
WOODHEAD PUBLISHING SERIES IN ELECTRONIC AND OPTICAL MATERIALS

Edited by
IGAL BRENER, SHENG LIU,  

ISABELLE STAUDE, JASON VALENTINE AND 
CHRISTOPHER HOLLOWAY

DIELECTRIC 
METAMATERIALS 
FUNDAMENTALS, DESIGNS,  
AND APPLICATIONS



Dielectric Metamaterials



This page intentionally left blank



Woodhead Publishing Series in Electronic and
Optical Materials

Dielectric Metamaterials
Fundamentals, Designs, and
Applications

Edited by

Igal Brener

Sheng Liu

Isabelle Staude

Jason Valentine

Christopher Holloway



Woodhead Publishing is an imprint of Elsevier
The Officers’ Mess Business Centre, Royston Road, Duxford, CB22 4QH, United Kingdom
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States
The Boulevard, Langford Lane, Kidlington, OX5 1GB, United Kingdom

Copyright © 2020 Elsevier Ltd. All rights reserved.
Christopher Holloway’s contribution to the Work is in public domain.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about
the Publisher’s permissions policies and our arrangements with organizations such as the Copyright
Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical treatment
may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and
using any information, methods, compounds, or experiments described herein. In using such
information or methods they should be mindful of their own safety and the safety of others, including
parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas
contained in the material herein.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-08-102403-4

For information on all Woodhead Publishing publications
visit our website at https://www.elsevier.com/books-and-journals

Publisher: Matthew Deans
Acquisition Editor: Kayla Dos Santos
Editorial Project Manager: Andrea Gallego Ortiz
Production Project Manager: Joy Christel Neumarin
Honest Thangiah
Designer: Christian Bilbow

Typeset by VTeX

http://www.elsevier.com/permissions
https://www.elsevier.com/books-and-journals


Contents

List of contributors ix

1 Electromagnetic metamaterials and metasurfaces: historical
overview, characterization, and the effect of length scales 1
Christopher L. Holloway, Edward F. Kuester
1.1 Introduction 1
1.2 Electromagnetic behavior of ordinary materials 4
1.3 Metamaterials and periodic composites: length-scale effects 5
1.4 Metasurfaces 19
1.5 Isolated scatterers and one-dimensional array 29
1.6 Summary 29
References 30

2 Fundamentals of Mie scattering 39
Manuel Nieto-Vesperinas
2.1 Introduction 39
2.2 Uniform sphere: internal and scattered fields 39
2.3 Extinction and scattering of energy. Cross-sections 43
2.4 The scattering matrix 45
2.5 Scattering from a coated sphere 46
2.6 Optically active sphere 48
2.7 Scattering from an infinite circular cylinder 50
2.8 Mie resonances and natural modes 53
2.9 Small particles: dipolar approximation 56
2.10 Very small particles: the Rayleigh approximation 63
2.11 Effects due to interference between Mie resonances. Directional

scattering 64
Acknowledgments 70
References 70

3 Control of scattering by isolated dielectric nanoantennas 73
Ramon Paniagua-Dominguez, Boris Luk’yanchuk, Arseniy I. Kuznetsov
3.1 Introduction 73
3.2 Resonant light scattering by single dielectric nanoparticles 74
3.3 Multipolar interference effects and directional scattering 79
3.4 Resonant scattering by dielectric nanoantennas 89
3.5 Conclusions and outlook 103
References 103



vi Contents

4 Controlling spontaneous emission with dielectric optical antennas 109
Nicolas Bonod
4.1 Introduction 109
4.2 Theory of spontaneous emission 109
4.3 Controlling the emission directivity 116
4.4 Fluorescence enhancement of electric and magnetic emitters 126
4.5 Conclusion and perspectives 135
Acknowledgments 136
References 136

5 Tailoring transmission and reflection with metasurfaces 145
Sergey Kruk, Yuri Kivshar
5.1 Introduction 145
5.2 Reflection 146
5.3 Transparency 149
5.4 Phase and polarization control 155
5.5 Absorption 157
5.6 Transmission and reflection at the oblique illumination 160
5.7 Transmission and reflection polarization phenomena 162
5.8 Fano resonances 166
5.9 Bound states in the continuum 167
References 171

6 Applications of wavefront control using nano-post based dielectric
metasurfaces 175
Andrei Faraon, Amir Arbabi, Seyedeh Mahsa Kamali, Ehsan Arbabi,
Arka Majumdar
6.1 Introduction 175
6.2 Capabilities for phase and polarization control enabled by dielectric

metasurfaces 175
6.3 Widefield imaging 178
6.4 Computational imaging 181
6.5 Focus scanning fluorescence imaging 182
6.6 Mechanically tunable devices 184
6.7 Devices based on simultaneous polarization and phase control 187
6.8 Devices exploiting spectral control 188
6.9 Conformal optics 190
6.10 Other applications 190
6.11 Outlook 191
References 191

7 Tunable metasurfaces and metadevices 195
Chengjun Zou, Isabelle Staude, Dragomir N. Neshev
7.1 Motivation and introduction 195
7.2 Mechanisms for tuning dielectric metasurfaces 196



Contents vii

7.3 Tunable functional metadevices 214
7.4 Outlook 217
References 217

8 Nonlinear and ultrafast effects 223
Maxim Shcherbakov, Sheng Liu, Igal Brener, Andrey Fedyanin
8.1 Introduction 223
8.2 Basics of nonlinear optics 224
8.3 Nonlinear optics in Mie-resonant nanostructures 225
8.4 Ultrafast phenomena in Mie-resonant nanostructures 237
8.5 Conclusions and outlook 241
References 242

9 Non-resonant dielectric metamaterials 249
Alexander Sprafke, Jörg Schilling
9.1 Definition of nonresonant spectral range 249
9.2 Theoretical description – homogenization and effective-medium

theories 250
9.3 Experimental observation – retrieval methods of effective

parameters 262
9.4 Spatial variation of effective dielectric constant – graded index

(GRIN) photonics 267
9.5 Disordered metamaterials 276
9.6 Conclusion 285
References 286

Index 289



This page intentionally left blank



List of contributors

Amir Arbabi
Department of Electrical and Computer Engineering, University of Massachusetts
Amherst, Amherst, MA, United States

Ehsan Arbabi
T.J. Watson Laboratory of Applied Physics, California Institute of Technology,
Pasadena, CA, United States

Nicolas Bonod
Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France

Igal Brener
Sandia National Laboratories, Albuquerque, NM, United Sates
Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque,
NM, United States

Andrei Faraon
T.J. Watson Laboratory of Applied Physics, California Institute of Technology,
Pasadena, CA, United States

Andrey Fedyanin
Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia

Christopher L. Holloway
National Institute of Standards and Technology, U.S. Department of Commerce, Boul-
der, CO, United States

Seyedeh Mahsa Kamali
T.J. Watson Laboratory of Applied Physics, California Institute of Technology,
Pasadena, CA, United States

Yuri Kivshar
Nonlinear Physics Centre, Australian National University, Canberra ACT, Australia

Sergey Kruk
Nonlinear Physics Centre, Australian National University, Canberra ACT, Australia



x List of contributors

Edward F. Kuester
Department of Electrical, Computer, and Energy Engineering, University of Colorado
at Boulder, Boulder, CO, United States

Arseniy I. Kuznetsov
Institute of Materials Research and Engineering, A*STAR (Agency for Science, Tech-
nology and Research), Singapore, Singapore

Sheng Liu
Sandia National Laboratories, Albuquerque, NM, United Sates

Boris Luk’yanchuk
Division of Physics and Applied Physics, School of Physical and Mathematical Sci-
ences, Nanyang Technological University, Singapore, Singapore

Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia

Arka Majumdar
Department of Electrical Engineering, University of Washington, Seattle, WA, United
States

Physics Department, University of Washington, Seattle, WA, United States

Dragomir N. Neshev
Nonlinear Physics Centre, Research School of Physics, The Australian National Uni-
versity, Canberra, ACT, Australia

Manuel Nieto-Vesperinas
Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Madrid, Spain

Ramon Paniagua-Dominguez
Institute of Materials Research and Engineering, A*STAR (Agency for Science, Tech-
nology and Research), Singapore, Singapore

Jörg Schilling
Institute of Physics, Martin-Luther-University Halle–Wittenberg, Halle, Germany

Maxim Shcherbakov
School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United
States

Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia

Alexander Sprafke
Institute of Physics, Martin-Luther-University Halle–Wittenberg, Halle, Germany



List of contributors xi

Isabelle Staude
Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University
Jena, Germany

Chengjun Zou
Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University
Jena, Germany



This page intentionally left blank



1Electromagnetic metamaterials and
metasurfaces: historical overview,
characterization, and the effect of
length scales

Christopher L. Hollowaya, Edward F. Kuesterb
aNational Institute of Standards and Technology, U.S. Department of Commerce, Boulder,
CO, United States, bDepartment of Electrical, Computer, and Energy Engineering,
University of Colorado at Boulder, Boulder, CO, United States

1.1 Introduction

The study of electromagnetic (EM) interactions with materials has a long and rich
history dating back to Fresnel, Maxwell, Rayleigh, and many others [1–4]. Over these
nearly 200 years, EM material development and applications have blossomed dramat-
ically, culminating in the recent developments of metamaterials [5–16]. The prefix
“meta” is a Greek preposition meaning (among other things) “beyond”. Metamateri-
als are novel, synthetic materials engineered to achieve unique properties not normally
found in nature, i.e., materials beyond those occurring naturally. Metamaterials are of-
ten realized by arranging a set of small scatterers in a regular array throughout a region
of space (Fig. 1.1), thus obtaining some desirable bulk behavior. Artificial dielectrics
were early examples of these engineered materials. However, the term metamaterial is
a newer designation that includes, but is not limited to, artificial dielectrics. Nor does
the term metamaterial refer to classical periodic structures, such as what are now called
photonic bandgap (PBG) structures or frequency-selective surfaces (FSSs). The term
metamaterial refers to a material or structure with more exotic properties than artifi-
cial dielectrics, but which can still be described by bulk material parameters as natural
materials can. One particular class of metamaterial that is being studied extensively
consists of the so-called “double-negative” (DNG) materials [17–32] (also known as
negative-index materials (NIM), backward-wave (BW) media, or left-handed mate-
rials (LHM)). Such materials have the property that their effective permittivity and
effective permeability are simultaneously negative in a given frequency band. An-
other property not normally found in nature that can be achieved with metamaterials
is that of near-zero refractive index. In this type of material, either the permittivity or
permeability is designed to have its real part close to zero. Materials with unique prop-
erties such as these have a wide range of potential applications in electromagnetics at
frequencies ranging from the low microwaves to optical, including shielding, low-
reflection materials, novel substrates, antennas, electronic switches, devices, “perfect
lenses,” resonators, and of course cloaking, to name only a few.

Dielectric Metamaterials. https://doi.org/10.1016/B978-0-08-102403-4.00006-2
2020 Published by Elsevier Ltd
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2 Dielectric Metamaterials

Figure 1.1 Three examples of metamaterials: (A) array of split-rings (Courtesy of Dr. N. Orloff of NIST
and Prof. S.M. Anlage of the University of Maryland), (B) array of spherical particles, and (C) array
of arbitrarily shaped dielectric inclusions (from Shutterstock, https://www.shutterstock.com/image-photo/
example-metamaterials-physics-laboratory-1074505616?src=library).

Initially, the pursuit of cloaking was the “Holy Grail” of these metamaterials and
received much attention in the early years of metamaterial research. Cloaking (or the
ability to “hide” an object) has appeared throughout the years in popular literature and,
depending on your generation, examples include Tolkien’s ring, Romulan warships,
and Harry Potter’s cloak. However, due to physical limitations (no broadband lossless
metamaterials are available) cloaking materials have not come to practical fruition. So
researchers have turned their attention to other exotic material properties. Properties
that are of great interest for a wide range of applications include controllability (that
is, a material whose properties can easily be changed over a wide range of frequen-
cies), designs for a very narrow bandwidth, and engineering materials with tailored
unnatural permittivities and permeabilities, e.g., materials with near-zero indices.

The concept of metamaterials has been extended to two-dimensional arrays (re-
ferred to as metasurfaces) [33,34]; see Figs. 1.1C and 1.2. These types of metas-
tructures have an advantage over three-dimensional metamaterials because they take
up less physical space and have the potential for lower losses. Metasurfaces have
become a popular alternative to metamaterials. Applications of metasurfaces at fre-
quencies from low microwave to optical have attracted great interest in recent years.
These applications in electromagnetics include controllable “smart” surfaces, minia-
turized cavity resonators, novel waveguiding structures, angular-independent surfaces,
absorbers, biomedical devices, terahertz switches, and fluid-tunable frequency-agile
materials, to name only a few.

https://www.shutterstock.com/image-photo/example-metamaterials-physics-laboratory-1074505616?src=library
https://www.shutterstock.com/image-photo/example-metamaterials-physics-laboratory-1074505616?src=library
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Figure 1.2 Three examples of metasurfaces: (A) array of metallic scatterers (from C.L. Holloway,
E.F. Kuester, J.A. Gordon, J. O’Hara, J. Booth, D.R. Smith, An overview of the theory and applications
of metasurfaces: the two-dimensional equivalents of metamaterials, IEEE Antennas Propag. Mag. 54 (2)
(April 2012) 10–35, © 2012 IEEE), (B) array of magneto-dielectric spherical particles (from C.L. Holloway,
E.F. Kuester, J.A. Gordon, J. O’Hara, J. Booth, D.R. Smith, An overview of the theory and applications of
metasurfaces: the two-dimensional equivalents of metamaterials, IEEE Antennas Propag. Mag. 54 (2) (April
2012) 10–35, © 2012 IEEE), and (C) array of square apertures (from C.L. Holloway, E.F. Kuester, Gener-
alized sheet transition conditions (GSTCs) for a metascreen, IEEE Trans. Antennas Propag. 66 (5) (2018)
2414–2427, © 2018 IEEE).

The metasurface concept can be extended even further by use of only a linear unit
cell, rather than a surface element, as the building block, or even only a single sub-
wavelength resonant element for some desired effect or behavior. In this chapter, we
will discuss different aspects of various electromagnetic metastructures. We will pro-
vide a historical perspective, a study of the concepts that underly their behavior, a
discussion of the characterization of these metastructures, and a discussion on how
these different metastructures behave at different length scales (that is, periodicity and
inclusion size relative to the wavelength of interest).



4 Dielectric Metamaterials

1.2 Electromagnetic behavior of ordinary materials

Before we discuss the behavior of engineered materials and how this behavior changes
at different wavelength scales, we need to first discuss electromagnetic material prop-
erties, in general. We start by revisiting how the permittivity and permeability of a
medium arise. Permittivity is due to the induced electric-dipole response of a large
number of small particles [35, pp. 159–162]. Classically, these particles have been re-
garded as atoms or molecules, but in the past 70 years so-called artificial dielectrics
have been developed whose “atoms” are small metal or dielectric objects, of dimen-
sions large compared to atomic size, but still small compared to the wavelength of
the electromagnetic waves acting in the “host” medium in which these inclusions are
embedded [2,3,36–46]. In either case, the induced dipole moments are related by the
electric polarizabilities of the scatterers to the electric field acting on each one. The
dipole moments are then volume-averaged into a polarization density P, and the elec-
tric field is likewise averaged into a macroscopic or effective field E. From these, the
electric displacement vector D and permittivity ε are defined by:

D = ε0E + P = εE ,

where ε is related to the electric polarizability densities of the scatterers in space.
Permeability originates in an analogous way from the volume density M of mag-

netic dipole moments arising from the angular momentum of charge due to particle
spin and orbital movement, and is related to the magnetic polarizabilities of the scat-
terers. The effective fields H and B are then related to each other by the expression:

B = μ0 (H + M) = μH ,

where μ is related to the magnetic polarizability densities of the scatterers in space.1

We will denote the relative permittivities and permeabilities by a subscript r , and
express ε and μ in terms of their real and imaginary parts by: ε = ε0(ε

′
r −jε′′

r ) and μ =
μ0(μ

′
r − jμ′′

r ) [Note that throughout this chapter the time dependence is ejωt ]. In this
description, details of the field behavior on the scale of scatterer size and separation
are lost, and indeed are often not of practical interest.

The problem of effective-medium theory and modeling the electromagnetic re-
sponse of inclusions embedded in a medium is known as the “classical composite
medium” and has a long history [2,3,36–46]. In recent years, artificial materials
formed from periodic arrays of unusually-shaped conducting scatterers have been de-
signed so as to have negative μ′

r and ε′
r (i.e., μ′

r < 0 and ε′
r < 0) and were given the

name metamaterials [5–32]. Sufficiently deep within such a material, and if the fre-
quency is low enough for scatterer spacing to be small compared to a wavelength, the
medium appears to the average field as a continuous effective medium with some bulk
effective material property. On the other hand, near the interface of such a material

1 Scatterers of complex geometry can result in an anisotropic medium, for which ε and μ are tensors, or
even in a bianisotropic medium, for which D and H are each affected by both E and B. We limit our
attention in this paper to isotropic, non-bianisotropic composite materials.
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with another medium, the fields acting on the scatterers that make up the material are
expected to be differnet from deep within the bulk material, and the magnitude of this
effect is uncertain [47].

For passive materials, μ′′
r ≥ 0 and ε′′

r ≥ 0. The real parts of the material parame-
ters (i.e., μ′

r and ε′
r ) for many common materials are positive, but there are exceptions.

We will see that negative permittivity and permeability are possible in composite/engi-
neered materials. However, negative permittivity and permeability can occur at a more
fundamental level. For example, in plasmas the combination of ordinary displacement
current density with electron-convection current density can yield a net negative real
part of the permittivity for sufficiently low frequencies [35, pp. 309–319]. Indeed,
Rotman [42] has shown how an artificial dielectric can reproduce such a negative per-
mittivity and serve as a model for a plasma. A transmission-line equivalent circuit
for describing a plasma is discussed in [48]. Negative permittivity also appears near a
resonance frequency in Lorentz’s theory of dispersion (see [4], for example).

When one (but not both) of ε′
r or μ′

r is negative, plane waves decay exponentially,
like modes below cutoff in a waveguide. However, when both ε′

r and μ′
r are negative,

waves can still propagate in such a medium since the product με remains positive. In
this case, we have a “backward wave”, for which the phase of the wave moves in the
direction opposite from that of the energy flow. For lossless media, this means that the
phase velocity and group velocity have opposite signs.

1.3 Metamaterials and periodic composites: length-scale
effects

Let us now discuss the global behavior of a periodic composite material. Depend-
ing on the wavelength and the periodicity of the inclusions that make up a composite
material, the composite may or may not behave as an effective medium. Metamateri-
als are commonly engineered by designing specifically shaped scatterers/inclusions or
other objects, placed throughout a volume to achieve a desirable bulk behavior of the
materials. In these types of engineered materials the scatterers can be of various length
scales: the dimensions of the scatterers can range from relatively large to nanometer
size and even smaller, depending on the frequencies of interest. In some of these sit-
uations, the scatterers and the spacing between them can become comparable to the
wavelength of the electromagnetic waves [specifically, the wavelength in the “host”
medium in which these inclusions (scatterers) are embedded, or the wavelength in the
inclusions]. In natural materials, where the inclusions are atoms or molecules, this
does not happen until frequencies reach the x-ray region. But with artificial materi-
als, this can happen at much lower frequencies and one has to revisit the notion of
electromagnetic material properties. In fact, the electromagnetic field interaction with
these types of engineered materials falls into three separate regions of behavior (see
Fig. 1.3), with distinctive behaviors in each region. It is important to be aware of this
and to understand the behavior in each region when either performing measurements
or analyzing metamaterials at different length scales and/or frequencies, as will be
described in the following subsections.
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Figure 1.3 Three characteristic regions of composite materials or metamaterials.

1.3.1 Effective media: classical mixing theory

The first region in Fig. 1.3 corresponds to that of quasi-static behavior. This implies
low frequencies—or specifically, frequencies where the wavelength is much larger
than the lattice constant of the structure, that is, compared to the period of the scatter-
ers that compose the composite medium, as well as the size of the inclusions. These
scatterers could correspond to induced or permanent dipole moments, as is the case for
atoms or molecules for classical materials, or could be generic in shape and placed in a
host matrix to obtain an artificial composite material designed to have some desirable
property. Using asymptotic techniques it is possible to show that the electromagnetic
field in this low frequency limit sees the composite material as an equivalent effective
medium with homogeneous material properties. The effective material properties are
obtained from quasi-static field solutions of the periodic structure [49,50]. The basic
result is that the effective permittivity is obtained by taking the ratio of some aver-
aged D-field to an averaged E-field (as discussed above). The effective permeability is
likewise obtained by taking the ratio of an averaged B-field to an averaged H-field.

The problem of effective-medium theory and modeling of electromagnetic re-
sponse to an array of inclusions embedded in a host material has a long history going
back to Maxwell, Rayleigh, as well as Poisson, Clausius and Mossotti before that.
Much work has been done since then to compute the effective properties of homoge-
neous composite materials. A survey of this work can be found in [36,37,41]. The
formulas for the effective properties given throughout the literature take on many
forms. These range from simple bounds [41,51–53] to elaborate closed-form approx-
imate formulas [36–38,41,43–45]. Note that these types of mixing formulas are only
valid when the period of the structure is small in comparison to the wavelength of the
electromagnetic wave. The reason for this is discussed in Section 1.3.2.

Let us look at a composite structure composed of particles embedded in a host
matrix (shown in Fig. 1.4 for the case of spherical particles) in order to illustrate the
implications of these classical mixing formulas (that is, the static limit). The Hashin–
Shtrikman (HS) upper (εU

HS) and lower (εL
HS) bounds [51] are the best obtainable

bounds using only the material parameters ε1 (host matrix material), ε2 (the material
of the inclusion), and the fill factor g (volume fraction of space occupied by the bulk
inclusion ε2). They apply to composites based on inclusions of arbitrary shape. For a
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Figure 1.4 Composite structure containing spherical particles: (A) three-dimensional view and (B) cut-
away view (from C.L. Holloway, E.F. Kuester, J. Baker-Jarvis, P. Kabos, A double negative (DNG) com-
posite medium composed of magneto-dielectric spherical particles embedded in a matrix, IEEE Trans.
Antennas Propag. 51 (10) (2003) 2596–2603, © 2003 IEEE).

three-dimensional composite material in which ε2 > ε1, the bounds are defined as

εL
HS ≡ ε1 + g

1
ε2−ε1

+ 1−g
3ε1

, εU
HS ≡ ε2 + 1 − g

1
ε1−ε2

+ g
3ε2

. (1.1)

If ε2 < ε1, the lower bound in Eq. (1.1) becomes an upper bound, and the upper bound
becomes the lower bound (see [51] for details). Note that the expressions for these
bounds need to be modified for other types of composite materials [41,50]. The vari-
ation of the effective permittivity (εeff) based on the expressions given in Eq. (1.1) is
shown as a function of g ranging from 0 to 1 in Fig. 1.5 for two different values of the
inclusion permittivity. Although results in this figure are shown for g approaching 1,
for specific inclusion shapes, the limit g = 1 may not be achievable. For example, in
the array of spheres, the spheres touch each other when g = π/6, and larger values of
g have no meaning in this case.

For the composite shown in Fig. 1.4, Lewin [38] made a notable study of the ef-
fective permittivity and permeability μe and εe, by incorporating the solution of a
boundary-value problem for scattering by a sphere into a unit cell, and then assuming
that the medium is composed of a large number of these cells. For an array of lossless
magneto-dielectric spheres, the relative effective μ′

re and ε′
re were found to be

ε′
re = εeff = εr1

(
1 + 3g

F(θ)+2be

F (θ)−be
− g

)
(1.2)

and

μ′
re = μeff = μr1

(
1 + 3g

F(θ)+2bm

F(θ)−bm
− g

)
. (1.3)

In these expressions, μr1 and εr1 are the relative permeability and permittivity of the
matrix (host) medium, μr2 and εr2 are the relative permeability and permittivity of the
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Figure 1.5 Effective properties of a spherical particle composite.

inclusions where

be = ε1

ε2
, bm = μ1

μ2
. (1.4)

The volume fraction g of the spherical inclusions is given by

g = 4πa3

3p3
, (1.5)

where a is the particle radius and p is the particle spacing. The function F(θ) is

F(θ) = 2 (sin θ − θ cos θ)

(θ2 − 1) sin θ + θ cos θ
, (1.6)

where

θ = k0a

√
ε′
r2μ

′
r2 (1.7)

and the free-space wavenumber is k0 = 2π/λ, λ being the free-space wavelength. In
the static limit θ → 0 (which implies no resonances in the inclusions), F(θ) → 1,
and Lewin’s formulas reduce to the Hashin–Shtrikman (HS) lower bounds, as can be
observed in Fig. 1.5. Note that the results from Lewin’s formula are only plotted to
g = π/6, for the reason stated in the previous paragraph.

These results are typical of any mixing formula that one might choose to use for
any type of composite material, in that a monotonic change takes place from the bulk
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properties of the host towards the bulk properties of inclusion as the filling factor g

increases from 0. Keep in mind that some mixing formulas may be more accurate
than others depending on the geometry of the composite [36,37,41,49,50], but in gen-
eral this trend is universal. This will be seen to be quite different from what occurs
in the resonant effective material properties region (the second region in Fig. 1.3),
which we will discuss in subsection 1.3.3. Notice also that there is no frequency de-
pendence in the mixing formulas that we have discussed so far. The formulas are
based on a quasi-static approximation, and the only frequency dependence that could
occur would be because the bulk material properties of the matrix or inclusions are
frequency-dependent. This is not the case in the second region, where resonant effects
of the scatterers are important. This also will be discussed in subsection 1.3.3.

1.3.2 Floquet–Bloch modes: frequency selective surfaces and
photonic band gap structures

Before we discuss Region 2 in Fig. 1.3, let us examine Region 3. In this region, the
wavelength approaches the period of a periodic structure, and the fields no longer
‘see’ the composite as an effective medium. At these frequencies, a more complicated
field behavior exists and more elaborate full-wave modeling techniques to analyze the
EM field interaction with the composite periodic structures must be used. The clas-
sical approach that is used to analyze periodic structures is the Floquet–Bloch-mode
approach [54–56]. To understand this method, we first review how fields in a homo-
geneous medium are expressed.

A plane wave is a solution of Maxwell’s equations in a uniform, source-free region
of space characterized by the material constants μ and ε. A typical component of (say)
the electric field is given by

E = E0e
−j (kxx+kyy+kzz) , (1.8)

where E0 is a constant amplitude, and the constants kx , ky and kz are components
of a wave-vector indicating the direction of propagation of the wave. All of the field
components (E and H) have the same (x, y, z) dependence as in (1.8), but with dif-
ferent amplitudes. If the field is not identically zero, these amplitudes are related to
each other by constraints imposed by Maxwell’s equations; in addition, at a given
frequency ω, the components of the wave-vector must obey

k2 = ω2με = k2
x + k2

y + k2
z . (1.9)

More general fields are representable by a superposition of plane-wave fields, ei-
ther a sum or an integral over suitable sets of possible values of kx , ky , and kz =√

k2 − k2
x − k2

y . Those plane waves for which k2
x + k2

y > k2 are evanescent in the

z-direction and do not contribute significantly in the far field when z is large enough.
For a three-dimensional periodic medium, when μ and ε are periodic functions of

x, y, and z, with periods px , py , and pz, respectively, a Floquet–Bloch mode for a
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component of the E-field has the form

E = Ep(x, y, z)e−j (kxx+kyy+kzz) , (1.10)

where Ep is a function periodic in x, y and z with the same periods as μ and ε. As
with the plane-wave solution, the constants kx , ky , and kz and the amplitude functions
Ep, etc., cannot take on arbitrary values, but are constrained by the requirement that
the field is nontrivial and obeys Maxwell’s equations. For given values of kx , ky , and
kz, this can happen only when the frequency ω is equal to one of a set of eigenfrequen-
cies ωr(kx, ky, kz). The relation between components of the wave-vector is then the
implicit equation ω = ωr(kx, ky, kz), which generalizes (1.9). The periodic function
Ep can be represented as a complex exponential Fourier series:

Ep(x, y, z) =
∞∑

l,m,n=−∞
Clmne

−j
(

2πlx
px

+ 2πmy
py

+ 2πnz
pz

)
(1.11)

or

E =
∞∑

l,m,n=−∞
Clmne

−j
(
kxlx+kymy+kznz

)
, (1.12)

where

kxl = kx + 2lπ

px

, kym = ky + 2mπ

py

, kzn = kz + 2nπ

pz

, (1.13)

and px,y,z are the lattice periods in the x, y, and z directions, respectively. The con-
stants Cl,n,m and eigenfrequencies ωr(kx, ky, kz) are determined by constraining the
field to obey Maxwell’s equations—this is usually done numerically.

Analogous to the plane-wave case, if k2
xl + k2

ym is large enough, the field will decay
in the z-direction, and such waves will not contribute in the far field. It turns out that,
for kpx , kpy , and kpz smaller than about π (where k is now a suitably-defined repre-
sentative wavenumber), only the lowest-order Floquet–Bloch mode (the one with the
smallest value of ωr = ω0) can propagate without attenuation. Put another way, if the
wavelength is large in comparison to the periods, only the lowest-order Floquet–Bloch
mode propagates. As the frequency increases, more of the higher-order modes begin to
propagate. For small periods and long wavelengths, the lowest-order Floquet–Bloch
mode represents (in some sense) the averaged fields propagating through the com-
posite periodic structure. These fields along with the eigenfrequency ω0 allow us to
determine an effective medium in terms of εe and μe.

The situation is quite different once the higher-order modes begin to propagate.
No longer do unique values of εe and μe fully determine the non-evanescent field,
and complicated interference effects among the Floquet–Bloch modes will arise. Cer-
tainly, important practical applications of these effects exist (Bragg scattering perhaps
foremost among them), but a simplified effective-medium description is no longer
possible. A field propagating through a composite sees the structure as an effective
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Figure 1.6 Infinitely-long metal wire grating in free space, where p is the period of the grating and D is
the wire diameter.

medium as long as the higher-order Floquet–Bloch modes do not propagate into it.
For a background medium of free space, the restriction on k0p as a function of the
plane-wave incidence angle φ for this to happen is

kop <
2π

1 − sinφ
.

Periodic structures used in such higher-frequency applications have been given var-
ious names throughout the literature. In recent years, high-frequency periodic surfaces
have been given the name frequency-selective surfaces (FSSs) [57,58] (historically
known as periodic gratings) and high-frequency three-dimensional periodic materials
have been given the name photonic band gap (PBG) materials [5,59]. FSS and PBG
structures have similar characteristics, that is, at certain frequencies the FSS and PBG
can block the propagation of an EM wave. The frequency bands where this blocking
effect occurs are referred to as stopbands. At other frequencies, the periodic structure
allows energy to propagate through the structure; these frequency bands are referred
to as passbands.

This can be readily seen by considering the infinitely-long metal wire grating
shown in Fig. 1.6. The transverse electric (TE) reflection and transmission coefficients
of this two-dimensional wire grating in free space are shown in Fig. 1.7. These results
were obtained with a finite-element numerical program. These quantities are a com-
plicated function of the lattice configuration (e.g., the period p and diameter D of the
wires). The lattice will severely attenuate the transmitted field at wavelengths that are
much larger than the lattice period p. In general, the attenuation of the fields due to
the lattice is monotonic and decreases with frequency up to the first resonance (i.e.,
the peak in the transmitted field). For example, Fig. 1.7A shows results for a lattice in
free space, where p = 7.62 cm and D = 1.91 cm, and Fig. 1.7B shows results for a
lattice in free space, where p = 15.24 cm and D = 5.08 cm.

At low frequencies, the lattice acts inductively and the transmitted field strength in-
creases with frequency to a maximum at the first resonance with the wavelength (i.e.,
λ ≈ p). It should be noted that the shape of the curves as well as the wavelength at the
first resonance are, in general, a function of the wire diameter as well as the period.
The first resonance occurs when λ ≈ p (and not λ/2 ≈ p), because the plane-wave
excitation causes currents to flow in the same direction on adjacent parallel conduct-
ing elements of the lattice that are aligned with the incident electric field. Since the
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Figure 1.7 TE reflection and transmission characteristics of a two-dimensional array of infinitely-long
metal wires: (A) p = 7.62 cm and D = 1.91 cm, (B) p = 15.24 cm and D = 5.08 cm. These results are for
normal incidence.

currents on two adjacent conductors are equal in magnitude and direction, there is a
null in the induced magnetic and electric fields halfway between the conductors which
is consistent with this mode. From these results, we see that there is a passband when
λ ≈ p. Similar types of results are seen for different types of periodic structures, that
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is, stopbands and passbands will develop in the structure (FSS and PBG structures;
see [5,57–59]).

These effects of constructive and destructive interference of the various modes as
the wave propagates through the composite, are what give rise to the unique charac-
teristics of FSS and PBS structures. It is important to note that such effects cannot
be represented or captured by an effective-media theory. These stopband and pass-
band effects of FSS and PBG structures are caused by resonances associated with the
periodicity of the structure. In Section 1.3.3 we see that resonances associated with
the scatterers themselves can cause interesting and unexpected effects in the effective
material properties of a composite.

1.3.3 Effective media: scatterer resonances

Resonant features of the scatterers (or inclusions) that compose an effective medium
provide us the power to engineer the medium’s permittivity and/or permeability in
order to achieve unique and interesting properties. Region 2 in Fig. 1.3 corresponds to
a region where the scatterers are designed in such a manner (either via their shape or
bulk material properties) such that the scatterers themselves can resonate. When this
occurs, so-called metamaterials can be realized.

When the scatterers are non-resonant, the real parts of the material parameters (i.e.,
μ′

r and ε′
r ) for the engineered materials are usually positive, but there are exceptions,

as discussed in Section 1.2. When the scatterers are resonant, negative permittivity
and permeability are possible in composite materials. Materials of this type are also
called “double” negative (DNG) media, negative-index materials, backward-wave me-
dia (BW), or left-handed materials. This kind of material is just one of many types of
metamaterials. Early investigators in the fledgling area of metamaterials attributed the
first study of such media to Veselago [12] in 1967, but Lamb [60] in 1904, Schuster
[61] in 1904, Pocklington [62] in 1905, Mandel’shtam [63,64] in 1945, Malyuzhinets
in 1951 [65] and Sivukhin in 1957 [66] had all previously discussed the properties of
wave propagation in backward-wave media. Some other historical (or “pre-historical”)
surveys have been given in [15,67–69]. More recently, many other authors [5–32] have
studied the properties and potential applications of DNG materials in detail. Also see
[70–76].

Much of the early work on DNG materials concentrated on metallic inclusions
[5–32]. An interesting question is: “Can the DNG material effect occur in a pure di-
electric or magneto-dielectric composite medium?” To address this question, we refer
back to the work of Lewin [38], in which he used Mie’s exact solution of the problem
of scattering by a material sphere to derive an expression for the effective properties
of an array of spherical particles embedded in a background matrix (although many
of his results had already been obtained, albeit in a much more cumbersome form, by
previous researchers [39,40]). Lewin’s work showed that when the size of the spheri-
cal scatterers is not small compared to a wavelength in the material of the scatterers
(but is small compared to a wavelength in the matrix material), μe and εe become
frequency-dependent. The expressions for the effective permittivity and permeability
are presented in Eqs. (1.2) and (1.3). The interesting parameter in these equations is
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Figure 1.8 εre and μre for an array of spheres with g = 0.5, ε′
r1 = μ′

r1 = 1, ε′
r2 = 40, and μ′

r2 = 200.
The dashed-dot lines represent the asymptotes for εre . From C.L. Holloway, E.F. Kuester, J. Baker-Jarvis,
P. Kabos, A double negative (DNG) composite medium composed of magneto-dielectric spherical particles
embedded in a matrix, IEEE Trans. Antennas Propag. 51 (10) (2003) 2596–2603, © 2003 IEEE.

the factor F(θ). In section 1.3.1, the quasi-static of F(θ) is emphasized. In that static
limit F(θ) → 1. From Eq. (1.6) and plots shown in [29], it is apparent that F(θ) has
a resonant behavior. The possibility of such a composite structure (a pure dielectric or
magneto-dielectric composite) having both negative effective permittivity and perme-
ability was first demonstrated in [29], where the conditions that must be met for the
effective permittivity and permeability to be negative were given.

In [29] it is shown that these conditions can be met with realistic bulk material
properties of the matrix and the spherical inclusions. For example, Fig. 1.8 shows
results for g = 0.5, ε′

r1 = μ′
r1 = 1, ε′

r2 = 40, and μ′
r2 = 200 as a function of k0 a

(where a is the radius of the spheres and k0 is the free-space wavenumber). Between
0 ≤ k0 a ≤ 0.1 there are two regions where both μ′

re and ε′
re become negative, pro-

ducing a negative-index material [29]. This negative-index behavior also occurs when
ε′
r1/ε

′
r2 = μ′

r1/μ
′
r2. Fig. 1.9 shows such a composite that has a bandwidth (bands

where permittivity and permeability are simultaneously negative) of 10 %. Fig. 1.10
shows results for the real and imaginary part of εre for an array of lossy spherical
particles. The results in this figure are for different values of the dielectric loss tangent
of the spherical particles, defined as tanδ = ε′′

r /ε′
r . Notice that, for this example, the

real part of the effective permittivity can still be negative for loss tangents as large as
0.04. However, for larger values of tanδ the resonance is damped out and the real part
of the effective permittivity remains positive. This shows that if the inclusion (i.e., the
spherical particle) becomes too lossy, DNG properties cannot be realized. While large
values of negative properties can be attained near resonance as shown in Fig. 1.10A,
working too near these resonances has an adverse feature. The imaginary part of εeff

shown in Fig. 1.10B illustrates an important aspect of using metamaterials too close to
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Figure 1.9 εre and μre for an array of spheres with g = 0.5, ε′
r1 = μ′

r1 = 1, ε′
r2 = 20, and μ′

r2 = 20.
The dashed-dot line represents the asymptote. Notice that εre and μre are identical. From C.L. Hol-
loway, E.F. Kuester, J. Baker-Jarvis, P. Kabos, A double negative (DNG) composite medium composed
of magneto-dielectric spherical particles embedded in a matrix, IEEE Trans. Antennas Propag. 51 (10)
(2003) 2596–2603, © 2003 IEEE.

a resonance, in that losses can be very large near the resonance. As a result, researchers
have been investigating and designing metamaterials away from these resonances. Tai-
loring materials to a desired value and near-zero index materials are two examples of
metamaterial applications for frequencies away from resonance.

Once it was demonstrated in [29] that metamaterials composed of dielectric spheri-
cal inclusions were possible, other dielectric and magneto-dielectric inclusions started
appearing as a means to develop DNG materials and other desirable properties. This
includes layered-spherical particles, arrays of different sized spheres, cylindrical and
cubic inclusions, as well as other geometries [30,77–94].

The negative material properties are a result of the resonances associated with the
scatterers that make up the composite material. Therefore, it should not be a sur-
prise that any scatterer that can resonate can be used to obtain the DNG effect. In
fact, the Lewin approach can be readily extended to other geometries and to other
types of inclusions. Khizhniak wrote a series of papers [43–45] in which he gener-
alized Lewin’s model and presented expressions for the effective material property
tensors of an artificial material formed by an array of scatterers with arbitrary ge-
ometric shapes. Khizhniak presents expressions for the effective material properties
that have the same functional behavior as Lewin’s and does indeed suggest that neg-
ative material properties can be obtained via arbitrarily shaped inclusions. Recently,
several papers have studied the problem of designing engineered artificial materials
with negative μ′

r and ε′
r formed from periodic arrays of unusually-shaped conducting

scatterers, in particular, split metal rings and posts [5–28,31,32,95]. These structures
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Figure 1.10 Array of lossy spherical particles: εre and μre for g = 0.5, ε′
r1 = μ′

r1 = 1, ε′
r2 = 50, and

μ′
r2 = 50: (A) real part for εre (from C.L. Holloway, E.F. Kuester, J. Baker-Jarvis, P. Kabos, A double neg-

ative (DNG) composite medium composed of magneto-dielectric spherical particles embedded in a matrix,
IEEE Trans. Antennas Propag. 51 (10) (2003) 2596–2603, © 2003 IEEE) and (B) imaginary part for εre.

can be quite complicated to fabricate when compared to composites composed of the
magneto-dielectric inclusions.

Since these conducting scatterers are essentially resonant structures, the goal is to
design the microfabricated resonant circuits with desired effective properties in a unit
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cell. The design of such a structure was described in detail in [18]. The design is
based on the averaging of the magnetic field components along the axes of the unit
cell. Pendry averages the magnetic field in a cube of side a(= px = py = pz). For
each magnetic field component

< H >i= 1

a

∫
ri

H · dr, (1.14)

the induction field is averaged as

< B >i= 1

a2

∫
Si

B · dS , (1.15)

where i = x, y, or z, ri is a path from the origin to piai , ai is a unit vector in the
direction i, and Si is a square of side a in the plane i = 0. Following these averaging
definitions the effective permeability is then defined as

μeff(i) = < B >i

μ0 < H >i

. (1.16)

The effective permittivity is given by a similar expression

εeff(i) = < D >i

ε0 < E >i

. (1.17)

For negative permittivity or permeability, the equivalent circuit of the scatterer
circuit has to be resonant, which requires the introduction of capacitance into the
inductive system (or vice versa). Pendry introduced the capacitance through gaps in
coupled-ring resonators; details are discussed in [18]. Any microstructured microwave
resonant device, passive and/or active, can in principle be used to produce a desired
effective permeability in a periodic structure designed for double-negative applica-
tions [31].

The most convenient (and traditional) method to model metamaterials is with
effective-medium theory. It should be emphasized that the averaging (or homoge-
nization, or effective material model presentation) is valid only when the wavelength
is large compared to the lattice constant of the period cell. While period cell aver-
aging for the fields is the correct method for defining effective material properties,
most researchers in practice use an approach where they obtain the reflection and
transmission properties (either through measurements or numerical simulations) of
a metamaterial consisting of several layers (sometimes as few as three). The term
“layer” means a plane of scatterers with an associated thickness. When referring to
the layers of a metamaterial, the thickness is the period of the bulk materials in the
direction perpendicular to the plane of scatterers. Once the reflection and transmis-
sion properties are obtained, a Nicolson–Ross–Weir (NRW) approach [96,97] is used
to obtain the effective material properties of the bulk metamaterials. Note that the
standard NRW approach must be modified when negative material properties exist;
typically, the choice of the sign of a square-root is made unambiguous by ensuring
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positive power flow [98–102]. In general, for a bulk three-dimensional material (with
five layers or more) the approach results in unique effective material properties for the
metamaterials. However, there are conditions where these modified NRW approaches
fail; for details see [47,100,101], and [103]. This failure manifests itself in a depen-
dence of the extracted bulk electromagnetic material parameters on the thickness of
the sample used [98,104–106].

If used properly, the effective material approach can be a self-consistent and unique
method for characterizing a metamaterial. That is, no matter what thickness of the
same metamaterial is modeled (i.e., no matter the number of layers that compose the
metamaterial), the same values for the bulk effective material properties should be ob-
tained. By definition, a bulk property should not depend on the size (or shape, for that
matter) of the material sample. True bulk properties of a material should be retrievable
independent of the thickness of the sample chosen. Let us note here that some mod-
els of metasurfaces in terms of “bulk” properties are actually nonlocal–the obtained
permittivity and permeability are spatially dispersive, dependent on the wavenumber
of the wave propagating through the medium. This approach can address the issues
raised here to some extent, but is more complicated to use, in general, than a local
model. See, for example, [107].

Applications of DNG materials include, 1) shielding materials, 2) low-reflection
materials, 3) substrate materials, 4) antenna applications, 5) electronic switches, 6) res-
onators, 7) controllable surfaces, 8) cloaking, and 9) the so-called perfect lens. When
resonance is used to obtain some desired metamaterial behavior, a structure made from
passive materials must exhibit dispersion and therefore loss. This is required by the
Kramers–Kronig dispersion relations for the behavior to obey causality. As discussed
above, losses are high near resonances, and as such, one typically avoids this region.

We need to emphasize that Region 2 in Fig. 1.3 does not always occur. The scat-
terers need to be designed so that the scatterers’ resonances occur before the next
higher-order Floquet–Bloch mode can propagate. For example, in the case of spherical
particle inclusions, if the bulk properties and the radius of a spherical particle compos-
ite are too small, the scatterer resonances would be pushed toward the Floquet–Bloch-
mode region and a DNG material would not be realized. The scatterer resonance
region and the Floquet–Bloch-mode region would overlap and an effective-medium
model would not capture the behavior of the composite material. Furthermore, if the
size and shape of the inclusions (the dielectric structures used in [29,30,77–82] or
metallic inclusions in [5–28,31], and [32]) are not chosen properly, then the resonance
would be pushed into the Floquet–Bloch-mode region and once again DNG materials
would not be realized. Similar effects are also discussed in [122].

In summary, in the first two regions, the electromagnetic field behaves as if the
composite material is some type of effective medium. In region 1 (the classical mix-
ing theory region) the effective material properties have no frequency dependence
(except for that due to the constituent materials). In region 2 (the scatterer resonant
region) the material behaves as an effective medium and has the inherent frequency
dependence preserved in the effective material property model. In this region it is pos-
sible to achieve DNG materials and other desirable exotic material properties. Finally,
for the last region (region 3 in Fig. 1.3), the electromagnetic field interaction with



Electromagnetic metamaterials and metasurfaces 19

the periodic structure is more complex. Scattering is the mechanism for the field be-
havior, and we can no longer think of the composite material simply as an effective
medium. When the wavelength approaches the lattice constant, higher-order Floquet–
Bloch modes must be considered. FSS and PBG are the predominant applications
found in this region.

1.4 Metasurfaces

Metamaterials are engineered by arranging a set of scatterers throughout a three-
dimensional region of space in a specific pattern so as to achieve some desirable bulk
behavior of the material. This concept can be extended by judiciously placing scat-
terers in a two-dimensional pattern at a surface or interface. Such a surface version
of a metamaterial has been given the name metasurface, and includes metafilms and
metascreens (both of these subcategories will be discussed below) as special cases [33,
34,108–110]. Metasurfaces have also been referred to in the literature as single-layer
metamaterials.

The simplicity and relative ease of fabrication of metasurfaces make them attractive
alternatives to three-dimensional (3D) metamaterials. In many applications, metasur-
faces can be used in place of metamaterials. Metasurfaces have the advantage of taking
up less physical space than do full 3D metamaterial structures; as a consequence they
can also offer the possibility of lower losses. The application of metasurfaces at fre-
quencies from microwave to optical has attracted great interest in recent years [33,34,
115–159]. In addition to the applications mentioned above for metamaterials, meta-
surfaces allow for controllable “smart” surfaces, miniaturized cavity resonators, novel
waveguiding structures, compact and wide-angle absorbers, impedance matching sur-
faces, biomedical devices, tailoring wave fronts, polarization conversion, antennas,
and high speed switching devices, to name only a few.

We will call any periodic two-dimensional structure whose thickness and period-
icity are small compared to a wavelength in the surrounding media a metasurface.
Within this general designation, we can identify two important subclasses. Metasur-
faces that have a “cermet” topology, which refers to an array of isolated (non-touching)
scatterers (Fig. 1.11), are called metafilms [33] and [108] (a term coined in [110]
for such surfaces). Metasurfaces with a “fishnet” structure (Fig. 1.12) are called
metascreens [33,109]. These metascreens are characterized by periodically-spaced
apertures in an otherwise relatively impenetrable surface. Other kinds of metasur-
faces exist that lie somewhere between these two extremes. For example, a grating
of parallel conducting wires (a metagrating) behaves like a metafilm to electric fields
perpendicular to the wire axes, but like a metascreen for electric fields parallel to the
wire axes [112]. It is important to note that the individual scatterers constituting a
metafilm (or apertures constituting a metascreen) are not necessarily of zero thickness
(or even small compared to the lattice constants); they may be of arbitrary shape, and
their dimensions are required to be small only in comparison to a wavelength in the
surrounding medium, which is true a fortiori because the lattice constant has been
assumed small compared to a wavelength.
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Figure 1.11 Metafilm examples: (A) array of arbitrary shaped scatterers and (B) array of spherical parti-
cles. Parts (A) and (B) from C.L. Holloway, E.F. Kuester, J.A. Gordon, J. O’Hara, J. Booth, D.R. Smith, An
overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,
IEEE Antennas Propag. Mag. 54 (2) (April 2012) 10–35, © 2012 IEEE.

Figure 1.12 Metascreen examples: (A) array of arbitrary shaped apertures and (B) array of square aper-
tures. Parts (A) and (B) from C.L. Holloway, E.F. Kuester, Generalized sheet transition conditions (GSTCs)
for a metascreen, IEEE Trans. Antennas Propag. 66 (5) (2018) 2414–2427, © 2018 IEEE.

Figure 1.13 Representing a metafilm as an effective medium with thickness d. From C.L. Holloway,
E.F. Kuester, A. Dienstfrey, Characterizing metasurfaces/metafilms: the connection between surface sus-
ceptibilities and effective material properties, IEEE Antennas Wirel. Propag. Lett. 10 (2011) 1507–1511,
© 2011 IEEE.

Similar to metamaterials, depending on the wavelength-to-period spacing, three
regions of behavior will occur for EM interactions with a metasurface. For a two-
dimensional lattice of scatterers or apertures, region 1 in Fig. 1.3 corresponds to
classical thin-film materials, while region 3 in Fig. 1.3 corresponds to resonances as-
sociated with the periodicity of the scatterers/apertures. The conventional FSS and
PBG [57–59] fall into this third region. On the other hand, when we talk about a meta-
surface, we are referring to an array of scatterers/apertures that lies in region 2 (or
even region 1). Resonances of the surface may be associated with the resonances of
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the scatterers/apertures, but not with the periodicity of the array. Ordinary frequency-
selective surfaces are sometimes operated in this regime, but the distinction between
this type of operation and that of region 3 has not usually been made.

We emphasize that, as for the case of a metamaterial, region 2 in Fig. 1.3 may not
always occur for a metasurface. The scatterers/apertures need to be properly designed,
such that the scatterers’ resonances occur at a frequency well below that where the next
higher-order Floquet–Bloch mode can propagate. For example, if the bulk properties
and the radius of a spherical-particle composite (see [29]) are too small, or if the sizes
or shapes of the scatterers used in the material are not properly chosen, the scatter-
ers’ resonances would be pushed toward the Floquet–Bloch-mode region, and in this
case an effective-medium model would not adequately describe the behavior of the
composite material.

In summary, in regions 1 and 2 of Fig. 1.3 the interaction of an electromagnetic
field with a metasurface is described by effective surface parameters of some kind, to
be discussed below. In region 1 (analogous to the classical mixing theory region for the
case of a metamaterial), the effective surface parameters are not frequency-dependent
(except insofar as the constituent bulk properties have a frequency dependence). In
region 2 (the scatterers’ resonant region), the metasurface still is modeled by effec-
tive surface properties, which now may possess an inherent frequency dependence. In
this region, it is possible to achieve interesting resonant behaviors. In the last region
(region 3 in Fig. 1.3), the electromagnetic field’s interaction with the periodic array
is very involved. We may no longer think of the surface as behaving like an inter-
face with effective surface parameters. When the wavelength approaches the period,
higher-order Floquet–Bloch modes must be considered, and one typically does not
refer to these structures as metasurfaces in this region.

1.4.1 Characterizing a metasurface

Like a metamaterial, the behavior of a metafilm is determined by the electric and
magnetic polarizabilities of its constituent scatterers (or its constituent apertures for
a metascreen). The traditional and most convenient method by which to model meta-
materials is with effective-medium theory. Attempts to use a similar bulk-parameter
analysis for metasurfaces have been less successful (see [113], [33], and [114] for a
detailed discussion on this point). Indeed, some previous metafilm studies have mod-
eled the film as a single-layer metamaterial in which effective bulk material properties
of the metasurface are obtained by forcing the introduction of an arbitrary non-zero
thickness parameter into the analysis. As we will demonstrate, several problems arise
from the physically artificial character of this parameter; the bulk property characteri-
zation of a metasurface is incorrect at a fundamental level. To the extent that classical
algorithms for bulk-parameter extraction give results that depend on sample size, we
would be forced to conclude that some localized effect is occurring near the bound-
ary of the sample [47,100,101,110], analogous to the effect of cutoff modes near the
junction between two different waveguides.

An equivalent-bulk layer representation of a metasurface is shown in Fig. 1.13.
The problem is that the thickness of a metasurface would not be uniquely defined,
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nor would the effective material properties. In [108,109,113,114], it is shown that
the effective surface parameters of a metafilm/metascreen are unique properties of a
metasurface and thus are the most appropriate way to characterize a metasurface. We
will see below that the surface parameters correspond to what we will call effective
surface susceptibilities (defined below as χMS and χES for the magnetic and electric
surface susceptibilities, respectively) for metafilms [33,108], and in addition so-called
surface porosities (defined below as πMS and πES for the magnetic and electric sur-
face porosities, respectively) for metascreens [33,109]. Techniques for retrieving the
surface susceptibilities for a given metasurface based on reflection and transmission
measurements (or simulations) are presented in [33,113,114,117].

To illustrate the issue of representing a metasurface as a material with a bulk ef-
fective permittivity and permeability, we present in Fig. 1.14A retrieved values of εr

(the effective permittivity) for an array of lossy spherical particles (radius a = 10 mm,
period p = 25.59 mm, εp = 2, μp = 900, and tan δ = 0.04) for different values of the
assumed thickness d . These results were obtained by computing numerical values of
the reflection and transmission coefficients for this array of spheres and then using the
modified Nicolson–Ross–Weir (NRW) method [98,99,102] for determining εr of the
slab (see [114] for details). As expected, these results show a functional dependence of
εr on d . Fig. 1.14B shows results for d(εr − 1) for different values of d . We have also
plotted the retrieved values of the surface susceptibility χ

yy
ES (the first superscript “y”

corresponds to the component of the surface susceptibility and the second superscript
“y” corresponds to the polarization of the incident field; see [108] for details) for this
array that appears in (1.18) below (also obtained from using retrieval algorithms and
the numerical values of reflection and transmission coefficients [114]). The retrieved
values for χ

yy
ES are the same as the analytical values given in [113]. The results shown

in Fig. 1.14B illustrate that, for sufficiently low frequencies, d(εr − 1) is independent
of d and identical to χ

yy
ES . Although the connection between surface susceptibilities

and the effective bulk properties of a slab was not discussed explicitly in [27], Smith
et al. [27] do allude to the fact that the product of the slab thickness and the effective
material properties of the slab should be constant.

Additional examples of the surface susceptibilities for two different metafilm struc-
tures are shown in Fig. 1.15. One is an array of lossy spherical particles and the other
is an array of thin metallic scatterers (Fig. 1.15D). As we will see below, a metascreen
requires both surface susceptibilities and surface porosities to fully characterize the
metascreen. Fig. 1.16 shows both surface susceptibilities and surface porosities for a
metascreen composed of an array of square apertures.

When all is said and done, we would argue that a model for a metafilm that uses
uniquely specified quantities (i.e., χMS or χES as defined below) is more natural
than an approach that involves two arbitrary quantities (d and εr ). Likewise, for a
metascreen we should use both surface susceptibilities and surface porosities as de-
fined below [33,109]. Even though it has been shown that the electrical and magnetic
surface susceptibilities are the most appropriate manner to characterize metafilms,
some researchers continue to characterize them in terms of bulk effective material
properties. If one insists on characterizing a metasurface as a thin material slab with
bulk effective material properties and a thickness d , the only meaningful (and unique)



Electromagnetic metamaterials and metasurfaces 23

Figure 1.14 Results for an array of lossy spheres: (A) retrieved εr and (B) d(εr − 1) and χ
yy
ES

. From
C.L. Holloway, E.F. Kuester, A. Dienstfrey, Characterizing metasurfaces/metafilms: the connection between
surface susceptibilities and effective material properties, IEEE Antennas Wirel. Propag. Lett. 10 (2011)
1507–1511, © 2011 IEEE.

parameters will be products such as d(εr − 1) and d(μr − 1), if the slab is centered
at the plane containing the metafilm. A retrieval approach that gives unique quantities
like χMS and χES is more natural than one that merely gives products of otherwise
undetermined quantities [33,113,114,117].

In contrast to the effective-medium description used for a metamaterial, bound-
ary conditions incorporating the effective surface parameters (surface susceptibilities
and surface porosities) of the metasurface are the best way to characterize it. These
boundary conditions are called generalized sheet-transition conditions (GSTCs) [33,
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Figure 1.15 Surface susceptibilities for a metafilm composed of (A) χ
yy
ES

for spherical particles
(a = 10 mm, p = 25.59 mm, εr = 2, μr = 900, and tan δ = 0.04), (B) χzz

ES
for the same array as in (A),

(C) χzz
ES

for an array of thin metallic scatterers shown in (D), and (D) thin metallic scatterer for electrical
surface susceptibility (t = 3 µm, A = 40 µm, p = 54 µm, and l = 12 µm). Parts (A), (B), (C), (D) from
C.L. Holloway, A. Dienstfrey, E.F. Kuester, J.F. O’Hara, A.K. Azad, A.J. Taylor, A discussion on the inter-
pretation and characterization of metafilms-metasurfaces: the two-dimensional equivalent of metamaterials,
Metamaterials 3 (2009) 100–112.

108–110]. The coefficients appearing in the GSTCs for any given metasurface are all
that are required to model its macroscopic interaction with an electromagnetic field.
The GSTCs allow this surface distribution of scatterers to be replaced with a boundary
condition that is applied across an infinitely thin equivalent surface (hence the name
metasurface, metafilm, or metascreen), as indicated in Fig. 1.17. The size, shape, and
spacing of the scatterers are incorporated into this boundary condition through the
polarizability densities of the scatterers on the interface. These surface polarizability
densities are related to the effective surface susceptibilities and surface porosities.

The GSTCs for a metasurface take on different forms for either a metafilm or a
metascreen. For a metafilm the GSTCs apply to jumps in both the tangential compo-
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Figure 1.16 Surface susceptibilities and surface porosities for a metascreen composed of an array of
square apertures of length l: (A) array of square apertures (from C.L. Holloway, E.F. Kuester, General-
ized sheet transition conditions (GSTCs) for a metascreen, IEEE Trans. Antennas Propag. 66 (5) (2018)
2414–2427, © 2018 IEEE), (B) χzz

MS
and πzz

MS
for square apertures (h = 5 mm and p = 100 mm), and

(C) χ
yy
ES

and π
yy
ES

for circular apertures (h = 5 mm and p = 100 mm).

nents of the electric (E) and magnetic (H) fields across the metafilm [see Figs. 1.17A
and 1.17C] and take on the following form [108,110,113]:

ay ×
[
EA − EB

]
y=0

= −jωμ0

(↔
χMS · H̃av

)
t
− ay × ∇t

(
ay · ↔

χES · Ẽav

)
(1.18)

and

ay ×
[
HA − HB

]
y=0

= jωε0

(↔
χES · Ẽav

)
t
− ay × ∇t

(
ay · ↔

χMS · H̃av

)
, (1.19)

where the average fields are defined by

Eav = 1

2

(
EA + EB

)
t
+ 1

2
ε0 ay

(
DA

y + DB
y

)
, (1.20)
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Figure 1.17 Reference plane to allow GSTCs: (A) a metafilm with arbitrarily shaped scatterers,
(B) a metascreen with arbitrarily shaped apertures, (C) reference plane for a metafilm at which the GSTCs
are applied, (D) reference plane for a metascreen at which the GSTCs are applied, (E) a metagrating with
arbitrary shaped coated wire grating, and (F) reference plane for a metagrating at which the GSTCs are
applied.

and similarly for Hav, Dav, and Bav. The surface susceptibility dyadics are defined as

↔
χES = χxx

ESaxax + χ
xy
ESaxay + χxz

ESaxaz

+ χ
yx
ESayax + χ

yy
ESayay + χ

yz
ESayaz

+ χzx
ESaxax + χ

zy
ESazay + χzz

ESazaz , (1.21)

↔
χMS = χxx

MSaxax + χ
xy
MSaxay + χxz

MSaxaz

+ χ
yx
MSayax + χ

yy
MSayay + χ

yz
MSayaz

+ χzx
MSaxax + χ

zy
MSazay + χzz

MSazaz . (1.22)

The surface susceptibilities have units of length.
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For a metascreen, a different set of GSTCs is needed. For a metascreen, a boundary
condition for the magnetic field is not usable a priori, because it would involve surface
currents that are not yet known, much like what occurs for a wire grating [112]. The
required GSTCs for a metascreen should constrain only tangential E [see Figs. 1.17B
and 1.17D], and can be expressed as conditions on the jump of the tangential E-field
and on the sum (twice the average) of the tangential E-fields [33,109]:

ay ×
[
EA(ro) − EB(r0)

]
= − ax jωμ0

[
χAxx

MS HA
x (ro) + χBxx

MS HB
x (ro)

+χAxz
MS HA

z (ro) + χBxz
MS HB

z (ro)
]

− az jωμ0

[
χAzx

MS HA
x (ro) + χBzx

MS HB
x (ro)

+χAzz
MS HA

z (ro) + χBzz
MS HB

z (ro)
]

− ay ×
[
χ

Ayy
ES ∇tE

A
y (ro) + χ

Byy
ES ∇tE

B
y (ro)

]
(1.23)

and

ay ×
[
EA(ro) + EB(r0)

]
= − ax jωμ0

[
πAxx

MS HA
x (ro) − πBxx

MS HB
x (ro)

+πAxz
MS HA

z (ro) − πBxz
MS HB

z (ro)
]

− az jωμ0

[
πAzx

MS HA
x (ro) − πBzx

MS HB
x (ro)

+πAzz
MS HA

z (ro) − πBzz
MS HB

z (ro)
]

− ay ×
[
π

Ayy
ES ∇tE

A
y (ro) − π

Byy
ES ∇tE

B
y (ro)

]
.

(1.24)

As before, χES and χMS are interpreted as effective electric and magnetic surface sus-
ceptibilities, respectively, while πES and πMS are interpreted as effective electric and
magnetic surface porosities of the metascreen [109]. Like the surface susceptibilities,
the surface porosities have units of length.

A metagrating [112] behaves like a metafilm to electric fields perpendicular to
the wire axes, but like a metascreen for electric fields parallel to the wire axes [see
Figs. 1.17E and 1.17F]. Metagratings require GSTCs that are a combination of those
needed for a metafilm and a metascreen, which are given by the following:

ay ×
[
EA(ro) − EB(ro)

]
= − jωμ0 χzz

MSHz,av(ro)az − jωχ
xy
MSBy,av(ro)ax

− jω
[
χAxx

MS BA
x (ro) + χBxx

MS BB
x (ro)

]
ax

− ay × [
χ

yx
ES ∇Ex,av(ro)

]
− ay ×

[
χ

Ayy
ES ∇EA

y (ro) + χ
Byy
ES ∇EB

y (ro)
]

,

(1.25)
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HA
z (ro) − HB

z (ro) = jωε0 χxx
ES Ex,av(ro)

+ jωε0

[
χ

Axy
ES EA

y (ro) + χ
Bxy
ES EB

y (ro)
]

− 1

μ0

[
χ

yy
MS

∂By,av(ro)

∂z
+ χ

Ayx
MS

∂BA
x (ro))

∂z

+χ
Byx
MS

∂BB
x (ro)

∂z

]
, (1.26)

and

EA
z (ro) + EB

z (ro) = − jωπ
xy
MSBy,av(ro)

− jω
[
πAxx

MS BA
x (ro) − πBxx

MS BB
x (ro)

]
− π

xy
ES

∂Ex,av(ro)

∂z
− π

Ayy
ES

∂EA
y (ro)

∂z

− π
Byy
ES

∂EB
y (ro)

∂z
. (1.27)

The coefficients χES and χMS are effective electric and magnetic surface susceptibili-
ties of the metagrating, while πES and πMS are effective electric and magnetic surface
porosities of the metagrating; both have units of length.

Calculating the surface susceptibilities and surface porosities can be difficult for
generally-shaped inclusions or apertures. However, the GSTCs can be used to retrieve
these surface parameters from measured or calculated plane-wave reflection and trans-
mission coefficients, as done in [33,113,114], and [117–119]. These GSTCs, along
with the surface parameters, are also convenient to use in the analysis of various ap-
plications of the EM interaction of metasurfaces with EM fields [47,111,115–123].

The GSTCs can also be cast in the form of impedance-type boundary conditions
[13,160–163]. For plane-wave fields, whose variation parallel to a metafilm is of the
form

e−jk·rt , (1.28)

where

k = kxax + kyay and rt = xax + yay, (1.29)

we can use Maxwell’s equations to write Eqs. (1.18) and (1.19) as

ay ×
[
EA − EB

]
y=0

= − ↔
ZMS · Ht,av , (1.30)

ay ×
[
HA − HB

]
y=0

= ↔
YES · Et,av . (1.31)
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Here, the spatially dispersive (k-dependent) surface transfer admittance and transfer
impedance are given by

↔
YES = jω

↔
χES + j

↔
χMS

ωμ
(az × k)(az × k) , (1.32)

↔
ZMS = jω

↔
χMS + j

↔
χES

ωε
(az × k)(az × k) . (1.33)

Boundary conditions of this form can also be interpreted as lumped elements in equiv-
alent transmission-line circuits [161].

1.5 Isolated scatterers and one-dimensional array

So far we have discussed three-dimensional metamaterials and two-dimensional meta-
surfaces. What about one-dimensional metastructures? The two-dimensional meta-
material (i.e., a metasurface) concept can be extended even further to the concept of
using only a linear unit cell rather than a surface cell, that is, using only a single sub-
wavelength resonant structure for some desired effect or behavior. In fact, we have
already begun to see a few applications of this concept. One in particular is the use of
a unit cell in the design of electrically small antennas. In antenna applications, the unit
cell acts like a parasitic element to the radiating element of the antenna and serves as
a means to match the electrically small radiating element to both (1) the feeding trans-
mission line and (2) free space. Such designs have been shown to achieve efficient
electrically small antennas [164–171]. Nanoparticles have also been used for tuning
“so-called” optical nanoantennas [172]. An additional example is the use of a one-
dimensional unit cell as a tuning structure for planar transmission lines [173]. Another
emerging area of application is the use of one-dimensional chains of nanoparticles as
waveguides supporting surface waves, of which examples can be found in [174–180].

1.6 Summary

The recent development of various engineered materials (3-D metamaterials, 2-D
metasurfaces, single arrays and single particles) is bringing us closer to realizing the
exciting predictions (exotic material behavior) made over one hundred years ago by
the work of Lamb, Schuster, and Pocklington [60–62]. As we saw from the many ref-
erences cited in this chapter, in recent years, many authors have studied the properties
and potential applications of these exotic materials. While there is still much work
needed in the understanding, analysis, design, and fabrication of these engineered
materials, the potential of these materials has forever changed the landscape of RF,
microwaves, optics and photonics for the future. This book intends to address some
of the potential applications of these engineered materials. Including this chapter, the
book contains a total of 9 chapters covering different aspects of dielectric metastruc-
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tures (i.e., metamaterials, metasurfaces, isolated scatterers, and one-dimensional linear
arrays).
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2.1 Introduction

Gustav Mie’s paper [1], establishing a series expansion solution to the scattering and
absorption of light and other electromagnetic waves by a sphere, is over 110 years
old. Due to the lack of computers at the time, this work had little impact during
the following 50 years [2]. However, it later experienced a strong upsurge, becoming
of widespread use in a large variety of areas spanning from astronomy, atmospheric
physics and meteorology to colloids and aerosols; domains in which it was further ex-
tended to other particles, like coated and anisotropic spheres and rods. Subsequently,
surface science advances have made extensive use of Mie’s method, expanding it to
the presence of substrates. In the last years, this theory has acquired an extraordinary
relevance in the emergent branch of nano-optics and the effects of morphological reso-
nances in plasmonics [3,4], and in dielectric nanostructures based on the optics of high
refractive index dielectric nanoparticles [5,6]. Sections 2.2–2.7 contain an overview of
the standard theory of scattering by spheres and infinitely long circular cylinders. We
outline it following the methodology and notation of [7]. Section 2.8 is devoted to mor-
phology dependent resonances (MDRs), introducing the concepts of localized surface
plasmons (LSPs) and whispering gallery modes (WGMs). Then the dipolar approxi-
mation is dealt with in Section 2.9; the Rayleigh limit being presented in Section 2.10.
Finally, Section 2.11 deals with magnetoelectric effects, introducing the concepts of
Fano resonances and Kerker conditions, both of importance in directional scattering.

