4p − 2 + K

2p2
(C11 − 3C12)

)
. (4.12)

Values of the longitudinal, c1, and transverse, c2, wave velocities have been
calculated from Eq. (4.8) with account of Eq. (2.12):

c1 =
√
C11

ρV
, c2 =

√
C11 − 2C12

ρV
, (4.13)

From Eqs. (2.12) and (4.13), it follows that

β = C11 − 3C12

ρV
. (4.14)

Hence, according to Eq. (2.10),

ω0d = 4
√|C11 − 3C12|/ρV . (4.15)

Theoretical estimates of the value of the velocity of a rotational wave, its normal-
ized critical frequency ω0d and the parameters of force interactions between the
particles have been obtained for some crystals with hexagonal symmetry (beryl-
lium (Be), cadmium (Cd), zinc (Zn) from known experimental data (the elasticity
constants C11, C12, and C44 as well as the density ρV at normal temperature [21]).
These estimates are listed in Table 4.1. The calculations were carried out for p = 0.9
and K = 10 (for which the central interactions dominate) due to formulas (4.12),
(4.15), and (4.11). Analysis showed that for 0.9 < p < 0.99 quantities c3, K0, K1, and
K2 varied by less than 10%.

It is clear from Table 4.1 that the rotational wave velocity is minimal for all
the considered materials, and the threshold frequencies lie in the hypersonic range.
Therefore, if it is to be supposed that the size of a crystal grain d = 10 nm = 10−8 m,
then for hypothetical nanocrystalline material with elasticity constants and density,
as for cadmium, ω0 ≈ 2.721 × 1011s−1, and for nanomaterial with parameters of
beryllium ω0 ≈ 4.324 × 1012s−1. At d = 100 nm = 10–7 m, the critical frequency
decreases by an order of magnitude. Therefore, in the sonic and ultrasonic ranges, the
microrotation waves can be neglected. However, their presence can be of principal
importance for high-frequency processes.
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4.2.2 Identification of the Medium with Cubic Symmetry

For media with cubic symmetry, Lame equations have the form [15, 16]:

ρV utt = C11uxx + C44uyy + (C12 + C44)wxy,

ρVwtt = C44wxx + C11wyy + (C12 + C44)uxy . (4.16)

Here, ρV = ρ/a is a “volume” density of the medium.
In order to compare Eqs. (4.16) and (4.4), we neglect the fourth-order derivatives

in Eq. (4.4). As a result, a relationship is established between the longitudinal and
shear wave velocities, c1 and c2, and the parameters s and β, on the one hand, and
the elastic constants of the second-order C11, C12 and C44, on the other hand:

c21 = C11

ρV
, c22 − β

2
= C44

ρV
, s2 + β

2
= C12 + C44

ρV
. (4.17)

It should be noted that equalities (4.17) differ from the classical ones by the
presence of the dispersion parameter β = 2d2K2

ρ(d2+(a
√
2−d)2)

in them (see Eq. (3.15)).
This parameter is proportional to the square of the critical frequency of the rotational
waves: |β| = ω2

0d
2/16 (see Eq. (2.10)). For degeneration into the classical case (i.e.,

β = 0) it is enough to fulfill at least one of two conditions: d = 0 (point particles) or
K2 = 0 (non-central interactions between the particles are not taken into account).

With the allowance for the relation c22 = β + s2/2 Eq. (4.17) can be rewritten in
the form:

c21 = C11

ρV
, c22 = 2C44 − C12

ρV
, s2 = 2C12

ρV
, β = 2(C44 − C12)

ρV
. (4.18)

The dependences being inverse to Eq. (4.18) have the form:

C11 = ρV c
2
1,C12 = ρV s

2/2,C44 = ρV (2c22 + s2)/4. (4.19)

Using relations (3.15) and (4.19), it is possible to express the elastic constants in
terms of the microstructure parameters of the material:

C11 = K0 + 2K1 + K3

a
+ 2(a

√
2 − d)2

d2 + (a
√
2 − d)2

K2

a
,

C12 = K3

a
,C44 = d2

d2 + (a
√
2 − d)2

K2

a
+ K3

a
. (4.20)

It follows from Eq. (4.20) that for media with cubic symmetry and consisting
of material points (d = 0), all the interaction forces between which are central, the
equality C12 = C44 is fulfilled, which is the Cauchy relation for crystals with cubic
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symmetry [18]. In a general case, for particles with non-zero sizes, the following
relation is valid:

C44 − C12 = d2

d2 + (a
√
2 − d)2

K2

a
(4.21)

It is seen from Eq. (4.21) that C44 > C12 for K2 > 0. This fact is confirmed by
experimental data for many crystals with cubic symmetry (see Table 4.2). However,
there also exist materials, for which the ratio C44 < C12 is satisfied. In such cases, the
force constant K2 and the parameter β are negative (see Eq. (4.18)). Such a situation
is observed, for example, in some molecular crystals [19], and a negative rigidity of
connections is present, in particular, in Ref. [22]. The Cauchy relation fairly good
fulfill for alkali-galloid crystals (KCl, NaBr). For metals, the Cauchy relation is
poorly performed, because the forces of interaction between atoms in metals are not
central [23]. This, apparently, indicates the necessity to take into account the moment
interactions between particles in metals.

Table 4.2 Structure parameters for crystals with cubic symmetry

The structure parameters Crystals

LiF NaF NaBr C60

Experimental
data

Density(kg/m3) ρV 2600 2800 3200 1720

Elasticity constants
(GPa)

C11 113.00 97.00 32.55 14.9

C12 48.00 25.60 13.14 6.9

C44 63.00 28.00 13.26 8.1

Calculated
characteristics

Wave velocities (m/s) c1 6593 5890 3190 2943

c2 5477 3295 2045 2325

vtr 3536 3571 1741 1525

c3 5659 2896 1092 2036

The normalized
threshold frequency of
the rotational waves
ω0d (m/s).

ω0d 13,587 5237 1095 4781

The Cosserat
constants (GPa)

λ 48.00 25.60 13.14 6.9

μ 63.00 28.00 13.26 8.1

γ /R2 83.28 23.49 3.81 7.1

κ 30.00 4.8 0.24 2.4

Parameters of force
interactions between
the particles (GPa)

K0/a 46.01 58.19 16.11 6.01

K1/a 4.601 5.819 1.611 0.601

K2/a 19.897 3.183 0.159 1.592

K3/a 48.00 25.60 13.14 6.90
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In order to estimate the values of the force constants included in discretemodels of
media with microstructure, from relations (4.21) and (4.20) by the knownmacroelas-
ticitymoduli and the typical particle size, like for amediumwith hexagonal symmetry
(see Sect. 4.2.1), one can obtain equalities similar to (4.11):

K3

a
= C12,

K2

a
= (C44 − C12)

⎛

⎝1 +
(√

2

p
− 1

)2
⎞

⎠,

K1

a
= 1

K + 2

⎡

⎣C11 − C12 − 2(C44 − C12)

(√
2

p
− 1

)2
⎤

⎦. (4.22)

In addition, the force parameters can also be expressed in terms of the velocities
of various elastic waves—for this, it is enough to find the dependences of the elastic
constants on these velocities. In the square lattice of round particles, there are three
independent quantities among the translational wave velocities—according to the
number of elastic constants of the second order. Account of relation C11 − C12 =
2ρV v2110 [15], where v110 is the shear wave velocity in the crystallographic direction
<110>, leads to the following equality:

s2 = 2c21 − 4v2110. (4.23)

Hence, Eq. (4.19) can be rewritten in the form:

C11 = ρV c
2
1,C12 = ρV (c21 − 2v2tr ),

C44 = ρV (c21 + c22 − 2v2110)/2. (4.24)

Formulas (4.24) demonstrate how to determine the effective elastic moduli of a
crystalline medium from acoustic measurements. As a result, from Eqs. (4.22) and
(4.24), we derive the following dependences of the force parameters on the elastic
wave velocities and the size of round particles in the square lattice [1]:

K3

a
= ρV (c21 − 2v2110),

K2

a
= ρV

2

(
(c22 − c21 + 2v2110

)
⎛

⎝1 +
(√

2

p
− 1

)2
⎞

⎠,

K1

a
= ρV

K + 2

⎡

⎣2v2110 +
(√

2

p
− 1

)2

(c21 − c22 − 4v2110)

⎤

⎦. (4.25)

By finding the inverse dependences to Eq. (3.10), it is possible to obtain the similar
relations for a rectangular lattice of ellipsoidal particles [10]:
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K3 = Ms2(1 + f 2)

4a2 f
= M(1 + f 2)(c22 − β1)

2a2 f 2
,

K2 = Mβ1( f 2 p2 + (
√
2 − p)2)

2a2 f 2 p2
,

K0 + 2K1 = M

a2

[

c21 − β1(
√
2 − p)2

f 2 p2
− s2

2 f

]

= M

a2

[

c21 − c22(
√
2 − p)2 + f s2(p

√
2 − 1)

f 2 p2

]

. (4.26)

Expressions (4.26) and (3.10) establish the correspondence between the micro-
model parameters and the macrocharacteristics of the anisotropic medium. This
relationship can be used to identify microstructured materials according to data of
acoustic experiments.

Due to Eqs. (4.22), (4.25), and (4.26), as well as the dependences of the rotational
wave velocity c3 on the microstructure parameters (3.15) and (3.10), it is possible
to express c3 through experimentally determined quantities. So, for a rectangular
lattice, the microtation wave velocity has the form:

c3 =
√√√√ 2

K + 2

(

c21 − c22
f 2

+ (2c22 − f s2)(2p
√
2 + K )

2 f 2 p2

)

(4.27)

And in the case of a square lattice (f = 1), it is expressed in one of the following
two ways:

c3 =
√√√√ 2

K + 2

(

c21 − c22 + (c22 − c21 + 2v2110)(2p
√
2 + K )

p2

)

(4.28)

or

c3 =
√√√√ 2

ρV (K + 2)

[

C11 + C12 − 2C44 + K + 4p
√
2 − 2

p2
(C44 − C12)

]

(4.29)

Depending on the initial data of the problem to be solved, it is possible to estimate
the rotationalwave velocity in various crystalswith cubic symmetry either by formula
(4.28) or by expression (4.29). Let us suppose that elastic constants are given. Then,
the elastic wave velocities are determined by the equalities inverse to Eq. (4.24):
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c1 =
√
C11

ρV
, c2 =

√
2C44 − C12

ρV
, (4.30)

vtr = √
(C11 − C12)/2ρV .

Table 4.2 contains the theoretical estimates of the values of the rotational wave
velocity and the normalized threshold frequency

ω0d = 4
√
2|C44 − C12|/ρV (4.31)

for some crystalswith cubic symmetry (lithiumfluoride (LiF), sodiumfluoride (NaF),
sodium bromide (NaBr), and fullerite (C60). In addition, this table contains the values
of the elasticity constants C11, C12, and C44, as well as the density ρV taken from
the known experimental data (see Ref. [21] for alkali-galloid crystals at normal
temperature) and the theoretical data (see Ref. [24], where the modified Lennard-
Jones intermolecular potential was used to estimate the elastic moduli of sc-lattice
of fullerite C60 at low temperatures). The rotational wave velocity has been calcu-
lated by the formula (4.29), the elastic wave velocities along directions <100> and
<110>—by Eq. (4.30) and, finally, the force interaction parameters—by Eq. (4.22).
All calculations have been performed for p = 0.9 and K = 10 (central interactions
dominate).

Table 4.2 shows that for most of the considered materials, the rotational wave
velocity is minimal and the threshold frequencies lie in the hypersonic range. So, if
we take the crystallite size equal to d = 10 nm =10−8 m, then for a hypothetical
nanocrystalline material with elastic constants and density, like for sodium bromide,
we get ω0 ≈ 1.095 × 1011s−1, and ω0 ≈ 1.359 × 1012s−1 for a nanomaterial
with lithium fluoride parameters. In order of magnitude, these values coincide with
theoretical estimates of the critical frequency of rotational waves in crystals with
a hexagonal lattice (see Sect. 4.2.1) and experimentally determined values of such
a frequency in organic crystals [2–5, 25] (for example, in a naphthalene crystal
ω0 ≈ 6 × 1011 s−1). Therefore, as for media with hexagonal symmetry, the account
of microrotational waves is necessary for studying high-frequency processes, while
in the sound and ultrasonic ranges, they can be neglected.

4.3 Comparison with the Cosserat Continuum Theory

The practical problem of identifying the Cosserat continuum used for modeling of a
real heterogeneousmaterial is still relevant [26–28]. However, reliable and confirmed
by different researchers results on determining the model parameters are quite rare
even in the simplest case of the elastic isotropic Cosserat continuum [29]. For solving
this problem, we propose to apply the following procedure for evaluating themedium
macroparameters that is based on the structural modeling method.
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Let us compare Eq. (3.6) with the dynamic equations for the two-dimensional
Cosserat continuum [6–8, 30] consisting of centrally symmetric particles. Lagrange
function for such a continuum has the form

L = ρV

2

(
u2t + w2

t + R2ϕ2
t

)

− 1

2

[
B(u2x + w2

y) +
(
μ + κ

2

)
(w2

x + u2y) + γ (ϕ2
x + ϕ2

y)

+
(
λ + μ − κ

2

)
(uxwy + uywx ) + 2κ(wx − uy)ϕ + 2κϕ2

]
. (4.32)

Here, B is a macroelasticity constant of the second order, λ and μ are Lame
constants, andγ andκ are phenomenological constants to be found fromexperiments.
In the case of the isotropic Cosserat continuum,

B = λ + 2μ. (4.33)

In order to compare Lagrange functions (4.32) and (4.2), we will put in Eq. (4.2)
all δi = 1, β1 = β2 = β and neglect the fourth-order derivatives in it. As a result,
the acoustic characteristics of a medium can be expressed in terms of the constants
of the Cosserat theory:

c21 = B

ρV
, c22 = 2μ + κ

2ρV
, c23 = γ

ρV R2
, s2 = 2λ + 2μ − κ

2ρV
, β = κ

ρV
,

(4.34)

and for a mediumwith hexagonal symmetry the first Eq. (4.34) taking relation (4.33)
into account, takes on the form 2c22 −s2 = 2β. The dependence inverse to Eq. (4.34),
taking into account the relationship 2c22 − s2 = 2β, has the form

B = ρV c
2
1 = C11, λ = ρV (c22 − β) = C12, μ = ρV

(
c22 − β

2

)
= C44,

κ = ρVβ = 2(C44 − C12), γ = ρV R
2c23 (4.35a)

for the square lattice and

λ = ρV (c21 − c22)

2
= C12, μ = ρV (c21 + c22)

4
= C11 − C12

2
,

κ = ρVβ = ρV

2
(3c22 − c21) = C11 − 3C12, γ = ρV R

2c23 (4.35b)

for the hexagonal lattice, taking into account the relation s2 = c21 − c22.



4.3 Comparison with the Cosserat Continuum Theory 97

It follows from Eqs. (4.35a) and (4.35b) that not all the constants of the Cosserat
medium can be expressed in terms of the elasticity constants of the second order—
additional assumptions about the values of K = K0/K1 and p = d/a are necessary
for parameter γ (see Sect. 4.2). It is interesting to note that Eqs. (4.35a) and (4.35b)
imply a relation μ − λ = κ/2 indicating that in the proposed models the Lamé
constants λ and μ are interlinked through the parameter κ, which is responsible
for the interaction between the microrotations of the particles and shift strains. The
value of a threshold frequency of a microrotational wave also depends on parameter
κ: ω0 = √

2|κ|/(ρV R2) = 4
√|κ|/(ρV d2). We also note that the averaged elastic

Lamé constants λ andμ [31] are often used in the mechanics of materials to describe
anisotropic media.

Relations (4.35a) and (4.35b) enable one to obtain quantitative estimations for
the coefficients, which are included in decomposition of the internal energy in
the Cosserat theory, for various materials (see, for example, Tables 4.1 and 4.2).
Earlier performanceof such estimateswas impossiblewithout the structuralmodeling
method. It should be noted that similar relations were obtained in Ref. [30]; however,
in that work, the dependence of the material constants on the particle size remained
unclear.

4.4 Influence of the Microstructure on the Poisson’s Ratio
of an Isotropic Medium

One of the most important characteristics of elasticity of a material is the Poisson’s
ratio ν, which is a relation of transverse compression to elongation in the case of
pure tension. From the classical theory of elasticity, it is known that theoretically
justified values of the Poisson’s ratio lie in the range −1 ≤ ν ≤ 0.5 [32]. The
upper limit corresponds to incompressible materials (particularly, rubber), which
save their volume during deformation, but their shape changes substantially. The
lower limit corresponds tomaterials,whichgeometric proportions are constant during
deformation, but their volume varies.

Materials with negative Poisson’s ratio ν are of special interest. Porous media,
granular materials, polymers, composites, and crystalline media are good examples
of such materials [32, 33]. The first reliable mention of the experimentally observed
negative values of Poisson’s ratio (quartz crystals at high temperatures) refers to
1962 [34]. At present, a term auxetics (from the Greek “auxetos”—”swelling”) is
widely used for these materials. This term was proposed by K. Evans in 1991 [35].
Nowadays, in the scientific literature, there appear rather many publications about
nanomaterials (see, for example, [36, 37]) and porous materials possessing auxetic
properties. Advantages of suchmaterials are their high consumer values (particularly,
small density and good insulation properties). An article [32] is devoted to a review
of literature published on the subject at the beginning of the twenty-first century.
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In addition, many rocks also have a negative Poisson’s ratio. Thus, the data
processing for about a hundred samples of fractured materials (rocks) carried out in
Ref. [38] revealed that about 40% of the examined samples have a negative Poisson’s
ratio that is assumed as a rare exception. The discovered properties of real cracks
based on the auxetic material model explain this fact and greatly change the conclu-
sions about the effect of fracturing on the elastic wave velocities used in seismic
exploration. In particular, this model drastically improves the accuracy of predicting
the values of elastic moduli due to data from one pressure range to a significantly
different one (for example, from <20–30 MPa to ~100 MPa that is not available to
traditional models).

However, the description of auxetic properties is impossible without a mathemat-
ical model. In the models contained in modern publications, the Poisson’s ratio can
be negative due to the anisotropy of the elastic properties of a material [39, 40], the
presence of rotating rigid links [41, 42], polydispersity [43], fractal structure [44],
and the application of negative hydrostatic pressure [45, 46].

In this section, on the base of the model considered in Chap. 2, we will show that
the Poisson’s ratio of a medium with hexagonal symmetry can be negative for some
values of the parameters of its internal structure.

In an isotropic medium, the Poisson’s ratio ν is calculated as follows [7, 23]:

ν = λ

2(λ + μ)
. (4.36)

For a medium with hexagonal symmetry, as follows from (4.35b),

λ = C12, μ = C11 − C12

2
,

therefore,

ν = C12

C11 + C12
. (4.37)

Substitution of Eqs. (4.9) into (4.37) leads to the following expression for the
Poisson’s ratio:

ν = 1

4

(
1 − 3p2

2η(1 − p + p2) + (2 − p)2

)
, (4.38)

where η = (K0 + 2K1)/K2 is the dimensionless force parameter. Obviously, for
p → 0 (i.e., when the particles degenerate into material points), the property of
auxeticity of the medium disappears and ν → 1/4. It should be emphasized that in
this section, the value of the Poisson’s ratio is analyzed not for the two-dimensional
lattice considered in Chap. 2 (in a two-dimensional hexagonal lattice consisting of
material points ν = 1/3 [17]), but for a three-dimensional medium. Such an analysis
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is carried out by extrapolating the two-dimensional model to the three-dimensional
case. As a result, expressions (4.37) and (4.38) are obtained.

As it follows fromEq. (4.38), in themodel at issue, negative values of the Poisson’s
ratio (−1 ≤ ν ≤ 0) are observed in the interval

−0, 2p2 + 2p − 2

p2 − p + 1
≤ η ≤ p2 + 2p − 2

p2 − p + 1
, (4.39a)

and positive ones (0 < ν ≤ 0.5)—at

η ≤ −2 or η >
p2 + 2p − 2

p2 − p + 1
. (4.39b)

For other values of η, the proposed model should be assumed inapplicable, since
in this case, the values of the Poisson’s ratio lie outside the mentioned above range
−1 ≤ ν ≤ 0.5.

In order to compare theoretical calculations with experimental data, it is some-
times more convenient to use not the relative particle size p = d/a, but the parameter
q characterizing the porosity of the medium and defined as the ratio of the volume
of voids to the representative volume of the medium:

q = 1 − πd2

2a2
√
3
. (4.40)

The effective linear density of the medium ρ = 2M/(a2
√
3), equal to the mass

of the substance per unit cell area, is related to the porosity and linear density of the
grains, ρ1 = 4M/(πd2), by the expression ρ = (1 − q)ρ1. The porosity value in
the considered medium lies in the range from qmin achieved at d = a (grains touch
each other) to qmax, which corresponds to the case, when d = 0 (a medium consists
of material points). Thus, qmin = 1 − π

2
√
3

≈ 0.093 and qmax = 1. Taking into
account the relation, which is inverse to Eq. (4.40),

p2 = 2
√
3(1 − q)

π
,

expression (4.38) can be rewritten in the form:

ν = 1

4

⎛

⎝1 − 3
√
3(1 − q)

√
3(1 − q)(1 + 2η) + (η + 2)(π −

√
2π

√
3(1 − q))

⎞

⎠. (4.41)

The dependence (4.41) of the Poisson’s ratio ν on the porosity q for fixed values
of the dimensionless force parameter η is shown in Fig. 4.2a (curve 1 corresponds to
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Fig. 4.2 Poisson’s ratio versus the porosity of thematerial (a) and the parameter of force interactions
(b)

Table 4.3 Relationship between the Poisson’s ratio, the force parameter η and porosity of the
medium (the particle size)

The relative size of
particles, p

The medium porosity, q Values of Poisson’s ratio ν

−1 ≤ ν ≤ 0 0 < ν ≤ 0.5

0.5 0.773 −1.4 ≤ η ≤ −1 η ≤ −2 or η > −1

0.9 0.265 −0.398 ≤ η ≤ 0.670 η ≤ −2 or η > 0.670

1 0.093 −0.2 ≤ η ≤ 1 η ≤ −2 or η > 1

η = −2.1; 2 − η = −4; 3 − η = 5; 4 − η = 0.4; 5 − η = 0.03; 6 − η = −0.25) and
the dependence of ν on η is plotted at fixed values of porosity in Fig. 4.2b (curves
1 correspond to q = qmin ≈ 0.093 and curves 2—to q = 0.8). In this figure, all
the curves have the same horizontal asymptote ν = 0.25 corresponding to q = 1.
The vertical asymptotes for a graph of function ν(η) at fixed values of porosity q are
found by the formula

η = −(
√
2π −

√
(1 − q)

√
3)2

(

√
2
√
3(1 − q) − √

π)2 +
√
2π

√
3(1 − q)

. (4.42)

It follows from Eq. (4.42) that all vertical asymptotes of the function graph ν(η)

are located in the left half plane η < 0.
From Fig. 4.2, it is visible that the Poisson’s ratio can be negative for small (in

magnitude) η and q, i.e., when the moment interactions are small compared to the
central ones (K2 < K0) and the representative volume of the medium is sufficiently
large in comparison with the volume of voids. If η satisfies conditions (4.39b), then
the Poisson’s ratio is positive for any values of q, moreover, function ν(q) decreases,
when η < 0, and increases, if η > 0 (see curves 1–3 in Fig. 4.2a).



4.4 Influence of the Microstructure on the Poisson’s Ratio … 101

For various values of the relative particle size and porosity, Table 4.3 indicates for
which η the Poisson’s ratio is negative and for which it is positive. The corresponding
values of η have been calculated using formulas (4.39a) and (4.39b). Note that ν =
0.25 for p = 0 and the condition 0 < ν ≤ 0.5 is satisfied for any η. But if η = −2,
then ν = 0.5 for any p.

4.5 Influence of the Microstructure on the Poisson’s Ratios
of the Anisotropic Medium

As distinct from isotropic medium, anisotropic material has several Poisson’s ratios,
since tension or compression along one axis can substantially differ from tension or
compression along an other axis. Different Poisson’s ratios are denoted by indices
containing the designations of two axes: The first axis is that along which the initial
tension or compression occurs and the second one is those along which the response
is observed. It should be noted that values of some Poisson’s ratios can go beyond
the known interval (−1; 0.5) [32, 47], however, the average value of the Poisson’s
ratios will be sure to locate in this interval.

So, in an anisotropic monocrystalline material with a cubic lattice, the Poisson’s
ratios in special crystallographic directions <100>, <110>, and <111> are found by
known relations [48, 49]:

ν<100, 001> = C12

C11 + C12
, ν<110, 001> = 4C12C44

2C11C44 + (C11 − C12)(C11 + 2C12)
,

(4.43)

ν<110,11̄0> = (C11 − C12)(C11 + 2C12) − 2C11C44

(C11 − C12)(C11 + 2C12) + 2C11C44
,

ν<111,111> = C11 + 2C12 − 2C44

2(C11 + 2C12 + C44)
. (4.44)

Obviously, if the Poisson’s ratios (4.43) are always greater than zero for positive
elasticity constants, then the Poisson’s ratios (4.44) can take on negative values.
Substitution of expressions (4.19) into formulas (4.44) gives a possibility to analyze
influence of the medium microstructure on the corresponding anisotropic Poisson’s
ratios. For simplicity, we will also take K1 = 0. Dependences of the Poisson’s ratios
ν1 = ν<110, 11̄0> i ν2 = ν<111, 111> on the relative size of the particles d/a are
plotted for various values of the parameters of force interactions K2/K0 and K3/K0

in Figs. 4.3 and 4.4.
From Figs. 4.3 and 4.4, it follows that the Poisson’s ratios ν1 and ν2 monotonically

decrease with increasing the particle size and, consequently, the large particle size
d/a → 1 contributes to negative values of ν1 and ν2 [50].

Note that ν1 < 0 for
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Fig. 4.3 Dependence of the Poisson’s ratio ν1 = ν<110, 11̄0> on the relative size of the particles:
a for K2/K0 = 0.3 (1—K3/K0 = 0.37; 2—K3/K0 = 0.6; 3—K3/K0 = 0.9); b for K3/K0 = 0.7
(1—K2/K0 = 0.3; 2—K2/K0 = 0.6; 3—K2/K0 = 0.9)

Fig. 4.4 Dependence of the Poisson’s ratio ν2 = ν<111, 111> on the relative size of the particles:
a for K2/K0 = 1 (1—K3/K0 = 0.1; 2—K3/K0 = 0.4; 3—K3/K0 = 0.7); b for K3/K0 = 0.2
(1—K2/K0 = 0.3; 2—K2/K0 = 0.7; 3—K2/K0 = 1.1)

K0 +
4
(
1 − p

√
2
)
K2

p2 +
(√

2 − p
)2 <

2K 2
3

(
p2 +

(√
2 − p

)2
)

(K0 + K3)
(
p2 + (

√
2 − p)2

)
+ 2(

√
2 − p)2K2

.

(4.45)
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Substitution of the maximum possible value of the relative particle size p = d/a
= 1 into (4.45) gives the following inequality:

2K 2
30 +

(√
2K20 − 1

)
K30 + (

√
2 − 1)K 2

20 +
(
3
√
2

2
− 1

)

K20 − 1 > 0, (4.46)

where K20 = K2/K0 and K30 = K3/K0. In fact, inequality (4.46) is a necessary
condition for negativity of ν1.

An analysis of the expression (4.46) shows that in cases, when K20 < −9.69
or K20 > 0.71, ν1 < 0 for any values of K30. If, then at or, where. But if

−9.69 < K20 < 0.71, then ν1 < 0 for K30 < 1
4

(
1 − √

2K20 − √
F

)
or

K30 > 1
4

(
1 − √

2K20 + √
F

)
, where F = (10 − 8

√
2)K 2

20 + (8 − 14
√
2)K20 + 9.

For example, if K20 = 0.3, then F ≈ 5.34 and K30 < −0.43 or K30 > 0.72. If
K20 = 0.5, then F ≈ 2.77 and K30 < −0.34 or K30 > 0.49. Finally, if K20 = 0.6,
then F ≈ 1.45 and K30 < −0.26 or K30 > 0.34. These results are confirmed by the
shown in Fig. 4.5 dependences of ν1 on the parameters of force (K30 = K3/K0) and
moment (K20 = K2/K0) interactions [50].

In its turn, ν2 < 0 when

(K0 + K3)
(
p2 + (

√
2 − p)2

)
< 4

√
2
(
p − 1/

√
2
)
K2. (4.47)

Fig. 4.5 Dependence of the Poisson’s ratio ν1 = ν<110, 11̄0> for d/a =1 on the parameters of force
a and moment b interactions: a—K20 = 0.3 (curve 1), K20 = 0.6 (curve 2), K20 = 0.9 (curve 3);
b—K30 = 0.37 (curve 1), K30 = 0.6 (curve 2), K30 = 0.9 (curve 3)
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Table 4.4 Poisson’s ratios for crystals with cubic symmetry

The structure parameters Crystals

LiF NaF NaBr C60

Experimental
data

Density ρ, kg/m3 2600 2800 3200 1720

Elasticity constants,
GPa

C11 113.00 97.00 32.55 14.9

C12 48.00 25.60 13.14 6.9

C44 63.00 28.00 13.26 8.1

Calculated
characteristics

Wave velocities, m/s c1 6593 5890 3190 2943

c2 5477 3295 2045 2325

v110 3536 3571 1741 1525

c3 5659 2896 1092 2036

The dispersion parameter β, m/s 3396 1309 274 1181

Parameters of force
interactions between
the particles, GPa

K0/a 55.21 69.83 19.33 7.21

K2/a 19.90 3.18 0.16 1.59

K3/a 48.00 25.60 13.14 6.90

Poisson’s ratios ν<100, 001> 0.298 0.209 0.288 0.317

ν<110, 001> 0.435 0.179 0.348 0.474

ν<110, 11̄0> −0.023 0.322 0.139 −0.025

ν<111, 111> 0.153 0.262 0.224 0.170

Since the Poisson’s ratio ν2 decreases with growing of the grain size, inequality
(4.47) implies the necessary condition for its negativity, which is obtained by substi-
tuting the maximum possible value p = 1 into (4.47): K3 <

√
2K2 − K0. Thus,

if
√
2K2 < K0, then for K3 > 0, the Poisson’s ratio ν2 will not be negative at any

particle size p.
Table 4.4 contain the values of the Poisson’s ratios for some crystals with

cubic symmetry (lithium fluoride (LiF), sodium fluoride (NaF), sodium bromide
(NaBr), fullerite C60) calculated from known experimental and theoretical data (see
Table 4.2). The calculations have been performed for p = 0.9 and K1 = 0. From
Table 4.4, it is seen that the Poisson’s ratio ν1 = ν<110, 11̄0> can be negative for two
of the four considered materials—LiF and C60.

4.6 Conclusions

In this chapter, the low-frequency approximation of the dynamic equations of gran-
ular media obtained in Chaps. 2 and 3 has been considered. In this case, the rotational
degrees of freedom of the particles can be neglected, and the original Eqs. (2.8) and
(3.6) degenerate into theLaméequations of the classical theory of elasticity.However,
a print of the microstructure is still left in the form of the relationships between the
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effective macroscopic characteristic parameters of the medium and the micromodel
parameters.

The parametric identification of the elaborated models has been performed by
comparing equations describing the propagation and interaction of longitudinal and
transverse waves in a granular medium in the low-frequency approximation, with the
equations of the classical theory of elasticity and the equations of the two-dimensional
Cosserat continuum. As a result, formulas for calculation of the Cosserat constants,
as well as the velocity and threshold frequency of the microrotation wave in such a
medium have been obtained. Moreover, due to such formulas, quantitative estimates
of these parameters have been obtained for some hypothetical materials with param-
eters similar to certain crystals with hexagonal and cubic symmetry. In addition,
the dependence of the Poisson’s ratios of both isotropic and anisotropic granular
media on the parameters of their microstructure has been established due to para-
metric identification. An analysis of the dependences showed that the Poisson’s ratios
monotonously decrease with growing of the relative particle size d/a. So, when this
size tends to 1 and the parameter of moment interactions is comparable to the param-
eters of force interactions K0 and K3, with a high probability, the Poisson’s ratios
ν1 = ν<110, 11̄0> and, to a lesser extent, ν2 = ν<111, 111> become negative. This fact
concerning ν1 = ν<110, 11̄0> is also confirmed by the quantitative estimates given
in Table 4.4 for the Poisson’s ratios for some cubic crystals. The performed inves-
tigations can serve as a theoretical basis for creating advanced metamaterials with
auxetic properties.

It should be also remarked that media possessing auxetic properties are rather
often modeled on the base of chiral lattices, particles of which interact on account of
non-symmetrical compounds. Such models were considered, particularly, in Refs.
[40, 51, 52].
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Chapter 5
Nonlinear Models of Microstructured
Media

In Chaps. 2–4, the linear models of microstructured media have been considered,
the particles of which have three degrees of freedom. In this chapter, the dynamic
equations of a rectangular lattice of ellipse-shaped particles and a square lattice
of round particles are generalized to the nonlinear case. Such a generalization is
necessary for the study of nonlinearwave processes [1, 2] inmicrostructuredmedia—
the corresponding problems will be considered in Chap. 7. In addition, a nonlinear
model of a single-layer medium of nanotubes is developed in this chapter. Such a
model represents a square lattice of dipoles with five (three translational and two
rotational) degrees of freedom.

5.1 A Rectangular Lattice Consisting of Ellipse-Shaped
Particles

This section is devoted to the development of a nonlinear mathematical model of
a two-dimensional granular medium, which represents a rectangular lattice of elas-
tically interacting ellipse-shaped particles, and the estimation of the nonlinearity
coefficients of this model in the particular case—for the square lattice consisting of
round particles.

In Chap. 3, we considered a two-dimensional rectangular lattice consisting of
homogeneous particles (grains or granules) of mass M and having the shape of an
ellipse with axes of lengths d1 and d2 (Fig. 3.1). The interactions of neighboring
granules are modeled by four types of elastic springs and are determined by the
relative elongations of the springs when the particles deviate from the equilibrium
states. In Appendix 2, the elongations of these springs are calculated up to quadratic
terms. Taking into account these terms, one can obtain the Lagrange function L =
Ti, j − Ui, j for a particle with the number (i, j) up to terms of ε5/2-order inclusive
(ε is a measure of the cell deformation, �ui = (ui, j − ui−1, j )/a ∼ �wi ∼ ε,
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�u j = (ui, j − ui, j−1)/b ∼ �wj ∼ ε, ϕi, j∼ √
ε, �ϕi ∼ �ϕ j ∼ ε3/2). In this case,

in the continuum approximation, the Lagrange function L of the considered medium
consisting of anisotropic particles takes on the form:

L = M

2

(
u2t + w2

t + R2ϕ2
t

) − M

2

[
c21(u

2
x + δ1w

2
y) + c22(w

2
x + δ2u

2
y)

+ R2c23(ϕ
2
x + δ3ϕ

2
y) + s2(uxwy + δ4uywx )

+ 2β1(wx − δ5uy)ϕ + 2β2ϕ
2

+ (α1u
3
x + α′

1w
3
y) + (α2u

3
y + α′

2w
3
x ) + α3(au

2
xuy + buxu

2
y)

+ α′
3(aw

2
xwy + bwxw

2
y) + α4(a

2u2xwx + b2u2ywx + abu2xwy)

+ α′
4(b

2uyw
2
y + a2uyw

2
x + abuxw

2
y)

+ (α5uxw
2
x + α′

5u
2
ywy) + α6uxuy(awx + bwy)

+ α′
6wxwy(aux + buy) + (α7 − α8)uxuyϕ − (α′

7 − α8)wxwyϕ

+ α9(a
2(w2

x − u2x ) + b2(w2
y − u2y))ϕ + (α10uy + α′

10wx )ϕ
2

+ (α11 − α12)uxϕ
2 + (α′

11 − α′
12)wyϕ

2

+ (α13 + α14a
2)uxwxϕ + (α′

13 + α14b
2)uywyϕ

+α15(uxwy + uywx )ϕ
]
. (5.1)

Using Hamilton’s variational principle, differential equations of the first approx-
imation that describe nonlinear dynamic processes in an anisotropic crystalline
medium are derived from the Lagrange function (5.1):

utt = c21uxx + δ2c
2
2uyy + 1 + δ4

2
s2wxy

− δ5β1ϕy + 1

2

∂F1

∂x
+ 1

2

∂F2

∂y
,

wtt = c22wxx + δ1c
2
1wyy + 1 + δ4

2
s2uxy

+ β1ϕx + 1

2

∂F3

∂x
+ 1

2

∂F4

∂y
,

R2ϕt t = R2c23
(
ϕxx + δ3ϕyy

)

+ β1
(
δ5uy − wx

) − 2β2ϕ − F5. (5.2)

Here,

F1 = 3α1u
2
x + α3(2auxuy + bu2y)

+ α4(2a
2uxwx + abuxwy) + α′

4abw
2
y + α5w

2
x

+ α6uy(awx + bwy) + α′
6awxwy
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+ (α7 − α8)uyϕ − 2α9a
2uxϕ + (α11 − α12)ϕ

2
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2)wxϕ + α15wyϕ,
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2uywx + α′
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2
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2uywx
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+ α4abu
2
x + α′
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2uywy + 2abuxwy)
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y + α6buxuy + α′

6wx (aux + buy)

− (α′
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2wyϕ+
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11 − α′
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13 + α14b

2)uyϕ + α15uxϕ,

F5 = (α7 − α8)uxuy − (α′
7 − α8)wxwy

+ α9(a
2(w2

x − u2x ) + b2(w2
y − u2y))+

+ 2(α10uy + α′
10wx )ϕ + 2(α11 − α12)uxϕ
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11 − α′

12)wyϕ + (α13 + α14a
2)uxwx

+ (α′
13 + α14b

2)uywy + α15(uxwy + uywx ) (5.3)

are the nonlinearity functions.
The following notation is introduced in the Lagrange function (5.1) and Eq. (5.2):

ci (i = 1, 2, 3) are the velocities of the longitudinal, shear, and microrotation waves,
respectively, s is the coefficient of linear coupling between the longitudinal and shear
waves, β1 and β2 are the dispersion parameters, δi (i = 1 ÷ 5) are the correction
coefficients arising due to the anisotropy of the medium at issue, and αi are the
nonlinearity coefficients.

The coefficients of the linear parts of Eq. (5.2) are expressed in terms of the force
constants K0, K1, K2, K3, lattice parameters a and b, and particle sizes h1 and h2
according to formulas (3.9). The anisotropy parameters have the form (3.7). The
nonlinearity coefficients depend on the microstructure parameters as follows:

Mα1 = K2

r41
a3(a − h1)h

2
2 + K3

r43
a3(a − h1)(b − h2)

2,
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Mα2 = K3

r43
b3(a − h1)(b − h2)

2, Mα3 = K3

r43
ab(a − h1)(b − h2)

2,

Mα4 = K3

r43
a(b − h2)

(
(b − h2)

2 − 2(a − h1)
2
)
,

Mα5 = K0a
2 + K1

a3

a − h1
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r41
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(
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2 − 2h22
)
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r43
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(
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2),
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2 − 2(a − h1)
2
)
,

Mα7 = 4abK3

r43
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Mα8 = 4abK3

r43
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α9 = α8
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r43
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r41
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2
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)
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r43
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2,

Mα12 = 4aK3

r43
(b − h2)(bh1 − ah2)(h1(a − h1) + h2(b − h2)),
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r41
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2
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2) − ah22(a − h1)
)
,

Mα14 = 2K3

r43
[((a − h1)

2 − (b − h2)
2
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(h1(a − h1) + h2(b − h2))

− 2(a − h1)(b − h2)(bh1 − ah2)],
Mα15 = 2abK3

r43

(
(a − h1)

2 − (b − h2)
2
)
(h1(a − h1) + h2(b − h2)). (5.4)

The expressions for coefficients α′
i (i = 1 ÷ 7, 10 ÷ 13) are obtained from the

formulas for the corresponding coefficientsαi by simultaneously replacing theparam-
eters a with b, h1 with h2, b with a, h2 with h1, and r1 with r2. It should be noted
that when the considered rectangular lattice consisting of ellipse-shaped particles
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degenerates into a square lattice of round particles, some nonlinearity coefficients
become equal to zero: α7 = α12 = α14 = α15 = 0.

When a rectangular lattice degenerates into a square lattice of round particles,
formulas (5.1)–(5.4) are significantly simplified. In this case, the Lagrange function
of the considered medium with microstructure has the form [3]:

L = M

2

(
u2t + w2

t + R2ϕ2
t

)

− M

2

[
c21(u

2
x + w2

y) + c22(w
2
x + u2y)

+ R2c23(ϕ
2
x + ϕ2

y) + s2(uxwy + uywx )

+ 2β2(wx − uy)ϕ + 2β2ϕ2

+ α1(u
3
x + w3

y) + α2
(
u3y + w3

x + u2xuy + uxu
2
y

+ w2
xwy + wxw

2
y − u2xwx − u2ywx − u2xwy

−uyw
2
y − uyw

2
x − uxw

2
y

)

− 2α2
(
uxuy(wx + wy) + wxwy(ux + uy)

)

+ α3(uxw
2
x + u2ywy) + α4(wxwyϕ − uxuyϕ

+ 1

2
(w2

x − u2x + w2
y − u2y)ϕ)

+ α5(uyϕ
2 + wxϕ

2) + α6(uxϕ
2 + wyϕ

2)

+α7(uxwxϕ + uywyϕ)
]
. (5.5)

Here, expression (5.5) is obtained from Eq. (5.1) with accuracy up to a re-
designation of the nonlinearity coefficients. The set of nonlinear differential equa-
tions describing dynamic processes in a two-dimensional crystalline medium with
non-dense packing of particles has the form:

utt = c21uxx + c22uyy + s2wxy

− βϕy + 1

2

∂F1

∂x
+ 1

2

∂F2

∂y
,

wtt = c22wxx + c21wyy + s2uxy

+ βϕx + 1

2

∂F3

∂x
+ 1

2

∂F4

∂y
,

R2ϕt t = R2c23(ϕxx + ϕyy)

+ β(uy − wx ) − 2βϕ − F5. (5.6)

The dependences of the linear coefficients of Eq. (5.6) on the force constants K0,
K1, K2, K3, the lattice parameter a, and the particle size h = d/

√
2 (d is the particle

diameter) are determined by formulas (3.10), and the nonlinearity functions have the
form:
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F1 = 3α1u
2
x + α2(2uxuy + u2y − 2uxwx − uxwy − w2

y)

+ α3w
2
x − 2α2(uywx + uywy + wxwy)
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2 + α7wyϕ,
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F4 = 3α1w
2
y + α2(w

2
x + 2wxwy − u2x − 2uywy − 2uxwy)

+ α3u
2
y − 2α2(uxuy + uxwx + uywx )
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2 + α7uyϕ,
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2
(w2

x − u2x + w2
y − u2y)

)

+ 2α5(uyϕ + wxϕ) + 2α6(uxϕ + wyϕ)

+ α7(uxwx + uywy). (5.7)

The nonlinearity coefficients αi (i = 1, …, 7) depend on the microstructure
parameters:

Mα1 = K2

r4
a3(a − h)h2 + K3

4(a − h)
a3,

Mα2 = K3

4(a − h)
a3,

Mα3 = K0a
2 + K1
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a − h

+ K2
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4(a − h)
,

Mα4 = 2a2hK3

a − h
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(a − h)2
a2h2,

Mα6 = K1
ah2

a − h
+ K2

ah2

r4
(2h − a)(5ah − 2h2 − a2)

+ K3

(a − h)2
a2h2,

Mα7 = K1
2a2h

a − h
+ 2a3h

r4
K2

(
5h2 − 5ah + a2

)
. (5.8)
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Here, r = √
(a − h)2 + h2 is the initial length of the springs with rigidity K2.