Although this chapter is self-contained, the interested reader may find further de-
tails on the contents of Sections 2.2–2.7 of Mie’s theory in the classical texts [7–11].

2.2 Uniform sphere: internal and scattered fields

Let a monochromatic, time harmonic, arbitrarily polarized plane wave of wavevector
ki impinges on a sphere of radius a and refractive index np = √

εpμp, with permittiv-
ity εp and permeability μp, immersed in an optically homogeneous, non-absorbing,
and isotropic medium of index n = √

εμ, then the incident electric and magnetic vec-
tors obeying Maxwell’s equations at a generic point r of space are

Ei = E0e
i(ki ·r−ωt), Bi = B0e

i(ki ·r−ωt), B0 = (nki/k) × E0. (2.1)

Here |ki | = k = nω/c = 2π/λ. ω being the circular frequency; c and λ representing
the speed of light in vacuum and the wavelength in the medium.
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Figure 2.1 A plane wave, with time-averaged power flow < si > incident along OZ on a polarizable
spherical particle of radius a and center at the origin 0 of coordinates X,Y,Z. The scattered field is evaluated
at the observation point P of coordinates (r, θ,φ) and position vector r = rs, which belongs to a sphere �

of radius r , and center 0. The point Q is the projection of P on the XY -plane; the scattering plane being
OPQ. We show the three orthonormal vectors that form the local basis in P : s (normal to �), ε‖ (in the
plane OPQ and in the sense of rotation of θ ), and ε⊥ (normal to OPQ).

The fields inside and outside the particle are denoted by the pairs E1, B1 and E2, B2,
respectively. Moreover, we write

E2 = Ei + Es , B2 = Bi + Bs . (2.2)

The subindex s standing for the scattered field. We employ Gaussian units.
These fields fulfill the saltus conditions on the boundary S of the scattering sphere:

(E2 − E1) × n = 0; (B2 − B1)×n = 0. (2.3)

n being the outward local normal to S.
As Fig. 2.1 shows, we build at the observation point P of the scattering plane

OPQ the local basis {êr , êθ , êφ} from the three unit vectors ε⊥, ε‖, and s along the
directions of the spherical coordinates (r, θ,φ). With êr = s, êθ = ε‖, and êφ = −ε⊥.
In terms of these vectors the scattered field is written as

Es = Es ‖ ε‖ + Es ⊥ ε⊥. (2.4)

Also, choosing ki along OZ, the incident field, which will vibrate in the OXY -plane,
may be expressed in terms of the perpendicular and parallel component to the scat-
tering plane by means of the unit vectors {êρ, êφ, ẑ} of the cylindrical coordinates of
point Q: εi‖ = êρ and εi⊥ = −êφ . Thus its electric vector reads

Ei = (E0 ‖ εi‖ + E0 ⊥ εi⊥)ei(kz−ωt). (2.5)
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Then the solution is obtained by expanding the fields in a series of vector spherical
harmonics [7]:

M(1)
emn = − m

sin θ
sinmφP m

n (cos θ)jn(ρ)êθ − cosmφ
dP m

n (cosθ)

dθ
jn(ρ)êφ.

(2.6)

M(1)
omn = m

sin θ
cosmφP m

n (cos θ)jn(ρ)êθ − sinmφ
dP m

n (cos θ)

dθ
jn(ρ)êφ. (2.7)

N(1)
emn = n(n + 1) cosmφP m

n (cos θ)
jn(ρ)

ρ
êr

+ cosmφ
dP m

n (cos θ)

dθ

1

ρ

d

ρ
[ρjn(ρ)]êθ

− m sinmφ
P m

n (cos θ)

sin θ

1

ρ

d

ρ
[ρjn(ρ)]êφ. (2.8)

N(1)
omn = n(n + 1) sinmφP m

n (cos θ)
jn(ρ)

ρ
êr

+ sinmφ
dP m

n (cos θ)

dθ

1

ρ

d

ρ
[ρjn(ρ)]êθ

+ m cosmφ
P m

n (cos θ)

sin θ

1

ρ

d

ρ
[ρjn(ρ)]êφ. (2.9)

The subindices o and e denote odd and even dependence on the azimuthal angle φ

of the generating functions of these spherical harmonics [7,10], as they contain either
the factor sin(mφ) and cos(mφ), respectively. P m

n (cos θ) are the associated Legendre
functions of the first kind with degree n and order m. The superindex (1) means that
in (2.6)–(2.9) the radial dependence ρ = kr is given in terms of the first kind spherical
Bessel function jn(ρ) = √

π/2ρJn+1/2(ρ). Jn(ρ) being the Bessel function of the first
kind [12].

The incident plane wave is then expressed as

Ei = E0

∞∑
n=1

in
2n + 1

n(n + 1)
[M(1)

o1n − iN(1)
e1n], (2.10)

Bi = − k

ω
E0

∞∑
n=1

in
2n + 1

n(n + 1)
[M(1)

e1n + iN(1)
o1n]. (2.11)

The internal and scattered fields read

E1 = E0

∞∑
n=1

in
2n + 1

n(n + 1)
[cnM(1)

o1n − idnN(1)
e1n], (2.12)

B1 = − kp

ω
E0

∞∑
n=1

in
2n + 1

n(n + 1)
[dnM(1)

e1n + icnN(1)
o1n], (2.13)
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and

Es = E0

∞∑
n=1

in
2n + 1

n(n + 1)
[ianN(3)

e1n − bnM(3)
o1n], (2.14)

Bs = − k

ω
E0

∞∑
n=1

in
2n + 1

n(n + 1)
[ibnN(3)

o1n + anM(3)
e1n]. (2.15)

In (2.12) and (2.13) ρ = kmr , where m = np/n is the relative refractive index. On
the other hand, in (2.14) and (2.15) the superindex (3) means that in Eqs. (2.6)–(2.9)
the radial dependence ρ = kr is given by the spherical Hankel function of the first
kind: h

(1)
n (ρ) = jn(ρ) + iyn(ρ) rather than by jn(ρ). The spherical Bessel function of

the second kind is yn(ρ) = √
π/2ρYn+1/2(ρ). Yn(ρ) being the Bessel function of the

second kind [12].
The radial dependence of the vector spherical harmonics in the incident and interior

fields, makes them proportional to wavefunctions with both incoming and outgoing
components; in addition the incident fields are source-free [11,13]. On the other hand,
one observes from the radial dependence of the scattered fields an asymptotic behavior
as outgoing spherical waves.

On defining the size parameter x = ka, the Mie coefficients of the interior and
scattered fields are obtained from the saltus conditions (2.3). They are

an = μm2jn(mx)[xjn(x)]′ − μpjn(x)[mxjn(mx)]′
μm2jn(mx)[xh

(1)
n (x)]′ − μph

(1)
n (x)[mxjn(mx)]′

. (2.16)

bn = μpjn(mx)[xjn(x)]′ − μjn(x)[mxjn(mx)]′
μpjn(mx)[xh

(1)
n (x)]′ − μh

(1)
n (x)[mxjn(mx)]′

. (2.17)

Those of the interior fields read

cn = μpjn(x)[xh
(1)
n (x)]′ − μph

(1)
n (x)[xjn(x)]′

μpjn(mx)[xh
(1)
n (x)]′ − μh

(1)
n (x)[mxjn(mx)]′

. (2.18)

dn = μpmjn(mx)[xh
(1)
n (x)]′ − μpmh

(1)
n (x)[xjn(x)]′

μm2jn(mx)[xh
(1)
n (x)]′ − μph

(1)
n (x)[mxjn(mx)]′

. (2.19)

Therefore, the interior and scattered fields appear expanded into a series of partial
waves, or modes, each of which has a weight given by its corresponding Mie coef-
ficient. an and bn in the scattered field are associated to two distinct types of partial
waves: Considering a generic sphere S of arbitrary radius, concentric with the par-
ticle, one class, the electric partial waves, generated by N(3)

e1n, correspond to the
an-coefficients, and are transversal magnetic (T M modes, often denoted as T Mnl) be-
cause the magnetic field has no component along any radial direction of the S-sphere.
The E-field lines of force on S are those characteristic of either an electric dipole
(n = 1), or electric multipoles (n > 1), induced by the illuminating field in the par-
ticle. The B-field lines of force form closed loops so that the sectional planes of S
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that contain the E and B-lines are perpendicular to each other. (These field lines are
shown in Figs. 3–10 of Mie’s original paper [1], and have been reproduced in several
well-known texts (see e.g. [7,10,11]), to which we refer the reader).

The other class, generated by N(3)
o1n, correspond to the bn-coefficients and are

transversal electric (T E, expressed as T Enl). The E- and B-field lines of force are
similar to those of the B- and E-field of the former case, respectively; and represent the
nth magnetic partial wave which characterizes an induced magnetic dipole (n = 1), or
multipoles (n > 1).

Thus, as seen from Eqs. (2.14) and (2.15) each nth normal mode is generally
composed of one electric and one magnetic nth partial wave. Commonly, at optical
frequencies, bn << an; however, recently, strong magnetic coefficients bn have been
discovered in high refractive index particles; this constitutes a novel research line of
optics, which will be addressed in Sections 2.9 and 2.11 as it is at the heart of the
design of resonant dielectric metamaterials and metasurfaces (which are the subject of
the present book), as well as of micro- and nanoantennas.

2.3 Extinction and scattering of energy. Cross-sections

The time-averaged density of energy flow < S > traversing a sphere � (cf. Fig. 2.1),
whose radius r eventually becomes large so that kr → ∞ is, taking the decomposition
(2.2) into account, given by the Poynting vector time-average (denoted by < . >),

< S> = <Si > + < Ss > + < Sext >, (2.20)

where the density of energy flow incident, scattered and extinguished by the spherical
particle is

< Si> = c

8πμ
�{Ei × B∗

i }, (2.21)

< Ss> = c

8πμ
�{Es × B∗

s }, (2.22)

< Sext> = c

8πμ
�{Ei × Bs∗ + Es × B∗

i }, (2.23)

respectively.
Let W(a) be the rate of energy absorbed by the sphere; on integrating the density

flow < S > across the sphere � one has

−W (a) =W(i) +W(s) −W(ext). (2.24)

Here W (i) = ∫
�

< Si > ·sd� = 0 represents the total flow across � of the incident
field, which is, of course, zero, W (s) = ∫

�
< Ss > ·sd� stands for the total flow across

� of the scattered field, and W(ext) = − ∫
�

< Sext > ·sd� is the extinction flow given
by the interference of the incident and scattered fields. Notice that rearranging terms
in (2.24), W(ext) constitutes the total flow across � extinguished from that of the
incident field by scattering and absorption.
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Namely, Eq. (2.24) becomes

W(ext) =W(s) +W(a). (2.25)

Taking into account the asymptotic values for ρ = kr → ∞:

h(1)
n (ρ) ∼ (−i)n+1 eiρ

ρ
; d

dρ
h(1)

n (ρ) ∼ (−i)n
eiρ

ρ
. (2.26)

One may express the scattered fields in the far zone, kr → ∞, by

Es(r) ∼ E(0)
s (s)

eikr

r
; Bs(r) ∼ B(0)

s (s)
eikr

r
; B(0)

s = ns × E(0)
s , (2.27)

which have the spherical wave envelope exp(ikr)/r with the scattering amplitudes
E(0)

s (s) and B(0)
s (s).

Operating and using the principle of the stationary phase [11], (2.25) leads to

W(ext) =W(s) +W(a) = c

2k
�{Ei · E(0)

s (ki/k)}. (2.28)

� denotes imaginary part. This equation expresses the extinction of energy W(ext) as
the sum of the total energies, scattered and absorbed by the particle. The right side of
(2.28) shows that the energy extinguished from that illuminating the particle is given
by the interference of the incident and scattered fields in the forward direction ki/k.
Eq. (2.28) constitutes the optical theorem for energies [11,13].

On dividing W(ext), W(s) and W(a) by the rate at which the energy is incident
on a unit cross-sectional area of the obstacle: | < Si > | = cE2

i /8π one obtains the
extinction Q(ext), scattering Q(s), and absorption Q(a) cross-sections of the particle,
respectively. Then (2.28) reads

Q(ext) = Q(s) + Q(a) = 4π

k
�{Ei · E(0)

s (ki/k)

E2
i

}. (2.29)

In Section 2.11.2 we shall address the important form that this optical theorem adopts
in the special case of dipolar particles.

From Eqs. (2.26)–(2.27) and the scattered field expansions, one obtains after some
calculation [7,9] the cross-sections in terms of the Mie coefficients

Q(s) = 2π

k2

∞∑
n=1

(2n + 1)(|an|2 + |bn|2) (2.30)

and

Q(ext) = 2π

k2

∞∑
n=1

(2n + 1)�{an + bn}. (2.31)

Where � means real part.
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2.4 The scattering matrix

Using (2.4) and (2.5), and the asymptotic expressions (2.26) and (2.27) we may write
the field longitudinal and transversal scattered components as a spherical wave in
terms of the corresponding components of the incident field through the scattering
S-matrix as(

Es ‖
Es ⊥

)
= ieik(r−z)

kr

(
S2(θ,φ) S3(θ,φ)

S4(θ,φ) S1(θ,φ)

)(
Ei ‖
Ei ⊥

)
. (2.32)

Now taking into account (2.4), (2.5), (2.6)–(2.9), (2.10), (2.14), (2.26), and (2.27), and
defining

πn(cos θ) = P 1
n (cos θ)

sin θ
, τn(cos θ) = dP 1

n (cos θ)

dθ
, (2.33)

one obtains S3(θ,φ) = S4(θ,φ) = 0 while S1 and S2 are functions of cos θ only

S1(cos θ) =
∞∑

n=1

2n + 1

n(n + 1)
[anπn(cos θ) + bnτn(cos θ)]. (2.34)

S2(cos θ) =
∞∑

n=1

2n + 1

n(n + 1)
[anτn(cos θ) + bnπn(cos θ)]. (2.35)

Since πn(1) = τn(1) = n(n + 1)/2, one sees that in the forward direction θ = 0◦:
S1(0◦) = S2(0◦) = (1/2)

∑∞
n=1(2n + 1)(an + bn). Hence (2.31) becomes

Q(ext) = 4π

k2
�{S(0◦)}. (2.36)

Furthermore, the polarization state of the scattered field with respect to that of the
incident wave is described by its Stokes parameters:

S(1)
s =< Es ‖E∗

s ‖ + Es ⊥E∗
s ⊥ >, (2.37)

S(2)
s =< Es ‖E∗

s ‖ − Es ⊥E∗
s ⊥ >, (2.38)

S(3)
s =< Es ‖E∗

s ⊥ + Es ⊥E∗
s ‖ >, (2.39)

S(4)
s = i < Es ‖E∗

s ⊥ − Es ⊥E∗
s ‖ > . (2.40)

These are linked to those of the incident field S(i)
0 (i = 1,2,3,4) through the combi-

nation of the S-matrix elements:⎛⎜⎜⎜⎝
S(1)

s

S(2)
s

S(3)
s

S(4)
s

⎞⎟⎟⎟⎠= 1

k2r2

⎛⎜⎜⎝
S11 S12 0 0
S12 S11 0 0
0 0 S33 S34
0 0 −S34 S33

⎞⎟⎟⎠
⎛⎜⎜⎜⎝
S(1)

0
S(2)

0
S(3)

0
S(4)

0

⎞⎟⎟⎟⎠ . (2.41)



46 Dielectric Metamaterials

The 4×4 matrix with elements Sij is the Mueller matrix for the scattering by a sphere.

S11 = 1

2
(|S1|2 + |S2|2), S12 = 1

2
(|S2|2 + |S1|2), (2.42)

S33 = 1

2
(S∗

2S1 + S2S
∗
1 ), S34 = 1

2
(S∗

1S2 − S2S
∗
1 ), (2.43)

and S2
11 = S2

12 + S2
33 + S2

34.
If the incident light is polarized parallel to a scattering plane, the Stokes parameters

of the scattered light are S(1)
s = Is = (S11 + S12)Ii , S(2)

s = Qs = Is , S(3)
s = S(4)

s = 0;
and let i‖ be the intensity scattered per unit of intensity of incident light linearly po-
larized parallel to the scattering plane, then i‖ = S11 + S12 = |S2|2. On the other hand,
if the incident wave is perpendicular to the scattering plane, the Stokes parameters of
the scattered light are S(1)

s = Is = (S11 − S12)Ii , S(2)
s = Qs = −Is , S(3)

s = S(4)
s = 0

then the intensity i⊥ scattered by unit of intensity of incident light linearly polarized
perpendicular to the scattering plane is i⊥ = S11 − S12 = |S1|2.

Depending on whether the ratio [7]

P = i⊥ − i‖
i⊥ + i‖

= S12

S11
, (2.44)

which defines the degree of polarization |P | (|P | ≤ 1), is positive or negative, the
scattered light is partially polarized perpendicular or parallel to the scattering plane,
respectively. Also, P(0◦) = P(180◦) = 0.

Of special interest are the scattering cross-sections in the forward and backward
directions. The former, Qf orw = dQ(s)(0◦)/d�, is readily obtained from S1(0◦) and
S2(0◦), given below Eq. (2.35), while the latter is from (2.34) and (2.35)

Q
(s)
back = dQ(s)(180◦)

d�
= 1

(ka)2
|

∞∑
n=1

(2n + 1)(−1)n(an − bn)|2. (2.45)

2.5 Scattering from a coated sphere

The design of coated spheres and rods consisting of appropriate materials plays an
important role in engineering the angular distribution of scattered intensity. This takes
place through the interplay of electric and magnetic Mie coefficients [14–16], so that
either highly directional scattering may be obtained from such objects, or even exotic
effective refractive indices may result when these bodies are packed in arrays as meta-
material elements. Therefore, we shall address here the scattering solution in such
spheres.

The plane wave, Eqs. (2.10) and (2.11), is incident on a sphere consisting of a
core, denoted as region 1, whose radius and size parameter are a and x = ka, and
whose refractive index relative to that n of the surrounding medium is m1, and a shell,
region 2, of radius b, size parameter y = kb, and relative refractive index m2; (see
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Figure 2.2 Details of a coated sphere. The scattering geometry is the same as in Fig. 2.1.

Fig. 2.2). We assume the permeabilities of these three media 1, 2 and exterior to be
the same. The fields E1 and B1 in the region 0 ≤ r ≤ a are given by Eqs. (2.12) and
(2.13). The scattered fields Es and Bs are those of Eqs. (2.14) and (2.15). On the other
hand, in the region a ≤ r ≤ b both spherical Bessel functions jn and yn are bounded,
and the fields E2 and B2 in this region are expanded as [7]

E2 =
∞∑

n=1

inE0
2n + 1

n(n + 1)
[fnM(1)

o1n − ignN(1)
e1n + vnM(2)

o1n − iwnN(2)
e1n], (2.46)

B2 = −k2

ω

∞∑
n=1

inE0
2n + 1

n(n + 1)
[gnM(1)

e1n + ifnN(1)
o1n + wnM(2)

e1n + ivnN(2)
o1n].

(2.47)

The superindex (2) in (2.46) and (2.47) means that in the spherical harmonics of Eqs.
(2.6)–(2.9) the radial dependence is given by yn(ρ) rather than by jn(ρ). Introducing
the Ricatti–Bessel functions ψ(ρ) = ρjn(ρ), ξ(ρ) = ρh

(1)
n (ρ) and χ(ρ) = −ρyn(ρ),

the saltus conditions (2.3) at r = a and r = b yield for the coefficients of the scattered
fields [7]:

an = ψn(y)[ψ ′
n(m2y) − Anχ

′
n(m2y)] − m2ψ

′
n(y)[ψn(m2y) − Anχn(m2y)]

ξn(y)[ψ ′
n(m2y) − Anχ ′

n(m2y)] − m2ξ ′
n(y)[ψn(m2y) − Anχn(m2y)] ,

(2.48)

bn = m2ψn(y)[ψ ′
n(m2y) − Bnχ

′
n(m2y)] − ψ ′

n(y)[ψn(m2y) − Bnχn(m2y)]
m2ξn(y)[ψ ′

n(m2y) − Bnχ ′
n(m2y)] − ξ ′

n(y)[ψn(m2y) − Bnχn(m2y)] ,

(2.49)

An = m2ψn(m2x)ψ ′
n(m1x) − m1ψ

′
n(m2x)ψn(m1x)

m2χn(m2x)ψ ′
n(m1x) − m1χ ′

n(m2x)ψn(m1x)
, (2.50)

Bn = m2ψn(m1x)ψ ′
n(m2x) − m1ψn(m2x)ψ ′

n(m1x)

m2χ ′
n(m2x)ψn(m1x) − m1χn(m2x)ψ ′

n(m1x)
. (2.51)
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2.6 Optically active sphere

The physics of optically active particles, like e.g. those being bi-isotropic [17] or chi-
ral, constitutes one of the research forefronts of nanophotonics, involving the spin
and orbital angular momenta of light, in which the wave helicity, which is a conserved
electromagnetic quantity, plays an informational role analogous to that of energy in the
present context [18,20–25]. This has recently extended the concept of circular dichro-
ism beyond the standard difference between absorption from left and right circularly
polarized illumination [26] to the difference of scattered, absorbed and converted he-
licity between both CPL polarizations [22–25,27–29]. Although this important subject
lies beyond the scope of this chapter, we address, nevertheless, the essentials of the
scattering problem by this kind of spheres.

Harmonic plane waves propagate in the material of an optically active object with-
out change in their polarization if they are circularly polarized (CPL), either left
circularly (LCP) or right circularly (RCP). In terms of the fields E‖ and E⊥ of the
incident, interior, or scattered fields, Eqs. (2.5) and (2.4), such CPL waves are ex-
pressed as EL = (E‖ ε‖ + iE⊥ ε⊥) exp(ikL · r − ωt) for LCP, and ER = (E‖ ε‖ −
iE⊥ ε⊥) exp(ikR · r − ωt) for RCP.

The (generally complex) refractive indices nL and nR for these two handedness are
different, i.e. their wavenumbers are kL = 2πnL/λ for LCP plane waves, and kR =
2πnR/λ for RCP plane waves. The constitutive relations are

D = εE + iωβεB, B = μH + βμ(J − iωD). (2.52)

We have β = (1/2)(1/kR −1/kL), nω = 2/(1/kR +1/kL) [7]. Media with Eq. (2.52)
holding are bi-isotropic. For an incident plane wave represented by Eqs. (2.10) and
(2.11), the scattered fields are given by the expansions [7,19]

Es =
∞∑

n=1

inE0
2n + 1

n(n + 1)
[ianN(3)

e1n − bnM(3)
o1n + cnM(3)

e1n − idnN(3)
o1n], (2.53)

Bs = k

ω

∞∑
n=1

inE0
2n + 1

n(n + 1)
[anM(3)

e1n + ibnN(3)
o1n − icnN(3)

e1n − dnM(3)
o1n]. (2.54)

There are now two Mie coefficients because inside the sphere only CPL waves can
propagate and, hence, the interior fields are expanded into combinations of vec-
tor spherical harmonics of the form M(1)

o1n(kL) + N(1)
o1n(kL), M(1)

e1n(kL) + N(1)
e1n(kL);

M(1)
o1n(kR) − N(1)

o1n(kR), M(1)
e1n(kR) − N(1)

e1n(kR), where the argument kL or kR applies
to the radial dependence generated by jn(ρ), ρ being either kLr or kRr . Hence the
boundary condition (2.3) at the sphere surface conveys four Mie coefficients for the
scattered field.

Introducing the index � which refers to L or R depending on whether the incident
wave is LCP or RCP, respectively; and writing the refractive indices relative to that of
the isotropic surrounding medium n = √

εμ, as mL = nl/n and mR = nR/n, respec-
tively, we define the mean refractive index m by 1/m = (μp/μ)(1/mR + 1/mL) �
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2/(mR + mL) for the usually small difference mL − mR . Then the Mie coefficients
are [7,19]

an = Vn(R)An(L) + Vn(L)An(R)

Wn(L)Vn(R) + Vn(L)Wn(R)
, bn = Wn(L)Bn(R) + Wn(R)Bn(L)

Wn(L)Vn(R) + Vn(L)Wn(R)
,

(2.55)

cn = Wn(R)An(L) + Wn(L)An(R)

Wn(L)Vn(R) + Vn(L)Wn(R)
= −dn. (2.56)

Here

Wn(�) = mψn(m�x)ξ ′
n(x) − ψ ′

n(m�x)ξn(x), (2.57)

Vn(�) = ψn(m�x)ξ ′
n(x) − mψ ′

n(m�x)ξn(x), (2.58)

An(�) = mψn(m�x)ψ ′
n(x) − ψ ′

n(m�x)ψn(x), (2.59)

Bn(�) = ψn(m�x)ψ ′
n(x) − mψ ′

n(m�x)ψn(x). (2.60)

Of course, if the sphere is not optically active, mL = mR , then cn = 0, and an and bn

reduce to those of Eqs. (2.16) and (2.17), respectively.
Spheres fulfilling (2.56) are chiral. Then it is usual to introduce a chirality param-

eter κ such that mL,R =√
(εpμp)/(εμ) ± κ , and 2κ = mL − mR . |κ| ≤ 1; and often

|κ| ≤ 0.1.
For the scattering matrix, now in addition to S1 and S2 of (2.34) and (2.35), we

have

S3(cos θ) =
∞∑

n=1

2n + 1

n(n + 1)
cn[πn(cos θ) + τn(cos θ)] = −S4(cos θ). (2.61)

And CPL scattered and incident fields are related by(
Es L

Es R

)
= ieik(r−z)

kr

(
S2 c(θ,φ) S3 c(θ,φ)

S3 c(θ,φ) S1 c(θ,φ)

)(
Ei ‖
Ei ⊥

)
(2.62)

with

S1 c = 1

2
(S1 + S2 + 2iS3); S2 c = 1

2
(S1 + S2 − 2iS3);

S3 c = 1

2
(S2 − S1) = S4 c. (2.63)

Meanwhile the Mueller matrix elements fulfill

S31 = −S13, S32 = −S23, S43 = −S34,

S41 = S14, S42 = −S24, S21 = −S12. (2.64)

The cross-sections for LCP and RCP incident plane waves are [7]

Q
(s)
L = 2π

k2

∞∑
n=1

(2n + 1)[|an|2 + |bn|2 + 2|cn|2 − 2�{(an + bn)c
∗
n}]. (2.65)
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Figure 2.3 Scattering geometry for an infinite circular cylinder of radius a. The incident plane wave has
ki and time-averaged Poynting vector < Si > along ŷ. The scattering plane OPZ is determined by the
position vector rs of the observation point P of the scattered field and the OZ-axis. For this incidence P is
in the XY -plane.

Q
(s)
R = 2π

k2

∞∑
n=1

(2n + 1)[|an|2 + |bn|2 + 2|cn|2 + 2�{(an + bn)c
∗
n}], (2.66)

and

Q
(ext)
L = 4π

k2
�{S2 c(0

◦)} = 2π

k2

∞∑
n=1

(2n + 1)�{an + bn − 2icn}, (2.67)

Q
(ext)
R = 4π

k2
�{S1 c(0

◦)} = 2π

k2

∞∑
n=1

(2n + 1)�{an + bn + 2icn}. (2.68)

2.7 Scattering from an infinite circular cylinder

In the last years, the scattering from cylinders has acquired a renewed interest due
to their use as elements of photonic components [5,30–32] either in plasmonics or
metamaterial research, therefore we present the essentials of the scattering formulation
from these objects. This will be further discussed in Sections 2.8 and 2.9.

Let the incident field Ei , propagating in the surrounding medium of index n, be
given by Eq.(2.1). We shall consider the case in which the incident wavevector is
normal to the cylinder axis OZ (cf. Fig. 2.3), thus ki = kŷ. More details for other
incidences and cylinders of finite length can be found in [7–9].

2.7.1 I. s-polarization (TE): incident electric field linearly
polarized along the cylinder axis

Now the generating functions of the fields include Bessel functions of integer order:
Jn(mkr) and Yn(mkr). At a point P the incident field with wavevector ki = kŷ and
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electric vector Ei = E0ẑ exp[i(kr cos(π/2 − φ) − ωt)] admits the expansion

Ei =
∞∑

n=−∞

(−i)n

k
E0N(1)

n , Bi =
∞∑

n=−∞

(−i)n+1

ω
E0M(1)

n ; (2.69)

ρ = kr , êr = s. The vector cylindrical harmonics are

M(1)
n = k[n i

Jn(ρ)

ρ
êr − J ′

n(ρ)êφ]einφ, (2.70)

N(1)
n = kJn(ρ)ẑ einφ. (2.71)

The internal fields are

EI
1 =

∞∑
n=−∞

(−i)n

k
E0 cnN(1)

n , BI
1 =

∞∑
n=−∞

(−i)n+1

ω
E0 cnN(1)

n . (2.72)

The superindex I denotes both internal and external fields for this polarization. The
argument ρ of the internal fields in (2.72) is ρ = mkr , where m = np/n. np being the
cylinder refractive index. The scattered fields read

EI
s = −

∞∑
n=−∞

(−i)n

k
E0 bnN(3)

n , BI
s =

∞∑
n=−∞

(−i)n−1

ω
E0 bnN(3)

n . (2.73)

Here the superindex (3) in Mn and Nn means that in (2.70) and (2.71) the Bessel
function Jn(ρ) is replaced by the Hankel function H

(1)
n (ρ) = Jn(ρ) + iYn(ρ). Also,

recalling the size parameter x = ka, where a is the cylinder radius, and operating with
the saltus conditions (2.3), the Mie coefficients are

bn = Jn(mx)J ′
n(x) − mJ ′

n(mx)Jn(x)

Jn(mx)H
(1) ′
n (x) − mJ ′

n(mx)H
(1)
n (x)

(2.74)

and

cn = 1

Jn(mx)
[Jn(x) − bnH

(1)
n (x)]. (2.75)

2.7.2 II p-polarization (TM): incident magnetic field linearly
polarized along the cylinder axis

The incident magnetic vector now reads Bi = B0ẑ exp[i(kr cos(π/2 − φ) − ωt)]. The
electric vector of the incident field is obtained from the curl of Bi and can be expanded
as

Ei =
∞∑

n=−∞

(−i)n+1

k
E0M(1)

n . (2.76)
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The internal fields are

EII
1 =

∞∑
n=−∞

(−i)n+1

k
E0 dnN(1)

n , BII
1 =

∞∑
n=−∞

(−i)n

ω
E0 dnN(1)

n . (2.77)

The scattered fields read

EII
s =

∞∑
n=−∞

(−i)n−1

k
E0 anM(3)

n , BII
s =

∞∑
n=−∞

(−i)n

ω
E0 anN(3)

n . (2.78)

Here the superindex II has been employed to denote both internal and external fields
for this p-polarization.

The Mie coefficients are

an = mJn(mx)J ′
n(x) − J ′

n(mx)Jn(x)

mJn(mx)H
(1) ′
n (x) − J ′

n(mx)H
(1)
n (x)

(2.79)

and

dn = 1

Jn(mx)
[Jn(x) − anH

(1)
n (x)]. (2.80)

2.7.3 Scattering matrix

With reference to Fig. 2.3, for normal incidence to the cylinder axis OZ the spatial
part of the time harmonic incident field may be expressed in terms of a parallel and a
perpendicular component to the plane OXZ:

Ei = (Ei ‖ẑ − Ei ⊥x̂)eik cos(π/2−φ)r . (2.81)

Likewise, the scattered field is expressed by a parallel and a perpendicular component
to the scattering plane OPZ:

Es = (Es ‖ẑ + Es ⊥êφ)eik cos(π/2−φ)r . (2.82)

Taking into account the form for kr → ∞ acquired by the vector cylindrical harmonics
which are expressed by means of the asymptotic values of the Hankel function, we
write in terms of the S-matrix(

Es ‖
Es ⊥

)
= ei3π/4

√
2

πkr
eikr

(
T1(�) T4(�)

T3(�) T2(�)

)(
Ei ‖
Ei ⊥

)
(2.83)

where � = π − φ and
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T1(�) =
∞∑

n=−∞
bne

−in�, (2.84)

T2(�) =
∞∑

n=−∞
ane

−in�, (2.85)

T3(�) = T4(�) = 0. (2.86)

2.7.4 Cross-sections

In a manner similar to that employed in Section 2.3, we obtain from the flow of energy
across a cylinder of large radius, concentric with the scattering cylinder, the expres-
sions for the scattering and extinction cross-sections:

Q
(s)
I = 2

x
[|b0|2 + 2

∞∑
n=1

|bn|2], Q
(ext)
I = 2

x
�{b0 + 2

∞∑
n=1

bn}, (2.87)

Q
(s)
II = 2

x
[|a0|2 + 2

∞∑
n=1

|an|2], Q
(ext)
II = 2

x
�{a0 + 2

∞∑
n=1

an}. (2.88)

And the optical theorem for each of these polarizations reads

Q
(ext)
I = 2

x
�{T1(� = 0)}, Q

(ext)
II = 2

x
�{T2(� = 0)}. (2.89)

2.8 Mie resonances and natural modes

Returning to the Mie coefficients (2.16)–(2.19), (2.74), (2.75), (2.79), and (2.80), we
notice that for the sphere the denominators an and dn coincide, as well as those of bn

and cn. In the case of cylinders, the same happens with the denominators bn and cn,
as well as of an and dn. When either denominator of the Mie coefficients is zero, or
near zero, the corresponding nth normal mode will dominate in the series expansion of
the interior and scattered fields. This characterizes a morphology dependent resonance
(MDR) of the sphere or cylinder, and the size parameters or the complex frequencies
at which it takes place define the so-called natural frequencies of the particle. The real
parts of these frequencies are close to the real resonance frequencies ωr , while the
imaginary parts determine their resonance linewidths �. The corresponding nth mode
is then a natural mode [10].

The particle behaves as a resonator for the incident wave that circumnavigates it
after either penetrating inside, remaining confined by total internal reflection (TIR), or
propagates as a wave attached to its outer surface and being evanescent away from it.
In both cases the MDR field is described by surface waves interfering with themselves
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Figure 2.4 (A) Field lines and charge distribution in a sphere or in a circular cylinder illuminated by a light
wave with electric vector E pointing upwards. (B) Color photograph in dark-field illumination of a sample
of gold nanorods (red) of diameters 15–25 nm, and lengths of up to 100 nm, and nanospheres (green) with
diameter of 60 nm. Here the E-vector is polarized along the rod longer axis. (C) Light-scattering spectra
from a gold nanorod and a nanosphere, measured under identical conditions as (B). The resonant energy
peaks are Wres = 1.82 eV, i.e. at λ = 681 nm, for the rods, and Wres = 2.19 eV, i.e. at λ = 566 nm for the
spheres. (1 eV is equivalent to a wavelength of 1239.84 nm.) The linewidths � are also shown. (B) and (C)
are reproduced from [35].

after traveling around the particle perimeter a number of cycles, thus returning to their
starting position in phase. This results in large scattering cross-sections, as well as
strong localized near fields, at these resonant size parameters, or frequencies, due to
the enhancement of this nth natural mode in the Mie series [7–9,33].

The MDR modes are radiative for any real frequency, thus they are virtual modes,
and thus the energy dissipation by this radiation, as well as by possible absorption in
the particle, make the MDR lineshapes to have a non-zero linewidth �. The fraction:
2π × energy stored in the particle / dissipated energy per cycle defines the quality
factor Q = −ωrW/dW/dt = ωr/� [34,35].

2.8.1 Localized surface plasmons

Mie resonances in noble metals may be envisaged as due to charge oscillations in
the free-electron cloud, induced by the incident electric vector [see Fig. 2.4A], thus
emitting an electromagnetic field which, like a surface plasmon–polariton (SPP) of a
planar metal interface [36], is evanescent away from the particle surface, i.e. it is a sur-
face mode. Observed colors are due to the strong absorption at the plasmon resonant
optical frequencies, and they are manifestations of the nanometric scale of the particle
[cf. Fig. 2.4B]. The resonance peak Q-factor increases as the linewidth, and hence en-
ergy dissipation on scattering, decreases [Fig. 2.4C] [35]. The effects underlying these
strong localized surface plasmons (LSP) give rise to new photonic devices [37] rang-
ing from those with superresolving power and molecular fluorescence to biomedical
sensors and markers.
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Figure 2.5 (A): Magnetic field magnitude Hz (colors in Ampères per meter) and time-averaged en-
ergy flow < S(r) > (arrows in Joules per squared meters per second), maximum arrow length �
80.02 KeV/(nm2 × s), minimum arrow length � 0 eV/(nm2s), localized on the surface of an Ag cylin-
der (radius: 200 nm, refractive index: 0.186 + i1.61) in front of a slit of width: 55 nm in a tungsten (W)
slab of width: 2610 nm, thickness: 237.55 nm, and refractive index: 3.39 + i2.41. The incident radiation,
at λ = 364.7 nm, is p-polarized. The distance between the cylinder surface and the exit plane of the slit
is 3λ/2 = 549 nm. The intensity spikes around the cylinder correspond to the T M51 LSP mode. (B) De-
tail of the electric field E in the first three Ag cylinders of a linear chain of six with surface interdistance:
100 nm, radius: 30 nm and refractive index: 0.173+ i1.95, illuminated through a slit in a W slab (slit width:
39.59 nm, slab width: 2610 nm, slab thickness: 237.55 nm, refractive index: 3.39 + i2.41) at λ = 400 nm
in p-polarization. The distance between the bottom surface of the first cylinder and the exit plane of the slit
is λr/8, λr = 349.3 nm being the resonant wavelength of the LSP T M11 mode of one of those cylinders
when being isolated. Both its magnitude in volts per meter and directions (arrows) are shown. After [38].

Figs. 2.5A and 2.5B show an example of coupling the linear momentum of an in-
cident light wave with that of a LSPs, in either an Ag cylinder in air, or propagating
through a linear chain of them. The mechanism shown in the aperture is the phe-
nomenon of extraordinary transmission [39] by a subwavelength slit. In both figures
one should notice that, as is well known, the presence of the slab slightly redshifts
the LSP line peaks with respect to those of the isolated cylinder. Also, in the region
between the particle and the slit, one sees stationary waves as well as saddle points
and vortices in the mean energy flow pattern. The spatial field distributions of the LSP
T Mnl mode show 2n = 10 [Fig. 2.6A] and 2n = 2 [Fig. 2.6B] lobes of the mode along
the azimuthal angle, as well as l = 1 radial maxima.

2.8.2 Whispering gallery modes (WGM)

Dielectric particles act as resonators for MDRs. The field enhanced inside tends to be
confined closer to the particle surface the higher its nth order is; thus they are well
described as surface waves, from which the term WGM comes [34]. Their mathemati-
cal structure makes them to have analogies with atomic orbitals [41], so that grouping
particles close to each other produce bonding and antibonding states, depending on
whether the MDR maxima and minima of neighbor particles are, or are not, in front of
each other [42]. This grouping and the mode formation have given rise to the concept
of photonic molecule pairs, or groups, with the associated splitting of resonance wave-
lengths like in atomic orbitals [41]. It is interesting that this bonding or antibonding
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Figure 2.6 (A) Spatial distribution of |E| (V/m) from a slit of width: 117,5 nm in a metallic slab (refractive
index: 0.135 + i10.275, slab width: 6807.41 nm, slab thickness: 1000 nm, slit width: 440 nm) and s-wave
illumination (λ = 919 nm) showing the T E31 WGM in a dielectric cylinder (refractive index: 3.670 +
i0.005, radius: 200 nm) close to the slit exit. (B) Bz (A/m) in a bifurcated chain of dielectric cylinders like
that in (A), placed in front of a slit of width 117,5 nm in a metallic slab (refractive index: 0,135 + i10,275,
width: 7000 nm, thickness: 705 nm) illuminated at λ = 754 nm, which is very close to the slit extraordinary
transmission wavelength, and p-polarized light. One sees the transmission through the chain arms of the
T M31 WGM with bonding states of light between pairs of adjacent particles, since lobe maxima and minima
in the Bz- spatial distribution of their respective MDRs are in front of each other. Actually, the optical force
between these pairs of cylinders is attractive. After [40].

character of the WGMs in pairs of neighbor particles also holds for the photonic force
created between the pair, which may be attractive or repulsive [42,43]. Such optical
microcavities may have multiple use in atomic physics, or as optical components such
as photonic crystals, metamaterials, or nanoantennas.

Fig. 2.6A illustrates the formation of a T E31 WGM in a cylinder in air over a slit
in a slab, excited by extraordinary transmission. The linear momentum of the light
emerging from the slit is coupled to that of the WGM. On the other hand, Fig. 2.6B
shows the propagation of this WGM through a bifurcated chain of similar cylinders
placed at the slit exit.

2.9 Small particles: dipolar approximation

Although plasmonics has been considered of potential for micro and nano optical
devices, there are metal losses at optical frequencies. In recent years there has been a
growing interest on the excitation of the electric and magnetic dipoles and quadrupoles
of high refractive index particles with very low absorption losses, like those of semi-
conductors dealt with in this section. Notwithstanding they were initially aimed as
elements of metamaterials, high scattering losses at resonance have to be circumvented
for their use in composites acting as effective media [44]; however, they are currently
being studied as building blocks of 2D metasurfaces [45], or as nanosources, either
primary (i.e. emitters) or secondary (scatterers), in a variety of applications [5,6].
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Figure 2.7 (A) Illustration of the electric and magnetic fields, described by the b1 Mie coefficient in a
high refractive index dielectric sphere. The E-field loops form a magnetic dipole giving rise to strong B
lines. (B) The same in an infinitely long circular cylinder under s-incidence described by the b1 coefficient.
Now there are two counterpropagating electric fields and large displacement currents along the cylinder
axis which form a magnetic dipole. Following Ampère’s law, strong magnetic field loops are generated.

2.9.1 Isotropic sphere

For spheres and cylinders whose diameter is smaller than the incident wavelength, the
Mie series (2.14), (2.15), (2.53), (2.54), (2.73), and (2.78) may converge fast enough to
make the first electric and magnetic terms sufficient to fully describe their scattering.

The scattered fields acquire the form

Es = k2[1

ε
(n × p) × n −

√
μ

ε
(n × m)]e

ikr

r

+ 1

ε
(3n(n · p − p)(

1

r3
− ik

r2
)eikr +

√
μ

ε
k2(n × m)

eikr

ikr2
, (2.90)

Bs = k2[μ(n × m) × n +
√

μ

ε
(n × p)]e

ikr

r

+ ε(3n(n · m − m)(
1

r3
− ik

r2
)eikr −

√
μ

ε
k2(n × p)

eikr

ikr2
. (2.91)

Eqs. (2.90) and (2.91) are identical to those of the fields emitted by an electric and a
magnetic dipole of moments p and m, respectively [10]. In the case of the sphere, with
center being the origin of coordinates (cf. Fig. 2.1), their link with the Mie expressions
(2.14) and (2.15) appears through the polarizabilities αe and αm that connect the dipole
moments with the incident field (2.1) at r = 0 [see Fig. 2.7A]. The case of a dipolar
cylinder, Fig. 2.7B, is detailed in Sections 2.9.3 and 2.9.4:

p = αeEi (r = 0), m = αmBi (r = 0). (2.92)

With Ei (r = 0) = E0, Bi (r = 0) = B0 [cf. Eq. (2.1)], and

αe = i
3ε

2k3
a1, αm = i

3

2μk3
b1; (2.93)
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Figure 2.8 Scattering cross-section versus λ for a Si sphere (radius: 230 nm, relative refractive index:
m = 3.5 constant, and real in the studied wavelength range). The contribution of the nth partial wave in the
Mie expansion is plotted. The green line corresponds to the contribution of the b1-resonance of the induced
magnetic dipole. After [49].

which may be written as

αe = α(0)
e

(
1 − i

2

3ε
k3α(0)

e

)−1

, αm = α(0)
m

(
1 − i

2

3
μk3α(0)

m

)−1

, (2.94)

a1 and b1 being the first electric and magnetic Mie coefficients, Eqs. (2.16) and (2.17),
respectively; and α

(0)
e and α

(0)
m standing for the static polarizabilities:

α(0)
e = 3ε

2k3

μn2
pj1(npx)

[
xj1(x)

]′ − μpj1(x)
[
npxj1(npx)

]′
μn2

pj1(npx)
[
xy1(x)

]′ − μpy1(x)
[
npxj1(npx)

]′ , (2.95)

α(0)
m = 3

2μk3

μpj1(npx)
[
xj1(x)

]′ − μj1(x)
[
npxj1(npx)

]′
μpj1(npx)

[
xy1(x)

]′ − μy1(x)
[
npxj1(npx)

]′ . (2.96)

Thus using (2.92)–(2.96) in Eqs. (2.90) and (2.91), one obtains the scattered fields
in terms of the first dipolar partial waves of their Mie expansion under plane wave
illumination.

It is important to emphasize [46] that, since the dipolar approximation connects
the polarizabilities and first Mie coefficients through Eqs. (2.93), and thus involves
the complex spherical Hankel functions h

(1)
1 in the denominators of a1 and b1, the

polarizabilities are correctly expressed by (2.94)–(2.96). Otherwise, if, as commonly
done, one directly employs in (2.92) the static polarizabilities, Eqs. (2.95) and (2.96),
one obtains a result inconsistent with the optical theorem and hence with the con-
servation of energy. This has been recurrently noticed in the literature [47,48] in the
very small particle limit, or Rayleigh approximation, where both x = ka << 1 and
y = kma << 1.

Fig. 2.8 shows the variation versus λ of the contribution to the scattering cross-
section of the first electric and magnetic partial waves in a Si sphere of radius
a = 230 nm in air. As shown by the green line, the b1-magnetic dipole resonance
appears strongly excited in such a high refractive index dielectric particle, being dom-
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Figure 2.9 Maps for the modulus of the total electric a magnetic field vectors normalized to the inci-
dent electric and magnetic field, respectively (Etot/Einc and Htot/Hinc), for a Si nanoparticle of radius
a = 230 nm under plane wave illumination (cf. Fig. 2.1). YZ planes crossing X = 0 are depicted. The in-
cident ki -vector is along OZ, the incident Ei -vector is linearly polarized along OY and the Hi -vector is
along −OX. The left and right panels correspond to λ = 1250 nm and λ = 1680 nm, of the electric and
magnetic resonance peaks, respectively, of Fig. 2.4. The corresponding far-zone scattering patterns for the
two wavelengths are shown in the bottom row. After [49].

inant with respect to that of the a1-electric dipole. Also the magnetic quadrupole
resonance, which occurs at a lower wavelength, has a higher Q-factor. The existence
of a strong magnetic dipole response to the magnetic field vector of the incident wave
following Eq. (2.92), allows an interplay with that of the electric dipole and magnetic
quadrupole (see also [50,51]), endowing the sphere with the property of being mag-
netodielectric, even though its magnetic permeability is μ = 1. This is the source of
a wide variety of phenomena leading to optical devices capable of controlling light
emission and propagation [5,6].

With reference to the scattering geometry of Fig. 2.1, the spatial field amplitude
distributions |E| and |H| = μ−1|B| re-emitted by the electric and magnetic dipoles of
Fig. 2.8, are shown in Fig. 2.9. Different field patterns, and associated currents, are
observed depending on the projection plane of those 3-D distributions, manifesting
the characteristic landscapes of electric and magnetic dipole radiation.

For dielectric particles with m � 2.45 the approximate values of y = kma at which
there is a peak in either the electric or magnetic dipole resonance, are constant ver-
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Figure 2.10 Scaling property of high refractive index spheres: Scattering cross-section map of a non-
absorbing dielectric sphere as a function of the relative refractive index m and the y-parameter, y = mx,
x = ka being the particle size parameter. The green areas correspond to ranges where the magnetic dipole
contribution dominates the total scattering cross-section, while the red areas represent regions where the
electric dipole contribution is dominating. The remaining blue-saturated areas are dominated by higher-
order multipoles. Brightness in the color-map is proportional to the total cross-section. The white horizontal
lines represent the y-range covered by the case in which m = 3.5 (Si sphere, cf. Fig. 2.9) and by a sphere
with m = 2.45 (TiO2). After [49].

sus m, their quality factor growing as m increases. This is seen in Fig. 2.10, and
physically constitutes an important scaling property of these high index particles
which allows one to play with combinations of m, a and λ exciting the electric or
the magnetic dipole. Namely, one may equally induce the particle p and m-dipoles at
a given refractive index m by either decreasing/increasing the particle size, in whose
case these MDRs will appear at lower/higher wavelengths. Conversely, one may in-
crease/decrease m above the critical value m = 2.45, in which case an adequate choice
of size a and illuminating frequency will keep the position and widths of the αp- and
αm-lineshapes.

2.9.2 Bi-isotropic sphere

We address the most frequent case of bi-isotropy of the dipolar spherical parti-
cle which, in addition to the electric and magnetic polarizabilities, it exhibits cross
electric-magnetic polarizabilities, αch

em and αch
me, immersed in an isotropic surrounding

medium of refractive index n. This is when the particle is chiral, αch
em = −αch

me. We
recall the chirality parameter κ , which pertains to CPL illumination and, as seen in
Section 2.6, accounts for the difference of refractive indices: mL and mR for LCP and
RCP light, respectively: ml −mR = 2κ . Then the dipoles induced by the incident field
are

p = αch
e Ei (0) − αch

meBi (0), m = αch
meEi (0) + αch

m Bi (0), (2.97)

with

αch
e = i

3ε

2k3
a1, αch

m = i
3

2μk3
b1, αch

me = −αch
em = i

3
√

εμ

2k3
c1 = −i

3
√

εμ

2k3
d1.

(2.98)
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The Mie coefficients a1, b1, c1, and d1 of (2.98) are given by Eqs. (2.55) and (2.56)
with n = 1.

2.9.3 Circular cylinder. s-polarization: E along the cylinder axis.
(Case I)

Eqs. (2.92) hold with [52]

α(I)
e = i

4ε

k2
b0, α(I)

m = i
8

μk2
b1. (2.99)

This may be expressed as

α(I)
e = α(0) I

e

(
1 − i

4ε
k2α(0) I

e

)−1

, α(I)
m = α(0) I

m

(
1 − i

8
μk2α(0) I

m

)−1

,

(2.100)

where the static polarizabilities α
(0) I
e and α

(0) I
m are

α(0) I
e = 4ε

k2

J0(npx)J ′
0(x) − npJ ′

0(npx)J0(x)

J0(npx)Y ′
0(x) − npJ ′

0(npx)Y0(x)
, (2.101)

α(0) I
m = 8

μk2

J1(npx)J ′
1(x) − npJ ′

1(npx)J1(x)

J1(npx)Y ′
1(x) − npJ ′

1(npx)Y1(x)
. (2.102)

The b0 and b1 coefficients correspond to an electric and a magnetic dipole, respec-
tively. Fig. 2.11A shows the electric currents flowing upwards and backwards in the
magnetic dipole induced by the incident wave in the cylinder, manifested by the dipo-
lar landscape of the electric vector amplitude Ez. The magnetic field created by these
currents is depicted in Fig. 2.11B. Notice that these spatial distributions are identi-
cal to those of the scheme of Fig. 2.7B. The complex moduli of |b0|, |b1|, and |b2| for
cylinders with ε = 600 are displayed in Fig. 2.11C. As shown, in the region of the nor-
malized frequency a/λ � 0.1 the electric and magnetic dipole resonances dominate
over the higher multipole |b2|, thus conferring magnetodielectric optical properties
to such cylinders of high real permittivity (its imaginary part being very small), and
magnetic permeability μ = 1.

2.9.4 Circular cylinder. p-polarization. B along the cylinder axis.
(Case II)

In this case the polarizabilities are [52]

α(II)
e = i

8ε

k2
a1, α(II)

m = i
4

μk2
a0. (2.103)
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Figure 2.11 (A) Electric field Ez in a cylinder of BST ceramic with ε = 600 and radius R = 0.68 mm.
(B) Magnetic field B (arrows) and its x-component (colors). An s-polarized Gaussian beam of unit ampli-
tude and halfwidth σ = 12 mm at λ = 41.638 mm is launched upwards (i.e. along the y-axis), from below
the cylinder section. Both (A) and (B) are characteristics patterns of the magnetic dipole T M1,1. From [44].
(C) Coefficient moduli |b0|, |b1|, and |b2|. R is the cylinder radius. After [30].

This may be expressed as

α(II)
e = α(0) II

e

(
1 − i

8ε
k2α(0) II

e

)−1

, α(II)
m = α(0) II

m

(
1 − i

4
μk2α(0) II

m

)−1

.

(2.104)

Here the static polarizabilities α
(0) II
e and α

(0) II
m are

α(0) II
e = 8ε

k2

J ′
1(npx)J1(x) − npJ1(npx)J ′

1(x)

J ′
1(npx)Y1(x) − npJ1(npx)Y ′

1(x)
, (2.105)

α(0) II
m = 4

μk2

J ′
0(npx)J0(x) − npJ0(npx)J ′

0(x)

J ′
0(npx)Y0(x) − npJ0(npx)Y ′

0(x)
. (2.106)

Like for the magnetodielectric dipolar sphere, there are maps of the position of
the electric and magnetic dipoles and multipoles induced in high refractive index di-
electric cylinders, under either s or p-polarized illumination, similar to that shown
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in Fig. 2.10 [53]. Similarly to spheres, the position y = kma of the cylinder electric
and magnetic dipole lineshapes is constant as m varies above m � 2.5; hence these
magnetodielectric cylinders also possess the scaling property noted above for spheres.

Electric and magnetic resonance peaks may be made to approximately coincide at
the same wavelength by using coated spheres and cylinders (see e.g. [54] and refer-
ences therein). This is of interest in building photonic crystal nanostructures capable
of steering light beams.

2.10 Very small particles: the Rayleigh approximation

For very small size parameters, x << 1, y << 1, xL << 1, and xR << 1, the various
Bessel functions in the a1, b1 and c1 coefficients are expanded in powers of the small
argument x, y, xL, or xR as: jn(x) = x/3 − x3/30; h

(1)
n (x) = −i/x2 − i/2 + x/3;

Jn+1/2(x) = √
2x/π(x/3 − x3/30); H

(1)
n+1/2(x) = √

2x/π(−i/x2 − i/2 + x/3). After
retaining only the first few terms, one obtains an additional limit within the dipole
approximation. For the isotropic sphere embedded in the surrounding medium with
permittivity ε and permeability μ, the electric and magnetic polarizabilities which
fulfill the optical theorem [cf. Eq. (2.29)], are given by Eqs. (2.94) with the static
polarizabilities [cf. Eqs. (2.95) and (2.96)]:

α(0)
e = εa3 εp − ε

εp + 2ε
, α(0)

m = μ−1a3 μp − μ

μp + 2μ
, (2.107)

leading to the following relationship between the polarizabilities:

Q(ext) = Q(s) + Q(a) = 4πk�{ε−1 αe + μ αm}, (2.108)

the scattering cross-section being

Q(s) = 8π

3
k4(ε−1|αe|2 + μ2|αm|2}. (2.109)

As for the chiral sphere [cf. Eq. (2.97)], for the electric and magnetic polarizabilities

hold Eqs. (2.94): αe = α
(0)
e

(
1 − i 2

3ε
k3α

(0)
e

)−1
, αm = α

(0)
m

(
1 − i 2

3μk3α
(0)
m

)−1
. With

the static values [55–57]

α(0) ch
e = a3ε

(εp − ε)(μp + 2μ) − κ2εμ

(εp + 2ε)(μp + 2μ) − κ2εμ
,

α(0) ch
m = a3μ

(μp − μ)(εp + 2ε) − κ2εμ

(μp + 2μ)(εp + 2ε) − κ2εμ
. (2.110)

Meanwhile the mixed electric-magnetic polarizability reads

αch
me = −a3√εμ

i3κεμ

(εp + 2ε)(μp + 2μ) − κ2εμ
. (2.111)
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This expression has useful applications in the analysis and manipulation of chiral
nanostructures and molecules with chiral light [20,22,57,58].

On the other hand, concerning circular cylinders, one obtains, assuming ε = μ = 1:

α(0) I
e = πa2(εp − 1), α(0) I

m = 2πa2 μp − 1

μp + 1
, (2.112)

α(0) II
e = 2πa2 εp − 1

εp + 1
, α(0) II

m = πa2(μp − 1). (2.113)

It is worth stressing that even in the Rayleigh limit of the dipolar approximation, the
electric and magnetic polarizabilities that comply with the optical theorem are those of
(2.94). Only in limiting situations of extremely small particles versus the wavelength,
where the scattered intensity is drastically small, the expansion of the full polarizabil-
ities (2.94) in powers of k3a3 make them practically coincide with their static vales.

2.11 Effects due to interference between Mie
resonances. Directional scattering

Interference between dipolar and/or quadrupolar electric and magnetic resonances
produce changes in the normalized asymmetry factor g, given by the averaged polar
angle (cf. Fig. 2.1):

g = < cos θ > =
∫

dQ(s)(θ)
d�

cos θd�

Q(s)
, (2.114)

which manifest effects in the directionality of the scattering [59], which, among other
phenomena, gives rise to an unusual diffusive transport of light in suspensions of these
particles. For example, due to these interference effects, g can take negative values
and, hence, the transport mean free path l∗ may go down to values below those of the
scattering mean free path ls (l∗ = ls/(1 − g)) [60].

2.11.1 Fano resonances

Resonance models fit asymmetric spectra, coined as Fano resonances [61], due to in-
terference of broad and narrow resonances of the same physical system. In optics, they
are ubiquitous and appear in, for example, Wood anomalies of diffraction gratings,
frustrated TIR, as well as in Bragg resonances of photonic crystals. Of special interest
here is their appearance in Mie scattering due to the interference between a narrow
electric (or magnetic) quadrupole peak and a broader electric (or magnetic) dipole
lineshape, which contributes to the total and differential scattering cross-sections with
their respective coefficients a2 (or b2) and a1 (or b1) through Eqs. (2.30), (2.34), and
(2.35).
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Figure 2.12 Radar backscattering (RBS; red) and forward scattering (FS; blue) cross-sections versus nor-
malized frequency ω/ωp of a plasmonic sphere. The dielectric permittivity ε is described by the Drude for-
mula: γ /ωp = 10−3, ωp and γ being the plasma and collision frequencies, respectively. q = ωpa/c = 0.7.
The calculations use Eqs. (2.34) and (2.35) to which only a1 and a2 contribute. Inset: Polar scattering dia-
grams in the XZ-plane (azimuthal angle φ = 0, see Fig. 2.1) near the quadrupole resonance of a plasmonic
particle. Red lines shows linear polarization; blue lines pertain to non-polarized light. After [62].

Fig. 2.12 illustrates Q
(ext)
f orw = dQ(ext)(0◦)/d� = (1/q2)|a1 +5a2/3|2 and Q

(ext)
back =

dQ(ext)(180◦)/d� = (1/q2)|a1 − 5a2/3|2 (q = ωpa/c, ωp being the electron plasma
frequency), for a plasmonic sphere near a Fano resonance [62]. Both scattering cross-
sections were addressed in Section 2.4 [cf. Eqs (2.34)–(2.35) and paragraph below
them, as well as Eq. (2.45)]. One observes a symmetric electric dipole resonant peak
and an asymmetric Fano lineshape due to the electric dipole–quadrupole interference.
As expected, its Q-factor increases as both the sphere radius a and the bandwidth
� decreases. The interference of both MDRs gives rise to enhancement or suppres-
sion of either Q

(ext)
f orw or Q

(ext)
back . Namely, the angular distribution of scattered intensity

at wavelengths near a Fano resonance frequency exhibits strong variations between
forward and backward scattering, as shown in the inset of Fig. 2.12.

2.11.2 Kerker conditions

Due to ohmic losses, the observation of Fano scattering phenomena may become diffi-
cult in plasmonic particles. However, dipolar magnetodielectric spheres and cylinders
like those dielectric of high refractive index (e.g. semiconductor or ceramic), ad-
dressed in Section 2.9, may produce easily observable directional scattering due to
the interference between their induced electric and magnetic dipoles.

The following theory starts from a study by Kerker et al. [63] of 1983, where it
was theoretically established that hypothetical magnetic spheres with permittivity εp

and permeability μp, such that εp = μp, and hence an = bn, would produce a zero
scattered intensity in the backscattering direction. Also, since if εp = μp one has,
according to (2.34) and (2.35), S1(cos θ) = S2(cos θ), linearly polarized incident light
would give rise to a scattered angular distribution of waves with the same polarization
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for any θ . In addition, in the Rayleigh limit, considering the quasistatic approximation:
αe � α

(0)
e and αm � α

(0)
m [cf. Eq. (2.107)], for ε = (4 − μ)/(2μ + 1), it follows: a1 =

−b1, and since then S1(cos 0◦ = 1) = S2(cos 0◦ = 1) = 0, the intensity in the forward
direction would be zero; and the scattered light would have the same polarization as
the incident one.

However, when we address real particles capable of producing such effects, we
first draw attention to those dipolar magnetodielectric of Section 2.9, in which the
contribution of their induced electric and magnetic dipoles to the differential scattering
cross-section, after averaging over the two states of polarization: ‖ and ⊥, is

dQ(s)(θ)

d�
= k4

2

(∣∣∣ε−1αe

∣∣∣2 + |μαm|2
)

(1 + cos2 θ) + 2k4 μ

ε
�(αeα

∗
m) cos θ.

(2.115)

Which is mainly distributed in the forward or backward region according to whether
�(αeα

∗
m) is positive or negative, respectively. Specifically, in the forward (θ = 0◦; or

“+”) and backward (θ = 180◦; or “−”) directions, the angular distribution of intensity
is

dQ(s)

d�
(±) = k4

∣∣∣ε−1αe ± μαm

∣∣∣2 . (2.116)

Therefore, this asymmetry arises from the interference between the electric and mag-
netic dipolar fields, and leads to the following effects:

i) The intensity in the backscattering direction is exactly zero: dQ(s)

d�
(180◦) = 0

when

ε−1αe = μαm. (2.117)

For the backscattered intensity this coincides with the first statement of the above
quoted Reference [63], formulated when εp = μp. Notice, however, that (2.116) and
(2.117) do not impose any condition on εp and μp, but only on the polarizabilities. It
was coined after [64] the first Kerker condition (K1).

ii) Taking into account the theory of Section 2.9, the conservation of energy and
the consequent optical theorem (2.29) adopts the form [46,64]

W(a) + c

n

k4

3
{ε−1|p|2 + μ|m|2} = ω

2
�{p · E∗

i (r0)}−ω

2
�{m · B∗

i (r0)}. (2.118)

The second term of the left side is the scattering cross-section Q(s). Thus the right side
of (2.118) represents the extinction of incident energy on scattering and absorption by
the particle whose center is at r0.

According to (2.29) and (2.118), the scattered intensity cannot be exactly zero in
the forward direction, in contrast with the above quoted prediction by Kerker for a
quasistatic Rayleigh particle. In fact, it was pointed out in Section 2.9.1 that the qua-
sistatic polarizabilities lead to results that are inconsistent with energy conservation.
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Figure 2.13 (A) Normalized real and imaginary parts of the electric and magnetic polarizabilities of a
Ge sphere of radius a = 240 nm, εp = 16 and μ = 1 in vacuum. The right and left vertical lines mark the
wavelengths: λ = 2193 nm and λ = 1823 nm, at which K1 and K2 hold, respectively. From [65]. (B) Polar
2-D and 3-D scattering diagrams from this particle at the two polarizations: s and p corresponding to the
incident electric vector perpendicular and parallel to the scattering plane, respectively, at λ = 2193 nm (K1).
(C) Same as (B) at λ = 1823 nm (K2). After [65].

Also, causality and absence of gains impose �{αe} > 0, �{αm} > 0. Hence the forward
intensity presents a minimum at

�{ε−1αe} = −�{μαm}, �{ε−1αe} = �{μαm}, (2.119)

with

dQ(s)

d�
(0◦) = k4

∣∣∣2�{ε−1αe}
∣∣∣2 = 16

9
k10
∣∣∣ε−1αe

∣∣∣4 ∣∣∣∣23k3ε−1αe

∣∣∣∣2 dQ(s)

d�
(180◦).

(2.120)

Eq. (2.119), which thus leads to dQ(s)

d�
(0◦) ∼ (ka)10, generalizes the above quoted

condition formulated in [63] for zero forward intensity. Once again in contrast with
[63], it does not impose any constraint on εp and μp, but only on the polarizabilities. It
was coined after [64] the generalized second Kerker condition (K2) as it goes beyond
the quasistatic Rayleigh approximation and, like K1, it does not require the particle to
be magnetic (μp �= 0), but to behave as magnetodielectric, namely, to produce scat-
tered fields fully stemming from the emission of the electric and magnetic induced
dipoles, respectively characterized by the first electric and magnetic Mie coefficients:
a1 and b1, as discussed in Section 2.9.

Hence, we conclude that the two Kerker conditions K1 (2.117), and K2 (2.119), and
their respective associated zero backward and minimum forward differential scattering
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Figure 2.14 (A) Mie calculations of the extinction efficiency Q(ext) as a function of the incident wave-
length λ (in mm) of a dielectric subwavelength sphere (a = 9 mm, ε = 16.5). The total Q(ext) (black
solid line), and their first four multipolar contributions: electric dipolar (red), magnetic dipolar (blue), elec-
tric quadrupolar (green), and magnetic quadrupolar (pink) are included. The grey area corresponds to the
spectral range where dipolar terms dominate. In this region, Q(ext) presents two main peaks due to the
excitation of either an electric dipolar (ED at λ = 57 mm) or a magnetic dipolar (MD at λ = 76 mm) reso-
nance. Higher-order resonances are also observed (EQ: electric quadrupolar, MQ: magnetic quadrupolar).
These resonant modes are consequence of the distribution of the electric field inside the particle (see orange-
yellow insets which symbolically represent this E-distribution). (B) Simulated forward (upper part in red),
and backward (lower part in blue), scattered intensities versus incident frequency (GHz), considering either
a full Mie computation (dashed line), or an approximate calculation with only the first two Mie terms (dipo-
lar electric/magnetic) (continuous line), for the same particle as in (A). Kerker frequencies are marked with
vertical arrows (i.e. interference between the induced electric and magnetic dipole contributions at 4.3 GHz
and 6.3 GHz in forward and 3.6 GHz and 8 GHz in backward). Two dips in the backscattered intensity also
appear at 6.2 GHz and 7 GHz whose main contribution is due to magnetic and electric Fano resonances
from the interference of the Mie terms b1–b2 and a1–a2, respectively. (Notice that the dip at 5.8 GHz of the
approximate calculation is an artifact as it has no correspondence with any dip of the full Mie computation.)
(C) Spectra of both real (top) and imaginary (bottom) parts of the first four Mie coefficients corresponding
to dipolar electric, a1 (black), and magnetic, b1 (red), and quadrupolar electric, a2 (green), and magnetic,
b2 (blue), contributions. After [66].

cross-sections, apply to, and are observable in, dipolar purely dielectric particles with
the above quoted magnetodielectric nature.

Fig. 2.13A illustrates the polarizabilities (2.94)–(2.96) of a Ge sphere in the in-
frared, showing the K1 and K2 wavelengths. The corresponding angular distributions
of scattered intensity on illumination at these values of λ are shown in Figs. 2.13B and
C [65].

Fig. 2.14A shows the Mie solution for the spectral distribution of the extinction
efficiency Qext as a function of the incident wavelength λ (in mm) from a dielec-
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Figure 2.15 (A) and (B) Experimental values (full circles/stars) of the scattered intensity from the sphere
of radius a = 9 mm and ε = 16.5, addressed in Fig. 2.14, on illumination from below (yellow arrows)
by a p-polarized plane wave, which satisfies either K1 (at λ = 84 mm). (A), or K2 (λ = 69 mm). (B)
Detection of the angular distribution of scattered intensity for s-polarization (E normal to the plane of
incidence and measurement, cf. blue full circles), and for p-polarization (E into the plane of incidence and
measurement, see red stars). Theoretical results (black line) are also included for comparison purposes. (C)
and (D) Calculated distribution of the total near-field intensity around the particle (in logarithmic scale) for
the same cases considered in (A) and (B), that is, when the incident wavelength satisfies either K1 (C), or
K2 (D), respectively. After [66].

tric subwavelength sphere (a = 9 mm, ε = 16.5). This calculation is a model for a
magnetodielectric sphere whose material is ECCOSTOCK-HIK from Emerson and
Cuming (http://www.eccosorb.com/), having a permittivity and permeability like those
of semiconductor materials (Si, Ge); with almost no dispersion in the frequency range
of interest, and very low losses (the dissipation factor is given to be less than 0.002
in the 1 to 10GHz range of microwaves). The electric and magnetic dipoles and
quadrupoles are shown. The crossing points at certain wavelengths of the lineshapes
of these excitations, are responsible for interference phenomena that can be catego-
rized as either Fano or Kerker effects. Accordingly, one can see in Fig. 2.14B the

computation of dQ(s)

d�
(0◦) and dQ(s)

d�
(180◦) versus illuminating frequency, in the mi-

crowave range, corresponding to the existence of Fano dips along with those predicted
K1 and K2 phenomena. The latter correspond to the first experimental demonstration
[66] of both zero backward and almost zero forward scattered intensity, exhibited by
Figs. 2.15A–D. Further observations at shorter and visible wavelengths have subse-
quently been made [67,68].

These special properties of magnetodielectric particles may find applications in
metamaterials and nanocomposites, optical switching or sensing, as well as in emis-

http://www.eccosorb.com/
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sion devices like Huygens metasurfaces [69,70] and nanoantennas with high direc-
tionality [71].
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3.1 Introduction

Resonant nanoparticles made of high-refractive index dielectric and semiconductor
materials constitute the main building blocks for dielectric nanoantennas, metamate-
rials and metasurfaces. Light scattering by these nanoparticles is controlled by their
Mie multipolar resonances and resonant interference effects. Understanding of the
light scattering, including its efficiency and directivity, is important for future appli-
cations of these nanostructures as fundamental building blocks for resonant metade-
vices.

In conventional resonant plasmonics, which has been studied extensively over the
last few decades, nanoparticle resonances are mainly limited to electric multipole se-
ries. Interference of these electric resonances of different types, e.g. between electric
dipoles and quadrupoles of the same particles or electric dipoles or multipoles of
different particles, leads to the so-called Fano resonance phenomena, which provide
additional means to control scattering strength and directivity. In contrast to plasmon-
ics, in dielectric nanostructures it is possible to efficiently excite both electric and
magnetic multipolar modes. In this case, in addition to conventional Fano interference,
there is a broad range of new resonant effects associated with interference between
electric and magnetic multipoles. These phenomena, often referred to as Kerker or
generalized Kerker effects, form the basis for a number of new resonance properties
exhibited by dielectric nanoantennas and metasurfaces. Thorough control of resonant
multipole excitation inside dielectric particles and their interference is key to design
resonant dielectric metadevices.

In this chapter, we will review the major resonant phenomena associated with single
high-index dielectric nanoparticles and nanoparticle structures and draw a perspective
on application of these properties to design dielectric nanoantennas, metasurfaces and
other resonant metadevices.

Dielectric Metamaterials. https://doi.org/10.1016/B978-0-08-102403-4.00008-6
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3.2 Resonant light scattering by single dielectric
nanoparticles

Light scattering by a spherical particle in a medium, both isotropic and homogeneous,
is a classical problem having an analytical solution published by Gustav Mie in the
beginning of twentieth century, nowadays referred to as Mie theory [1,2].

By applying the Mie theory, it is possible to compute the scattering efficiency, Qsca ,
defined as the ratio between the scattering and geometrical cross-sections of a particle
through the simple formula (see a previous chapter of this book):

Qsca = 2

q2
m

∞∑
l=1

(2l + 1)(|al |2 + |bl |2), (3.1)

where l is the index numbering of the orbital modes: dipolar (l = 1), quadrupolar
(l = 2), octupolar (l = 3), etc. The electric, al , and magnetic, bl , scattering amplitudes
are given by

al = R
(a)
l

R
(a)
l + i�(a)

l

; bl = R
(b)
l

R
(b)
l + i�(b)

l

, (3.2)

where, for non-magnetic media,
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Here the functions ψl (z) =
√

πz
2 J

l+ 1
2
(z) and χl (z) =

√
πz
2 N

l+ 1
2
(z) are expressed

through the Bessel and Neumann functions [2]. We use the subscripts m and p to
denote the values referring to the external medium and the particle, with refractive
indices nm and np, respectively. In the expressions above, qm = qnm and qp = qnp.
The symbol q represents the so-called size parameter, defined as q = ωR/c = 2πR/λ,
with ω and λ being the angular frequency and the wavelength in vacuum of the incom-
ing wave, respectively, and R the radius of the particle.

Eq. (3.1) can also be expressed as

Qsca =
∞∑
l=1

(Q
(e)
l + Q

(m)
l ), (3.4)

where Q
(e)
l = 2(2l + 1) |al |2 /q2

m and Q
(m)
l = 2(2l + 1) |bl |2 /q2

m are the partial elec-
tric and magnetic scattering efficiencies associated with the multipolar moment of
lth order. A similar analytical solution can also be found for an infinite cylinder (see
Chapter 8, Section 8.4 in [2]).
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Figure 3.1 Mie resonances of a spherical particle. (A) Scattering efficiency vs. dielectric permittivity ε

(lossless particle, size parameter q = 2πR/λ = 0.5, where R is the particle radius and λ is the wavelength
of light) for plasmonic (ε < 0) and dielectric (ε > 0) materials: ed is for electric dipole, corresponding to

Q
(e)
1 , eq for electric quadrupole, corresponding to Q

(e)
2 , md for magnetic dipole, corresponding to Q

(m)
1 ,

and mq for magnetic quadrupole, corresponding to Q
(m)
2 , resonances. Higher-order multipole modes are

not shown for the sake of simplicity. (B) Scattering efficiency of a lossless dielectric particle as a function
of refractive index and size parameter. (C) Illustration of the structure of the electric and magnetic fields for
different electric and magnetic resonances supported by a spherical dielectric particle [3].

The solution of this problem reveals, under certain circumstances, a resonant be-
havior of light scattering, whose characteristics, namely its spectral position and am-
plitude, depend on the particle material, size and environment. For particles made of
metals with the real part of the dielectric permittivity function close to −2 the so-called
plasmonic resonances start to appear with the first fundamental mode being electric
dipole, associated with the Q

(e)
1 term in Eq. (3.4), followed by electric quadrupole,

octupole and high-order electric multipolar modes (Fig. 3.1A) [3]. The magnetic mul-
tipole response, associated with the Q

(m)
l terms, is negligible for metallic spheres with

a size smaller compared to the wavelength of light. To create a magnetic resonance
with metallic elements, one should change the particle geometry. For example, mag-
netic response can be generated using a split-ring resonator configuration [4]. This
structure behaves as an effective LC circuit exhibiting, at resonance, a strong en-
hancement of the magnetic field in the center of the ring. The magnetic response of
split rings, however, saturates at high frequencies, for which the system also presents
large dissipative losses [5]. For dielectric spheres with small refractive index (<2)
lower-order modes are not strongly pronounced while higher, whispery gallery-type,
modes may have sharp resonances opening many application opportunities in sensing,
nanoscale light focusing and nanoscopy [6]. However, the size of such low-index res-
onant particles is typically of the order or above the free-space resonant wavelength
making them irrelevant for the field of nanoantennas, particularly those used in meta-
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surfaces and metamaterials, for which their constituents should have sub-wavelength
sizes. In contrast, for dielectric materials with refractive index larger than 2 the first
fundamental resonance mode is a strongly pronounced magnetic dipole followed by
electric dipole, magnetic and electric quadrupoles and other higher-order multipolar
modes [7,3], as shown in Figs. 3.1A, B, and C. The diameter of a resonant high-index
dielectric sphere at the magnetic dipole resonance is approximately equal to the wave-
length of light inside the high-index dielectric material, λ/np, which is significantly
smaller than the free-space resonant wavelength, λ, for high values of refractive index,
np [8]. The fact that dielectric particles present both an electric and a magnetic reso-
nant response with low associated losses has attracted significant attention to this field
from researches in metamaterial community. There, having optical magnetism with
low absorption is critical to achieve novel optical properties not existing in nature.

The resonant behavior of small spherical metallic and dielectric spheres (with a
size parameter q = 2πR/λ = 0.5) is compared in Fig. 3.1A, where the scattering
cross-section, computed using Eqs. (3.1)–(3.4), of both types of particles is depicted
for different values of dielectric permittivity function, ε = n2

p. Only electric-type res-
onances are observed for negative values of ε, the case of plasmonic resonances in
metallic nanoparticles, while both magnetic and electric resonances are seen at rel-
atively high positive ε values, the case of Mie resonances in high-index dielectrics.
For refractive index value above 2, Mie resonances in dielectric particles are well
defined and their spectral position scales proportionally to the particle size and refrac-
tive index, as shown in Fig. 3.1B. This makes it possible to scale these resonances all
the way from optical frequencies to microwaves and obtain similar resonant scatter-
ing properties for particles made of different materials with similar refractive index.
Electric and magnetic field distribution at the first four Mie resonances of high-index
dielectric nanoparticles is schematically illustrated in Fig. 3.1C. The field profile at
electric and magnetic resonances looks the same with only the difference that D- and
B-field vectors are exchanged. It is important to note that similar resonances can be
obtained not just in spheres but also in spheroids [9,10], rods [11], disks [12,13], rings
[14], cuboids [15] and other different types of particle shapes [16]. Specific position
and order of the resonances might change depending on the particle shape adding an
additional important degree of freedom for engineering the resonance position and
interference. A typical example of such shape-dependent resonance positioning is the
mutual electric and magnetic resonance crossing at specific spheroid and disk particle
aspect ratios leading to realization of the so-called first Kerker condition discussed
later in this chapter [10,12].

First experimental studies of Mie resonances in high-index dielectric particles have
been conducted at microwave frequencies and so-called dielectric resonator anten-
nas made of high-index dielectric ceramics are considered as a viable alternative to
conventional metallic antennas [17]. The main advantages, which dielectric resonator
antennas bring to microwave technologies, are compactness, design simplicity and
high radiation directionality. With the emergence of the field of metamaterials, ideas
of using 3D structures consisting of resonant dielectric particles to obtain negative re-
fraction have been extensively discussed and first examples of such structures working
at microwave frequencies have been demonstrated. A detailed overview of dielectric
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Figure 3.2 (A)–(C) Dark-field optical microscope (top left) and SEM (top right) images of spheri-
cal silicon nanoparticles fabricated on a silicon wafer by ablating it with a femtosecond laser. Parti-
cle diameter can be measured in the SEM images and is about 100 nm in (A), 140 nm in (B) and
180 nm in (C). (Bottom) are dark-field scattering spectra of the nanoparticles obtained using a single
nanoparticle spectroscopy setup. md, ed and mq denote magnetic dipole, electric dipole and magnetic
quadrupole, respectively. Adapted from [8]. The original work is licensed under a Creative Commons
Attribution-NonCommercial-ShareALike 3.0 Unported License. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-sa/3.0/.

metamaterials design and experimental realization at microwave frequencies can be
found in some review papers [18,19].

At visible and near-infrared frequencies silicon became the first material of choice
to observe strong electric and magnetic dipole and higher-order Mie resonances [7,
20]. While having a high-refractive index (>3.5) through the whole visible and near-
IR spectral range its losses are relatively low in the visible for wavelengths above 550
nm (with an absorption coefficient, kSi < 0.5) and are negligible in the whole near-IR
spectrum for wavelengths above 800 nm (kSi < 0.01). A first experimental observa-
tion of such resonances has been reported for spherical silicon nanoparticles produced
by femtosecond laser ablation [8,21]. This method allows generating multiple parti-
cles with almost perfect spherical shapes and randomly varied sizes. Later research
has shown that similar resonant properties can be obtained not only for spherical par-
ticles but also for lithographically fabricated disks, cylinders and prism structures (see
examples above). Fig. 3.2 shows dark-field optical and SEM images together with
dark-field scattering spectra of silicon nanoparticles fabricated by femtosecond laser
ablation of a silicon wafer. In the dark-field microscope images one can see bright
visible colors, which are dependent on the nanoparticle size, and changing from blue
for particles with about 100 nm diameter to green for particles with 140 nm diame-
ter and red for particles with 180 nm diameter. Dark-field scattering spectra of these
nanoparticles reveal that the color is mainly coming from the fundamental magnetic
dipole resonance and electric dipole resonance at higher frequencies. Identification of
the electric or magnetic nature of the observed resonances can be done through theo-
retical analysis [22] or by direct measurements of far-field [23,24] or near-field [25]
scattering patterns of the nanoparticles. At larger particle sizes electric and magnetic
quadrupoles, octupoles and higher-order multipole modes can be detected [26].

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
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Figure 3.3 Visible colors from silicon nanodisks observed in reflection through a bright-field optical mi-
croscope. (Left top) Individual silicon disks on a quartz substrate with sizes ranging from 40 nm to 150 nm
with a step of 10 nm and forming word “colors” for each particle size. (Left bottom) SEM images for 70
nm and 150 nm diameter disks. Adapted with permission from [28]. © 2017 American Chemical Society.
(Right) Arrays of silicon nanodisks on a silicon wafer with an anti-reflection coating on top, reproducing
“Murnau Street with Women” painting by Vasily Kandinsky. The scale bar in the optical image is 20 µm.
(Center) SEM image of the selected region in (right) highlighted by the white-dotted rectangle. The scale
bar in the SEM image is 1 µm. Adapted with permission from [29]. © 2017 American Chemical Society.

One of the applications of bright visible colors in scattering by silicon nanoparticles
is nanoscale color printing [27]. It was recently shown that by controlling nanoparticle
interaction with a substrate it is possible to reach vibrant colors with a gamut (i.e. a
color range) that goes beyond the standard RGB range. Importantly, this was obtained
with a pixel size as small as a single silicon nanoparticle [28,29]. Fig. 3.3 demonstrates
several examples of color reproduction using individual silicon nanodisks and arrays
of those fabricated by e-beam lithography. The colors are observed in reflection un-
der bright-field optical microscope and can be used to inscribe hidden information at
nanoscale beyond eye resolution. It is worth mentioning that arrays of silicon nanopar-
ticles having fundamental resonances and pronounced visible colors have been studied
several years earlier for color display applications [30]. However, their resonances at
that time were not clearly analyzed and the magnetic nature of the fundamental reso-
nance and associated resonant phenomena were not revealed.

Another direction of research on Mie resonances is related to scattering and ab-
sorption properties of dielectric and semiconductor nanorods. These were first ex-
perimentally studied with silicon carbide nanorod structures [11]. Their magnetic
dipole response was demonstrated and its possible applications to metamaterials were
discussed. It is important to mention that in contrast to guided modes in “stand-
ing” nanorods/nanowires [31], which can be excited by light propagating along the
nanowire axis, Mie resonant modes are excited in “laying” nanorods/nanowires by
light propagating perpendicular to the nanorod/nanowire axis [32]. When light im-
pinges obliquely to the nanorod axis a subtle interplay between these two kinds of
modes emerges, giving an additional degree of freedom in design [33,34]. In the case
of “laying” nanorods, the modes supported have somewhat similar field profiles to Mie
modes in a sphere. Fig. 3.4 shows an example of Mie resonances measured through
resonantly enhanced photocurrent in a germanium nanowire photodetector [32]. This
resonantly enhanced absorption was used to increase the detector sensitivity in the
spectral region where the material absorption is low. Later on, different types of Mie
resonances in silicon, germanium, gallium arsenide and other types of semiconduc-
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Figure 3.4 (A) SEM image of a 25-nm-radius germanium (Ge) nanowire photodetector device. The
nanowire is connected to two metallic (Ti/Al) electrodes for photocurrent readout under supercontinuum
light illumination. (B) Two-dimensional plot of calculated absorption efficiency of a Ge nanowire as a
function of wavelength and radius of the nanowire. (C) Experimental absorption efficiency spectra of a
110-nm-radius germanium nanowire obtained from photocurrent measurements using linearly polarized
transverse-electric (TE; red) or transverse-magnetic (TM; blue) light. The red and blue lines on top of the
plot indicate the spectral positions of all nanowire Mie modes in this spectral region. (D) The configura-
tion of the electric field intensity for typical transverse-magnetic leaky modes. The blue circle refers to the
nanowire/air interface. Adapted by permission from Springer Nature: [32] (2009).

tor nanorods have been studied at visible and near-IR frequencies for enhancement
of light absorption for photovoltaics [35], enhanced thermal emission [36] and color
display applications [37].

3.3 Multipolar interference effects and directional
scattering

One of the most intriguing properties of dielectric nanoparticles is that, even when
they are shaped in simple forms such as cylinders or spheres, they support multiple
Mie modes that may spectrally overlap. When this happens, the far-field scattering pat-
tern from these particles can become rather complex, presenting several maxima and
minima and strongly deviating from that of a simple Rayleigh scatterer. This complex-
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ity arises from the directional constructive and destructive interference of the different
multipolar modes excited in the particles and the precise shape depends on the relative
amplitudes and phases of the induced multipolar moments. Note that, while total radi-
ation interference between different cylindrical/spherical multipoles is forbidden due
to their orthogonality (cf. [2], Chapter 4, Section 4.2), directional interference effects
may still arise.

These interference effects can be readily seen even in the simplest case of a
monochromatic plane wave scattering from a single, dielectric, spherical particle. Of
particular importance in this context are the so-called Kerker conditions, which will be
presented in the detail in this section. In brief, these conditions refer to particular sit-
uations in which the particle presents zero backward scattering, and thus scatters light
almost entirely forward, or quasi-zero forward scattering, thus scattering light almost
entirely backwards. These two situations highlight the fact that dielectric nanoanten-
nas, even in very simple shapes, can act as very directional antennas for light. Let
us, however, derive these conditions from a general perspective. As has been shown
before (cf. Fig. 3.1, panel B), when the particle has a refractive index np > 2, the hi-
erarchy of the optical resonances supported is such that the two lowest-energy ones
correspond to the resonant excitation of magnetic dipole and electric dipole modes (in
order of increasing energy). In the frequency range in which only these two modes co-
exist, thus, the incident wave generates a pair of induced electric and magnetic dipoles
given, respectively, by the expressions

p = αEε0E0 (3.5)

m = αMH0, (3.6)

with E0 and H0 = E0/Z being the complex amplitudes of the electric and magnetic
fields of the incident wave, Z the impedance of the external medium and αE and αM

the electric and magnetic polarizabilities of the particle, respectively. For a sphere,
these polarizabilities can be connected with the first two Mie coefficients through the
expressions:

αE = i
6π

k3
a1, (3.7)

αM = i
6π

k3
b1, (3.8)

where k is the wavenumber of the incident wave. This connection can be established
by direct comparison of the far-field generated by a point electric (magnetic) dipole
and the far-field associated with the a1 (b1) coefficient in the Mie expansion. The
interested reader may refer, e.g., to reference [38] to find, explicitly, such a connection.

Let us, without loss of generality, assume the sphere of radius R to be located in
the center of the coordinate system and the incoming monochromatic plane wave to
be traveling in vacuum along the positive z-axis with the electric field polarized along
the x-axis. In that case, the electric far-field generated by the induced electric dipole
p = pi x̂ = αEε0E0x̂ and the induced magnetic dipole m = mi ŷ = αMH0ŷ, which
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generally reads

Eff = Ep
ff + Em

ff = k2

4πε0

[
r̂ × (p × r̂

)+ 1

c
m × r̂

]
(3.9)

ε0 being the permittivity of vacuum and r̂ a unitary vector in the direction of observa-
tion, reduces, in spherical coordinates, to

Eff (θ,φ) = k2

4πε0

[(mi

c
+ pi cos θ

)
cosφθ̂ −

(
pi + mi

c
cos θ

)
sinφφ̂

]
.

(3.10)

This last expression can be recast in terms of the polarizabilities and, ultimately, in
terms of the first two Mie coefficients as

Eff (θ,φ) = 3i

2k
E0

[
(b1 + a1 cos θ) cosφθ̂ − (a1 + b1 cos θ) sinφφ̂

]
. (3.11)

From Eqs. (3.10) and (3.11) can be readily seen that, in general, the scattering pattern
of a particle supporting both electric and magnetic dipole modes will strongly deviate
from that of a Rayleigh scatter. Two cases of particular relevance are that of the plane
containing the induced electric dipole (φ = 0,π) and that of the plane containing the
magnetic dipole (φ = π/2,3π/2), for which the azimuthal and polar components of
the electric far-field, respectively, vanish. In either of these situations, it is possible
to find certain polar angle for which the field completely vanishes due to the destruc-
tive interference of the radiation from these modes. In particular, as follows from Eq.
(3.11), for the plane containing the electric dipole, the electric far-field completely
vanishes when the following relation is fulfilled:

b1 + a1 cos θ = 0, (3.12)

while in the plane containing the magnetic dipole the condition for vanishing field
reads

a1 + b1 cos θ = 0. (3.13)

Therefore, the scattered far-field from a dielectric sphere may vanish at any polar angle
in either of the planes of oscillation of the induced dipoles, provided the appropriate
relations (3.12) or (3.13) hold. It should be noted that the scattering coefficients a1
and b1 are complex and, thus, the relations impose conditions to both the relative am-
plitudes and phases of the induced dipoles. In order to obtain a vanishing field in the
plane of oscillation of the electric dipole, this dipole should be dominant; in other
words, have larger amplitude than the magnetic one. Conversely, in order to obtain a
vanishing field in the plane of oscillation of the magnetic dipole, it should dominate
over the electric one. From this, it follows that both conditions cannot be simulta-
neously met and, therefore, scattering from a dielectric sphere cannot vanish for the
same polar angle in both planes, with the only exception of the degenerate cases of the
forward and backward directions, given, respectively, by θ = 0 and θ = π . The latter
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corresponds to the so-called first Kerker condition, which happens when a1 = b1 and
implies zero backscattering from the particle. This condition was first derived in the
context of electromagnetic scattering from spheres with magnetic response [39] and
then identified for semiconductor particles at optical frequencies [7,40]. The former
is the so-called second Kerker condition, which is met when a1 = −b1 and implies
vanishing forward scattering. In reality, this condition can only be approximately met.
The reason behind the impossibility to fully satisfy Eq. (3.13) lies in the optical theo-
rem, relating the total extinction from a particle with the electric field scattered in the
forward direction. From it, a totally vanishing electric field in the forward direction
would necessarily imply a vanishing extinction and, therefore, zero total scattering.
The interested reader can find a discussion on this topic in reference [41].

The implications on the phases of the induced dipole moments can be clearly seen
if the scattering coefficients are expressed as

a1 = |a1| eiφa1 (3.14)

b1 = |b1| eiφb1 . (3.15)

Then the differential scattering efficiency, dQ(θ,φ), defined as the scattered intensity
in a particular direction divided by the intensity of the incoming plane wave and the
geometrical cross-section of the sphere, in this dipolar approximation, reads

dQ(θ,φ) = 9

4πq2

[
� cos2 φ + � sin2 φ

]
, (3.16)

where q is the size parameter introduced before and

� = |b1|2 + |a1|2 cos2 θ + 2 |a1| |b1| cos θ cos�φ (3.17)

� = |a1|2 + |b1|2 cos2 θ + 2 |a1| |b1| cos θ cos�φ (3.18)

associated, respectively, with the polar and azimuthal components of the scattered
field. In these expressions

�φ = |φa1 − φb1 | (3.19)

is the phase different between the induced dipoles. Eq. (3.16) can be directly obtained
in the context of Mie theory from the total scattered electric far-field (cf. Section 4.4.4
in [2]) by retaining only the first (l = 1) terms in the multipolar expansion.

From Eqs. (3.17) and (3.18) it becomes apparent that, in order to obtain vanishing
scattering at a polar angle in the range θ ∈ (π/2,π), corresponding to the backward
semi-sphere, the dipoles should be oscillating in phase. Conversely, to obtain vanish-
ing scattering at a polar angle in the range θ ∈ (0,π/2), corresponding to the forward
semi-sphere, the dipoles should be oscillating in anti-phase.

To illustrate the emergence of angle-suppressed scattering patterns predicted by
Eq. (3.16) let us consider the case of a spherical particle with a very large, frequency-
independent index of refraction np = 8, and the case of a crystalline silicon sphere at
optical frequencies. Fig. 3.5A shows the total scattering efficiency of the sphere with
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Figure 3.5 (A) Scattering efficiency and multipolar contributions (up to quadrupoles) of a dielectric sphere
with refractive index np = 8 as a function of the size parameter q. The extinction efficiency, represented
by the cyan curve, is not seen as it exactly matches the scattering one (black curve) for a lossless particle,
such as the one considered here. (B) Amplitude (solid lines) and phase (dashed lines) of the a1 (blue) and
b1 (red) coefficients. (C)–(D) Differential scattering efficiency dQ as a function of the size parameter q and
the scattering angle θ in the φ = 0 (C) and the φ = π/2 (D) planes, corresponding to the oscillation planes
of the induced electric and magnetic dipoles, respectively. The angle θ = 0◦ corresponds to the forward
direction and the angle θ = 180◦ to the backward direction.

np = 8 in the range of size parameter in which the lowest-order resonances are ex-
cited. As can be seen, in this range the sphere supports an electric dipole resonance,
associated with the Q

(e)
1 term, a magnetic dipole resonance, associated with Q

(m)
1 ,

and a magnetic quadrupole resonance, with Q
(m)
2 . Leaving aside the narrow spec-

tral range in which the quadrupolar mode is excited, the scattering pattern from this
particle should be mainly defined by its electric and magnetic dipolar response and,
thus, it should be governed by Eq. (3.16), which in turn depends on (3.17) and (3.18).
Fig. 3.5B shows the amplitude and the phase of the a1 and b1 coefficients. In this plot,
one can identify several size parameter ranges. In the ranges 0.343 < q < 0.443 and
0.561 < q < 0.576 the b1 coefficient (associated with the magnetic dipole term, Q(m)

1 )
has a larger amplitude and, thus, it is possible to satisfy the condition � = 0 for van-
ishing scattered field at a certain polar angle in the φ = π/2 plane (plane of oscillation
of the magnetic dipole). In the ranges q < 0.343, 0.443 < q < 0.561 and q > 0.576
the a1 coefficient (associated with the electric dipole, Q

(e)
1 , term) dominates, which

allows fulfilling the condition � = 0 for vanishing scattered field at a certain polar
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angle in the φ = 0 plane (plane of oscillation of the electric dipole). By looking at
the phases it is possible to identify the ranges of the size parameter for which van-
ishing scattering occurs in the forward or backward hemi-spheres of the pattern. As
mentioned before, for scattering cancellation at an angle in the forward hemi-sphere
(0 < θ < π/2) the dipoles should oscillate in anti-phase (�φ = π), which corresponds
to the ranges 0.388 < q < 0.551 and q > 0.566 in the plot. To obtain zero scattering
at angles within the forward hemi-sphere (π/2 < θ < π) the dipoles must oscillate in
phase (�φ = 0), which corresponds to the ranges q < 0.388 and 0.551 < q < 0.566 in
the plot. With this information it is easy to understand the maps shown in Figs. 3.5C
and D, representing the differential scattering efficiency dQ, computed using Mie the-
ory with 50 terms in the sum (cf. [2], Chapter 8, Section 4.4.4), as a function of the size
parameter q and the scattering angle θ in the planes containing the induced electric
dipole (φ = 0) and the induced magnetic dipole (φ = π/2), respectively. As predicted,
in the plane of oscillation of the electric dipole the vanishing dQ occurs in the size
parameter regions in which a1 dominates. Conversely, vanishing dQ in the plane of
oscillation of the magnetic dipole occurs in the regions in which the amplitude of the
magnetic dipole is larger. Within these regions, the vanishing happens at polar angles
in the forward hemi-sphere when the dipoles oscillate in anti-phase and in the back-
ward one when they do so in phase. By taking into account the precise ratio between
the a1 and b1 amplitudes and assuming purely in-phase or anti-phase oscillation of the
induced dipoles, it is possible to predict, for each size parameter, the scattering angle
at which dQ vanishes by the simple relations

cos θ = ±|b1|/ |a1| for φ = 0(|a1| > |b1|) (3.20)

cos θ = ±|a1|/ |b1| for φ = π

2
(|b1| > |a1|), (3.21)

in which the positive sign corresponds to dipoles oscillating in anti-phase and the
negative one to dipoles oscillating in phase. In Figs. 3.5C and D, the predicted (q, θ )
trajectories for vanishing differential scattering computed using this simplified dipolar
approximation are plotted as black-dashed lines. As can be seen, they closely follow
the full Mie results except in the narrow region in which the quadrupolar contribution,
Q

(m)
2 , becomes non-negligible. The polar plots of some representative scattering pat-

terns for different size parameters are shown in Fig. 3.6. The selected cases include
those of vanishing backward scattering (first Kerker condition) and forward scattering
(second Kerker condition) and those leading to vanishing scattering at polar angles
θ = 60◦ and θ = 120◦ in both the plane of oscillation of the electric dipole (φ = 0,
xz-plane) and that of the magnetic dipole (φ = π/2, yz-plane). These examples illus-
trate how dielectric particles, even when shaped in simple forms such as a sphere, can
show strongly directional scattering, making them excellent candidates for building
nanoantennas.

Let us now consider the case of a spherical nanoparticle made of crystalline silicon
with a radius R = 100 nm. As shown before, silicon nanoparticles with diameters in
the range of 100–200 nm support the lowest-order resonances in the visible-near-IR
region of the spectrum (see Fig. 3.2). Fig. 3.7A shows the calculated scattering ef-
ficiency spectrum and main multipolar contributions of this particle, while Fig. 3.7B
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Figure 3.6 Polar plot of the differential scattering efficiency as a function of the scattering angle (scattering
pattern) for several size parameter values in the φ = 0 (blue) and the φ = π/2 (red) planes, corresponding
to the oscillation planes of the induced electric and magnetic dipoles, respectively. (A) Situation in which
the backward scattering vanishes (first Kerker condition). (B) Situation in which the forward scattering
is minimized (second Kerker condition). (C)–(D) Situation in which the scattering vanishes at an angle
θ = 60◦ both in the φ = 0 plane (C) and the φ = π/2 plane (D). These situations happen, respectively,
when |a1|/ |b1| = 2 and |b1|/ |a1| = 2, and the dipoles oscillate in anti-phase. (E)–(F) Situation in which
the scattering vanishes at an angle θ = 120◦ both in the φ = 0 plane (E) and the φ = π/2 plane (F). The
same amplitude relations hold here, but the dipoles oscillate in phase.

shows the amplitude and phase of the a1 and b1 coefficients. As can be seen, due to the
lower refractive index of silicon, the resonances, which get broader, happen at a larger
size parameter. Another important difference is found when looking at the calculated
phases of the coefficients. For silicon spheres, the phase variation around the reso-
nance peak is less steep. As a consequence, the oscillation of the induced dipoles is no
longer well described by simply assuming that they oscillate either in phase or anti-
phase, the latter being particularly the case. This implies that, in general, Eqs. (3.12)
and (3.13) are not exactly satisfied and, thus, that the observed minima in the angular
scattering are less pronounced. This is clearly seen in Figs. 3.7B and C, showing the
angular differential scattering efficiency for the silicon sphere. In the plot, it is clearly
seen that some of the observed regions of vanishing dQ in the case of the sphere with
np = 8 are transformed into shallow minima in the case of the silicon sphere. More-
over, in this case, the predicted (q, θ ) trajectories for vanishing dQ computed using
the assumption of purely in-phase or anti-phase dipoles does not follow the full results
so closely. The first Kerker condition is, however, still accurately met in this case (for
a size parameter q = 0.745, corresponding to a wavelength λ = 842 nm), implying
strong inhibition of backward scattering.

Experimental observations of the angle-suppressed scattering patterns from dielec-
tric particles were performed in the microwave frequency range [42], using a dielectric
sphere made of a ceramic material (np ∼ 4) with radius R = 9 mm. The measured
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Figure 3.7 (A) Scattering efficiency and multipolar contributions (up to quadrupoles) of a crystalline sili-
con sphere with radius R = 100 nm as a function of the size parameter q. The corresponding wavelengths
are also shown. (B) Amplitude (solid lines) and phase (dashed lines) of the a1 (blue) and b1 (red) coeffi-
cients. (C)–(D) Differential scattering efficiency dQ as a function of the size parameter q and the scattering
angle θ in the φ = 0 (C) and the φ = π/2 (D) planes, corresponding to the oscillation planes of the induced
electric and magnetic dipoles, respectively. The angle θ = 0◦ corresponds to the forward direction and the
angle θ = 180◦ to the backward direction. The corresponding wavelengths are also shown.

scattered intensity as a function of the frequency of the incident light and the scatter-
ing angle are shown in Fig. 3.8A. The maps shown closely resemble those of Fig. 3.7A
and B, in a restricted size parameter range, due to close value of the refractive index of
the dielectric material used to that of silicon. Figs. 3.8B and C show the measured scat-
tering patterns at the first and second Kerker conditions, respectively. Subsequently,
directional scattering from dielectric nanoparticles in the visible range was measured
in silicon nanospheres [9] and gallium arsenide nanodisks [43] fabricated, respec-
tively, by femtosecond laser ablation and lithographically using a top-down approach.
Figs. 3.8D and E show, respectively, the calculated and experimentally measured for-
ward and backward scattering from a single silicon nanosphere, together with the
forward-to-backward ratio. It can be seen that at the first Kerker condition realized
at around 660 nm the experimental forward-to-backward scattering ratio reaches the
values above 6 due to a suppression of backward scattering and non-zero forward
scattering. The second Kerker condition is realized around 550 nm, resulting in the
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Figure 3.8 (A) Experimentally measured scattering intensity as a function of frequency and scattering
angle θ in the φ = 0 (left) and the φ = π/2 (right) planes, corresponding to the oscillation planes of the
induced electric and magnetic dipoles, respectively, for a dielectric sphere with index np ∼ 4 and radius
R = 9 mm. (B)–(C) Experimentally measured (symbols) and theoretically calculated (solid line) scattering
patterns from the dielectric sphere in (A), at frequencies corresponding to Kerker’s first (B) and second
(C) conditions, indicated in (A) by vertical dashed lines. Adapted by permission from Springer Nature: [42]
(2012). (D)–(E) Theoretical calculation (D) and experimentally measured (E) forwards scattering, backward
scattering, and forward-to-backward ratio from a crystalline silicon sphere with radius R = 75 nm. The
insets in panel (E) show the optical images of the particle in the forward (left, F) and backward (center, B)
directions and the SEM image (right), with a scale bar corresponding to 500 nm. Adapted by permission
from Springer Nature: [9] (2013).

minimum in the forward-to-backward scattering ratio. These experiments represent
the first realizations of simple, directional, dielectric optical nanoantennas.

Interestingly, the angle-suppressed scattering patterns from dielectric spheres, in
particular Figs. 3.7A and B and Fig. 3.8A, can be connected with the observed angu-
lar reflectivity from sub-diffractive arrays of such particles, often called metasurfaces
[44]. These systems have the intriguing property of having a Brewster angle for both
p- and s-polarization, in some ways similar to what is observed for media having a
non-unity magnetic permeability. In the case of metasurfaces, this phenomenon arises
not due to a real magnetic response, but rather due to the angle-suppressed scattering
patterns from the particles forming the array, as described here. It is also worth men-
tioning that, although not described here, similar directionality effects can be found in
the scattering from long dielectric nanowires supporting spectrally overlapping reso-
nances [45].

So far, we have shown that even a simple dielectric sphere in the dipolar ap-
proximation may be a strongly directional nanoantenna, with a pronounced forward-
to-backward asymmetry, via the realization of the Kerker conditions. Unfortunately,
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Figure 3.9 (A) Numerically calculated spectral position of the electric dipole and magnetic dipole reso-
nance peak for a silicon disk with height h = 220 nm embedded in a medium with refractive index nm = 1.5.
Adapted with permission from [12]. © (2013) American Chemical Society. (B) Optimum shape a/b (solid
lines) and size parameter q (dashed lines) maximizing total scattering (red) and forward scattering (blue)
with minimized backward scattering for oblate spheroidal particles in air as a function of the value of
the refractive index of the particle n. (C) Scattering efficiency (black) and multipolar contributions (up to
quadrupoles, notations are the same as in Fig. 3.1) from oblate spheroidal particles with refractive index
np = 3.5, as a function of the size parameter q, for several aspect ratios a/b. Panels (B) and (C) adapted
with permission from [10]. © (2015) American Chemical Society.

when this system behaves as a directional antenna it does not behave as an efficient
antenna, i.e., when Kerker’s conditions are met the total scattering efficiency is low.
In particular, for the first one the low efficiency is just due to the fact that, for spheres
with index np > 2, the induced electric and magnetic dipoles only have the same am-
plitudes and phases far away from the spectral position of the resonance peaks, at the
tail of the resonances. One possible strategy to overcome this issue is changing the
shape of the particle, in particular its aspect ratio. By doing so, it is possible to induce
a different spectral shift to the electric dipole mode and the magnetic dipole one, as
to make their amplitudes and phases coincide at resonance, therefore simultaneously
maximizing the total scattering efficiency as well as the forward-to-backward ratio
[10,12]. Fig. 3.9A shows the numerically calculated spectral shift of the peak of the
electric and magnetic dipole resonances for different aspect ratios between the height,
h, and the diameter, d , of a silicon nanodisk. As can be seen, for an approximate as-
pect ratio d/h ∼ 1.35 the peaks of the resonances spectrally overlap. Interestingly,
using the quasi-analytical solution of plane wave scattering from spheroidal particles
[46] it is possible to systematically study the problem of simultaneous maximiza-
tion of total scattering and minimization of backward scattering and to show that, for
any refractive index of the particle np > 2 it is possible to find a particular aspect
ratio for which these two conditions are simultaneously satisfied. Fig. 3.9B shows
the necessary aspect ratio and size parameter that maximized the total scattering effi-
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ciency and the forward scattering efficiency for different refractive indices in the range
2 < np < 4 at the condition of backward scattering minimized. For the case of a par-
ticle with refractive index np = 3.5, approximately corresponding to that of silicon in
the visible-to-near-IR spectral range, Fig. 3.9C shows the evolution of the total scatter-
ing efficiency and the multipolar contributions (up to quadrupoles) when the shape of
the particle changes from spherical to spheroidal with optimized aspect ratio, showing
the overlapping of electric and magnetic dipole resonances.

3.4 Resonant scattering by dielectric nanoantennas

As shown above, even a single, simple shaped, dielectric particle may act as an effi-
cient and directional optical antenna. Its directionality stems from interference effects,
mainly, between electric and magnetic dipolar modes. If one would like, however,
to obtain higher directivity or more complex response, three main strategies can be
adopted. An immediate one is to increase the number of elements, or particles, form-
ing the antenna. In this approach, each element can be kept within the so-called dipolar
approximation (i.e. its response being governed by electric and magnetic dipoles only)
and, therefore, have a small physical size. An alternative to increasing the number of
particles is complexifying the elements forming the antenna. This can be achieved,
e.g., by increasing their size, as to induce a higher-order multipolar response, or
by changing their shape to more complex ones. Finally, one can also increase the
complexity of the surrounding medium, a good example being the introduction of a re-
flective element such as a mirror. Let us, in the following, describe in some detail each
of these approaches, with practical examples leading to efficient, directional antennas.

3.4.1 Multi-particle configurations

When one considers a system consisting of several dielectric particles interference ef-
fects become even more important and provide more opportunities to control the light
scattering. In the case in which each element forming the antenna is electrically small,
a good way to describe this kind of systems is through the so-called Coupled Electric
and Magnetic Dipole Method (CEMD) in which each particle is simply described by
a pair of electric and magnetic dipoles [47]. Within this approximation, the electric
and magnetic fields at any position r in space can be expressed as

Etot (r) = E0 (r) + Esca (r)

= E0 (r) +
∑
j

{
k2

ε0εm

↔
GE
(
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)
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)
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}
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}
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where the second term represents the scattered field, the summation extends to all
particles in the system with positions rj , and

↔
GE and

↔
GM are, respectively, the free-

space electric and magnetic dyadic Green’s functions. Their explicit form acting on
the electric dipole reads

↔
GE (r)p = eikr

4πr

{(
1 + i

kr
− 1

(kr)2

)
p +

(
−1 − 3i

kr
+ 3

(kr)2

)
(r̂ ·p)r̂

}
(3.24)

↔
GM (r)p = eikr

4πr

(
i − 1

kr

)
(r̂ × p) (3.25)

This problem can be solved self-consistently by expressing the dipole moments in
the j th particle as

pj = ε0εmαE
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where the summation accounts for the field generated by the rest of the dipoles. While
this simplified model fails to predict the near-fields generated around the particles, es-
pecially when they are in close proximity, it still gives reasonably accurate results for
the far-field characteristics of the system. Its great advantages over full-wave numeri-
cal methods are being faster, less computationally demanding and providing physical
insight into the different mode interactions occurring in the system.

3.4.1.1 Dielectric dimers

The simplest multi-particle system that can be studied is that of a dimer consisting of
two dielectric spheres. Contrary to plasmonic dimers, in which the electromagnetic
response is mainly determined by the interplay between the electric dipole modes in-
duced in the metallic particles (forming so-called bonding and anti-bonding modes),
in dielectric dimers the situation is more complex, and one needs to consider sev-
eral types of dipole-dipole interaction. Namely, for a dielectric dimer consisting of
particles supporting both electric and magnetic dipole modes, such as spheres made
of silicon, it is possible to identify electric-electric, magnetic-magnetic and crossed
electric-magnetic dipole interactions [48]. This gives rise to a complex hybridization
scheme between the modes, as depicted in Fig. 3.10, which critically depends on the
polarization of the incident field by either aligning the electric or the magnetic dipole
moments of the particles [49]. As a result, complex dimer modes can be observed for
both main polarizations, namely, with the electric field or the magnetic field being par-
allel to the axis of the dimer, as shown in Fig. 3.10A and 3.10B, respectively. With the
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Figure 3.10 (Left) Energy-level diagram describing the hybridization of electric (red arrows) and mag-
netic (green arrows) dipolar resonances of single particles in the dimer. (Right) Numerically calculated
(color lines) and experimentally measured (black lines) scattering spectra for different inter-particle gap d.
The calculated spectra are decomposed according to the hybridization scheme shown. Each single scatterer
is an oblate ellipsoidal core(silicon)–shell(silica) structure with major and minor external radii of 95 and
78 nm, respectively, and a 4 nm shell layer. (A) When the incident electric field is parallel to the axis of the
dimer. (B) When the incident magnetic field is parallel to the axis of the dimer. Adapted with permission
from [49]. © (2015) American Chemical Society.
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Figure 3.11 (A) Schematics depicted the mechanism behind generation of electric and magnetic hotspots
in dielectric dimers, as compared to metallic ones. (B) Experimentally measured (left) and numerically cal-
culated (center) NSOM signal from a silicon dimer. Top (bottom) row corresponds to the case of incident
electric (magnetic) field parallel to the axis of the dimer. Low-intensity regions are represented by blue color
and high-intensity ones by red color. (Right) SEM images of the measured dimer. The scale bar corresponds
to 200 nm. Adapted with permission from [52]. © (2015) American Chemical Society. (C) Theoretically
calculated (left) [55] and experimentally measured (center and right) [56] scattering patterns of an asym-
metric silicon dimer. For the calculated case, the dimer consists of two silicon spheres with radii 75 nm and
115 nm, separated by a gap of 8 nm. Two different wavelengths are considered. Adapted from [55] under
Creative Commons License. In the measured sample the dimer consists of two silicon cylinders with height
170 nm and radii 90 nm and 125 nm, separated by a gap of 40 nm. The SEM image shows the measured
sample. The scale bars correspond to 100 nm. Adapted with permission from [56]. © (2017) American
Chemical Society.

aid of numerical simulations and mode analysis, different dipole-dipole interactions
can be identified, giving rise to the different resonance peaks observed in the mea-
sured dark-field scattering spectra. As a consequence of this complex dipole-dipole
interaction, for dielectric dimers it is possible to observe generation of both electric
and magnetic hotspots in the gap between the particles depending on the incidence
polarization, a phenomenon that can be used to enhance light emission from quantum
emitters with either electric dipole or magnetic dipole electronic transitions [50,51,
48]. This is in contrast to plasmonic dimers for which complex modes, with associ-
ated electric hotspots only, are exclusively excited when the electric field is parallel
to the axis of the dimer. The schematic comparison of these two situations is depicted
in Fig. 3.11A. The experimental observation of electric and magnetic hotspots in sili-
con dimers using an aperture-type near-field scanning optical microscope is shown in
Fig. 3.11B [52]. A high-intensity spot in the gap between the particles is observed in
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the NSOM signal both when the electric field is parallel to the dimer axis and when
the magnetic field is parallel to the dimer axis. In the experiment, the dimer consisted
of two identical cylindrical particles lithographically fabricated, as shown in the SEM
image in the figure. Interestingly, large enhancements of the magnetic field can also
be found in simplest configurations, such as a single sphere, provided a higher-order
mode is supported [6,53]. These modes, however, are very sensitive to fabrication im-
perfections and, thus, difficult to observe. Although the CEMD described above fails
to quantitatively predict the near-field enhancement in the case of a dimer, it can still
be used to accurately predict the observed, far-field scattering characteristics from di-
electric dimers. Interestingly, this simple model holds up to inter-particle gaps on the
order of 10 nm, where the particles are strongly coupled [48]. Using this model, it is
possible to design dimers such that the forward scattering is enhanced by adjusting
the positions and the sizes of the individual particles forming the dimer [54]. It is also
possible to obtain other directionality effects such as the ones shown in Fig. 3.11C, in
which asymmetry in the radiation pattern in the plane of oscillation of the electric field
is obtained. This effect was theoretically predicted first for a dimer consisting of two
silicon spheres [55] and later observed experimentally with lithographically fabricated
cylindrical particles [56]. Interestingly, the asymmetry may abruptly change with the
wavelength of the incident light, which might find applications in wavelength multi-
plexing and routing. Additionally, this kind of asymmetry can be used in the design of
periodic arrays of nanoantennas to obtain so-called metagratings, in which the energy
distribution among the supported diffraction orders can be controlled at will by careful
design of the nanoantenna radiation pattern [57–59].

3.4.1.2 Complex, multi-particle antennas

Let us now focus on nanoantennas involving more than two elements. Increasing the
number of particles naturally provides additional degrees of freedom as to boost the
directivity and efficiency of antennas. A canonical design based on this approach is
the so-called Yagi–Uda nanoantenna, inherited from the radiofrequency community
where it is widely used as a directive emitter and receiver. The design consists of an
emitting element, the so-called feed of the antenna, one or several elements called
reflectors, placed at one side of the feed, and several elements called directors, at the
other side of it. The elements, in the shape of long rods, are designed to behave as dipo-
lar scatterers. The length of these rods, and their mutual spacing, are designed in such a
way that the scattered field interferes destructively with the emitted one in the direction
of the reflectors and constructively in that of the directors. At optical frequencies, it has
been implemented using plasmonic metals and replacing the usual current driven feed
by a localized quantum emitter [60]. The schematic of such an optical Yagi–Uda an-
tenna, based on gold nanorods, is shown in Fig. 3.12A. While this nanoantenna shows
good directivity, its optical performance is somewhat hindered by the large Ohmic
losses associated with metals at optical frequencies. Resonant dielectrics offer an al-
ternative platform to design Yagi–Uda nanoantennas, with two main advantages. The
first, obvious one is the mitigations of losses. The second, which may be more attrac-
tive, is the possibility to use not only the electric dipole response of the particles, as in
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Figure 3.12 (A)–(B) Schematics of plasmonic (A) and dielectric (B) Yagi–Uda antennas. (C) Numerically
calculated maximum directivity and forward directivity of a silicon Yagi–Uda nanoantenna consisting of
one reflector with radius 75 nm and four directors with radii 70 nm. All particles are spaced by 70 nm. The
system is fed with an electric dipole placed in between the reflector and the first director. Panels (B) and (C)
adapted with permission from [61]. © (2012) Optical Society of America. (D) Experimentally measured
scattering pattern of a dielectric Yagi–Uda antenna (shown in the inset) at a frequency of 10.7 GHz. The
antenna consists of a reflector with radius 5 mm and three directors with radii 4 mm made of MgO–TiO2
ceramic (with np ∼ 4). Reprinted from [63], with the permission of AIP Publishing. (E) Numerically
calculated scattering cross-section from a silicon hexamer forming a ring (black curve), a single silicon
particle (blue curve) and silicon heptamer combining the two, showing the emergence of the Fano resonance
(red curve). All particles are spherical. The outer particles have a diameter of 150 nm and the inner one of
130 nm. The gap between the outer particles is of 10 nm. Adapted with permission from [69]. © (2012)
American Chemical Society. (F) Experimentally measured extinction spectra from four oligomers made of
silicon nanocylinders showing Fano interference. The different curves correspond to different diameters of
the central cylinder (as indicated in the legend and shown in the SEM images). The diameter of the cylinders
forming the outer ring is 460 nm. The height of the cylinders is 260 nm and the radius of the hexamer ring
is 568 nm. Adapted with permission from [70]. © (2014) John Wiley & Sons, Inc.
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conventional Yagi–Uda designs, but also the magnetic dipoles induced in the particles,
as schematically shown in Fig. 3.12B. This provides the antenna designer with addi-
tional degrees of freedom that may be used to further boost the directivity or to reduce
the footprint by reducing the number of elements in the antenna. Fig. 3.12C shows the
calculated directivity from a dielectric Yagi–Uda nanoantenna consisting of five sili-
con spheres. One of the particles is slightly bigger, acting as a reflector, while the other
four have the same, smaller size. The system is fed by an electric dipole source located
between the reflector and the first director. The high (forward) directivity of the an-
tenna nearly coincides, spectrally, with the realization of the first Kerker condition in
the directors [61]. Interestingly, this kind of system can be analytically studied with
the CEMD, yielding identical results to the full-wave simulations shown here [62],
saving time and computational resources to the designer. So far, the concept of dielec-
tric Yagi–Uda antennas has been experimentally demonstrated in the microwave range
only [63]; its verification at optical frequencies is still missing. Fig. 3.12D shows the
measured scattering pattern of a dielectric Yagi–Uda antenna consisting of a reflector
and three directors made of a ceramic material, with refractive index close to that of
silicon at optical frequencies. The antenna is fed by a vibrator, as shown in the inset.
The measured directivity agrees well with the theoretical prediction, confirming the
feasibility of the design as a directional antenna. Interestingly, as the number of par-
ticles increases, approaching an infinite chain, guided modes emerge in the system,
and light transmission with negligible losses becomes possible. This kind of chains
supports different modes depending on the type of dipole-dipole interaction. In the
fundamental one, the energy is transported via transverse-magnetic-dipole coupling
[64]. This concept has been realized experimentally at optical frequencies using sil-
icon nanoparticles fabricated lithographically, showing very low propagation losses
comparable to standard silicon photonics waveguides [65].

Still within the dipolar approximation, but increasing the complexity of the nanoan-
tenna, it is possible to observe interference effects between the modes of the different
elements forming the antenna not only in the differential scattering but also in the to-
tal scattering from the system. In the case in which this interference occurs between
a resonant mode and a non-resonant one the phenomenon is usually referred to as
Fano interference. The name points to the analogy between the asymmetric spectral
line-shapes observed in these systems and those observed in the inelastic scattering
of electrons from helium, named after Ugo Fano, who provided the first theoretical
explanation of their origin [66]. In the case of isolated nanoantennas, Fano resonances
were first observed in plasmonic systems (the interested reader can refer to some of the
review articles in this topic [67,68]). In these systems, Fano resonances usually arise
as the interference between a bright mode, which strongly couples to incident radia-
tion, and a dark mode, not easily accessible by external illumination. In this case one
usually needs to disturb the symmetry of the system to ensure the coupling between
the two modes. Due to their narrow line-widths, systems presenting Fano resonances
have been considered for sensing applications. In dielectrics, due to their richer vari-
ety of optical modes, Fano resonances with different characteristics can be observed.
A canonical system to observe such phenomena are particle oligomers, such as those
shown in Fig. 3.12E and F. Among the wealth of Fano modes that can be observed in
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these systems, one of the most interesting ones is that with a magnetic-like origin. The
mechanism of emergence of one of these modes is shown in Fig. 3.12E. There, the
emergence of the Fano resonance observed at the wavelength indicated by the verti-
cal dashed line in the scattering cross-section from the dielectric heptamer (spectrum
given by the red curve) stems from the interference between the resonant mode of
the central particle (spectrum corresponding to the blue curve) and the broad, non-
resonant mode of the hexamer forming the outer ring (spectrum given by the black
curve) [69]. For frequencies around the resonance, the dipole moment in the central
particle changes its oscillation from in phase to out of phase with respect to the in-
cident field, while the particles in the outer ring remain in phase. This causes either
constructive or destructive interference, which gives rise to the asymmetric line-shape.
As shown in the insets, at resonance, the magnetic dipole moments induced in the
central particle and the particles in the outer ring oscillate out-of-phase with respect
to each other. Fig. 3.12F shows the experimentally measured extinction cross-section
of a silicon oligomer, demonstrating this effect [70]. In the experiment, the size of the
central particle in the heptamer is varied from sample to sample. The increase in size
induces a redshift of the resonant frequency of this particle and, as a consequence, a
redshift in the Fano dip in the oligomer spectra. This corroborates the origin of the
Fano dip as the interference between the resonant mode of the central particle and
the non-resonant mode of the outer ring. For the interested reader in this topic, other
examples of Fano interference in all-dielectric configurations can be found in the ref-
erences [71–74].

3.4.2 Complex nanoantenna shapes

As mentioned earlier, a second possible strategy to achieve larger directivity or more
complex scattering patterns from a nanoantenna without introducing additional par-
ticles is to complexify the elements as to support higher-order multipolar modes. In
the simplest case, all that one needs to consider is a dielectric sphere with a larger
overall size. In its most general form, the differential scattering cross-section from the
spherical particle becomes (cf. [2], Chapter 4, Section 4.4.4):

dS = 1

(kr)2
(sin2 φ |S1 (cos θ)|2 + cos2 φ |S2(cos θ)|2) (3.28)

with

S1 (cos θ) =
∑

l

2l + 1

l (l + 1)
(alπl + blτl) (3.29)

S2 (cos θ) =
∑

l

2l + 1

l (l + 1)
(alτl + blπl) (3.30)

and the angle-dependent functions πl and τl being

πl (cos θ) = P 1
l (cos θ)

sin θ
(3.31)
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τl (cos θ) = dP 1
l (cos θ)

dθ
(3.32)

where P 1
l (cos θ) is the associated Legendre function of the first kind and order l. Tak-

ing into account that the functions πl and τl have alternating even and odd parity on
cos θ depending on their order it is possible to show, after some algebraic manipula-
tion, that the forward scattering reduces to

dS(θ = 0◦) = 1

(kr)2

∑
l

2l + 1

2
|al + bl |2 (3.33)

and also that in the backward direction θ = 180◦ [75]

πl (−1) + τl (−1) = 0. (3.34)

This simple relation implies that, whenever the electric and magnetic multipoles
of a certain order have the same amplitude and phase, they destructively interfere in
the backward direction. In other words, if a pair of electric and magnetic multipoles
of a certain order l fulfill the relation al = bl , they do not contribute to the backward
scattering. Obviously, particles for which all multipoles are individually compensated
will have zero backward scattering. Individual compensation of the different electric
and magnetic multipolar modes is, however, not the only mechanism from which a
vanishing backward scattering can be obtained. If one considers, for example, a single
family of multipoles, either electric or magnetic, it is also possible to obtain vanishing
backwards scattering provided the scattering coefficients have amplitudes and phases
such that they compensate for the difference in value of the angle-dependent functions
of different orders. Both situations described above can be considered a sort of gener-
alized version of the first Kerker condition. As an example of the latter, for a particle
supporting only dipole and quadrupole modes from a certain family (either electric or
magnetic and with all other multipoles from the same family and all multipoles from
the other family being zero), zero backward scattering is achieved when

3a1 − 5a2 = 0 or 3b1 − 5b2 = 0. (3.35)

The first expression holds for a particle supporting electric dipole [67] and quadrupole
modes only and the second one for a particle supporting magnetic dipole and
quadrupole modes only. A schematic of the different situations leading to directional
scattering from a particle supporting dipole and quadrupole modes, adapted from
reference [75] (see also [76]), is shown in Fig. 3.13A. The highest directionality is
achieved when all four modes are excited and compensate each other. The higher is
the number of modes, the higher is the directionality of the antenna. This is shown in
Fig. 3.13B, adapted from reference [77], in which the scattering pattern from a hypo-
thetical spherical particle supporting different sets of modes is shown. The first panel
(top) correspond the previously presented case of realization of the first Kerker con-
dition, a1 = b1. The second panel (center) shows the scattering pattern from a particle
supporting compensated electric and magnetic quadrupole modes only (a2 = b2 �= 0
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Figure 3.13 (A) Schematic showing directional interference effects from different multipole combinations
up to quadrupoles. The central row depicts the modes considered and the black arrows represent whether the
scattered field oscillates in phase (downwards arrow) or out of phase (upwards arrow) with the incident one
(assumed to propagate from left with the electric field contained in-plane). The resulting patterns arising
from different mode combinations are calculated assuming matching phases and amplitudes of the modes.
Only the in-plane (purple curves) and out-of-plane (blue curves) scattering patterns are shown for clarity.
Adapted from [75]. (B) Scattering patterns corresponding to the situations in which: (top) a1 = b1 �= 0 and
al = bl = 0 for l > 1; (center) a1 = b1 = a2 = b2 �= 0 and al = bl = 0 for l > 2 (black, solid line) and
a2 = b2 �= 0 and al = bl = 0 for l �= 2 (red, dashed line); (bottom) am = an = bm = bn �= 0 for m,n < 3
and al = bl = 0 for l > 3 (black, solid line) and a3 = b3 �= 0 and al = bl = 0 for l �= 3 (red, dashed
line). Adapted with permission from [77]. © (2014) Optical Society of America. (C) Calculated maximum
directivity of a super-directive silicon nanoantenna as a function of wavelength. The antenna consists of
a sphere with radius Rs = 90 nm and a small hemispherical notch with radius Rn = 40 nm. The system
is excited by an electric dipole perpendicular to the radius at a distance of around 70 nm from the sphere
center. (D) Absolute value and phase of the different electric, aE(l,m), and magnetic, aM(l,m), multipolar
modes excited in the system at the resonant maximum directivity. Panels (C) and (D) adapted from [78]
with permission of The Royal Society of Chemistry. (E) Simulated (left) and measured (center) radiation
patterns from the experimental realization of the super-directive antenna (shown in the right) at microwave
frequencies. The antenna is made of MgO–TiO2 ceramic (with np ∼ 4) and fed by a small electrical dipole
source. Adapted from [79], with permission of AIP Publishing.
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Figure 3.13 (continued)

and al = bl = 0 for l �= 2) as well as the case in which the particle supports compen-
sated electric and magnetic quadrupole and dipole modes (a1 = a2 = b1 = b2 �= 0 and
al = bl = 0, for l > 2). Clearly, the latter shows a better directivity. Finally, the third
panel (bottom) shows the scattering from a particle supporting compensated electric
and magnetic octupole modes only (quadrupoles and dipoles being zero), as well as
the case in which all electric and magnetic multipoles up to the octupole are supported
and compensated. Of all those cases, the last one provides the largest directivity.

From the theoretical analysis it becomes clear that the larger the number of com-
pensated multipoles, the better directivity can be achieved. The only problem, as usual,
is finding an appropriate antenna design to exploit this feature. So far, the most suc-
cessful proposal is the one depicted in the left inset of Fig. 3.13C. This so-called
super-directive dielectric antenna [78] consists of a dielectric spherical particle (made
of silicon in this case, with radius Rs = 90 nm) and a small notch (considered hemi-
spherical with radius Rn = 40 nm). The presence of the notch breaks the symmetry of
the system and allows the efficient excitation of higher-order multipoles. While the ex-
citation of these modes is possible using external illumination by plane waves, a more
efficient excitation is achieved using a point source, such as a dipole emitter, in the
proximity of the antenna. This increase in the excitation efficiency is due to the spatial
non-uniformity of the fields created by this kind of source. Fig. 3.13C depicts the sim-
ulated maximum directivity of the combined antenna-source system as a function of
the excitation wavelength, showing a resonant behavior at around 455 nm, for which a
maximum directivity of 10 is achieved. The right inset of this plot represents the radi-
ation pattern of the system. The origin of the large directivity becomes apparent when
analyzing the multipolar contributions to the radiation, as plotted in Fig. 3.13D. The
calculated amplitudes and phases of the different multipolar modes, as well as the cal-
culated radiation patterns shown below, manifest the origin of the observed directivity
as a result of the interference between an electric dipole and a set of magnetic modes
consisting of dipoles, quadrupoles, octupoles and even hexadecapoles. This concept of
super-directive dielectric antenna has been experimentally demonstrated at microwave
frequencies, using a ceramic material and a dipolar feed to excite the antenna [79].
Fig. 3.13E shows the simulated and experimentally measured directivity patterns at
the resonant maximum of the directivity of the system. The measured system is shown
in the right panel of the graph. The measurements agree well with the numerical cal-
culations demonstrating the feasibility of this design as a compact and directional
dielectric nanoantenna. A demonstration at optical frequencies is, however, still to be
achieved. For the interested reader in this topic, a plethora of dielectric nanoantennas
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of increasingly complex shapes (including rings, cups, v-shaped antennas, etc.) has
been studied in the last few years to achieve similarly complex functionalities, such
as wavelength-dependent routing, bianisotropy-induced incidence-dependent scatter-
ing and many more. Some of this work can be found in the references of this chapter
[14,57,80–82].

3.4.3 Substrate and environment influence

Let us now focus on the last strategy to design the multipolar response, and thus the
directivity, of an isolated dielectric nanoantenna. As mentioned earlier, it consists of
placing the antenna in a complex environment. In this regards, even the presence of a
simple substrate, for which an analytical solution exists in the case of spherical par-
ticles [83], can significantly alter the scattering properties of the antenna (see, e.g.,
Chapter 3 in [84]). In the case of a dielectric substrate, the impact of its presence on
the modes excited in a nanoantenna depends on its refractive index. As the index in-
creases, the impact becomes more pronounced. The main consequence of the presence
of the substrate is the emergence of bi-anisotropy in the system, which follows from
magneto-electric coupling effects, affecting only those components that are parallel
to the substrate and being strongly enhanced when resonances of the antenna are ex-
cited [22]. While the effect of the substrate on the spectral position and amplitude of
the modes is only noticeable when its refractive index is moderately high, the impact
on the scattering pattern of the antenna, and in particular on its forward-to-backward
ratio, can be significant even for low values, being measurable even in the case of a
glass substrate [85]. The physical origin of the impact of the substrate can be read-
ily understood on the grounds of dipole emission near interfaces [86] and the affected
dipole-dipole interactions. As an example of these effects, Fig. 3.14A shows a compar-
ison of the extinction cross-section and corresponding multipolar contributions from a
silicon sphere in air, on top of a glass substrate and on top a silicon one. The magneto-
electric coupling becomes apparent in the emergence of an additional electric dipole
resonance at the spectral position of the magnetic dipole one, becoming increasingly
important as the index of the substrate increases. In the case of a metallic substrate the
impact on the modes of the antenna becomes even more important. Due to the pres-
ence of free electrons and the associated screening effect optical modes excited in the
antenna experience the effect of their mirror images, thus making its scattering char-
acteristic increasingly complex [22,87]. Let us study a particular case to exemplify
the kind of effects that arise in this situation. Consider the case of a silicon sphere
illuminated by an s-polarized, oblique plane wave. Fig. 3.14B shows the comparison
between the calculated extinction cross-section when the particle is placed on top of a
glass substrate and when the particle is placed on top of a gold film. The correspond-
ing measured spectra from a silicon particle fabricated by laser ablation are shown in
Fig. 3.14C, in which both the co-polarized and cross-polarized scattering intensities
are individually plotted. In the case of the gold substrate the higher-energy electric
dipole peak presents a broadening with respect to the case of glass (also with respect
to the free-standing one) while the lower-energy magnetic one experiences a clear nar-
rowing, increasing its quality factor. It is possible to qualitatively explain this behavior
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Figure 3.14 (A) Comparison of the extinction cross-section and corresponding multipolar contribution
between a silicon sphere (radius R = 65 nm) suspended in air (left), deposited on a glass substrate (cen-
ter) and deposited on a silicon substrate (right). Adapted with permission from [22]. © (2015) American
Chemical Society. (B)–(C) Comparison of the (B) calculated extinction cross-section and corresponding
multipolar contribution and (C) experimentally measured co- and cross-polarized scattered intensity from
a silicon sphere (radius R = 85 nm) deposited on a glass substrate (left) and a gold substrate (right) under
s-polarized oblique incidence (angle of incidence 65°). In the experiment, the gold substrate is a 40 nm film
deposited on a glass substrate. (D) Scheme of the interactions between different dipoles and their mirror im-
ages, and corresponding impact on the quality factor of the resonances. Adapted with permission from [87].
© (2016) John Wiley & Sons, Inc. (E) Calculated scattering efficiency from a silicon disk with height and
diameter 100 nm deposited on top of a silicon substrate covered with an intermediate silica spacer (as shown
in the inset), as a function of the spacer thickness, t . The horizontal dashed lines represent the resonance
wavelength of the electric dipole and magnetic dipole modes. Adapted with permission from [88]. © (2013)
Optical Society of America.

in simple terms by just studying the interaction of these dipoles with their mirror im-
ages. The different cases are schematically summarized in Fig. 3.14D. In the case
of vertical (normal to the substrate) magnetic dipoles and horizontal (parallel to the
substrate) electric ones their mirror images oscillate out-of-phase, thus reducing the
radiative losses and increasing the quality factor of the mode. An opposite situation
holds for horizontal magnetic dipoles and vertical electric ones, for which the mirror
images oscillate in phase, thus increasing the total dipole moment and the radiative
losses, causing the broadening of the associated resonances. In addition to the impact
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on the mode characteristics, substrates may also cause the selective excitation of a
certain type of mode as a function of the distance between the antenna and the inter-
face [88]. The origin of this selective excitation stems from the standing wave formed
between the incident field and the reflected one, which presents alternating nodes and
anti-nodes of the electric (magnetic) field as a function of the distance to the interface.
Electric (magnetic) modes can only be excited provided the antenna is not placed at a
node of the electric (magnetic) field. In the case of dielectric nanoantennas supporting
both electric and magnetic modes, specific resonances can be alternatively excited as
a function of the distance to the interface. Obviously, this effect is increasingly pro-
nounced as the index of the substrate increases, and even more in the case of a metallic
one. Fig. 3.14E illustrates this effect by plotting the simulated scattering cross-section
of a silicon nanoantenna deposited on top of a silicon substrate with an intermediate
low-index silica spacer as a function of the spacer thickness. The plot clearly reveals
the alternating excitation of electric and magnetic dipole resonances in the antenna at
different thickness values. Recently, this effect has been used to control the scattering
from a single semiconductor nanowire antenna mounted on a microelectromechani-
cal system (MEMS) and placed in front of a metallic mirror [89]. When a voltage is
applied to the MEMS the distance between the nanowire and the mirror changes. Con-
sequently, the measured scattering spectra under TM polarization changes according
to the selective excitation of the magnetic or the electric resonance in the nanowire.
Although just an example, this gives a hint of how even a simple modification of the
environment of the antenna can help tailoring its scattering properties.