5.2 Estimation of the Nonlinearity Coefficients
of the Mathematical Model of the Square Lattice
of Round Particles

Now, according to the similar procedure like it was done in Chap. 4, we will consider
the low-frequency approximation of nonlinear Eq. (5.6), where the microrotations of
the particles of a medium are not independent and are determined by a displacement
field. The relationship between the microrotations ϕ and the displacements u and w
can be found from the linear part of the third Eq. (5.6) by the method of successive
approximations. In the first approximation, ϕ(x, t) ≈ 1

2

(
uy − wx

)
and the Lagrange

function L takes on the form:

L = M
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4
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)
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. (5.9)

Here,

γ1 = α2 + α5 − α4

4
, γ2 = α2 + α6

4
− α4

2
,

γ3 = α3 + α6

4
− α7

2
, γ4 = α3 + α6

4
+ α7

2
,

γ5 = α2 − α4

4
, γ6 = 1

2
(α6 − α7),

γ6 = 1

2
(α6 + α7). (5.10)
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From the Lagrange function (5.9), it is possible to obtain nonlinear equations of
the higher-order gradient theory of elasticity [2, 4], which contain terms with the
fourth-order derivatives:

utt − c21uxx −
(
c22 − β

2

)
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(
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2

)
wxy
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4
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∂y

[
∂2
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2
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,
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)
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4
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(
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(
uy − wx
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2

∂H3

∂x
+ 1

2

∂H4

∂y
. (5.11)

Here, the symbol� denotes a two-dimensional Laplacian� = ∂2/∂x2 + ∂2/∂y2

and H1,2,3,4 are the nonlinearity functions:

H1 = 3α1u
2
x − 2α2

(
uxwy + 1

2
w2

y + uywy + wxwy

)

+ γ2u
2
y + γ3w

2
x + 2γ5(uxuy − uxwx )

− (2γ5 + γ6)uywx ,

H2 = −2α2uxwy + γ1(3u
2
y − w2

x − 2uywx )

+ 2γ2uxuy + 2γ4uywy + γ5(u
2
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− (2γ5 + γ6)uxwx − (2γ5 + γ7)wxwy,

H3 = −2α2uxwy + γ1(3w
2
x − u2y − 2uywx )

+ 2γ2wxwy + 2γ3uxwx + γ5(w
2
y − u2x )

− (2γ5 + γ6)uxuy − (2γ5 + γ7)uywy,

H4 = 3α1w
2
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2
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+ γ2w
2
x + γ4u

2
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− (2γ5 + γ7)uywx . (5.12)

In Chap. 4, a detailed analysis of the coefficients of the linear parts of Eq. (5.6) had
been performed depending on the values of the microstructure parameters, as a result



5.2 Estimation of the Nonlinearity Coefficients of the Mathematical … 117

of which, wave velocities c1, c2, and c3, parameters β and s, as well as the model
parameters of interparticle interactions K0, K1, K2, and K3 were calculated for some
cubic crystals on the base of the known experimental data. The calculations were
carried out for K = K0/K1 = 10 (the central interactions dominate) and d/a = 0.9.
In this section, we will estimate the nonlinearity coefficients (5.8) (see Table 5.1), in
which dependencies on microstructure parameters K and p = h/a = d/a

√
2 and

the elasticity constants of the second order have the following form [3]:

ρα1 = 1 − p

(1 − p)2 + p2
(C44 − C12), ρα2 = C12

4(1 − p)
,

ρα3 = K(1 − p) + 1

(2 + K)(1 − p)

[
C11 − C12 − 2(C44 − C12)

(1 − p)2

p2

]

+ (C44 − C12)
(1 − p)(1 − 2p − p2)

((1 − p)2 + p2)p2
,

ρα4 = 2pC12

1 − p
, ρα5 = p2C12

(1 − p)2
,

ρα6 = 1

2 + K

[
(C11 − C12)

p2

1 − p
− 2(C44 − C12)(1 − p)

]

+ (C44 − C12)
(2p − 1)(5p − 2p2 − 1)

(1 − p)2 + p2
,

ρα7 = 2

2 + K

[
(C11 − C12)

p

1 − p
− 2(C44 − C12)

1 − p

p

]

+ 2(C44 − C12)

(
5p2 − 5p + 1

)

p((1 − p)2 + p2)
. (5.13)

From (5.13), it follows that, if p → 0, as shown in Ref. [5], the Cauchy relation
C12 = C44 is valid and, as a result, α2 → C12

4ρ , α3 → K+1
(2+K )ρ

(C11 − C12), and all
the other nonlinearity factors tend to zero, and α1 → 0 because only a geometric
nonlinearity is taken into account in this model. If physical nonlinearity is taken into
account, α1 would tend to some positive value.

For p = 1/2, the Cauchy relation is not valid and

α1 = C44 − C12

ρ
, α2 = C12

2ρ
,

α3 = C11 + 2C12 − 3C44

ρ
, α4 = 2C12

ρ
,

α5 = C12

ρ
, α6 = C11 + C12 − 2C44

2(2 + K )ρ
,

α7 = C11 + 3C12 − 4C44

2(2 + K )ρ
.
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Table 5.1 Nonlinearity coefficients for crystals with cubic symmetry

The structural parameters Crystals

LiF NaF NaBr C60

Experimental
data

Density (kg/m3) ρ 2600 2800 3200 1720

Elasticity constants
(GPa)

C11 113.00 97.00 32.55 14.9

C12 48.00 25.60 13.14 6.9

C44 63.00 28.00 13.26 8.1

Calculated
characteristics

Wave velocities
(m/s)

c1 6593 5890 3190 2943

c2 5477 3295 2045 2325

c3 5659 2896 1092 2036

The coefficient of
linear coupling
between the
longitudinal and
shear deformations
(m/s)

s 6076 4276 2866 2833

The dispersion
parameter (m/s)

√
β 3396 1309 274 1180

Parameters of
force interactions
between the
particles (GPa)

K0/a 46.01 58.19 16.11 6.01

K1/a 4.601 5.819 1.611 0.601

K2/a 19,897 3.183 0.159 1.592

K3/a 48.00 25.60 13.14 6.90

The nonlinearity
coefficients of the
original model
(106 m2/s2)

α1 16.60 6.87 2.85 3.23

α2 12.69 6.29 2.82 2.76

α3 −34.75 0.38 −4.91 −7.37

α4 64.63 32.00 14.37 14.04

α5 56.65 28.01 12.58 12.29

α6 62.55 30.92 13.17 13.17

α7 0.90 6.49 1.73 0.58

The nonlinearity
coefficients of the
two-mode model
(106 m2/s2)

γ 1 10.68 5.29 2.37 2.32

γ 1 −3.98 −1.99 −1.07 −0.97

γ 3 −19.56 4.87 −2.49 −4.37

γ 4 −18.66 11.36 −0.76 −3.79

γ 5 −3.46 −1.71 −0.77 −0.75

γ 6 30.83 12.22 5.72 6.29

γ 7 31.72 18.70 7.45 6.87
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Here, α3 no longer depends on the parameter of interparticle interactions K =
K0/K1 and all the nonlinearity coefficients do not tend to zero.

If, however, p → 1/
√
2 (at p = 1/

√
2, particles will touch each other and

their rotation will be difficult; therefore, only a limit transition to this case will be
considered), then

α1 → 2(2
√
2 − 1)(C44 − C12)

7ρ
, α2 → (2 + √

2)C12
4ρ

,

α3 → 1

ρ

(

C11

(

1 +
√
2

2 + K

)

+ C12

(
9

2
− 3

√
2 + 5

√
2 − 8

2 + K

)

−C44

(
11

2
− 3

√
2 + 6

√
2 − 8

2 + K

))

,

α4 → 2(1 + √
2)C12

ρ
, α5 → (3 + 2

√
2)C12

ρ
,

α6 → (2 + √
2)C11 + (

√
2 − 8 + K(2

√
2 − 5))C12 + (6 − 2

√
2 + K(5 − 2

√
2))C44

2(2 + K)ρ
,

α7 →
2
(
C11(1 + √

2) + C12(
√
2 − 3) + 2C44(1 − √

2) + (2 + K)(2
√
2 − 3)(C44 − C12)

)

(2 + K)ρ
.

Numerical estimates of the nonlinearity factors presented in Table 5.1 show that
only parameters γ 2 and γ 5 are negative for all considered crystals, whereas factors
α3, γ 3, and γ 4 can be both positive and negative. In the three-modemodel, parameter
α4 is the greatest for all considered materials, and parameter γ 7 is maximal in the
two-mode model. For the certain material, γ 7 exceeds the smallest absolute value
of a factor γ i up to 11 times, and for parameters αi this ratio is greater—up to 72
times. Besides, some αi can even surpass a square of the longitudinal wave velocity,
c21, that proves importance of the accounting of the nonlinear terms.

5.3 The Square Lattice of Nanotubes

All the models of media considered so far in the monograph contained particles with
no more than 3 degrees of freedom. Now let us construct a model of the medium,
in which particles have five degrees of freedom. This model is a generalization of
the model of an oriented medium representing a chain of dumbbell-shaped parti-
cles (dipoles) considered in Refs. [6–8] to a two-dimensional case. It can be used
to describe a layer of carbon nanotubes discovered by Ijima in 1991 [9, 10]. These
extended cylindrical structures from one to several tens of nanometers in diameter
and up to several microns in length consist of one or several hexagonal graphite layers
rolled into a tube and usually end in a hemisphere, which can be considered as half of
the C60 fullerene molecule. Because of this, a fullerene molecule can be considered
as the limiting case of a carbon nanotube, in which two hemispheres are directly
connected to each other. Thus, in their structure, CNTs occupy an intermediate posi-
tion between graphite and fullerenes. However, many properties of CNTs do not
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resemble either graphite or fullerenes [9, 10]. In this regard, it becomes relevant
to study nanotubes as an independent advanced material with unique physical and
mechanical characteristics, which has a significant potential for practical application.

5.3.1 The Discrete Model

Let us consider a layer of carbon nanotubes [9–13] modeled by a square lattice of
homogeneous rods of length l and mass m [14]. The mass center of each nanotube
coincides with the geometric center and in the initial state (t = 0) lies in the plane (x,
y). Besides, in the initial states, the distance between the mass centers of neighboring
rods (particles) along both the x-axis and y-axis is equal to a (Fig. 5.1) and all the
particles are located perpendicular to the (x, y)-plane.

Each particle has five degrees of freedom: a displacement of the mass center of
the particle with numberN =N(i, j) along the x-, y-, and z-axes (translational degrees
of freedom ui, j , vi, j , and wi, j ) and rotation about the mass center that is described by
two angles: θi, j , which is measured from the z-axis in (x, z)-plane, and ϕi, j , which
characterizes a rotation in (x, y)-plane with respect to the y-axis (rotational degrees
of freedom) (Fig. 5.2). The kinetic energy of a particle N(i, j) is equal to

Ti, j = m

2

(
u̇2i, j + v̇2i, j + ẇ2

i, j

) + J1
2

θ̇2
i, j + J2

2
ϕ̇2
i, j . (5.14)

Here, J1 = ml2/12 is the moment of inertia of the particle relative to the y-axis,
and J2 = ml2 sin2 θi, j/12 is the variable moment of inertia of the rod relative to the
z-axis. The dot above denotes the time derivative.

Fig. 5.1 A square lattice of nanotubes
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Fig. 5.2 Kinematic scheme of a rod: translational displacements and rotation θ (a), rotations θ and
ϕ (b)

We will consider small oscillations of particles near the lattice sites, when the
displacements of the particles are small in comparison with sizes of the unit cell built
on mutually perpendicular vectors directed along the x- and y-axes and having length
a. Angles of the particle rotations are also assumed to be small. Under these condi-
tions, the force and moment interactions of particles can be described by a potential
representing a low-degree polynomial. In the harmonic approximation, the interac-
tion potential is a quadratic form of the variables of a state of the system, whereas
anharmonic effects are described by terms of the third (quadratic nonlinearity in the
motion equations) and fourth (cubic nonlinearity in the motion equations) orders. In
this model, we will assume that each particle interacts with eight nearest neighbors
in the lattice, the mass centers of four of which lie on the horizontal and vertical
lines, and of the other four—on the diagonals (Fig. 5.1). The first four particles, in
which mass centers are located on a circle of radius a, will be hereinafter called
particles of the first coordination sphere, and the rest of them will be called particles
of the second coordination sphere (their centers are situated on the circle of radius
a
√
2); the centers of both circles coincide with the particle N. Since all the parti-

cles are finite-sized, then the interaction between them has both force and moment
components depending on the relative location and orientation of the particles.

The potential energy of a particle N that is caused by its interaction with eight
nearest neighbors in the lattice is described by the formula

VN = 1

2

(
k0
2

4∑

n=1

D2
0n + k1

2

8∑

n=1

D2
1n + k2

2

8∑

n=1

D2
2n

+k ′
0

2

4∑

n=1

D̃2
0n + k ′

1

2

8∑

n=1

D̃2
1n + k ′

2

2

8∑

n=1

D̃2
2n

)

. (5.15)

Here, Dln and D̃ln (l = 0, 1, 2) are variations of the distances between the corre-
sponding points of the particle N(i, j) and its neighbors with numbers (i + n, j +
r), where n = ±1 is the shift of the number along the horizontal axis, r = 0, ±1
is the shift of the number along the vertical axis, and factors k0, k1, and k2 are the
parameters of the force interactions: k0 characterizes the central interactions during
tension–compression of the material, k1 describes non-central interactions during
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Fig. 5.3 Scheme of force
interactions between
neighboring particles

tension–compression of the material and moments during rotation of the particles,
and k2 stands for the force interactions of particles at shear deformations in the mate-
rial. The parameters k ′

0, k
′
1, and k ′

2 determine similar interactions with the rods of
the second coordination sphere [14]. With the viewpoint of a mechanical model,
the parameters k0, k1, and k2 can be interpreted as rigidity of the corresponding
springs [15]: central (k0), horizontal (k1), and diagonal (k2) ones (Fig. 5.3). The
expressions for Dln and D̃ln, calculated in the approximation of smallness of the
quantities �ui ∼ �vi ∼ �u j ∼ �v j ∼ ε, �wi ∼ �wj ∼ θi, j ∼ ϕi, j ∼ ε3/4,
�θi ∼ �θ j ∼ �ϕi ∼ �ϕ j ∼ ε5/4, where ε � 1 is the measure of the cell deforma-
tion, are not given here because of their cumbersomeness. Expression (5.15), similar
to Eqs. (2.2) and (3.1), contains an additional factor 1/2, since the potential energy
of each spring is equally divided between two particles connected by this spring.

5.3.2 The Continual Approximation

In the case of the long-wavelength perturbations, when λ � a (where λ is the char-
acteristic spatial scale of deformation), one can pass from discrete variables i and j
to continuous spatial variables x = ia and y = ja as it was done in Chaps. 2 and 3.
As a result, it is possible to obtain the following expression for the surface density
of the Lagrange function L = (T − V )/a2:

L = ρ

2

(
u2t + v2t + w2

t + l2

12
(θ2

t + ϕ2
t sin

2 θ)

)

− ρ

2

[
c21(u

2
x + v2y) + c22(v

2
x + u2y)

+ l2

2
(c2θxθ

2
x + c2θyθ

2
y ) + s2(uxvy + uyvx )

+ c23(w
2
x + w2

y) + β(θ2 + 2wyθ)

+ α1(uxw
2
x + vyw

2
y)

+ α2(uxw
2
y + vyw

2
x + 2(uy + vx )wxwy)

+ α3uxθ
2 + α4vyθ

2 + α5wxθϕ + α6vxwxθ

+α7vywyθ + α8(uxwy + uywx )θ
]
. (5.16)
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The Lagrange function (5.16) is given with accuracy up to the terms of ε5/2-order
inclusively. The following notation is introduced here: c1,2,3 are the velocities of
the longitudinal, transverse, and bending waves, respectively, cθx and cθy are the
rotational wave velocities with respect to x- and y-axes, correspondingly, s is the
coefficient of linear coupling between the longitudinal and transverse waves, β is
the dispersion parameter, αi (i = 1 . . . 8) are the nonlinearity coefficients, and
ρ = m/a2 is the average density of the two-dimensional medium in question.

Using Hamilton’s variational principle, on the base of the Lagrange function
(5.16), differential equations of the first approximation are derived that describe the
dynamic processes in the considered nanotube layer [14]:

utt = c21uxx + c22uyy + s2vxy + 1

2

∂F1

∂x
+ 1

2

∂F2

∂y
,

vtt = c22vxx + c21vyy + s2uxy + 1

2

∂F3

∂x
+ 1

2

∂F4

∂y
,

wtt = c23(wxx + wyy) + βθy + 1

2

∂F5

∂x
+ 1

2

∂F6

∂y
,

l2

12
(θt t − 1

2
ϕ2
t sin 2θ)

= l2

2
(c2θxθxx + c2θyθyy) − β(θ + wy) − F7,

l2

6
(ϕt t sin

2 θ + ϕtθt sin 2θ) = −α6wxθ. (5.17)

Here,

F1 = α1w
2
x + α2w

2
y + α3θ

2 + α8wyθ,

F2 = 2α2wxwy + α8wxθ,

F3 = 2α2wxwy + α6wxθ,

F4 = α1w
2
y + α2w

2
x + α4θ

2 + α7wyθ,

F5 = 2α1uxwx + 2α2(vywx + (uy + vx )wy)

+ α5θϕ + α6vxθ + α8uyθ

F6 = 2α1vywy + 2α2(uxwy + (uy + vx )wx )

+ α7vyθ + α8uxθ

F7 = α3uxθ + α4vyθ

+ 1

2

[
α5wxφ + α6vxwx + α7vywy + α8(uxwy + uywx )

]

are the nonlinearity functions.
Equation (5.17) differ from the equations of the classical theory of elasticity by the

appearance of two additional equations for rotational motions. It should be remarked
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that the last equation is non-wave in nature, since it does not contain the term ϕxx .
“Freezing” of the rotational mode θ (i.e., if θ ≡ 0) leads to disappearance of the
equation for the second rotation mode ϕ.

Equation (5.17) have an essentially nonlinear nature, since the bending mode
affects the longitudinal and transverse modes only due to nonlinear interactions. The
longitudinal and transverse modes, as well as the bending mode and the rotational
one θ, are linearly interlinked. In the linear approximation, the equations for the
longitudinal and transverse waves have the form:

utt = c21uxx + c22uyy + s2vxy,

vtt = c22vxx + c21vyy + s2uxy . (5.18)

Equation (5.18) are analogs of the two-dimensional Lame equations for crystals
with cubic symmetry (4.16).

5.3.3 Relationships Between the Macroparameters
of the Material and the Parameters of Its Inner
Structure

The coefficients of the linear parts of Eq. (5.17) are expressed in terms of the force
constants k0, k1, k2, k ′

0, k
′
1, k

′
2, the length of the nanotubes l and the lattice period a

as follows:

ρc21 = k0 + 2k1 + 2a2

r2
k2 + k ′

0 + 2k ′
1 + 4a2

d2
k ′
2,

ρc22 = k ′
0 + 2k ′

1 + 4a2

d2
k ′
2, s

2 = 2c22,

ρc2θx = k ′
1 + 2a2

d2
k ′
2, ρc

2
θy

= k1 + a2

r2
k2 + k ′

1 + 2a2

d2
k ′
2,

ρc23 = ρβ = 2

(
l2

r2
k2 + 2l2

d2
k ′
2

)
, (5.19)

where r = √
l2 + a2 and d = √

l2 + 2a2 are the initial lengths of the diagonal
springs of the first and second coordination spheres, respectively.

It should be noted that there is an equality s2 = 2c22 in Eq. (5.19). This is analog of
the Cauchy relation C12 = C44 for cubic crystals (see Sect. 4.2.1). Thus, the Cauchy
relation is always fulfilled in the considered medium.

Moreover, from Eq. (5.19) it follows that in the linear parts of Eq. (5.17), only
five coefficients are independent. From the second and third relations (5.19), it is
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obviously that taking into account the interaction with particles of the second coor-
dination sphere is necessary. If this interaction is not taken into account, then the
quantity s2 vanishes that, as it is visible from Eq. (5.18), contradicts the theory of
elasticity. In addition, the first two equalities (5.19) imply that the longitudinal wave
velocity c1 exceeds the transverse wave velocity c2 that is consistent with the data
of classical solid-state physics [16–19], and the rotational wave θ propagates faster
along y-axis than along x-axis. In the last conclusion, the principal thing is only the
difference in the velocities of this wave along x- and y-axes, because if we count the
angle ϕ from the x-axis, then cθx > cθy . It should be also noted that in the model
under consideration c2 > cθx , and cθy can both exceed the transverse wave velocity
c2 and be less than it.

The dependences of the coefficients of the nonlinear parts of Eq. (5.17) on the
parameters of the internal structure have the following form:

ρα1 = k0 + 2k1 + 2a2(a2 − 2l2)

r4
k2

+ k ′
0 + 2k ′

1 + 8a2(a2 − 4l2)

d4
k ′
2,

ρα2 = k ′
0 + 2k ′

1 + 8a2(a2 − 4l2)

d4
k ′
2,

ρα3 = 2l2

r2
k2 + 32l4

d4
k ′
2,

ρα4 = 6l2

r2
k2 + 24l2(l2 + a2)

d4
k ′
2,

ρα5 = 4l2

r2
k2 + 8l2

d2
k ′
2,

ρα6 = 4l2

r2
k2 + 16l4

d4
k ′
2,

ρα7 = 4l2(l2 − a2)

r4
k2 + 16l4

d4
k ′
2,

ρα8 = −24a2l2

d4
k ′
2. (5.20)

An inequality α1 > α2 follows from Eq. (5.20), and the last six coefficients
αi (i = 3 . . . 8) depend on the parameters of force interactions of only one type—
k2 and k ′

2, which characterize the shear deformations in the material. When these
parameters tend to zero, as well as in the case of the degeneration of the rods into
material points (l → 0) that corresponds to the limiting transition of the medium
from nanotubes to the medium from fullerenes, the linear coefficients c3 and β, as
well as all factors αi at i = 3…8, vanish. Thus, the developed mathematical model
(5.17) will change qualitatively that confirms the significant difference between the
physical–mechanical properties of fullerenes and carbon nanotubes mentioned at
the beginning of Sect. 5.3. In addition, it should be noted that the force parameters
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k2 and k ′
2 can be both positive and negative; therefore, the coefficients α3, …, α8

can have different signs. For k2 > 0 and k ′
2 > 0, the following estimates can be

performed due toEq. (5.20):α4 > α3,α4 > α5, andα4 > α6 > α7. The situationwith
the relation between α6 and α5 is less unambiguous. Since α6 − α5 = 8l2(l2−2a2)

d4 k ′
2,

then α6 < α5 for l < a
√
2 and α6 > α5 at l > a

√
2. The same applies to the

coefficient α3: Depending on the relationship between k2 and k ′
2, it can take any

value in comparison with α5 and α6 .

5.4 Conclusions

In this chapter, using the structuralmodelingmethod, nonlinearmathematicalmodels
are obtained for two-dimensional media consisting of round particles (with 3 degrees
of freedom) and of rods (with 5 degrees of freedom). The relationship between the
macroparameters of such media and the parameters of their microstructure has been
revealed.

In the first model, theoretical estimates of the nonlinearity coefficients have been
performed for some materials with cubic symmetry.

In the secondmodel, it is shown that, in the linear approximation, longitudinal and
transverse waves are independent on the other vibration modes, and only bending
modew and rotationalmode θ are dependent among all the translational and rotational
modes. The equation for ϕ has a non-wave form. When one of the rotational modes
is frozen (i.e., θ = 0), the equation for the second rotational mode, ϕ, automatically
disappears. When rods (nanotubes) degenerate into material points, as well as in the
absence of interactions under shear deformations, all nonlinear terms proportional
to the rotations θ disappear and the bending waves also become non-propagating.
Thus, qualitative changes will occur in the developed mathematical model. This
fact is consistent with the experimentally known significant difference between the
physicomechanical properties of fullerenes and carbon nanotubes [9, 10].
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Chapter 6
A Cubic Lattice of Spherical Particles

In the previous chapters, two-dimensional models of microstructured media were
discussed, and the particles of which have three degrees of freedom. This chapter
is devoted to the elaboration of a three-dimensional model of a crystalline medium
consisting of spherical particles with six degrees of freedom. Such a medium is
structurally similar to a fullerite crystal with a simple cubic lattice (see Sect. 1.2).
The main objectives of this chapter are to obtain dynamic equations of a crystalline
medium consisting of spherical particles by the method of structural modeling and
to establish the relationships between the coefficients of these equations and the
microstructure parameters of the material at issue.