3.4.4 Scattering suppression in dielectric nanoantennas

While most of this chapter has been focused on maximizing the scattering efficiency
of dielectric nanoantennas, as well as tailoring their scattering diagram, they may also
show interesting properties when it comes to minimizing their scattering. One of the
cases in which the scattering from a dielectric nanoantenna is minimized has been
already shown in the chapter, though it may have passed unnoticed for the reader un-
familiar with this topic. In Figs. 3.5A and 3.7A we showed the scattering efficiency
of dielectric spheres with different refractive indices. In those plots, it can be seen a
spectral region in which the scattering associated with the electric dipole is strongly
suppressed. This is better seen in Figs. 3.5B and 3.7B, in which the absolute value
of the a1 coefficient is shown, exhibiting a clear minimum reaching near zero. In-
terestingly, at this spectral position the internal coefficient associated to this mode is
non-zero, implying non-zero energy and, thus, a non-vanishing displacement current
distribution. This ultimately implies that, at this spectral position, the incident field
excites in the sphere a particular oscillating current distribution configured in such a
way that does not re-radiate. This nonradiating current configuration, called anapole,
has its physical origin in the scattering cancellation between the induced Cartesian
electric dipole and the dipolar term of a family of Cartesian multipoles referred to as
toroidal moments [90]. While the first observation of anapole modes in nanophotonics
was done in systems of complex geometries [91] it was soon realized that they could
also be observed in the much simpler case of a single dielectric particle [92]. Since
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then their study has been extensive and much work can be found now in the literature,
including their extension to magnetic modes and higher orders [93], to other geome-
tries [94] as well as their application to inhibition of total scattering (below even the
Rayleigh limit [95]), to sub-wavelength lasers designs [96] or to enhanced nonlinear
harmonic generation [97], to mention some.

3.5 Conclusions and outlook

As one can see from this chapter, dielectric nanoparticles and nanoantennas repre-
sent an excellent playground for controlling and engineering multipolar interference
effects. In contrast to conventional plasmonic, which can typically only explore elec-
tric multipoles, each dielectric nanoparticle, even of a simple shape, offers a rich set
of electric and magnetic multipolar resonances whose phases and amplitudes can be
tailored by changing nanoparticle size, shape or environment. This brings excellent
opportunities to engineer amplitude, phase and directivity of the light scattered by
such particles and nanoantennas. Depending on the application one can enhance or
suppress light scattering in certain specific directions and/or narrow down scattering
diagrams using multipolar interference. The number and the character of the excited
multipoles can be controlled by nanoparticle size, number and geometry. These basic
scattering properties build the foundation for applications of dielectric nanoantennas
for efficient control of light phase and amplitude with dielectric metasurfaces and
metamaterials, enhancement of spontaneous emission, promoting nonlinear effects,
and other important application, which will further be discussed in this book.
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with dielectric optical antennas
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4.1 Introduction

In this chapter, we describe the concept of all-dielectric nanoantennas and the abil-
ity of dielectric nanostructures to tailor the spontaneous photon emission of quantum
emitters. Optical antennas aim at tailoring the photon emission process of quantum
emitters by increasing or decreasing the Purcell factor and by shaping the emission
pattern to collect photons in an efficient way. In this chapter, we first address the ba-
sics of both quantum and classical electrodynamics theory, and in particular Fermi’s
golden rule and the local density of states. Second, we derive analytical expressions
that describe the properties of the emission directivity and highlight the interest of
a coherent excitation of electric and magnetic modes on the directivity. We describe
the main advances that have been reported in the field of all-dielectric and hybrid
metal-dielectric directive antennas. Third, we introduce the concepts and basics of
fluorescence enhancement, in particular the count rate per molecule, excitation rate
and collection efficiency. Finally, we present the theory and latest advances of chiral
light emission, inhibition of spontaneous emission and magnetic spontaneous emis-
sion before providing some perspectives in the conclusion.

4.2 Theory of spontaneous emission

4.2.1 Dipole emission

The theory of spontaneous emission can be well described with the Green’s functions.
Green’s functions were developed by George Green in the 19th century to solve in-
homogeneous linear differential equations. Let us consider the inhomogeneous linear
differential equation:

Dϕ(r) = j(r) (4.1)

defined in a volume V , with known boundary conditions. In the following, r will be
outside the source volume V . The general solution of an inhomogeneous differen-
tial equation is the sum of a homogeneous solution ϕhom(r) and a particular solution
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ϕpart(r). ϕhom(r) is the solution of the homogeneous equation:

Dϕhom(r) = 0 (4.2)

Green’s functions are solutions of the linear differential operator D when the source
term is a Dirac distribution δ(r − r′) [1,2]:

DG(r, r′) = δ(r − r′). (4.3)

Green’s functions provide a special solution of the inhomogeneous equation for
any inhomogeneity j(r). The special solution ϕsp(r) is obtained by the convolution of
the Green’s function with the source term:

ϕsp(r) =
∫

V ′
G(r, r′)j(r′)dV ′. (4.4)

In electromagnetism, Green’s functions are widely used to solve the Helmholtz
equation in the presence of a current source j(r):

∇ × ∇ × E(r) − k2E(r) = iωμ0μj(r), (4.5)

where k = 2π/λ = 2πn/λ0 is the wavenumber, λ0 the wavelength in vacuum, λ the
wavelength in the medium of refractive index n. The particularity with the Helmholtz
equation is that a current in a given direction x, y or z provides an electric field vector
with three components. It turns out that the Green’s function must be a tensor. In that
case, it is called the dyadic Green’s function and is denoted

↔
G(r, r′).

First, we need to find a solution with Green’s functions for all spatial components
of the current distribution:

∇ × ∇ × Gx(r, r′) − k2Gx(r, r′) = δ(r − r′)nx,

∇ × ∇ × Gy(r, r′) − k2Gy(r, r′) = δ(r − r′)ny, (4.6)

∇ × ∇ × Gz(r, r′) − k2Gz(r, r′) = δ(r − r′)nz.

The dyadic Green’s function allows for a compact notation of the former equation.
The first, second and third column of this tensor are composed of the three Gx(r, r′),
Gy(r, r′) and Gz(r, r′) vectorial Green functions. Thanks to the dyadic Green’s func-
tion, Eq. (4.6) can be cast in a compact form:

∇ × ∇ × ↔
G(r, r′) − k2 ↔

G(r, r′) = δ(r − r′)
↔
I, (4.7)

where
↔
I is the unit tensor, also called unit dyad. It can easily be shown that the solution

is [2]:

↔
G(r, r′) =

(
↔
I − 1

k2
∇∇

)
G(r, r′) (4.8)

with G(r, r′) = exp(ik|r−r0|)
4π |r−r0| .
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The solution of the inhomogeneous Helmholtz equation with a source term
(Eq. (4.5)) is obtained by adding the solution of the homogeneous differential equa-
tion (i.e. Helmholtz equation without source term) Eh(r), and the special solution ϕsp

obtained with the convolution defined in Eq. (4.4) when considering the source term
iωμ0μj(r) [2]:

E(r) = Eh(r) + iωμ0μ

∫
V

↔
G(r, r′)j(r′)dV ′. (4.9)

The question is now to know how to calculate the current source j(r). A special
case of interest for this chapter is the case of an electric harmonic dipole p located
at r′:

j(r) = −iωpδ(r − r′). (4.10)

When plugging Eq. (4.10) in Eq. (4.9), and by assuming Eh(0), one obtains the
field emitted by an electric dipole:

E(r) = ω2μ0μ
↔
G(r, r′)p. (4.11)

The Poynting theorem states that in the harmonic domain, the radiated power P

dissipated by a current density j(r) (current density that generates the field E) defined
in a volume V is P = − 1

2

∫
V

Re(j∗.E)dV and is equal to the energy dissipation in the
volume V . In the case of an electric dipole p = pnp located at r′, the radiated power
is

P = ω

2
Im(p∗.E(r′)). (4.12)

In a homogeneous environment of dielectric permittivity ε, this radiated power sim-
plifies to [3,2]:

P0,p = |p|2
12π

ω

ε
k3. (4.13)

When studying spontaneous emission of quantum emitters coupled with dielectric
nanostructures, a case of particular interest is the case of an electric or a magnetic
dipole radiating electromagnetic energy in an inhomogeneous medium. In the case of
homogeneous media, the total field at the location of the dipole r′ is simply equal to the
field emitted by the dipole E0(r′). On the other hand, in the case of inhomogeneous
media, we must consider the self-consistent field that is the sum between the field
emitted by the dipole E0(r′) and the backscattered field, i.e. the field scattered back to
the emitter by the inhomogeneous environment Es(r′). In this case, the power radiated
by the dipole in the structured environment, normalized with the power radiated in the
homogeneous environment P0,p, becomes

P

P0,p

= ω

2P0,p

Im(p∗.(E0(r′) + Es(r′))

= 1 + 6πε

|p|2
1

k3
Im(p∗.Es(r′)). (4.14)
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A very similar result can be obtained when considering a magnetic dipole oscillating
in a structured environment. The important result is that the power radiated by a dipole
depends on its electromagnetic environment. By suitably designing the environment
of the emitters, it is possible to tailor the radiated power which is exactly the objective
of antennas. While this concept can be straightforwardly applied to classical antennas
operating at radiofrequencies, it must be adapted when dealing with optical antennas
aiming at controlling the spontaneous emission of quantum emitters, which is the aim
of the next section.

4.2.2 Spontaneous decay rates

Spontaneous emission refers to the spontaneous decay of a quantum emitter initially
in an excited state resulting in the emission of a photon. As we just illustrated, the
spontaneous emission process is not an intrinsic property of the emitter and depends
on the environment [4]. This fundamental property was discovered relatively recently
due to the fast emission process and to the complexity of measuring the emission life-
times in the visible and near infrared spectrum. The first work unveiling the role of the
environment was carried out by Purcell in 1946 who was studying the relaxation time
of a nuclear magnetic transition at radiofrequencies coupled with a resonant electri-
cal circuit hosting a single mode characterized by a quality factor Q. In his seminal
paper entitled “Spontaneous Emission Probabilities at Radio Frequencies” [5], he de-
fined the factor Fp providing the decrease of the relaxation time τ compared to the
relaxation time in the homogeneous environment τ0 as τ = τ0/Fp with:

Fp = 3

4π2
λ3 Q

Vα

, (4.15)

where λ is the emission wavelength in the cavity, Q is the quality factor of the cavity
and Vα its volume. This factor, now called the Purcell factor, shows that the cavity
greatly affects the relaxation time thanks to the excitation of a mode, and that the
decrease of relaxation time linearly depends on the quality factor of the cavity Q.
While the volume Vα was originally defined in [5] as the geometric volume of the
cavity, Vα is actually the volume of the mode α. It was highlighted in 2010 that the
conventional definition of the mode volume that depends on the product ε|E|2 cannot
be applied in plasmonics and more generally in nano-optics [6]. The exact definition
of the mode volume has been at the core of intense efforts over the last years in the
context of resonant states, also called quasi-normal modes (QNM) [7–9]. It turns out
that the effective volume is a complex volume and must be defined as Vα = 1

(np.Eα(r))2

where Eα(r) is the complex QNM field taken at position r associated with the complex
eigenfrequencies.

Drexhage confirmed the crucial role of the environment on the spontaneous emis-
sion of quantum emitters in 1970 by measuring the fluorescence decay time of
monomolecular layers of an europium dibenzoylmethane complex at varying dis-
tances from an interface [10]. This study opened the way to a huge field of research



Controlling spontaneous emission with dielectric optical antennas 113

with a wide range of nano/microstructures such as photonic crystals [11] or more re-
cently optical antennas [10,12,13].

The spontaneous decay rates defined as the inverse of the lifetimes γt = 1/τ for a
two-level quantum system are predicted by Fermi’s golden rule [2]. This rule predicts
the probability of transition between an initial state |i > with energy Ei and final
states |f > that all have energy Ef . We consider the initial state of the emitter to be
the excited state |e > and the final state to be the ground state |g >, and a transition
frequency ω0 between energies Ei ≡ �ωi and Ef ≡ �ωf = �ωk, Ef − Ei = �ω0.
The initial state of the electromagnetic field is the vacuum state (no photon) |0 >

and the final state corresponds to one photon characterized by a frequency ω and
mode k, |1ωk >. We consider the states of the system “emitter + field”. The initial
and final states of this combined system are, respectively, |i >= |e > |0 > and |f >=
|g > |1ωk >.

The interaction Hamiltonian of the system is Ĥ = −p̂.Ê in the electric dipolar
approximation. p̂ = p̃(|e >< g| + |g >< e|) is the electric dipole moment operator,
p̃ is the electric dipolar transition moment, defined by p̃ = < g|p̂|e > and assumed
to be real. E is the electric field operator and is obtained with the annihilation and
creation operators âk(t) = âk(0)e−iωkt and â

†
k(t) = â

†
k(0)eiωkt by summation over all

the modes k:

E =
∑

k

√
�ωk

2ε0

[
uk(r,ωk)âk(0)e−iωkt + u∗

k(r,ωk)â
†
k(0)eiωkt

]
(4.16)

where uk(r,ωk) are the normal modes that satisfy the wave equation:

∇ × ∇ × uk(r,ωk) − k2uk(r,ωk) = 0 (4.17)

and the orthogonality relation:∫
∞

uk(r,ωk).u∗
k′(r,ωk′)d3r = δkk′ . (4.18)

In the weak-coupling regime, the decay rates can be calculated by the Fermi’s
golden rule [2]:

γt = 2π

�2

∑
f

|< f |Ĥ |i >|2δ(ωi − ωf ). (4.19)

When plugging the expression of the field operator Eq. (4.16) in the Fermi’s golden
rule, one obtains

γt = ω

3�ε0
|p̃|2ρp̃(r′,ω0), (4.20)

with ρp̃(r′,ω0) = 3
∑

k
[
np̃.(uku∗

k).np̃
]

(with p̃ = p̃np̃). ρp̃(r′,ω0) is the so-called
partial local density of states. Let us recall that p̃ is assumed to be real. Expression
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in Eq. (4.20) shows that the spontaneous decay rate depends on the local density of
states, i.e. the number of available states k associated with the ground states. Note
also that this quantity depends on the orientation of the emitter, which is why we call
it “partial”. The important conclusion is that a modification of the local density of
states modifies the spontaneous decay rates γt .

The Green’s tensor is very convenient in writing the expression of the decay rates.
For that purpose, one writes the Green’s function with respect to the summation of all
the modes [2]:

Im(
↔
G(r, r)) = πc2

2ω

∑
k

[
u∗

k(r,ωk)uk(r,ωk)
]
δ(ω − ωk). (4.21)

The partial local density of states at the frequency ω0 and location r′ can be simply
cast in the form

ρp̃(r′,ω0) = 2ω0

πc2

[
np̃.(Im(

↔
G(r′, r′))).np̃

]
. (4.22)

When the orientation is unknown and has to be averaged over the three fundamen-
tal orientations, ρp̃(r′,ω0) describes the total local density of states and has to be
calculated through the trace of the dyadic Green tensor:

ρp̃(r′,ω0) = 2ω0

πc2
Im
(
T r(

↔
G(r′, r′)))

)
. (4.23)

From Eq. (4.20), the normalized decay rate of a quantum emitter in a structured
environment is

γt

γ0
= 1 + η

6πε

|p̃|2
1

k3
Im(p̃∗.Es(r′)) (4.24)

where we added η the intrinsic quantum yield of the quantum emitter , and γ0 is the
decay rate in the homogeneous background. For an ideal two-level quantum emitter,
η = 1, this expression which involves the dipolar transition moment, p̃ =< g|p̂|e >

is identical to the expression of the normalized emitted power by a classical dipole in
Eq. (4.14), which involves the dipolar moment p:

γt

γ0
= P

P0
. (4.25)

The important conclusion of this section is that the normalized decay rates derived in
the framework of quantum electrodynamics with Fermi’s golden rule under a weak
coupling regime can be predicted with the classical Maxwell equations. Let us stress
that a structured environment does not only affect the decay rate of a quantum emitter
but does also affect its emission frequency. This frequency shift is usually called the
Lamb shift. While the decay rate is described by the imaginary part of the Green’s
tensor, the Lamb shift is described by the real part of the Green’s tensor [2,14,15].
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Figure 4.1 Dipole orientation compared with the particle. Left: transverse coupling. Right: longitudinal
coupling.

It is important to note that the interaction Hamiltonian between the emitter and
the electromagnetic field involves only the electric transition dipole p̃ that appears in
Eq. (4.24). However, in a more general case, the Hamiltonian involves the magnetic
dipole transition (which couples to the magnetic component of light) and the electric
quadrupole that is involved when the gradient of the electric field at the position of
the emitter cannot be neglected. For a homogeneous environment, a dipolar approx-
imation is reasonable since the size of the quantum emitter is much smaller than the
wavelength. The curl and the gradient of the electric field are therefore negligible at
the scale of the emitter leading to negligible magnetic dipole and electric quadrupole
components in the interaction Hamiltonian. This approximation is not valid however
for emitters whose electric dipole transition is symmetry forbidden (such as with rare-
earth cations) leading to electric dipole and magnetic dipole transitions of similar
amplitude [16]. Furthermore, in the vicinity of optical resonators, the curl and gradient
of the electric field can be non-negligible, making the dipole approximation no longer
valid. This case was discussed theoretically in the literature [17,18] but never observed
experimentally. In the case of the magnetic transition dipole, a similar derivation can
be performed using Fermi’s golden rule.

We consider the fundamental case of an electric or magnetic dipole emitter coupled
with an optically resonant particle. At this stage, we provide a general formalism to
derive analytical expressions of the normalized decay rates, and we do not need to
specify the composition of the optical resonator (metal or dielectrics). We just need
to consider a polarizable particle behaving as induced electric and magnetic dipole or
quadrupole. We need to distinguish two orientations of the dipole source with respect
to the particle: (1) the longitudinal orientation (L) for which the dipole is oriented in
the radial direction, (2) the transverse orientation (T) for which the dipole is normal
to the radial direction (see Fig. 4.1). The normalized decay rate is [19,20]

γ̃
L,(u)
tot = 1 + Re[−9

e2ikd

(kd)6
(1 − ikd)2u1

+ 45
e2ikd

(kd)8
(ik2d2 − 3kd − 3i)2u2], (4.26)

γ̃
T ,(u)
tot = 1 + Re[− 9e2ikd

4(kd)6
(1 − ikd − k2d2)2u1

+ 15
e2ikd

(4kd)8
(−k3d3 − 3ik2d2 + 6kd + 6i)2u2
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+ 9e2ikd

4(kd)4
(kd + i)2v1

+ 15
e2ikd

(kd)6
(−k2d2 − 3ikd + 3)2v2], (4.27)

where d is the distance separating the emitting dipole from the center of the particle,
u and v denoting either the electric e or magnetic h, and un and vn denoting either the
electric an or magnetic bn scattering Mie coefficients. If u = e, un = an, vn = bn and
vice versa, if u = h, un = bn, vn = an. This equation is also valid for plasmonic parti-
cles but in this case, the magnetic coefficients are negligible [21]. When comparing the
two expressions in Eq. (4.26) for the transverse case and in Eq. (4.26) for the longitudi-
nal case, we can see that the transverse case has two extra crossed terms, meaning that
the electric (magnetic) response of a scatterer affects the decay rates of a magnetic
(electric) emitter. This is not the case in the longitudinal coupling where the decay
rates of an electric (magnetic) dipole can be modified only by the electric (magnetic)
responses of the scatterer. All these expressions tend to 1 when the emitter-to-particle
distance d increases since the coupling becomes negligible. The longitudinal coupling
provides the strongest response and is well indicated to maximize the decay rates.
This requires a specific control of the orientation of the emitter with respect to the
optical cavity. It is also important to note that the electric or magnetic decay rates can
also be calculated when the emitter is coupled with more complex nanostructures, in
particular clusters of spheres [19] or arbitrary geometries [22] (Fig. 4.2).

4.3 Controlling the emission directivity

4.3.1 Introduction

The directivity of emitters in the far field is classically weak since the far-field radia-
tion of all multipolar orders feature symmetric patterns. It means that half of the energy
is emitted in a half plane, the other half being emitted in the opposite half plane. The
most common example is generally given by the electric dipole which features two
out-of-plane lobes. One of the objectives of optical antennas is to modify the electro-
magnetic coupling to quantum emitters in order to improve the collection of emitted
photons for a given optical set-up with limited numerical aperture. The gain in direc-
tivity DdBi is defined by the ratio between the radiated intensity in the direction of
interest I and the total radiated power of the antenna Prad: DdBi = 10 log

(
4πI/Prad

)
.

Optical elements are therefore coupled with the emitter in order to maximize the radi-
ant intensity in the direction of the collective element such as a microscope objective
or an optical waveguide. Different strategies can be followed to achieve this goal.

The high potential of dielectric particles to collect light emission can be intuitively
understood by the fact that in optical waveguides, light is guided in high refractive
index materials. The ability of dielectrics to collect light emission by electric dipoles
was first studied in the context of a harmonic electric dipole in air above a dielec-
tric substrate in 1977 [23,24]. In particular, it was shown that most of the energy was
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Figure 4.2 I. Normalized decay rates of an electric or magnetic emitting dipole coupled with a dimer of
silicon particles 720 nm in diameter (emitter-to-particle surface distance of 15 nm, embedding medium of
refractive index 1.45). Taken from [20]. II. Calculation of the normalized electric and magnetic decay rates
of electric (ED) (A, B) and magnetic dipoles (MD) (C, D) 30 nm above a square assembly of 20 dielectric
nanocubes made of Si at the wavelength λ0 = 500 nm. Taken from [22].

emitted toward the high refractive index medium. The motivation of such studies was
to collect the emission of fluorescent emitters for applications in microscopy. It was
shown that the collection of light by a planar interface is optimized when the emitter
is close to the interface. In particular, in the case of a glass-water interface, up to 72%
of the power emitted by an orientationally averaged electric dipole can be collected
by a glass substrate with refractive index 1.5. More recently, dielectric microspheres
were used to enhance the excitation and to collect the fluorescence signal [25]. Differ-
ent materials can be considered with refractive index slightly larger than the refractive
index of water such as glass, latex, or polystyrene (with refractive index ≈ 1.6). By
acting on both excitation and collection, dielectric microspheres made of cost effective
and lossless dielectrics are good candidates to design optical antennas [26–28]. The
need for compactness and integrated devices motivated the development of smaller
scatterers. Scatterers with sizes typically smaller than the wavelength can be consid-
ered for that purpose if they resonantly interact with light. Two classes of materials
can therefore be considered: metals for exciting localized surface plasmon resonances
and high (or moderate) refractive index materials for exciting Mie resonances [29].
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Plasmonic antennas attracted attention first in the 2000s before the rise of dielectric
antennas in the 2010s [30].

Plasmonic nanoantennas have benefited from intense efforts in terms of design and
nanofabrication and several geometries had been proposed first to enhance the near-
field intensities and second to tailor the emission patterns [31,32]. In particular, dimers
of plasmonic particles provide intense near-field intensities in the nanogap separating
the neighboring particles [33,34]. Also, they allow for an efficient tuning of the res-
onance frequency by simply modifying the nanogap length [35–37]. A hybridization
model, inspired from chemical bonds, allows a simple intuitive explanation for the
frequency redshift when decreasing the nanogap length, and the concept of bright and
dark modes [38,39]. Regarding the emission directivity, the concept of Yagi–Uda an-
tennas, very well known in telecommunications, was downscaled to the nanometer
scale with plasmonic particles [40,41]. Yagi–Uda antennas are composed of a reflec-
tor, a feed element and several collectors [40]. The reflector is typically the largest
element of this directive antenna, the feed element is made of a particle of intermedi-
ate size whose plasmon resonance matches the emission spectrum while the collector
is composed of several self similar smaller particles. The reflector or collector behav-
ior of particles depends on their shape and location with respect to the emitter [42].
The first experimental report involving a Yagi–Uda antenna composed of 5 elements
(1 reflector, 1 feed and 3 collectors) was published in 2010. Gains in directivity as
high as 6 dB were reported by coupling colloidal quantum dots with a Yagi–Uda an-
tenna [43]. A promising alternative consists in replacing the feed by III–V nanowires,
opening the route towards electrically driven optical Yagi–Uda antenna emitters [44].

Let us now address an important question related to optical antennas: how can
optical resonant scatterers strongly affect the emission pattern of quantum emitters?
In order to answer this question, it is enlightening to study first the reflector or collector
behavior of a single particle behaving as an induced electric dipole coupled with an
emitting electric dipole. In a second step, we will extend this model to the case of
an electric dipole coupled with an optically resonant dielectric scatterer hosting an
induced electric dipole plus an induced magnetic dipole.

4.3.2 Theory of directional light emission

Let us consider an electric dipole oriented along the z-axis (see Fig. 4.3). The exci-
tation field emitted by the electric dipole pem at the position of the scatterer (at its
center) is composed of three terms: the near field which decays as 1

r3 , the intermediate

field which decays as 1
r2 with a π phase shift compared with the near and far fields,

and the far field which decays as 1
r

[2]

Eexc(d) = Einc(d) = eikd

4πεmε0d3

[
k2d2(ẑ × pem) × x̂

+ (1 − ikd)(3(x̂ · pem)x̂ − pem)
]

= − eikd

4πεmd3
(1 − ikd − k2d2)ẑ (4.28)
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Figure 4.3 Emission directivity. (A) Sketch of the model under study: an electric dipolar emitter oriented
along the Oz axis is coupled with a plasmonic nanoparticle of diameter 2a, whose center is located at a
distance d from the emitter along the Ox axis. The embedding medium has a refractive index of 1.5. The
emission wavelength is 600 nm in vacuum and 530 nm in the embedding medium. (B–D) 3D emission
patterns calculated for three different emitter-to-particle distances d: (A) 19 nm, (B) 38 nm, (C) 9 nm.
Reprinted with permission from Brice Rolly, Brian Stout, Sebastien Bidault, Nicolas Bonod, Crucial role
of the emitter–particle distance on the directivity of optical antennas, Optics Letters 36 (2011) 3368–3370,
Optical Society of America.

where k is the wavenumber. It turns out that the induced dipolar moment pin in the
sphere is

pin = −α
eikd

4πd3
(1 − ikd − k2d2)ẑ. (4.29)

The electric dipole polarizability α can be simply calculated with the electric Mie
coefficient a1. It is important to stress that the dipole induced in the sphere is co-
herent with respect to the source dipole. The emission directivity in the far field can
be predicted by calculating the Poynting vector that results from the interference be-
tween the two electric fields and the two magnetic fields. More precisely, we wrote
for cosφ > 0 and r � d the Poynting vector P of the field emitted by the two dipoles
(pin and pem) and then added the Poynting vector symmetric with respect to the origin
P(r,π − θ,π + ϕ) [45]:

�P(r, θ,ϕ) = P(r, θ,ϕ) + P(r,π − θ,π + ϕ)

= ω3k|p1||p2|
8π2ε0c2r2

{sinφ sin[kd sin θ cosϕ]} sin2 θ er

where φ = arg(pem/pin) is the relative phase of the two dipoles. This expression con-
firms that, for small parameters kd , the directivity is directly linked to the sign of



120 Dielectric Metamaterials

sin(φ), i.e. to the capacitive or inductive behavior of the dipolar metallic particle [40].
When considering an emission along the x-axis, sin θ = cosϕ = 1, the last expression
simplifies to

�P(x, d) = ω3k|p1||p2|
8π2ε0c2x2

sinφ sin(kd)̂x. (4.30)

In this case, the direction of emission can be predicted by the difference of phase
between the dipolar emitter (pem · ẑ) and the induced electric dipole in the particle

(pin · ẑ = −α eikd

4πd3 (1 − ikd − k2d2)) [42]. The phase φ is a nonlinear function of kd:

φ(kd) = Arg
pin · ẑ
pem · ẑ

= Arg

(
− αeikd(1 − ikd − k2d2)

)
. (4.31)

This phase term is very interesting to study since it contains most of the information
on the directivity. It contains two terms: φ(kd) = φα(kd) + φd(kd) with

φα(kd) = Arg(α), (4.32)

φd(kd) = Arg

(
− eikd(1 − ikd − k2d2)

)
. (4.33)

Two terms contribute to φd(kd): the first term eikd describes the far-field propa-
gation while the second term 1 − ikd − k2d2 describes the near-field coupling be-
tween the two dipoles. When kd → 0, φd → π and sin(φ) → − sin[arg(α)] < 0 since
arg(α) ∈ [0,π]. When plugging sin(φ) < 0 in Eq. (4.30), one obtains �P < 0, mean-
ing that most of the energy goes in the −0x direction: the particle behaves like a
reflector. This property does not depend on the size and composition of the particle.
When the emitter is close to the particle, kd → 0, the particle reflects the light emitted
by the dipole. When kd increases, φ decreases and achieves its minimum of φ ≈ 3π

4
when kd = √

2. Under this condition, kd = √
2, and the particle collects light, �P > 0

if φα < π/4 [42]. Let us stress that the phase due to the polarization φα shifts from
π for the shortest wavelengths to 0 for the largest wavelengths with a maximum of
phase variation around the resonance. This means that the condition φα < π/4 (con-
dition corresponding to a collector behavior) is observed for wavelengths larger than
the resonance wavelength. Hence, at the emission wavelength, we understand why
large particles are used to reflect light while smaller particles are used to collect light.
We also understand why, for small particles, the directivity is very sensitive to the
emitter-to-particle distance.

Let us now go further by considering a dielectric resonator hosting in addition to
an electric dipolar resonance, a magnetic dipolar resonance. Subwavelength sized di-
electric Mie scatterers have benefited from intense efforts in radiofrequencies [46]
and more recently in visible and near infrared frequencies [47]. Sub-micron titania
particles were numerically investigated in 2010 to tailor the direction of light emis-
sion of quantum emitters and to enhance the near electric field intensity [48]. The
idea was to combine the advantages of metallic antennas to enhance the decay rates
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and of Mie resonators to achieve high directivity. In 2011, the problem of an emit-
ter coupled with a single Si particle was considered. Very interestingly, it was shown
that a single Si particle behaves like an effective Huygens source and can switch the
directivity of emission in the forward or backward scattering by simply tuning the
emission frequency [49]. The concept of all-dielectric Yagi–Uda optical antennas was
also introduced in the same study by coupling an emitter to three silicon particles,
one forming the reflector, two forming the collector. It was also suggested to further
increase the directivity by coupling additional particles in the collector element. This
was done in 2012 by the same group by considering four self-similar particles in the
collector [50] (Fig. 4.4). Besides the control of directivity, the authors also studied the
enhancement of the Purcell factor and made a comparison with plasmonic particles.

The extension of this dipolar model to particles hosting electric and magnetic dipo-
lar resonances is equivalent to extending the so-called Kerker conditions to the near
field. Let us briefly summarize that the Kerker conditions were originally established
in the case of a magnetic scatterer illuminated from the far field [51] and were ex-
tended to the case of purely dielectric particles in 2011 [52,53]. The first Kerker
condition corresponds to a maximum of forward scattering associated with a vanish-
ing backward scattering while the second Kerker condition corresponds to a minimum
of forward scattering. The observation of Kerker conditions in nonmagnetic particles
is allowed by the excitation of electric and magnetic induced dipoles. While the con-
ventional Kerker conditions are established when exciting a scatterer from the far-field
region, typically with a plane wave or a collimated beam, this concept can be extended
to the near field by exciting a single high refractive index particle with an electric dipo-
lar emitter. The key difference between the two configurations is the crucial role of the
difference of phase between the exciting electric dipole and the two dipoles induced
in the scatterer. The method is the same as before when we considered electric dipole
resonances. The difference is that the emitting electric dipole now also induces a mag-
netic dipole through its magnetic field emission:

Hp(r r̂) = eikr

4πεmε0μ0ωr
k3(1 + i

kr
)r̂ × p (4.34)

due to the resonant magnetic response of the dielectric scatterer. The Poynting vector
results now from the interference between the electric and magnetic fields emitted
by two electric dipoles and one magnetic dipole [54] (Fig. 4.4). By introducing the

coupling parameters γe = −eikd a3

d3 (1−ikd−k2d2) and γm = eikd a3

d3 (ikd+k2d2), and

the polarizabilities α̃ = i 3
2k3a3 a1; β̃ = i 3

2k3a3 b1, the time-averaged Poynting vector can
be cast in the form

P(x, y, z) = ωk3

32π2r2ε0εm

× (4.35){
(1 − x2)|1 + γeα̃e−ikdz|2 + (1 − y2)|γmβ̃|2 (4.36)

+ 2z�[γ ∗
mβ̃∗eikdz(1 + γeα̃e−ikdz)]

}
r̂.
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Let us first optimize the collecting behavior, a situation that corresponds to the
first Kerker condition for the near-field excitation. This condition is satisfied when the
Poynting vector along the −z direction, P(0,0,−z), is minimized:

P(0,0,−r) ∼= ω

32π2εmε0r2
k3(|γmβ̃|2 + |1 + γeα̃eikd |2

− 2|γmβ̃||1 + γeα̃eikd |)r̂.

This condition can be satisfied if

e−ikd + γeα̃ = γmβ̃ → P(0,0,−r) = 0. (4.37)

The extension of the second Kerker condition to a near-field excitation corresponds
to the condition

eikd + γeα̃ ∼= −γmβ̃. (4.38)

As we can see, the excitation of a magnetic dipole in the dielectric particle offers
additional pathways to tailor the emission such as switching the directivity, or increas-
ing the gain in directivity. This method can also be used in plasmonics but at the
price of more complex shapes such as U-shapes in order to excite induced magnetic
dipoles in the plasmonic scatterers [55–57] or nanorings to couple electric dipoles
and quadrupoles [58] or by coupling different electric dipolar metallic scatterers [59].
The coupling of quantum or classical emitters to additional multipolar orders (electric
quadrupole and magnetic dipole) allows for a more directive emission.

4.3.3 All-dielectric directive antennas

Highly directive dielectric antennas with dielectric permittivity close to that of sili-
con in the visible spectrum were first characterized in hyperfrequencies [61–63,60].
This range of frequencies offers materials with a wide range of dielectric permit-
tivities. Moderate dielectric permittivities (≈ 7) are interesting to tune the emission
frequency since they feature resonances wider than high dielectric permittivity res-
onators. Wider Mie resonances allow a spectral overlap between resonances from
different multipolar orders. The high number of modes involved in the emission pat-
tern allows for a fine tuning of the directivity. In particular, it is possible to switch
the directivity from the forward direction to the backward direction by simply mod-
ifying the emission frequency. The coupling between the emission dipole and higher
order modes of the dielectric scatterer can be achieved by considering a notch in the
dielectric antenna. Placing the emitter inside the notch offers highly directive antennas
(Fig. 4.4).

An experimental realization and characterization of an all-dielectric directive an-
tenna in the visible spectrum was reported in 2017 [64]. The antenna was composed
of a reflector and a collector made of hafnium dioxide and the light source was pro-



Figure 4.4 Highly directive all-dielectric antennas. I: Forward and backward light emission of an electric dipole emitter coupled with a 85 nm in radius GaP nanosphere
and emitting at λ = 550 nm. The surrounding medium is made of glass. Distance between the emitter and the surface of the particle: 10 nm (A, left) and 100 nm
(right, B). Reprinted with permission from Brice Rolly, Brian Stout, Nicolas Bonod, Boosting the directivity of optical antennas with magnetic and electric dipolar
resonant particles, Optics Express 20 (2012) 20376–20386, Optical Society of America. II: notch antenna. The electric dipolar emitter is placed in a notch etched in the
dielectric particle. (A) Maximum directivity obtained when the emitter λ = 455 nm is displaced along the Ox axis with and without a notch. (B) Directivity plotted with
respect to the wavelength with and without notch. Inset: 3D emission pattern. Taken from [60]. Bottom: all-dielectric Yagi–Uda antenna. III: Sketch of the Yagi–Uda
antenna. The radius of the reflector element is Rr = 75 nm, and the radius of the 2–5 smaller director elements is Rd = 70 nm. IV: directivity with respect to the
wavelength when the distance between the elements is 70 nm; (A) monomer, (B) Yagi–Uda antenna. Parts III, IV reprinted with permission from Alexander E. Krasnok,
Andrey E. Miroshnichenko, Pavel A. Belov, Yuri S. Kivshar, All-dielectric optical nanoantennas, Optics Express 20 (2012) 20599–20604, Optical Society of America.
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Figure 4.5 (A) Sketch of the experiment: The intensity distribution in the back-focal plane of the collecting
objective is obtained from the angular distribution of light emission. (B) SEM image of the fabricated
dielectric antenna. (C) Angular intensity distribution of dielectric antennas. Taken from [64].

vided by quantum dots deposited into the feed gap between director and reflector (see
Fig. 4.5).

2D transition metal dichalcogenide materials (WS2, MoS2, WSe2, and MoSe2) are
very promising for developing integrated photon sources as they are cost effective,
atomically thin, and their shape makes them easy to integrate into planar photonic
devices [66]. The coupling with optical antennas is particularly interesting since it
will redirect the emission to a direction normal to the surface [67]. We now know
that the distance between the emitter and the antenna is crucial for both decay rates
and directionality (see Eqs. (4.27), (4.30)). The coupling between excitons in 2D
semiconductors and semiconductor-based antennas is therefore well mastered, i.e.
the emitter-to-antenna distance is very well controlled and repeatable. In this con-
text, 2D semiconductors coupled with high refractive index antennas have a high
potential in terms of fabrication and implementation to develop integrated, efficient
and compact directive sources of photons. By coupling a silicon nanowire to a MoS2

atomically thin layer, a forward-to-backward ratio of 20 was demonstrated in 2018
at the emission wavelength of 680 nm [65]. This study nicely combines the pho-
toluminescence properties of 2D materials with the scattering properties of silicon
nanorods [68] to redirect the fluorescence emission in a direction normal to the plane
(Fig. 4.6).

Let us also stress that plasmonic and Mie resonators can judiciously be combined
in hybrid metal-dielectric antennas [48,71–73] (see Fig. 4.7). Mie resonators feature
high extinction cross-sections when excited from the far field and reciprocally, they
can provide high directivity when excited from the near field [74,75,69,70].
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Figure 4.6 Top: highly directional fluorescence emission. (A) Sketch of the experiment: a MoS2 mono-
layer is grown on a transparent sapphire substrate and a silicon nanorod is drop cast on top and the MoS2
layer is etched around the nanorod. (B) Fluorescence images for transverse magnetic polarization: Top (T),
bottom (B), and top over bottom (T/B) ratio. Inset: (T/B) ratio in transverse electric polarization. Taken
from [65].

Figure 4.7 (A) Hybrid Ag-TiO2 antenna: sketch of the hybrid antenna; 3D emission pattern when excited
by an electric dipole emitter located in the gap of the Ag dimer; near electric field intensity distribution
when excited by a polarized plane wave. Taken from [48]. (B) Hybrid Ag-GaP antenna: sketch; 3D emis-
sion pattern; normalized decay rate of the emitter located in the gap of the Ag dimer alone (dotted line, left
scale) or coupled with the GaP particle (full line, left scale), antenna efficiency (blue dotted line, right scale).
Reprinted with permission from Brice Rolly, Brian Stout, Nicolas Bonod, Boosting the directivity of opti-
cal antennas with magnetic and electric dipolar resonant particles, Optics Express 20 (2012) 20376–20386,
Optical Society of America. (C) Comparison between three different antennas: pure dielectric antenna (blue
dotted line), metallic monomer (green dotted line) and metallic dimer (red full line) coupled with the di-
electric antenna. Left: directivity in the forward direction; right: radiative decay rate. Taken from [69]. (D)
Experimental fabrication and characterization of a hybrid antenna: a gold bow-tie antenna is coupled with
3 Si nanorods. The emission is provided the photoluminescence of gold. Taken from [70].
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4.4 Fluorescence enhancement of electric and magnetic
emitters

4.4.1 Fluorescence enhancement

When coupling quantum emitters with optical antennas, the number of photons col-
lected by the optical set-up can be drastically enhanced [76,77]. The fluorescence
enhancement depends on different parameters: (i) the excitation strength, (ii) the quan-
tum efficiency, and (iii) the collection efficiency. Quantum emitters are classically
described by a two-level energy system. The excitation strength describes the exci-
tation by the incoming light from the ground state to the excited state. It is equal
to the product σIe between the extinction cross-section σ of the quantum emitter
and the light intensity Ie at the location of the quantum emitter. Excited emitters can
release their energy through radiative (emission of photons) decay γr or through non-
radiative decay γnr . The total decay rate γt is the sum of these two decay channels
γt = γr + γnr . The quantum yield of the emitter η = γrad/γt describes the ratio be-
tween these two decay channels. A saturation intensity defined by Is = γt

σ
describes

the capacity of the emitter to release its energy compared with its capacity to be excited
by photons σ . Therefore, the excitation strength is defined as σIe

1+Ie/Is
. When Ie � Is ,

it is linearly proportional to Ie. However, for larger excitation intensities Ie � Is , it
reaches a threshold and tends towards σIs . The brightness of the fluorescence signal
measured in a given optical set-up is generally given by the Count Rate per Molecule
(CRM). This quantity is defined by the product between three terms, the collection
efficiency κ , the quantum yield η and the excitation strength [76,77]:

CRM = κη
σIe

1 + Ie/Is

. (4.39)

We retrieve the two conditions of excitation, namely the weak excitation regime
Ie � Is and the saturation excitation regime Ie � Is . Under the weak excitation
regime, the CRM is linearly proportional to Ie, CRM = κησIe and depends on the
three parameters, collection efficiency, quantum yield and excitation rate. Under the
strong excitation regime, the CRM saturates, CRM = κησIs = κηγt = κγr , and sim-
ply reduces to the product CRM = κγr [76,77]. These expressions show the crucial
role of the collection efficiency κ in the count rate per molecule. In the weak excita-
tion regime, the excitation rate also plays a fundamental role. When designing optical
antennas, one has to take into account these constraints and antennas must satisfy the
following rules: in both regimes (weak and saturation regimes), a high directivity is
required to maximize the collection efficiency and the radiative decay rate has to be
optimized. In the weak excitation regime, the excitation rate must also be optimized
while the radiative decay rate must maximize the quantum yield. While metallic an-
tennas are well suited to maximize the excitation rate with huge field enhancements,
dielectric antennas are very good candidates to satisfy all these parameters simultane-
ously and to combine high excitation rate with high collection efficiency and quantum
yield. The weak losses of dielectrics compared with metals allow the design of high
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quantum yield antennas that can overcome the weaker excitation rates. Besides the
interest of weak losses, dielectric antennas can outperform metallic antennas in the
design of highly directive antennas thanks to the coherent excitation of multipolar
electric and magnetic modes.

4.4.2 Excitation rate

Dimers of silicon Mie resonators were proposed to enhance the near-field intensities
in the gap separating the two resonators. The idea was first proposed by Sigalas et al.,
with thin silicon cylinders hosting electric dipolar modes [78]. The electric field dis-
tribution shows a strong electric field intensity enhancement in the nanogap separating
the two Si disks. The light intensity distribution becomes completely different when
considering thicker disks: (i) electric and (ii) magnetic fields are maximized inside the
high refractive index material. The electric and magnetic near fields in the nanogap
of silicon dimers can be probed with near-field scanning probes [79]. The nanogaps
separating dielectric particles provide a good platform to perform fluorescence based
molecular spectroscopy. First, they decrease the detection volume which is limited
in an unstructured environment by the Rayleigh criterion. Decreasing the detection
volume is of high interest since it allows the decrease of the number of molecules dif-
fusing in the excitation spot [80,81]. There is therefore a trade-off between decreasing
the nanogap size to reduce the detection volume and to enhance the excitation rate,
and increasing the gap to decrease the quenching between the fluorophores and the
lossy material used to fabricate the nanoantenna (Fig. 4.8).

The material used to fabricate the nanogap antenna plays an important role [84].
Attention was first paid to silicon [85,82]. Cambiasso et al. studied GaP for an effi-
cient platform to enhance both second harmonic generation (SHG) and fluorescence
emission [86]. Dimers of silicon particles were also investigated with fluorescence
correlation spectroscopy which provides an efficient means to probe the number of
molecules and the fluorescence enhancement of freely diffusing molecules in solu-
tion. Dimers of silicon particles can be fabricated with conventional electron beam
lithography (EBL) followed by reactive ion etching (RIE). Basically, a water solution
of fluorescence molecule is dropped on the sample of silicon nanogap antennas. The
sample is illuminated by a CW laser beam focused by a high numerical aperture objec-
tive. The fluorescence signal can be collected with the same objective and transferred
to avalanche photodiodes. The number of detected photons is plotted with respect
to time from which can be calculated the autocorrelation function. The analysis of
the autocorrelation function provides the number of detected molecules, the detection
volume and the fluorescence signal per molecule. When comparing the results for two
sets of samples, the set with nanogaps of 20 nm, and the second set with nanogaps
of 30 nm, the difference in fluorescence enhancement is striking: smaller nanogaps
(20 nm) provide much better results. First, a 3600-fold reduction of the detection vol-
ume is observed compared with the case without the antenna, i.e. compared with the
diffraction limited confocal volume. This strong decrease of the detection volume re-
sults in a large decrease in the number of detected molecules since on average, the
number of observed molecules can be smaller than one. This result proves the ability
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Figure 4.8 (A) Silicon nanogap antenna used to detect fluorescent molecule freely diffusing in water. In-
set: SEM image of a fabricated Si dimer antenna with 20 nm gap. Taken from [82]. (B) Dielectric nanogap
antennas enhance either the electric or the magnetic field intensity. Taken from [83]. (C) Electric and mag-
netic hot spots in silicon nanogap antennas can be imaged thanks to a near-field scanning optical microscopy
technique. Taken from [79]. (D) Electric field distribution in the vicinity of two Si disks of 2 µm diame-
ter and 200 nm thick separated by a 20 nm gap illuminated by a plane wave at normal incidence with
λ = 2.437 µm polarized along the dimer axis (longest wavelength resonance). Reprinted with permission
from M.M. Sigalas, D.A. Fattal, R.S. Williams, S.Y. Wang, R.G. Beausoleil, Electric field enhancement
between two Si microdisks, Optics Express 15 (2007) 14711–14716, Optical Society of America.

of all-dielectric antennas to detect molecules in physiological conditions, in particu-
lar at micromolar concentration, with a sensitivity down to the single molecule level.
Silicon Mie resonators possess all the properties required to design highly efficient
platforms for biosensing [87,47].

An alternative strategy to nanogap antennas in order to achieve strong excitation
strength is to embed light sources directly inside the Mie resonator, where the exci-
tation strength and the Purcell factor are maximum [9,88]. Ge(Si) quantum dots were
embedded in silicon nanodisks to optimize the spatial overlap between the modes of
the dielectric nanodisks and the light source (see Fig. 4.9). Importantly, the concept of
mode hybridization and Mie nanodisk coupling that was used in nanogap antennas can
be also applied with quantum dots doped Si resonators. A linear trimer of Si nanodisks
leads to a 10-fold enhancement of the photoluminescence signal when anti-symmetric
electric and magnetic dipolar modes are excited. Spontaneous emission can also be tai-
lored with metasurfaces [89–92,91,93]. Metasurfaces are very well indicated to tailor
the spontaneous emission and the emission directivity (see Fig. 4.9). The solid-state
emitters can also be embedded directly in the resonant Mie metasurface [92]. The spa-
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Figure 4.9 Solid-state emitters embedded in dielectric Mie nanostructures. (A) The photoluminescence
of quantum dots embedded in silicon Mie resonators is studied for different configurations: Si bulk (left),
monomers (center) and linear trimers (right). Taken from [88]. (B). Solid-state emitters embedded in III–V
metasurfaces. Photoluminescence spectra measured at room temperature is studied for different geometries
of meta-atoms. Taken from [92].

tial overlap between the emitters and the spatial profile of the modes is maximized by
tuning the geometry of the meta-atoms. It is found that maximizing the spatial overlap
by breaking the symmetry of meta-atoms leads to an increase of 2 orders of magnitude
of the photoluminescence signal and a beaming of the photoluminescence signal (see
Fig. 4.9B).

4.4.3 Chirality of light emission

An interesting feature of high refractive index antennas is that the excitation of both
electric and magnetic induced dipoles in the particle offers an efficient means to con-
trol the chirality of light emission by chiral light sources [94]. Chiral emitters are
characterized by the existence of both electric and magnetic emitting dipolar moments,
with p being of real amplitude and m of complex amplitude [95,96]. The chirality
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Figure 4.10 (A–B) Scattered far-field chirality signal. Chirality of the light scattered by a silicon (A)
or a gold (B) antenna with respect to the wavelength in micrometers. The black straight line represents
α = √

0.9. The colored lines in (B) represent the 4 different radii R = 40,60,80,100 nm. The radius of
the silicon particle is 100 nm. (C) Scattered field projected on the XY plane at 600 nm of the center of the
resonator and projected on the ±1 helicity basis. Chiral emitter (α = √

0.9, λ = 808 nm) located at 10 nm
from the surface of the particle and oriented along the 0z axis. Top: silicon antenna, bottom: gold antenna.
Taken from [94].

of light emission is quantified in the helicity basis A+
j,mz
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j and mz are the multipolar components, j = 1 for dipolar emitter, and mz de-
scribes the orientation of the emitter. By denoting |α|2 the probability that the emit-
ter radiates light with helicity +1, the electric field emitted by the chiral emitter is

E = αA+
j,mz

+
√

1 − |α|2A−
j,mz

. It is therefore enlightening to study the scattered light

obtained with the system “chiral emitter+spherical antenna”. The scattered field Qs

is the sum of the field scattered in the +1 and −1 helicity basis, Qs = Q+
s + Q−

s .
The chirality of the light emitter and of the scattered light far from the antenna can be
defined, respectively, by the factors C(α) and Cs(α) that range between [−1;+1]:

C(α) = |α|2 − (1 − |α|2)
|α|2 + (1 + |α|2) , (4.40)

Cs(α) = Q+
s − Q−

s

Q+
s + Q−

s

. (4.41)

Let us first consider the case of a chiral dipolar emitter characterized by α2 = 0.9
coupled with a plasmonic (gold) resonator. We calculate Cs(α) and the scattered field
for different radii of the gold particle in the visible spectrum (see Fig. 4.10). When
comparing the two spectra, it is clear that the electric dipolar resonances hosted by
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the spherical gold nanoparticle entirely inhibit the chirality of light emission since
Cs(α) = 0 at the electric dipolar resonance. If we now consider the same chiral emitter
coupled with a silicon particle of diameter 200 nm, the Cs(α) spectrum is very differ-
ent. It is evident that if an almost pure electric dipolar resonance kills the chirality of
light emission, Mie resonators that host electric and magnetic multipolar resonances
strongly tune the chirality of the scattered light since Cs(α) spans in the visible spec-
trum all the possible values in the range [−1;+1]. We see in Fig. 4.10 that the silicon
particle can increase the chirality of light emission (Cs(α) > C(α)) in a given range
of frequencies. It can also reduce the initial chirality of the emitter, especially at a
given electric or magnetic multipolar resonance. It can be observed that Cs(α) is al-
most zero when Qs is maximum [94]. This comes from the fact that electric/magnetic
modes split 50%–50% into modes of helicities +1 and −1. As the maxima of Qs oc-
cur at a given electric or magnetic mode, both Q+

s and Q−
s contribute equally to this

maximum. Interestingly, the helicity is preserved when the condition Cs(α) = C(α) is
satisfied. It is preserved at two frequencies, one frequency corresponding to the dual
condition. Let us stress that dual scatterers preserve the helicity of light [97]. These re-
sults show the high potential of all dielectric nanostructures to manipulate the helicity
of the spontaneous emission of chiral emitters [98,99].

4.4.4 Inhibition of spontaneous emission

Dielectrics with weak losses offer new paths to manipulate decay rates. If photonic
nanostructures can modify the local density of optical states, they can a priori either
enhance or decrease the decay rates. Increasing the decay rates has attracted most
of the attention in nanophotonics for accelerating the light emission process and to
increase the number of photons emitter per second. However, it should be pointed out
that photonic crystals were initially developed to inhibit spontaneous emission [11]
before being used to produce high quality factor cavities [100].

The question is now to know whether dielectric optical antennas can also achieve
inhibition. It is important to stress that, in the case of photonic crystals or other di-
electric microcavities, the interaction with quantum emitters generally only involves
a modification of the local density of radiative optical states as these resonators fea-
ture negligible ohmic losses. This is certainly not the case in plasmonic resonators
that can quench fluorescence when the gain in local density of states is dominated by
non-radiative modes. In practice, an inhibition of spontaneous emission can only be
performed through an engineering of radiative modes while maintaining non-radiative
modes as weak as possible. Such a case cannot be observed with plasmonic antennas:
even if the radiative local density of states can be lowered by a plasmonic resonator,
in particular when its induced dipolar mode is out-of-phase with the emitting dipole
in a transverse geometry [101], the non-radiative local density of states will always be
strongly increased leading to an overall reduction of the luminescence lifetime. This
is why it is interesting to consider whether dielectric antennas with low ohmic losses
can provide, at the same time, a reduced local density of radiative states and negligi-
ble non-radiative modes. All-dielectric nanostructures are a priori well indicated since
they feature low losses that should avoid significant quenching.
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Figure 4.11 (A) Sketch of the experiment. (B) Experimental and (C) theoretical emission decay rates with
respect to the axial distance between the fluorescent nanosphere and the 170-nm-diameter (red data points
and solid line) or 250-nm-diameter (blue data points and solid line) Si resonators. Taken from [102].

This property of dielectric antennas can be verified by measuring the emission
lifetime of quantum emitters coupled with a silicon antenna [102]. A straightfor-
ward method to monitor the LDOS in the vicinity of a silicon antenna is to graft a
nanoparticle doped with fluorophores at the tip of a near-field probe and to measure
the emission lifetime of the fluorophores when scanning the antenna. The challenge is
that the LDOS is highly dependent on the distance between the fluorophores and the
antenna. This scanning probe technique is well suited to address this challenge since
it allows for a precise positioning of the emitter, in the three dimensions, with respect
to the antenna.

Experiments were carried out by scanning a 100 nm fluorescent nanosphere over
silicon monomer antennas of diameters ranging between 170 nm and 250 nm. Mea-
surements of emission lifetime showed increased and decreased total spontaneous
decay rates by up to 15%. In practice, tuning the size of the resonator modifies the
resonance wavelength of its dipolar electric mode. For a 170 nm Si disk, the reso-
nance matches exactly the emission wavelength of the fluorescent molecules while,
for a 250-nm-diameter resonator, there is a frequency mismatch. As discussed in
paragraph 3.2, this frequency mismatch modifies the phase φα of the polarizability
of the resonator. As shown in Fig. 4.11, this leads to the emitting dipoles from the
molecule and the induced dipole in the particle to be in-phase for the 170 nm particle
but out-of phase with the 250 nm antenna when the distance between the fluores-
cent particle and the resonator is minimum. In-phase dipoles provide stronger radiated
power when considering classical dipoles and, therefore, larger radiative decay rates
for quantum dipoles. Inversely, an out-of-phase condition will reduce the radiative de-
cay rate. Since non-radiative decay rates are weak with low-ohmic-losses antennas like
Si nanodisks, this process leads overall to an inhibited spontaneous emission with the
out-of-resonance particle (250 nm diameter) but an increased decay rate for the reso-
nant case (170 nm disk). When the distance between the antenna and the fluorescent
particle is increased, this modifies the phase term φd related to the propagation of the
electric field emitted by fluorescent molecules. This propagative phase term can bring
the resonant antenna out-of-phase with the emitting molecules and, similarly, the out-
of-resonance antenna in-phase. This phenomenon explains the damped oscillations of
decay rates observed both theoretically and experimentally in Fig. 4.11. The damping
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arises from the reduced interaction between fluorescent emitters and antenna as the
distance increases. However, one can note that the measured spontaneous decay rate
modulations observed in Fig. 4.11 remain weak. This is due both to the weak modu-
lation of the local density of states offered by a single Si nanodisk and to the size of
the fluorescent particle (100 nm diameter over which the modulation of the density of
states is averaged). It was theoretically estimated that a dimer of silicon disks, which
features much stronger modulations of the local density of optical states, should al-
low an inhibition of spontaneous emission by more than one order of magnitude for
transverse emitters [83].

4.4.5 Magnetic emission

An interesting aspect of Mie resonators is that they can host electric and magnetic
resonances. Therefore, by resonantly exciting electric or magnetic multipoles in the
antenna, it is possible to enhance either the electric or magnetic near-field intensities.
Dielectric antennas have attracted a special interest for enhancing the magnetic LDOS
through the excitation of magnetic Mie resonances. The strong magnetic response of
silicon spherical particles in the visible and near infrared was stressed as early as 2011
[103]. In parallel, there were very inspiring studies on the enhancement of magnetic
dipole transitions of trivalent lanthanide ions by simply modifying their electromag-
netic environment. Lanthanide ions are particularly interesting since their intra-4f n

optical transitions feature strong magnetic dipolar contribution [104,16]. Among the
wide variety of emitters and transitions that can offer magnetic dipolar transitions,
europium and erbium ions have been particularly studied and have a long history in
optical spectroscopy. The 5D0 → 7F1 magnetic dipolar (MD) transition of Eu3+ near
588 nm was used in the seminal experiments devoted to modified spontaneous emis-
sion carried out by Drexhage [105] or Kunz et al. [106] while the 4I13/2 →4 I15/2 MD
transition of Er3+ near 1550 nm is used for signal amplifiers in optical fibers. Lan-
thanide ions are also suitable emitters to probe the electric and magnetic local density
of optical states [107–111].

Magnetic dipolar transitions were first considered in nanophotonics to probe the
artificial magnetism created in optical metamaterials [112–114]. Photonic nanostruc-
tures modify both the electric and the magnetic local density of states. Therefore, they
can modify the competition between electric and magnetic transitions. An experiment
close to the initial Drexhage reported a four-fold enhancement of the far-field emis-
sion from the 5D0 → 7F1 MD and 5D0 → 7F2 electric dipolar (ED) transition when
varying the distance between europium ions and a gold mirror [115]. As the excited
state 5D0 is common for these two transitions, and as the relaxed states feature differ-
ent energy levels, tailoring the electric or magnetic LDOS offers an additional degree
of freedom to tune the emission frequency [116].

All of these great advances highlight the interest of coupling lanthanide ions with
dielectric Mie resonators supporting electric and magnetic multipolar resonances. The
analytical expressions in Eq. (4.27) show that the magnetic decay rates can be pro-
moted when coupling the dipolar emitter with a dipolar or quadrupolar resonance. It
was shown in [20] that the quadrupolar magnetic resonance, classically described in
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Figure 4.12 (A) SEM image of a hollow silicon resonator designed to feature a strong magnetic reso-
nance around λ = 600 nm. Reprinted with permission from Marie Anne van de Haar, Jorik van de Groep,
Benjamin J.M. Brenny, Albert Polman, Controlling magnetic and electric dipole modes in hollow silicon
nanocylinders, Optics Express 24 (2016) 2047–2064, Optical Society of America. (B) Hollow dielectric
resonators optimized to enhance specifically the radiative decay rates of magnetic dipolar emitters located
at the center of the resonator. Taken from [121].

the multipolar Mie theory by the coefficient b2, is particularly interesting to enhance
the magnetic decay rate. The longitudinal coupling offers much stronger decay rate
enhancements, and they also forbid transverse electric-magnetic coupling (i.e. electric
resonances cannot influence magnetic decay rates, and vive-versa). This forbidden
coupling is highly suitable to promote magnetic decay rates. When the orientation of
the emitter is not controlled, enhancement of electric decay rates by magnetic reso-
nances in transverse coupling cannot be avoided. However, when averaging the decay
rates over all the possible orientations, the magnetic decay rates can be significantly
enhanced by magnetic resonances. It turns out that silicon and more generally high re-
fractive index particles are suitable platforms to enhance magnetic decay rates [117].
Dimers of dielectric Mie resonators [118] can also be considered to further enhance
the electric or magnetic decay rates [20,83,111] and also enhance the electric or mag-
netic near-field intensities [83,119,79].

When comparing electric and magnetic near-field distributions in the gap of dimer
antennas, one can observe that the magnetic field intensity remains confined in the
high refractive index material. This means that the highest magnetic field intensity
and LDOS remains inaccessible to lanthanide ions. Alternative designs have been pro-
posed to circumvent this issue. Hollow silicon cylinders and coaxial silicon cylinders
provide very interesting solutions to yield strong magnetic near-field intensities out-
side silicon [120,123,124,121] (Fig. 4.12). The coupling with lanthanide ions remains
challenging since the distance between the emitters and the engineered antenna has
to be very well controlled at a deep subwavelength scale. This issue can be solved
by etching a silicon hollow cylinder antenna at the tip of a near-field optical scanning
tip [122]. The engineered tip is scanned over 50–70-nm-diameter colloidal europium-
doped particles. The europium ions are excited at 465 nm and the photoluminescence
is collected by a high numerical aperture microscope. The 5D0 → 7F1 MD (590 nm)
and 5D0 → 7F2 ED (610 nm) transitions can be channeled in two paths by a dichroic
mirror and a set of spectral filters. The photoluminescence signals recorded by the two
channels can be plotted separately with respect to the position of the scanning tip com-
pared with the luminescent particle (see Fig. 4.13). The results show that the electric
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Figure 4.13 (A) Sketch and principle of the experiment. (B) Image obtained by Scanning Electron Mi-
croscopy of the silicon coaxial antenna etched at the extremity of a near-field fiber probe. (C, D) Magnetic
(C) and electric (D) relative radiative LDOS surrounding the silicon coaxial antenna. Taken from [122].

and magnetic LDOS can both be separately enhanced depending on the position of
the scanning tip. A MD transition can be enhanced when the scanning tip is centered
above the particle, while the ED transition is enhanced when the center of the scanning
tip is shifted with respect to the particle. In order to assess the ability of hollow silicon
antennas to promote a MD transition, the experiment is reproduced with a metallic
monopole antenna etched at the tip of the scanning probe. This antenna hosts elec-
tric dipolar resonances only and cannot promote magnetic decay rates [122]. In that
case, the photoluminescence spectra recorded on the two distinct channels reveal that
only the 610 nm channel collects photons. This experiment illustrates very well how
properly designed antennas can tailor specifically the electric and magnetic LDOS.

4.5 Conclusion and perspectives

The resonant interaction between light and high refractive index nanostructures allows
for an efficient control of spontaneous emission through the design of all-dielectric an-
tennas. The major interests of all-dielectric optical antennas are that (i) they can excite
electric and magnetic low order Mie resonances, (ii) they exhibit weak losses. The
first advantage, linked to the excitation of both electric and magnetic modes has im-
pact on the spontaneous emission that can be applied to the enhancements of both
electric and magnetic decay rates. In other words, dielectric antennas can boost the
fluorescence enhancement of quantum dots, fluorescent molecules among other fluo-
rophores that feature electric dipolar transitions only. But their magnetic modes can
also be optimized in order to boost the luminescence of lanthanide ions that feature
magnetic dipole transitions, opening novel routes to manipulate spontaneous emission.
The interplay between electric and magnetic modes offers also novel possibilities to
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tailor the emission directivity. Controlling the directivity of spontaneous emission is
of crucial importance to enhance the efficiency of optical antennas. The richness of
the modal decomposition of dielectric nanostructures with electric and magnetic mul-
tipolar orders leads to high gains in directivity. The second property associated with
weak losses has also a strong impact on the antenna efficiencies by reducing the non-
radiative decay rates and by allowing an inhibition of spontaneous emission.

Regarding the perspectives, optical antennas will benefit from the latest advances
in numerical optimization such as evolutionary algorithms and deep learning. This
will boost the near-field excitation and allow for better control over the strength and
the location of electric or magnetic hot spots in all-dielectric nanostructures. Elec-
tric and magnetic radiative decay rates will also benefit from optimization procedures.
Dielectric nanostructures are also expected to provide significant advances in strong
coupling. Dielectric antennas will also benefit from efforts in material technology and
while attention was first paid to group IV semiconductors, III–V semiconductors have
more recently shown huge potential to tailor spontaneous emission. Oxide materials
and chalcogenides are also of interest. The coupling between all-dielectric antennas
and 2D materials is expected to provide highly efficient integrated photon sources.
The combined efforts in design and technology should lead to the development of
compact, integrated and highly efficient optical antennas in terms of decay rates and
directivity. One of the major technological challenges will be the successful combina-
tion of optimized antenna designs offering high emission count rates with an electrical
excitation of the emitters. The external tunability of antenna properties such as emis-
sion directivity will play a central role in the upcoming development of all-dielectric
antennas.
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5.1 Introduction

Mie-resonant dielectric nanoparticles provide a full control over the light scattering.
When arranged into two-dimensional structures to form metasurfaces, they bring a
new paradigm to optics allowing one to engineer both transmission and reflection of
light in a nearly arbitrary way [1–7].

Conventional optical elements based on refraction, diffraction or material birefrin-
gence require light propagation through optically thick media. In striking contrast
to that, the concept of metasurfaces allows one to enhance light-matter interactions
via resonant response. Despite their ultrathin design, metasurfaces allow one to gain
full control over the electromagnetic space. This includes the control over amplitude,
phase and polarization of light. Importantly, metasurfaces can provide spatially vary-
ing wave control over a thin interface. This allows one to steer and reshape the light
waves in an arbitrary complex way. Importantly, as the metasurfaces diminish our de-
pendence on the propagation effects, they can introduce abrupt changes to amplitude,
phase, and polarization structure of light.

For functional metasurfaces components and devices, control over transmission
and reflection amplitudes is of primal importance as it defines the overall efficiency
of the device. We have seen a remarkable progress in metasurface performance over
the recent years. Specifically, all-dielectric metasurfaces optimized to work in reflec-
tion have reached the efficiencies of over 99% [8–11]. To put this into perspective,
metasurfaces are better in reflecting light than metal mirrors, and are comparable in
their efficiency to dielectric layered mirrors based on interference effects. Transmis-
sive metasurfaces have surpassed 90% transparency [12,13]. This essentially makes
them as transparent as glass slides. Fig. 5.1 shows some examples of efficiencies of
recently demonstrated functional metasurfaces. In addition, all-dielectric metasurface
absorbers have recently reached near-unity efficiencies [14]. Overall, metasurfaces
based on dielectric nanostructures with both electric and magnetic Mie-type reso-
nances have resulted in the best efficiency to date for functional flat metasurface-based
optical components. In the recent years we have seen demonstrations of flat metade-
vices which match or outperform conventional optical elements while offering much
thinner elements.

In this chapter, we discuss general approaches for the control of transmission, re-
flection, and absorption of light in metasurfaces via the interplay of Mie resonances.

Dielectric Metamaterials. https://doi.org/10.1016/B978-0-08-102403-4.00010-4
Copyright © 2020 Elsevier Ltd. All rights reserved.
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Figure 5.1 Comparison of the efficiencies of plasmonic and dielectric metasurfaces operating in both
(A) transmission [5,12,13,15–21] and (B) reflection regimes [8–11,22–27].

5.2 Reflection

Electric and magnetic metasurface mirrors. We start from considering a sub-
wavelength array of particles supporting a single Mie resonance: either electric dipole
or a magnetic dipole. When illuminated with a plane wave, such array can behave as
a perfect mirror.