6.1 A Discrete 3D Model of a Crystalline Medium
of Spherical Particles

We consider a cubic lattice consisting of rigid spherical particles (grains) of massM
and having a shape of a sphere with diameter d. In the initial state, they are located in
the sites of the lattice with a period a (Fig. 6.1). Each particle possesses six degrees
of freedom: The center of gravity of a particle with number N = N (i, j, k) can move
along the x-, y-, and z-axes (translational degrees of freedom ui, j,k , vi, j,k , and wi, j,k),
and the particle itself can rotate around each of these axes (rotational degrees of
freedom θi, j,k , ψi, j,k , and ϕi, j,k) (Fig. 6.2). In this case, the kinetic energy of the N th
particle is described by the following formula:

T = M

2

(
u2t + v2t + w2

t

) + J

2
(ϕ2

t + θ2
t + ψ2

t ), (6.1)

where J = 2
5M

(
d
2

)2 = 1
10Md2 = 2

5M
3b2

4 = 0.3Mb2 is the moment of inertia of the
particle with respect to each axis passing through its center of gravity.
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Fig. 6.1 Simple cubic lattice consisting of spherical particles

Fig. 6.2 Rotational degrees
of freedom of the particle

As in themodels discussed in the previous chapters, the space between the particles
is an inertia-less elastic medium through which the force and moment effects are
transmitted, which are modeled by elastic springs. The particles N = N (i, j, k) is
supposed to interact only with the nearest neighbors located at a distance a from it
(particles of the first coordination sphere: (i − 1, j, k), (i, j − 1, k), (i, j + 1, k), (i +
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1, j, k)), a
√
2 (particles of the second coordination sphere: (i − 1, j − 1, k), (i − 1, j

+ 1, k), (i + 1, j − 1, k), (i + 1, j + 1, k)) and a
√
3 (particles of the third sphere: (i −

1, j − 1, k − 1), (i − 1, j − 1, k + 1), (i − 1, j + 1, k − 1), (i − 1, j + 1, k + 1), (i + 1,
j − 1, k − 1), (i + 1, j − 1, k + 1), (i + 1, j + 1, k − 1), (i + 1, j + 1, k + 1)) (Fig. 6.1).

The central and non-central interactions of neighboring particles are modeled by
elastic springs of five types: The central springs with rigidity K0, the non-central
springs with rigidity K1 (Fig. 6.3), the diagonal springs (K2), as well as the springs
with stiffnessK3 andK4, which connect the central particle with grains, respectively,
of the second and third coordination spheres. The central springs K0 connect the
centers of neighboring particles. Points of connection of the springs K1 and K2 with
the particles lie at the vertices of a cube with side b inscribed in a ball of diameter
d = b

√
3 (in Fig. 6.3 A2B

′
1, B2A

′
1, E2C

′
1, and C2E

′
1 are the springs with rigidity K1,

whereas A2C
′
1, E2B

′
1, B2E

′
1, and C2A

′
1 are the springs of K2-type). The springs with

stiffness K3 and K4 are attached to the midpoints of the nearest edges of cubes, the
geometric centers of which are located in the initial state at distances a

√
2 (Fig. 6.4)

and a
√
3.

The springs with stiffnesses K0, K1, K2, and K3 describe the interactions of
particles within one layer (Fig. 6.5). Thus, the central (K0) and non-central (K1)
springs characterize interactions during tension-compression of the material. The
springs K1 also transmit torques when the particles rotate. Springs with stiffness K1

Fig. 6.3 Scheme of force interactions between the nearest neighbors in the lattice (particles of the
first coordination sphere)

Fig. 6.4 Scheme of force
interactions of the central
particle with the particles of
the second coordination
sphere
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Fig. 6.5 Square lattice (a layer) of spherical particles

and K2 characterize the force interactions of the particles during shear deformations
in the material. It should be noted that the chosen scheme of force interactions inside
one layer is similar to that introduced in a two-dimensional lattice of plane particles
(see Chap. 3 and Refs. [1, 2]).

The displacements of the grains are assumed to be small in comparison with the
sizes of the unit cell of the considered lattice. The interaction of the particles when
they deviate from the equilibrium states is determined by the relative elongations of
the springs. The potential energy due to the interaction of a particle N with eight
nearest neighbors in the lattice is described by the formula

UN = 1

2

(
4∑

n=1

K0

2
D2

0n +
16∑

n=1

K1

2
D2

1n +
16∑

n=1

K2

2
D2

2n +
4∑

n=1

K3

2
D2

3n +
4∑

n=1

K4

2
D2

4n

)

,

(6.2)

where Dln (l = 0, 1, 2, 3, 4) are the extensions of springs of five types, which are
numbered in an arbitrary order and connect the particle with its neighbors. These
extensions are determined by variations of the distances between the connection
points of the respective springs (Fig. 6.3). The necessity to enter the mentioned
above springs of all five types is justified in Sect. 6.2.2. Next, we will first consider
the nonlinear dynamics of one layer [3] of spherical particles (when K4 ≡ 0).



6.2 Nonlinear Model of a One-Layer Medium of Spherical Particles 133

6.2 Nonlinear Model of a One-Layer Medium of Spherical
Particles

In order to construct a mathematical model of a single-layer medium consisting of
spherical particles, which is a generalization of two-dimensional models of media
consisting of plane particles with three degrees of freedom and of rods with five
degrees of freedom (they were considered, respectively, in Chap. 3 and Sect. 5.3 of
this monograph), we first put in Eq. (6.2) K4 = 0. Then, we substitute in Eq. (6.2)
the expressions for the elongations Dln that are calculated in the approximation of
small quantities �ui ∼ �vi ∼ �u j ∼ �v j ∼ ε, �wi ∼ �wj ∼ ϕi, j ∼ θi, j ∼
ψi, j ∼ ε3/4, �ϕi ∼ �θi ∼ �ψi ∼ �ϕ j ∼ �θ j ∼ �ψ j ∼ ε5/4, where ε � 1 is
the measure of the cell deformation. These expressions are calculated according to
the same algorithm as for the model in Sect. 5.1 (see Appendix 2), but they are not
presented here because there are too many springs in this model. According to the
procedure given in Sects. 3.1 and 3.2, one can obtain differential–difference equations
describing the dynamics of a square lattice of spherical particles. However, in this
chapter, we will consider in detail the continuum approximation of the proposed
model.

6.2.1 The Continuum Approximation

In the case of the long-wavelength perturbations,whenλ � a (see Sects. 2.2 and 3.2),
the Lagrange function L of the considered medium consisting of spherical particles
takes on the form [4]:

L = M

2

(
u2t + v2t + w2

t

)
+ J

2

(
ϕ2
t + ψ2

t + θ2t

)

− M

2

[
c21

(
u2x + v2y

)
+ c22

(
v2x + u2y

)
+ c23

(
(wx − ψ)2 + (

wy + θ
)2)

+ b2c24

(
ϕ2
x + ϕ2

y

)
+ b2c25

(
θ2x + ψ2

y

)
+ b2c26

(
θ2y + ψ2

x

)

+ s2
(
uxvy + uyvx

) + 2β
(
ϕ2 + vxϕ − uyϕ

)

+ α1

(
uxw

2
x + vyw

2
y

)
+ α2

(
uxw

2
y + vyw

2
x + 2

(
uy + vx

)
wxwy

)
+ α3

(
uxϕ

2 + vyϕ
2
)

+ α4

(
uxψ

2 + vyθ
2
)

+ α5

(
uxθ

2 + vyψ
2
)

− α6uxwxψ + (α6 + α7)vywyθ

+ α7
((
uxwy + uywx

)
θ − (

uxwy + uywx + vxwx + vywy
)
ψ

)

+α8
(
wxϕθ + wyϕψ

) − α9
(
uy + vx

)
θψ + (α7 + α10)vxwxθ − α10uywyψ

]
(6.3)
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The Lagrange function (6.3) contains only the terms up to the ε5/2-order inclusive.
Using the Hamilton’s variational principle, a set of differential equations

describing nonlinear dynamic processes in a square lattice of spherical particles
is derived from the Lagrange function (6.3):

utt = c21uxx + c22uyy + s2vxy − βϕy + 1

2

∂F1

∂x
+ 1

2

∂F2

∂y
,

vtt = c22vxx + c21vyy + s2uxy + βϕx + 1

2

∂F3

∂x
+ 1

2

∂F4

∂y
,

wtt = c23(wxx + wyy + 2θy − 2ψx ) + 1

2

∂F5

∂x
+ 1

2

∂F6

∂y
,

Jϕt t = M
(
b2c24(ϕxx + ϕyy) + β(uy − vx − 2ϕ) − F7

)
,

Jθt t = M
(
b2(c25θxx + c26θyy) − 2c23(wy + θ) − F8

)
,

Jψt t = M
(
b2(c26ψxx + c25ψyy) + 2c23(wx − ψ) − F9

)
. (6.4)

Here,

F1 = α1w
2
x + α2w

2
y + α3ϕ

2 + α4ψ
2 + α5θ

2 − α6wxψ + α7wy(θ − ψ),

F2 = 2α2wxwy − α9θψ − α10wyψ + α7wx (θ − ψ),

F3 = F2 + α10(wxθ + wyψ),

F4 = α1w
2
y + α2w

2
x + α3ϕ

2 + α4θ
2 + α5ψ

2 + (α6 + α7)wyθ − α7wyψ,

F5 = 2α1uxwx + 2α2(vywx + uywy + vxwy) − α6uxψ + α7(uyθ − uyψ − vxψ)

+ α8ϕθ + (α7 + α10)vxθ,

F6 = 2α1vywy + 2α2(uxwy + uywx + vxwx ) + (α6 + α7)vyθ

+ α7(uxθ − uxψ + vyψ) + α8ϕψ − α10uyψ,

F7 = 2α3(ux + vy)ϕ + α8(wxθ + wyψ),

F8 = 2α4vyθ + 2α5uxθ + (α6 + α7)vywy + α7(uxwy + uywx )

+ α8wxϕ − α9(uy + vx )ψ + (α7 + α10)vxwx ,

F9 = 2α4uxψ + 2α5vyψ − α6uxwx − α7(uxwy + uywx + vxwx + vywy)

+ α8wyϕ − α9(uy + vx )θ − α10uywy

are the nonlinearity functions.
The following designations are introduced in the Lagrange function (6.3) and

Eq. (6.4): c1, c2, and c3 are the velocities of longitudinal, transverse, and bending
waves, c4, c5, c6 are the velocities of microrotation waves, s is the coefficient of linear
coupling between the longitudinal and shear waves, β is the dispersion parameter,
and αi (i = 1 … 10) are the nonlinearity coefficients.

In the limiting case, when w = θ = ψ = 0, Eq. (6.4) degenerate into the
previously derived equations for the dynamics of a square lattice of round particles
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(see Chap. 3), which, in turn, coincide with the equations of the two-dimensional
Cosserat continuum consisting of centrally symmetric particles [5, 6].

6.2.2 Dependency of the Macroparameters of a One-Layer
Medium on the Parameters of Its Microstructure

The coefficients of linear parts of Eq. (6.4) are expressed in terms of the force
constants K0, K1, K2, and K3, the lattice period a, and the particle size b = d/2

√
3

as follows:

ρc21 = K0

a
+ 4(a − b)2

(a − b)2 + b2
K1

a
+ 4(a − b)2

(a − b)2 + 2b2
K2

a
+ K3

a
,

ρc22 = 4b2

(a − b)2 + 2b2
K2

a
+ K3

a
,

ρc23 = 4b2

(a − b)2 + b2
K1

a
+ 4b2

(a − b)2 + 2b2
K2

a
,

ρc24 = (a − b)2

(a − b)2 + b2
K1

a
+ a2

(a − b)2 + 2b2
K2

a
,

ρc25 = b2

(a − b)2 + b2
K1

a
,

ρc26 = a2

(a − b)2 + b2
K1 + a2

(a − b)2 + 2b2
K2,

ρs2 = 2K3

a
, ρβ = 4b2

(a − b)2 + 2b2
K2

a
(6.5)

where ρ = M/a3 is the density of the medium.
From expressions (6.5), one can obtain the following relationships between the

macroparameters of the medium:

β + s2

2
= c22,

c24 = (a − b)2c23 − (b2 − 2ab)β

4b2
,

c25 = c23 − β

4
, c26 = a2

b2

(
c23
4

)
. (6.6)

It should be noted that the first equality (6.6) is also valid for the square and
hexagonal lattices of plane round particles (see Eq. (2.11) and Ref. [7]).

The nonlinearity coefficients depend on the microstructure parameters as follows:



136 6 A Cubic Lattice of Spherical Particles

ρα1 = K0

a
+ 4a2(a − b)(a − 2b)

r41

K1

a
+ 4a(a − b)3

r42

K2

a
+ a

a − b

K3

a
,

ρα2 = a

a − b

K3

a
,

ρα3 = b

a

(
4b(a − b)

r21

K1

a
+ 4b

r22

(

a − 3b + 4b2(a + b)

r22

)
K2

a
+ 3b

2(a − b)

K3

a

)

,

ρα4 = b

a

(
4b

r21

(

a − b − ab2 + b3

r21

)
K1

a
+ 4b

r22

(

a − 3b + 4ab2 + 4b3

r22

)
K2

a
+ b

a − b

K3

a

)

,

ρα5 = b

a

(
4b(a − b)

r21

K1

a
+ 4b(a − b)

r22

(

2 − b2

r22

)
K2

a
+ b

a − b

K3

a

)

,

ρα6 = 4b

a

(
a

r21

(

2a − 3b − a2b

r21

)
K1

a
+ 2a

r22

(

a − 2b + 6b3 − 2ab2

r22

)
K2

a

)

,

ρα7 = 2bK3

(a − b)a
= 2b

a
ρα2,

ρα8 = 4b

a

(
2b2

r21

K1

a
− b(a − b)

r22

(

2 − b2

r22

)
K2

a

)

,

ρα9 = 2ab

M

(
4ab

r21

K1

a
+ 2b(a − b)

r22

(

2 − b2

r22

)
K2

a
+ b

a − b

K3

a

)

,

ρα10 = 8b2

(a − b)2 + b2
K1

a
. (6.7)

Here, r1 = √
(a − b)2 + b2 and r2 = √

(a − b)2 + 2b2 are the lengths of springs
K1 and K2 at the initial state. It should be noted that all the nonlinearity coefficients,
except the factorsα1 and α2, vanish, when the considered lattice of spherical particles
degenerates into a lattice of material points (i.e., for b → 0).

In Chap. 4 (see Table 4.1), it was shown that if the velocity of the longitudinal
wave c1 is greater than both the transverse wave velocity c2 and the rotational wave
velocity c4 (in the model, such superiority of c1 is provided by the central springs
K0), whereas c2 can be either greater or less than c4. In this medium, the bending
wave velocity c3 can also both exceed c2 and be less than it. In particular, it follows

from the second and third relations (6.5) that c3 > c2 for K1 >
((

a
2b − 1

2

)2 + 1
4

)
K3.

An analysis of expressions (6.5) and (6.6) shows that c6 is the maximal velocity
among all the rotational wave velocities c4, c5, and c6. Moreover, as a rule, c4 > c5.
The last inequality can be invalid only for large values of b (with respect to the lattice
period a) and small values of K2 (compared with K1).

From Eq. (6.5), one can see the importance of taking into account springs of the
typesK3,K2, andK1 in the model. In the absence of such springs, the terms vanish in
Eq. (6.4), which are proportional, respectively, to s (and wewould get a contradiction
with the classical theory of elasticity), c5 and β (that contradicts the equations of the
Cosserat continuum, which consists of centrally symmetric particles [5, 6]).

It should be emphasized that when the linear parts of Eq. (6.4) degenerate into the
dynamic equations for a square lattice of round particles, even the dependences of
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their coefficients on the microstructure parameters coincide, if to take into account
that in this case the amount of springs of K1- and K2-types has become twice greater
as in the three-mode model.

UsingEq. (6.5) and thefirst relation (6.6), one can obtain the following expressions
for the parameters of interparticle interaction in terms of the macroparameters of the
medium:

K3

a
= ρs2

2
,

K2

a
= ρ

4

(
c22 − s2

2

)((a
b

− 1
)2 + 2

)
,

K1

a
= ρ

4

(
c23 − c22 + s2

2

)((a
b

− 1
)2 + 1

)
,

K0

a
= ρ

(
c21 − s2

2
−

(a
b

− 1
)2
c23

)
. (6.8)

Thus, if to determine experimentally thevelocities of elasticwaves c1, c2, and c3 (in
a three-dimensional medium with cubic symmetry c2 = c3, as it will be shown in the
next section) and the parameter s, then due to the known density of the medium ρ and
the relative particle size b/a, it is possible to calculate the parameters of interparticle
interaction, which can be further used to estimate the rotational wave velocities and
the nonlinearity coefficients. Examples of solving similar problems of parametric
identification for the square and hexagonal lattices of plane round particles, as well
as for the rectangular lattice of ellipse-shaped particles, are given in Chap. 4.

6.2.3 3D Model of a Crystalline Medium of Spherical
Particles

Now, in contrast to Sect. 6.2, in expression (6.2), we take into account all terms,
including the terms proportional toK4. But we will retain only the linear terms in the
expressions for the elongations Dln. Further, according to the procedure described in
Sects. 3.1 and 3.2, we will pass from the discrete model to the continual one.

6.2.4 Continuum Approximation

In the case of long-wavelength perturbations, when λ � a, the three-dimensional
Lagrange function L of the considered medium of spherical particles, with accuracy
up to quadratic terms, takes on the form:

L = M

2

(
u2t + v2t + w2

t

) + J

2

(
ϕ2
t + θ2

t + ψ2
t

)
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− M

2

[
c21

(
u2x + v2y + w2

z

) + c22
(
v2x + v2z + u2y + u2z + w2

x + w2
y

)

+ s2
(
vywz + vzwy + uxwz + uzwx + uxvy + uyvx

) + β2
1

(
ϕ2 + θ2 + ψ2

)

+ β2
2

(
vxϕ − wxψ + wyθ − uyϕ + uzψ − vzθ

)

+b2c23
(
ϕ2
z + θ2

x + ψ2
y

) + b2c24
(
ϕ2
x + ϕ2

y + θ2
y + θ2

z + ψ2
x + ψ2

z

)]
. (6.9)

Using the Hamilton’s variational principle, it is possible to derive from the
Lagrange function (6.9) that a set of linear differential equations describing the
propagation of elastic and rotational waves in a cubic lattice of spherical particles:

utt − c21uxx − c22
(
uyy + uzz

) − s2
(
vxy + wxz

) + β2
2

2

(
ϕy − ψz

) = 0

vtt − c21vyy − c22(vxx + vzz) − s2
(
uxy + wyz

) + β2
2

2
(θz − ϕx ) = 0

wtt − c21wzz − c22
(
wxx + wyy

) − s2(uxz + vyz) + β2
2

2

(
ψx − θy

) = 0

θt t − c23θxx − c24
(
θyy + θzz

) + β2
2

2J

(
wy − vz

) + β2
1

J
θ = 0

ψt t − c23ψyy − c24(ψxx + ψzz) + β2
2

2J
(uz − wx ) + β2

1

J
ψ = 0

ϕt t − c23ϕzz − c24
(
ϕxx + ϕyy

) + β2
2

2J

(
vx − uy

) + β2
1

J
ϕ = 0 (6.10)

The following denotes are entered in the Lagrange function (6.9) andEq. (6.10): c1
and c2 are the velocities of longitudinal and transverse waves, c3 and c4 are the veloc-
ities of rotation waves of different polarization, s is the coefficient of linear coupling
between the longitudinal and shear deformations,β1 andβ2 are the dispersion param-
eters (they relate microrotations with the longitudinal and transverse waves), and αi

(i = 1 … 10) are the nonlinearity coefficients.
In the limiting case, when w = θ = ψ = 0, Eq. (6.10), as well as the linear

parts of Eq. (6.4) for a one-layer medium of spherical particles, degenerate into the
previously derived equations for the dynamics of a square lattice of round particles
(see Sect. 3.2), which, in turn, coincide with the equations of the two-dimensional
Cosserat continuum consisting of centrally symmetric particles [5, 6].

6.2.5 Dependence of the Macroparameters of the 3D Medium
on the Parameters of Its Microstructure

The coefficients of Eq. (6.10) are expressed in terms of the force constants K0, K1,
K2, K3, and K4, the lattice period a, and the particle size b = d/2

√
3 as follows:
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,
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ρ

(
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a
√
2
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)
,

β2
1 = 8b2

ρ

(
1

(a − b)2 + b2
K1

a
+ 1

(a − b)2 + 2b2
K2

a

)
, β2

2 = K2

ρa

8b2

(a − b)2 + 2b2
.

(6.11)

From relations (6.11), it follows that in a 3D medium with cubic symmetry,
consisting of identical centrally symmetric particles with three translational and
three rotational degrees of freedom, there is also a dependence of the acoustic and
rotational wave velocities on the parameters of its microstructure. Due to this depen-
dence, it is possible, in particular, to obtain two additional relationships between the
macroparameters of the medium:

β2
1 + s2 = 2c22, β

2
2 + 4c23 = β2

1 . (6.12)

It is interesting to note that the first of relations (6.12) is similar to relation (2.11),
which was encountered for the two-dimensional models considered in Chaps. 2 and
3.

Let us find out how the microstructure of a crystalline material affects its physical
and mechanical properties. To this purpose, we first write expressions (6.11) in the
dimensionless form, i.e., we normalize all the wave velocities to the velocity c0 =
a
√
K0/M . Next, we will analyze the dependences of the wave velocity ci (i = 1÷4)

on the relative particle size d/a and the dimensionless parameters of the force and
couple interactions between the particles Ki0 = Ki/K0 (i = 1 ÷ 4).

Dependences of the wave velocities on the relative particle size d/a are plotted
in Fig. 6.6. The figure shows that, when the particle size grows, the longitudinal
wave velocity c1 decreases monotonically, whereas all other wave velocities, on the
contrary, increase monotonically. The velocity c1 is maximal and the rotational wave
velocity c3 is the minimal. Note that in this case c4 > c2, however, decreasing of
the parameters of the moment interactions K10 and K20, as well as increasing of the
parameters K30 and K40, leads to the relation c2 > c4 (Figs. 6.7, 6.8, 6.9 and 6.10).
Moreover, this inequality is more probably valid for the small (d/a = 0.1) and large
(d/a = 0.9) particle sizes (Figs. 6.8, 6.9 and 6.10).

At small grain sizes, the wave velocities c2 and c3 are actually constant (Fig. 6.7a,
b). But for the large particle sizes, a significant increase of these velocities is observed
(Fig. 6.7c). The nature of the dependence of the longitudinal wave velocity on the
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Fig. 6.6 Dependences of the
wave velocities on the
relative particle size at K10
= 0.3, K20 = 0.9,
K30 = 1, K40 = 1

interaction parameters Ki0 (i = 1 ÷ 4) differs from that shown in Fig. 6.6, as in
Figs. 6.7, 6.8, 6.9, and 6.10, the longitudinal wave velocity monotonically increases
with growing parameters Ki0.

6.2.6 Comparison of the Proposed Model with the 3D
Cosserat Continuum

Let us compare the Lagrange function (6.9) with the Lagrange function for a 3D
isotropic Cosserat continuum:

L = ρ

2

(
u2t + v2t + w2

t + I 21 θ2
t + I2ψ

2
t + I3ϕ

2
t

)

− 1

2

[
(λ + 2μ)

(
u2x + v2y + w2

z

) + (μ + α)
(
v2x + v2z + u2y + u2z + w2

x + w2
y

)

+ (λ + μ − α)
(
uxvy + uyvx + uxwz + uzwx + vywz + vzwy

)

+ 4α
(
θ2 + ψ2 + ϕ2 + vxϕ − wxψ + wyθ − uyϕ + uzψ − vzθ

)

+ (β + 2γ )
(
θ2
x + ψ2

y + ϕ2
z

) + (γ + ε)
(
ϕ2
x + ϕ2

y + θ2
y + θ2

z + ψ2
x + ψ2

z

)

+(β + γ − ε)
(
θxψy + θyψx + θxϕz + θzϕx + ψyϕz + ψzϕy

)]
(6.13)

Here, λ and μ are the Lamé parameters; α, β, γ, and ε are the constants of the
Cosserat medium. Thus, there are six independent macroconstants in the isotropic
Cosserat continuum. It is obvious that the degeneration of Eq. (6.13) into Eq. (6.9)
is possible only in the case when β + γ = ε.
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a) d/a=0.1 b) d/a=0.5 

c) d/a=0.9 

Fig. 6.7 Dependences of the wave velocities on parameter K10 at K20 = 0.3, K30 = 1.2,
K40 = 1.6

Relations (6.12) show that in this anisotropicmodel there are onlyfive independent
macroconstants, and upon passing to an isotropic medium (see Sect. 4.2) only four
constants remain. A similar result has been obtained for an isotropic medium in Ref.
[8].

Consequently, the transition from the discrete model to the continuum does not
lead to the Cosserat continuum.

6.3 Conclusions

A three-dimensional model of a crystalline medium that represents a simple cubic
lattice resembling the lattice of fullerite at low temperatures (see Sect. 1.2.) has been
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a) d/a=0.1 b) d/a=0.5 

c) d/a=0.9 

Fig. 6.8 Dependences of the wave velocities on parameter K20 at K10 = 0.3, K30 = 1.2,
K40 = 1.6

elaborated in this chapter. It is shown that the three-dimensionalmodel of a crystalline
medium, in contrast to the Cosserat continuum model, enables one establishing of
analytical dependences of the velocities of acoustic and rotational waves on the
microstructure parameters of such a medium. The analysis of such dependences
showed that the proposed model of the crystalline medium differs from the model
of the Cosserat medium by a smaller number of independent macroconstants: If
there are six independent constants in the isotropic Cosserat continuum, then in
this anisotropic model there are only five of them, and upon passing to an isotropic
medium, only four constants remain. Apparently, this indicates that it is not always
possible to obtain the Cosserat continuum from a discrete model. Thus, a question
arises: how to find conditions, when such transition is possible? Moreover, even
the possibility of the existence of such conditions is not obvious. Certainly, such
problems need further investigations.
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a) d/a=0.1 b) d/a=0.5

c) d/a=0.9

Fig. 6.9 Dependences of the wave velocities on parameter K30 at K10 = 0.3, K20 = 0.9,
K40 = 1.6

It should be noted that if in this model interactions between particles are simulated
by elastic springs of five types, then in the closely relatedwork [9] a three-dimensional
model of a granular medium of spherical particles contained springs of only three
types. As a result, in [9], the springs largely duplicated each other and therefore the
number of independent coefficients of the governing equations was even less than in
the model proposed in this chapter.

The performed numerical analysis showed that in the considered medium, when
the particle size grows, the longitudinal wave velocity c1 decreases monotonically,
whereas all other wave velocities, on the contrary, increase monotonically. The
velocity c1 is maximal among all the wave velocities and the rotational wave velocity
c3 is the minimal. The transverse wave velocity c2 can either exceed the rotational
wave velocity c4 or be less than it.
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a) d/a=0.1 b) d/a=0.5

c) d/a=0.9

Fig. 6.10 Dependences of the wave velocities on parameter K40 at K10 = 0.3, K20 = 0.9,
K30 = 1.2
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Chapter 7
Propagation and Interaction of Nonlinear
Waves in Generalized Continua

The main goal of the final chapter of the monograph is to study the features of
the propagation of nonlinear elastic waves in metamaterials and constructions made
of them [1]. Linear wave processes in generalized continua were considered, in
particular, in Refs. [2–13].

7.1 Localized Strain Waves in a 2D Crystalline Medium
with Non-dense Packing of the Particles

This section is devoted to revealing a possibility of the propagation of a plane strain
soliton in a two-dimensional crystalline medium with non-dense packing of round
particles, as well as to studying its stability with respect to two-dimensional pertur-
bations and to determination of its polarity. In order to achieve these goals, at the
first stage, the nonlinear differential equations (5.6) describing the propagation of
longitudinal, transverse, and rotational waves in such a medium were obtained by
the structural modeling method, as well as the dependences of linear and nonlinear
macroparameters of themedium on particle sizes and interaction parameters between
themwere established in an analytical form (see Chap. 5). Next, in the low-frequency
region, when the rotational wave does not propagate, the obtained three-mode set of
equations (5.6) degenerates into the two-mode system (5.11), which will be reduced,
using the multiscale method, to the Kadomtsev–Petviashvili evolution equation with
respect to a shear strain. This equation has a solution in the form of a soliton. At the
final stage, various scenarios of the behavior of a plane solitary wavewill be analyzed
in dependence on the initial conditions of the Kadomtsev–Petviashvili equation and
its coefficients depending on the microstructure parameters of the medium under
consideration.

Let us consider propagation of localized strain waves in the 2D granular medium
with a non-dense packing of particles (see Chaps. 3 and 5), depending on parameters
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of its microstructure. For this purpose, in Eq. (5.11), we introduce new coordinates
and time: ξ = x − vt , η = √

εy, τ = εt ; u = √
εu, w = w. So, Eq. (5.11) take on

the form:

√
εv2 ∂2u

∂ξ 2 − 2ε
√

εv ∂2u
∂ξ ∂τ

− √
εc21

∂2u
∂ξ 2 − (c22 − β

2 )ε
√

ε ∂2u
∂η2 − (s2 + β

2 ) ∂2w
∂ξ ∂η

√
ε

= R2

4

√
ε ∂

∂η

[
v2 ∂2

∂ξ 2

(
ε ∂u

∂η
− ∂w

∂ξ

)
− 2εv ∂2

∂ξ ∂τ

(
ε ∂u

∂η
− ∂w

∂ξ

)

−c23

(
∂2

∂ξ 2 + ε ∂2

∂η2

)(√
ε ∂u

∂η
− ∂w

∂ξ

)]
+ 1

2
∂H1
∂ξ

+ 1
2

∂H2
∂η

,

v2 ∂2w
∂ξ 2 − 2εv ∂2w

∂ξ ∂τ
− (c22 − β

2 ) ∂2w
∂ξ 2 − εc21

∂2w
∂η2 − (s2 + β

2 )ε ∂2u
∂ξ ∂η

= − R2

4
∂
∂ξ

[
v2 ∂2

∂ξ 2

(
ε ∂u

∂η
− ∂w

∂ξ

)
− 2εv

(
ε ∂u

∂η
− ∂w

∂ξ

)

−c23

(
∂2

∂ξ 2 + ε ∂2
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)(√
ε ∂u

∂η
− ∂w
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+ 1

2
∂H3
∂ξ

+ 1
2

∂H4
∂η

.

(7.1)

As various terms of Eq. (7.1) have different orders of smallness, we shall consider
some approximations step by step.

Approximation of ε0 order has the form:
(
v2 − (c22 − β

2 )
)

∂2w
∂ξ 2 = 0; hence

v2 = c22 − β

2
. (7.2)

Approximation of
√

ε order: (v2 − c21)
∂2u
∂ξ 2 −

(
s2 + β

2

)
∂2w
∂ξ ∂η

= 0; therefore,

∂u

∂ξ
= s2 + β/2

v2 − c21

∂w

∂η
. (7.3)

Approximation of ε order:

− 2εv
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(
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2
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ε
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∂
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(
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∂u

∂η

)
− 2εv

(
−∂w

∂ξ

)
− c23

(
ε

∂2

∂η2

)(
−∂w
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)]

+ 3γ1
∂w

∂ξ

∂2w

∂ξ 2
. (7.4)

After entering the designation ∂w
∂ξ

= U in Eq. (7.4) and taking into account
expressions (7.2) and (7.3), Eq. (7.4) is reduced to the following equation:

2vUξτ + q1(U
2)ξξ + R2

4
q2Uξξξξ + q3Uηη = 0, (7.5)

where
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3γ1
2ε

= q1,
2c22 − 2c23 − β

2ε
= q2,

c21 + (2s2 + β)2

4(c22 − c21) − 2β
= c21 + (4c22 − 3β)2

4(c22 − c21) − 2β
= q3. (7.6)

Let us introduce designations U/U0 = W , ξ/ξ0 = X , τ/τ0 = T , η/η0 = Y . In
terms of new variables, Eq. (7.5) takes on the form:

2
∂2W

∂X ∂T
+ q1

v

τ0U0

ξ0

∂2(W 2)

∂X2
+ R2

4v
q2

τ0

ξ 3
0

∂4W

∂X4
+ q3

ξ0τ0

vη2
0

∂2W

∂Y 2
= 0 (7.7)

If to put U0 = 1 and η0 = ξ 0 in Eq. (7.7), then W = U and Eq. (7.7) yields:

2
∂2U

∂X ∂T
+ q1

v

τ0

ξ0

∂2(U 2)

∂X2
+ R2

4v
q2

τ0

ξ 3
0

∂4U

∂X4
+ q3

τ0

vξ0

∂2U

∂Y 2
= 0. (7.8)

We choose scales ξ 0 and τ 0 so that the last coefficient in Eq. (7.8) would be equal
to 1:

τ0

ξ0
= v

q3
.

Due to this relationship between ξ 0 and τ 0 Eq. (7.8) is transformed as follows

2
∂2U

∂X ∂T
+ q1

q3

∂2(U 2)

∂X2
+ R2q2

4q3

1

ξ 2
0

∂4U

∂X4
+ ∂2U

∂Y 2
= 0. (7.9)

If to take ξ0 = R/2 in Eq. (7.9), then this equation is transformed into well-known
Kadomtsev–Petviashvili equation:

2
∂2U

∂X ∂T
+ q1

q3

∂2(U 2)

∂X2
+ q2

q3

∂4U

∂X4
+ ∂2U

∂Y 2
= 0. (7.10)

This equation has a solution in the form of a plane solitary strain wave (soliton)
(Fig. 7.1):

U (θ) = Asch
−2(θ/
), (7.11)

where θ = X − kY − VT is the wave phase. The amplitude of the soliton, As, and
its width 
 are determined by relations:

As =
∣∣∣∣
3q3(k2 − 2V )

2q1

∣∣∣∣, 
 = 2

√∣∣∣∣
q2

q3(k2 − 2V )

∣∣∣∣. (7.12)
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Fig. 7.1 Plane localized strain wave [14]

It should be noted that product

Ac

2 =

∣∣∣∣
6q2
q1

∣∣∣∣ =
∣∣∣∣
2c22 − 2c23 − β

γ1

∣∣∣∣

is the constant for each material.
The plane solitary wave (7.11) is known to be stable if q2/q3 > 0, and it is

unstable with respect to transverse perturbations, when q2/q3 < 0 [14]. In this case,
Kadomtsev–Petviashvili equation has an other precise solution [15]:

U (X, Y, T ) = 6q2
q1

∂2

∂X2
ln[1 + exp(2qθ) + exp(2p(θ + ψ))

+ A exp((q + p)θ + pψ) cos kY ]. (7.13)

Here p and q are integration constants, θ = X − (1+ 2q2
q3
q2)T ,ψ = −4p q2

q3
(p2 −

q2)T , A = 4
√
pq

p+q , and k = (q2 − p2)
√

−3q2
q3

.

Formula (7.13) describes a periodic chain of two-dimensional solitary strainwaves
(Fig. 7.2). If q2/q3 < 0, i.e., the condition of soliton instability, with respect to
transverse perturbations takes place, the plane solitary wave (7.11) plotted in Fig. 7.1
will be transformed into Eq. (7.13).

Polarity of solitons (7.11) and (7.13) depends on sign of expression q1/q2. The
solitons have a positive polarity (this case is represented in Figs. 7.1 and 7.2), when
q1/q2 > 0, and their polarity is negative, if q1/q2 < 0.

Thus, existence and polarity of steady plane solitons of deformations depend
on signs of coefficients q1/q2 and q2/q3. Let us analyze dependencies of these
coefficients on the macroparameters of the medium, which were obtained from
Eq. (7.6):
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Fig. 7.2 Plane wave modulated in the transverse direction [14]

q1
q2

= 3γ1
2c22 − 2c23 − β

, (7.14)

q2
q3

= (2c22 − 2c23 − β)(2c22 − 2c21 − β)

ε(2c21(2c
2
2 − 2c21 − β) + (4c22 − 3β)2)

. (7.15)

From (5.10) and (5.8) follows that

γ1 = α2 + α5 − α4

4
= K3

M

(
a3

4(a − h)
+ a2h2

4(a − h)2
− a2h

2(a − h)

)

= K3a2(a2 − 3ah + 3h2)

4M(a − h)2
> 0,

hence, q1/q2 > 0 for c22 > c23 + β/2 and q1/q2 < 0 for c22 < c23 + β/2 [16].
According to the data presented in Table 5.1, for the media with such parameters

as for cubic crystals of LiF, NaF, NaBr, and fullerite C60 with sc-lattice, it is possible
to determine the signs of expressions q1/q2 and q2/q3. Since q2/q3 > 0 only for
the first two of the four considered media, then stable plane strain solitons can exist
only in them: the so-called light soliton (with negative polarity) can exist in the first
medium, as q1/q2 < 0, and the “dark” soliton (with positive polarity)—in the second
medium, as q1/q2 > 0.

Let us choose as an initial condition for Kadomtsev–Petviashvili equation a 2D
soliton without plane front (Fig. 7.3), i.e., perturbation in the form [17]

U0(X, Y ) = 12sech2
(
X − 32

4

)
sech(Y − 8). (7.16)

In this case, we carried out the numerical simulation of Eq. (7.10) by means of the
semi-implicit pseudo-spectral scheme [18] with parameters: 256 × 64 (dimension
of a grid), 
X = 0.25 (a step length along x-axis), 
Y = 0.25 (a step length along
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Fig. 7.3 2D soliton without a plane front (T = 0)

Fig. 7.4 Spreading of a 2D soliton (T = 5)

y-axis), 
T = 0.003 (a step length in T ). As a result of these investigations, we
have observed an other behavior of the solitary wave: In fact, the peak of excitations
(7.16) moves forward (along x-axis) and simultaneously spreads to the sides (along
y-axis), with prevailing of the latter effect. Eventually, the amplitude of excitation
grows till a certain value (A = 7.1) near the boundaries, spreading aside and moving
forward, that leads to appearance of the crosswise structures (Fig. 7.4).

7.2 A 1D Medium Consisting of Ellipse-Shaped Particles
and with Internal Stresses

This section is auxiliary for further studies of the areas of modulation instability and
the interaction of strain solitons propagating in a one-dimensional granular medium
with internal (preliminary) stresses.



7.2 A 1D Medium Consisting of Ellipse-Shaped Particles … 153

7.2.1 Mechanical Model of a 1D Medium with Internal
Stresses

Let us consider a chain consisting of homogeneous particles (grains or granules) with
the massM having the shape of an ellipse with the axes d1 and d2. In the initial state,
they are concentrated in the lattice sites and the distance between the mass centers of
the neighboring granules along the x-axis equals a (Fig. 7.5). As in the rectangular
lattice studied in Chap. 3, when moving in the plane, each particle has three degrees
of freedom: the displacement of the mass center of the particle with the number N
= N(i) along the axes x and y (translational degrees of freedom ui and wi) and the
rotation with respect to the mass center (rotational degree of freedom ϕi) (Fig. 7.6).
The displacements of the grains are supposed to be small in comparison with the
period a of the considered one-dimensional lattice.

It is assumed that the particle N interacts only with the two nearest neighbors in
the chain, themass centers of which are located at the distance a along the axis x from
the particle N (Fig. 7.6). The central and non-central interactions of the neighboring
granules are simulated, like in Sect. 2.1, by elastic springs of three types: central
(with rigidity K0), non-central (with rigidity K1), and diagonal (K2). The points of
junctions of the springs with the particles are in the apexes of the rectangle of the
maximum area, ABCE, inscribed in the ellipse (Fig. 7.6). Each rectangle has the size
h1 ×h2, where h1 = d1/

√
2 and h2 = d2/

√
2. The elongations of the central springs

are determined by the changes of the distances between the geometrical centers of the
rectanglesABCE, and the tensions of other springs are characterized by the variations
of the distances between the apexes of these rectangles.

Fig. 7.5 Chain of ellipse-shaped particles

Fig. 7.6 Scheme of force interactions between the particles and kinematics
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Note that, in contrast to the previously considered rectangular lattice of ellipse-
shaped particles (see Chap. 3), this model does not contain springs with rigidity K3

(that is natural, since the interaction with the second coordination sphere is not taken
into account). It is supposed that in the initial state all the springs with rigidity K0,
K1, and K2 have been already deformed (stretched or compressed), accordingly, at
quantities δ′

0 � a, δ′
1 � a, and δ′

2 � a [19]. The initial deformations of the springs
simulate internal (or preliminary) stresses in a medium [20, 21]. The elongations
of these springs arising when the particles deviate from their equilibrium states are
calculated in the same way as for a square lattice of round particles (see Sect. 5.1
and Appendix 2), but with one addition: δ′

0 is added to the elongations of the central
springs, δ′

1 is added to the extensions of the non-central springs, and δ′
2—to the

elongations of the diagonal springs.
In the approximation of smallness of the quantities


ui = (ui − ui−1) ∼ aε0, 
wi = (wi − wi−1) ∼ aϕi ∼ a
√

ε0,


ϕi = (ϕi − ϕi−1) ∼ ε
3/2
0 ,

(7.17)

where ε0 � 1 is a deformation measure of the cell, and taking into account that

Φi = (ϕi−1 + ϕi )/2 = ϕi − (ϕi − ϕi−1)/2 = ϕi − 
ϕi/2,

according to the algorithm described in Chaps. 2 and 3, one can obtain the following
Lagrange function for the considered chain of round particles with accuracy up to
the terms of ε30 order [20]:

L = M

2
(u2t + w2

t + R2ϕ2
t ) − M

2
[c21u2x + c22w

2
x + R2c23ϕ

2
x + 2β1wxϕ + 2β2ϕ

2

+ α1u
3
x + α2uxw

2
x + α3uxϕ

2 + α4uxwxϕ]. (7.18)

The Lagrange function (7.18) is a one-dimensional analog of formula (5.1). The
choice of relations (7.17), due to which Eq. (7.18) was derived, is explained by the
fact that for stretching the chain in the longitudinal direction, more force is required
than for its bending deformation.

A set of differential equations describing the nonlinear dynamic processes in
the anisotropic granular medium is derived from the Lagrange function (7.18) in
agreement with Hamilton’s variational principle

utt − c21uxx = 1

2

∂

∂x
(3α1u

2
x + α2w

2
x + α3ϕ

2 + α4wxϕ),

wtt − c22wxx − β1ϕx = 1

2

∂

∂x
(2α2uxwx + α4uxϕ), (7.19)

R2(ϕt t − c23ϕxx ) + β1wx + 2β2ϕ = −2α3uxϕ − α4uxwx .
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Equation (7.19) are analogs of the equations for the nonlinear one-dimensional
Cosserat continuum [22]. Here, the following notations are introduced: ci (i = 1,
2, 3) are the propagation velocities, respectively, of the longitudinal, transverse,
and rotational waves, β1 and β2 are the dispersion parameters, αi (i = 1–4)—are

the nonlinearity coefficients, R =
√
d2
1 + d2

2/4 is the inertia radius of the particle.
Dependencies of the coefficients of Eq. (7.19) on the microstructure parameters (the
force constants K0, K1, and K2, the lattice period a and the grain sizes h1 = d1/

√
2

and h2 = d2/
√
2) have the following form:

ρc21 = a

[
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(
2(a − h1)2
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r3

)
K2

]
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(a − h1)h22
K1 + δ2

r3
K2

(
h22 + (a − h1)

2 h
2
1

h22
− 2h1(a − h1)

)]
;

ρβ1 = 2
(
ah22
r2 K2 + δ1h1

a−h1
K1 + δ2(a−h1)(ah1−h21−h22)

r3 K2

)
,

ρβ2 = ah22
r2 K2 + δ1h21

a(a−h1)
K1 + δ2(h42+(a−h1)2h21−2h1h22(a−h1))

ar3 K2;
(7.20b)

ρα1 = K2

r4
a2(a − h1)h

2
2,

ρα2 = K0a + K1
a2

a − h1
+ K2

r4
a2(a − h1)((a − h1)

2 − 2h22),

ρα3 = K1
h21

a − h1
+ K2

r4
(h21 + h22 − ah1)(2ah

2
2 + (a − h1)(h

2
1 + h22 − ah1)),

(7.20c)

ρα4 = K1
2ah1
a − h1

+ 2a

r4
K2((h

2
1 + h22 − ah1)(h

2
2 − (a − h1)

2) − ah22(a − h1)),

where ρ = M/a is the density of the one-dimensional medium per unit length.
From (7.20b), the relationship β1 = 2β2 follows, if there are no preliminary

deformations of the springs. It should be noted that expressions (7.20c) are given
without the preliminary deformations of the springs, since they are not significant
for the further investigations.