The electric farfield scattered by an electric and a magnetic dipole can be written
as

EED (r) = [n × [p × n
]]

ei(ωEDt−kEDr+ϕED)

EMD (r) = [m × n] ei(ωMDt−kMDr+ϕMD)
(5.1)

where p is the electric dipole amplitude with |p| = p = k2
0

4πε0rp with p denoting
the electric dipole moment; and m represents the magnetic dipole amplitude with

|m| = m =
√

μ0
ε0

k2
0

4πrm, with m denoting the magnetic dipole moment; kED,MD is the

wavevector of electric/magnetic dipole; and n = k/|k| is the unit vector in the di-
rection of scattering; ωED,MD is the resonant frequency of electric/magnetic dipole;
r is the coordinate vector, and r = |r|; the ϕED,MD are the phases of electric/mag-
netic dipoles. We consider a two-dimensional subwavelength array of such scatterers
in x−y plane at z = 0 illuminated by a plane wave propagating in z-direction. The
only two directions allowed for scattering are forward (+z) and backward (−z).

For this case the scattering equations reduce to its scalar projection:

EED (z) = Epeiπei(ωEDt z
|z| −kEDz)

EMD (z) = Emeiπθ [z]ei(ωMDt z
|z| −kMDz)

(5.2)
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Figure 5.2 Concepts of electric and magnetic mirrors. Light scattering by arrays of (A–C) electric and
(B–D) magnetic dipoles. Interferences between the incident scattered fields result in fully-destructive inter-
ference in forward direction, and in a standing wave in backward direction. At the surface of the electric
mirror an anti-node of the standing wave is formed. In contrast, at the surface of the magnetic mirror, a node
is formed.

where Ep,m are amplitudes of the field scattered by the electric and the magnetic
dipoles; eiπ phase factor that accounts for out-of-phase excitation of the dipoles at
resonance, θ [z] is a Heaviside function accounting for the antisymmetric nature of the
magnetic dipole resonance (e.g. θ [z] = 0 for z < 0, and θ [z] = 1 for z > 0 accounting
for EMD (−z) = −EMD (z)).

The incident field E0 interferes with the scattered field Ep for the electric dipole or
Em for the magnetic dipole. And if E0 = Ep,m, this results in a destructive interfer-
ence in forward direction and a formation of a standing wave in backward direction
[see Fig. 5.2 in which Eq. (5.2) are plotted for these conditions]. Notably, a standing
wave formed by electric dipoles has a node at the mirror surface. This is equivalent
to reflection from perfect electric conductor (PEC), therefore we refer to such meta-
surface an electric mirror. In contrast, an anti-node is formed at a surface of a mirror
formed by magnetic dipoles. Therefore, we call a metasurface formed by magnetic
dipoles a magnetic mirror.

To describe the spectral response of the electric and magnetic mirrors at around
their resonant frequency, we approximate the electric dipole and magnetic dipole res-
onances with Lorentz oscillators [28] with reflectivity written as

rED (ω) = 2iγEDω

ω2
0 − ω2 − 2iγEDω

,

rMD (ω) = − 2iγMDω

ω2
0 − ω2 − 2iγMDω

,

(5.3)
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Figure 5.3 Spectral characteristics of the electric and the magnetic mirrors. (A–B) Reflection amplitude
of the electric field reaching unity at (A) ED resonant frequency ω; and (B) MD resonance frequency ω.
(C) Reflection phase of the electric field featuring π phase difference for the electric and magnetic mirrors.

where γED and γMD are radiation losses of the electric and the magnetic dipole reso-
nances correspondingly.

In Fig. 5.3 we plot amplitudes and phases of reflectivity of electric and magnetic
mirrors as per Eq. (5.3) at around their resonant frequency. We observe amplitude
of reflection reaching unity in both cases. The difference between the two mirrors is
revealed in their reflection phase: light reflected from an array of electric dipoles expe-
riences a π phase shift at resonance. In contrast, no phase shift occurs after reflection
from magnetic dipole array.

Generalized metasurface mirrors. Our discussions of electric and magnetic mir-
rors can be readily extended to higher-order multipoles, such as electric and magnetic
quadrupoles, octupoles, hexadecapoles etc. [29].

An array of electric dipole scatters acts as an electric mirror because EED (z) is an
even function, i.e. EED (z) = EED (−z) [see Fig. 5.4]. Exemplarily, the E-field from
an array of magnetic quadrupoles is an even function as well, and correspondingly a
magnetic quadrupole metasurface acts as an electric mirror as well. Analogously, a
magnetic dipole array acts as a magnetic mirror because EMD (z) is an odd function,
i.e. EMD (z) = −EMD (−z). And the next higher-order multipole of the same sym-
metry is an electric quadrupole, thus an array of electric quadrupoles would create a
magnetic mirror. Fig. 5.4 demonstrates numerical results of field reflected by an array
of dielectric rods of different diameters supporting various multipolar excitations. It
shows electric mirror behavior at ED and MQ resonance, and magnetic mirror behav-
ior at MD and EQ resonance. This analysis further extends to higher-order multipoles
with even or odd E-fields [29].

Experimental demonstrations. Nearly-perfect reflection from dielectric metasur-
faces supporting Mie resonances was demonstrated in the past using Tellurium (Te)
cube resonators acting as electric or magnetic dipole scatterers at two different wave-
lengths [30] in the mid-infrared spectral range. Time-domain spectroscopy of the
metasurface reflection [31] revealed the magnetic mirror behavior at the magnetic
dipole resonance [see Fig. 5.5A]. In the near-infrared spectral range the metasurface
mirrors were demonstrated using silicon nanodisks as scatterers [8]. A low-cost and
scalable approach to fabricating dielectric metasurface mirrors was demonstrated in
reference [10] [see Fig. 5.5B].
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Figure 5.4 Generalized electric and magnetic mirrors. (A) An electric dipole array creates a symmetric
distribution of the electric field in forward and backward directions and therefore acts as an electric mirror.
(B) The same symmetry of magnetic quadrupole array leads to an electric mirror-type response as well.
(C) A magnetic dipole array creates an antisymmetric field distribution in forward and backward direc-
tions, which is the origin of a magnetic mirror effect. (D) An electric quadrupole array features the same
antisymmetric field distribution, and therefore it acts as a magnetic mirror as well. Adapted from [29].

5.3 Transparency

Huygens’ metasurfaces. Interference between the electric and magnetic dipole
modes of comparable strength can lead to the enhancement of forward scattering and
suppression of backward scattering [32,33]. This resembles an object described back
to 1690: a Huygens source [34] – a building block of a wavefront shaping interface or
surface. The well-known Huygens principle states that each point on a wavefront acts
as a secondary source of outgoing waves. The principle implies that sources do not
radiate backward; however, in its original formulation this principle does not specify
the structure of the sources that would satisfy this requirement. More recently, it was
suggested that a Huygens source can be realized as electrically small antenna that is
a superposition of crossed electric and magnetic dipoles [35,36]. Thus, a dielectric
nanoparticle that supports both electric and magnetic dipole modes does fulfill these
requirements. An array of such nanoparticles creates a Huygens metasurface [28].

When an x-polarized plane wave propagating in z-direction hits the Huygens’
source, it excites electric dipoles in x-direction, and magnetic dipoles in y-direction.
An array of electric dipoles produces a symmetric electric field distribution in prop-
agating in +z- and −z-directions [as shown in Fig. 5.6A]. An array of magnetic
dipoles, in its turn, produces an antisymmetric electric field distribution in +z- and
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Figure 5.5 Experimental demonstrations of magnetic and electric all-dielectric metasurface mirrors.
(A) Scanning electron micrograph of a fabricated metasurface consisting of Tellurium (Te) cube resonators
acting as electric or magnetic dipole scatterers at two different wavelengths [30]. The time-domain spec-
troscopy of the metasurface reflection at the magnetic resonance features out-of-phase reflection when
compared to ordinary metal mirror. [31] Reprinted figure with permission from [30]. © (2017) by the Ameri-
can Physical Society. (B) Scanning electron micrograph (left) and reflection spectrum (right) of a broadband
dielectric metasurface mirror made of Si cylinders. Adapted with permission from [10]. © (2015) American
Chemical Society.

−z-directions [see Fig. 5.6B]. A result of interference of superimposed electric dipole
and magnetic dipole scatterers is written as EED (z) + EMD (z) as per Eq. (5.2). We
assume the two dipoles have same resonant frequencies, amplitudes and resonance
width. This leads to a destructive interference of the electric fields scattered by the
two dipoles in backward direction [see Fig. 5.6C]. Thus, the field is scattered in for-
ward direction only, making Huygens’ metasurfaces fully transparent.

To understand spectral performance of Huygens’ metasurfaces, we again employ
the approximation of the dipoles as Lorentzian oscillators. The frequency-dependent
transmittance in +z-direction, and the reflectance in −z-direction are

t = 1 + 2iγEDω

ω2
ED − ω2 − 2iγEDω

+ 2iγMDω

ω2
MD − ω2 − 2iγMDω

r = 2iδEDω

ω2
ED − ω2 − 2iγEDω

− 2iδMDω

ω2
MD − ω2 − 2iγMDω

(5.4)

The condition of full transparency requires ωED = ωMD, amplitudes AED = AMD,
and damping parameters γED = γMD.
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Figure 5.6 Zero backward scattering by Huygens’ metasurfaces. Electric field of an incident plane wave
(A) scattered backwards by an array of electric dipoles (B) superimposed with the scattering of an array of
magnetic dipoles (C) resulting in destructive interference of backward scattering (D).

In Fig. 5.7A–C we plot amplitude of transmittance of an array of (A) electric
dipoles, (B) magnetic dipoles, and (C) superimposed electric and magnetic dipoles.

Besides full transparency, Huygens’ metasurfaces pack one more important fea-
ture. That is the phase of transmittance. In Figs. 5.7 D–F we see that while individual
ED and MD resonances allow for a maximum of π phase accumulation, when added-
up together, they provide a complete phase coverage of the entire range 0−2π . This
allows for wavefront control of light by a subwavelength planar device.

We note that complete transparency requires exact balance of all the parameters of
the two dipoles that is their resonant frequencies, amplitudes and damping levels (or
quality factors) must be the same. A deviation in any of these parameters reduces the
transmission of light near the resonant frequencies.

The concept of Huygens’ metasurfaces shares similarities with the Kerker con-
dition [37] for zero backward scattering, derived by Kerker et al. for a hypothetical
magnetic particle having similar electric and magnetic properties and published in
1983. We note, however, that the Kerker condition paves the way towards a forward
scattering at a single wavelength only, and it can be satisfied for less strict require-
ments, e.g. partially overlapping resonances. The concept of Huygens’ metasurfaces
in contrast allows for a spectrally-wide forward scattering.
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Figure 5.7 Spectral responses of metasurfaces operating at magnetic and electric dipole resonances. While
transmission spectra of individual arrays of ED (A) and MD (B) exhibit minima at the resonant frequency,
the transmission spectrum of an array of superimposed ED and MD (Huygens’ metasurface) exhibits unity
transmission over a broad spectral bandwidth. The phase accumulation in the vicinity of individual ED (D)
and MD (E) resonances reaches a maximum of π , the phase accumulation of the Huygens’ metasurface
covers the entire 2π range (F).

Generalized Huygens’ metasurfaces. Interference of electric and magnetic dipole
modes offers only one example of a larger class of multipolar interference effects
achievable with dielectric metasurfaces. The concept of Huygens’ metasurfaces ex-
tends further to higher orders as well as higher number of multipoles. The regime
of unidirectional scattering, the key ingredient of transparent metasurfaces, is not
uniquely limited to dipolar resonances. Exemplarily, an array of superimposed mag-
netic and electric quadrupoles would interfere similarly to an array of electric and
magnetic dipoles. More generally, a unidirectional scattering can be achieved by over-
lapping several multipoles of both even and odd symmetries that can interfere destruc-
tively in backward direction and constructively in forward direction [12]. Fig. 5.8A
shows several examples of interferences of even and odd multipoles all resulting in a
unidirectional forward scattering.

In a generalized case of higher number as well as higher order of multipoles, the
transmittance and reflectance of a normally incident plane wave propagating in the
z-direction, can be written as

t = 1 +
∑
even

E(z) +
∑
odd

E(z)

r =
∑
even

E(z) −
∑
odd

E(z)
(5.5)

An example of a unity-transmission spectrum as a result of interference of three
multipoles is shown in Fig. 5.8B, C. Here we bring into consideration ED having even
symmetry, as well as MD and electric quadrupole (EQ) both having odd symmetry.
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Figure 5.8 Generalized Huygens’ metasurface realized by a superposition of several multipoles of both
even and odd symmetry. (A) Different scenarios of interferences of first four multipoles all resulting in
unidirectional forward scattering (generalized Kerker condition) and thus readily applicable for generalized
Huygens’ metasurfaces. Image adapted from [38]. (B) Exemplarily spectra of three multipoles: ED, MD,
and EQ all having different amplitudes and damping levels. (C) The interference of the three multipoles re-
sults in unity transmission across the spectrum. Part (A) adapted with permission from W. Liu, Y.S. Kivshar,
Generalized Kerker effects in nanophotonics and meta-optics, Opt. Exp. 26 (10) (2018) 13085–13105,
© The Optical Society.

All three mutlipoles generally have different amplitudes and damping levels. While
in this case ED and MD cannot satisfy Huygens’ condition [see dashed gray line in
Fig. 5.8C], the interference of all three multipoles leads to unity transmittance.

Importantly, the generalized Eqs. (5.5) can be satisfied over a broadband spectral
range when

∑
even E(z) and

∑
odd E(z) each a linear combination of many multipoles.

Then near-unity transmittance is achieved by a balance between multipoles, and it
does not require resonances of equal amplitude, spectral width, and most notably,
frequency. This makes multipolar structures inherently suited for realizing resonant
broadband transmittance. We can thereby achieve a broadband response as a result of
multi-wave interference between the scattering waves produced by several multipoles
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Figure 5.9 Experimental demonstrations of all-dielectric Huygens’ metasurfaces. (A, B) Metasurfaces
composed of silicon disks supporting overlapped ED and MD resonances that closely satisfies Huygens
regime [28,42]. Transmission spectra are shown on the left, and scanning micrographs are featured on the
right. (B) features a concept image of a 2π phase control revealed by the metasurface with linear phase
gradient and functionality of a blazed diffraction grating [42]. (C) Generalized Huygens’ metasurface made
of silicon nanopillars supporting several multipoles of both even and odd symmetries [13]. The metasurface
features a broadband spectrum of high transmission and showcases complex phase front control by trans-
forming incident beam into holographic images. Part (C) reprinted with permission from L. Wang et al.,
Grayscale transparent metasurface holograms, Optica 3 (12) (2016) 1504–1505, © The Optical Society.

of opposite parity. Such multipolar forward scattering is referred to as the generalized
Huygens condition.

The generalized Huygens condition also incorporates to a certain extent the for-
ward scattering from two higher-order multipoles called generalized Kerker condition
[39–41], which is fulfilled in this case over a broad spectral range.

Experimental demonstrations. In Fig. 5.9 we demonstrate transmission spectra of
several fabricated Huygens’ and generalized Huygens’ metasurfaces. By now, over



Tailoring transmission and reflection with metasurfaces 155

90% transmission efficiencies have been achieved. Effectively, it makes Huygens’
metasurfaces as transparent as glass within their operation range.

5.4 Phase and polarization control

Polarization control with the form-birefringent metasurfaces. Traditionally,
polarization of light is controlled using birefringent optical materials with anisotropic
crystalline lattices (such as that of calcite) [43]. With metasurfaces, however, the bire-
fringence can be introduced at the level of individual meta-atom. A nanoparticle made
of an isotropic material can alter polarization of light due to its anisotropic form as its
multipolar scattering spectrum becomes polarization-dependent. This effect is known
as form birefringence, and in metasurfaces it can originate from their geometry, not
the properties of their constituent materials (schematically visualized in Fig. 5.10).
Meta-atoms of different shapes with different levels of form birefringence can be used
to create high-resolution subwavelength polarization gradients, which is difficult to
achieve with conventional anisotropic crystals or even with liquid-crystal light modu-
lators.

Concept of geometric phase. The ability to change polarization of incident light
opens an opportunity for the wavefront control via the geometric phase approach
[5,44]. The geometric phase concept can be introduced by referring to the Poincaré
sphere, that is, a hypothetical sphere representing a variety of the polarization states
of light.

We demonstrate the acquisition of the geometric phase with the following example
of a hypothetical experiment: we start with right-circularly polarized light [north pole
of the Poincaré sphere; see point A in Fig. 5.10B]. We then change the polarization
from right to left-circular by a half-wave plate oriented at θ angle. This brings us
to the south pole of the Poincaré sphere, i.e. point B in Fig. 5.10B. After that we
change the polarization back to right-circular polarized by a half-waveplate oriented
at 0 degree. Thus, we make a closed circuit on the sphere shown with arrows enclosing
the solid angle of 4θ . We next describe this procedure with Jones calculus [45]. The
transformation of the polarization can be written as

Eoutput = T · R(−θ) · T · R(θ) · ERCP (5.6)

where the half-waveplate matrix is

T =
(

1 0
0 −1

)
(5.7)

the rotation matrix is

R =
(

cos θ sin θ

− sin θ cos θ

)
(5.8)
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Figure 5.10 (A) Form birefringence of an anisotropic metasurface leads to a phase delay between two
principal polarizations. (B) Geometric phase accumulation on the Poincaré sphere.

and the right-circular polarization vector is

ERCP = 1√
2

(
1

−i

)
(5.9)

The resulting output is

Eoutput = ei(−2θ)ERCP

Thus, the light acquired an extra phase equal in magnitude to 2θ , or half the solid
angle � enclosed by the trajectory on a Poincaré sphere. As the total solid angle of the
Poincaré sphere is 4π , the geometric phase approach allows one to vary the phase on
an incident light within the full 2π region.

The sign of the acquired phase depends on clockwise or counterclockwise motion
along the closed trajectory. If light does not make a full circuit on a Poincaré sphere,
the geometric phase accumulation is found by connecting the starting and the final
points with the shortest geodesic line [46].

Phase control with Huygens metasurfaces. Huygens metasurfaces and described
in the previous section allow for phase accumulation between 0 and 2π . Indeed, a
single resonance, an electric dipole or a magnetic dipole, gives up to π phase accu-
mulation depending on spectral position of the resonance. When the two resonances
are overlapped, the total phase accumulation reaches 2π . A Huygens metasurface can
be assembled from different elements tuned to different resonant frequency such that
it creates subwavelength phase gradients in the region 0 – 2π .

Experimental demonstrations. In Fig. 5.11 we show several demonstrations of
metasurfaces for phase and polarization control based on birefringence, the geometric
phase, and Huygens’ concept.
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Figure 5.11 Phase and polarization control with dielectric metasurfaces. (A) A metasurface working as
a half-waveplate over an extended spectral range covering three major communication bands of an opti-
cal fiber [12]. (B) A metasurface creating polarization gradients forming cylindrical vector beams [47].
(C) Metasurface flat lens based on geometric phase [5]. (D) A metasurface with independent control of
phase for two orthogonal polarizations of light based on the combination of form birefringence and gener-
alized Huygens’ principle [48]. (E) A metasurface producing two independent holographic images for two
orthogonal polarizations of light. (F) A metasurface splitting a beam of light into 6 channels with 6 different
polarizations based on a combination of geometric phase and generalized Huygens’ approaches [49].

5.5 Absorption

Coherent perfect absorption. Dielectric metasurfaces with electric and magnetic
Mie resonances allow one to achieve 100% absorption of light. Here, by absorption
we mean any process by which the energy of an electromagnetic wave is transferred
to a medium and hence converted to another form. This is allowed by a process of co-
herent perfect absorption. Perfect absorption can be achieved with lossy Mie-resonant
metasurfaces in the regime when the cavities act as critically coupled resonators. It
relies on the destructive interference between the incident waves and waves scattered
on resonant Mie-modes. The phenomenon of coherent perfect absorption can be gen-
eralized to arbitrary incoming waveforms that can consist of two or more waves, and
to metasurfaces supporting several Mie resonances.

The simplest yet most illustrative example of a coherent perfect absorber is a two-
port linear system. This may be represented by a metasurface coherently illuminated
from both sides. Each input beam is partially reflected, partially transmitted, and par-
tially absorbed inside the metasurface. The total outgoing wave on each side, therefore,
is a superposition of a reflected wave and of a wave transmitted from the opposite
side. This picture can be described rigorously using the scattering-matrix formalism
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[50–52]:(
b1
b2

)
=
(

r11 t12
t21 r22

)(
a1
a2

)
(5.10)

where the complex scalars ai and bi denote the input and output wave amplitudes in
the ith channel (or port), respectively; rij are the reflection coefficients and tij are the
transmission coefficients of the scattering matrix Ŝ. This formalism can be extended
to describe more scattering channels and to include polarization degrees of freedom.

Coherent perfect absorption occurs when Ŝa = 0 while a �= 0. This means that at
least one eigenvalue of Ŝ is zero. The solution of this equation provides the parameters
for critical perfect absorption regime. We further note that we are interested only in
the solutions where the frequency of light is a real number, i.e. Im[ω] = 0. This filters
out unphysical solutions, such as input waves that grow exponentially with time.

Interestingly, the coherent perfect absorption condition can be interpreted as the
time-reverse of the lasing threshold [53,54]. The complex conjugate of a coherent
perfect absorption solution, for real ω, is a wave that is purely outgoing rather than
incoming.
Absorption of Mie-resonant metasurfaces. To describe absorption in resonant
metasurface we again employ Lorentz oscillator model with the only difference that
absorption losses δED and δMD are now included along with the radiation losses γED

and γMD [55]. Eqs. (5.3) for reflection now take the form

rED (ω) = 2iγEDω

ω2
ED − ω2 − 2i(γED + δED)ω

rMD (ω) = − 2iγMDω

ω2
MD − ω2 − 2i(γMD + δMD)ω

(5.11)

The transmission correspondingly reads

tED (ω) = 1 + 2iγEDω

ω2
ED − ω2 − 2i(γED + δED)ω

tMD (ω) = 1 + 2iγMDω

ω2
MD − ω2 − 2i(γMD + δMD)ω

(5.12)

The absorption can then be found to be

a = 1 − |r|2 − |t |2 (5.13)

We first consider light absorption by a metasurface supporting a single Mie reso-
nance (electric or magnetic) which is illuminated from one side. In this case, as per
Eqs. (5.11)–(5.13) the maximum absorption can reach 50% [see Fig. 5.12A–C]. This
requires balance between radiative and absorption losses: γ = δ. In this regime trans-
mission and reflection |t |2 = |r|2 = 25%.

We note, however, that if the same metasurface is coherently illuminated from both
sides, the absorption may vary between 0% and 100%. The absorption reaches 0% if
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Figure 5.12 Light absorption by a dielectric metasurface composed of lossy Mie resonators. (A) Con-
cept image of a single-resonant metasurface absorbing up to 50% of light when illuminated from one side.
(B) Absorption spectra at around the resonant frequency for the case of optimal balance between radiative
and absorption loss of Mie resonators. (C) Absorption as a function of the ratio of absorptive and radiative
losses at the resonant frequency. (D) A scenario of a single-resonant metasurface coherently illuminated
from both sides absorbing up to 100% of light. (E, F) corresponding dependencies of absorption on fre-
quency detuning (E) and balance of losses (F). (G) A scenario of a metasurface supporting overlapped ED
and MD resonances with absorption losses. The metasurface reaches 100% absorption even for one-side
illumination. (H, I) corresponding dependencies of absorption on frequency detuning (H) and balance of
losses (I).

a node of standing wave is formed at the metasurface, and 100% absorption may be
achieved when an anti-node is formed at the metasurface. To achieve 100% absorp-
tion, a second incident beam can also be replaced with a reflective ground plane. This
resembles a classic example of interference-assisted absorption, the Salisbury screen
[56], and it requires a balance of amplitudes and phases or reflected waves to achieve
fully destructive interference in reflection, and thus perfect absorption.

When the metasurface supports two Mie resonances, an electric dipole and a mag-
netic dipole, the absorption can reach 100% even for a single-side illumination [see
Fig. 5.12G–I]. This requires ωED = ωMD; γED = δED; and γMD = δMD.

To summarize, coherent perfect absorption in all-dielectric Mie-resonant metasur-
faces can be achieved if at least three wave sources are involved: either two incident
waves and one scattered wave on a single Mie multipole (e.g. electric dipole or
magnetic dipole), or one incident wave and two waves scattered on a pair of Mie
multipoles. The phenomenon of coherent perfect absorption can be readily extended
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Figure 5.13 Experimental demonstration of a perfect absorber based on a dielectric metasurface.
(A) Metasurface made of doped silicon disks that support electric dipole and magnetic dipole Mie res-
onances at around 1 THz frequency. A certain doping level of silicon is chosen to introduce absorption
loss equal to resonant radiation loss. (B) Experimental transmission, reflection and absorption spectra. The
metasurface is illuminated with one incident wave from the top. The spectrum features virtually perfect
absorption of an incident wave at around 1 THz frequency. Reprinted with permission from X. Liu, K. Fan,
I.V. Shadrivov, W.J. Padilla, Experimental realization of a terahertz all-dielectric metasurface absorber,
Opt. Express 25 (1) (2017) 191, © The Optical Society.

to higher number of incident waves, and higher number as well as higher order of
multipoles.
Experimental demonstrations. Perfect absorption in all-dielectric metasurfaces
has been demonstrated in THz frequency range. In Refs. [14,55,57] the research
demonstrated coherent perfect absorption at around 1 THz frequency in a metasurface
made of doped silicon [see Fig. 5.13]. The researched demonstrated experimentally
virtually 100% absorption of an incident wave when the electric dipole and magnetic
dipole resonances are brought into overlap, and when absorption loss equals radiation
loss.

5.6 Transmission and reflection at the oblique
illumination

It is well known since the 19th century that when light encounters a boundary between
two media at a specific angle, known as Brewster angle, the p-polarized component of
light is perfectly transmitted, thus the reflected light is perfectly s-polarized. The com-
mon microscopic interpretation of this effect is illustrated in Fig. 5.14A. In response
to the driving electromagnetic wave, electric dipoles are induced within the material.
These dipoles oscillate along the direction of the electric field, that is, perpendicular to
the propagation direction. As the far-field power radiated by a dipole vanishes along
its oscillation axis, whenever the dipoles and the reflection direction are parallel, no
radiation is emitted into that direction and reflection is inhibited. In all other directions
apart from that of refraction, radiation is compensated by the rest of the dipoles within
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Figure 5.14 Concept image of a microscopic interpretation of classical Brewster effect. Adapted from
[58].

the medium. If polarization is switched, as shown in Fig. 5.14B, due to the non-zero
radiation in the plane perpendicular to the dipole, such effect cannot be achieved.

In this section, we extend the Brewster effect to the case of metasurfaces supporting
magnetic dipole excitations along with electric dipole excitations [58].

We start from the Eq. (5.1) for the electric and magnetic fields, and we assume that
ωED = ωMD = ω0, and kED = kMD = k0. We consider a plane wave illuminating the
metasurface at an incident angle θi in x−z plane. Here we consider a sub-diffraction
metasurface consisting of identical scatterers, for which the only direction allowed
for non-zero reflection is at an angle θr = −θi as in all other directions the scattering
from different resonators in the metasurface interfere destructively and cancel out. We
further consider separately the two cases of p-polarized and s-polarized waves.
Generalized Brewster effect for the p-polarized waves. The p-vector induced
along the E field is pointing at an angle θi −π/2. The p, m, and n vectors correspond-
ingly take the form

p = p

⎛⎝sin
[
θi − π/2

]
0

cos[θi − π/2]

⎞⎠ ; m = m

⎛⎝0
1
0

⎞⎠ ; n =
⎛⎝sin [−θi]

0
cos [−θi]

⎞⎠ (5.14)

The total electric field in the n direction then reads

EED + EMD =
⎛⎝cos θi

[
m eiϕMD − p eiϕED cos 2θi

]
0

sin θi

[
m eiϕMD − p eiϕED cos 2θi

]
⎞⎠ ei(ω0t−k0r) (5.15)

For m = 0, and p �= 0 i.e. a metasurface with pure electric dipole response, zero reflec-
tion happens at an angle θi = 45◦. For a pure magnetic metasurface with m �= 0, and
p = 0 zero reflection is not possible for p-polarized incident field. When both electric
and magnetic components are present, reflection drops to zero at an angle

cos 2θi = m

p
ei(ϕMD−ϕED) (5.16)

Note that, as the angle θi is a real number, the phase difference between the electric
dipole and the magnetic dipole ϕMD −ϕED must be either 0 or π for the effect to occur.
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In addition to that, zero reflection occurs only for the case of m ≤ p. Note that when
m = p, θi = 90◦, e.g. zero reflection occurs at normal incidence, which corresponds
to a condition of Huygens’ metasurface described in Section 5.3.

Generalized Brewster effect for the s-polarized waves. In this case, the
m-vector induced along the H field is pointing at an angle θi − π/2. The p, m, and n
vectors correspondingly take form:

p = p

⎛⎝0
1
0

⎞⎠ ; m = m

⎛⎝sin
[
θi − π/2

]
0

cos[θi − π/2]

⎞⎠ ; n =
⎛⎝ sin [−θi]

0
cos [−θi]

⎞⎠ (5.17)

The total electric field in the n direction then reads

EED + EMD =
⎛⎝cos θi

[
p eiϕED − m eiϕED cos 2θi

]
0

sin θi

[
p eiϕED − m eiϕED cos 2θi

]
⎞⎠ ei(ω0t−k0r) (5.18)

For a pure magnetic metasurface with m �= 0, and p = 0 zero reflection occurs at an
angle θi = 45◦. For m = 0, and p �= 0 i.e. a metasurface with pure electric dipole re-
sponse, zero reflection is not possible for s-polarized incident field. When both electric
and magnetic components are present, reflection drops to zero at an angle

cos 2θi = p

m
ei(ϕED−ϕMD) (5.19)

Similarly, the phase difference between the electric dipole and the magnetic dipole has
to be either 0 or π , and p ≤ m for the effect to occur.

Experimental demonstrations. Generalized Brewster effects were demonstrated
experimentally in visible spectral range in metasurfaces made of silicon nanodisks
supporting both electric and magnetic dipole Mie resonances [see Fig. 5.15].

5.7 Transmission and reflection polarization phenomena

Low-symmetry metasurfaces. Here we focus on the effects arising in metasurfaces
with low symmetry. We consider three main sources of symmetry reduction here:

• Low symmetry of constituting resonators – meta-atoms. Such as rotation symmetry
lower than 3-fold, or absence of mirror symmetry planes.

• Low symmetry of metasurface lattice (lattice rotation symmetry lower than 3-fold)
that leads to asymmetric coupling between meta-atoms. Alteration of the lattice
symmetry of a metasurface changes the coupling between meta-atoms and there-
fore changes the optical response.

• Oblique illumination under which the directions of k, E, and H fields break the
symmetry of the system. In this case, the effective symmetry must be considered
for the combined system of a metasurface and an incident wave [59].
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Figure 5.15 Angular reflection of light from arrays of silicon nanodisks. (A) Experimentally measured
reflection (blue solid curve) and transmission (red solid curve) under normal incidence of a square lattice
of silicon disks with diameter D = 180 nm, height H = 150 nm and pitch P = 300 nm placed on a glass
substrate. The insets show the top (left) and tilted (right) SEM images of the measured sample. The scale bar
is 500 nm. (B) Reflection versus angle of incidence measured for different wavelengths under p-polarized
(red circles) and s-polarized (blue circles) illumination. The numerical results, obtained for D = 170 nm
and H = 160 nm with the same pitch, are shown as solid curves. [58].

Such systems exhibit a wide range of polarization phenomena that can be described
qualitatively based on Jones matrix formalism [60,54]. This analysis can be used for
any symmetries and any arrangement of meta-atoms with long-range positional order,
and therefore it can be applied for both periodic and quasicrystalline structures [61,
62]. Random layouts of meta-atoms can be described within this framework as having
∞-fold rotation symmetry [63].

Here we consider a sub-diffraction metasurface illuminated by a plane wave. The
components of the transmitted wave t can be related to those of the incident wave i

via the Jones matrix:(
Et1
Et2

)
=
(

J11 J12
J21 J22

)(
Ei1
Ei2

)
(5.20)

Similarly, incident and reflected waves can be related. The matrix may be expressed
in linear [TE,TM] or circular [+,−] polarization basis, and conversion between these
forms is well known [60]. The Jones matrix immediately shows which polarization
phenomena the media may exhibit. Below we provide some relations between po-
larization phenomena and Jones matrix components valid for both transmission and
reflection.

• Circular dichroism: CD ∝ |J++|2 − |J− −|2
• Linear dichroism: LD ∝ ∣∣JT E, T E

∣∣2 − ∣∣JT M, T M

∣∣2
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• Asymmetric transmission in both bases: AT ∝ |J12|2 − |J21|2
• Linear birefringence: LB ∝ arg

[
JT E,T E/JT M,T M

]
• Circular birefringence and optical activity: CB ∝ arg

[
J++/J− −

]
The relations between the Jones matrix components Jij depend on the following

point symmetry elements:

C
(k)
N – Rotational axis parallel to the incident wave vector k, where 2π/N is the angle

of the rotational symmetry; note that the axis should correspond to both the point
symmetry of individual meta-atom and the symmetry of the lattice.
σ

(k)
υ – Mirror plane (of both the meta-atom and the lattice), parallel to {k,E}, or {k,H}

plane;
i – Center of inversion symmetry.

Note that mirror planes and rotational axes which are neither parallel nor perpen-
dicular to {k,E}, or {k,H} planes have no effect on the Jones matrix. We consider
four different scenarios summarized in Table 5.1. The symmetry elements which dic-
tate the symmetry of the optical response are shown in each case. We calculate the
general form of the Jones matrices in both linear and circular bases, following the
procedure described in Ref. [60]. From these symmetry rules, we determine permitted
polarization phenomena for each case.

Case (a) is a normal illumination of lattices with rotational symmetry N > 2. Jones
matrix is diagonal with equal elements in both linear and circular bases. Accordingly,
no polarization phenomena are expected.

Case (b) is normal illumination of chiral metasurface. The metasurface has a ro-
tation symmetry with N > 2, but no mirror symmetry planes. Such a medium gives
different phase accumulation to two orthogonal circular polarizations, and thus it ex-
hibits optical activity.

Case (c) may correspond to one of the following: oblique illumination of a high-
symmetry structure such that k is parallel to the symmetry plane; normal illumination
of a rectangular lattice of meta-atoms (or meta-atoms with N = 2) such that E field
is parallel to the meta-atom symmetry plane. Trivial effects of linear dichroism and
linear birefringence can be observable.

Case (d) applies to arbitrary oblique illumination of highly-symmetric metasur-
face; or normal illumination of a rectangular lattice of meta-atoms (or meta-atoms
with N = 2) such that E field is neither parallel nor perpendicular to the meta-atom
symmetry plane. In this case general polarization conversion may be observable.

Case (e) is the most general form of metasurface symmetry and its excitation. One
example is arbitrary oblique illumination of a structure on a substrate. In compari-
son to Case (d), the substrate removes the inversion symmetry. The other example are
meta-atoms with no point symmetry. For this case dichroism, asymmetric transmis-
sion, and birefringence can be observed.

The optical phenomena in transmission and reflection originating from the low
symmetry are mostly analogous, with the exception: difference in reflection phase
from a bianisotropic metasurfaces (or a metasurface that lacks the center of inver-
sion {i}) [64].
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Table 5.1 Symmetry-driven optical effects with metasurfaces.

C
as

e Symmetry
group and
operations

Examples of possible
realizations

Jones
matrix

Polarization
phenomena

a
DNh,

{CN,συ, i}
N > 2

(
A 0
0 A

)
• None

b
CN,

{CN }
N > 2

(
A B

−B A

) • Optical activity
• Polarization

rotation

c
D2h

{C2, συ, i}
(

A 0
0 D

) • Linear dichroism
• Linear

birefringence

d
Ci

{i}
(

A B

B D

) • Linear dichroism
• Linear

birefringence
• Polarization

conversion

e
C1
{}

(
A B

C D

) • Dichroism
• Asymmetric

transmission
• Polarization

conversion

Experimental demonstrations. Fig. 5.16 summarizes some of the previous demon-
strations of low-symmetry phenomena in dielectric metasurfaces. Figs. 5.16A, B show
a form-birefringent metasurface [Case (c) in Table 5.1] providing polarization conver-
sion in reflection and transmission correspondingly. Fig. 5.16C is a chiral metasurface
[Case (b) in Table 5.1] demonstrating different response for left- and right-circularly
polarized light. And Fig. 5.16D is a bianisotropic metasurface with no inversion sym-
metry showing a difference in phase in reflection for the opposite top and bottom
direction of excitation.
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Figure 5.16 Examples of optical phenomena in low-symmetry metasurfaces. (A) Polarization rotation
metasurface working in reflection [27]. (B) Half-wave plate (linear polarization rotator) metasurfaces work-
ing in transmission [12]. (C) Chiral metasurface with high circular dichroism and optical activity [65].
(D) A metasurface consisting of bianisotropic dielectric elements showing difference in phase in reflection
for the opposite top and bottom direction of excitation [64].

5.8 Fano resonances

Fano resonances were introduced by Ugo Fano in 1961 as a special type of resonances
that occur when a discrete quantum state interferes with a continuum band of states
[66]. Interestingly, the original results for an important limiting case appeared back in
1935 [67]. The resonance manifests itself in the absorption spectrum, σ(E), with the
shape described by the Fano equation:

σ(E) = D2 (q + �)2

1 + �2
(5.21)

where E is the energy, q = cot δ is the Fano parameter, δ is the phase shift of the
continuum, � = 2(E − E0)/�, where � and E0 are the resonance width and energy,
respectively, and D2 = 4 sin2 δ [68].

The Fano equation has found broad applications in physics, and in particular it
has been widely used in optics in order to describe not only absorption, but also
transmission and scattering of light in various systems including dielectric metasur-
faces. The wide applicability of this equation arises from the fact that almost any
resonant state can be considered as quasi-discrete with a complex frequency thus re-
sembling the conditions described by Fano. Metasurfaces supporting Fano resonances
found an important role in nanophotonics as they exhibit high-Q resonances leading to
sharp transmission–reflection spectral curves. Optical response of Fano metasurfaces
changes from high transmission to high reflection within a narrow spectral range.

Fig. 5.17 shows an example of a dielectric nanoresonator exhibiting characteristic
spectral response of Fano resonance. It has two critical points: when the scattering
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Figure 5.17 Scattering efficiency around a Fano-shape resonance in a dielectric (ε = 60) embedded in air
(ε = 1). Insets on the left show the transverse magnetic field component for the two critical points Here
x = rω/c, and r is the rod radius and c the speed of light.

efficiency vanishes and when it takes the maximum value close to unity. This leads to
a rapid spectral switch of Fano metasurfaces from total reflection to total transmission.

In metasurfaces, the characteristic spectra of transmission or absorption with sharp
resonances can also be observed in different regimes, such as the regimes of the Bor-
rmann effect [69] or by the optical analog of electromagnetically induced transparency
(EIT) [70]. The interested reader can find an in-depth analysis of Fano resonances in
photonics in Reference [33].

Experimental demonstrations. Fig. 5.18 summarizes some of the demonstrations
of metasurfaces featuring sharp Fano resonances.

5.9 Bound states in the continuum

Bound states in the continuum (BIC) were originally introduced in 1929 by von
Neuman and Wigner as peculiar solutions of the Schrödinger equation in quantum me-
chanics [74], and the physics and origin of such exotic states is depicted in Fig. 5.19A.
The spectrum of a conventional quantum well consists of two families of modes, which
are clearly separated in energies: delocalized states existing within the continuum of
propagating solutions and bound states which form a discrete set of modes. Exotic
bound in the continuum states, which are spatially localized despite their energies lie
in the continuous part of spectrum, can be achieved by the specific modulation of the
potential with unbound oscillations.

Due to the universal nature of the Schrödinger equation, BICs represent an ubiq-
uitous phenomenon pertaining to all domains of wave physics including optics of
dielectric metasurfaces, where the effect originates from strong coupling between the
resonant optical modes of metasurfaces. Importantly, a true bound state in the con-
tinuum is a mathematical object with an infinite value of the quality factor (Q factor)
and vanishing resonance width, and it can exist only in ideal lossless infinite structures
or for extreme values of parameters [76]. In practice, a quasi-BIC mode can be real-
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Figure 5.18 Fano-resonant metasurfaces (A) Fano-resonant silicon metasurface, left: electron microscope
image of silicon metasurface; and right: its cross-polarized transmission spectra for different nanorod
lengths L [71]. (B) Fano-resonant silicon metasurface; SEM image of a unit cell on the left, and its
transmittance (T), reflectance (R) and absorption (A) spectra on the right [72]. (C) Symmetry broken
GaAs metasurface exhibiting a Fano resonance employed for the enhancement of second harmonic gen-
eration [73].

ized, also known as a supercavity mode [77], when both the Q factor and resonance
width remain finite and approach the mathematical BIC condition asymptotically. The
BIC-inspired localizations of light made it possible to realize high-Q modes in meta-
surfaces that feature sharp spectral resonances in transmission or reflection spectra.
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Figure 5.19 Metasurfaces hosting the bound states in the continuum (A) A sketch of a conventional energy
potential in quantum mechanics supporting a discrete bound state (top) and an exotic potential supporting
a bound state localized within the radiation continuum (bottom), with the energy levels shown schemati-
cally at the right [75]. (B) Unit cells of metasurfaces with a broken symmetry supporting sharp resonances
[75]. (C) Design-independent Q factor vs. asymmetry parameter α for the shown meta-atoms with broken
symmetry [75].

Such metasurfaces consist of arrays of dissimilar meta-atoms with a broken in-plane
symmetry, with some examples shown in Fig. 5.19B, C.

The behavior of accidental BICs can be theoretically explained within the tempo-
ral coupled mode theory applied to a simple system of two resonances, where the
amplitudes a = [a1(t), a2(t)]T of the modes evolve in time as da/dt = Ha with the
following Hamiltonian:

H =
[
ω1 κ

κ ω2

]
− i

[
γ1

√
γ1γ2e

iψ

√
γ1γ2e

iψ γ2

]
(5.22)
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Figure 5.20 Metasurfaces with sharp resonances associated with bound states in the continuum. (A) Fano-
resonant silicon metasurface, left: electron microscope image of silicon metasurface; and right: its cross-
polarized transmission spectra for different nanorod lengths L [71]. (B) Fano-resonant silicon metasurface;
SEM image of a unit cell on the left, and its transmittance (T), reflectance (R) and absorption (A) spectra on
the right [72]. (C) Nanopatterned membrane fabricated of InGaAsP multiple quantum wells and suspended
in air. The membrane support BIC resonance facilitating lasing at room temperature [79]. (D) GaAs BIC
metasurface facilitating lasing [80]. (E) Symmetry broken GaAs metasurface exhibiting a Fano resonance
employed for the enhancement of second harmonic generation [73]. (F) Silicon BIC metasurface employed
for biosensing [81].
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Here, ωi , γi are the resonant frequencies and the damping rates of the modes i = 1,2,
respectively, ψ is the phase shift between the modes and κ is the coupling factor. One
of the eigenvalues becomes purely real with no decay, turning into a BIC, when the
following conditions are attained:

(ω1 − ω2) κ = eiψ√
γ1γ2 (γ1 − γ2) , (5.23)

ψ = πm, (5.24)

where m is an integer number. This condition can be fulfilled through the tuning
of the parameters of two coupled resonances (this case is known as a Friedrich–
Wingten BIC), or when the two resonances are the identical ω1 = ω2, γ1 = γ2 (Fabry–
Pérot BIC).

BIC concept describes optical response of a large class of metasurfaces exhibiting
high-Q resonances with broken-symmetry meta-atoms, including a number of designs
of metasurfaces previously described within the formalism of Fano resonances [78].

Experimental demonstrations. Fig. 5.20 summarizes some of the previous demon-
strations of metasurfaces featuring sharp resonances closely related to physics of
bound states in the continuum that facilitate various optical phenomena including las-
ing, nonlinear frequency conversion, and sensing.

References

[1] N.I. Zheludev, Y.S. Kivshar, From metamaterials to metadevices, Nat. Mater. 11 (11)
(2012) 917–924.

[2] A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk,
Optically resonant dielectric nanostructures, Science 354 (6314) (2016) aag2472.

[3] I. Staude, J. Schilling, Metamaterial-inspired silicon nanophotonics, Nat. Photonics 11 (5)
(Apr. 2017) 274–284.

[4] D.G. Baranov, et al., All-dielectric nanophotonics: the quest for better materials and fabri-
cation techniques, Optica 4 (7) (Jul. 2017) 814.

[5] D. Lin, P. Fan, E. Hasman, M.L. Brongersma, Dielectric gradient metasurface optical ele-
ments, Science 345 (6194) (2014) 298–302.

[6] S.S. Kruk, Y.S. Kivshar, Functional meta-optics and nanophotonics govern by Mie reso-
nances, ACS Photonics (2017).

[7] H.-T. Chen, A.J. Taylor, N. Yu, A review of metasurfaces: physics and applications, Rep.
Prog. Phys. 79 (7) (Jul. 2016) 076401.

[8] P. Moitra, B.A. Slovick, Z.G. Yu, S. Krishnamurthy, J. Valentine, Experimental demonstra-
tion of a broadband all-dielectric metamaterial perfect reflector, Appl. Phys. Lett. 104 (17)
(2014) 171102.

[9] D.A. Baranov, et al., Broadband antireflective coatings based on two-dimensional arrays
of subwavelength nanopores, Appl. Phys. Lett. 106 (17) (2015) 171913.

[10] P. Moitra, et al., Large-scale all-dielectric metamaterial perfect reflectors, ACS Photonics
2 (6) (2015) 692–698.

[11] P. Spinelli, M.A. Verschuuren, A. Polman, Broadband omnidirectional antireflection coat-
ing based on subwavelength surface Mie resonators, Nat. Commun. 3 (2012) 692.



172 Dielectric Metamaterials

[12] S. Kruk, B. Hopkins, I.I. Kravchenko, A. Miroshnichenko, D.N. Neshev, Y.S. Kivshar,
Broadband highly efficient dielectric metadevices for polarization control, APL Photonics
1 (3) (2016) 30801.

[13] L. Wang, et al., Grayscale transparent metasurface holograms, Optica 3 (12) (2016)
1504–1505.

[14] X. Liu, K. Fan, I.V. Shadrivov, W.J. Padilla, Experimental realization of a terahertz all-
dielectric metasurface absorber, Opt. Express 25 (1) (2017) 191.

[15] F. Aieta, et al., Aberration-free ultrathin flat lenses and axicons at telecom wavelengths
based on plasmonic metasurfaces, Nano Lett. 12 (9) (2012) 4932–4936.

[16] X. Ni, S. Ishii, A.V. Kildishev, V.M. Shalaev, Ultra-thin, planar, Babinet-inverted plas-
monic metalenses, Light Sci. Appl. 2 (4) (2013) e72.

[17] M.I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, N.M. Litchinitser, High-
efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission
mode, Nano Lett. 15 (9) (2015) 6261–6266.

[18] Z. Zhou, et al., Efficient silicon metasurfaces for visible light, ACS Photonics 4 (3) (2017)
544–551.

[19] D. Sell, J. Yang, S. Doshay, R. Yang, J.A. Fan, Large-angle, multifunctional metagratings
based on freeform multimode geometries, Nano Lett. 17 (6) (2017) 3752–3757.

[20] A. Arbabi, Y. Horie, M. Bagheri, A. Faraon, Dielectric metasurfaces for complete control
of phase and polarization with subwavelength spatial resolution and high transmission,
Nat. Nanotechnol. 10 (11) (2015) 937–943.

[21] M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Metalenses at
visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,
Science 352 (6290) (2016) 1190–1194.

[22] A. Pors, M.G. Nielsen, R.L. Eriksen, S.I. Bozhevolnyi, Broadband focusing flat mirrors
based on plasmonic gradient metasurfaces, Nano Lett. 13 (2) (2013) 829–834.

[23] L. Zou, et al., Spectral and angular characteristics of dielectric resonator metasurface at
optical frequencies, Appl. Phys. Lett. 105 (19) (2014) 191109.

[24] A. Pors, O. Albrektsen, I.P. Radko, S.I. Bozhevolnyi, Gap plasmon-based metasurfaces for
total control of reflected light, Sci. Rep. 3 (2013).

[25] S. Sun, et al., High-efficiency broadband anomalous reflection by gradient meta-surfaces,
Nano Lett. 12 (12) (2012) 6223–6229.

[26] G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang, Metasurface holo-
grams reaching 80% efficiency, Nat. Nanotechnol. 10 (4) (2015) 308–312.

[27] Y. Yang, W. Wang, P. Moitra, I.I. Kravchenko, D.P. Briggs, J. Valentine, Dielectric meta-
reflectarray for broadband linear polarization conversion and optical vortex generation,
Nano Lett. 14 (3) (2014) 1394–1399.

[28] M. Decker, et al., High-efficiency dielectric Huygens’ surfaces, Adv. Opt. Mater. 3 (6)
(2015) 813–820.

[29] W. Liu, Generalized magnetic mirrors, Phys. Rev. Lett. 119 (12) (Sep. 2017) 123902.
[30] J.C. Ginn, et al., Realizing optical magnetism from dielectric metamaterials, Phys. Rev.

Lett. 108 (9) (2012) 97402.
[31] S. Liu, et al., Optical magnetic mirrors without metals, Optica 1 (4) (2014) 250–256.
[32] Y.H. Fu, A.I. Kuznetsov, A.E. Miroshnichenko, Y.F. Yu, B. Luk’yanchuk, Directional vis-

ible light scattering by silicon nanoparticles, Nat. Commun. 4 (Feb. 2013) 1527.
[33] M.F. Limonov, M.V. Rybin, A.N. Poddubny, Y.S. Kivshar, Fano resonances in photonics,

Nat. Photonics 11 (9) (Sep. 2017) 543–554.
[34] C. Huygens, Treatise on Light, Pieter van der Aa, Leiden, 1690.



Tailoring transmission and reflection with metasurfaces 173

[35] A.E. Krasnok, A.E. Miroshnichenko, P.A. Belov, Y.S. Kivshar, Huygens optical elements
and Yagi—Uda nanoantennas based on dielectric nanoparticles, JETP Lett. 94 (8) (Dec.
2011) 593–598.

[36] J.-M. Geffrin, et al., Magnetic and electric coherence in forward- and back-scattered elec-
tromagnetic waves by a single dielectric subwavelength sphere, Nat. Commun. 3 (2012)
1171.

[37] M. Kerker, D.-S. Wang, C.L. Giles, Electromagnetic scattering by magnetic spheres, J.
Opt. Soc. Am. 73 (6) (Jun. 1983) 765.

[38] W. Liu, Y.S. Kivshar, Generalized Kerker effects in nanophotonics and meta-optics, Opt.
Express 26 (10) (2018) 13085–13105.

[39] W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, H. Hu, Ultra-directional forward scattering by
individual core-shell nanoparticles, Opt. Express 22 (13) (2014).

[40] R. Alaee, R. Filter, D. Lehr, F. Lederer, C. Rockstuhl, A generalized Kerker condition for
highly directive nanoantennas, Opt. Lett. 40 (11) (Jun. 2015) 2645.

[41] H.K. Shamkhi, et al., Transverse scattering with the generalised Kerker effect in high-index
nanoparticles, arXiv:1808.10708, Aug. 2018.

[42] Y.F. Yu, A.Y. Zhu, R. Paniagua-Dominguez, Y.H. Fu, B. Luk’yanchuk, A.I. Kuznetsov,
High-transmission dielectric metasurface with 2π phase control at visible wavelengths,
Laser Photonics Rev. 9 (4) (2015) 412–418.

[43] A.E.H. Love, The integration of the equations of propagation of electric waves, Proc. R.
Soc. London 68 (442–450) (1901) 19–21.

[44] Z. Bomzon, G. Biener, V. Kleiner, E. Hasman, Space-variant Pancharatnam–Berry phase
optical elements with computer-generated subwavelength gratings, Opt. Lett. 27 (13)
(2002) 1141–1143.

[45] R.C. Jones, A new calculus for the treatment of optical systems I. Description and discus-
sion of the calculus, J. Opt. Soc. Am. 31 (7) (1941) 488–493.

[46] K. Wang, Y. Shi, A.S. Solntsev, S. Fan, A.A. Sukhorukov, D.N. Neshev, Non-reciprocal
geometric phase in nonlinear frequency conversion, Opt. Lett. 42 (10) (2017) 1990–1993.

[47] S.M. Kamali, E. Arbabi, A. Arbabi, A. Faraon, A review of dialectric optical metasurfaces
for wavefront control, Nanophotonics 7 (2018) 1041–1068.

[48] S. Kruk, et al., Transparent dielectric metasurfaces for spatial mode multiplexing, Laser
Photon. Rev. 12 (8) (Aug. 2018) 1800031.

[49] K. Wang, et al., Quantum metasurface for multiphoton interference and state reconstruc-
tion, Science 361 (6407) (Sep. 2018) 1104–1108.

[50] B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc., New
York, USA, 1991.

[51] H.A. Haus, Waves and Fields in Optoelectronics, Prentice Hall, 1984.
[52] D.G. Baranov, A. Krasnok, T. Shegai, A. Alù, Y. Chong, Coherent perfect absorbers: linear

control of light with light, Nat. Rev. Mater. 2 (Oct. 2017) 17064.
[53] Y.D. Chong, L. Ge, H. Cao, A.D. Stone, Coherent perfect absorbers: time-reversed lasers,

Phys. Rev. Lett. 105 (5) (Jul. 2010) 053901.
[54] H. Haken, Light: Laser Dynamics, Vol. 2, Holl. Elsevier, Amsterdam, 1985.
[55] X. Ming, X. Liu, L. Sun, W.J. Padilla, Degenerate critical coupling in all-dielectric meta-

surface absorbers, Opt. Express 25 (20) (2017) 24658.
[56] W.W. Salisbury, Absorbent body for electromagnetic waves, US2599944A Patents, 1952.
[57] K. Fan, J.Y. Suen, X. Liu, W.J. Padilla, All-dielectric metasurface absorbers for uncooled

terahertz imaging, Optica 4 (6) (2017) 601.
[58] R. Paniagua-Domínguez, et al., Generalized Brewster effect in dielectric metasurfaces,

Nat. Commun. 7 (Jan. 2016) 10362.



174 Dielectric Metamaterials

[59] E. Plum, X.-X. Liu, V.A. Fedotov, Y. Chen, D.P. Tsai, N.I. Zheludev, Metamaterials: optical
activity without chirality, Phys. Rev. Lett. 102 (11) (Mar. 2009) 113902.

[60] C. Menzel, C. Rockstuhl, F. Lederer, Advanced Jones calculus for the classification of
periodic metamaterials, Phys. Rev. A 82 (5) (Nov. 2010) 053811.

[61] S.S. Kruk, et al., Optical metamaterials with quasicrystalline symmetry: symmetry-
induced optical isotropy, Phys. Rev. B, Condens. Matter Mater. Phys. 88 (20) (2013).

[62] S.S. Kruk, et al., Polarization properties of optical metasurfaces of different symmetries,
Phys. Rev. B, Condens. Matter Mater. Phys. 91 (19) (2015).

[63] M. Albooyeh, et al., Resonant metasurfaces at oblique incidence: interplay of order and
disorder, Sci. Rep. 4 (2014).

[64] R. Alaee, M. Albooyeh, A. Rahimzadegan, M.S. Mirmoosa, Y.S. Kivshar, C. Rockstuhl,
All-dielectric reciprocal bianisotropic nanoparticles, Phys. Rev. B 92 (2015) 245130.

[65] A.Y. Zhu, et al., Giant higher-order multipoles enable strong intrinsic chirality in planar
nanostructures, in: Frontiers in Optics 2017, 2017, p. JW3A.92.

[66] U. Fano, Effects of configuration interaction on intensities and phase shifts, Phys. Rev.
124 (6) (Dec. 1961) 1866–1878.

[67] U. Fano, Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro darco, Il
Nuovo Cimento 12 (1935) 154–161.

[68] J.-P. Connerade, A.M. Lane, Interacting resonances in atomic spectroscopy, Rep. Prog.
Phys. 51 (11) (Nov. 1988) 1439–1478.

[69] G. Borrmann, Die Absorption von Rontgenstrahlen im Fall der Interferenz, Z. Phys.
127 (4) (Aug. 1950) 297–323.
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6.1 Introduction

In this chapter, we outline applications of dielectric metasurfaces for wavefront con-
trol. We will focus on metasurfaces composed of nano-posts, previously introduced
in Chapter 5, with thicknesses comparable to the free-space wavelength [1]. These
metasurfaces can be fabricated using conventional nano-fabrication techniques like
lithography, thin film deposition and etching. These techniques are suitable for wafer-
scale mass-production of devices, which is very important for the future penetration
of this technology into various products. Several groups reported fabrication of large-
area metasurfaces using conventional stepper lithography [2,3]. Going beyond tradi-
tional semiconductor manufacturing, the ultra-thin and flat nature of metasurfaces also
allows for printable photonic technologies for large-volume and low-cost manufactur-
ing. In the last few years, the optical metasurfaces have created an exploding research
field, and it is impossible to cover every aspect in one single chapter. In this chapter,
we primarily focus the discussion on research performed by the authors and lay out its
relation to other work in the field.

6.2 Capabilities for phase and polarization control
enabled by dielectric metasurfaces

In this section, we review the properties of dielectric metasurfaces that enable the ap-
plications discussed in the following sections. Metasurfaces composed of high index
nano-posts placed on a sub-wavelength periodic lattice were introduced in the late
1990s [4–6] and later investigated by other research groups [7–10]. These metasur-
faces (Fig. 6.1) are appealing because they can provide complete control of both the
polarization and the phase of the transmitted/reflected light while using nano-posts
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Figure 6.1 (A) Schematic of a dielectric metasurface composed of sub-wavelength hexagonal pixels. Left
panel shows light polarized along the x direction incident on the metasurface. Right panel shows that light
propagating through each pixel acquires a different phase delay and polarization ellipse. (B) Complete
control of the polarization and phase at each pixel can be achieved by placing a high index nano-post,
made from amorphous Si (a-Si) in this case, resting on a silicon dioxide (SiO2) substrate. The control is
achieved by modifying the diameters of the ellipse and the orientation of its axes. (C–D) Scanning electron
microscope images of dielectric metasurfaces fabricated from amorphous silicon nano-posts on a hexagonal
lattice. (E) Scanning electron microscope image of a dielectric metasurface fabricated from amorphous
silicon nano-posts on a square lattice. (F) Schematic showing how nano-posts can modify a plane wave to
a wave with arbitrary shape. The spatial control in shaping the wavefront is on the order of the wavelength.
(Panels (A) and (B) are adapted from [11], (C) and (D) from [16], (E) from [17].)

with aspect ratios smaller than ∼10:1, which are relatively straightforward to fabri-
cate [11]. The nano-posts are most often made of high index materials like silicon for
operation in red and near infrared and titanium dioxide for operation at the shorter
wavelength range of the visible spectrum [4,12]. Lower index materials like silicon
nitride can also be used in some cases [13–15], although the light bending capability
and subsequently the numerical aperture of metasurface lenses are limited at lower
index. The medium surrounding the nano-posts needs to have a lower refractive index
and it usually consists of either silicon dioxide, polymers, or air.

One of the most intuitive ways to think about the operating principle for these
metasurfaces based on nano-posts is to consider each nano-posts as a short waveg-
uide. Depending on the cross-section of the nano-post, light can experience different
phase delays. Also, if the cross-section of the nano-post is not symmetric under a 90◦
rotation around its axis, the nano-post can exhibit structural birefringence which leads
to a polarization transformation as light propagates through it. Using nano-posts with
elliptical or rectangular cross-sections, it is possible to achieve designs where arbitrary
phase delays and polarization rotations can be realized by controlling the dimensions
and the orientation of the ellipse or rectangle (Fig. 6.1A, B). To create a metasurface,
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the nano-posts are usually placed on a sub-wavelength periodic lattice. This way, the
light is primarily scattered with high efficiency only into the zeroth order. In order
to achieve spatial wavefront control with resolution comparable to the lattice period
(Fig. 6.1F) it is important to use nano-posts with high refractive index. This ensures
that the nano-posts have a high scattering cross-section for the incident wave, and at
the same time the coupling between nano-posts is highly reduced.

The metasurfaces we discuss in this chapter are arranged either in square or hexago-
nal lattice geometry, and some examples of fabricated devices are shown in Fig. 6.1C,
D, E. The polarization and phase of the wavefront can be sampled at each pixel by
placing a nano-post that provides the desired phase delay and polarization transfor-
mation. For example, using amorphous silicon nano-posts with a height of 0.6λair
placed on a hexagonal lattice with a lattice constant of 0.5λair, it is possible to con-
trol the phase of light transmitted through the nano-posts from 0 to 2π by changing
the post diameters from λair/8 to λair/3 [9], where λair is the design wavelength in air.
Full polarization and phase control can be achieved using elliptical amorphous silicon
nano-posts with a height of ∼ 0.8λair, placed on a hexagonal lattice with a lattice con-
stant of ∼ 0.7λair by changing the ellipse diameters between ∼ 0.07λair and ∼ 0.5λair
and also changing the orientation of the major axis of the ellipse. The transmission
efficiency of these structures is > 85%, while the total device efficiency depends on
the actual device function [11]. Similar performance can be achieved for devices op-
erating in the reflection mode as well [18].

Controlling only the phase is suitable for applications such as lenses used for imag-
ing, focusing and other mode converters. Controlling both the polarization and the
phase enables devices where the wavefronts corresponding to two orthogonal polar-
izations are controlled independently. For example, two polarization states can be
focused at different points, or deflected at different angles. These are examples of
multi-functional devices that can simultaneously do polarization splitting and imag-
ing [11,19].

Most dielectric metasurfaces are designed to operate at a single wavelength. Struc-
tures that operate simultaneously at multiple wavelengths can be achieved in multiple
ways, albeit generally at the cost of reduced efficiency [20–25]. For example, elliptical
or rectangular nano-posts can be engineered to independently control a different wave-
length for each of the two orthogonal polarization states [22]. Spatial multiplexing of
nano-posts designed to operate at two different wavelengths and the same polariza-
tion can also be used [21]. Also, a localized set of nano-posts (meta-molecule) can be
collectively engineered to simultaneously operate at multiple wavelengths [20]. When
the polarization states of two wavelengths that are independently controlled are not
orthogonal, the wavelengths need to be spaced quite far apart. This is because the
scattering responses of low-quality factor meta-atoms are correlated at wavelengths
that are close to each other.

Dispersion engineering can be used to control the response of dielectric structures
over a continuous wavelength interval [26–30]. Being short truncated waveguides,
the nano-posts exhibit resonances, so the phase delay of the light scattered by the
nano-posts depends on the exact wavelength. The absolute phase delay (φ) and phase
dispersion (dφ/dλ) can be controlled by changing the dimensions of the nano-posts.
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These effects can be used to further control the dispersion properties of the final
devices (lenses, gratings, etc.) created using dielectric metasurfaces, leading to diffrac-
tion gratings with interesting angular dispersion profiles and lenses with chromatic
dispersions that are different from conventional diffractive devices. Dispersion control
can be applied for both transmissive and reflective devices. However, larger absolute
phase delays can be achieved primarily for reflective devices, as conceptually light
propagates for a longer path back and forth through these structures. Having large
absolute phase delays is important especially when designing broadband devices for
wavefront control that cover a large area.

So far, the dielectric metasurfaces that we discussed can control degrees of freedom
like phase and polarization at different wavelengths. Another degree of freedom for
optical waves is their propagation direction, or momentum. An interesting question
is whether dielectric metasurfaces can be used to independently control the phase of
two or more emerging optical wavefronts that propagate along different directions.
To implement this functionality, one needs to consider the nano-posts forming the
metasurface as multi-mode resonators. Depending on the direction of the light inci-
dent on the nano-posts, different sets of modes can be excited, which can have very
different scattering coefficients. Using nano-posts with a more complex cross-section
(U-shaped for example), it is possible to independently control the phase of the scat-
tered light between zero and 2π for two different angles of incidence (0 and π /6). This
allows for the creation of angle-multiplexed gratings and holograms [31].

6.3 Widefield imaging

Imaging using refractive lenses is one of the most widespread applications of optics,
including almost all areas of engineering, science and healthcare. Replacing refractive
lenses with thin, flat, lithographically patterned optical components is one of the most
desired applications for dielectric metasurfaces. When discussing imaging it is very
important to note that there is a very wide range of specifications for various imaging
applications. In this section, we discuss the suitability of metasurface imaging systems
for different applications.

The most basic imaging system can be created using a single metasurface lens [10,
9,12]. A single metasurface lens can be formed with a phase mask that transforms a
plane wave to a spherical one as shown in Fig. 6.2A, B. Often, the required phase delay
is larger than 2π and in this case an operating wavelength needs to be chosen and the
phase needs to be wrapped every multiple of 2π as shown in Fig. 6.2C, D. To create
the lens, the phase profile is sampled on a subwavelength lattice, and a nano-post im-
posing the necessary phase delay is placed on each lattice point as shown in Fig. 6.2E.
The simulated electromagnetic field for a plane wave passing through a metasurface
lens is shown in Fig. 6.2F. Examples of lenses fabricated in amorphous silicon for
operation at telecommunications wavelengths, and from titanium dioxide for visible
wavelengths are shown in Fig. 6.3A, B. These components can be used to focus light
to a point, and perform some basic imaging. However, similar to refractive systems,
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Figure 6.2 (A) Schematic of a plane wave being focused to a point using a metasurface lens. (B) Diame-
tral cross-section of the phase profile that needs to be imposed by a circular metasurface such that it acts
as a focusing lens. (C) Diametral cross-section of the phase profile of a circular metasurface focusing lens
where the phase is wrapped every 2π . (D) Two-dimensional phase profile of a metasurface focusing lens,
where the phase is wrapped every 2π . (White is 2π phase and dark blue is 0 phase.) (E) Drawing show-
ing a metasurface lens composed of circular nano-posts. (F) Simulation (diametral cross-section) showing
focusing of a plane wave using a metasurface lens.

a single metasurface lens exhibits multiple optical aberrations and is not well suited
for imaging an extended scene. Systems of at least two lenses are generally required
to image a wider field of view. Towards this end, metasurface lens doublets were de-
veloped to create imaging systems that can capture a wide angular range as shown in
Fig. 6.3C [32]. The two metasurfaces, with diameters of 1600 µm and 800 µm were
made from amorphous silicon for an operation wavelength of 850 nm and were sep-
arated by a 1-mm-thick glass substrate. The system was optimized for a focal length
of 717 µm, an f-number of 0.9 and had an efficiency of ∼70% for light at normal in-
cidence. Because of the freedom in designing the phase profiles, the doublet reached
a nearly diffraction-limited performance for light incident at angles up to 25◦, a large
improvement compared to a single lens of a similar f-number and focal length that
exhibits significant aberrations even for incident angles of a few degrees. A similar
device, designed to operate at green wavelength, but with a smaller field of view and
operating only with one circular polarization was also developed [33].

As with most imaging systems based on diffractive elements, the main drawback of
using metasurface lenses for optical imaging is the chromatic dispersion. While these
lenses can perform well at the design wavelength, their performance degrades away
from it. The chromatic dispersion is partially caused by the dispersive nature of the
nano-posts’ scattering response, but even more importantly from the construction of
metasurface lenses that are composed on Fresnel zones whose locations, with some
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Figure 6.3 (A) Metasurface lens fabricated in amorphous silicon for operation at telecom wavelengths
(1550 nm). The lens has a diameter of 400 µm, and the distance between two nano-posts is 800 nm. The
right panel shows the size of the focal spot and the focusing efficiency. (B) Metasurface lens fabricated in
titanium dioxide for operation at visible wavelengths. Scale bar for the left panel is 40 µm, and 300 nm
for the right panel. (C) Schematic, focusing performance, and imaging performance of a metasurface lens
doublet operating at 850 nm. (Panel (A) is adapted from [9], (B) from [12], and (C) from [32]).

exceptions [27], are fixed by the design wavelength. For achromatic operation, the
locations of these Fresnel zones need to change as a function of wavelength, which is
generally not possible once the device is fabricated.