It should also be noted that the Lagrange function for a chain of round granules
without taking into account the preliminary stresses could be obtained avoiding the
cumbersome procedure of derivation. For this purpose, first, it is necessary to exclude
from the Lagrange function (5.1) all the terms containing derivatives with respect to
y, and then to put K3 = 0 and h1 = h2 = h in the remaining coefficients. At first view,
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it seems more effective to derive the Lagrange function for a chain of round granules
without taking into account the preliminary stresses from the Lagrange function (5.5)
for a square lattice of round particles. However, this path leads to an incorrect result,
namely: If in expressions (3.9) for the dispersion parameters

β1 = 2a2

M

(
h22

(a − h1)2 + h22
K2 + (b − h2)(ah2 − bh1)

a((a − h1)2 + (b − h2)2)
K3

)
,

β2 = 1

M

((
a2h22

(a − h1)2 + h22
+ b2h21

(b − h2)2 + h21

)
K2 + (ah2 − bh1)2

(a − h1)2 + (b − h2)2
K3

)

to pass first to a square lattice of round particles (a = b, h1 = h2 = h), then we get

β1 = β2 (an extra term
b2h21

(b−h2)2+h21
K2 is added to β2), whereas the initial transition to

the one-dimensional case (b = 0, K3 = 0) with the subsequent replacement h1 = h2
= h eliminates the extra term and gives the correct result: β1 = 2β2.

7.2.2 Equations of the Gradient Theory of Elasticity for a 1D
Medium with Internal Stresses

In the low-frequency approximation, when the rotational wave does not propagate,
a relation between the microrotations ϕ and displacements w can be found from
the linear part of the third equation (7.19) by a step-by-step approach. Since in this
equation the term β1wx + 2β2ϕ plays the main role (according to estimates (7.17), it
has

√
ε0 order of smallness), and the second term of the linear part of the equation,

R2(ϕt t −c23ϕxx ), has the next order of smallness—ε
3/2
0 , then in the first approximation

ϕ(x, t) ≈ − β1

2β2
wx , (7.21)

and in the second approximation, the variable ϕ can be expressed in terms of w and
its derivatives as follows [23]:

ϕ(x, t) ≈ − β1

2β2

∂w

∂x
+ R2β1

4β2

(
∂3w

∂x ∂t2
− c23

∂3w

∂x3

)
.

Taking into account the constraint (7.21) leads to “freezing” of the rotational
degree of freedom and, as a consequence, to exclusion of ϕ from Eq. (7.19). As a
result, in the first approximation, Eq. (7.19) degenerate into a two-mode system, the
Lagrange function of which has the form

L = M

2

(
u2t + w2

t + R2

4
w2
xt

)
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− M

2

(
c21u

2
x +

(
c22 − β2

1

2β2

)
w2
x + R2

4
c23w

2
xx + α1u

3
x + γ uxw

2
x

)
, (7.22)

where γ = α2 + α3
4 − α4

2 . It depends on the parameters of the microstructure as
follows:

γ = a

ρ

{
K0 + K1

(2 − h1/a)2

4(1 − h1/a)
+ K2a4

r4

[(
1 − h1

a

)((
1 − h1

a

)2

− 2h22
a2

)

+ 1

4

(
h21 + h22

a2
− h1

a

)(
2h22
a2

+
(
1 − h1

a

)(
h21 + h22

a2
− h1

a

))

−
(
h21 + h22

a2
− h1

a

)(
h22
a2

−
(
1 − h1

a

)2
)

+ h22
a2

(
1 − h1

a

)]}
. (7.23)

Analysis of expression (7.23) shows that coefficientγ canbenegative for K2 > K0

and enough large sizes of the particles (in comparison with the lattice period a). In
particular, if to assume that K1/K0 = 0.1, K2/K0 = 2.8, then γ < 0 for

h1
a

= 0.7,
h2
a

≥ 0.47, (7.24a)

as well as for

h1
a

≥ 0.65,
h2
a

= 0.7. (7.24b)

It is possible to obtain from Lagrange function (7.22) the so-called equations of
the gradient elasticity theory [24] containing terms with higher-order derivatives (in
this case, the fourth-order):

utt − c21uxx = 1

2

∂
(
3α1u2x + γ w2

x

)

∂x
, (7.25a)

wtt − c̃22wxx − R2

4

∂

∂x

[
∂2wx

∂t2
− c23

∂2wx

∂x2

]
= ∂(γ uxwx )

∂x
, (7.25b)

where c̃22 = c22 − β2
1

2β2
. It should be noted that taking into account (7.25a) and (7.25b),

c̃22 ≈ δ0

aρ
K0, (7.26)

whereas β1 = 2β2 and c̃22 = 0 for δ0 = δ1 = δ2 = 0. Thus, all further analysis
is possible only for a medium with internal stresses, which are simulated by the
preliminary deformations of the springs [20].
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7.3 Self-modulation of Shear Strain Waves Propagating
in a 1D Granular Medium

The main goal of this section is to find a region of modulation instability (self-
modulation) of a shear strain wave in a one-dimensional granular material with
preliminary stresses. The boundaries of this region and the characteristics of the
wave packet formed as a result of self-modulation of a quasiharmonic wave depend
on the microstructure parameters of the material at issue.

7.3.1 The Modulation Instability Areas

We shall enter into consideration new independent variables and expansions of
dependent variables in powers of the small parameter ε characterizing a ratio of
the maximum amplitude of displacement to the wavelength:

ξ = x − V t, τ = εt; (7.27)

w = w0 + √
εw1 + · · · , u = ε(u0 + εu1 + · · · ). (7.28)

The chosen asymptotics (7.27) and (7.28) corresponds to the casewhen the pertur-
bation, slowly varying in time, propagates with a constant velocity along the x-axis.
Introduction of new variables (7.27) and (7.28) is a basis of the multiscale method
[22] that is used for derivation of evolution equations. At this stage, the main effects
are separated from the secondary ones during the wave motion. Substituting (7.27)
and (7.28) into Eqs. (7.25a) and (7.25b), one can receive relations of various orders
of smallness with respect to ε. From the relationship containing ε in the zero power
(or containing

√
ε), the velocity can be determined:

V = c̃2 =
√
c22 − β2

1

2β2
. (7.29)

One of the relations containing ε in the first power allows defining coupling
between deformations in a wave:

∂u0
∂ξ

= γ

2(c̃22 − c21)

(
∂w0

∂ξ

)2

. (7.30)

The second relation also containing ε in the first power, taking into account (7.30),
represents an evolution equation of the following form:
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∂W

∂τ
+ b1W

2 ∂W

∂ξ
+ b2

∂3W

∂ξ 3
= 0. (7.31)

Here

W = ∂w0

∂ξ
, b1 = 3γ 2

4
(
c̃22 − c21

)
c̃2

, b2 = R2(c̃22 − c23)

8 c̃2
. (7.32)

Equation (7.31) coincideswith themodifiedKorteweg-deVries (MKDV)equation
[25, 26] that is well known in the nonlinear wave dynamics.

Thus, the velocity of perturbation and a ratio between the deformations in a wave
have been determined at the first stage of application of the multiscale method. At
the second stage, this information allowed obtaining the evolution equation for the
main term of decomposition of the required dependent variable.

In order to find areas of themodulation instability of the shearwave of deformation
W = ∂w0/∂ξ , we shall employ the standard procedure of obtaining the nonlinear
Schrödinger equation [25].We shall search for the solution ofEq. (7.31) as a harmonic
wavewith the amplitude and phase slowly varying in space and time (a quasiharmonic
wave):

W = A(εξ, ετ ) exp(i(ωτ − kξ)) + A ∗ (εξ, ετ ) exp(−i(ωτ − kξ)), (7.33)

where A is the complex amplitude and A* is the complex-conjugate amplitude. The
frequency ω and the wavenumber k satisfy the dispersion equation of the linear
problem

ω = −b2k
3 (7.34)

and the condition of smallness of amplitude-frequency modulation

∂A

∂ξ
· 1

k A
∼ ∂A

∂τ
· 1

ωA
∼ ε � 1,

∂2A

∂ξ 2
· 1

k A
∼ ∂2A

∂τ 2
· 1

ωA
∼ ε2. (7.35)

Using the method of averaging over the fast variables [25], it is possible to pass
from Eq. (7.31) to the abridged equation of the quasiharmonic wave envelope. In
the reference frame η = ε(ξ − vgrτ), T = ετ moving with the group velocity
vgr = dω/dk, the envelope evolution is described by the nonlinear Schrödinger
equation

i
∂A

∂T
− 1

2

dvgr
dk

· ∂2A

∂η2
= σ |A|2A. (7.36)
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The last equation is frequently used in studying of wave processes in optics,
plasma physics, acoustics, and electrodynamics [25]. Here

σ = b1k

ε
, (7.37)

dvgr
dk

= −6b2k. (7.38)

It should be noted that the nonlinear Schrödinger equation can be also obtained
from Eqs. (7.25a) and (7.25b), but as we already have got MKDV Eq. (7.31), our
way is shorter.

It is known that under certain conditions a quasiharmonic wave is unstable with
respect to breaking up into individual wave packets (this effect is called a modulation
instability or a self-modulation) [25]. The presence of such instability in a system is
determined by the Lighthill criterion [26]:

dvgr
dk

σ < 0. (7.39)

Speaking in spectral language, themodulation effect is characterized by increasing
of side components in the modulated wave spectrum. The energy will be pumped
into these components from the central part of the spectrum of perturbations.

Figure 7.7 schematically shows the self-modulation process of a quasiharmonic
wave (a) and evolution of its spectrum (b).

Fig. 7.7 Self-modulation of a quasiharmonic wave (a) and evolution of its spectrum (b)
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In the case at issue, as follows from Eqs. (7.37) and (7.38), dvgr
dk σ = − 6b1b2

ε
k2 =

− 9γ 2R2(c23−c̃22)
16ε(c21−c̃22) c̃

2
2
k2. Since from Eqs. (7.26) and (7.20a), it is visible that c̃22 < c23 <

c21, then, according to the Lighthill criterion, the modulation instability will be
observed in the considered medium for all the allowable values of the microstructure
parameters [20].

7.3.2 Forms of Wave Packets in the Case of the Modulation
Instability

Let us introduce the real amplitude a and phase θ instead of the complex amplitude
A: A = a exp(iθ). Then, Schrödinger equation (7.36) can be transformed into two
coupled equations:

∂

∂τ

(
a2

2

)
− 1

2

∂

∂η

(
dvgr
dk

∂θ

∂η
a2

)
= 0, (7.40)

a
∂θ

∂τ
+ 1

2

dvgr
dk

∂2a

∂η2
− 1

2

dvgr
dk

a

(
∂θ

∂η

)2

+ σa3 = 0.

For determining the formofwave packets intowhich a quasiharmonicwave breaks
up due to the modulation instability, we shall use the set of Eq. (7.40) and analyze
the stationary wave envelopes.

We shall look for solutions of Eq. (7.40), depending on the single variable

z = η − vτ,

where v is the stationary wave velocity: a = a(z), θ = θ(z).
Then, Eq. (7.40) in partial derivatives is reduced to the set of two ordinary

differential equations:

d

dz

(
v

2
a2 + 1

2

dvgr
dk

dθ

dz
a2

)
= 0, (7.41)

1

2

dvgr
dk

d2a

dz2
− va

dθ

dz
− 1

2

dvgr
dk

a

(
dθ

dz

)2

+ σa3 = 0.

After integrating the first of Eq. (7.41), we obtain the relation of the phase and
amplitude of the wave:

dθ

dz
= −2

(
dvgr
dk

)−1( q

a2
+ v

2

)
= 0, (7.42)
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where q is the integration constant.
If to consider only the waves having the amplitude modulation, but without the

phasemodulation, thenq=0 and the amplitude variationwill be described byDuffing
equation:

d2a

dz2
+ m1a + m2a

3 = 0, (7.43)

where

m1 = v2
(
dvgr
dk

)−2

, m2 = 2σ

(
dvgr
dk

)−1

. (7.44)

It should be noted that coefficient m1 of Eq. (7.43) is always positive, whereas
the sign of factor m2 can be both positive and negative. According to the Lighthill
criterion (7.39), the negative value of this coefficient (m2 < 0) corresponds to the
considered area of the modulation instability.

For such signs of coefficients m1 and m2 Duffing equation has two types of
finite solutions—the periodic solution and the solitary one. The periodic solution is
expressed in terms of the elliptic sine:

a = a0sn(Kz, s), (7.45)

where a0 is the stationary wave amplitude, K =
√

(2m1 + m2a20)/2 is the nonlinear

analog of the wavenumber, s2 = −m2a20/(2m1+m2a20) is the modulus of the elliptic
function, which varies in the range 0 ≤ s ≤ 1.

The periodic wave parameters are related as follows [20]:

a0 = v

√
s2

− dvgr
dk σ(1 + s2)

, K = v
dvgr
dk

√
1 + s2

. (7.46)

The wave amplitude grows in direct proportion to the velocity, whereas the wave-
length � = 4K(s)/K , where K(s) is the elliptic integral of the first kind, decreases
in direct proportion to the velocity v.

The solitary wave, which is a limiting case (s = 1) of the periodic wave (7.45), is
described by a hyperbolic tangent:

a = a0th(z/
). (7.47)

Its velocity v, amplitude a0 and width 
 are related by the following formulas:

a0 = v
√
2

2

(
−σ

dvgr
dk

)−1/2

, 
 =
√
2

v

dvgr
dk

. (7.48)
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Fig. 7.8 Shear strain wave modulated by “kink” law

Function (7.47) describes the transition from one to another constant value (the
difference). The shear strain wave modulated according to this law is shown in
Fig. 7.8.

The profile of the periodic wave (7.45) is transformed from sinusoidal (for s →
0) to close to meander (for s → 1). The shear wave of displacement, modulated
according to the periodic law, is shown (for s → 1) in Fig. 7.9.

Let us reveal, how height (H) and width (D) of the wave packet formed as a result
of the self-modulation of the quasiharmonic wave are related with the microstructure
parameters of a material.

Identifying the height of the wave packet with the double amplitude, H = 2a0,
and its width with 
: D = 
, according to Eq. (7.48), we find:

H = 4c̃2v

3Rγ k

√
2ε(c̃22 − c21)

c̃22 − c23
, D = 3

√
2R2(c23 − c̃22)

4c̃2v
. (7.49)

The similar dependences of H and D on parameter s can be obtained from
Eq. (7.46) for a periodic sequence of wave packets (wave trains). In this case, the

Fig. 7.9 Shear wave of displacement modulated according to the periodic law
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width of the packet should be identified with a half of wavelength of the envelope
(D = 
/2) and the following formulas yield:

H = 8vs

3Rγ k

√
ε(c21 − c̃22)

(c23 − c̃22)(1 + s2)
, D = 3K(s)R2(c23 − c̃22)k

√
1 + s2

2c̃2v
. (7.50)

Dependences (7.49) and (7.50) contain parameters R, c1, c̃2, c3, and γ that, as
it follows from expressions (7.20a), (7.23), and (7.26), are directly related to the
microstructure parameters (the force constants K0, K1, K2, the lattice period a and
the grain sizes h1 = d1/

√
2 and h2 = d2/

√
2). Thus, these dependences enable one

to estimate the influence of the material microstructure on the height and width of
the propagating wave packets in it, into which the quasiharmonic shear wave breaks
up as a result of its self-modulation.

7.4 Nonlinear Longitudinal Waves in a Rod Made
of an Auxetic Material

Sections 4.4 and 4.5 discussed Mathematical models of auxetics—materials with a
negative Poisson’s ratio—were discussed in Sects. 4.4 and 4.5. Here we consider a
rod made of an auxetic material [27].

At present, models and structures of auxetic rods [28–30] used as elements of a
new class of composites [30–34] are actively developed, auxetic polymeric foams
[35–37] and auxetic crystalline materials [30, 38–44] are synthesized and studied.
Considerable attention is paid to the study of characteristic features of the propa-
gation of elastic waves, primarily, of the ultrasonic range, in auxetics [5, 30, 45–
52], since such studies will contribute to the development of methods for acoustic
non-destructive testing of new advanced materials.

The aim of this section is an investigation of the propagation of longitudinal strain
waves in a rod made from a material with a negative Poisson’s ratio.

7.4.1 The Linear Mathematical Model. Dispersion Properties

In dynamics of rods, besides the engineering (classical) models, there are, so-called,
refined or nonclassical models [53, 54]. These models either take into account addi-
tional factors affecting a dynamic process, or are free of some hypotheses accepted
in the engineering theories and restricting their field of applicability.

The classical D. Bernoulli theory, which is usually used for description of longi-
tudinal vibrations of a rod, is generalized by the Bishop model taking into account
the kinetic energy of the transverse motions of rod particles and the potential energy
of shear deformations:
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ρF
∂2u

∂t2
− EF

∂2u

∂x2
− ρν2 I0

∂4u

∂x2∂t2
+ ν2μI0

∂4u

∂x4
= 0, (7.51)

where u(x, t) is a longitudinal displacement, ρ is a density, F is a cross-sectional
area, I0 is a polar moment of inertia, E is Young’s modulus, μ is a shear modulus,
and ν is Poisson’s ratio.

The longitudinal waves described by Eq. (7.51) possess dispersion, so the
frequency ω and the wavenumber k of the harmonic wave u = u0 exp(i(ωt − kx))
are interrelated as follows:

ω = k

√
c20 + c2τ ν

2R2k2

1 + ν2R2k2
, (7.52)

where R is a polar radius of inertia.
The plot of Eq. (7.52) determines the dispersion curve in the (ω, k)-plane. This

curve has an asymptote ω = c0k = k
√
E/ρ for small values of the wavenumber

k, whereas for the large wavenumbers it asymptotically approaches the straight line
ω = cτ k = k

√
μ/ρ. Thus, in a rod described by the Bishop model, low-frequency

waves propagate with velocities close to the rod velocity c0, whereas velocities of
high-frequency waves are close to the shear wave velocity, cτ , in an infinite medium.
The relationship between these velocities can be expressed in terms of the Poisson’s
ratio as follows:

c0
cτ

=
√

E

μ
=

√
2μ(1 + ν)

μ
= √

2(1 + ν). (7.53)

For ordinary materials with positive values of the Poisson’s ratio, the velocity c0
of the longitudinal wave in a rod exceeds the shear wave velocity cτ . In this case,
the longitudinal wave dispersion is normal, i.e., the phase velocity is greater than the
group velocity:

Vph > Vgr , (7.54)

where Vph = ω/k and Vgr = dω/dk are calculated due to Eq. (7.52).
The qualitative form of the dispersion curve (7.52) is plotted in Fig. 7.10.
Analysis of Eq. (7.53) shows that the difference between the velocities c0 and

cτ decreases as the Poisson’s ratio becomes negative. Dispersion of the longitudinal
waves remains normal for −0.5 < ν < 0, although the velocity variation becomes
less noticeable with increasing frequency. In a rod with ν = −0.5 the longitudinal
waves do not possess dispersion, whereas for −1 < ν < −0.5 dispersion becomes
anomalous, i.e.,

Vph < Vgr . (7.55)



166 7 Propagation and Interaction of Nonlinear Waves …

Fig. 7.10 Dispersion curves
for the Bishop model

Fig. 7.11 Dispersion
dependencies for
−1 < ν < −0.5—
anomalous
dispersion

In the latter case, the shear wave velocity exceeds the rod velocity c0 in an infinite
medium. The form of the dispersion curve is shown in Fig. 7.11.

Thus, the negative Poisson’s ratio leads to a qualitatively different (anomalous)
dispersion behavior of the linear waves propagating in a rod made of an auxetic
material.

7.4.2 The Nonlinear Mathematical Model. Stationary Strain
Waves

If to take into account the geometric and physical nonlinearities in a rod [55], then
the equation for nonlinear longitudinal waves has the form [53]:
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∂2u

∂t2
− c20

(
1 + 6α

E

∂u

∂x

)
∂2u

∂x2
− ν2R2

(
∂4u

∂x2∂t2
− c2τ

∂4u

∂x4

)
= 0 (7.56)

Here R is the polar radius of inertia, and the coefficient α determining the contri-
bution of the geometric and physical nonlinearities is equal to α = E

2 + ν1
6 (1−6ν)+

ν2(1 − 2ν) + 4
3ν3, where ν1,2,3 are the third-order elastic constants.

Let us introduce dimensionless variables t ′ = c0t
R , x ′ = x

R , u′ = αu
R in

Eq. (7.56) and then omit dashes over the dimensionless variables:

∂2u

∂t2
−

(
1 + β

∂u

∂x

)
∂2u

∂x2
− ∂4u

∂x2∂t2
+ c2

∂4u

∂x4
= 0 (7.57)

The dimensionless parameter β defines a rod with a “rigid” (β = 1) or a “soft”
(β = −1) type of nonlinearity. For materials with a positive Poisson’s ratio, it is
known that the nonlinearity is “soft” for metal rods or rods made of alloys, whereas
a “rigid” type of nonlinearity is possible for composite rods.

Any regularities similar to these ones have not yet been established for materials
with a negative Poisson’s ratio. Further, we shall consider both types of the nonlinear
behavior.

In Eq. (7.57), the dimensionless parameter c is equal to the ratio of the velocities
c = cτ /c0. As it follows from expression (7.53), c < 1 for all the positive values of
the Poisson’s ratio. But if the Poisson’s ratio is negative, various cases are possible,
when the rod velocity c0 exceeds the shear wave velocity cτ (c < 1 for−0.5 < ν < 0)
or, vice versa, cτ > c0 (c > 1 for −1 < ν < −0.5). The degenerated case, when both
velocities coincide, yields c = 1 for ν = −0.5.

Both dispersion and nonlinearity will influence the propagation of longitudinal
waves described by Eq. (7.57). Nonlinearity leads to the generation of new harmonics
in a wave. This fact contributes to the appearance of sharp differences in the moving
profile of the wave. But dispersion, on the contrary, decreases the differences due to
distinguishes in the phase velocities of the harmonic components of the wave. The
joint action of these factors can lead to the formation of stationary waves, which
propagate with a constant velocity without changing the shape [56].

We shall search for solutions of Eq. (7.57) among stationary strain wavesU (ξ) =
∂u
∂ξ
, where ξ = x − V t is the “traveling” coordinate and V= const is the stationary

wave velocity. Equation (7.57) is reduced to the ordinary differential equation:

d2U

dξ 2
+ m1U + m2U

2 = 0, (7.58)

where m1 = V 2−1
c2−V 2 , m2 = β

2(V 2−c2)
.

Depending on the relationship between the nonlinear wave velocity,V, the param-
eter c that corresponds to the velocities c0 and cτ in the dimensional variables, and
number 1, the behavior of the solutions of this equationwill be qualitatively different.
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Fig. 7.12 Periodic wave
shape (“soft” nonlinearity; c
< V < 1; ν > −0.5)

We will research only those cases, when there is no constant component in the
strain wave, as only these cases are physically realizable.

“Soft” nonlinearity. Let us consider a rod with a “soft” nonlinearity that is typical
for metals and alloys. If the Poisson’s ratio of a material of a rod exceeds−0.5 (i.e., c
< 1), then a nonlinear periodic wave propagates in the rod with velocities c < V < 1
(or cτ < V < c0—in terms of the dimensional variables).