A pedagogical example that illustrates the problem of achromatic imaging using
metasurface lenses is to consider focusing of coherent broadband light, like an ultra-
short light pulse, using a circular lens with radius R, focal length f , and numerical
aperture NA = R/

√
R2 + f 2 in vacuum (Fig. 6.4). To make use of the entire numer-

ical aperture of the lens, the beam would need to fill it entirely. Thus, we will have
parts of the light traveling through the center of the lens and parts of it traveling close
to its circumference. For broadband focusing, parts of the pulse traveling along rays
going through the middle of the lens need to arrive at the focal point at the same time
and with the same phase as parts of the pulse traveling along rays going through the
lens circumference. This cannot be achieved unless light going through the center of

the lens experiences a real delay of τ =
√

f 2+R2−f

c
= f

c

( 1√
1−NA2

− 1
)
. This delay

becomes larger for increasing focal lengths and increasing numerical aperture (or lens
radius). A focusing refractive lens applies this real time delay by being significantly
thicker at its center than at its circumference. In contrast, metasurface lenses are thin
and operate using low-quality factor resonances, which means that they cannot apply
very large time delays and thus cannot be achromatic over a wide range.

Time delays corresponding to a few wavelengths can be achieved using dielectric
metasurfaces, and efforts in this direction resulted in lenses and focusing mirrors with
an achromatic behavior over an extended range compared to initial demonstrations
[27,29,30]. However, this comes at the cost of reduced efficiency, and most impor-
tantly the demonstrated devices have a small size, up to only a few hundred microns
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Figure 6.4 Schematic showing a metasurface lens with radius R and focal length f that focuses broadband
light, in the form of short pulses. For broadband operation, the part of the pulse traveling along a ray going
through the center of the lens needs to arrive at the focal point at the same time and with the same phase
profile as the part of the pulse traveling along a ray passing close to the circumference of the lens and
defected to the focal point. Reprinted with permission from Ehsan Arbabi, Amir Arbabi, Seyedeh Mahsa
Kamali, Yu Horie, Andrei Faraon, Controlling the sign of chromatic dispersion in diffractive optics with
dielectric metasurfaces, Optica 4 (6) (2017) 625–632, Optical Society of America.

in diameter at telecommunications wavelengths. The achromatic operation for devices
with a larger size would require larger time delays, which are difficult to achieve in
thin diffractive devices. One possibility would be to use nano-resonators with multiple
resonances, each one with a much higher quality factor, so a larger time delay could
be realized over a broader bandwidth, but suitable designs of this kind have not been
proposed so far.

6.4 Computational imaging

Besides the conventional approach where a system of lenses creates a good quality
image directly on the image sensor, another useful approach is to use a metasurface
device to impose a specific transformation for the optical wavefront and then use
algorithms to recover a higher quality image. This technique was used to engineer
broadband imaging systems.

As explained earlier, ordinary metalenses (Fig. 6.5A) suffer from strong chromatic
aberrations. Depending on the wavelength of the incident light, the metalens focuses
light at different depth along the optical axis. This results in vastly different modula-
tion transfer functions (MTF) of the lens for different wavelengths at the plane of the
sensor. Fig. 6.5B shows the MTF of a metalens measured for three different colors
(red, green, and blue). The sensor is placed in the focal plane of the metalens un-
der green illumination: while a large distribution of spatial frequency is captured for
green light, for blue and red only a small distribution of spatial frequencies reaches
the sensor. This results in images with strong chromatic aberrations (Fig. 6.5C). One
way to circumvent this problem is to employ wavefront shaping to extend the depth
of the focus (EDOF) [34]. EDOF lenses can be demonstrated using a separate cu-
bic phase mask in conjunction with a refractive lens. The sub-wavelength periodicity
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Figure 6.5 Full-color imaging using wavefront shaping metasurface and computational imaging:
(A–C) optical microscope image of a metalens, measured modulation transfer function for red, green and
blue and captured color image. (D–F): the addition of a cubic phase mask results in rotational asymmetry,
and a non-zero MTF for the whole visible frequency range. This results in better color information in the
captured image. (Adapted from [35].)

allows for combining the cubic phase-function and the lens in a single metasurface
[35]. Adding the cubic function breaks the rotational asymmetry as can be seen in
Fig. 6.5D. A direct result of the EDOF is a non-zero MTF over a large distribution of
the spatial frequencies over the whole visible spectrum (red, green and blue are shown
in Fig. 6.5E), although the large spatial frequencies are more attenuated compared to a
well-focused lens. Some of the image quality can be recovered using a computational
deconvolution, as shown in the captured full-color image in Fig. 6.5F.

Another computational approach is to use a random metasurface phase mask with a
known scattering matrix. When the object is illuminated with a coherent light source,
it produces a speckle pattern on the image sensor. By measuring the speckle pattern
and knowing the scattering matrix of the object, it is possible to recover both the
amplitude and the phase of the object using the speckle-correlation scattering matrix
method [38].

6.5 Focus scanning fluorescence imaging

Focus scanning imaging techniques are widely used in biological samples containing
fluorescent labels. In these techniques, fluorescence is emitted mainly at the focal spot
where the excitation light has the highest intensity. The excitation can be realized via
a one-photon or two-photon process. In both cases, the excitation wavelength is rela-
tively narrow-band and the emitted fluorescence is collected, but not directly imaged.
These conditions are well suited for metasurface devices operating in a narrower band.



Applications of wavefront control using nano-post based dielectric metasurfaces 183

Figure 6.6 (A) Scanning electron microscope of a double-wavelength metasurface lens fabricated from
birefringent amorphous silicon nano-posts on glass. (B, C) Focal spot of the metasurface lens at the target
excitation wavelength of 822 nm and collection wavelength of 600 nm. (D) Two photon images acquired
using the metasurface lens and a conventional microscope objective. (E) Principle of focus scanning using
a random metasurface phase mask and a spatial light modulator. (F) Fluorescence imaging of single cells
acquired using the disorder-engineered metasurface and comparison with a microscope objective. (Panels
(A–D) adapted from [36], panels (E–F) adapted from [37].)

Both one-photon and two-photon microscopy can be implemented using double-
wavelength metasurface lenses. For the two-photon case, this was already imple-
mented using a lens with a diameter of 1.6 mm, a numerical aperture of 0.5 and a
focal distance f ∼ 1.386 mm at the wavelengths of 820 nm and 605 nm (Fig. 6.6A,
B, C), corresponding to the two-photon excitation and emission wavelength of the
fluorophore [36]. The focusing efficiencies were measured to be 61% and 45% at
∼820 nm and ∼600 nm, respectively. This lens was used as a direct replacement
for the objective lens in a two-photon microscope setup, where fluorescent beads
were imaged with good quality (Fig. 6.6D). The excitation and collection with the
metasurface lens were not as efficient when compared to a corrected microscope ob-
jective with similar focal length and numerical aperture. This is again related to the
chromatic dispersion that results in diminished peak intensity for the focused pulsed
laser and smaller collection efficiency for the broadband fluorescence. While double-
wavelength metasurface lenses are unlikely to replace objective lenses in a versatile
table-top two-photon microscope setup, they may find use in more specialized appli-
cations where they are designed specifically for a fluorophore and are incorporated in
highly compact lightweight setups like a scientific endoscope.
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An interesting method for focus scanning, which was used for one-photon imaging,
is based on random metasurfaces; see Fig. 6.6E, F [37]. It is based on the well-known
principle that it is possible to focus light with a high peak to background ratio using a
spatial light modulator that imposes a specific phase profile on a scattering medium.
Then the position of the focal point can be scanned to arbitrary locations after the
scattering medium by properly changing the phase profile applied by the spatial light
modulator as shown in Fig. 6.6E. However, to know what phase profile should be ap-
plied, the scattering properties of the medium need to be carefully characterized. Using
dielectric metasurfaces it is possible to fabricate random scattering media with a scat-
tering matrix that is known a priori, with a large angular correlation range, and with an
engineered angular profile for the scattered field. This elegant approach, which elimi-
nates the need for careful characterization of the scattering medium, was implemented
using a metasurface device fabricated from silicon nitride nano-posts operating for
green light [37]. The method enabled focusing of light to small spots corresponding
to a high numerical aperture (NA > 0.5), and fluorescence imaging with an estimated
∼ 2.2 × 108 addressable points in a wide ∼ 8 mm field of view as shown in Fig. 6.6F.

6.6 Mechanically tunable devices

In this section we will discuss metasurfaces that dynamically tune wavefronts. A more
general discussion of tunable dielectric metamaterials can be found in Chapter 7. One
of the great advantages of optical metasurfaces is that they can be integrated in vari-
ous complex systems including micro-electro-mechanical structures (MEMSs). These
systems are uniquely positioned to exploit the minute thickness and ultra-low weight
of optical metasurfaces. Being thin, metasurfaces can be brought into very close prox-
imity of each other, something that cannot easily be done with curved refractive lenses.
At the same time, they can be actuated at fast speeds using electrostatic forces. A sys-
tem that makes use of these unique advantages for metasurfaces is a scanning lens
doublet where one of the lenses is patterned on a rigid flat substrate and the other
lens is patterned on a membrane that can be moved with respect to the flat substrate
(Fig. 6.7A). The actuation is done electrostatically using electrodes patterned both on
the glass substrate and the membrane. The freedom provided by the metasurface lens
design allows for large changes in the focal distance of the entire system only by small
changes in the distance between the two lenses. This idea was realized in practice [39]
with a system composed of two lenses with 300 µm diameter and designed spacing
of 10 µm at zero voltage. Images of the device are shown in Fig. 6.7B. The focal dis-
tances of the two lenses were 120 µm and −130 µm, respectively. A small change of
only 1 µm in the distance between the lenses allows for tuning of the total focal length
of the system from 781 µm to 817 µm. The focal length tuning was verified experi-
mentally both by measuring it directly (Fig. 6.7C, D) and by showing that an image
can be brought in and out of focus (Fig. 6.7E). In the experiment the focal length was
slightly different from the design. The actuation speed was ∼230 Hz, limited by air
friction. In vacuum, the system can operate at speeds approaching 4 kHz. This type
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Figure 6.7 (A) Concept of tuning of the focal length of a metasurface lens doublet by changing the distance
between the lenses using micro-electro-mechanical structures. (B) Scanning electron microscope (top) and
optical (bottom) image of the fabricated system of lenses. (C) Change in the focal length of the system with
applied voltage. (D) Image of the focal spot for two applied voltages. (E) Bringing an image in and out of
focus by changing the voltage actuating the distance between the lenses. (Adapted from [39].)

of optical system is well suited for applications where fast focus tuning is needed in a
small package like a miniaturized microscope.

Mechanical actuation can also be used to tune the focal length of a system of meta-
surfaces by displacing them laterally. This was realized using a set of two Alvarez
lenses [40,2]. In an Alvarez lens system, two cubic phase masks work in tandem to
produce a lens-like behavior. One of the masks has a phase profile of the form

ϕalv (x, y) = mod

(
2π

λ
A

(
1

3
x3 + xy2

)
,2π

)
and the other mask satisfies the condition ϕalv(x, y) + ϕinv(x, y) = 0. This enables a
combined phase of a lens with focal length of f = 1

4Ad
, when the two plates are

displaced by a distance d (Fig. 6.8A). Fig. 6.8B shows one of the fabricated Al-
varez lenses. Under lateral displacement, the focal length changes as indicated in
Fig. 6.8C. While the initial experiments were performed using metasurfaces fabricated
using electron-beam lithography, large-area Alvarez lenses were recently reported us-
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Figure 6.8 Tunable Alvarez lens: (A) two cubic phase masks together behave like a lens, whose focal
length is tuned as the metasurfaces are laterally displaced, (B) SEM of the fabricated Alvarez lens; (C) mea-
sured focal length as a function of the displacement; (D) varifocal zoom imaging using large-area Alvarez
metalens. Parts (A), (C), (D) reprinted with permission from Shane Colburn, Alan Zhan, Arka Majumdar,
Varifocal zoom imaging with large area focal length adjustable metalenses, Optica 5 (7) (2018) 825-831,
Optical Society of America. Part (B) from A. Zhan, S. Colburn, C.M. Dodson, A. Majumdar, Metasurface
freeform nanophotonics, Sci. Rep. 7 (2017) 1673.

Figure 6.9 (A) Stretchable dielectric metasurface lens while being expanded. (B) Change in the focal
distance as the lens is expanded. Scale bars 5 µm. (Adapted from [17].)

ing stepper photolithography [2]. Using these metasurface Alvarez lenses, varifocal
zoom imaging was demonstrated as shown in Fig. 6.8D. In all these experiments,
the Alvarez lenses were manually displaced using kinematic stages. Micro-electro-
mechanical systems can be readily used to actuate small area Alvarez lenses, while
large-area lenses can be actuated via stepper motors.

Another type of mechanical actuation that can be used to tune metasurface lenses is
stretching of the substrate where the lens is located [41]. For uniform stretching of the
substrate by a ratio 1 + ε, the focal length of the lens changes by a factor of (1 + ε)2.
This has been realized by embedding a metasurface lens with diameter of 200 µm,
composed of amorphous silicon nano-posts, in a flexible and deformable polymer [17]
as shown in Fig. 6.9. A focal length change from 600 µm to 1400 µm at an operation
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Figure 6.10 (A) Schematic of a superpixel for polarization imaging using metasurfaces. It is composed of
six pixels, measuring the light in three polarization bases chosen such that the full Stokes parameters can
be reconstructed. (B) Response of the intensity recorded on the superpixel under illumination with different
polarization states indicated by the arrows above. (Adapted from [43].)

wavelength of 915 nm was demonstrated (Fig. 6.9B). Stretchable metasurfaces with
electrical control can also be used to tune the focal length and correct aberrations [42].

6.7 Devices based on simultaneous polarization and
phase control

One property of dielectric metasurfaces that makes them powerful for optical engi-
neering is that the polarization and phase of optical wavefronts can be controlled
completely and independently. This enables diffractive devices that are difficult to
implement using other techniques, like lenses that focus two states of polarization at
two different focal points [11]. More complex polarization imaging can be realized
by projecting the image onto three different bases which allows for the full determi-
nation of the Stokes parameters of the incident light. Using metasurfaces, this type
of projection can be performed directly in the focal plane to image an entire scene
[43]. The image sensor can be divided into superpixels each consisting of six pixels.
Metasurfaces placed on the top of the superpixel are used to split the light into three
different bases: linear horizontal/vertical, linear plus/minus 45◦, and right/left hand
circular (Fig. 6.10A). This allows for full measurement of the Stokes parameters of
the light incident on the superpixel. The implementation was done at a center wave-
length of 850 nm for pixel sizes ranging from 2.4 µm to 7.2 µm. The response of
the superpixel under various polarizations is shown in Fig. 6.10B. Other polarimetry
schemes using metasurfaces have also been implemented [44,45].

Optical elements imposing complex transformations of polarization and phase
are also utilized in more specialized microscopy techniques. For example, elements
that transform linear polarization to azimuthal/radial polarization were used for mi-
croscopy applications where the unknown orientation of the optical dipole moment of
molecules leads to localization error [16]. A molecule generally emits light in a dipolar
pattern. If the dipole is aligned either in the focal plane or along the microscope axis,
the location of the molecule can be well determined by measuring its fluorescence
and fitting it. When the dipole makes an arbitrary angle with the microscope axis, it
emits light primarily at an angle which makes it difficult to determine its location.
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The dipole can be decomposed in a component oscillating along the microscope axis
which emits radially polarized light, and a component oscillating in the focal plane
which emits light polarized along its direction. The radially polarized light can be
completely removed using a device that converts radial to linear polarization followed
by a linear polarizer. Thus, the remaining light is emitted only by the in-plane dipole
whose location can be well determined. This technique can be used to measure the
distance between two molecules that have dipoles with unknown orientations. It was
implemented using a metasurface phase mask, operating around 685 nm, that converts
linear to radial/azimuthal polarizations [16].

6.8 Devices exploiting spectral control

While the spectral dispersion of diffractive optical elements is generally a disadvan-
tage for broadband imaging devices, it is successfully exploited in spectrometry appli-
cations. Spectrometers based on metasurfaces can be realized in various ways, starting
from the trivial implementation of diffraction gratings using metasurface phase masks
in combination with conventional collimating and focusing optical elements. The fo-
cusing dispersive elements can also be combined into a single flat optical metasurface
element designed to focus off-axis [46]. However, in this configuration, the image
sensor needs to be placed at an angle with respect to the lens axis, which is not
convenient for some applications. An appealing configuration for metasurface spec-
trometers is based on folded optics [18]. The idea is to use a transparent substrate
coated with reflective metasurfaces and mirrors on both sides as shown in Fig. 6.11A.
Light is inserted in the device via an aperture in the mirror. It is then dispersed, re-
flected and focused through another aperture in the device using metasurface and
plain reflective components. One example, shown in Fig. 6.11B, C is a folded spec-
trometer composed of three metasurfaces fabricated using a single lithography step,
where light is reflected inside the transparent substrate 10 times. The device is de-
signed to operate between 760 nm and 860 nm with a resolution of ∼ 1.25 nm and
an efficiency of ∼25% as shown in Fig. 6.11D. Such a device, with dimensions of
7 mm × 1 mm × 1 mm is promising for applications where very compact spectrome-
ters are required.

Beside spectrometers, metasurfaces can be used to implement other types of dis-
persion engineering. For example, all diffractive devices exhibit negative dispersion,
which means that, for the same diffraction order, gratings deflect red light at larger an-
gles than blue light. Using dispersion-engineered metasurfaces, it is possible to change
this behavior to some degree and create devices with positive and zero dispersion
within a band as shown schematically in Fig. 6.12 and demonstrated in Reference
[27]. This leads to gratings with interesting dispersive regimes that can have applica-
tions in optical engineering where optical pulses need to be dispersed in a particular
way. The same concepts can be used to develop lenses and focusing mirrors with flat
dispersion within some bandwidth, which can be useful in various imaging applica-
tions [27,29,30].
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Figure 6.11 (A) Concept of folded optics design, where light enters inside a slab via an aperture, and
then it is manipulated via metasurfaces while being confined in the slab via mirrors. (B) Ray diagram
showing a folded spectrometer composed of a slab coated with mirrors, a reflective metasurface grating,
and two metasurface focusing mirrors. Light enters the slab via an aperture, it is dispersed by the grating,
and then it is reflected inside the slab 9 times while being focused using two metasurface focusing mirrors
outside the slab via an aperture. (C) Images of the spectrometer. An array of 11 spectrometers is shown
on the left. Optical images of the metasurfaces are shown in the center. A scanning electron microscope
image of the metasurface is shown on the right. (D) Spectra for the TE and TM polarizations collected with
the spectrometer for laser light tuned between 760 nm and 860 nm. The plot on the right shows the total
measured efficiency. (Adapted from [18].)

Figure 6.12 Dispersion regimes in refractive and diffractive optics. (A) Positive dispersion in refractive
optics where shorter wavelengths are deflected more than longer wavelengths by a prism. Focal length of
normal refractive lenses is larger for longer wavelengths than for shorter wavelengths. (B) Negative dis-
persion regime for diffractive gratings and diffractive lenses. (C–E) Diffractive devices with zero, positive,
and enhanced negative dispersion. Reprinted with permission from Ehsan Arbabi, Amir Arbabi, Seyedeh
Mahsa Kamali, Yu Horie, Andrei Faraon, Controlling the sign of chromatic dispersion in diffractive optics
with dielectric metasurfaces, Optica 4 (6) (2017) 625–632, Optical Society of America.
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Figure 6.13 (A) Convex cylinder coated with a metasurface (left) which causes the light to be focused
to a point (center). Without the metasurface, light is focused to a line (right). (B) Concave cylinder coated
with a metasurface (left) that focuses light to a point (right). (Adapted from [47].)

6.9 Conformal optics

The applications discussed so far are based on flat planar metasurfaces. However,
metasurface devices do not necessarily need to be flat and there are applications where
metasurfaces taking various shapes are required. For example, in some applications, it
may be necessary to integrate an optical lens into a package that cannot accommodate
the shape of a lens, but could fit a device with a different shape. A metasurface can
be used to coat the object with the required shape and make it act as a lens by provid-
ing the necessary phase compensation. Such a demonstration was done using concave
or convex glass cylinders coated with metasurfaces, as shown in Fig. 6.13A, B [47].
Without the metasurface coating, a concave cylinder behaves like a diverging cylin-
drical lens, but with the properly designed metasurface it had the optical response of a
converging optical lens that focuses light to a point as shown in Fig. 6.13B. This work
was done using metasurfaces made from amorphous silicon nano-posts embedded in
a flexible polymer. Transferring metasurfaces initially fabricated on a flat substrate to
other surfaces that can be projected to a plane using isometric transformations is rel-
atively straightforward. When the transformation is not isometric, like when coating
the surface of a sphere with a planar metasurface, one needs to consider in the design
the local deformations of the substrate containing the metasurface.

6.10 Other applications

The landscape of optical components is very broad, and optical metasurfaces have
the potential to impact a large part of it. Besides the applications discussed above,
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metasurfaces have also been used to create phase masks that project various images
[11]. Systems of two metasurfaces stacked on top of each other have been used to
demonstrate miniaturized retroreflectors that can be used in applications for remote
detection and communications [48]. Metasurface phase masks for generating optical
angular momentum beams were used to demonstrate optical communications sys-
tems for high-capacity underwater optical communication systems [49,50]. In medical
devices, metasurface lenses were integrated into systems for optical coherence tomog-
raphy [51]. Metasurfaces also can be used for applications related to mixed reality [52,
53].

6.11 Outlook

In the past few years, dielectric metasurfaces have progressed from a basic under-
standing of their principles of operation to demonstrations of devices with practical
applications. Given the state of the art, the most likely application for metasurface
lenses will be in components operating in a narrower bandwidth range. This way the
overall efficiency of the system is not significantly degraded and the chromatic aberra-
tion effects are minimized. Examples of these systems include shaping of laser beams,
specialized microscopy techniques and communication systems. In conjunction with
some computational algorithms for image retrieval, they may also be employed in
more broadband imaging systems where system size is more important than the best
image resolution. Other metasurface devices that do not involve changing the direction
of the optical wavefront, like various waveplates and polarizers, can already be made
broadband and could be utilized in various applications that require them. Metasurface
spectrometer devices already feature good performance and could be adopted in spec-
trum analysis applications that need highly miniaturized components. The adoption by
the industry of the dielectric metasurface technology now relies on making them low
cost, as many of these devices, especially in the visible range, still require electron-
beam lithography which is expensive. At longer wavelengths metasurfaces can already
be fabricated with photolithography, which is a more cost-effective technique well
suited for mass production, so we may see metasurface devices incorporated in vari-
ous optical systems in the near future.
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7.1 Motivation and introduction

Dielectric metasurfaces consisting of designed dielectric nanoresonators arranged in
a planar fashion have emerged as a successful concept for implementing a multitude
of optical functionalities [1–5]. Most prominently, they have been established as a
platform for efficient wavefront shaping achieved by imprinting position dependent
phase onto an incident light field. The advances in the design and fabrication of wave-
front shaping dielectric metasurfaces have led to the development of ultra-thin and
lightweight optical metadevices, including flat lenses [6–9], beam converters [10–12],
deflectors [11,13–16] and holograms [17–19]. Apart from wavefront shaping, dielec-
tric and semiconductor metasurfaces have been shown to allow for polarization and
dispersion control [20,17], nonlinear frequency generation [21–24] and for the ma-
nipulation of spontaneous emission [25,26]. Furthermore, it is possible to combine
several of the above-mentioned functionalities into a single metasurface, opening the
door to novel multifunctional photonic devices.

Importantly, dielectric metasurfaces can exhibit very low absorption losses in the
infrared and the visible spectral ranges, enabling highly efficient devices with res-
onance quality factors largely exceeding those of plasmonic metasurfaces [27,28].
Furthermore, the dielectric nanoparticles composing the metasurfaces can exhibit
Mie-type resonances. These can be classified by two independent families of reso-
nant modes – electric and magnetic [1,4,5]. The far-field interference of these two
types of resonant modes leads to fundamentally new effects, such as unidirectional
scattering [29–31], unconventional reflection behavior associated with the general-
ized Brewster effect [32] and near-unity transmission with 2π phase response in
the Huygens regime of spectrally overlapping electric and magnetic dipole reso-
nances [20,31,33,11,12,19]. Based on these properties, Huygens metasurfaces are the
key to the realization of optically resonant functional dielectric metasurfaces with po-
tentially near-unity transmission efficiency.

While all these aspects were already discussed in detail in the previous chapters,
so far, mainly static metasurfaces have been discussed, whose optical functionalities
were encoded permanently in the design during fabrication. However, the scope and
technology potential of dielectric metasurfaces would be greatly expanded if the meta-
surface optical response could be modified in time in a controlled, reversible, and
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reproducible fashion after fabrication, thus enabling dynamic tunability of metasur-
face devices. Adaptive or tunable optical components are required in many optical
systems, ranging from imaging systems and camera lenses to beam scanners, light-
field displays and projectors. For example the focal distance of a camera lens needs
to be changed when taking pictures of objects at different distances and the ranging
beam in driverless vehicles needs to continuously scan different directions.

Dielectric metasurfaces hold an exceptional potential for the next generation
tunable optical systems. The opportunities and perspectives offered are essentially
twofold:

On the one hand, they could provide much more compact, lightweight and energy
efficient solutions than possible with conventional tunable optics, which are typically
based on solid glass or plastic lenses that are moved back and forth to achieve focusing
or zooming. Another common solution basically copies the working principle of the
human eye by using an elastic lens material, which is reshaped for focusing. These
solutions are in general bulky, expensive, and energy-hungry since macroscopic parts
have to be moved or deformed. In metasurfaces, on the contrary, in order to obtain
dramatic changes of their optical properties, it is sufficient to only induce changes of
optical properties or geometry in subwavelength-scale volumes. This not only reduces
the energy threshold for tuning or switching, but could furthermore allow for a drastic
reduction in the response times.

On the other hand, active control could further be extended to optical functionalities
for which no solutions are currently available, such as multidimensional control (for
instance, simultaneous active control of the wavefront and its polarization) via tunable
multifunctional metasurfaces, on-demand synthesis of harmonics by tunable nonlinear
metasurfaces, or active tuning of spontaneous emission by agile light-emitting meta-
surfaces.

Choosing dielectric materials instead of metals for metasurfaces not only takes
their advantages of lower losses, multipolar response, option of CMOS compatibility,
and easy integration of emitters, gain, or nonlinearities, but also offers tuning mech-
anisms that are not available for plasmonic metasurfaces. Most importantly, it offers
the possibility to fabricate the metasurface building blocks directly from the func-
tional materials, such as semiconductors or phase-change materials. On the other hand,
certain challenges also originated from dielectric metasurfaces, such as large mode
volumes and highly concentrated fields inside the resonators, which make the tuning
more difficult. This chapter aims at providing an overview of the current research on
tunable dielectric metasurfaces and metadevices, and highlighting the current chal-
lenges.

7.2 Mechanisms for tuning dielectric metasurfaces

Tunable dielectric metasurfaces are metasurfaces whose properties can be changed by
external influence, e.g. by control voltage, temperature, magnetic field, pressure, or
strain. Overall we can distinguish three distinct mechanisms for changing the meta-
surface’s optical response.
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• Tuning by changing the structure geometry: Achieved by altering the arrangement
of nanoresonators in a metasurface, which affects the overall properties due to
the alteration of mutual couplings among the elements, e.g. by elastic deforma-
tion of the substrate or of an embedding matrix surrounding the nanoresonators.
Deforming the shape of the individual dielectric nanoresonators themselves is an-
other option, but difficult to realize in a reproducible fashion at the nanoscale.

• Tuning by changing the nanoresonator surrounding environment: Achieved by im-
mersing the metasurface in an environment, whose properties change as a function
of external control parameters such as temperature or an applied voltage. Typi-
cal examples include immersing metasurfaces in functional polymers or liquids or
placing metasurfaces on active substrates.

• Tuning by changing of the resonator material: Achieved by changing the optical
properties of the materials composing the dielectric resonators by an external stim-
ulus. For example, by optically injecting free electrons in semiconductor nanores-
onators, their conductivity and thus their refractive index can be modified. Another
example is to fabricate the nanoresonators from phase-changing materials.

While the tuning response of a specific metasurface will typically be dominated by
one of these mechanisms, two or more can also occur simultaneously. For example,
heating of a metasurface can change the optical properties of both the nanoresonator
material and their surrounding environment, but at the same time, for instance, lead to
a thermal expansion resulting in a change of geometry.

Each of the above tuning mechanisms can be realized in different ways, which
are also specific to the frequency range where the respective metasurface operates in.
Table 7.1 provides a summary of representative recent demonstrations of different
types of tunable dielectric metasurfaces. Clearly, dielectric metasurfaces offer many
feasible opportunities for tuning, with significant portions of their optical near-fields
concentrated both inside and outside of the nanoresonators. For dielectric metasur-
faces highly confining their resonant near-fields, the possibility to engineer the field
characteristics by the structure design means their optical properties are highly suscep-
tible to the resonator material. While for the less-confined cases, the same approach
are expected to result in strong sensitivity to the variation of the surrounding environ-
ment, and the mutual coupling between neighboring elements.

All of the above-mentioned mechanisms can in turn result in one or a combina-
tion of the following effects in resonant dielectric metasurfaces: a spectral shift of
the metasurface resonances, a change in resonance strength, or a change of the entire
mode structure of the metasurface, i.e. vanishing or emergence of resonances. Spec-
tral tuning is the most commonly considered case. Key performance parameters for
spectral tuning are the spectral shift �λ, the tuning range λ/λ0, and the change in
transmittance or reflectance amplitude (�T = T (x) − T0, �R = R(x0) − R0), also
known as the modulation depth, and phase (�φ = φ(x) − φ0) observed at a given
wavelength. Here, λ0 is the resonance wavelength and x stands for the control pa-
rameter. The subscript “0” denotes the response of the metasurface at its reference
state. The parameters �λ and �T are connected, since a significant modulation in the
phase or amplitude responses usually requires that the achieved spectral shift should
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be comparable to the spectral bandwidth of the resonance. Note that the strong spec-
tral dispersion of Mie-resonant dielectric metasurfaces makes them ideal candidates
for tuning and switching, since small spectral shifts of resonances sufficiently result
in strong changes of the optical response for a specific frequency range.

Another performance parameter commonly used in the literature is the switching
or tuning contrast. Different definitions of the contrast are used, such as for exam-
ple �T/T0 or T (x)/T0, for the case of transmittance. However, contrasts can assume
very large values even for moderate tuning performance, especially in resonant sys-
tems. For example, the transmittance contrast becomes automatically large when the
denominator is close to zero at resonance. Therefore, in this chapter absolute trans-
mittance/reflectance changes are provided where possible.

For tunable wavefront control, apart from the dynamic control of spatially variant
transmitted or reflected phase and/or amplitude responses, it is furthermore required
to induce the desired changes of the optical response as a function of in-plane position
with the required spatial resolution. There are two general strategies to achieve this
goal:

• Starting from a spatially variant metasurfaces, one can use one of the above tuning
mechanisms to dynamically adjust its functionality. This strategy is suitable e.g. for
metalenses with tunable focal length, for dynamic beam deflectors, or for sweeping
the operation wavelength of a given metadevice.

• Starting from a spatially homogeneous metasurface and inducing local changes
of its optical response. For instance, by appropriately segmented or pixellated su-
percells. In principle, this strategy is suitable for implementing generic devices,
which can take any desired wavefront shaping functionalities on demand, e.g. for
dynamic holography or for a new generation of spatial light modulators capable of
controlling multiple properties of light fields simultaneously.

Hybrid forms of the above strategies, such as spatially variant metasurfaces in com-
bination with coarsely segmented electrodes, are another option.

7.2.1 Tuning by changing of geometry

Optical resonances are sensitive to geometrical changes of the resonant structures,
where deformations can be introduced to the resonator shape, orientation [44], and
the periodicities of resonator arrays. In general, a change in the resonator shape pre-
dominantly affects the local resonance mode and thus the resonance frequency of a
resonator; while a change in the mutual nanoresonator orientations and the periodicity
of an array alters the inter-element couplings [45], which result in mode hybridiza-
tions [46,47]. Changes in the periodicity of the array also affect the lattice resonances
of the metasurface [48]. In this section, we discuss several implementations of tunable
dielectric metasurfaces based on geometrical deformations. Before dielectric meta-
surfaces became a research focus, reconfigurable metallic metamaterials employing
geometrical changes were extensively studied with demonstrations ranging from mi-
crowave to optical frequencies. This work has served as a source of inspiration and
many of the suggested tuning concepts and ideas have been adapted to dielectric
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Table 7.1 Summary of demonstrated tunable dielectric metasurfaces. Data marked by “*” are
relative tuning contrasts since absolute values are not available.

Designs Mechanism Materials Operation
wavelength

�T ; �R Tuning
range
(%)

Pros & Cons

[34] phase-
changing of
LCs

LCs (E7),
silicon

near-infrared 84% 2.42 flexible but slow
and limited tuning
range

[35] nonlinear
effect;
free-carrier
generation

silicon visible-near-
infrared

60*% 3.33 ultrafast switching;
not convenient for
implementation

[36] mechanical
stretching

TiO2,
PDMS

visible 27% 5.08 durable; large
tuning range;
inconvenient for
integration

[37] nonlinear
effect

silicon visible 36*% 0.57 small variation
leads to large
tuning; low
efficiency

[38] optical force silicon near-infrared 0.2% no shift fast, but very
limited tuning and
modulation range

[39] phase-
changing
material

GST near-infrared ∼40% 10 large modulation
and shift;
inconvenient
operation; operation
wavelength limited
by the material

[40] refractive
indices
tensor
rotation of
LCs

LCs (E7),
silicon

near-infrared 75% 3.55 fast tuning

[41] NEMS silicon visible 10* dB 21.64 large tuning range

[42] free-carrier
generation

GaAs near-infrared ∼35% 3 ultrafast tuning

[43] Carrier
injection

ITO &
silicon

near-infrared ∼30% not
applicable

fast tuning;
low-power
modulation

metasurfaces. Therefore, before discussing tuning of dielectric metasurfaces by ge-
ometrical changes in detail, we briefly summarize previous work on their metallic
counterparts. At optical and terahertz frequencies, metallic structures, such as split
ring resonators have been patterned on or embedded inside elastomer substrate such
as Polydimethylsiloxane (PDMS) [49–51]. This method exhibits a large tuning range
in transmission spectra and allows for a durable device with consistent performance.
Another method for creating subwavelength deformations is based on thermal stimu-
lus. In both the optical [52] and the terahertz [53] range, deformations resulting from
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Figure 7.1 Mechanically tunable dielectric metasurface [36]. (A) False-color scanning electron mi-
croscopy image of the fabricated sample. The resonators have a height of 95 nm. (B) Simulated transmission
spectrum of the unstretched array. (C–D) Measured transmission spectra under (C) x- and (D) y-polarized
normal incidence when the sample array is gradually deformed starting from the unstretched case (0%) up
to a stretch of 6% along the x-direction. Figure reproduced with copyright permission from the American
Chemistry Society (ACS) Publications.

temperature changes were demonstrated to lead to large resonances shifts. At terahertz
frequencies, due to the microscale resonator size, microelectromechanical (MEMS)
switches can be used for controlling accurate inter-element displacements, and were
demonstrated as a tuning method for reconfigurable metamaterials [54,55]. At mi-
crowave frequencies, an interesting design was implemented by partly embedding
water in an array of ellipsoid containers. By rotating the array vertically, the shape
of the water resonators changes leading to tunable transmission [56]. Significant re-
search efforts have also been made in the field of reconfigurable microwave dielectric
resonator antennas [57,58].

As a representative example of a tunable optical dielectric metasurface based on
geometrical deformations, we consider an array of TiO2 nanoresonators embedded in
polydimethylsiloxane (PDMS) elastomer [36]. As shown in Fig. 7.1A, by applying an
external strain to the PDMS matrix, the embedding material is deformed and thus the
inter-element distances between the TiO2 resonators are changed. The deformation of



Tunable metasurfaces and metadevices 201

the soft PDMS does not affect the shape of the hard TiO2 resonators. Therefore, the
change of the metasurface optical response observed upon deformation of the matrix
results solely from the changes of the field interactions among TiO2 resonators.

Fig. 7.1B shows simulated transmission spectra for an exemplary structure with
dimensions given in Fig. 7.1A. For the unstretched array, under excitation with a nor-
mally incident plane wave polarized along the x-direction, an electric dipole resonance
at 591 nm is excited. The other sharp peak observed at 582 nm wavelength corresponds
to the first-order diffraction. The simulations further predict that by applying an ex-
ternal strain along the x-direction that deforms the PDMS elastomer by up to 6%,
a pronounced change is induced in the optical response of the resonator array.

Fig. 7.1C, D summarize measured transmission spectra as a function of the ex-
ternal strain for y- and x-polarized normally incident excitation, respectively. For
y-polarized Gaussian beam excitation, the resonance peak occurs at 591 nm for non-
deformed array, and significantly redshifts to 620 nm for only a 6% deformation.
However, for excitation with an x-polarized Gaussian beam and the identical defor-
mation conditions, the electric dipole resonance peak blueshifts from 587 nm for the
non-deformed array, to 581 nm for a 6% PDMS deformation. The slightly different
resonance frequencies for the unstretched array under x- and y-polarized excitations
are likely due to sample imperfections. An absolute modulation depth of up to ∼30%
is achieved for the y-polarized case in experiments.

The different directions of the resonance shifts for the two orthogonal polariza-
tions originate from the polarization dependence of the interactions among the TiO2
resonators in the array. For the incident polarization (x-polarization) aligned along
with the external strain direction, the main effect is a weakening of the (attractive)
longitudinal coupling between electric dipoles, and the results shows blueshift of the
resonance peak. However, for the incident polarization (y-polarization) aligned per-
pendicularly to the external strain direction, the main effect is a weakening of the
(repulsive) transverse coupling between electric dipoles, and consequently the redshift
of the resonance peak is observed. The inter-element coupling and thus the resonance
shifts can be analyzed with a Lagrangian model [59] that takes both electric and
magnetic dipole interactions into account. From this model, the resonance angular
frequency is calculated as

ωs = ω0

√
1 + κET − κEL

1 + κHL − κHT

, (7.1)

where ω0 is the decoupled resonance frequency of a single TiO2 resonator, and κ

denotes the coupling coefficients, where the subscripts E and H stand for the elec-
tric and magnetic components, while T and L denote the transverse and longitudinal
couplings. From the model, Gutruf et al. [36] conclude that the transverse electric
coupling dominates the resonance shifts. This design demonstrates a durable tuning
platform that can support various nanoresonators for applications such as integrated
optics and telecommunications.

As a different approach, optical forces inducing nanoscale deformations have also
been utilized for achieving tunable dielectric metasurfaces. In general, electromag-
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netic radiation can create radiation and gradient forces on objects. The time-averaged
optical force acting on an object can be expressed as [60]

〈Fi〉 =
∮

S

〈Tij 〉njdS, (7.2)

where S is the bounding surface around the object and nj are the unit vector com-
ponents pointing out of the surface. Here, 〈Tij 〉 is the time-averaged Maxwell stress
tensor defined as [61]

〈Tij 〉 = 1

2
Re

[
εε0

(
EiE

∗
j − 1

2
δij |E|2

)
+ μμ0

(
HiH

∗
j − δij |H |2

)]
. (7.3)

At resonance, the electric and magnetic fields within a nanoresonator are significantly
enhanced, leading to resonantly enhanced optical forces. Optical forces in this scenario
can be comparable or even stronger than elastic forces from mechanical deformation
within the nanoresonator system. Zhang et al. have theoretically studied that reso-
nantly enhanced optical forces for both dielectric and plasmonic nanostructures [60].
For example, an array of asymmetric bar pairs oriented along x-direction as shown
in Fig. 7.2A, can support a resonant mode with a magnetic field in the z-direction.
The oscillating currents in the bars in turn respond to this out-of-plane magnetic field,
resulting in in-plane optical forces (y-direction) on the asymmetric bars in the op-
posite directions. Meanwhile, the oscillating currents on the bars responding to the
in-plane magnetic field of the incident light field result in out-of-plane optical forces
(z-direction) on the asymmetric bars. These forces can be asymmetric too due to the
asymmetrically induced currents. While this concept can in principle be implemented
either with plasmonic or with dielectric bar pairs, the study by Zhang et al. clearly
shows that the optical forces can be several magnitudes stronger in dielectric struc-
tures than those in equivalent plasmonic structures. This is mainly because currents
in plasmonic structures are largely confined to the metal surface and suffer from high
Ohmic loss [60], leading to resonances of lower quality factors. Based on this study,
Zhang et al. also theoretically proposed a tunable dielectric metamaterial based on op-
tical forces [62]. Their design consists of silicon bricks sitting on silicon nitride strips,
where the latter can be distorted by the optical forces. Theoretical results indicate that
such systems can provide transmission tunability and bistability.

Along similar lines, Karvounis et al. have experimentally demonstrated a tunable
optical dielectric metamaterial based on an optical force induced structure deforma-
tion [38]. They suggested and experimentally confirmed by a dedicated pump-probe
experiment that modulation of the incident light at the mechanical eigenfrequency of
the nanostructure can dramatically increase the optical modulation strength. Fig. 7.2B
illustrates the design of the metamaterial, which consists of an array of nanocantilevers
defined by perforating a silicon membrane. The unit cell consists of a complementary
bar resonator and a complementary split ring resonator. Excited by normally incident
plane-wave, both an electric dipole mode and a mode with an out-of-plane magnetic
dipole can be excited in this structure at 1550 nm and 1310 nm, respectively (see
Fig. 7.2C). Due to the strong displacement current at the nanocantilever tip for ex-
citation at a wavelength of 1550 nm, this resonance offers the best conditions for
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Figure 7.2 Tunable dielectric metamaterials based on optical force induced deformation. (A) Theoretical
illustration of optical forces induced in an asymmetric bar pair [60]. (B) SEM and schematic concept of a
nanooptomechanical dielectric metamaterial consisting of an array of nanocantilevers [38]. (C) Simulated
electric field distributions of a unit cell at probe wavelength (1310 nm) and pump wavelength (1550 nm)
for nanocantilever tilt angle of 0° [38]. (D) Simulated transmission spectra for different tilt angles of the
nanocantilevers. The dashed vertical line indicates the probe wavelength (1310 nm). (E) Optical transmis-
sion contrast spectra at different pump intensities [38]. Figure (A) reprinted with permission from J. Zhang,
K.F. MacDonald, N.I. Zheludev, Giant optical forces in planar dielectric photonic metamaterials, Opt. Lett.
39 (16) (2014) 4883–4886, Optical Society of America; (B–E) are reproduced with copyright permission
from AIP Publishing.

optical force induced structure deformations. Thus, 1550 nm was chosen as the pump
wavelength. On the other hand, the mode at 1310 nm was very sensitive to geometrical
changes, as can be seen from the simulated transmission spectra for different nanocan-
tilever tilt angles shown in Fig. 7.2D. Therefore, 1330 nm is chosen as the probe
wavelength. However, even at the pump wavelength, the tilt angle change observed in
the experiment was only 2 arcseconds with an illumination power of 60 µW/µm2. To
increase the modulation depth, the pump wavelength was modulated at the frequency
of the fundamental mechanical eigenmode of the nanocantilever to excite the me-
chanical resonance. Fig. 7.2E shows the measured transmission modulation depth as a
function of the modulation frequency of the pump excitation. It is seen that, at a mod-
ulation frequency of 152 MHz, the optical modulation depth is significantly increased
for different pump intensities. Using numerical calculations, Karvounis et al. deter-
mined that the nanocantilever tile angle increased to 10 arcminutes for a modulated



204 Dielectric Metamaterials

Figure 7.3 Active tuning of light scattering from silicon NWs based on NEMS [41]. (A) Structure illus-
tration is shown on the left, and the SEM images of the structure before and after pull-in are shown on
the right. The scale bars in the right images are 1 µm. (B) Measured dark-field scattering spectra (left) and
dark-field microscopy images (right) at different bias voltage for the case t = 35 nm. The scale bar in the
right graph is 2 µm. Figure reproduced with copyright permission from the American Association for the
Advancement of Science (AAAS).

pump beam. However, even under these conditions, a maximum modulation depth of
only about 0.2% is achieved. Nevertheless, high tuning speeds that can be achieved by
this method make it interesting for applications in high-speed optoelectronic systems.

Tunable dielectric nanostructures based on geometrical deformations have also
been demonstrated by using a nanoelectromechanical system (NEMS) platforms.
Recently, Holsteen et al. reported on active tuning of light scattering from silicon
nanowires (NWs) [41], which could be employed as building blocks of resonant di-
electric metasurfaces. In their work, silicon NWs have been placed above a reflective
surface. Under plane-wave excitation, the scattered light from the NWs and the cor-
responding reflection from the mirror form standing waves, which can selectively
enhance the electric or magnetic Mie resonances in the NWs by changing the distances
between the NWs and the mirror. Such a light scattering enhancement is similar to the
Purcell effect experienced by quantum emitters enhanced by a resonant cavity [63].

To demonstrate tuning of the light scattering strength, a NW together with a me-
chanical deformable structure is fabricated based on a silicon-on-insulator platform,
as shown in Fig. 7.3A. The high reflectivity of the silicon surface allows for the forma-
tion of standing waves between the NW and the silicon substrate. By applying voltages
between the top NW pattern and the substrate, deformations can be induced to the sus-
pended structured layer, thereby changing the distance between the NW and the silicon
substrate. The SEM images in Fig. 7.3 present the induced deformation. With this tun-
ing platform, the scattering spectra of the enhanced light scattering from the silicon
NW were measured with a dark-field microscopy. The spectra and the corresponding
dark-field images are presented in Fig. 7.3B. Even for only small applied voltages
the scattering spectra undergo a significant blueshift, making NEMS-based tunable
metasurfaces interesting candidates for active integrated optoelectronic devices. The
polarization-dependent selective enhancement and suppression of NW resonances has
also been studied using grating mirrors with different grating depths [64].
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7.2.2 Tuning through modulation of the surrounding materials

While the metasurface tuning approach based on geometrical deformations offers
certain unique advantages as detailed in the last section, their implementation often re-
quires sophisticated fabrication techniques or the use of elastic materials. The tuning
performance based on the manipulation of the coupling strength between neighbor-
ing resonators is inherently sensitive to the incident angle. However, in many cases,
the structure architecture has to be as simple as possible, and accessible by standard
fabrication techniques. A remaining option for post-fabrication tuning of such meta-
surfaces is to change the optical properties of the surrounding environment. Since the
optical modes of dielectric particles can extend largely into the surrounding environ-
ment, they offer excellent opportunities for tuning of their resonance frequency with
this strategy. This property also makes dielectric metasurfaces attractive for refrac-
tive index and biophotonic sensing devices, as any change of the environment will
result in a change of the metasurface resonance strength or spectral position, similar
to the well explored localized surface plasmon resonance (LSPR) sensors [65]. Sev-
eral groups have explored these properties of the dielectric metasurfaces to design and
demonstrate high-sensitivity refractive index and bio-sensors [28,66–69].

As a simple way to explore the change of the metasurface optical properties as a
function of the background refractive index, liquids with different refractive indices
can be easily applied on top of the dielectric metasurfaces [67]. One efficient and
flexible tuning approach is the embedding of a metasurface into a (usually nematic)
liquid crystal (LC) cell, such that the nanoresonators composing the metasurface are
surrounded by the LC material. LCs are routinely used in several mature technologies,
the most important of which are LC displays for monitors and television sets. The LCs
consist of mixtures of highly elongated molecules with strong electric dipole moment.
Due to the dipole–dipole interactions among the LC molecules, they can align in a
crystal-like fashion [70]. In this regular orientation of the elongated LC molecules,
the LCs can exhibit high optical anisotropy reaching values of �n ∼ 0.3 and even
higher. The direction of alignment can be controlled by externally applied electric and
magnetic fields, as well as by the optical field itself. Above its critical temperature,
the LC can turn into its isotropic phase, where the molecules are randomly oriented.
Therefore, by controlling the temperature or applied voltages and thus the phase of
the LC or the orientation of the LC molecules in the region of the optical near-fields
of the nanoresonators, one can tune the optical response of the metasurface. This tun-
ing mechanism provides unique opportunities for the use of LCs in tunable optical
metasurfaces, being previously used with various plasmonic elements [71,72]. How-
ever, due to the strong anchoring of the LC molecules to the metal surfaces of the
plasmonic structure [70,72], the overall spectral shift in the plasmonic resonances is
negligible [72].

Unlike plasmonic nanostructures, dielectric metasurfaces are, in essence, strongly
immune to strong LC surface anchoring. This is because the near-fields of the Mie-
resonance modes can extend over hundreds of nanometers into the surrounding envi-
ronment, which is well beyond the thickness of the typical anchoring layer in the LCs,
typically about 10 nm above the surface. Note that, for the case of silicon dielectric
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Figure 7.4 (A) Scanning electron micrograph of a fabricated silicon nanodisk metasurface. (B) Sketch of
a silicon nanodisk metasurface integrated into an LC cell. (C) Measured transmittance spectra versus LC
temperature, demonstrating the tuning of both electric and magnetic dipolar resonances of the metasurface.
The regions of nematic and isotropic LC phases are indicated by the schematics at the top, and the phase
transition at a temperature of 56◦ is depicted with a dashed line [34]. (D, E) Fano-resonant LC tunable
metasurface: (D) Spectral shift of the Fano resonance with temperature. The vertical bars mark the full
width at half maximum of the resonance for different temperatures. The red line is the best fit with a second
order polynomial in the nematic state and a linear fit in the isotropic state. (E) The minimum transmission
of the resonance as a function of the temperature. The insets in (D, E) show the geometry of the meta-atoms
and the orientation of the LC molecules in the nematic and isotropic phase [73]. (A–C) are reproduced with
copyright permission from ACS Publications. (D–E) are reproduced with copyright permission from AIP
Publishing.

metasurfaces, the native oxide offers the possibility for similar surface functionaliza-
tion as in many LC on silicon (LCoS) technologies. Indeed LC tuning of dielectric
metasurfaces has attracted significant research interest. In the following, we describe
some of the examples in this research direction.

7.2.2.1 Temperature tuning of LC infiltrated dielectric metasurfaces

Temperature tuning of dielectric metasurfaces by integration into an LC cell was first
experimentally demonstrated by Sautter et al. [34]. A metasurface composed of silicon
nanodisks (Fig. 7.4A) was infiltrated with the nematic LC E7. A cover slip (Fig. 7.4B)
that was coated with a LC alignment layer to define a linear initial orientation of the
LCs at room temperature (Fig. 7.4C-left) was used as the upper window of the LC
cell. By heating the cell to near 60 ◦C, the LCs transitioned into their isotropic phase
(Fig. 7.4C-right). Resulting from this phase transition, the resonance frequencies of
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both the electric (red curve in Fig. 7.4C-bottom) and the magnetic (blue curve) dipolar
resonances of the metasurface shifted significantly, to shorter and longer wavelengths,
respectively. The maximum shift of about 40 nm was observed for the electric reso-
nance of the metasurface. The spectral shift of the resonances also resulted in a strong
phase and intensity modulation in transmission. For wavelengths of around 1.5 µm
an absolute change in the transmittance through the metasurface of about 45% is
achieved. Even higher absolute transmission modulation of 84% could be achieved
for a variation of the metasurface design [34].

This concept was further extended by using Fano-resonant metasurfaces [73],
which possess high-quality factor resonances (Q = 270). The metasurface was com-
posed of a broken symmetry dielectric resonators [74], as shown in the inset of
Fig. 7.4D, E. The asymmetry in the resonators was introduced so that x-polarized light
can indirectly (through the excitation of a transverse electric dipole) couple to the lon-
gitudinal magnetic dipole mz, which radiates dominantly in-plane of the metasurface.
As such, for an infinite array of resonators, the energy stored into the excitation of
the longitudinal magnetic dipoles is damped only by the near-field coupling with the
transverse electric dipole px [74]. Such a low damping scheme results in the forma-
tion of a narrow transmission dip. Due to the change of the refractive index of the
surrounding LC with temperature, the wavelength of this resonance blueshifts with
the increase of the temperature, as seen in Fig. 7.4D. The vertical blue bars depict the
full width at half maximum (FWHM) of the resonance. Specifically, the narrowband
Fano transmission dip of FWHM = 3.7±0.3 nm has shifted to shorter wavelengths by
more than 3.3 times its width. Importantly, the transmission level at the minimum re-
mains approximately constant over the entire tuning range at 34%±2%. This property
makes such devices attractive for potential use as narrowband spectral filters.

An important practical application of the temperature tuning of LC infiltrated
dielectric metasurfaces is their use to actively controlling the wavelength of the en-
hanced spontaneous emission from the metasurface substrate [75]. The shift of the
resonance of the metasurface was demonstrated to lead to a two-fold increase of the
emission enhancement at a wavelength of 900 nm.

7.2.2.2 Voltage-tunable dielectric metasurfaces infiltrated with LCs

While the above experiments demonstrate the feasibility of the temperature tunable
LC-based dielectric metasurfaces, the tuning speed remains relatively low, as the en-
tire volume of the LC needs to be heated up. For practical applications, however,
techniques using fast electrical control of the properties of the metasurface are more
desirable.

Electrical tuning of the spectral response of a Mie-resonant dielectric metasurface
consisting of silicon nanodisks embedded into LCs was studied in Reference [40]. It
relied on the reorientation of nematic LCs in a moderate applied electric field to alter
the uniaxial permittivity tensor of the LC material surrounding the metasurface. By
switching a control voltage “on” and “off” (Fig. 7.5A, B, respectively) a large spectral
shift of the metasurface resonances was induced, resulting in an absolute transmission
modulation of up to 75% at the positions of the magnetic dipole resonances, as seen
in Fig. 7.5C.
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Figure 7.5 Schematic of the LC alignment for (A) no applied voltage (“off” case) and (B) for the case
when a moderate voltage is applied between the two electrodes of the LC cell (“on” case). The red arrow
indicates the polarization of the incident light. (C, D) Measured transmission phase across the array of
the LC metasurface for different biasing voltages at λ = 1550 nm. (E) Phase accumulated by the light
transmitted through the metasurface. The error bars indicate the spatial phase variation observed over the
extent of the metasurface [40]. Figures are reproduced with copyright permission from AIP Publishing.

The authors also directly measured the phase change introduced by the metasurface
for different applied voltages at the telecommunication wavelength of λ = 1550 nm.
Using an imaging Mach–Zehnder interferometer and a four-frame-interferogram
phase retrieval method [12], they imaged the phase imprinted onto the beam upon
transmission through the metasurface for a variation of the applied voltage from 0 V
to 70 V, as shown in Fig. 7.5D. For complete detuning of a single resonance away
from the laser wavelength, a phase change with a magnitude of up to π was observed,
as shown in the plot of Fig. 7.5E. The strongest switching dynamics was observed be-
tween 10 V and 30 V corresponding to the reorientation of the LC molecules. Note that
for a single resonance the observed phase change is connected to a change in transmis-
sion intensity. The concept of silicon Huygens metasurfaces employing overlapping
electric and magnetic dipole resonances [20] promises to open a way for achieving a
pure phase modulation without changing the transmission intensity. This experimen-
tal demonstration of voltage control of dielectric metasurfaces paves the way for new
types of electrically tunable metadevices, including dynamic displays and holograms.

7.2.3 Tuning by change of resonator material

Dielectric optical materials are usually characterized by their complex dielectric per-
mittivity exhibiting a positive real part and a small imaginary part. More specifically,
multipolar Mie-type resonances are favored for dielectric materials having a high real
part and a vanishing imaginary part. Within this regime, the spectral position of the
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Figure 7.6 (A) Numerically calculated scattering cross section (in units of m2) of an individual lossless
nanocylinder (height h = 220 nm, diameter d = 220 nm, incident wave vector oriented along the rotational
symmetry axis of the nanocylinder) embedded in a dielectric material with a refractive index of 1.5 for a
systematic variation of (A) the real part and (B) the imaginary part of its refractive index. Figure is adopted
from [76] with permission from Institute of Physics (IOP) Publishing.

resonant modes depends sensitively on the real part of the permittivity, while for a
given metasurface design, their quality factor is highly affected by its imaginary part.

This typical connection is illustrated in Fig. 7.6, showing the scattering cross sec-
tion of a single dielectric nanocylinder as a function of the real and imaginary part
of its refractive index. Note that an increase of the real part of the nanoresonator’s
refractive index leads to a red shift of its resonances, while an increase of the imag-
inary part results in broader and weaker resonances. These changes in the scattering
response of the individual nanoresonators are translated to the response of a metasur-
face composed of dielectric nanoresonators. As such, tuning of dielectric metasurfaces
via changes in the resonator material are expected to be very effective. In the follow-
ing, we describe such possibilities.

7.2.3.1 Tuning based on phase-change materials

Phase-change materials such as germanium antimony telluride (Ge2Sb2Te5 or GST)
are currently one of the most promising classes of materials for fully solid state imple-
mentations of switchable metasurfaces, owing to the dramatic difference in optical and
electrical properties between their crystalline and amorphous state [77]. This phase
transition can be controlled thermally, all-optically, or electrically. The crystalline-
to-amorphous transition is a melt-quenching process caused by a short, intense ex-
citation that momentarily raises the local temperature above the melting point. The
amorphous-to-crystalline transition is triggered by a lower intensity excitation to hold
the material above its glass transition temperature but below its melting point for a
slightly longer time. For GST, the respective phase states are non-volatile, i.e. the
states are preserved also after the external stimulus is removed. This is in contrast to
materials like vanadium oxide, whose phase states depend on the momentary condi-
tion such as temperature. Reversible switching between the states of a phase-change
material is possible. Phase-change materials are widely used in commercial rewritable
optical disks and as media for storage cells in electronic phase-change memories.
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Figure 7.7 (A) Refractive index n and extinction coefficient κ of GST in its amorphous (nA, kA) and
crystalline (nC , kC ) states. (B) Microspectrophotometrically measured TE-mode reflectivity and transmis-
sion spectra for the as-deposited amorphous and laser-annealed [partially] crystalline phases of a 300 nm
thick GST nanograting metamaterial. The inset shows a scanning electron micrograph of the fabricated
structure with a period of 850 nm. (C) An artist’s impression of a tunable gradient metasurfaces with a vari-
able supercell period consisting of different patterns of the GST rods. (D) Anomalous reflection (calculated
scattered electric field intensity pattern) from a tunable gradient metasurfaces for three different superlat-
tice periods (Ls = ∞,2400 nm, 4800 nm) and normally incident light at 1550 nm. Figure (A) original from
B. Gholipour, J. Zhang, K.F. MacDonald, D.W. Hewak, N.I. Zheludev, An all-optical, non-volatile, bidi-
rectional, phase-change meta-switch, Adv. Mater. 25 (2013) 3050–3054. Figures (C), (D) are taken from
[78] with copyright permission from John Wiley and Sons. Figure (B) is taken from [39] with copyright
permission from AIP Publishing.

Previously, for plasmonic metasurfaces phase-change materials were employed as
a substrate or surrounding medium of its metallic building blocks, where the refractive
index change associated with the phase transition resulted in tuning of the plasmonic
resonance. For dielectric metasurfaces one has the additional option of directly fabri-
cating the resonators out of the phase-change materials, thereby enhancing the overlap
of the optical modes with the active material and thus the tunable response. Tuning the
spectral resonance positions of a GST nanograting metasurfaces was experimentally
demonstrated in [39], showing up to about 50% modulation of reflection (slightly less
in transmission) when the as-deposited amorphous GST forming the resonators was
laser-annealed to transit into its (partially) crystalline phase (see Fig. 7.7A). Phase
transitions between the amorphous and crystalline states of GST as well as its par-
tial crystallization were furthermore theoretically suggested for the construction of
tunable Fano-resonant dielectric metasurfaces, and of dielectric gradient metasurfaces
for dynamically controlling the angle of anomalous reflection (see Fig. 7.7B, C) [78].
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7.2.3.2 Thermal tuning

Another important way to tune the resonator material is by heating or cooling the
metasurface itself, taking advantage of the thermo-optic effect. For example the
thermo-optic effect in silicon is routinely used to construct phase shifters and tune
resonant cavities [80]. In a recent publication [79], Rahmani et al. demonstrated
that the thermo-optic effect can be used to tune nanoscale resonators arranged in a
two-dimensional array to form a metasurfaces. The authors use a silicon metasur-
face composed of nanodisks which exhibits sharp resonances due to the excitation of
magnetic dipole and electric quadrupole modes. The heating and cooling of the meta-
surface (see Fig. 7.8) can cause drastic but reciprocal changes in the position of the
resonances in a spectral window of 75 nm. This change can result in a dramatic change
of the transmission and reflection from the metasurface at specific wavelengths.

In their experiments, the authors heated the silicon metasurfaces from 20 ◦C to
300 ◦C and measured the transmittance and reflectance for different metasurfaces in
both the visible and the near-infrared spectral ranges. Fig. 7.8 shows the transmit-
tance and reflectance spectra for three different metasurfaces with nanodisks having
diameters of 170 nm, 470 nm, and 770 nm, respectively. The black curves show the
spectra before heating, while the red curves represent the spectra at 300 ◦C. The green
curves show the spectra after cooling, demonstrating the reversibility of the tuning
mechanism. As can be seen from both experiments and simulations, all resonances
experience a similar redshift of about 30 nm, for all diameters. The agreement be-
tween theory and experiments is good, being in line with the thermo-optic behavior of
bulk silicon, where between room temperature and 300 ◦C, a nearly linear variation for
refractive index is expected. This type of the reversible tuning can play a significant
role in novel flat optical devices including metalenses and metaholograms.

Thermal tuning of semiconductor metasurfaces based on PbTe nanocrystals oper-
ating at mid-infrared wavelengths has also been explored [81]. Taking advantage of
the extremely large thermo-optic coefficient and the high refractive index of PbTe, the
authors have demonstrated tuning of their Mie resonances by several times of the reso-
nance linewidths with temperature modulations as small as 10 K. This work shows the
versatility of the thermo-optic tuning of the Mie resonances in dielectric metasurfaces
and opens avenues to novel applications of tunable meta-optics.

7.2.3.3 Ultrafast tuning by carrier injection

While all tuning mechanisms discussed so far are operating at low or moderate tuning
speeds up to MHz frequencies, ultrafast dynamic effects in Mie-resonant semicon-
ductor metasurfaces have been a major milestone. In this respect, electrical carrier
injection using a combination of dielectric resonators with an epsilon-near-zero thin
films [43], hetero-junction resonators [82] and permittivity tuning of metal-oxides [83]
has been explored. This work has shown promise for future applications; however, still
with a limited speed.

The fastest switching times, so far, has been realized by the nonlinear induction
of charge carriers in semiconductors metasurfaces, utilizing the intensity dependent
complex refractive index of the semiconductor materials through third-order nonlinear
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Figure 7.8 (A) Illustration of the temperature effect on the transmission and reflection properties of meta-
surfaces. The metasurface can operate in either reflection (left) or transmission regime (right). (B–D) Ex-
perimentally measured (left) and numerically simulated (right) forward and backward scattering spectra of
metasurfaces composed of the nanodisks with diameters of 770 nm, 470 nm, and 170 nm, at room temper-
ature or at 300◦C, respectively. Solid lines – transmission in forward direction; dashed lines – reflection
in backward directions (only zeroth order) [79]. Figures reproduced with copyright permission from John
Wiley and Sons.

effects, free-carrier generation and lattice heating [35,37,84,42]. First implementations
of this concept used silicon as a constituent material of the nanoresonators [35,37,85].
In a first demonstration, ultrafast all-optical switching of the transmittance of hydro-
genated amorphous silicon nanocylinders metasurfaces exhibiting localized magnetic
Mie resonances was realized [35]. A strong self-modulation of femtosecond pulses
with a relative modulation depth of 60% at picojoule-per-disk pump energies was
observed. Furthermore, pump–probe measurements revealed that by proper spectral
positioning of the magnetic resonance, free-carrier effects can be suppressed and the
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switching process can become governed by two-photon absorption, and thus be ex-
tremely fast. In the experiment, switching times of 65 fs were demonstrated, which
was limited by the pulse duration of the employed laser source. However, although
the switching amplitude was enhanced by a factor of 80 with respect to the unstruc-
tured silicon film, the transient change in transmission �T/T was small, less than 1%
at a pump fluence of 30 mJ/cm2. Note that if picosecond switching times are sufficient,
free-carrier effects can be employed to obtain much higher switching amplitudes.

A route to enhance the switching contrast is by designing the metasurface reso-
nances to feature high-quality-factor Fano resonances, such that small resonance shifts
translate to larger variations in the optical response in a narrow frequency range. Ab-
solute ultrafast transmittance modulations �T of up to 0.2% at a pump fluence of
60 mJ/cm2 were achieved in silicon metasurfaces along these lines [37].

Further, the transient optical response from anisotropic nanobrick amorphous sili-
con particles, exhibiting Mie-type resonances was studied in [84]. The authors derived
a quantitative model to identify and disentangle the three physical processes that
govern the ultrafast changes of the nanobrick optical properties, namely two-photon
absorption, free-carrier relaxation, and lattice heating. The authors found a set of oper-
ating windows where ultrafast all-optical modulation of transmission is achieved with
full return to zero in 20 ps. This is possible because the different and competing non-
linear processes exhibit different dispersive features with opposite strengths. Because
of the anisotropic shape of the nanoresonators, the observed ultrafast switching behav-
ior can be independently engineered for both orthogonal polarizations thus allowing
ultrafast anisotropy control. This dynamic anisotropy control opens the possibility for
constructing ultrafast polarization rotators. Tuning of silicon Huygens metasurfaces
in the THz spectral range was also recently demonstrated based on photoexcitation of
free carriers [86].

Beyond silicon, direct bandgap semiconductors offer the advantage of more ef-
ficient all-optical free-carrier generation and thus stronger switching amplitudes at
lower pump fluences. This was demonstrated using an ultrafast tunable metasurface
consisting of subwavelength gallium arsenide nanoparticles supporting Mie-type res-
onances in the near infrared [42]. The metasurface was pumped by a 800 nm fem-
tosecond laser at fluences of less than 400 µJ/cm−2 to excite free carriers inside the
nanoresonators. A near-infrared supercontinuum was used as a probe, revealing a pi-
cosecond scale absolute reflectance modulation of up to 0.35 at the magnetic dipole
resonance wavelength. Remarkably, recovery times of only about 6 ps were observed,
which are reduced compared to bulk GaAs wafers mainly due to surface-mediated
recombination processes. The observed reflectance modulation originates from an ul-
trafast blueshift of the spectral position of the magnetic dipole resonance by 30 nm due
to a reduction of the real part of the nanoresonator refractive index as a consequence
of the plasma contribution, as well as from a resonance broadening and weakening
due to an increase of the imaginary part of the nanoresonator refractive index. Apart
from the tuning of transmission and reflection phase and amplitude, ultrafast tuning
of directional scattering [85] could offer additional interesting opportunities, e.g. for
ultrafast beam scanners.
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More generally, ultrafast all-optical tuning holds the potential for ultrafast wave-
front control. Theoretically it has already been demonstrated that Huygens meta-
surfaces with spectrally overlapping electric and magnetic dipole resonances can be
designed to provide a continuously tunable transmission phase between 0 and 2π with
less than 3 dB loss in intensity by introducing free charge carriers into these metasur-
faces [87].

For more details on the nonlinear processes in semiconductor nanostructures en-
abling ultrafast tuning, please refer to the chapter by Shcherbakov & Fedyanin dedi-
cated to nonlinear semiconductor metasurfaces.

7.3 Tunable functional metadevices

While huge progress on tunable dielectric metasurfaces has been reported over the
last few years, the realization of active wavefront shaping metadevices requires more
than just a tunable resonant response. Wavefront shaping with metasurfaces relies on
controlling the phase of an incident light field as a function of the in-plane position.
Therefore, dynamic wavefront control in its most general form will require spatially
resolved tuning of optical responses.

This poses the challenge of locally addressing and tuning segments or pixels of
the metasurface, where the spatial resolution of the reconfigurable phase masks will
be directly related to the number and size of the segments or pixels. Only a few of
the above-discussed tuning approaches appear compatible with a sufficiently large
number of pixels to implement complex arbitrary phase masks. For example, for tem-
perature tuning and elastic stretching, spatially selective control may be difficult to
implement with high spatial resolution. Approaches based on the direct application
of a voltage, in contrast, where spatially selective control can be accomplished by
segmented or pixelated electrodes, appear being better suited for this task. This ap-
proach was adopted in some recent work [88,43]. A general technical challenge of
this approach is the development of suitable electronics for addressing a large number
of pixels while providing sufficiently high voltages to achieve sufficient tuning with
the demonstrated mechanisms. An alternative route would be to improve the structure
designs such that they can operate at lower voltages.

To the best of our knowledge, up to now there have been no experimental demon-
strations of freely reconfigurable resonant dielectric/semiconductor metasurface de-
vices. These would require a high-resolution two-dimensional pixelation of the control
electrodes to modify the metasurface response actively as a function of in-plane po-
sition. In contrast, the few tunable wavefront shaping devices based on dielectric
metasurfaces, which have been realized so far rely on a different concept. Instead of
implementing spatially resolved tuning of an initially homogeneous metasurface, one
can design a spatially inhomogeneous wavefront shaping metasurface, which is then
tuned globally, within coarse macroscopic regions or within specialized patterns, using
one of the above mechanisms. For example, mechanical tuning or liquid crystal tun-
ing allow one to change the steepness of a linear or radial monotonous phase gradient,
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which is fully sufficient for a range of dynamic wavefront shaping devices, includ-
ing lenses with a tunable focal length or beam scanners. Importantly, while being less
general in the sense that the metasurface functionality cannot be freely reconfigured
by the controls but only adjusted in its parameters, this concept is technically easier
to implement. In the following, we will discuss two prototypical examples of such
devices, namely mechanically tunable dielectric metasurface lenses enabled and a dy-
namic beam deflector using liquid crystal-based temperature control.

7.3.1 Mechanically tunable metalenses

With the increasing research efforts made in tunable dielectric metasurfaces, sev-
eral tunable metalenses employing elastic encapsulations [89] have been reported
recently [90,88,91]. Tunable dielectric metalenses have the advantages of high nu-
merical aperture, thin-profile, and low loss, thus enabling convenient integration with
integrated photonic systems. A representative example has been demonstrated by Ka-
mali et al. at near-infrared frequencies [90]. In their design, the metalens consists of a
two-dimensional nonuniform array of silicon nanoresonators, whose phase responses
follow a hyperbolic phase distribution, embedded inside PDMS. By applying an exter-
nal strain that deforms the PDMS from 0 to 53% in the radial direction, the focal length
is tuned from 600 µm to 1400 µm, corresponding to a tunability of more than 130%.
However, since the PDMS deformation has to be done manually, the convenience, ac-
curacy, and speed of the tuning is limited. As a step to solve these issues, tuning by
external strain exerted from dielectric elastomer actuators (DEAs) [88] and MEMS
[91] has been proposed and experimentally demonstrated. She et al. demonstrated
the integration of DEAs with highly elastic near-infrared metalenses [88]. As shown
in Fig. 7.9A, B, several electrodes for controlling strains from DEAs are patterned
symmetrically around a dielectric metalens. By electrically tuning the DEAs individu-
ally or collectively, functionalities such as focusing and defocussing, focus shifts, and
astigmatisms can be realized. Such an integration enables robust tuning performances
and significantly improves the tuning accuracy and speed. In another way, Arbabi et al.
successfully applied a MEMS platform for achieving a tunable metalens system [91],
as illustrated in Fig. 7.9C. The MEMS is used to control the distance between two
dielectric metalenses as a tunable two-lens system operating at 915 nm. In this way,
a remarkable 35 µm tuning range of the focal length has been achieved by with only
1 µm displacement between the two metalenses. Fig. 7.9D clearly demonstrates the
measured clear and blur imagings at different voltages and imaging distance, visually
showing the function of tunable focusing.

7.3.2 Tunable beam deflector

Dynamic steering of laser beams by ultra-thin optical metasurfaces is another sig-
nificant example for tunable dielectric metasurfaces, having possible applications in
remote ranging and sensing. A unique platform for such important functionalities is
offered by dielectric Huygens metasurfaces infiltrated with LCs. Based on this plat-
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Figure 7.9 Mechanically tunable metalenses and systems. (A) Illustration of stretchable lenses real-
ized with dielectric elastomer actuators [88]. (B) Optical microscope images (i–iii) and the corresponding
Fourier transforms (iv–vi) for the device at (i) no voltage, (ii) with 2.5 kV applied to V5 in (A), and (iii)
with 2.75 kV applied to V1 and V3 in (A), respectively. The scale bar is 20 µm. (C) Conceptual illustration
of a two-metalens MEMS system [91]. (D) Sketch of the optical setup employed for the tunable doublet.
(E) Imaging results for applied voltage of 0 V, 60 V, and 85 V and imaging distance p ranging from 4 to
15 mm. The scale bar is 10 µm. (A–B) are reproduced with permission supported by the Creative Com-
mons Attribution-NonCommercial license. (C–E) are reproduced with permission from Creative Commons
Attribution 4.0 International License.

form, Komar et al. [92] demonstrated the dynamic switching of the beam position
by all-dielectric metasurfaces composed of silicon nanodisks using the temperature-
controlled phase transition of LCs from nematic to isotropic (Fig. 7.10A). In particular,
the authors demonstrated the switching of a laser beam deflection angle from zero to
12° with an efficiency of 50%, as shown in Fig. 7.10B, C. Importantly, during the
switching process, the transmitted power through the metasurface remains relatively
constant (Fig. 7.10D), which reveals the practicality of the concept. Another LC-based
electrically tunable beam deflector was demonstrated by Li et al. at the visible red
wavelength [93]. Importantly, they demonstrated tunable beam deflections at ±11°
and 0° with three segmented electrodes. These designs open important future oppor-
tunities for tunable ultra-thin beam-steering metadevices. However, note that, for such
applications, a continuous tuning of the deflection angle would be desirable, which
has not been demonstrated yet based on this approach. Another recent demonstration
of dynamic diffraction grating based on absorption loss tuning due to induced carrier
density modulation using a combination of dielectric resonators with an epsilon-near-
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Figure 7.10 (A) Experimentally measured of the light passing through the tunable beam deflector, at dif-
ferent temperatures of the LC cell. (B) The intensity profiles of 0, +1 and +2 diffraction orders extracted
from (A). (C) Experimentally measured change of the total power of transmitted light with temperature,
showing high overall transmission for all temperature of the operation [92]. Figures reproduced with copy-
right permission from ACS Publications.

zero thin films used spatially segmented electrodes for turning on an off diffraction
gratings [43]. To achieve this, several unit cells were grouped into each active region.

7.4 Outlook

The progress made in tunable optical metasurfaces in the last few years is truly out-
standing. This is a fast developing field and many new and exciting opportunities
remain ahead. The biggest challenge in the field remains the design and implemen-
tation a tunable metasurface that can perform pure phase modulation of an input
beam in the full 2π phase range, while maintaining a consistently high transmis-
sion or reflection intensity of the beam. Increasing the spectral range of operation
of the metasurfaces is also an enormous challenge, however, tuning the properties of
broadband metadevices is more difficult than tuning resonant metasurfaces. Achieving
these key functionalities will truly open the field of tunable metasurfaces to a plethora
of practical applications, including tunable lenses, beam steering, and even dynamic
holograms, to mention a few.
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8.1 Introduction

In 1961, a mere year after the first laser was invented, the world witnessed the birth of
nonlinear optics (NLO), when the second harmonic was observed in a nonlinear crys-
tal [1]. Fast forward more than 50 years, and NLO phenomena are abundant and found
anywhere from research laboratories to data centers and manufacturing. Examples of
commercially available systems that operate via NLO processes are ultrashort-pulse
lasers used in surgery and other biomedical applications, multiphoton microscopes,
fiber amplifiers and repeaters for optical telecommunications, tunable parametric os-
cillators and other light sources such as the green laser pointer. Despite the success of
NLO, a well-acknowledged limitation of its processes is their inherently low efficiency
requiring macroscopic volumes of materials for light-light interaction. This limitation
prohibits scalability of NLO to the nanoscale. Finding routes to enhanced optical non-
linearities has been a subject of intense research for the past several decades.

The main approach to enhanced nonlinearities at the nanoscale consists on finding
paths to increased light confinement. Nanostructures with surface plasmons, like metal
films, nanoantennas, gratings and metamaterials, do an excellent job of localizing light
to subwavelength volumes, yielding enhanced generation of optical harmonics [2],
all-optical switching [3], and other nonlinearities [4]. Light confinement in plasmonic
nanostructures suffers from the drawback of increased optical losses, which hinders
conversion efficiencies and thus limits the application scope of these materials for
NLO. A different approach to light confinement has recently been developed using
all-dielectric nanostructures [5,6], a paradigm in nanophotonics that is the main topic
of this book. Nanostructured materials with high refractive indices (n > 2) can pro-
vide ultrastrong light confinement through Mie resonant modes [7], as well as provide
venues for light wavefront and polarization control (and other exciting properties),
as explored in other chapters of this book. One of the obvious advantages of using
dielectrics as the constituent materials is their resilience to high-power laser radia-
tion; this property serves as one of the main motivations for the work reviewed in this
chapter. In this chapter, we survey experimental studies of how strong laser pulses
interact with all-dielectric Mie resonators and metasurfaces. The chapter is organized
as follows. In Section 8.2, we briefly recall the basics of nonlinear light–matter inter-
action, providing a classical, phenomenological description of optical nonlinearities
reviewed in this chapter. Section 8.3 discusses nonlinear all-dielectric metaatoms and
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metasurfaces: methods of fabrication, typical measurement techniques, and results
in generation of optical harmonics and other frequency-mixing phenomena, nonlin-
ear refraction and effects under ultrastrong excitation. Section 8.4 showcases ultrafast
phenomena in semiconductor-based metasurfaces, including instantaneous and free-
carrier-related responses. Section 8.5 concludes the chapter, outlining future research
directions within the young and exciting field of nonlinear all-dielectric metamaterials.

8.2 Basics of nonlinear optics

Nonlinear optics describes the interaction of intense laser light with matter, e.g., di-
electrics or semiconductors. In this section, we provide just the basic expressions that
highlight the rich nature of the NLO effects; we refer the reader to the excellent text-
book material should they find themselves interested in further details [8,9].

In linear optics, the polarization PL induced by the external electromagnetic field
with the electric-field vector E:

PL = ε0χ
(1) · E, (8.1)

where χ(1) is the linear susceptibility tensor of the material and the dot symbols
denotes the inner tensor product. Under strong illumination, a nonlinear electric polar-
ization PNL is induced in materials: Ptot = PL + PNL. This polarization is a nonlinear
function of the fundamental beam electric-field strength E, and can be represented as
a series:

PNL = P(2) + P(3) + ... . (8.2)

This series is a Taylor expansion over the small parameter P(i) ≈ (E/Eat)
i , where

Eat ≈ 5 · 1011 V/m is the atomic scale of the electric-field strength:

PNL = ε0[χ(2) : EE + χ(3)
...EEE + ...]. (8.3)

Here, χ(i) are the ith-order susceptibilities of the material, which are (i + 1)st-rank
tensors. The leading terms in this series are the second- and the third-order terms:

P(2)(ω1) = ε0χ
(2)(ω1;ω2,ω3) : Eω2 Eω3, (8.4)

P(3)(ω1) = ε0χ
(3)(ω1;ω2,ω3,ω4)

...Eω2Eω3 Eω4 . (8.5)

Here, ωi are the frequencies of the pump fields and the polarization induced in the ma-
terial. Importantly and as seen from these expressions, the nonlinear polarization can
mix external fields at different frequencies. The key observation here is that the polar-
ization of materials under strong illumination contains terms oscillating at frequencies
that are different from the frequencies of the incident fields Eωi

. Such frequency con-
version is a staple of NLO that is widely used in photonics.
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Various NLO phenomena can be observed, depending on the frequencies of the
interacting pump and nonlinear response fields. The simplest NLO effect based on
the quadratic susceptibility χ(2) is second-harmonic generation (SHG) that manifests
itself as radiation at the doubled pump laser frequency: P(2)(2ω) = ε0χ

(2)(2ω;ω,ω) :
EωEω. Other χ(2) effects include optical rectification as a static electric field is in-
duced in the nonlinear media, difference frequency generation, which is now very
popular for generation of electromagnetic fields in the mid-infrared and THz fre-
quency ranges, and sum frequency generation. Note that the quadratic susceptibility
is a third-rank tensor. Due to symmetry considerations in centrosymmetric media,
its components are equal to zero; furthermore, all the NLO effects governed by
quadratic susceptibilities are small. Four-wave processes, whereby four electromag-
netic waves exchange energy within the nonlinear material through Eq. (8.5), are
based on the third-order nonlinear susceptibility, χ(3). Typically, these processes can
be observed in all materials, regardless of the material symmetry. Most notably, the
frequency-degenerate case when three photons of the same frequency merge to cre-
ate a photon of a tripled frequency corresponds to third-harmonic generation (THG):

P(3)(3ω) = ε0χ
(3)(3ω;ω,ω,ω)

...EωEωEω. Other nonlinear processes covered in this
chapter are four-wave mixing, nonlinear refraction and nonlinear absorption, as well
as higher-order frequency-mixing processes that utilize χ(i), where i > 3.

On a final note, it is important to point out the importance of the electromagnetic
field strength in the magnitude of P(i), as locally enhanced electromagnetic fields
can significantly boost the efficiencies of the nonlinear processes. Creating resonant
response and enhanced localized fields is key to efficient nonlinearities in nanostruc-
tures, as shown throughout this chapter.

8.3 Nonlinear optics in Mie-resonant nanostructures

Enhancement of optical nonlinearities by nanostructures dates back to the 1970s when
it was realized that the local fields that give rise to the nonlinear polarization in
Eq. (8.3) can be enhanced by propagating surface plasmons [10] or localized surface
plasmons [11] in noble metal films. In spite of the vast body of research on nonlinear
plasmonic nanostructures [4], their applicability has been limited by low efficiencies,
high Ohmic losses and low damage thresholds. Semiconductor-based nanostructures
for nonlinear optics were introduced later [12,13]. They, in contrast with the main
topic of the current Chapter, did not utilize enhancement of nonlinearities by elec-
tromagnetic modes but rather by resonant transitions occurring in quantum-confined
systems. While the latter provide very strong NLO response through large nonlinear
susceptibilities, they suffer from saturation effects and are limited to the mid-infrared
spectrum range. Photonic crystals were one of the first patterned materials to have been
suggested for strong NLO response via engineered electromagnetic wave propagation
[14–17].

An approach for enhanced NLO effects utilizing strongly localized Mie-type res-
onances of nanoparticles emerged later, when it was realized that subwavelength
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Figure 8.1 Illustration of resonantly enhanced nonlinear-optical processes in all-dielectric/semiconductor
nanoparticles. Some of the processes covered in this chapter are second-harmonic generation (SHG), third-
harmonic generation (THG), four-wave mixing (FWM), two-photon absorption (TPA), and free-carrier
effects (FCE).

particles of high-index materials, e.g., silicon, can resonantly scatter light in the visi-
ble and IR [18–20]. For a simple geometry, such as a nanosphere, its localized fields
are described by electromagnetic eigenmodes that can be expressed analytically:

Eloc = Ein

∞∑
n=1

in
2n + 1

n(n + 1)

(
cnM(1)

o1n − idnN(1)
e1n

)
, (8.6)

where Ein is the amplitude of the incident field, M(1)
o1n, and N(1)

e1n are vector spherical
harmonics (see [21], p. 95 for detailed expressions), and cn and dn are coefficients
defined by [21], p. 100 (see also Chapter 3 of this book):
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(1)
n (x)[xjn(x)]′

m2jn(mx)[xh
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n (x)]′ − h

(1)
n (x)[mxjn(mx)]′

. (8.8)

Here, jn(x) is the first-kind spherical Bessel function, h(1)
n (x) is the first-kind spherical

Hankel function, x = kr is the size parameter, k is the wavevector inside the sphere,
r is the radius of the sphere, and m is the relative refractive index of the sphere. The
magnetic permeability of the sphere is 1. Note that these are expressions for internal
fields, as opposed to those used in problems involving scattering from a sphere.

An example of volume integrated local fields of a sphere is given in Fig. 8.2 for
a set of refractive indices n0 from 1.5 to 3.5. For all the spectra, the condition of
the particle having a subwavelength dimension (compared to the free-space wave-
length), λ > 2r , is met. Here, the role of the magnetic eigenmodes is apparent: for
the wavelengths corresponding to the magnetic dipole mode (near λ/n0 = 0.85) and
the magnetic quadrupole mode (near λ/n0 = 0.6), a considerable overall enhance-
ment of the local electric field is obtained. In contrast, in the wavelength region of
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Figure 8.2 Integrated local fields inside a dielectric sphere with a refractive index of n and a radius of
r = 400 nm, calculated using Eq. (8.6). The spectral region was chosen so that it captures the magnetic
dipolar, magnetic quadrupolar resonances (indicated) and the electric-dipolar resonance (not apparent on
the plots). For all spectra, the condition λ > 2r is met.

the electric-dipole resonance, around λ/n0 = 0.65 − 0.8, the enhancement is much
less pronounced. These simplistic calculations give a clear indication of the role of the
magnetic-type modes in the NLO response of Mie-resonant nanoparticles. The local
fields within the nanoparticles Eloc that are supported by Mie-type modes can signif-
icantly enhance the nonlinear polarizability given by Eq. (8.3), giving rise to various
frequency conversion processes and all-optical modulation schemes, as illustrated in
Fig. 8.1.

8.3.1 Fabrication techniques

Here, we briefly outline the main methods to fabricate the nonlinear all-dielectric Mie-
resonant nanostructures and metasurfaces. As shown in Fig. 8.3, the fabrication of
the dielectric resonators shares common processing steps despite the variety of ma-
terials employed for studying NLO phenomena. The fabrication starts from a thin
layer of a high refractive index material with a thickness of the order of λ/n0; the
exact thickness is determined by full-wave simulations of the particular design that is
being implemented. Thin films of crystalline silicon are widely available as silicon-
on-insulator (SOI) wafers with a SiO2 under layers of a few microns followed by a
Si substrate. However, the high refractive index contrast between the SiO2 and the
Si substrate inevitably produces undesired spectral interference [36]. Alternatively,
to eliminate the interference, Si thin films can be directly deposited on low refrac-
tive index substrates [37,25,38–40]. Utilizing different deposition techniques, such as
low pressure chemical vapor deposition or plasma enhanced chemical vapor deposi-
tion, either polycrystalline or amorphous Si thin films with desired thicknesses can be
achieved. As an alternative, amorphous germanium can be used. Note that different
Si crystal structures correspond to various refractive indices, bandgap and nonlinear
coefficients. Different from group IV semiconductors, III–V semiconductors (such
as GaAs) thin films are typically grown by metal-organic chemical vapor deposition
(MOCVD) or molecular beam epitaxy (MBE) on lattice matched III–V substrates.
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Figure 8.3 Designs of all-dielectric nanostructures for frequency conversion. Top row (Si-based), left to
right: individual nanoparticles [22], dimers [23], trimers [24], quadrumers [25] and metasurfaces [26] for
third-harmonic generation enhancement. Middle row (III–V-based), left to right: GaAs metasurfaces [27],
GaP nanoparticles [28] and AlGaAs nanoparticles [29,30]. Bottom row, left to right (miscellaneous): Ge
nanoparticles [31], Se nanoparticles [32], SiC nanoparticles [33], nanocrystalline Si nanoparticles [34], and
perovskite nanoparticles [35]. Reprinted with permission from the corresponding sources. Third figure in
the middle row reprinted with permission from V.F. Gili, L. Carletti, A. Locatelli, D. Rocco, M. Finazzi, L.
Ghirardini, I. Favero, C. Gomez, A. Lemaître, M. Celebrano, C. De Angelis, G. Leo, Monolithic AlGaAs
second-harmonic nanoantennas, Opt. Express 24 (2016) 15965, Optical Society of America.

Following the thin film growth, electron-beam lithography is often used to define etch
masks. Electron-beam resists are chosen for high etching selectivity between the re-
sists and the resonator materials. For example, negative-tone resist NEB-31A is often
used for Si-based dielectric resonators, and HSQ (hydrogen silsesquioxane) can be
used for III–V semiconductors. Next, inductively coupled plasma etch is typically
used to transfer the shape of etch mask onto the semiconductor thin film for dielec-
tric resonator formation. Variations of the ideal recipe are typically required because
the plasma etch determines the resonator sidewall slope angle and roughness. Next,
removing the etch mask can be optional depending on the purpose of the experiment
and the refractive index of the mask. Finally, if the resonators are placed on top of a
high-index substrate, either transferring them to a low-index substrate or oxidizing the
high-index materials to their low index oxide is required [41].

8.3.2 Measurement apparatuses

Below, we briefly summarize the main principles of measurements that characterize
the NLO response of the nanostructures described in this chapter.
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Figure 8.4 Typical experimental setups to study optical nonlinearities of nanostructures. (A) Harmonics
generation spectroscopy setup. (B) Z-scan and I-scan setup. (C) Frequency-degenerate pump–probe setup.

8.3.2.1 Harmonic generation

A typical setup for harmonics generation spectroscopy is provided in Fig. 8.4, as
adapted from earlier work [42,43]. A pulsed laser source is used as the pump beam.
It is desirable to employ a wavelength-tunable pump so as to cover both resonant and
non-resonant regimes of harmonics generation. Here, the pump beam is modulated by
an optical chopper at a frequency of several kHz and focused by an aspheric lens to a
beam waist of about 10 µm in diameter, leading to a maximum peak intensity spanning
from I = 1 GW/cm2 to 100 GW/cm2. The generated harmonic radiation is collected
and filtered out from the pump by a set of optical filters. The collimated harmonic
radiation is directed to the cathode of a photomultiplier tube assembly or avalanche
photodiode, in the case of a weak signal, or to a regular semiconductor photodetector
if the signal is strong enough. The output of the detector is analyzed with a lock-in
amplifier. Typically, the power dependence of the signal on the pump power is used
as an indication that the signal arises from harmonic generation: Inω ∝ In

pump. If the
harmonic generation process is efficient enough, its spectra can be measured directly
with a spectrometer. Polarization of the pump beam can be controlled by a polarizer.
Analyzing the harmonic radiation with an analyzer placed after the sample can re-
veal the structure of the nonlinear susceptibility tensor. Transmittance, reflectance and
scattered-signal schemes have been successfully used for more detailed studies [44,
45,23,46].

8.3.2.2 Z-scan, I-scan

Techniques of z-scan and intensity scan (I-scan) are routinely used to determine the
third-order nonlinear susceptibilities of materials, both their real and the imaginary
parts [47]. While studying the real part of χ(3) requires thick samples and cannot be
readily applicable to ultrathin materials like metasurfaces, Imχ(3) has been reported
in a number of references; we will discuss those in Section 8.3.4. A typical setup for
z-scan and I-scan measurements is shown in Fig. 8.4B.
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8.3.2.3 Pump–probe spectroscopy

When a strong ultrashort laser pulse impinges on a solid-state medium, the state of the
material can get strongly modified. If these modifications are reversible and consistent
from pulse to pulse, then a technique called pump–probe spectroscopy can be used to
study the transient optical properties caused by the pulses. A typical implementation
of pump–probe spectroscopy is given in Fig. 8.4C. A train of femtosecond laser pulses
is split into two: a stronger pump and a weaker probe. In order to remove unwanted
pump scattering towards the detector, the polarization states of the beams are chosen
to be orthogonal. The beams are focused onto the sample surface, and the intensity
of the probe beam is then measured as a function of the delay between the pump and
the probe. Pump–probe measurements are a powerful tool to characterize the strength
of how light interacts with light through matter, and the lifetimes of the processes
involved.

8.3.3 Harmonics generation and frequency mixing

In this section, we review recent experimental efforts to tailor harmonic generation
from all-dielectric nanostructures. The subsections will address frequency conversion
processes of different nonlinear orders, their conversion efficiencies and enhancement
by Mie-type resonances, polarization properties and the roles of the nonlinear suscep-
tibility tensor structure.

8.3.3.1 Second-harmonic generation

The most common materials for all-dielectric nanophotonics, such as silicon, germa-
nium, titanium dioxide and many others, are centrosymmetric. This property makes
detection of second-order nonlinear effects, such as second-harmonic generation
(SHG), challenging. It was not until metasurfaces made from noncentrosymmet-
ric materials (such as III–V-semiconductors) were developed [41,30,48] that SHG
was observed in all-dielectric Mie-resonant structures. Earlier manifestations of size-
dependent SHG from nanostructured semiconductors was observed in arrays of GaP
nanowires [49], although the role of the nanowire eigenmodes was not emphasized.
The first demonstration of SHG by magnetic Mie-type resonances in GaAs nanopar-
ticles was reported later [44,27] and revealed four orders of magnitude enhance-
ment with respect to an unstructured GaAs substrate and a conversion efficiency of
η2ω ≈ 2 × 10−5, see Fig. 8.5A. Conversion efficiency is defined as the intensity of
the incoming pump beam divided by the intensity of the generated harmonic beam:
η2ω = I2ω/Iω. This figure was further improved [27,30,50,51,28,52], resulting in
η2ω ≈ 10−4 in AlGaAs nanostructures [53].

The zinc blende crystal structure of most III–V semiconductors defines a particular
χ(2) tensor where χ

(2)
ijk �= 0 only for i �= j �= k. As a consequence, SHG emitted from

nanostructures based on III–V semiconductors has certain polarization and scattering
properties. For a bulk GaAs wafer with two out of three crystallographic axes lying
within the wafer’s surface (x and y), no SHG will be observed at normal incidence.
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Figure 8.5 Second-harmonic generation in GaAs metasurfaces. (A) Enhancement of the second-harmonic
output at the magnetic Mie-type resonance excited by pump pulses at λ ≈ 1000 nm. Reproduced with per-
mission from [27]. (B) Second-harmonic diffraction from a metasurface excited at a dark mode. Diffraction
at an angle of close to 0◦, which is forbidden in bulk GaAs, is observed. Reproduced with permission from
[46].

The only nonlinear polarization will be generated along z: Pz = 2χ
(2)
zyxExEy , and it

will not create a radiating field along z. However, fabricating an array of Mie-resonant
nanopartices (nanodisks) out of such a wafer, will allow efficient far-field SHG for
two reasons [46]. First, if the period of the array is larger than the SHG wavelength,
the diffraction pattern will utilize the Pz polarization, giving rise to detectable diffrac-
tion orders. Second, the certain Mie-type resonances will support local fields along
the z direction, creating SH polarizability along x or y, thus enabling the previously-
forbidden normally-emitting SHG, see Fig. 8.5B. Other implications of the nontrivial
III–V tensor structure are the polarization properties of the SHG radiation itself [50],
which can be utilized to unambiguously verify that the main contribution to the SHG
signal comes from the bulk material rather than being a surface effect. On the practi-
cal side, the structure of the tensor allows nonlinear generation of a specific type of
optical beams – vector beams – such as azimuthally or radially polarized light [53].

Periodic arrangements of nanoparticles, typically with a subwavelength period,
are referred to as metasurfaces. Coupling between resonances of individual nanopar-
ticles yields a more complicated spectral response beyond Mie theory. One of the
advantageous consequences of such coupling is the emergence of dark modes of the
metasurfaces; these modes do not couple to free-space, unless a defect is introduced
that breaks the symmetry of the nanoparticle. The defect can couple dark mode to
bright modes (i.e., modes that couple to free-space), causing a Fano-type interference
[54] that shows up as a prominent narrow-band dip or peak in the transmittance or
reflectance spectra [55,56]. Dark resonances support local fields that are larger by
orders of magnitude compared to the fields of the incoming beam. A recent study
of a GaAs-based Fano-resonant metasurface showed nontrivial spectral shaping of
second-harmonic generation and multifold efficiency enhancement induced by high
field localization and enhancement inside the broken-symmetry resonators [52].

The success of III–V-based nanostructures in achieving high SHG conversion ef-
ficiencies stems in part, from their high nonlinear susceptibility values, one of the
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highest available (and typically non-phase matchable in bulk form). A downside is
the relatively small values of the band gap energies, which translates into higher ab-
sorption coefficients for the harmonic generation radiation, impairing the conversion
efficiency in certain spectral ranges [27]. Other material platforms have been utilized
for efficient SHG at shorter wavelengths, with notable examples being perovskites
(such as BaTiO3 [57,35,33]), silicon carbide [32], and selenium [58]. Finally, a route
to surpass the limitations of centrosymmetric materials is to create a nanocrystalline
structure introducing interfaces where the symmetry is broken. For instance, in [34],
SHG from a nanocrystalline silicon Mie nanoparticle was enhanced by two orders of
magnitude with respect to an unstructured silicon film.

8.3.3.2 Third-harmonic generation

One of the most widespread and well-understood materials, silicon, has histori-
cally been the most popular source for all-dielectric nanophotonics structures, due
to its abundance in nanotechnology and microelectronics. Being a centrosymmet-
ric material, silicon exhibits little efficiency for second-order NLO effects. However,
third-order nonlinearities are routinely measured through third-harmonic generation,
two-photon absorption and other effects. Unsurprisingly, the first manifestations of
nonlinearities enhanced by magnetic Mie-types resonances were found in silicon
nanoparticles [22], where third-harmonic generation was found to be enhanced by two
orders of magnitude with respect to a thick silicon wafer (Fig. 8.6A). The conversion
efficiency was on the order of η3ω ≈ 10−7, on par with the best-performance plas-
monic nanostructures. Over time, conversion efficiencies from the IR to visible and
UV have been successfully optimized by choices of geometry, materials, polarization,
spectral range and other parameters [59,22,26,25,60,31,61]. We give an account of
THG conversion efficiency reports in Fig. 8.7.

Studies of THG from single nanoparticles can shed light on the role of different
Mie resonances in their nonlinear response. As seen in Fig. 8.2, magnetic resonances
are more likely to produce efficient THG than electric modes. This was experimentally
and numerically verified in ref. [62], where single silicon nanodisks were excited by a
tunable femtosecond laser source at either the electric or magnetic dipole resonances.
Having a certain spatial distribution, these modes can be selectively excited by struc-
tured light beams, as revealed by enhanced THG [63]. Higher-order modes, such as
anapole modes [64], have shown to further aid in efficient frequency conversion, as
proved in refs. [31,61] (Fig. 8.6B). Here, amorphous germanium was used instead of
silicon, as it has a larger refractive index of n ≈ 4, and higher nonlinear susceptibility
in the chosen spectral range. As a result, an enhancement of about 4 orders of magni-
tude was found with respect to an unstructured film (in addition to another three orders
with respect to a silicon wafer) [31].

Optical resonators that are placed close to each other can provide additional de-
grees of freedom through optical coupling between the Mie modes of the individual
resonators. If several nanoparticles are combined so that the distance between them
is less or on the order of a wavelength, they are commonly referred to as oligomers
[65]. Pairs of nanoparticles, or dimers, were shown to create hot spots of enhanced lo-
cal fields [66] which were then used to tailor the THG in the far-field [23]. Changing
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Figure 8.6 Third-harmonic generation from group IV semiconductor Mie-resonant nanostructures.
(A) Third-harmonic output from a silicon metasurface normalized by THG intensity from an unstructured
silicon wafer. Reproduced with permission from [22]. (B) Size-dependent third-harmonic generation from
germanium nanodisks at a fixed wavelength reveals the maximum enhancement at the anapole mode (AM).
Reproduced with permission from [31].

Figure 8.7 Experimentally measured conversion efficiencies of second- and third-harmonic generation
processes in Mie-resonant nanostructures based on different materials. Left: GaP [28], GaAs [27,52], Al-
GaAs [53,30,50,51], and Au [71]. Right: a-Si [59,26,25], c-Si [22], a hybrid approach (Au + Si) [60], Ge
[31,61].

the distance between the nanoparticles within oligomers modifies coupling between
the individual nanoparticles’ modes, which tunes their nonlinear response. In [37],
oligomers consisting of three nanoparticles (trimers) excited at their magnetic dipole
mode showed prominently different THG spectra for different sets of nanoparticle
diameters and inter-particle spacing. Magnetic Fano resonances excited in subwave-
length quadrumers provided additional enhancement of THG [25].

Quasi-infinite arrays of nanoparticles that have periods of less than a free-space
wavelength – metasurfaces – can be used to further increase the nonlinear response
when using high-quality factor (high-Q) collective modes. In [26], a metasurface with
a Q-factor of up to 500 was used to enhance the THG by five orders of magnitude with
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respect to a silicon film of the same thickness. A similar approach was used in [67]
with a different structure that possesses dark modes with a small net dipole moment
to enhance THG by a factor of 300 with respect to a bulk silicon substrate. Although
high-Q metasurfaces represent a promising route to enhanced optical nonlinearities,
both papers expressed concerns regarding wasting most of the bandwidth of the fem-
tosecond pulse that is typically much wider than the bandwidth of the resonance. The
time-bandwidth limit is a major obstacle to efficient interactions of femtosecond laser
pulses with high-Q cavities, and the full advantage of the field enhancement within a
high-Q cavity remains an open question.

Other functionalities of THG from Mie-resonant nanostructures are generation
of UV light [59], manipulation of the nonlinear wavefront and directional nonlin-
ear diffraction [68], enhanced nonlinearities by complementary structures [69], and
possibilities in probing optical coupling of all-dielectric nanostructures to optical
waveguides [70].

8.3.3.3 Other cases of frequency mixing

Second- and third-harmonic generation processes are enabled by the merging of two
or three fundamental photons to a higher-energy photon, so that the overall energy is
conserved: �ωn = n�ω, where n is the process order. For a general frequency-mixing
process, a nonlinear susceptibility can mix any number of photons having an arbitrary
set of frequencies:

∑N
i=1 �ωi =∑M

j=1 �ωj . First manifestations of four-wave mixing
were provided in germanium nanodisks [72], where effective third-order susceptibili-
ties as high as 2.8×10−16 m2/V2 were found. A more sophisticated technique utilized
bi-color pump experiment, where 11 new frequencies were generated in III–V-based
semiconductor metasurfaces [51]. It is important to note that the simultaneous mixing
of such a vast amount of frequencies at comparable efficiencies is hard to observe in
bulk materials, as the phase-matching conditions usually benefit one or few frequency
conversion pathways while sacrificing the efficiency for others.

8.3.4 Self-action effects

In nonlinear materials, light beams can modify themselves without causing consid-
erable conversion from one frequency to another. These effects, often referred to as
self-action effects, give rise to a series of applications like power limiting, passive
mode-locking, filament formation, solitons and others. Phenomenologically, these ef-
fects can be expressed by an intensity-dependent complex refractive index:

ñ(I ) = ñ0 + ñ2I, (8.9)

where ñ0 = n0 + iκ0 is the unperturbed complex refractive index, and ñ2I =
(n2 + iκ2)I is the part of the refractive index that is proportional to intensity. Since
the refractive index depends on I , Mie resonances, which lead to field localization and
enhancement, can substantially boost self-action in materials.

Self-action effects can be classified by the dominating term in ñ2 = n2 + iκ2, either
real or imaginary, and by its sign. Additionally, these effects can be categorized by the
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physical nature behind ñ2. Here, we will classify those effects that have been studied
in Mie-resonant nanostructures.

8.3.4.1 Nonlinear absorption

If n2 = 0 and κ2 > 0, the effect is referred to as nonlinear absorption. More tradi-
tionally, it is expressed in terms of a nonlinear absorption coefficient α = α0 + βI ,
which is interrelated with κ = αλ/4π . The most common cause of nonzero nonlin-
ear absorption is the two-photon absorption (TPA) process, which routinely occurs
when a powerful IR laser pulse propagates through a semiconductor with the bandgap
energy lying in the range of 2�ω > Eg > �ω, where �ω is the photon energy. There-
fore, the simultaneous absorption of two photons can generate an electron–hole pair.
Two-photon absorption has been extensively studied in all the commonly used semi-
conductors leading to applications in optical power limiters, mode-locking, etc.

In all-dielectric nanoantennas and metasurfaces, local fields can boost the non-
linear absorption cross-section, lowering the intensity requirements for optical lim-
iting. For instance, a typical value for the TPA coefficient in silicon is on the order
of β = 1 cm/GW [73]; for hydrogenated amorphous silicon it strongly depends on
the lattice structure and hydrogen content, and was found to be on the order of
β = 10 − 100 cm/GW [74]. Metasurfaces fabricated out of a thin amorphous sili-
con film enhance TPA by a factor of 80 with respect to an unpatterned film, resulting
in a value of β = 5600 cm/GW [37]. Subsequent generation of free carriers can induce
significant changes in the linear response of the nanoparticles, such as reflectance or
scattering directionality [75].

8.3.4.2 Nonlinear refraction

When n2 �= 0 and κ2 = 0, the situation is referred to as nonlinear refraction. There are
numerous microscopic mechanisms that lead to an intensity-dependent refractive in-
dex; these can be separated into two major categories: parametric and non-parametric.
The former, the optical Kerr effect, is defined by an instantaneous value of the electric
field in the material and relies on the nonlinear coherent response of electrons in the
material; this effect is usually fairly weak: n2 ≈ 10−16 − 10−13 cm2/W in common
dielectrics and semiconductors. In most cases, this contribution to n is present only
when light is within the material, as electron decoherence times are on the femtosec-
ond scale, which is shorter than the vast majority of the pulsed light sources. Since the
Kerr effect magnitude is weak, parametric nonlinear refraction in nanostructures has
been usually considered elusive; however, novel materials such chalcogenide glasses
look promising in this context [76].

In contrast, the non-parametric additions to n are not connected to the nonlinearity
of the electron response, and are not due to the presence of light per se but rather
due to the changes in the material parameters such as temperature or the concen-
tration of free charge carriers. Light can heat materials causing thermally induced
changes in n = n0 + T dn/dT = n0 + I (dT /dI)(dn/dT ). The large values of re-
fractive index modulation come at the expense of speed: recovery takes microsec-
onds or even seconds (although faster relaxation times can occur at the nanoscale).
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A much faster process of index modulation is photogeneration of free carriers, created
through either single- or multi-photon absorption processes in semiconductors. Here,
n = n0 +�nFC , where �nFC is the refractive index addition, usually negative, caused
by the photogenerated electron–hole pairs. We will discuss this type of nonlinearity
further in section 8.4.2.

8.3.5 High-order effects

Eq. (8.3) is a Taylor series with E/Eat as the expansion parameter, where E is the inci-
dent field strength and Eat ≈ 5 · 1011 V/m. Under the condition of E � Eat, nonlinear
polarization is much smaller than the linear one and the regime is called perturba-
tive. The closer the E is to Eat, the more inaccurately the series describes the real
polarization of materials, as the high-order terms become comparable to each other.
In GaAs, for instance, one can estimate the critical intensity at which P (2) ≈ P (3),
or, conversely, Ecrit ≈ χ(2)/χ(3) ≈ 109 V/m, which corresponds to intensities of ap-
proximately 1 TW/cm2. This so-called non-perturbative regime has become accessible
through both the advent of femtosecond laser sources, which can easily reach such in-
tensities, and resonant nanostructures [77], which can funnel light to hot spots of much
higher field intensity than the incident light.

The most straightforward manifestation of non-perturbative nonlinearities is the
process of high-harmonic generation (HHG). In solids, photogenerated free electrons
move in highly non-parabolic potentials due to large spatial displacements, generating
optical harmonics in the extreme UV [78]. The intensity requirements for this process
are high, and one of the approaches to significantly reducing them is to use local-
ized resonances. Semiconductor metasurfaces with Mie-type resonances have been
successfully used to observe even harmonics up to the fourth in noncentrosymmet-
ric materials [51] and odd harmonics up to the 11th in silicon-based metasurfaces
[79]. The ninth harmonic from the metasurface can be detected at intensities as low as
50 GW/cm2 with the signal two orders of magnitude above the noise level, whereas
any detectable ninth harmonic from an unpatterned film of the same thickness shows
up only at 200 GW/cm2 [79].

One of the most straightforward results of Eq. (8.3) is that, if pumped by a narrow-
band laser centered at frequency ω, the resulting harmonics will have spectra centered
at nω, where n is the order of the nonlinear process. On the other hand, this rule may
fail in dynamically evolving systems, such as rapidly generated plasmas in gases and
semiconductors [80]. In these systems, generation of free carriers leads to blue shift-
ing of the emitted fundamental and harmonic generation, a process sometimes dubbed
“photon acceleration” [81]. However, typical intensities of 1015 W/cm2 are needed to
observe considerable blue-shifts of the emitted photons. At much lower intensities of
up to 30 GW/cm2, photon acceleration has been recently revealed in semiconductor
metasurfaces by observing the spectrum of the THG radiation blue-shift as the pump
intensity is increased [82]. In this experiment, the generated photons had a variable
carrier frequency from 3ω to 3.1ω, tuned by the intensity of the mid-infrared pump,
thus expanding the scope of frequency conversion beyond integer harmonics.
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Figure 8.8 Ultrafast processes in semiconductor nanostructures. Reproduced with permission after [38].

8.4 Ultrafast phenomena in Mie-resonant nanostructures

By convention, ultrafast phenomena are those with relaxation time of approximately
1 ps and shorter [83], allowing characteristic modulation frequencies of more than
1 THz. Since few electric-current-based devices can provide bandwidths above sev-
eral hundreds of GHz, many people consider the all-optical approach to be a major
candidate for ultrafast signal processing.

Ultrafast processes in materials are routinely investigated using pump–probe spec-
troscopy, or time-resolved spectroscopy. A powerful ultrashort laser pulse (“pump”)
causes modifications to the materials under study that are then probed by a weaker
pulse (“probe”) in the form of transmittance, reflectance, scattering, polarization or
frequency conversion. The response of the probe is monitored as a function of the
time delay between the pulses, reconstructing the relaxation process of the material.
The probe and the pump can have different polarizations, frequencies, and temporal
profiles, so as to reveal different aspects of the underlying processes (Fig. 8.8).

Semiconductors are the most popular materials for all-dielectric Mie-resonant
nanostructures. The most common semiconductors – silicon, germanium, gallium ar-
senide and others – have been extensively studied using pump–probe spectroscopy.
A simplified timeline of the microscopic processes following a femtosecond pulse
impinging on a surface of a bulk semiconductor is as follows [84]:

• τ < 200 fs: Free carriers (FCs) are generated through single- or multi-photon ab-
sorption. At this point in time, the electromagnetic field is typically still within the
material, thus opened to coherent frequency-mixing processes. FCs lose coherence
via carrier-carrier scattering events. The energy distribution is non-Boltzmann, i.e.,
the electron gas has not yet thermalized.

• τ < 2 ps: Electrons and holes have thermalized to Boltzmann-type energy distribu-
tions. The electron-lattice energy exchange is under way through electron–phonon
scattering. Light is no longer present in the material.

• τ < 100 ps: Electrons and holes have lost their energy to phonons and recombined.
Lattice is sinking its excess energy to the environment. The end time of this process
is highly dependent on many parameters, including substrate material.
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In every step of this process, the transient value of the complex dielectric permit-
tivity of the material ε̃(t) differs from its equilibrium value ε̃0: ε̃(t) = ε̃0 + �ε̃(t).
There are three main contributions to �ε̃: the instantaneous one (as discussed in Sec-
tion 8.3.4.2), the one induced by the presence of the free carriers �ε̃FC and the one
induced by lattice heating, or the presence of phonons �ε̃L. The free-carrier contri-
bution is the one that is often utilized in all-optical switches [85]. However, in bulk
semiconductors, recombination of free carriers is a slow process that does not allow
for ultrafast relaxation times.

Fortunately, in nanostructures and under high intensity laser illumination, the re-
combination processes can happen much faster, enabling novel devices that could
operate at ultrafast modulation frequencies. The general (simplified) recombination
rate equation for FC density N(t) is [86]:

dN

dt
= −AN − BN2 − CN3, (8.10)

where A, B, and C are the monomolecular, bimolecular and Auger recombina-
tion rates. These coefficients are specific to a given semiconductor. For a typical
example, in bulk GaAs, A < 5 × 107 s−1, B = (1.7 ± 0.2) × 10−10 cm3/s, and
C = (7 ± 14) × 1030 cm6/s [86]. At low pump intensities, Eq. (8.10) leads to N being
less than 1018 cm−3; the first term in Eq. (8.10) dominates over the second and the
third ones, giving a relaxation time of 200 ns. This figure can be improved by either
increasing the pump intensity leading to a higher FC density, or decreasing the value
of A. The latter can be achieved by introducing impurities (a good example being low-
temperature-grown GaAs) or by increasing the surface area by nanostructuring [87].
Both approaches have been utilized in semiconductor metasurfaces, as shown below.

8.4.1 Instantaneous all-optical modulation

The only instantaneous mechanisms of all-optical modulation implemented so far in
semiconductor metasurfaces are two-photon absorption (TPA) and frequency mixing.
TPA manifests itself as a sharp dip at near-zero delay on time-resolved transmittance
or reflectance traces [37,26,38], with a duration of the dip limited to the duration of
the optical pulses used in the experiment. For typical TPA dips in pump–probe traces
for metasurfaces, see Fig. 8.9C. Frequency mixing, as discussed in previous sections,
can be cross-modulated by two separate beams, allowing all-optical modulation of the
resulting signal [51]; see Fig. 8.9D. Instantaneous phenomena, in sharp contrast with
the free-carrier-related contributions, allow for potential switching rates at frequencies
of more than 10 THz, paving the way to ultrafast logic gates using photonics.

8.4.2 Free-carrier effects

Optical response of a semiconductor that contains free carriers, such as electrons
and/or holes, is frequently dominated by the Drude dispersion of the dielectric per-
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mittivity:

ε(ω) = ε∞ − ω2
p

ω2 + iγ ω
, (8.11)

where ωp =√Ne2/ε0m∗ is the plasma frequency, N is the free-carrier concentration,
e is the elementary charge, m∗ is the effective free-carrier mass, and γ is the damping
constant. This approximation holds for most experimental cases, especially when the
probe beam’s photon energy is below the band gap, and if the free-carrier concentra-
tion is sufficiently low. Free carriers have experimentally changed the refractive index
by up to �n/n ≈ −0.04 in metasurfaces [88], which, with an appropriate Q-factor
of the resonance, can shift its central frequency by about its full width at half maxi-
mum (causing considerable changes in reflectance of up to 0.35). The presence of free
carriers in Mie-resonant semiconductor nanoparticles not only changes the back- or
forward-scattering of light but tailors the scattering pattern in general, as shown by
several theoretical efforts [89–91].

The rate of relaxation to the initial state strongly depends on the material used
as the constituent material for a metasurface. Crystalline materials with an indirect
band gap, such as silicon, are poor candidates for ultrafast metasurfaces, as relaxation
times in these materials can be as long as hundreds of picoseconds [92]. This can
be mitigated by introducing higher-order terms of the rate Eq. (8.10) through hard
pumping of the metasurfaces. In Ref. [90], silicon nanoparticles were pumped at high
fluences of around 40 mJ/cm2 so as to achieve large estimated FC density of about
5 × 1020 cm−3. This led to dominance of the Auger recombination process, making it
as fast as 2.5 ps; see Fig. 8.9A for a typical pump–probe trace.

Another approach to shortening the lifetime of FCs in a semiconductor is to in-
crease the probability of monomolecular recombination through inhomogeneities of
the crystal structure or non-radiative centers. Fortunately, metasurfaces naturally pos-
sess an increased relative surface area due to nanostructuring, which increases the
likelihood of surface recombination. This effect was shown to dominate the relaxation
in GaAs-based metasurfaces, leading to relaxation of the magnetic dipolar Mie-mode
back to its initial state in only 6 ps and 1/e relaxation time of 2.5 ps [88]; see
Fig. 8.9B.

In general and beyond the Drude approximation, the refractive index change relies
on three main components [93]: the Drude term, the band filling effect and the band
shrinkage effect. The resulting index modulation is given by

�n = �nD + �nBF + �nBS. (8.12)

The extra terms may become important in some experimental cases [88]. As an
example, the band filling effect on the refractive index is defined by the decline of the
interband transitions due to occupation of the electron and hole states in the conduction
and valence bands, respectively. In the parabolic band approximation, the interband
absorption is given by the following expression:
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Figure 8.9 Routes to ultrafast all-optical modulation in semiconductor metasurfaces. (A) At high FC
concentrations, bimolecular and Auger terms lead to faster recombination, enabling relaxation times of
2.5 ps in a-Si. Reprinted with permission from [90]. (B) Surface recombination in direct-gap semiconductors
(GaAs) can provide rapid all-optical tuning of the resonance and relaxation times of 2.5 ps. Reprinted with
permission from [88]. (C) Overcoming FC contributions by judicious choice of the pump wavelength versus
the resonance wavelength for coherent all-optical modulation. Reprinted with permission from [37]. (D)
Utilizing parametric frequency-mixing processes facilitates ultrafast, subpicosecond all-optical response.
Reprinted with permission from [51].

α(E) =
{

0, if E ≤ Eg,
Chh
E

√
E − Eg + Clh

E

√
E − Eg, if E > Eg.

(8.13)

For instance, in GaAs, Chh = 3.1 · 106 cm−1eV1/2 and Clh = 1.6 · 106 cm−1eV1/2, and
Eg = 1.42 eV is the band gap width of GaAs at room temperature. Absorption of GaAs
saturates as the bands get filled, as given by

�α = Chh

E

√
E − Eg[fv(Eah) − fc(Ebh) − 1]

+ Clh

E

√
E − Eg[fv(Eal) − fc(Ebl) − 1], (8.14)

where fc(Ebh,bl) and fv(Eah,al) are the Fermi–Dirac distributions in for electrons and
holes, respectively. The band shrinkage effect is phenomenologically introduced as
Eg being directly dependent on the carrier concentration: �Eg ∝ −N1/3, which in
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turn, affects Eq. (8.13). The refractive index addition by both band filling and band
shrinkage are then calculated through Kramers–Kronig relations from Eq. (8.13). The
full derivation of these contributions in some of III–Vs is given in [93]. In metasurfaces
operating at photon energies close to the band gap of GaAs, ≈ 1.24 eV, the band
filling contribution was shown to be equally important in all-optical tuning of the
Mie-resonance as the Drude term [88].

8.5 Conclusions and outlook

Although nonlinear and ultrafast properties of Mie-resonant nanostructures have been
extensively studied for more than 5 years, it is still a developing field with many
unknowns. Below, we attempt to outline a roadmap of this exciting area of nanopho-
tonics.

8.5.1 Beyond the visible and near-IR

Studies of nonlinear all-dielectric metamaterials have been traditionally limited to the
near-IR and visible spectral regions. On the other hand, many applications, such as
molecular fingerprinting, night vision, and others, require efficient nonlinear materi-
als in other spectral ranges. Mid-infrared radiation, or radiation with wavelengths of
λ = 3−12 µm, is an important spectral range, for it carries information about chemical
composition of materials and contains most of the thermal radiation emitted at room
temperature and higher. Relevant to nonlinear materials, the following features of the
mid-IR are of particular interest:

• The most common semiconductor materials, such as Si, GaAs, Ge and many oth-
ers, are transparent in the mid-IR, granted by the low energies of optical phonons
in these materials.

• Nonlinear absorption is lower than that seen in the near-IR, since it requires more
photons to induce an interband transition of an electron to the conduction band.

• Generation of free carriers has a larger effect on the dielectric permittivity of semi-
conductors. The Drude term, which dominates the permittivity of semiconductors
in the mid-IR, scales as ∝ λ2, lowering the power requirements to all-optical
switching.

• Optical properties of semiconductors, such as their band gap and resonant polar-
izabilities, can be manipulated by growth of heterostructures with inter-subband
transitions, which has already been implemented for plasmonic nanostructures
[94,95].

For these and other reasons, the mid-IR spectral range has been hailed as one of the
possible directions for integrated photonics [96,97]. We predict an elevated interest of
the community to this region in the coming years. For similar reasons, the THz band
has also been attractive for ultrafast and nonlinear response of semiconductor-based
metamaterials.
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8.5.2 Emerging materials

The current roster of materials for nonlinear Mie-resonant nanoparticles and metasur-
faces has mainly contained silicon, germanium, and AlxGa1−xAs, with few excep-
tions. On the other hand, a variety of high-index materials for Mie-resonant photonics
has been used to date, many of which are promising nonlinear materials too. We
expect more exciting results in the nearest future from the following platforms: tradi-
tional nonlinear crystals such as LiNbO3 [23], large bandgap materials such as GaN,
GaP and others [28], diamond [98], and nanostructures with tailored intersubband
transitions [94,95], as well as various phase-change materials. From the ultrafast per-
spective, of interest are materials with defects – such as low-temperature-grown GaAs
and amorphous Ge – and materials with low effective FC masses, such as narrow-gap
semiconductors like InSb, engineered superlattices [99], as well as graphene and other
2D materials.

8.5.3 Exotic nonlinearities

The richness of NLO lies beyond generation of harmonics, nonlinear absorption and
all-optical modulation. Many rarer, yet no less intriguing NLO effects are yet to be
observed in Mie-resonant systems. These effects include, to name a few: electric-field-
induced second-harmonic generation in centrosymmetric materials, tunneling ioniza-
tion and ponderomotive effects, Franz–Keldysh effect, ultrafast magnetism [100], op-
tical rectification and generation of THz radiation, as well as effects emerging through
time-varying refractive index. With the expansion of material platforms and spectral
range, we envision exciting opportunities in nonlinear all-dielectric and semiconduc-
tor metamaterials.
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9.1 Definition of nonresonant spectral range

As described in the chapters before, the appearance of Mie resonances governs the
scattering properties of dielectric elements in a spectral range when the wavelength is
roughly of the size of the elements or shorter. Starting from the dipolar magnetic and
electric Mie resonances many more higher-order resonances (quadrupole, octopole,
etc.) follow at shorter wavelengths. When a metamaterial is constructed from these
scattering elements or “meta-atoms” the non-resonant regime corresponds to the low
frequency/long wavelength range which extends from the lowest-order Mie resonance
down to static conditions (ω → 0). In a dielectric sphere the lowest Mie resonance is
the magnetic dipole resonance which appears at

λ0,Mie = 2r
ni

nh

(9.1)

where r is the radius of the sphere and ni and nh are the refractive indices of the sphere
and the surrounding host material, respectively. In random arrangements of dielectric
spheres λ0,Mie therefore represents a hard limit for the non-resonant regime.

However, since a metamaterial consists of an arrangement of scattering elements
the order of the ensembles of these elements has to be considered. Man-made meta-
materials are mostly periodic structures where, in addition to the mentioned Mie
resonances, lattice resonances also occur leading to the well-known Bragg diffrac-
tion. Therefore, most metamaterials also represent photonic crystals, where the first
Bragg resonance occurs at

λ0,Bragg = 2neff a (9.2)

where a is the lattice period and neff describes the effective refractive index of the
periodic structure in the long wavelength limit. Which one of the two resonance con-
ditions, (9.1) or (9.2), results in the lower resonance is not necessarily straightforward
and depends on the interplay between the r/a-ratio and the refractive indices ni , nh, and
neff . To find a conservative estimate for the upper frequency bound of the non-resonant
regime requires some approximations be introduced to the Mie and Bragg condition
based on (9.1) and (9.2): For an overall arrangement of non-touching spheres we have
r < a

2 , so that from (9.1) follows λ0,Mie < a
ni

nh
and furthermore λ0,Mie < ani , since

the refractive index of a natural host medium is nh ≥ 1. One has to also consider that
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Bragg diffraction in photonic crystal structures occurs over a wavelength range (the
photonic bandgap) and the single wavelength λ0,Bragg from (9.2) corresponds only
roughly to the center wavelength of this Bragg diffraction/photonic bandgap range.
To determine the lowest possible frequency for the onset of Bragg diffraction the
lower band edge of this bandgap region is decisive. Since the standing waves at this
band edge concentrate their field in the material with high refractive index /dielec-
tric constant one can conservatively estimate λ0,Bragg−onset < 2ani . Following these
approximations one can conservatively conclude that the non-resonant spectral range
of metamaterials extends for wavelengths λ0 > 2ani . For most of the metamaterials
the Bragg condition determines this wavelength limit. Only in cases where dense ar-
rays of very high index spheres occur, the Mie resonance might drop below the actual
Bragg resonance. In a related case lattices of dielectric rods were investigated and the
spectral positions of the Mie resonances and photonic bandgaps exactly determined
[1]. Also in this case the Bragg resonances appeared at frequencies below the Mie res-
onances for usual refractive-index values < 4. Only for ultra-high-refractive indices
of the rods, as they appear in the far IR or microwave region, did the Mie resonances
drop below the Bragg resonances.

9.2 Theoretical description – homogenization and
effective-medium theories

9.2.1 Isotropic effective media

In the limit of long wavelengths all structure sizes, such as the size of the scatter-
ing elements and their separation, are small compared to the wavelength. In this case
the electric field of an electromagnetic wave does not change much over these struc-
ture sizes and can therefore be approximated to be constant. This corresponds to the
quasi-static limit and classic effective-medium theories are formulated assuming this
condition. As this excludes ring-like patterns of the electric polarization, metamaterial
induced magnetism does not occur in this case and the resulting permeability μ ≈ 1
can be assumed as long as non-magnetic materials are considered.

In the following we provide a short overview of the main two effective-medium the-
ories, the Maxwell–Garnett and the Bruggeman effective-medium theories, since they
are easy to use, widely accepted and it can be shown that they appear as extrapolated
solutions of more rigorous models in the limit ω → 0.

9.2.1.1 Maxwell–Garnett effective-medium model

The determination of an effective dielectric constant in the quasi-static case is usually
performed in two steps:

1. The electric field in and around the scattering element is determined for the case
that a static (external) electric field is assumed.

2. The effective dielectric constant εeff is determined from the relation
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Deff = εeffEeff (9.3)

where Deff describes the averaged dielectric displacement field Deff = 1
V

∫
D (r) dr3

and Eeff the averaged electric field Eeff = 1
V

∫
E (r) dr3 in a volume V much larger

than a single scattering element. In order to solve (9.3) for εeff and come to an analyt-
ical solution additional simplifying assumptions are made.

The case of a spherical particle with dielectric constant εi , which is placed in a
matrix of dielectric constant εex , forms the starting point for most effective-medium
theories. When a static electric field Eex0 is applied along the z-direction, the sphere
becomes polarized, which can be represented by a surface charge density at the surface
of the sphere. The field inside the sphere forms then as a superposition of Eex0 and
the depolarizing field exerted by the polarization (the polarization surface charges) of
the sphere. In addition, the overall electric field in the immediate surrounding of the
sphere is also affected by the field exerted by the polarization surface charges of the
sphere. To determine the resulting inner and outer electric fields the Laplace equation
εi,exε0�� = 0 has to be solved under the boundary condition that the electric field far
away (r → ∞) corresponds to Eex0 [2]. Treating the problem in spherical coordinates,
the electrostatic potential � inside and outside of the sphere can be expressed as a
series of Legendre polynomials. Observing the boundary condition for r → ∞ and
the continuity of ∂�

∂r
and ∂�

∂θ
at the surface of the sphere, the constants in the series

can be determined, so that the electrostatic potential takes the following form [2]:

�i = − 3εex

εi + 2εex

Eex0r cos θ = − 3εex

εi + 2εex

Eex0z (inside the sphere) (9.4)

�ex = −Eex0r cos θ + εi − εex

εi + 2εex

Eex0
R3

r2
cos θ (outside the sphere) (9.5)

Applying the general relation, E = −grad�, the electric fields inside and outside the
sphere are obtained [3]:

Ein = 3εex

εi + 2εex

Eex0ez (inside the sphere) (9.6)

Eex = Eex0ez + εi − εex

εi + 2εex

Eex0
R3

r3
(2 cos θer + sin θeθ ) (outside the sphere)

(9.7)

The field inside the sphere is homogeneous and aligned with the external (inducing)
field Eex0. When the dielectric constant of the sphere is higher than the surrounding
matrix material, the internal field is decreased with respect to Eex0 and vice versa.
This is the effect of the induced response field due to the polarization of the sphere.
The external field is a superposition of the original field Eex0 (first term in (9.7)) and a
dipole field generated by the polarization charges of the sphere (second term in (9.7))
[Fig. 9.1A]. Due to the 1/r3 dependence of the dipole field it decays quickly away
from the surface of the sphere. For ac-fields this dipole field corresponds to the near
field of a Hertz dipole.
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Figure 9.1 Effective-medium concepts (A) Maxwell–Garnett model: A sphere with dielectric constant
εi is immersed in a host medium with dielectric constant εex . (B) Bruggeman model: A sphere of either
dielectric constant εi or εex is immersed in the effective medium with εeff. (C) Wiener formulas: Exact
formulas can be obtained for the simple case of layered metamaterials where the continuity conditions at
plane interfaces for the D- and E-fields can be exploited.

To calculate the effective dielectric constant for an ensemble of spheres dispersed
in a matrix using (9.3) expressions for Deff and Eeff have to be found. When the
spheres are well separated, the Maxwell–Garnett approximation can be applied. In
this effective-medium theory the whole field outside the sphere is approximated by
the homogeneous field Eex0. The dipole field in (9.7) is neglected. This allows for the
following simple forms for Deff and Eeff :

Deff = f εiEin + (1 − f ) εexEex0

Eeff = f Ein + (1 − f )Eex0,

where f describes the volume fraction (filling factor or filling fraction) occupied by
the spheres. Together with (9.6) and (9.3) the effective dielectric constant for the
Maxwell–Garnett theory results in [3]

εeff−MG = εex + εex

3f (εi − εex)

εi + 2εex − f (εi − εex)
or

εeff−MG − εex

εeff−MG + 2εex

= f
(εi − εex)

εi + 2εex

(9.8)

In randomly arranged effective media the Maxwell–Garnett formula is only valid for
filling fractions of a few percent. Only then the approximation of independent spheres
with dielectric constant εi in a surrounding matrix with εex is realistic as particle
agglomerations are rare and the mutual interaction of the dipolar near fields of neigh-
boring spheres can be neglected. Interestingly, the range of validity is extended for
strictly periodic arrangements of spheres, as it occurs e.g. in a 3D cubic lattice of
spheres. This is shown in Fig. 9.2. A strictly periodic arrangement of spheres with a
dielectric constant of 12 (e.g. silicon spheres) in an environment with dielectric con-
stant of 1 (e.g. air) represents a photonic crystal and the dispersion relation of light
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Figure 9.2 Photonic bandstructure calculations for a 3D cubic array of dielectric spheres with dielectric
constant εi = 12 (e.g. Si) in a host with εex = 1 (air). (A, B) for r/a = 0.2; (C, D) for r/a = 0.45. For
the case of small spheres (A, B) the dispersion relation up to the onset of Bragg reflection (represented
by the upper end of the first band at the X-point) is linear and can be well approximated by an effective
refractive index calculated after the Maxwell–Garnett theory (red dashed line). This is also shown in (B),
where the equi-frequency surface in the green rendered cross sectional plane is shown for ωa/(2πc) =
0.45. The numerically exact calculated wavevectors (black dots) agree very well with the Maxwell–Garnett
approximation (solid red). For larger spheres (C, D) the Maxwell–Garnett effective index is only a good
approximation in the very long wavelength range for wavelengths above the very conservative limit of
λ0 = 2ani .

in this structure can be represented by a photonic bandstructure. The spatially vary-
ing dielectric constant can be developed into a Fourier series and the electromagnetic
waves are represented as series of plane waves. In this case, the frequencies of the
electromagnetic waves at specified wavevectors are obtained as eigenvalues of the
coefficient matrix [4]. The wavevectors are “scanned” across the first Brillouin zone
choosing a path within the 3D cubic Brillouin zone, which covers the critical points
�, X, M, R where the band edges appear. As pointed out above the non-resonant spec-
tral range is represented by the first photonic band and extends from ω = 0 towards
the onset of Bragg reflection, which occurs first along the �-X direction. For small
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spheres whose radius r is only 20% of the period a (r/a = 0.2) the nonresonant range
reaches up to ωa/(2πc) = 0.46 and the linear dispersion of the band can be well ap-
proximated up to the photonic bandgap by an effective refractive index obtained by
the Maxwell–Garnett formula (red dashed line in Fig. 9.2A). “Cutting” the bandstruc-
ture at a fixed frequency of ωa/(2πc) = 0.45 just below the onset of Bragg reflection
reveals a spherical equi-frequency surface (a circle in the �-X-R plane) [Fig. 9.2],
which agrees perfectly with the isotropic Maxwell-Garnet effective refractive index.
For such small spheres the first Mie resonance after (9.1) is situated at a high fre-
quency of ωa/(2πc) = 0.72, so that indeed the lattice Bragg resonance limits the
non-resonant range.

When a cubic array of large, almost touching spheres with r/a = 0.45 is consid-
ered, the bandstructure shifts to lower frequencies as the overall amount of high index
material increases. The Mie resonance drops to ωa/(2πc) = 0.32 and the onset of
Bragg reflection drops to ωa/(2πc) = 0.27, so that the Bragg resonance still limits
the non-resonant range. However, the first band is now bending much earlier (at lower
frequencies) due to the influence of Bragg diffraction, so that a linear dispersion is
only observed for the long wavelength region. This is also represented by the equi-
frequency contours in Fig. 9.2D, which were taken at ωa/(2πc) = 0.1, 0.2, and 0.25.
While the spherical shape of the equi-frequency surfaces still remains well preserved,
the Maxwell–Garnett effective index can only describe the lowest frequency contour
accurately. For the higher frequencies of ωa/(2πc) = 0.2 and 0.25, which are ap-
proaching the photonic bandgap, the gradual impact of Bragg diffracted waves grows
leading to a standing wave at the band edge with a predominant concentration of the
light intensity in the high index spheres. Since the light at these frequencies “sees”
more of the high index material the internal wavevector increases away from the fixed
Maxwell–Garnett approximation. At these frequencies a clear gap between the exact
equi-frequency contours (black dots) and the MG-effective Medium model (solid red)
occurs. In summary, the Maxwell–Garnett effective-medium model provides a very
accurate value for the effective dielectric constant in the long wavelength region of
periodic metamaterials of high symmetry resulting in a linear dispersion relation in
this spectral range (as long as material dispersion can be neglected). For low filling
fractions (small scatterers) this approximation can also be safely applied up to the on-
set of Bragg diffraction. For higher filling fractions considerable band bending begins
to occur for frequencies below the photonic bandgap and the Maxwell–Garnett model
becomes inaccurate.

9.2.1.2 Bruggeman model

While the Maxwell–Garnett model is well suited for media where clearly separated,
well defined, scattering elements are surrounded by the host medium, it becomes
inaccurate when the elements agglomerate and the structure develops a more intercon-
nected/interwoven character, where a clear distinction between “element” and “host
material” can no longer be made. This becomes obvious when inclusion and host are
exchanged in the Maxwell–Garnett theory, for instance, instead of having high index
inclusions with filling factor f in a low index host, assume low index inclusion of
filling factor (1-f) in a high index host [Fig. 9.3].
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Figure 9.3 Comparison of effective dielectric constants and indices using different effective-media models
and assuming silicon (εSi = 12) and air (εair = 1) as the underlying two materials.