Such a wave is analytically described by the solution of Eq. (7.58):

U (ξ) = A

3s2

(√
1 − s2 + s4 − 1 − s2

)
+ A sn2(kξ, s), (7.59)

where A is a wave amplitude, k is a wavenumber, sn is the elliptic sine (elliptic Jacobi
function), s is themodulus of the elliptic function that determines degree of distortion
of the wave shape U(ξ ) in comparison with the sinusoidal one.

The qualitative form of the periodic wave (7.59) is shown for different values of
s in Fig. 7.12.

The amplitude A of the wave is related to its velocity V and modulus s by the
expression

A = 3
(
1 − V 2

) s2√
1 − s2 + s4

. (7.60)

These dependencies are shown in Fig. 7.13.
In its turn, the wave velocity V is expressed in terms of the wavenumber k and

the modulus s as follows

V =
√
1 + 4c2

√
1 − s2 + s4k2

1 + 4
√
1 − s2 + s4k2

. (7.61)
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Fig. 7.13 Wave amplitude
versus the wave velocity
(“soft” nonlinearity; c < V <
1; ν > −0.5)

Fig. 7.14 Nonlinear
dispersion law

The relationship (7.61) can be called a nonlinear dispersion law [57] and is plotted
in Fig. 7.14. Obviously, if s → 0, a dispersion curve yields for a linear wave.

In the velocity range V < c and V > 1, where there are no linear waves, in the
nonlinear case there exist soliton-like waves.

A wave propagating with velocity V < c is described by the following solution
of Eq. (7.58):

U (ξ) = A∗

ch2
(
x−V t




) , (7.62)

where A* is the amplitude; 
 is the soliton width, ch is the hyperbolic cosine. The
wave (6.62) has a bell shape (Fig. 7.15).

The amplitude A* and the width 
 of the wave are related to its velocity V by the
following relations [27]:
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Fig. 7.15 Wave propagating
with velocity V < c

A∗ = 3(1 − V 2), 
 = 2

√
c2 − V 2

1 − V 2
. (7.63)

Dependencies (7.63) are plotted in Figs. 7.16 and 7.17. The area V < c corre-
sponds to these dependencies in these figures. From these figures, it is visible that
the behavior of a “subsonic” solitary wave is not classical for solitons: The wave of
greater amplitude has a larger width and propagates with a slower velocity. Because
of the limited velocity of the waves from this range, the soliton amplitude and width
are also numerically restricted: A ∈ (

3
(
1 − c2

)
, 3

)
, 
 ∈ (0, 2c).

A wave propagating with a velocity V > 1 is also described by Eqs. (7.62) and
(7.63). These dependencies are plotted in Figs. 7.16 and 7.17 for V > 1. As distinct
from the “subsonic” (V < c) solitary wave, “supersonic” (V > 1) solitons have a
negative polarity and their amplitude can increase up to infinity. Waves of greater
amplitude propagate with a higher velocity, and, when the velocity grows, their width
decreases and approaches asymptotically number 2 (
 ∈ (2,∞)).

Fig. 7.16 Dependence of
the soliton amplitude on the
velocity for V < c and V > 1
(“soft” nonlinearity;
ν > −0.5)
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Fig. 7.17 Dependence of the
wave width on the velocity
for V < c and V > 1 (“soft”
nonlinearity; ν > −0.5)

Fig. 7.18 Periodic wave
shape (“soft” nonlinearity; 1
< V < c; −1 < ν < −0.5)

As it was mentioned above, if Poisson’s ratio varies in the interval −1 < ν <

−0.5, then the rod velocity c0 becomes less than the shear wave velocity cτ . In this
case, c > 1 and the nonlinear periodic wave traveling with velocities 1 < V < c is
described by the expression:

U (ξ) = A

3s2

(
1 + s2 −

√
1 − s2 + s4

)
− Asn2(kξ, s), (7.64)

where

A = 3
(
V 2 − 1

) s2√
1 − s2 + s4

. (7.65)
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Fig. 7.19 Normalized
amplitude versus the
nonlinear distortion
coefficient s (“soft”
nonlinearity; 1 < V < c;
−1 < ν < −0.5)

The periodic wave shape is shown for various values of s in Fig. 7.18, and the
dependence (7.65) scaled on 3

(
V 2 − 1

)
is plotted in Fig. 7.19.

The wave (7.64) satisfies the nonlinear dispersion law (7.61). The form of the
dispersion relations for this wave is shown in Fig. 7.20. Obviously, for small values
of the coefficient of nonlinear distortions (s → 0) there exists a linear degeneracy
corresponding to the case, when the dispersion of linear waves is anomalous.

In a rod made from a material with ν ∈ (−1; −0, 5), the existence of “subsonic”
(V < 1) and “supersonic” (V > c) solitary waves is possible. In this case, “subsonic”
solitons are described by expressions (7.62) and (7.63), like in the “subsonic” case for
ν > −0.5, but their properties differ. Thus, the amplitude of these waves decreases
when the velocity grows, and it can be arbitrarily small for V → 1. The soliton
width, on the contrary, infinitely grows, if the amplitude decreases. Dependences
of the amplitude and width on the wave velocity are plotted in Figs. 7.21 and 7.23,
respectively.

Fig. 7.20 Nonlinear
dispersion law for
“supersonic” waves
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Fig. 7.21 Dependence of
the soliton amplitude on the
velocity for V < 1 and V >
c (“soft” nonlinearity;
−1 < ν < −0.5)

“Supersonic” solitarywaves, as in the case ν > −0.5, are described by expressions
(7.62) and (7.63). They have a negative polarity; their amplitude starts with the value
3
(
1 − c2

)
and increases indefinitely with growing velocity. The width of such a

wave increases with growing amplitude, and it does not numerically exceed 2—it
asymptotically approaches this value. Dependences of the amplitude and the width
on the wave velocity are also shown in Figs. 7.21 and 7.22, respectively.

When the Poisson’s ratio of a material equals ν = −0.5, the rod and shear veloci-
ties coincide: c0 = cτ , consequently, the region of existence of linear and, therefore,
nonlinear periodic waves disappears. In this case, only solitary waves remain. They
are described by Eqs. (7.62) and (7.63). The soliton width does not change, when the
amplitude or velocity varies, and is equal to 2. When the velocity grows, the ampli-
tude of the “subsonic” solitons decreases up to zero, whereas the “supersonic” soliton
amplitude increases infinitely starting from zero. The dependence of the amplitude
on the velocity is shown in Fig. 7.23.

“Rigid” nonlinearity. Let us consider a rod with a “rigid” nonlinearity. Formally,
such type of nonlinearity causes a change of sign of the nonlinear term in Eq. (7.58)
that, in its turn, leads to a change of the nature of the propagating waves. The areas

Fig. 7.22 Dependence of
the soliton width on the
velocity for V < 1 and V >
c (“soft” nonlinearity;
−1 < ν < −0.5)



174 7 Propagation and Interaction of Nonlinear Waves …

Fig. 7.23 Dependence of
the soliton amplitude on the
velocity for ν = −0.5
(“soft” nonlinearity)

of existence of periodic and solitary waves remain the same as in a rod with a “soft”
nonlinearity, but the polarity of these waves becomes another [27].

If the Poisson’s ratio is positive or negative from the interval ν ∈ (−0.5; 0) (i.e.,
c < 1), then periodic waves propagate in a rod with a “rigid” nonlinearity with veloc-
ities c < V < 1. They are described by Eq. (7.64), whereas their parameters—the
velocity, the amplitude and the coefficient of nonlinear distortions—are related by
expression (7.65). In the “subsonic” (0 < V < c) and “supersonic” (V > 1) ranges,
solitary waves are described by Eq. (7.62) and their parameters are determined by
relations (7.63). As it was mentioned above, the waves in a rod with a “rigid” nonlin-
earity are distinguished by polarity, so the plots of the amplitude versus velocity are
opposite to those shown in Fig. 7.16. They are shown in Fig. 7.24. The dependence
of the soliton width on the velocity is plotted in Fig. 7.17.

When ν ∈ (−1;−0.5 ), the periodic waves propagate with velocities 1 < V < c
and are described by Eq. (7.59), whereas their parameters are related by Eq. (7.60).
As in the previous case, the “subsonic” (for 0 < V < 1) and “supersonic” (for V > c)

Fig. 7.24 Soliton amplitude
versus the velocity for V <
c and V > 1 (“rigid”
nonlinearity; ν > −0.5)
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Fig. 7.25 Soliton amplitude
versus the velocity for V < 1
and V > c (“rigid”
nonlinearity;
−1 < ν < −0.5)

solitons have the form (7.62) and their parameters are related by Eq. (7.63). The plot
of the soliton amplitude as a function of the velocity is shown in Fig. 7.25.

If ν = −0.5, then the region of existence of periodicwaves disappears and solitary
“subsonic” and “supersonic” waves are saved and have the same relationships (7.63)
between their parameters.

7.4.3 Numerical Simulation of Soliton Interactions

Mathematical models describing the propagation and interaction of nonlinear waves
in distributed systems are usually subdivided into integrable and non-integrable
ones by the inverse scattering transform (IST) [58]. In the slang of specialists,
the mentioned models are called, respectively, “integrable” and “non-integrable”
systems.

In many works (see, for example, [59, 60]), it has been shown analytically and
numerically that in integrable systems, localized waves (solitons) behave like parti-
cles: upon collision, they retain their individuality and acquire only a phase shift (an
elastic interaction takes place in this case). This fact is confirmed by experiments,
where the studied objects were nonlinear waves in plasma, liquid with gas bubbles,
and electromagnetic waves [61–63].

Equation (7.56) refers to a class of systems that are not integrable by IST, so
features of the interaction of solitons described by this equation remain nowadays
unexplored. However, it is known that for such systems, besides an elastic interaction,
another scenario of the behavior of localizedwaves is possible.When overtaking each
other, soliton-like waves emit part of their energy in the form of quasilinear wave
packets (i.e., inelastic interaction is observed) [64].
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In Ref. [65], there were experimentally observed not only the effects of inelastic
interaction, but also the effects of splitting of strongly nonlinear waves, when addi-
tional soliton-like waves are separated from the wave packet after interaction. Split-
ting effects were obtained during a counter interaction of strongly nonlinear waves
propagating along a rubber band.

Processes of soliton interaction will be studied here for the strain waves (7.62) and
(7.63). Numerical simulation of Eq. (7.57) was carried out using the developed finite-
difference algorithm realizing an implicit three-layer schemewith the approximation
order o

(
τ 2, ξ 2

)
, where τ is the time step and ξ is the space step of the grid. The

difference scheme is uniformly stable for the following relation between the steps:
τ ≤ 0.85ξ 2/

√
2ξ 2(1 + |Wx |) + 8c2.

As a result of numerical simulation, it is shown that qualitatively different
scenarios of interaction of solitons depend on the relative collision velocity. A colli-
sion of only “supersonic” solitons was considered, as any collision velocities can be
realized for them. If the velocity is small, the collision occurs like the exchange inter-
action of the classical Korteweg-de Vries solitons. A fast soliton overtakes a slow
soliton, they are not unified but they exchange their characteristics and continue
to move with the just received velocities. In this case, the secondary solitons are
completely identical to the primary solitons (Fig. 7.26).

The calculations for Fig. 7.26 have been performed for v21 = 1.2 and v22 = 1.1 (the
relative collision velocity equals 
v = v1 − v2 = 0.0466). During the interaction,
solitons pass a very long distance with respect to their width 
. Due to this reason,
one cannot display the whole process in one spatial scale. Figure 7.26 has been
plotted using a tracking window; therefore, in this figure it is impossible to see the
phase shift arising due to interaction of the solitons. This effect is well known and,
in this case, is not interesting. Here, we would like to emphasize that even in non-
integrable systems an elastic collision of solitons is possible, at least with accuracy up
to errors of a numerical experiment. It should be also noted that the known analytical
two-soliton solution of the KdV equation is not applicable here.

When the relative velocity is greater (
v = 0.1), the collision of solitons is
already inelastic (Fig. 7.27). During the interaction, solitons lose a part of their
energy, which is realized in a packet of quasiharmonic waves moving behind the
slowest “supersonic” soliton with the velocity of linear waves. The characteristics
of the secondary solitons (7.62) completely coincide with Eq. (7.63). In Fig. 7.27, a
packet of quasilinear waves is shown in a circle on an enlarged scale.

As a result of further increasing of the collision velocity (
v = 0.4), the fast
soliton overtakes the slow soliton and they are unified (Fig. 7.28). The amplitude of
the unified soliton is less than the algebraic sum of the amplitudes of the interacting
solitons. Then, the solitons go away from each other losing some part of the energy.
This energy is distributed between two wave packets, one of which (it is shown in a
circle on an enlarged scale) propagates in the opposite direction to the motion of the
solitons with the velocity of quasilinear waves, and the other one (it is shown in a
square frame on an enlarged scale) overtakes, with the same velocity, “supersonic”
solitons.
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Fig. 7.26 Elastic collision
of solitons with the relative
velocity

v = v1 − v2 = 0.0466

The great collision velocities (
v ≥ 0.5) lead to the effect of splitting of solitons,
which means generation of a larger number of secondary solitons than in the begin-
ning of interaction [23, 66]. Figure 7.29 demonstrates the process of splitting for
collision of the solitons with velocities v1 = 3 and v2 = 1.5. From this figure, it is
visible that a high-speed soliton, after overtaking a slow soliton, is rapidly removed
from the interaction zone. And in this case, a wave packet arises that propagates in the
opposite direction to the soliton motion. It is shown in the enlarged scale in the left
circle and its evolution is demonstrated below. Next, a second soliton is extracted
and a nonstationary wave packet (the right circle) follows for it (its evolution is
shown below). Later, another supersonic soliton is formed from this packet. Then
again, a quasilinear wave packet and a slow (“subsonic”) soliton of negative polarity
are generated. All the characteristics of the secondary solitons completely coincide
with the solution (7.62) and (7.63). Since the amplitudes of the interacting solitons
differ by almost two orders of magnitude, for the convenience of visual perception,
Fig. 7.29 is executed in a logarithmic scale.

The soliton interaction occurring with very high speeds (
v > 2) looks most
effectively for the counter collision of identical solitons. In this case, the picture is
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Fig. 7.27 Inelastic
interaction of solitons with
relative velocity 
v = 0.1

absolutely symmetric and the interaction region remains in the center as it is shown
in Fig. 7.30. Because of the symmetry, it is sufficient to consider only one half of the
figure.

After the collision, a high-speed secondary soliton with amplitude A11 is released.
This amplitude is not much smaller than the amplitude A0 of the primary soliton.
A second secondary soliton is formed behind the soliton with amplitude A11, the
amplitude A12 of which is much smaller than A0. Next, a nonlinear wave packet
is formed (on an enlarged scale it is shown in the oval). If to observe the soliton
interaction for a long time, it should be noticed that solitons can be further generated
from this packet and, at last, the slow “subsonic” soliton, which amplitude A13 is
almost equal to A12, will travel behind them. In general, any number of “supersonic”
solitons can arise from a wave packet, since their amplitude and energy can be
practically zero.
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Fig. 7.28 Passing collision
of the solitons with the
relative velocity 
v = 0.4
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Fig. 7.29 Collision of the
solitons with the relative
velocity 
v ≥ 0.5: the
splitting effect

7.5 Application of an Alternative Continualization Method
for Analysis of Nonlinear Localized Waves
in a Gradient-Elastic Medium

Both discrete and continuum models of metamaterials have been discussed in the
previous chapters. So, the problemof passing from a discrete description of amedium
to a continuum model arises. In Chaps. 2 and 3, the discrete models have been
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Fig. 7.30 Counter
interaction of solitons with
relative velocities 
v > 2

transformed into continuum ones due to expansion of displacements into Taylor’s
series. Here, we consider an alternative way of such a transformation.

7.5.1 One-Dimensional Model of a Nonlinear
Gradient-Elastic Continuum

In order to obtain a dynamically consistent model of a nonlinear gradient-elastic
continuum, we use the structural modeling method and the continualization method
proposed byAskes andMetrikine [67],which consists in the assumption of a nonlocal
connection between the displacements of lattice sites and the resulting continuum.

Let us consider a long one-dimensional chain of alternating identical masses and
springs.We assume that the masses can move only along the chain. This direction we
denote as Ox axis. Besides, the following designations are introduced:m is mass, k is
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a spring rigidity, l is a distance between the masses, and un = un(t) is a displacement
of the nth mass.

The potential energy of the chain consists of potential energiesφ(ξn) of all springs,
which depends on their displacements ξn = un −un−1, and have the following form:

W =
∑
n

φ(ξn) =
∑
n

φ(un − un−1).

Since the aim of the work is to study nonlinear waves, we will consider cubical
item in φ(ξ):

φ(ξ) = kξ 2

2
+ K ξ 3

3
.

The equation of the dynamics of the mass has the following form:

m
d2un
dt2

= −∂W

∂un
.

or after transformations taking into account the previous relations

m
d2un
dt2

= k(un+1 − 2un + un−1) + K (un+1 − un−1)(un+1 − 2un + un−1).

Let us construct an interpolation polynomial of the second degree with respect
to x which coincides with function u(x, t) in points u(xn−1, t) = un−1, u(xn, t) =
un, u(xn+1, t) = un+1.

ū(x, t) = un−1
(x − xn)(x − xn+1)

2l2
− un

(x − xn−1)(x − xn+1)

l2

+ un+1
(x − xn−1)(x − xn)

2l2
.

Let us calculate the values of the interpolation polynomial in points xn − θl and
xn − θl, here 0 < θ < 1.

ū(xn + θl, t) = un−1
θ(θ−1)

2 + un
(
1 − θ2

) + un+1
θ(θ+1)

2
ū(xn − θl, t) = un−1

θ(θ+1)
2 + un

(
1 − θ2

) + un+1
θ(θ−1)

2

.

As a continuous function describing the motion of the continual model of masses
and springs, we take the average value ū(xn + θl, t) and ū(xn − θl, t) We get the
following

u(x, t) ≈ ū(xn + θl, t) + ū(xn − θl, t)

2
= un−1

θ2

2
+ un

(
1 − θ2

) + un+1
θ2

2
.

(7.66)
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Note that the authors of the alternative continualization [67] consider a continuous
function as the average between the displacement of three neighboring particles

u(x, t) ≈ 1

1 + 2a1
(a1un−1 + un + a1un+1). (7.67)

where dimensionless “weight” constant a1 is in range 0 ≤ a1 < 1. It is easy to
see that relations (7.66) and (7.67) are identical, and the parameters a1 and θ are
connected with the following relations:

θ2 = 2a1
1 + 2a1

, a1 = θ2

2
(
1 − θ2

) .

When implementing the alternative continualization method, it is also assumed
that

un(t) = u(x, t) + l2 f2(x, t) + l4 f4(x, t) + O
(
L5

)
,

where

f2(x, t) = − a1
1+2a1

uxx (x, t) = − θ2

2 uxx (x, t),

f4(x, t) = a1
12

10a1−1
(1+2a1)2

uxxxx (x, t) = θ2

24

(
6θ2 − 1

)
uxxxx (x, t).

Substituting (7.67) into (1.14) with account of

un+1 = u(x + l, t) + l2 f2(x + l, t) + l4 f4(x + l, t) + O
(
L5

)
,

un−1 = u(x − l, t) + l2 f2(x − l, t) + l4 f4(x − l, t) + O
(
L5

)
,

and expressing u(x ± l, t), uxx (x ± l, t), uxxxx (x ± l, t) through function u(x, t) and
its derivatives, using a Taylor series decomposition, we get

utt − l2θ2

2
uxxt + l4θ2

(
6θ2 − 1

)

24
uxxxxtt − kl2

m
uxx −

(
1 − 6θ2

)

12

kl4

m
uxxxx

= 2Kl3

m
uxuxx + 1 − 3θ2Kl5

3

1 − 6θ2Kl5

m
uxxuxxx + 1 − 6t

6

w

m
uxxxx

7.5.2 Nonlinear Strain Waves

In terms of dimensionless variables, the equation can be written as follows:
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∂2U

∂τ 2
− ∂2U

∂z2
− ∂4U

∂z2∂τ 2
− d1

(
∂4U

∂z4
+ ∂6U

∂z4∂τ 2

)

− d2

(
∂U

∂z

∂2U

∂z2
+ d1

∂U

∂z

∂4U

∂z4
+ d3

∂2U

∂z2
∂3U

∂z3

)
= 0, (7.68)

where U = u/u0, z = x/X , and τ = t/T are the dimensionless values of the
displacement, the coordinate and time, respectively. Characteristic values of length
and time are equal to

X2 = l2θ2

2
, T 2 = mθ2

2k
,

dimensionless parameters have the following form:

d1 = 1

θ2

(
1

6
− θ2

)
, d2 = 2

√
2Ku0
θk

, d3 = 1

θ2

(
1

3
− θ2

)
.

In terms of the traveling wave variables, Eq. (7.68) takes on the form:

Wχχχχχ +
(
d1 + v2

)

d1v2
Wχχχ +

(
1 − v2

)

d1v2
Wχ

+ d2
d1v2

(
WWχ + d1WWχχχ + d3WχWχχ

) = 0, (7.69)

where χ = z − vτ is a traveling coordinate, v is a nonlinear wave velocity. The
introduction of a new functionW = dU

dx allows us to reduce the order of the equation
to the fifth.

By themethodof the simplest equations [68],we canfind the solutionofEq. (7.69):

W (χ) = 20d1B0v2

d2(2d1 + d3)

(
2 − 3th2

(√
B0χ

))
− d1d3 − 3d1v2 + d3v2 + 2d2

1

d1d2(2d1 + d3)
,

(7.70)

where B2
0 = − 2d2

1+d1d3−3d1+d3
16d2

1 (3d1−d3)
.

Solution (7.70) has a profile in the form of a symmetric bell with a changing along
the vertical axis offset (Fig. 7.31, dashed line). Fixing the sole of the bell at the zero
mark (Fig. 7.31, solid line), we find the constraint imposed on the square of the wave
velocity:

v2 = − d1(2d1 + d3)

20d2
1 B0 − 3d1 + d3

.

For such velocities, the solution (7.70) takes on the form:
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Fig. 7.31 Dependencies
W (X)

W (X) = − 60d2
1 B0

d2
(
20d2

1 B0 − 3d1 + d3
)
cosh2

(√
B0X

) ;

moreover, this solution has a physical meaning only in the interval 1
6 < θ2 < 2

9 (θ >

0). The dependences of the amplitude and width of the soliton on its velocity are
shown in Fig. 7.32. When increasing the parameter θ within the considered interval,
the velocity firstly increases, then decreases, the amplitude and width of the soliton
monotonically increase. The curve v(θ ) has a maximum point; i.e., soliton velocity
is bounded from above.

The sign of the dimensionless parameter d2 influences the polarity of the soliton.
For positive values of the parameter (rigid nonlinearity), the soliton has a negative
polarity. For negative parameter values (soft nonlinearity), the soliton possesses a
positive polarity. The magnitude of the nonlinearity does not affect the speed of
propagation of waves and their width, but affects their amplitude. The smaller the
value of nonlinearity, the greater the amplitude of the wave, i.e., in weakly nonlinear
media propagate waves of greater amplitude.

In the limiting case, when θ2 is close to its bottom bound, the dimensionless
parameters equal:

d1 = 0, d2 = 4
√
3Ku0
k

, d3 = 1,

and Eq. (7.69) has the following form:

Wχχ + b1W + b2
(
W 2 + W 2

χ

) = 0, (7.71)
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Fig. 7.32 Dependencies
A(v) (solid), 
(v) (dashed)

where b1 = 1−v2

v2 , b2 = d2
2v2 = 2

√
3d

v2 are introduce to shorten the expressions, d =
Ku0
k —characterizes the elastic nonlinearity.
Equation (7.71) is an equation of the anharmonic oscillator with two quadratic

nonlinearities. Phase portrait of the equation when b1 > 0 and b2 < 0 is depicted
in Fig. 7.33. It can be seen that there are two equilibrium states on the phase plane:

Fig. 7.33 Phase portrait (W,
WX)
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the “center,” which is located at the origin of coordinates, and the “saddle,” whose
location (to the right or left of the center) depends on the type of nonlinearity. As
in the classical case, anharmonic oscillator with quadratic nonlinearity [53], if the
nonlinearity corresponds to “hard” ones, then the saddle is located to the left of the
center. When b1 < 0 the phase portrait is shifted along the horizontal axis, so that
the saddle is located at the origin of coordinates.

Solitary soliton-type waves and periodic waves can propagate in the system as
well. The exact analytical solution in the form of solitons for Eq. (7.71) cannot be
found, the pole of this equation is zero [68].

In the case of a weak nonlinearity (d � 1), the solution of Eq. (7.71) can be found
due to the asymptotic expansions [69]:

W (χ) = A0 cos
(√

b1χ + φ0

)
+ ε

A2
0b2
2b1

(
(1 − b1)

3
cos 2

(√
b1χ + φ0

)
− (1 + b1)

)
,

(7.72)

where the amplitude and the phase of oscillations are defined using the following
expressions:

A0 =
√
w2
1 + w2

2

b1
+ ε

b2
3
√
b1

w1
(
w2
1 + 3w2

2 + 2w2
1b1

)
√
w2
1b1 + w2

2

,

φ0 = − arctan

(
w2√
b1w1

)
+ ε

b2
3
√
b1

w2
(
2w2

2 + 3w2
1b1 + w2

2b1
)

b1
(
w2
1b1 + w2

2

) ,

while w1 and w2 are set by initial conditions:

W (0) = w1, ·Wχ (0) = w2.

A dotted line in Fig. 7.33 marks the approximate solution (7.72) near the stable
equilibrium state. The found solution is valid only in the subsonic case and soft
nonlinearity. With increasing rigidity, the amplitude of the waves (with fixed initial
conditions) decreases, and the period increases. The closer the velocity of a nonlinear
wave to the speed of sound, the smaller the amplitude of the periodic waves.

7.6 Conclusions

An influence of themicrostructure ofmetamaterials on the features of the propagation
of nonlinear localized strain waves in them has been investigated in this chapter.

So, due to the method of structural modeling used in this monograph, it was
shown that in a crystalline medium with parameters as in NaBr or fullerite C60 with
a simple cubic lattice, a plane soliton is unstable with respect to two-dimensional
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perturbations, in a NaF crystal the soliton has a positive polarity, and in a LiF crystal,
it has a negative polarity.

Within the scope of a one-dimensional model of a granular medium of ellipse-
shaped particles with internal stresses, it has been shown, according to the Lighthill
criterion, thatmodulation instability (self-modulation) of the shear deformationwave
is observed for all admissible values of the microstructure parameters. The depen-
dences of the height and width of a wave packet formed as a result of self-modulation
of a quasiharmonic wave, as well as a periodic sequence of wave packets, on the
parameters of the material microstructure have been determined.

A rod made of an auxetic material has been also considered in this chapter. It is
shown that a negative Poisson’s ratio leads to a qualitatively different (anomalous)
dispersion behavior of linear waves. Nonlinearities of two types have been consid-
ered here: a “soft” nonlinearity and a “rigid” one. Accounting for such nonlinearities
leads to the possibility of generating in a rod of stationary strain waves of a substan-
tially non-sinusoidal profile—solitons and their periodic analogs. Depending on the
nonlinearity type and on the value of a Poisson’s ratio, propagation of “subsonic” or
“supersonic” solitons is possible in a rod.

If the collision velocity is small, the interaction occurs according to the scheme
of classical solitons, and it is described by Kortewege-de-Vries equation; i.e., the
secondary solitons have the same velocity, amplitude, andwidth as the initial solitons
had. When the relative velocity is higher, the soliton collision is inelastic in nature:
Part of their energy is lost in the interaction and it is realized in the quasiharmonic
packets of waves moving with the linear wave velocity. A further increase of the
collision velocity leads to the splitting effect of solitons that means generation of a
larger number of secondary solitons than before the interaction.

In addition, in this chapter, the features of the formation of spatially localized strain
waves in a one-dimensional gradient-elastic medium are investigated, the dynamics
equations of which have been obtained from a discrete model by the method of alter-
native continualization. Particularly, it has been shown that dispersion and nonlin-
earity influence on the propagation of plane longitudinal waves in such a medium.
The nonlinearity leads to the generation of new harmonics in the wave. The energy
is continuously pumped from the main perturbation to these harmonics. This effect
contributes to the appearance of sharp differences in the moving profile. The disper-
sion, on the contrary, smoothes the distinguishes due to the difference in the phase
velocities of the harmonic components of the wave. The combined effect of these
two factors and their “competition” can contribute to the formation of stationary non-
sinusoidal waves. Such waves propagate with a constant velocity without changing
their shape.
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Discussion of the Results

The theoretical foundations of the structural modeling method are developed in this
monograph. Using this method, a hierarchy of mathematical models of generalized
continua for various periodic structures, frequencies and wavelengths is constructed.
The main advantage of such models consists in their ability to establish in an analyt-
ical form a relationship between the microstructure parameters of a medium and its
macroproperties. Thus, it becomes possible not only to get an idea of the qualitative
influence of the internal structure of the medium on its effective elastic moduli, but
also to find quantitative estimates of these quantities. The prerformed investigations
can find application for designing of advanced metamaterials with predetermined
physical and mechanical properties.

In addition, the method of structural modeling can be successfully used in
geophysics and geology, since a lot of physical properties of rocks (elastic properties,
thermal and electrical conductivity, hydraulic and dielectric constant) are different
on various scales and are entirely determined by the internal structure of these rocks
[1, 2]. It should be also noted that the method of structural modeling is used, as a
rule, for crystalline media, and, for example, gas hydrates, as distinct from traditional
hydrocarbons, have a crystalline structure. “Shale oil/gas” rocks are characterized
by a rather high (over 30%) content of clay minerals, the crystal lattice of which
contains intracrystalline water. Due to that, the elastic properties of clayminerals
are drastically changed. Therefore, studies of processes, which occur at the level of
the crystal lattices of such media and influence on their physical properties, are of
great importance. When different-scale mathematical models of physical properties
of such rocks are constructed, these studies should precede the study of properties
on nano-and micro-scales [3].

The elaboration of new models is also necessary for the development of methods
for acoustic diagnostics of materials with microstructure [4]. The key idea of these
methods consists in describing the internal structure of a medium by means of
the parameters of acoustic wave propagation in such a medium. In particular, in
prestressed media (in this monograph, such media were considered in Sect. 7.2), the
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phenomenon of acoustoelasticity is observed—the dependence of the phase veloci-
ties of ultrasonic vibrations on their polarization and the direction of a load generating
stresses. The practical application of the acoustoelasticity phenomenon for studying
the plane stress state of structural materials using the shear and longitudinal waves
propagating along the normal to the plane of action of stresses is discussed in mono-
graph [5], where a great attention is also paid to taking into account themicrostructure
of a material both in precision measurements of informative acoustic parameters and
when interpreting their results for calculating of stress values. These studies are
still relevant today. For example, in paper [6], the elastic moduli of the second and
third orders were calculated using the Lenard-Jones potential and the propagation
of elastic waves in a nanocrystalline anisotropic alloy of ruthenium with cobalt was
considered. In Ref. [7], the specificity of the acoustoelastic effect in “soft” incom-
pressible bodies is considered, where the wave velocity, even taking into account the
“quadratic” acoustoelasticity, depends only on three elastic constants of the medium
of the second, third and fourth orders, respectively.

The principal possibility of application of acoustic methods is provided by the fact
that the conditions of propagation of an ultrasonic wave in a material vary depending
on many factors: the chemical and phase composition, the grain size, the presence
of inclusions, point defects, on the amount of pores and the dislocation density, on
the internal and external stresses, and, including on accumulated structural damage.
Naturally, there are also methods for studying the properties of materials based on
the interaction of elastic waves with these structural features.

At present, the leading position among them is occupied by the nonlinear acoustic
diagnostics of materials. In recent years, many works have appeared in which the
damage of metals is estimated by acoustic methods [8, 9], where the measured
parameter is often the velocity of elastic waves probing a metal [10, 11]. In order to
estimate the state of a metal, in addition to the wave velocity, the results of measure-
ments of some other parameters of the ultrasonic pulse (for example, the attenuation
coefficient, dispersion, spectral components of the pulse, etc.), which are sensitive
to the structure, are used. But again, a restricted part of information about changes
that occurred in probing signal is employed for calculation of such parameters. The
prospect of using the entire “array” of information obtained from an elastic wave
passing through a bulk of amaterial with its structural features looks attractively [12].
By controlling the nonlinearity parameters of a medium, one can indirectly estimate
the damage [13], as the nonlinearity grows with the appearance of “nuclei” of the
destruction process. However, a more effective application of nonlinear acoustic
diagnostics methods necessitates nonlinear models of materials with microstructure.
In this monograph, such models are discussed in Chaps. 5 and 6.

Note that all themodels elaborated in themonograph have two distinctive features.
First, they consist of bodies-particles of finite dimensions, which, in contrast to
the classical theory of elasticity, have both translational and rotational degrees of
freedom. Secondly, the forces of interaction between the particles are simulated by
elastic springs of various types. In this regard, two natural questions arise:
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1. What role do springs play in these models, because in real media, of course, there
are no springs? And how is it possible to interlink the rigidity of the springs with
a potential of a real interaction, taking into account the type of coupling (ionic,
covalent, metal)?

2. Is it necessary to take into account the rotational motions of the particles of the
medium and the rotational waves associated with them, or is it enough to take
into account only the translational degrees of freedom, i.e. to consider only the
longitudinal and transverse waves to describe the majority of wave phenomena
in microstructured media? This doubt is supported by the fact that so far nobody
could observe the propagation of rotational waves in “laboratory conditions”.

As for the respond to the first question, then springs and their rigidity play an
exclusively auxiliary role. There are macroparameters of the medium that can be
relatively easily determined experimentally (for example, the velocities of longitu-
dinal and transverse waves), and, on the contrary, there are macroparameters that
are not entirely clear how to measure experimentally (in particular, the velocity
and threshold frequency of rotational waves, nonlinearity coefficients). But since
both those and other macroparameters have been analytically interrelated with the
rigidity of the springs due to the method of structural modeling, it is possible to find
the rigidity of the springs using the known macroparameters of the first group, and
using them, in turn, to calculate the macroparameters of the second group. Thus, the
rigidity of the springs should be regarded as an abstract mathematical object that
characterizes the force and couple interactions between the particles of a medium.

Unfortunately, it is impossible to interlink one-to-one the rigidity of the springs
with a potential of a real interaction, taking into account the type of coupling (ionic,
covalent, or metal). This is explained by the fact that the motion equations of the
system and its energy are completely determined by setting the force constants,
which, from this viewpoint, carry complete information about the system. However,
the constants themselves are only effective characteristics of real compounds and
do not determine the latter in a unique way. Indeed, to given force constants, firstly,
there can correspond bonds inhomogeneous in the length, and secondly, bonds can
involve complex connections (for example, unpaired bonds). And although they can
be replaced by equivalent homogeneous pair bonds, the latter will take place only for
some effective quantities. This is especially true for crystals, where physical fields
of a different nature with a various nature of long-range action can correspond to the
given force constants in the harmonic approximation [14].

In order to answer the second question, theoretical estimates of the threshold
frequency of rotational waves in crystalline media were carried out in Chap. 4. They
showed that for a grain size of about 100 nm in crystals with cubic and hexagonal
symmetry, the threshold frequency of rotational waves lies in the range 1010 − 1011

s−1. When considering wave phenomena in a lower-frequency range, as shown in
this chapter, it is really possible not to take into account the rotational motions of
particles of a medium, but the presence of particle sizes affects the velocities of
longitudinal and transverse waves propagating in such a medium. However, when
the particle size of the medium grows significantly, then the threshold frequency
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decreases substantially and the range of propagation of rotational waves is drasti-
cally expanded. A similar result is achieved in the theory of the Cosserat continuum
consisting of solid non-deformable material “particles” [15, 16]. Since rotations
of particles relative to each other are taken into account in such a continuum, the
microdisplacement tensor acquires an antisymmetric part, which can be expressed
in terms of the vector of the “particle” rotation about its axis. The role of such rota-
tions growswith increasing frequency, whilewith decreasing frequency, translational
displacements of the centers of gravity of the medium elements (particles) acquire a
major importance [14]. Thus, fail of the observation of the propagation of rotational
waves is explained, most likely, by the fact that in “ordinary” solids the rotational
interactions of grains with each other are very small in comparison with the other
interactions.

The mentioned above data show that for a more complete and comprehensive
understanding of the rotational mechanics of solids, it is necessary, first of all, to
pass to such models, which particles have sufficiently large sizes and, therefore, the
inertia moments. Our planet Earth is an example of such a medium, which elements
are geophysical blocks or tectonic plates. They can rotate with respect to each other
[17–20 ].

Recently, rotational waves are increasingly being studied in problems of geody-
namics—one of the branches of the Earth sciences, which “elementary” structures
reach the sizes of a planetary scale. Thus, V. N. Nikolayevskiy studied nonlinear
interactions of longitudinal waves and rotational waves in the framework of the
Cosserat model applying to seismoacoustic and geodynamic problems [18]. In the
framework of a gradient-consistent model of a medium with complex structure, he
attempted to explain an ultrasound generation during the propagation of seismic
waves. Considering the lithosphere of the Earth in the framework of the Cosserat
continuum, V. N. Nikolaevsky and his co-authors simulated a lot of geodynamic
wave motions observed on the surface of the Earth, including global tectonic waves
having, apparently, a rotational nature [21].

As an alternative to the Cosserat theory, A. V. Vikulin with his co-authors devel-
oped a “rotational” approach to solvinggeodynamic problems [22, 23]. This approach
is based on the following assumptions: an elementary part of the rotating solid body—
the Earth’s crust block—is, first of all, a rigid non-deformable volume; secondly, its
motion occurs under the action of its own moment; thirdly, such a motion leads to
change of the stress state of the crust surrounding the block. In this model, in contrast
to the Cosserat theory, the stress tensor is symmetric and the rotational motions of a
block generating its own elastic field and interacting with the intrinsic elastic fields
of other equal-sized blocks of a chain are described by the sine-Gordon equation in
the dimensionless form [23].

In the framework of this rotational model it is possible to describe the whole range
of geodynamic velocities of rotational waves that are typical both for geophysical
and geological—processes from slow rotational waves (10−2 sm/s) characterizing
redistribution of tectonic stresses up to fast seismic waves (1–10 km/s) [20, 23, 24].

Moreover, many geological and geophysical data can be explained in the scope
of the rotational approach. For example, it has been shown that the entire Pacific
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ocean plate, which area equals about 1/3 of the area of the entire planet, has made
five oscillations over the past 30 million years around the “Hawaiian point” in the
center of the ocean with an amplitude of about 10 degrees [25]. As there showed
seismic, magnetometric, bathymetric and other observations carried out over a long
period of time, Easter Island (163, 6 km2) located in the south-eastern part of the
Pacific Ocean during its existence (about five million years) has rotated by angle of
almost 90° [26]. This corresponds to the angular velocity 0.5π/5 × 106 ≈ 3 × 10-7

rad/year.
The analysis of orientations of preglacial and postglacial fissure eruptions in the

southern part of Iceland made it possible to determine the angle of rotation of the
island. For 10–12 thousand years this angle is approximately equal to 7° [27].

GPS observations in the Central Asian region (Tien Shan) showed that the entire
area, as expected, is shifting to the North with a velocity of up to 20 mm/year. At
the same time, blocks (domens) of area 150–500 km2 were identified, which rotate
in different directions with an angular velocity of up to 8 ms/year [28].

Thus, account of rotational motions of particles of a medium is necessary when
either high-frequency wave processes are researched or a medium consisting of large
rigid bodies is considered (especially it concerns geomedia). At present, rotational
movements of blocks of the Earth’s crust are no longer a hypothesis, but an experi-
mentally established fact that is confirmedby lots of data obtained byvariousmethods
and by different groups of researchers in many regions of the Earth. And in geody-
namics there is majority of experimental confirmations of the existence of rotational
waves that were mathematically described back in 1909 by the Cosserat brothers.



Appendix A
Expressions for Elongation of the Springs
in the Hexagonal Lattice

Expressions of the relative elongations of the springs Dl(m1,m2) (l = 1, 2, 3, 4, 5 is
the number of the spring in Fig. A.1) connecting the central particle N with its six
neighbors, which have been calculated in the approximation of the smallness of the
quantities�um1,m2 = (ui+m1, j+m2 −ui, j )/a ~�wm1,m2 = (wi+m1, j+m2 −wi, j )/a ~ ~
ϕi, j ~ ε (here ε � 1 is the measure of the cell deformation, m1 = ±1, m2 = 0, ±1)
and �m1,m2 = (

ϕi, j + ϕi+m1, j+m2

)
/2 = ϕi, j − 0, 5a�ϕm1,m2 � π/2, with accuracy

up to linear terms, have the form:

Fig. A.1 An elemenetary cell of the hexagonal lattice
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D1(m1,m2) = a

2

(
m1�um1,m2 + m2

√
3�wm1,m2

)
, D1(m1,0) = m1a�um1,0,
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√
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4
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√
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√
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√
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,

D4,5(m1,0) = a

2r0
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,

D4,5(∓1,±1) = a

2r0

(
∓(a + d)�u∓1,±1 ± (a − d)

√
3�w∓1,±1 + d

√
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)
,

D4,5(±1,∓1) = a

2r0

(
±(a − 2d)�u±1,∓1 ∓ (a − d)

√
3�w±1,∓1 − d

√
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)
.

(A.1)

Here r0 = √
a2 − ad + d2 is the initial length of springs K2. In expressions for

D2,3 and D4,5 the upper signs of the symbols ± and ∓ are taken for springs of types
2 and 4, wheareas the lower ones are used for 3 and 5.



Appendix B
Expressions for Elongation of the Springs
in the Rectangular Lattice

Expressions for the extensions Dl(i+m1, j+m2) of the springs (here the subscript l = 0,
1, 2, 3 denotes, respectively, the type of the spring - K0, K1, K2, or K3 (Fig. B.1)),
connecting the central particle N with eight lattice neighbors (their numbers are
designated by subscripts m1 = 0,±1 and m2 = 0,±1), which have been calculated
in the smallness approximation quantities

Fig. B.1 The rectangular lattice of ellipse-shaped particles
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�ui = (ui+1, j − ui, j ) ∼ �wi = (wi+1, j − wi, j ) ∼ aϕi, j ∼ aε,

�u j = (ui, j+1 − ui, j ) ∼ �wi = (wi, j+1 − wi, j ) ∼ bϕi, j ∼ bε,

where ε � 1 is the measure of cell deformation, and

�m1,m2 = (
ϕi, j + ϕi+m1, j+m2

)
/2 = ϕi, j − 0, 5a�ϕm1,m2 � π/2,

with accuracy up to quadratic terms, have the form:

D0(i−1, j) = �ui + (�wi )
2

2a
∼ D0(i+1, j), D0(i, j−1) = �w j + (�u j )

2

2b
∼ D0(i, j+1),

DCB,E A
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2
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2
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∼ DBC,AE
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DEC,AB
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2
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2

2(b − h2)
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+ 1

2r31
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(
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)

+ 1

2r32
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DAC
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ϕi+1, j−1 + ϕi, j

2
]

+ 1

2r33
[(b − h2)(ui+1, j−1 − ui, j ) + (a − h1)(wi+1, j−1 − wi, j )

+ (h1(a − h1) + h2(b − h2))
ϕi+1, j−1 + ϕi, j

2
]2,
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DCA
3(i−1, j+1) = 1

r3
[(a − h1)(ui, j − ui−1, j+1) − (b − h2)(wi, j − wi−1, j+1)

+ (ah2 − bh1)
ϕi−1, j+1 + ϕi, j

2
]

+ 1

2r33
[(b − h2)(ui−1, j+1 − ui, j ) + (a − h1)(wi−1, j+1 − wi, j )

− (h1(a − h1) + h2(b − h2))
ϕi−1, j+1 + ϕi, j

2
]2.

In expressions (B.2), the elongations of all the springs, except the central ones
with stiffness K0, also contain the third (upper) index displaying the vertices of
the rectangles ABCE, which are inscribed in the ellipse-shaped particles and are
connected by the corresponding spring (Fig. B.1). Note that the first is here the
vertex of the central rectangle.

Expressions (B.2) for the elongations of springs with rigidityK2 contain the signs
± and ∓, therefore the upper index of these formulas consists of two parts: first, the
vertices of the rectangles connected by thefirst spring are indicated (for the extensions
of such springs, the upper signs of the symbols ± and ∓ are taken) and after the
comma—by the second spring (the lower signs of such symbols are taken for them).
The extensions of the springs, which are marked with equivalence signs, are obtained
by replacing all subscripts iwith i+ 1 and jwith j+ 1.However, it is necessary to take
into account that if�i = (

ϕi−1, j + ϕi, j
)
/2 = ϕi, j−(ϕi, j−ϕi−1, j )/2 = ϕi, j−�ϕi/2,

then �i+1 = (
ϕi+1, j + ϕi, j

)/
2 = ϕi, j + (ϕi+1, j − ϕi, j )/2 = ϕi, j + �ϕi+1/2.

It should also be noted that the elongations of the springs of the second coor-
dination sphere (with rigidity K3) depend on the rotations of the particles in this
approximation, but this dependence disappears when b/a = h2/h1, i.e. when the
condition of the similarity of the particle shape to the lattice shape is satisfied.
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