For the same filling fraction two different effective dielectric constants and in-
dices are obtained depending on the assignment of one material as inclusion or host.
To overcome this asymmetry inherent to the MG-formula, Bruggeman suggested
another model: It is based on the idea that in an effective medium the average di-
electric displacement field Deff is chosen in such a way that the positive deviation
�Dhigh-ε = Dhigh-ε − Deff from Deff in regions with high dielectric constant is just
compensated by the negative deviation �Dlow-ε = Dlow-ε −Deff in regions with low di-
electric constant. Furthermore it is assumed that the spherical inclusion is surrounded
by an effective medium with the effective constant εeff [Fig. 9.1B]. Based on these
assumptions the following relation is obtained:

f �Dhigh-ε + (1 − f )�Dlow−ε

= f
[
εhighEi − εeffEeff

]+ (1 − f )
[
εlowEi − εeffEeff

]= 0

f

[
εhigh

3εeff

εhigh + 2εeff
Eeff − εeffEeff

]
+ (1 − f )

[
εlow

3εeff

εlow + 2εeff
Eeff − εeffEeff

]
= 0

which is cast in the more familiar form

f
ε1 − εeff

ε1 + 2εeff
+ (1 − f )

ε2 − εeff

ε2 + 2εeff
= 0 (9.9)

The resulting effective dielectric constant has values between the two MG-cases. For
low filling fractions it approaches the MG-case of isolated high index inclusions sur-
rounded by a low index host material while for high filling fractions it approaches the
MG values for isolated low index inclusions in a high index host.
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As both the Maxwell–Garnett and the Bruggeman formulas are based on highly
symmetric inclusions (spheres) and no assumptions on the ordering of the scatterers
are made, both formulas can only describe isotropic effective media in their original
form. For most material systems where the inclusions are arranged randomly this is
sufficiently fulfilled. However, since metamaterials are usually intentionally designed,
reduced symmetries and an intentional ordering of the scattering elements introduce
anisotropic effective dielectric constants. This is discussed in the following section.

9.2.2 Anisotropic effective media

Anisotropies can enter due to the reduction of symmetry in metamaterials. This leads
to different densities of the scattering material along different directions in the meta-
material which can be realized in two different ways:

(a) Regular positioning of highly symmetric scattering elements (e.g. spheres) in a
low symmetry arrangement (e.g. tetragonal or orthorhombic lattice).

(b) Reduction of symmetry of the individual scattering elements and (on average)
uniform orientation of the scattering elements.

Both strategies will be discussed in the following using some examples.

(a) Highly symmetric scattering elements in low symmetry arrangements

The arrangement of the scattering elements in a low symmetry lattice results in a vari-
ation of density of the scatterers along different directions in the “metacrystal”. This
is comparable to the case of atomic crystals where atoms are periodically positioned
in the same lattices and the scatterers in the metacrystal can be viewed as “artificial
atoms”. In analogy to the field of crystal optics the overall anisotropic effective dielec-
tric constant is then described by a second order dielectric tensor (3×3 matrix) leading
to birefringence. Based on this the conventional approach taken with crystal optics can
be applied. As an example for this a photonic bandstructure of a tetragonal lattice with

the lattice vectors

⎛⎝a

0
0

⎞⎠,

⎛⎝0
a

0

⎞⎠, and

⎛⎝ 0
0

1.5a

⎞⎠ formed from dielectric spheres (εi = 12)

is shown in Fig. 9.4A. In this tetragonal lattice the lower two bands are now generally
split and stay only degenerate along the �-Z direction which corresponds to the distin-
guished z-direction of the tetragonal lattice. The lower two bands also exhibit a clear
polarization difference in the field profiles (see insets in Fig. 9.4A). While along the
�-X section of the Brillouin zone (corresponding to x-direction of the real lattice) the
modes of band 1 are strongly y-polarized and the modes of band 2 show a dominating
polarization in the z-direction. These observations from the bandstructure agree well
with the birefringent properties of tetragonal crystals in crystal optics and one can con-
clude that for wavelengths below the onset of Bragg diffraction the structure exhibits
uniaxial anisotropic properties. The z-direction corresponds to the optical axis, which
agrees with the observation that bands 1 and 2 are degenerate along this direction lead-
ing to the same refractive indices for modes of both bands. Along the �-X-direction
(corresponds to x- and y-direction in real lattice) the two different effective refractive
indices nband1−x = nband1−y ≈ 1.41 and nband2−x = nband2−y ≈ 1.27 can be derived
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Figure 9.4 Dispersion relation in a tetragonal lattice of spheres with εi = 12 in air with r/a = 0.45.
(A) Photonic bandstructure showing the splitting of band 1 and 2 in the long wavelength range. The inset
represents the different polarizations of the modes belonging to band 1 and 2 representing ordinary and
extraordinary waves. (B) Equi-frequency contours in the �-A-Z-plane for ωa

2πc
≈ 0.1 exhibiting two shells

(represented by black symbols): outer shell for ordinary waves of band 1, inner shell for extraordinary waves
of band 2. For comparison a contour based on the MG theory is added (red dashed line).

from the gradient of both bands. This corresponds to the refractive indices of ordi-
nary and extraordinary waves along these crystal directions. Along the �-Z direction
a common effective refractive index of nband1−z = nband2−z ≈ 1.41 is derived as ex-
pected from the degeneracy of the bands in this direction and in agreement with the
occurrence of the optical axis along this direction. Based on these numbers the follow-
ing dielectric tensor can be constructed describing the wave propagation in the long
wavelength regime below ωa

2πc
≈ 0.2:⎛⎝εxx 0 0

0 εyy 0
0 0 εzz

⎞⎠=
⎛⎝1.99 0 0

0 1.99 0
0 0 1.61

⎞⎠
where εxx = εyy = n2

band1−z = n2
band2−z = 1.412 and εzz = n2

band2−x = n2
band2−y =

1.272. The equi-frequency contour in the �-A-Z-plane (Fig. 9.4B) taken at ωa
2πc

≈ 0.1
also shows the corresponding split into two shells: an outer circular contour cor-
responding to the wave vector surface of the ordinary wave and an inner elliptical
contour belonging to the extraordinary wave. For comparison, a wavevector contour
based on the Maxwell–Garnett model is included (red dashed line), which forms a
single circle corresponding to an effective index of nMG = 1.32. Since the MG theory
is based on a single scatterer and the arrangement of the scattering elements is not
considered in this theory, the birefringent phenomena due to the tetragonal lattice can
understandably not be captured by this model.

(b) Uniformly aligned low symmetry scattering elements

To obtain low symmetry scattering elements the highly symmetric spheres can e.g.
be deformed into ellipsoids leading, in the extreme cases, to rods or plates. A po-



258 Dielectric Metamaterials

sitional order is not necessary. As long as the deformed elements have on average
the same alignment the resulting dielectric tensor will contain unequal elements. This
situation can be compared to the nematic phase in liquid crystals where the rod-like
molecules are all parallel aligned leading to a uniaxial dielectric tensor. Since this re-
sulting birefringence is caused by the shape, or “form”, of the scattering elements,
the resulting birefringent effect is called form birefringence. Moving away from the
highly symmetric spherical shape complicates the mathematical derivation of the re-
lationship between the inner electric field and the outer electric field of the dielectric
scattering element as it was done to arrive at (9.6) and (9.7). Nevertheless, for ellip-
soidal particles it is analytically still possible [5] and the effects of the shape of the
ellipsoidal scattering element can be represented by the depolarization factors Lx, Ly,
and Lz, which apply when the electric field is aligned with the x-, y-, and z-semiaxes
of the ellipsoid [3]:

Eix,y,z = εex

εex + Lx,y,z(εi − εex)
Eex0 (9.10)

For the derivation of the depolarization factors, in general, elliptical integrals have to
be calculated [5,3] but for the simpler (but relevant) case of rotational ellipsoids, where
two semiaxes have the same length and the ellipsoid exhibits an axis of rotation, two
analytical expressions can be found [6]:

L‖ = 1

1 − ξ2

⎛⎝1 − ξ
arcsin

(√
1 − ξ2

)
√

1 − ξ2

⎞⎠ and

L⊥ = 1

ξ2 − 1

(
1

2

ξ√
ξ2 − 1

ln

(
ξ +√ξ2 − 1

ξ −√ξ2 − 1

))
,

where ξ corresponds to the ratio of the semiaxes ξ = a/b and the semiaxis a is aligned
with the rotational axis of the ellipsoid. The depolarization factors vary between 0
and 1 (Fig. 9.5). For spheres the excentricity ξ is 1 (a = b) and the resulting depo-
larization factors are equal L⊥ = L‖ = 1/3. In this case (9.10) reproduces (9.6). In
the case where the rotational semiaxis a is shorter than b, an oblate ellipsoid occurs,
which leads in the extreme case of a/b = 0 (b → ∞) to L⊥ = 0 and L‖ = 1 for a
laterally infinitely extended disc or layer. For a > b a polar ellipsoid (cigar-shape) is
formed which leads, in the extreme case, to an infinitely elongated circular rod when
a/b = ∞ (a → ∞) resulting in L⊥ = 0.5 and L‖ = 0.

With the help of the now direction dependent Eq. (9.10) the Maxwell–Garnett and
Bruggeman formulas can also be modified leading to direction dependent effective
dielectric constants, where we restrict ourselves again to the most relevant case of
rotational ellipsoidal scattering elements [6]:

MG:
εeff⊥ − εex

L⊥
(
εeff⊥ − εex

)+ εex

= f
εi − εex

εex + L⊥ (εi − εex)
and

εeff‖ − εex

L‖
(
εeff‖ − εex

) = f
εi − εex

εex + L‖ (εi − εex)
(9.11)
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Figure 9.5 Values of the depolarization factors in rotational ellipsoids. For a sphere (a/b = 1) both depo-
larization factors are equal and have a value of 1/3. Reprinted with permission from [6] [Springer Nature].

Bruggeman:

f1
ε1 − εeff⊥

εeff⊥ + L⊥
(
ε1 − εeff⊥

) + (1 − f1)
ε2 − εeff⊥

εeff⊥ + L⊥
(
ε2 − εeff⊥

) = 0 and

f1
ε1 − εeff‖

εeff‖ + L‖
(
ε1 − εeff‖

) + (1 − f1)
ε2 − εeff‖

εeff‖ + L‖
(
ε2 − εeff‖

) = 0 (9.12)

Based on these constitutive relations for the effective dielectric constant parallel and
perpendicular to the rotational axis of the ellipsoids, and assuming that the rotational
axis of all ellipsoidal scattering elements is aligned parallel to z, the dielectric tensor
takes the form⎛⎝εeff⊥ 0 0

0 εeff⊥ 0
0 0 εeff‖

⎞⎠ (9.13)

Interestingly, the principal effective dielectric constant derived from the Bruggeman
Eq. (9.12) under the assumption of a layered medium (L⊥ = 0 and L‖ = 1) takes the
form of the well-known Wiener formulas:

1

εeff‖
= f

ε1
+ 1 − f

ε2
and (9.14)

εeff⊥ = f ε1 + (1 − f )ε2

These are analytically exact solutions in the quasi-static case for a multilayer structure
and can be directly obtained from the continuity conditions of the E- and D-field
across plane interfaces or considering a serial or parallel capacitor model. The Wiener
formulas also represent the most extreme values the effective dielectric constants can
reach for a given set of constituting materials with ε1 and ε2 and fill factor f and are
therefore also referred to as “Wiener bounds”. This is already shown in Fig. 9.2, where
Maxwell–Garnett and Bruggeman effective constants have values between the two
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Wiener bounds (black curves). The construction of a layered metamaterial consisting
of two constituent materials with a strong dielectric contrast is therefore a simple
strategy to achieve a strong form birefringence with large absolute values of �n =
ne − n0 = √

εeff‖ − √
εeff⊥, where no is the refractive index of the ordinary wave

and ne the minimum refractive index of the extraordinary wave. Since for a layered
arrangement ne < n0

(
εeff‖ < εeff⊥

)
, the layered metamaterial exhibits the birefringent

properties of a negative uniaxial material.
The opposite case of extreme positive form birefringence can be obtained when an

ensemble of parallel aligned infinitely long rods is considered. In this case the optical
axis is aligned with the axis of the cylindrical rods (z-axis) and with L‖ = 0 it follows:

εeff‖ = f ε1 + (1 − f )ε2 (9.15)

This can also be derived from the continuity conditions for the E- and D- field when
they are aligned along z and therefore parallel to the surface of the cylindrical rods.
εeff⊥ in the long wavelength range can be obtained from the Maxwell–Garnett equation
(9.11) assuming L⊥ = 0.5:

εeff⊥ = εex + εex2f
εi − εex

εi + εex − f (εi − εex)
(9.16)

An example of a square arrangement of circular rods is shown in Fig. 9.6. The pho-
tonic bandstructure shows a clear splitting of bands 1 and 2, corresponding to the
extraordinary and ordinary waves, respectively. Due to the homogeneity of the struc-
ture along z (infinitely extended rods) the polarization of the waves propagating within
the �-X-M-�-plane (xy-plane) is split into TE and TM polarized waves represented
by the red and blue photonic bands in the left section of the bandstructure in Fig. 9.6A.
For propagation within the xy-plane this also shows, that the extraordinary waves be-
longing to band 1 (blue) are purely TM-polarized and the ordinary waves belonging
to band 2 (red) are TE-polarized. Since the optical axis of the structure corresponds
to the z-axis, the extreme values of the refractive index, ne = 1.57 and no = 1.12, are
obtained for waves traveling in the xy-plane. This correspondence of photonic band-
structures with concepts of crystal optics is supported by the equi-frequency contours
taken for ωa/(2πc) = 0.1 in Fig. 9.6B. The two shells represent the k-values of bands
1 (blue symbols) and bands 2 (red symbols) in the �-A-Z-plane. They show a very
good agreement with the calculated values using the dispersion relation of ordinary

(k2
x + k2

y + k2
z = εeff⊥ ω

c
) and extraordinary waves (

k2
x+k2

y

εeff‖ + k2
z

εeff⊥ = ω
c

) with εeff⊥ and
εeff‖ coming from (9.16) and (9.15).

This demonstrates that in the long wavelength regime the effect of form birefrin-
gence can be well modeled by effective-medium concepts which take into account
the specific shape of the scattering elements. This leads to a dielectric permittivity
tensor, and using the concepts of crystal optics, allows the dispersion relation for ex-
traordinary and ordinary waves to be extracted. Overall, this opens the possibility of
determining the refractive index for polarized waves traveling along different direc-
tions.
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Figure 9.6 Dispersion relation for a square array of cylinders with εi = 12 in air with r/a = 0.2. (A) Pho-
tonic bandstructure. The left section �-X-M-� corresponds to the wave propagation perpendicular to
the cylinder axis and agrees with the well-known photonic bandstructure of 2D photonic crystals which
separates in TE-polarized modes (solid red) and TM-polarized modes (solid blue). For comparison the
effective-medium approximations for both polarizations (TE, dashed red; TM dashed blue) according to
(9.16) and (9.15) are shown. (B) Equi-frequency contours in the �-A-Z-plane for ωa

2πc
≈ 0.1 exhibiting two

shells (represented by red and blue symbols): outer (blue) shell for extraordinary waves of band 1, inner
shell of ordinary waves of band 2. For comparison the equi-frequency contours resulting from the dielectric
tensor with the components εeff⊥ and εeff‖ from (9.16) and (9.15) are shown (red and blue lines).

9.2.3 Effective media beyond the quasi-static approximation

The assumption of a homogeneous external field surrounding the inclusions in the
MG and Bruggeman formulas neglects the external dipole field from the inclusions.
Furthermore, the restriction on spherical particles in the original MG and Brugge-
man formulas often does not match the geometries used in experimental systems.
Researchers have tried to find effective-medium formulas which better match spe-
cific cases and several of them can be considered as power law models described by
Lichtenecker’s mixture formula [7], where

ε
β

eff = f ε
β

1 + (1 − f )f ε
β

2

Several different values have been considered for the exponent β. For β = 1/3 the
well-known Looyenga formula follows and β = 1/2 results in a simple averaging of
the refractive indices [3]. The exponent β can in principal vary between −1 and +1
where for the extreme cases of β = −1 or β = +1 the Wiener bounds from (9.14)
are reproduced. The ambiguity of the exponent β is the result of shape variations of
the inclusions. For a mixture of cigar-shaped and oblate-shaped inclusions a mix of
different depolarization factors occurs, so that a certain β-exponent between −1 and
+1 can be found to fit the experimental data. This was applied in the investigation of
various soils containing differently shaped inclusions [7].

However, all these effective-medium formulas still assume quasi-static fields,
where the wavelength is considered infinite compared to the size of the structure.
However, in most metamaterials the scattering elements (inclusions) are not much
smaller than the wavelength and for wavelengths approaching the onset of Bragg
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diffraction the electric field varies markedly within a cell containing the scattering
element and the surrounding media (see e.g. the field plot in Fig. 9.4). An approach
by Alu [8] incorporates the phase factor eik·r in the averaging integral leading to
Eeff = 1

V

∫
E(r)eik·rdr3 and P eff = 1

V

∫
P (r)eik·rdr3. This approach takes into ac-

count that in an effective medium the wave will travel with a single dominating
wavevector k, which is included in the phase factor eik·r in the integral. In the last
integral eik·r is developed into a Taylor series resulting in a multipole development of
P eff. A similar treatment is also applied to H eff and Meff. Applying Maxwell’s equa-
tions for ∇ × E and ∇ × H and rearranging the multipole terms results in new forms
of averaged Eav, Hav, Dav, and Bav fields, which include contributions of several mul-
tipole terms from P and M. Even when keeping only the low-order dipolar terms of the
P and M expansion the resulting newly defined averaged fields contain a magnetoelec-
tric coupling where, for example, Bav contains a contribution from a magnetic dipole
moment ME which is created by a circular electric polarization (ME ∼ ∫ r×P (r)

2 dr).
From such terms the artificially created magnetic response in high index dielectric
Mie-resonant elements is derived. This treatment leads to newly defined versions of
εeff (k) and μeff (k) which depend on the wavenumber k and therefore contain a weak
spatial dispersion. Due to their wavenumber dependence they are non-local constants.
Using these new versions for εeff (k) and μeff (k) the appearance of unphysical val-
ues for the effective parameters retrieved from experiments (see section 9.3) can be
avoided [8]. To take higher-order forms of spatial dispersion into account Mnasri et al.
considered up to four orders in an expansion of the D-field with respect to the E-field
[9]. In addition, new interface conditions for the coupling of external plane waves to
the metamaterial exhibiting non-local effective parameters had to be derived leading
to alternative versions of Fresnel’s equations. For the very long wavelength regime,
where the wavelength is several times larger than the period or size of the scattering
elements, the aforementioned advanced homogenization schemes lead to the local pa-
rameters attained, for example, from the Maxwell–Garnett effective-medium theory.
For wavelengths shorter than the Bragg condition they also become inaccurate, so they
are mainly useful in describing the effective parameters close to the resonances espe-
cially when high index Mie-resonant particles play a role. In the non-resonant case
considered here, the simple effective-medium formulas are usually sufficient to gain a
reasonable approximation. For exact simulations of underlying modes and wave prop-
agation, plane-wave expansion methods (for periodic metamaterials) or finite element
calculations have to be employed.

9.3 Experimental observation – retrieval methods of
effective parameters

While in theory the effective dielectric constants can be derived from the shape of
the scattering elements and their arrangement applying the aforementioned homoge-
nization techniques for the local electric and magnetic fields inside the metamaterial,
in experiments this is usually not possible. In addition, for experiments and applica-
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tions the interaction of metamaterials with incident and transmitted waves is of much
greater importance. The question of what dielectric constants a metamaterial exhibits
is therefore only used as a simple way of describing the interaction of light with it
and aims to allow simple predictions of amplitude and phase of transmitted and re-
flected waves. In this picture the metamaterial is just replaced by an effective material
of the same outer geometric dimensions exhibiting a (possibly anisotropic) effective
permeability and permittivity. The expected reflected and transmitted waves can then
be obtained from the Fresnel formulas using the effective permeability and permittiv-
ity. On the other hand, the measurements of reflection and transmission coefficients
can be applied to derive or retrieve the effective constants of the metamaterial [10].
In the literature this experimental retrieval of the effective parameters is almost ex-
clusively used and known as the scattering parameter technique. While this concept
usually works well in the extreme long wavelength regime, at shorter wavelengths –
where a/λ approaches the Bragg condition – special care has to be taken.

It is obvious, that in cases where spatial dispersion appears and ε and/or μ de-
pend on the wavevector (and with this also on the direction of propagation of the
light through the metamaterial), a single dielectric constant cannot be defined. For the
coupling of external light to the light propagating inside a spatially dispersive meta-
material more complicated interface conditions as e.g. discussed in [9] have to be
applied or numerical solutions have to be found. However, several other effects also
become important for larger a/λ ratios which are connected with the “granularity”
of the metamaterial [Fig. 9.7]. Since the metamaterial ends at its surface or interface
with another region, the local density of the elements at the surface/interface is dif-
ferent from inside the metamaterial. This influences the local field distribution so that
the condition inside the metamaterial cannot be simply applied to the surface. This
becomes clear when the two different surface regions marked by gray bars in Fig. 9.7
are considered. While in the bottom high symmetry surface layer the same density of
elements appears as in the bulk of the metamaterial, the obliquely cut upper interface
(S2) exhibits a step-like shape and the corresponding interface layer contains consid-
erably less scattering elements. This has an impact on the surface impedance which
can be connected to these two different surface layers and which is different from the
bulk impedance, which is connected with the inside region of the metamaterial. In the
retrieval procedure therefore the surface impedances from the surface layers would
have to be taken into account [11]. Furthermore due to the inherent granularity of the
metamaterial at obliquely cut surfaces (S2 in Fig. 9.7) a step grating can occur. Since
the apparent surface period aS2 can be considerably larger than the inherent lattice
period a in a metamaterial and the step height produces for an incidence wave a non-
negligible phase difference between the steps, diffraction can occur from the surface
which is normally frustrated inside the metamaterial. The energy which is channeled
into diffracted orders is then missing from the transmitted or reflected beams, so that
a retrieval procedure, which is only based on the absolute values of zero-order reflec-
tion and transmission coefficients will necessarily derive incorrect values for ε and μ.
In addition scattering losses due to roughness of fabricated elements complicate the
accurate determination of absolute values of reflection and transmission coefficients.
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Figure 9.7 Sketch of a metamaterial highlighting the different applicable element densities and lattice
constants near differently cut surfaces.

Therefore, in the following section a method is presented which can be used to ex-
perimentally derive the group velocity or group index. Assuming negligible dispersion
in the long wavelength regime the refractive (phase) index can also be determined. The
technique is based on the spectroscopic measurement of normal incidence transmis-
sion or reflection from a metamaterial slab. When the light is incident on the slab
the multiple reflections from the top and bottom interface of the metamaterial lead
to Fabry–Pérot oscillations in the transmission spectrum. The condition for the ap-
pearance of a maximum in transmission is πm = kmd , where the number m is the
order of the Fabry–Pérot resonance and d is the geometric thickness of the metama-
terial. The wavenumber km describes the wavenumber inside the metamaterial and
thus incorporates the effective refractive index into the model. From the difference in
the conditions for resonances m and m + 1 one obtains the equi-distant spacing of
the resonances in k-space of the material �k = d

π
. As the spectral difference of the

transmission maxima �ω can be measured, the group velocity can be determined via

vg = dω

dk
≈ �ω

�k
= π

d
�ω (9.17)

When a constant effective refractive index neff can be assumed (e.g. in the long wave-
length regime) neff can also be obtained from (9.17): neff = c

vp
≈ c

vg
.

This analysis was carried out for a macroporous silicon photonic crystal in the
long wavelength range [Fig. 9.8]. In the transmission spectrum for light propagat-
ing along the pores, whose diameter is modulated periodically with pore depth (see
the inset SEM image), two spectral ranges (500–1150 cm−1 and 1400–2250 cm−1)
with Fabry–Pérot oscillations occur and are separated by a region of zero transmis-
sion which corresponds to the stop band caused by the periodic diameter modulations
of the pores. From the bandstructure along the pores (�-A-direction) it can be seen
that below and above the stop band only a single band exists which can transmit light.
Determining the maxima of the Fabry–Pérot oscillations from the spectra (indicated
by horizontal blue dashed lines) and using (9.17) the absolute value of the group ve-
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Figure 9.8 Determination of group velocity based on Fabry–Pérot oscillations in transmission applied
to a macroporous Si photonic crystal in the long wavelength range. The small insets show an SEM cross
section of the macroporous Si structure revealing the periodic modulation of pore diameter with pore depth
and a sketch of the corresponding hexagonal Brillouin zone indicating the �-A-direction. On the right the
modeled group velocity (solid black) and the experimentally determined group velocity (red markers) in
frequency ranges above and below the stop band are compared.

locity for the band below, and even above, the stop gap is determined [Fig. 9.8 (right)].
Comparing the experimentally determined values (red dots) with values obtained from
bandstructure calculations (solid lines) a good correspondence is obtained. Even the
drop of group velocity close to the band gap due to the increased band bending can
be observed. The vertical red dashed lines in Fig. 9.8 represent the projection of the
Fabry–Pérot resonances onto k-space and, as expected, a constant spacing �k exists.
In the long wavelength regime below about 900 cm−1 a nearly constant effective re-
fractive index of about 2.2 is found.

The method is much less affected by losses as the determination of the group veloc-
ity, and possibly the effective refractive index at long wavelengths, is only dependent
on the accurate extraction of the spectral position of the Fabry–Pérot maxima from
the transmission spectra. As the technique is an interference technique it measures the
transmission phase which is directly dependent on the bulk effective refractive index.
The impact of possible surface layers is reduced, especially for thick metamaterial
samples. This method can be extended by measuring the transmission at different
angles of incidence resulting in spectral shifts of the Fabry–Pérot oscillations with
increasing angles of incidence. An evaluation of these shifts was also used to experi-
mentally map the equi-frequency surfaces of hyperbolic metamaterials [12,13].

A related method, which is also based on the propagation phase, which the light
picks up when passing through the metamaterial, can be used to determine the bire-
fringence, �n = ne − n0, of an anisotropic metamaterial. For this purpose, the light
has to propagate in a uniaxial metamaterial perpendicular to the optical axis so that the
extraordinary beam and the ordinary beam propagate along the same direction through
the metamaterial. Depending on the thickness, d , of the metamaterial both waves ob-
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Figure 9.9 Experimental determination of the birefringence in the long wavelength regime of a 2D macro-
porous silicon photonic crystal. Left: Transmission perpendicular to the pore axis with parallel (solid curve)
and crossed polarizers (dotted curve). Right: variation of the birefringence in the long wavelength regime
reaching a maximum of �n = 0.36 close to the Bragg band gap. Reproduced with permission from [14],
© IOP Publishing, All rights reserved.

tain then a relative phase difference, �ϕ = �nk0d = �nω
c
d , after penetrating the

metamaterial. To excite both ordinary and extraordinary waves, the incident light is
usually polarized 45° with respect to the optical axis. Another polarizer is placed be-
hind the sample which can be aligned parallel or crossed to the one on the incident
side. When �ϕ = 2πm ordinary and extraordinary beam are in phase and for parallel
polarizers a maximum in transmission is realized while for crossed polarizers a mini-
mum in transmission is realized. On the other hand when �ϕ = (2m+1)π both beams
have opposite phase resulting in a 90° polarization flip of the superimposed light wave
and an intensity minimum for parallel polarizers, and a maximum for crossed ones,
is achieved. Determining the light frequencies of neighboring maxima and minima
(ωm and ωm+1) then allows one to derive �n via δ (�ϕ) = π = �nd

c
(ωm+1 − ωm)

assuming a piece-wise constant �n.
The method was applied to determine the birefringence in a 2D macroporous sil-

icon photonic crystal [14]. The light was transmitted perpendicular to the straight
pores and the polarizer on the incident side was aligned 45° with respect to the pore
axis (optical axis) as outlined above. The measured anticyclical oscillating behavior
of transmission for parallel and crossed polarizers is shown in Fig. 9.9 (left). From
the spectral positions of the minima and maxima the birefringence was determined
as described in Fig. 9.9 (right). The observed birefringence lies above 0.3, reaching
a maximum of 0.36 close to the Bragg gap. Thus, it is a factor 43 higher than for
usual quartz crystals. This impressively shows the strong anisotropy which can be
obtained in structures exhibiting form birefringence. Form birefringent metamaterials
consisting of high index contrast materials can therefore be employed in polarization-
sensitive phase shifting devices and wave plates.
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9.4 Spatial variation of effective dielectric constant –
graded index (GRIN) photonics

The ability to control the refractive index locally over a larger range became especially
important with the advent of transformation optics, which provides a mathematical
technique to derive a suitable GRIN-profile to achieve a desired arbitrary light path
based on a coordinate transformation (mapping) of light propagation in a virtual space.
In this approach controlling the refractive-index landscape using a GRIN-material al-
lows molding the flow of light. Although this method provides a quite universal tool
to arrive at a permeability μ and permittivity ε landscape, which would warrant the
desired ray propagation, some of these theoretically derived ε and μ distributions are
difficult or impossible to realize – especially when they involve extreme, complex or
extremely anisotropic values of ε or μ. These complications are partially alleviated
when only the propagation within a plane (2D) is investigated and several devices
have been realized employing GRIN-structures e.g. in a silicon-on-insulator (SOI)
waveguide layer geometry [15–24]. In addition, the designed 2D nanostructures can
be fabricated in a relatively straightforward fashion by applying established lithogra-
phy and plasma etching techniques. In the following, several examples of devices are
described which are based on GRIN-structures. They are grouped together according
to their number of structured spatial dimensions and light propagation direction.

(a) Metasurfaces – 2D structures, light propagation perpendicular to plane
Metasurfaces are 2D planar structures exhibiting tailored reflection and transmis-

sion properties for light which is normally incident on them. They are often used to
imprint a specific locally varying phase landscape onto the incident beam. A straight-
forward approach to achieve this position dependent phase control is based on the
acquisition of propagation phase upon transmittance through a dielectric layer with a
space-variant refractive index. This can be achieved by nanostructuring a silicon film
on a deep-subwavelength scale, yielding effective refractive-index values, depending
on the local silicon filling fraction. In contrast to conventional diffractive optical el-
ements, which require control of the local film thickness, this concept allows for the
realization of a range of phase values with a single lithographic step. A simple ex-
ample for this approach is the fabrication of effective-index phase gratings where the
fill factor varies gradually within each period of the grating resulting in a gradual
effective-index change within each period [Fig. 9.10A] [25]. This imprints a periodic
variation of the phase on the transmitted wave and leads to an efficient first-order
diffraction similar to a blazed grating. However, contrary to a blazed grating which
involves the accurate generation of a sloped subwavelength profile the effective-index
grating involves only a single lithography and etch step. Various functional optical
devices were realized along these lines, including focusing lenses for visible, near-
infrared and THz radiation based on silicon posts or subwavelength hole arrays in
silicon slabs with spatially varying density or radii [26,27]. These structures were al-
ready covered extensively in Chapter 6 with a brief summary provided here.

However, the anisotropy of the effective refractive index of designed elements can
also be employed to achieve locally varying phase changes and as a result also com-



268 Dielectric Metamaterials

Figure 9.10 Non-resonant metasurfaces (A) Scanning-electron micrograph (SEM) of a highly efficient
grating for satellite applications utilizing the effective-medium concept. Reprinted with permission from
[25]. (B) SEM image of a blazed grating realized by silicon metasurfaces imprinting a space-variant geo-
metric phase. From [29], reprinted with permission from AAAS. (C) SEM (left) as well as the simulated and
measured generated images for horizontal and vertical linear polarization of a polarization-sensitive silicon
metasurface hologram consisting of silicon posts with spatially varying elliptical cross section. Reprinted
with permission from [33].

plete changes of polarization. An interesting example of how this can be used to create
quite complex phase landscapes with a photonic metasurface relies on the acquisition
of Pancharatnam–Berry phase, a geometric phase originating from space-variant po-
larization manipulations [28–30]. This can be accomplished by tiling a surface with
wave plate elements for which the orientation of the fast axes depends on the in-plane
position [Fig. 9.10B]. Such elements can be realized by silicon nanobeams [29] or
nanofins [30] with space-variant orientations (see Fig. 9.10B). For example, an ar-
rangement of half-wave plates with their fast axes orientations following a function
θ(x, y), will transform an incident circularly polarized light beam to a beam of op-
posite helicity and imprinted with a geometric phase equal to φg(x, y) = ±2θ(x, y).
A sizable geometric phase can be achieved when the elements, which are used to
create the local half-wave plates (e.g. aligned rods), exhibit a Mie resonance for one
polarization leading to an enhanced phase shift for this polarization [29].

A method related to the effective-index approach is transmission through planar
arrangements of high-aspect-ratio silicon posts, as it also depends on the acquisi-
tion of a spatially varying propagation phase [31]. This concept was demonstrated
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in nanostructured TiO2 films in the 1990s [32]. For appropriately chosen feature sizes,
such posts function as upright-standing waveguides, with the lateral dimensions of
the waveguides determining the propagation constant and its finite vertical dimen-
sions introducing low-quality-factor Fabry–Pérot resonator behavior and allowing for
high transmittance efficiency. Elliptically shaped cross sections allow for simultaneous
control of both phase and polarization, thereby enabling the realization of polarization-
sensitive devices and the generation of arbitrary vector beams [Fig. 9.10C] [33].

Besides the prospect of replacing bulky optical components by ultra-flat optical
devices, one of the main driving factors for metasurfaces is the capability of combining
several functionalities in a single structure. For instance, wavefront shaping devices
can at the same time control the polarization, or be polarization-selective, owing to the
capability of generating any desired spatially varying polarization and phase profiles
by a silicon metasurface [33,30].

(b) 2D structures, light propagation within the plane

The graded index concept can also be employed to control the propagation of light
within the structured plane. When the structured layer exhibits an effective index
which is higher than the surroundings above and below, the light is confined by to-
tal internal reflection to it, forming a horizontal waveguiding layer. Several gradient
index metamaterials have been realized by employing SOI-substrates as the material
platform. There are two basic strategies to design an effective refractive-index varia-
tion by varying the local filling fraction within the plane:

(1) Varying the distances between the structural building blocks (e.g. high index
rods/ low index pores) but leaving the size of the scattering elements constant,

(2) varying the size of the scattering elements (e.g. their diameter) but enforcing a
locally regular/periodic placement of elements.

The first strategy was realized using a dithering technique (Fig. 9.11A, B) [22]. For
this purpose the continuously varying (“gray-scale”) index map has to be digitized
in a density map of individual scatterers varying the distance between the scatter-
ers. This leads to arrangements which are locally reminiscent of QR-codes. However,
the dithered structures also exhibit scattering losses due to the irregular placement
of the scatterers. To minimize these scattering losses, the second strategy – using the
periodic placement of scatterers – is advantageous. Due to the local subwavelength pe-
riodic (crystalline) grid of scatterers diffraction is frustrated [35] and scattering losses
are lowered. To achieve a variation in effective index the strength of each scatterer is
controlled (e.g. by adapting the width of individual rods/pores). Using a hexagonal
arrangement of rods/pores the maximum range of effective refractive indices can be
realized [18]. Periodic 2D arrangements of silicon rods or pores were e.g. used to real-
ize carpet cloaks [Fig. 9.11C] [23] or an optical “Janus” device, which allows different
functionalities in two directions perpendicular to each other [20]. Furthermore, a pla-
nar Lüneburg lens, which focuses an horizontally propagating extended wave onto a
spot at the opposite rim of the circular planar lens area, was developed [18].

Although the characteristic structure sizes are small enough so that Mie or Bragg
resonances do not play a role, dispersion is still observable in these planar SOI-based
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Figure 9.11 2D planar GRIN-structures for in-plane propagation. (A) Digitization of a continuous index
map (left) to irregular arrangements of individual Si-posts using a dithering technique. Reproduced with
permission from [22], © IOP Publishing, All rights reserved. The local effective index depends on the lo-
cal density of the scatterers. (B) SEM-Detail of a carpet cloak based on the dithering technique. Reprinted
with permission from [21]. (C) SEM-detail of a similar carpet cloak based on periodically arranged rods,
where the effective index is controlled by locally adjusting the diameter of the rods leading to lower Raleigh
scattering losses. Reprinted with permission from [23]. (D) Left: SEM image of a compact and broadband
on-chip waveguide demultiplexer as an example of a free-form metamaterial device, whose structure was
determined by an inverse-design computer algorithm. Reprinted with permission from [34]. Right: the op-
eration of the splitter was observed for the wavelengths 1300 nm and 1550 nm.

structures, as the finite height of the building blocks introduces horizontal waveg-
uide dispersion to the structures. This becomes crucial when longer wavelengths (e.g.
λ > 1550 nm) are considered, which lie beyond the cut-off of the horizontal waveg-
uide mode and therefore lead to substantial radiation losses [23]. On the other hand
this waveguide dispersion can be used intentionally to create a smoothly varying ef-
fective refractive index within the plane by locally controlling the thickness (height)
of the waveguide layer. Using a gray scale mask for etching, a Lüneburg lens was
implemented by a continuously varying index profile [17].

(c) Subwavelength structured waveguides – 1D structured, light propagation
along waveguide

Besides the use of 2D metamaterial slabs for full scale planar transformation optic
devices, periodic subwavelength sized structures were also used in simpler geome-
tries. A chain of 300 nm wide and 150 nm thick Si-posts with a period of 300 nm
was prepared from SOI-substrates and represents a subwavelength grating waveguide
(SWG) [Fig. 9.12A]. Since the period is below the onset of Bragg diffraction, the
waveguide exhibits an effective mode index in the NIR which depends on the duty
cycle of the posts. This provides a convenient way to adjust the effective index of the
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Figure 9.12 Subwavelength structured waveguides (A) Subwavelength grating waveguide consisting of
a 1D periodic array of silicon blocks with periods below the onset of Bragg diffraction. Reprinted with
permission from [36]. (B) Subwavelength grating waveguide taper with a gradual variation of effective
waveguide core index. Reprinted with permission from [37]. (C) Broadband beamsplitter based on multi-
mode subwavelength grating waveguide. Reprinted with permission from [38]. (D) Field confinement in an
E-skid waveguide with anisotropic cladding showing enhanced electric field confinement compared with
a classic strip waveguide. Reprinted with permission from [39]. (E) Investigation of total internal reflec-
tion from layered anisotropic metamaterial. Dependence of critical angle of total reflection on polarization
(right). Reprinted with permission from [39].

waveguide core by controlling the duty cycle (filling factor) and forms the key char-
acteristic of these waveguides which can be exploited for several applications. Low
duty cycles (large air gaps) lead to smaller mode indices resulting in extended mode
profiles which can be matched better to the large mode profiles of fibers allowing a
more efficient but coupling. Increasing the duty cycle (smaller air gaps and gradual
introduction of solid core) increases the effective mode index resulting in a gradually
stronger mode confinement [Fig. 9.12B] [37]. Waveguide tapers for improved fiber
– chip coupling can be designed in this way [38,40,41]. Since the waveguide corre-
sponds to a layered (stratified) effective medium along the propagation direction the
Wiener equations (9.14) can be applied as a first approximation to calculate an effec-
tive dielectric constant along the z-direction (propagation direction) and perpendicular
to it [38]. For the waveguide propagation along z one would therefore be tempted to
conclude an effective index of nzz = √

εeff‖. However, due to the confinement of the
light to the waveguide by total internal reflection the wave also has a field component
along the propagation direction (Ez), so that the mode index is actually a mixture of
nzz = √

εeff‖ and nxx = √
εeff⊥. To obtain the exact mode indices a full 3D simula-

tion has to be performed. This was used to obtain broadband beamsplitter operation
employing a multimode SWG section [Fig. 9.12C]. Here the incoming wave in one
port excites two or more modes of the central broad multimode SWG section which
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propagate with different individual propagation constants β1 and β2. The beat length
between the modes Lπ (which is important for the transfer of “images” of the incom-

ing mode to the exit port) depends on the ratio of
n2

zz

nxx
: Lπ ≈ 4W 2

3λ

n2
zz

nxx
, where W is the

waveguide width. Due to nzz < nxx a short beating length results. Furthermore the
normal dispersion nzz and nxx compensate the influence of λ on Lπ partially lead-
ing to a weak overall dispersion of Lπ [38]. In addition a low 2,1 dB/cm loss of the
waveguides was observed, which is comparable to usual silicon-strip waveguides [36]
and mode converters [35]. Furthermore, waveguide crossings with low cross-talk and
only minimal loss were created [42].

Another subwavelength structured waveguide geometry consists of a solid core
and has a layered subwavelength cladding [Fig. 9.12D] [39]. The cladding acts as an
anisotropic layered metamaterial whose effective dielectric properties can again be ap-
proximated by the Wiener formulas (9.14). However, now the optical axis of uniaxial
metamaterial is oriented perpendicular to the propagation direction. For the geometry
shown in the inset of [Fig. 9.12D] and TE-like waveguide modes a faster evanescent
decay of the electric mode field than in air can be obtained resulting in a consid-
erably better mode confinement. This unusual property is connected with the TE-like
modes, which couple to the extraordinary waves of the anisotropic cladding which has
a ratio

εeff⊥
εeff‖ > 1. This can be understood by considering the geometry of [Fig. 9.12E,

left]. When a p-polarized wave (corresponds to TE-like wave in waveguide) from the
isotropic material with refractive index n 1 (represented by the top hemisphere) is in-
cident on the subwavelength multilayer metamaterial with effective dielectric tensor⎛⎝ε2x 0 0

0 ε2y 0
0 0 ε2z

⎞⎠, where ε2z = ε2y = εeff⊥ and ε2x = εeff‖, it couples to the extraor-

dinary waves with the dispersion relation,

kx =
√

εeff⊥k2
0 − εeff⊥

εeff‖

(
k2
y + k2

z

)
(9.18)

The critical angle of total reflection θc then occurs for kx = 0 and with k2
y + k2

z =
(sin θc n1k0)

2 the critical angle becomes θc = arcsin
(√

εeff‖
n1

)
. Therefore, as long as

εeff‖ < n2
1 total internal reflection can occur. Interestingly this condition does not

include εeff⊥ and thus εeff⊥ can be much larger than n2
1 and the condition of total

internal reflection can still be fulfilled. This offers considerable design freedom and
leads to the observed faster evanescent decay. With (9.18) kx takes the imaginary val-

ues kx = i
√

εeff⊥
εeff‖ (sin θn1k0)

2 − εeff⊥k2
0 for angles of incidence θ , which are larger

than θc. This has to be compared to the case of a classic isotropic cladding material

with ε2 = n2
2 < n2

1, where kx = i

√
(sin θ n1k0)

2 − ε2k
2
0. For layered metamaterials the

Wiener formulas result in εeff⊥ > εeff‖ (see also Fig. 9.3), so that
εeff⊥
εeff‖ > 1 results in

a faster rise of the imaginary values of kx for the anisotropic cladding than for an
isotropic one. For anisotropic metamaterials consisting of layers with vastly different
dielectric constants the ratio

εeff⊥
εeff‖ can become quite prominent leading to a strongly
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reduced skin depth of the evanescent field, reduced cross-talk between neighboring
waveguides and three times reduced bending losses [39].

Further reviews of subwavelength structured waveguides for refractive index en-
gineering in silicon photonics including fully etched, broadband grating couplers as
well as directive and multimode interference couplers can be found in [43] and [44].

Apart from these analytical design strategies, different numerical algorithms have
been developed, which allow a computer to design and optimize free-form metama-
terial structures to fulfill specific purposes. These algorithms are based on an inverse-
design strategy, where the desired functionality enters the algorithm as an input. In
this way compact, on-chip integrated mode converters [45], waveguide splitters [46],
broadband wavelength demultiplexers [34] and polarization beam-splitters [47] have
been demonstrated.

(d) 3D dielectric metamaterial

Due to the aforementioned fabrication difficulties, the creation of deliberately de-
signed highly controlled metamaterials is mostly limited to 2D planar structures. An
exception are the three-dimensional invisibility cloaks created by direct laser writing
by Wegener et al. [48,49]. Here, a woodpile structure based on a polymer is created
using two-photon polymerization by a highly focused laser. Applying a stimulated-
emission-depletion (STED)-inspired technique the rod spacing in the woodpile struc-
ture can be reduced from a = 800 nm down to a = 350 nm [49]. The wavelength
ranges for which cloaking is observed are in the mid-IR for the larger, and in the
visible, for the smaller rod spacing. In both cases the woodpile structure operates at
frequencies below the photonic bandgap, so that an effective refractive index can be
assigned. Adjusting the volume filling fraction of the woodpile structure around a
bump in a gold surface allows one to tune the effective refractive index from about
n = 1.5 close to the bump to about n = 1.1 about 5 µm away. Due to this effective in-
dex profile the bump is hidden in bright and dark field microscopic images even when
unpolarized, relatively broadband, light is incident under a wide range of angles.

Apart from these highly controlled structures the concept of 3D-GRIN-structures
can also be applied to thick self- or disordered 3D structured layers, which can natu-
rally form during specific deposition or etching processes. Avoiding reflection losses
are an important topic in many optical applications, such as photovoltaics, lighting,
and imaging. In solar cells reflection has to be reduced to a minimum to couple as
much sun light as possible into the absorber material for a maximal photo current
[50]. A conventional approach to reduce reflection between two materials, for exam-
ple air (or an encapsulation material) and silicon, in silicon solar cell, is the deposition
of a dielectric planar thin film at the interface. This coating should have a thickness of
λ/4 so that the light wave reflected from the top interface of the coating and the wave
reflected from the bottom interface interfere destructively, ideally resulting in R = 0
for a particular design wavelength λdes. Fig. 9.13A shows the reflectance of such an
AR coating applied to an air/silicon interface (violet line). Compared to the bare in-
terface (gray dashed line), the average reflection is reduced considerably from 35.6%
down to 11.0% for the wavelength range of 350 to 1100 nm.



274 Dielectric Metamaterials

Figure 9.13 (A) Reflection of a planar air/silicon interface with different refractive index profiles at the
interface under normal light incidence. The considered profiles (for free space wavelength λ = 700 nm) are
depicted in (B): The bare air/silicon interface, a 70 nm thick coating with constant refractive index of n = 2,
a linear, and a quintic profile (both 750 nm thick). For silicon, the refractive index has been taken from
Green.

A drawback of these types of AR coatings is that they only minimize reflection
for a particular wavelength. Additionally, their performance is strongly dependent on
the angle of incidence. This is particularly a drawback for solar cells since the solar
irradiation is spectrally broadband and its angle of incidence changes during the course
of the day.

Much better AR performance is possible by a coating with a refractive index that
gradually changes from the refractive index of the one medium to the refractive index
of the other medium. Due to avoidance of abrupt changes of the refractive index, Fres-
nel reflections are strongly reduced. As Fresnel reflection depends on the difference of
the refractive indices of two adjacent media, R = (n2 − n1)

2/(n2 + n1)
2, a layer with

a gradient refractive index can be considered as a sequence of many sublayers with
very little reflection. Vanishing light reflection, R = 0, can only be achieved by an in-
finite graded index layer. However, gradient layers with thicknesses in the range of the
wavelength of the incoming light already perform much better than the conventional
AR coatings with regard to the value of reflection, spectral bandwidth, and angular
sensitivity [51].

The reflectance of a gradient index layer with a linear profile is plotted in Fig. 9.13A
(orange line). Compared to a conventional AR coating the reflectance is significantly
lowered over the whole spectrum to values between 0.5% and 1.6% – the averaged
reflectance over the shown spectral range is 1.0%. This can even be further lowered
by using other profiles, such as a quintic profile that has a continuous first and second
derivative and is considered to perform best regarding AR [51]. For the quintic profile,
the averaged reflectance is as low as 0.4% (black line in Fig. 9.13A). For comparison,
in Fig. 9.13B the refractive-index profiles of the bare air/silicon interface, the one layer
AR coating, and the linear and the quantic graded index layers are shown.

Realizing such a gradient refractive-index profile with a homogeneous material is
impossible due to the lack of materials that provide the whole range of different refrac-
tive indices needed. However, structures exist that allow for such gradient refractive-
index profiles. These structures are essentially porous on length scales smaller than the
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Figure 9.14 (A) Scanning electron micrograph of a typical black silicon interface fabricated by reactive
ion etching. (B) Measured absorption of a bare silicon wafer (blue line) and a black silicon wafer (green
line). Thickness of the wafers is 250 µm.

Figure 9.15 (A) Experimentally determined filling fraction of a typical black silicon interface fabricated
by reactive ion etching plotted versus the normalized depth, i.e. from the air side to silicon. (B) Effective
refractive index according to the Bruggeman theory (for λ = 700 nm).

wavelength of light, with a varying degree of porosity, which translates into a gradient
refractive index.

One famous example of a porous material for AR is black silicon [52]. Black silicon
is a strongly nano- or microtextured silicon surface which consists of stochastically
arranged tapered silicon needles with feature sizes in the nanometer to the micron
range; see Fig. 9.14A. Such textured silicon surfaces offer a broadband and quasi-
omnidirectional strong antireflection such that it appears black to the naked eye (green
line in Fig. 9.14B).

The strong antireflection properties of black silicon surfaces can be understood
when considering the volume fraction of silicon at its interface.

Fig. 9.15A shows the silicon material fraction of a typical black silicon interface de-
duced by FIB slicing. Trivially, the filling fraction gradually increases from the small
silicon tips pointing to the air side towards the thicker parts of the silicon needles until
the bulk is reached. From this filling fraction one can deduce an effective refractive
index according to the Bruggeman model by finding the zeros of Eq. (9.9). The results
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are plotted in Fig. 9.15B and reveal a gradient refractive-index profile similar to that of
the smooth quintic gradient profile shown in Fig. 9.13B, thus explaining the superior
AR properties of black silicon textures.

Unfortunately, effective-medium theories as the Bruggeman model can only be
applied to black silicon to a limited extent and give only a qualitative explanation.
This is due to the fact that the condition for applying effective-medium theories, i.e.
that all feature sizes of the structure are much smaller than the wavelength, is not
always fulfilled. For example, the correlation length LC, which is the statistically av-
eraged distance between the scatterers is typically just smaller than, or in the range
of, the incoming free space wavelength (here: 400–1000 nm) [53]. Inside silicon, the
wavelength becomes even smaller than LC due to the high refractive index of silicon
(n = 3.5) given that the wavelength in the material is λ = λ0/n. Thus, black silicon
structures might appear subwavelength on the air side but not from the silicon side.
As a consequence, wave propagation within the black silicon interface usually can-
not be assumed to be plane-wave-like as effective-medium theory demands. As the
correlation length increases, the spatial frequency distribution becomes more narrow
which results in an increase in reflection losses. However, black silicon interfaces
with a broadband reflectance of around 1%, and even less, have been experimentally
demonstrated and integrated into solar cells [54–56]. Even commercial crystalline sil-
icon solar cells exploiting black silicon for AR have recently been introduced into the
market by Wuxi Suntech Power Co., Ltd [57].

9.5 Disordered metamaterials

Even if perfectly periodic metamaterial structures are intended, real-world structures
will always possess at least a small amount of disorder such as slightly varying ge-
ometries within each unit cell due to unavoidable fabrications inaccuracies. In some
cases, this kind of disorder is intentionally introduced as it can lead to a spectrally
more broadband performance, a property that is especially helpful for applications that
need to operate in a broadband manner, such as solar cells or lighting systems. Instead
of starting from a periodic pattern and introducing disorder one can also start from the
other end and take a random distribution of elements and introduce positional correla-
tions, for example by forcing a mean average distance between neighboring elements.
How different degrees of disorder influence the light propagation in metamaterials is
an interesting but also complex question.

An intuitive and common tool to characterize the degree of order of a structure is to
look at its spatial Fourier transform. If the elements of the structure are identical, one
can even only look at the Fourier transform of the corresponding point pattern, where
each point corresponds to one element of the metamaterial structure. By doing so one
can, at least in a first approximation in which the near-field interactions between the
elements are neglected, separate the optical response of the single element from the
influence of the specific arrangement of the elements. The Fourier transform of a point
pattern is called structure factor S(q), with q being the spatial frequency. S(q) can be
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Figure 9.16 Classes of differently ordered metamaterials. Each point in the upper row represents a meta-
material element in real space, whereas the Fourier transform of the point pattern, the structure factor, is
plotted in the bottom row. When a strict periodic order of metamaterial elements is maintained (left col-
umn), the structure is crystalline and the metamaterial corresponds to a photonic crystal exhibiting sharp
peaks in the spectrum of the structure factor. For completely random structures (right column) allowing also
agglomeration of scatterers the structure factor corresponds to “white noise” without any certain features.
Structures of correlated disorder (center column) are comparable to amorphous structures where the dis-
tance between neighboring elements is quite well defined. The case shown here is disordered point pattern
with strong correlations resulting in a structure factor with a hole in the center and a surrounding pro-
nounced ring of higher amplitude. When a structure factor becomes zero at the origin, the structure is also
called hyperuniform.

deduced directly from real-space representations such as SEM images from N particle
positions r:

S (q) = 1

N

N∑
i,j

e−iq·(ri−rj

)

Using the structure factor provides a first approach to distinguishing different degrees
of order. One possible categorization is shown in Fig. 9.16. A perfectly periodical
arrangement of scattering elements corresponds to a photonic crystal exhibiting a
sharply peaked structure factor which can be entirely described by the reciprocal lat-
tice. The other extreme is represented by a completely random structure with a Poisson
distribution of elements. Neighboring elements can have any separation distance and
agglomeration of several elements is also allowed. Since they do not contain any el-
ement of order the structure factor is a random noisy pattern. Good examples of such
ensembles of scatterers are dust or water droplets (fog) in air. In between these two
extreme cases, a regime exists in which the distances between neighboring elements is
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Figure 9.17 Top and middle row: Scanning electron micrographs of different arrangements of Si nanowire
arrays: Periodic square (left), periodic square with slight variation of position (middle), and quasi-random
(right). Bottom row: Corresponding transmitted diffraction patterns. Figure reprinted with permission
from [61].

more or less well defined. The point pattern is neither completely random nor periodic,
but a correlation still exists. Correlated disorder can be compared to the amorphous
structure of atoms in glasses where the length of the chemical bonds determines the
distance between atoms but the angles between the bonds can vary. A special case
occurs when the structure factor becomes zero at the origin. Then long-range cor-
relations are completely suppressed and the pattern is called hyperuniform [58–60].
Some interesting properties of the hyperuniform case will be described later in this
chapter.

Fig. 9.17 shows real-space images together with the corresponding diffraction pat-
terns of different two-dimensional arrangements of Si nanowires. In the case of an
almost perfect square lattice (left column), light that is impinging perpendicularly to
the plane of the sample is scattered only into the diffraction orders as prescribed by
Bragg’s law. As slight variations of the positions of the scatterers are introduced (cen-
ter panel), the diffractions peaks are broadened, which is particularly visible for the
zeroth diffraction order that is showing a large circle of diffusely scattered light. This
phenomenon originates from the deviation of the nanowire positions from the ideal
lattice positions. The disorder adds a whole range of additional lateral k-vectors to
the ones of the strictly periodic case. Thus, coupling of slab modes to more modes
of the free space continuum than it is possible for the (almost) ideal arrangement is
enabled. As a consequence, each diffraction mode propagating into free space be-
comes blurred, i.e. broadened, due to Bragg’s condition transitioning from a set of
only a few strictly defined k-values into sets of ranges of k-values. When the disorder
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increases towards randomness, any long-range order is eventually lost and no transla-
tional symmetry exists. Then collective interference effects of scattered light such as
the appearance of diffraction orders vanish and only diffusely scattered light is emit-
ted. This case is shown in Fig. 9.17 (right panel). The scatterers are randomly arranged
and the diffraction peaks have been replaced by a broad, polar angle independent, scat-
tering pattern.

9.5.1 Exploiting disorder

Disorder is mostly considered detrimental for applications which require working in
narrow spectral ranges, such as transmissive or reflective filters. However, in the past
decade there has been interest in disorder to the extent it can be beneficial for ap-
plications that deal with a broad spectral range [62–64]. A high efficiency solar cell
intrinsically calls for a broadband approach. Besides antireflection, an important op-
tical property that a thin film solar cell should have is light trapping. Light trapping
is the ability to keep light that is only weakly absorbed inside the absorber material
to prolong its effective light path and thus increase the probability of absorbing the
light.

Historically, means to achieve light trapping in crystalline silicon solar cells were
either based on structures operating solely in the ray-optics regime, such as several
micron sized pyramids in monocrystalline silicon solar cells, or random surface struc-
tures fabricated by wet-etching to achieve strong scattering. The rise of nanotechnol-
ogy has enabled the investigation of photonic nanostructures to enhance light trapping
in solar cells. Although research was extensive, strictly periodic structures could sel-
dom outperform conventional state-of-the-art light trapping structures. The recurring
issue was the conflict between the limited bandwidth of strictly periodic structures and
the large spectral width of sunlight to be converted.

Only in recent years have researchers started to look into intentionally introduced
disorder in periodic structures to tackle this conflict by aiming for a more broadband
diffraction response while still retaining distinct diffraction orders. In one example,
Bittkau et al. numerically evaluated and compared the potential light trapping perfor-
mance of a strictly periodic 2D structure to the light trapping performance of structures
with either position disorder or scatterer size disorder [65]. Their platform was a thin
film amorphous silicon solar cell (see Fig. 9.18A) in which the absorber material it-
self was structured. The Fourier transform of the pattern in real space (Fig. 9.18B)
reveals that disorder significantly diffusively broadens the range of k-vectors made
available by the structure. Since the absorber layer is rather thin and light propagates
in this layer as distinct waveguide modes, this leads to a broadening of the spectral
width of these waveguide modes as well. Both effects lead to a much better coupling
of incoming light into the absorber layer and thus increased absorption. In their work,
disorder is characterized by the standard deviation σ of the position (deviation from
strict periodic case) or radius (of the scatterer) that is varied according to a Gaussian
distribution. In Fig. 9.18C the short-circuit current density JSC , which is essentially
the absorption weighted and integrated over the sun spectrum, in dependence of σ

is plotted. It is obvious that disorder indeed increases JSC and the effect is stronger
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Figure 9.18 (A) Sketch of a thin film amorphous silicon solar cell. (B) Patterning of the solar cell in real
space (top) and Fourier space (bottom). (C) Short-circuit current density of the patterned cell in dependence
of the disorder. Sigma = 0 is the strictly periodic case. Figure reprinted with permission from Ref. [65].

for position disorder than for radius disorder. In the case of the position disorder, the
improvement of JSC can be explained by significant diffuse wave vector transfer. The
Fourier transforms of the topographies show the strongest diffuse part in the case of
the position disorder. The increase of JSC in the case of the radius disorder is due to a
broadening of the waveguide mode. Here, the Fourier transforms of the textures have
only a weak diffuse part. Furthermore, since the local layer thickness depends on the
scatterer radius (assuming isotropic growth of the amorphous silicon layer), the layer
thickness varies strongly from unit cell to unit cell. Thus, the individual resonances of
the scatterers of each unit cell are modified as well. If the increase of radius disorder
is too large, the waveguide modes are strongly disturbed because the differences be-
tween the individual resonances become too large to form an extended optical mode
within the layer. As a result, JSC decreases for larger radius disorder.
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9.5.2 Correlated disorder

Photonic structures with point patterns of correlated disorder, i.e. without any trans-
lational symmetry as a periodic pattern nor entirely random as a Poisson distribution,
are currently an active research field as they bear the potential of a whole new class
of optical materials. Since correlations lead to certain features in the spectrum of the
structure factor, novel ways to manipulate k-space are enabled. In terms of optics, to
mention one simple example, one could bring together the advantages of periodic and
entirely disordered structures, i.e., enable a strong, grating-like but spectrally broad-
band and azimuth-angle independent diffraction.

On small scales, e.g. for proof-of-principle structures, fabrication of correlated dis-
order patterns can easily be accomplished by lithographic means [66,67]. Only in
very few works the large-scale fabrication of correlated disorder samples has been in-
vestigated [68]. An attractive technique to obtain 2D patterns of correlated disorder
on large-scale samples is the colloidal deposition as demonstrated by Piechulla et al.
[68]. In their work, they exploit the fact that suspended colloids made of PMMA or PS
are usually charged for stabilization purposes. When these colloids adsorb onto a sub-
strate repulsive electrostatic forces lead to more or less well defined mean distances
between the colloidal particles which can be finely tuned though the amount of ions
present in the suspension. This process is self-organized and thus homogeneous and
large-scale areas can be fabricated; see Fig. 9.19 for a macroscopic (A) and micro-
scopic (B) view and (C) for the evaluation of the next neighbor interparticle distances
histograms for different ionic strengths of the colloidal suspension.

Interestingly, light scattered off such an arrangement of colloids clearly shows a
chromatic dispersion (Fig. 9.19A) which one would not expect from a truly random
pattern. This is due to the correlations, i.e. the near-range order, which is in con-
trast to a truly random pattern that would scatter light isotropically and appear white
to the eye. Therefore, constructive and destructive interference of light scattered by
close-by particles takes place and enhanced and suppressed scattering occurs in anal-
ogy to diffraction orders of a strictly periodic pattern. However, there are two distinct
differences. One is that diffraction now is rotational symmetric due to the isotropic
arrangement of scatterers. The other one being the fact that there is not one discrete
next neighbor distance but a distribution of next neighbor distances leading to a strong
broadening of the diffraction peak. This can also be observed in the diffraction pattern
using only a single wavelength in Fig. 9.19F.

In Fig. 9.19D, the 2D representation (q = qxex + qyey) of the structure factor S(q)

of a typical sample is plotted. Due to the isotropic nature of the pattern in real space,
the structure factor is invariant to rotation. Therefore, the structure can be angularly
averaged over all q of the same length as shown in Fig. 9.19E. With the help of the
structure factor one can easily recognize the correlations present in the pattern. E.g.,
the oscillating behavior of S(q) visualizes that each element has a similar distance
to its next neighbor. Low values of S(q) for low q’s indicate that there are no to
little long-range correlations, such as translational symmetry. Furthermore, since the
structure factor essentially describes the additional momentum q a certain pattern can
add to a light wave with incident wave vector k, it resembles the scattering/diffraction
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Figure 9.19 (A) Large-scale homogeneous deposition of colloids into an arrangement of correlated dis-
order onto a 4-inch silicon wafer. (B) SEM image of the colloids. (C) Nearest neighbor distance histogram
of samples prepared with different ionic strengths of the suspension. (D) Structure factor and (E) radially
averaged structure factor. The black circular area in the center is due to a beam block for nonscattered light.
(F) Reprinted with permission from Ref. [68].

pattern. This can be seen when comparing the structure factor shown in Fig. 9.19E
with the photographed scattering pattern shown in Fig. 9.19F. In the simplified case
that near-field interaction between neighboring particles and multiple scattering can
be neglected, the scattering pattern I (k‖) of a sample of correlated disorder can easily
be calculated by multiplying the structure factor S(q = k‖) with the scattering pattern
of the individual element of the pattern I0(k‖).

A mathematical framework to describe and categorize correlated disorder is the
concept of hyperuniformity as introduced by Torquato [58,59,69,70]. Hyperuniform
point patterns in d-dimensional space are characterized such that the number vari-
ance σ 2

N(R) ≡ 〈N(R)2〉 − 〈N(R)〉2 of points within a spherical sampling window of
growing radius R increases less than Rd (the volume of the window) for large R.
In other words, density fluctuations are suppressed on larger scales. This statement
is equivalent to the structure factor approaching zero for q → 0, i.e. S(q → 0) = 0.
Furthermore, disordered hyperuniform structures are called ‘stealthy’ hyperuniform
when S = 0 not only for q → 0 but for a range q’s [q → 0, q0]. Truly random pat-
terns are not hyperuniform as they possess no correlations and their window volume
scaling is σ 2

N(R) ∼ Rd and the structure factor stays essentially constant for all q. On
the other hand, all periodic and quasiperiodic patterns and thus photonic crystals are
trivially hyperuniform as then σ 2

N(R) ∼ Rd−1 and their structure factor only reveals
delta peaks. Interestingly, there exist a class of disordered systems which meet the
requirement of hyperuniformity.
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Figure 9.20 Point patterns (top) and their corresponding structure factor S (bottom). Left: Poisson random
pattern. Middle: Disordered pattern with some geometric order but still S > 0 for q → 0. Right: Disordered
hyperuniform point pattern. Reprinted with permission from [71].

Several algorithms have been introduced to generate disordered hyperuniform point
patterns based on conjugate gradient methods or Delaunay triangulation [71]. Exam-
ples to visualize different disordered point patterns are shown in Fig. 9.20. On the
left, a random point pattern based on a Poisson distribution is plotted; the structure
factor does not reveal any correlations. Shifting the point positions such that the dis-
tance between the points becomes more homogeneous, the structure factor decreases
around the origin, as number density fluctuations are lowered, though not completely
suppressed as still S > 0 holds (center). On the right hand side, the point positions
have been shifted in such a way that long-range density fluctuations are completely
suppressed and thus the structure factor is zero around the origin; this point pattern
is stealthy hyperuniform. Comparing these three structures, it is clearly visible by eye
that for the hyperuniform structure the point distribution is much more homogeneous
than for the other patterns. Nevertheless, the pattern is still disordered and isotropic,
i.e. it has no translational symmetry.

Stealthy hyperuniform disordered media operating in the stealthy regime (where
S(q) = 0) will behave like a periodic medium operating in the frequency range below
the first Bragg resonance. Since no additional k-values are provided in these regimes,
no scattering of light waves will occur, i.e. the disordered hyperuniform medium acts
like a periodic medium with sub-wavelength grating constant, which is in stark con-
trast to a non-hyperuniform disordered medium. So the light could be still confined to
a hyperuniformly structured waveguide layer avoiding out-of plane scattering losses.
The loss-less propagation of light within the planar structure would basically be pro-
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Figure 9.21 Top panel: Photograph of samples made of plastic fabricated by stereo lithography (height
100 mm). Middle panel: Contour plots (top) in polar coordinates of the measured transmission as a function
of frequency (15–35 MHz). Bottom panel: Corresponding structure factors. Left hand side: Square lattice.
Right hand side: disordered hyperuniform structure. Reprinted with permission from [72].

tected by the central “hole” in the Fourier-space/structure factor which is characteristic
for hyperuniform structures.

At higher frequencies hyperuniform materials also offer interesting properties. It
can be shown theoretically, as well as experimentally, that even disordered media
(i.e. Bragg reflection does not occur) can reveal photonic band gaps when they meet
the condition of hyperuniformity [71–73]. Florescu et al. impressively demonstrated
the existence of photonic band gaps in disordered media in the microwave regime as
shown in Fig. 9.21. Angularly resolved transmission spectra clearly reveal the exis-
tence of a stop band (blue region) for which no incoming waves are allowed to propa-
gate through the structure. Furthermore, since the disordered structure is isotropic, the
stop band is isotropic as well and thus is always equivalent to the band gap enabling
e.g. the implementation of arbitrarily bent waveguides [73].

The precise mechanisms of band gap formation in disordered hyperuniform me-
dia is still a matter of investigation [74]. Nevertheless, research on this new class
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of disordered photonic material is currently very active. For example, Scheffold et al.
demonstrated a three-dimensional hyperuniform photonic structure [67]. A disordered
medium being transparent for a certain frequency band but opaque for other frequency
was also realized [75]. Finally, findings on hyperuniform structures are not restricted
to photonics but apply to any type of wave propagating in a structured medium, such
as phononics [76].

Overall the research on correlated disorder for photonics and the ability to fabricate
such structures is still in its infancy. Correlated disorder and actively tailored disorder
represent a new tool for tailored photonics. Furthermore, the patterns fabricated using
methods such as colloidal particles allow for relatively easy fabrication of extended
disordered metamaterials and could also serve as a template, for example, for sub-
sequent etching or deposition processes, to imprint the disordered pattern into other
materials. Preparing scatterers based on plasmonic metals or high-refractive-index ma-
terials with more pronounced resonances would lead to stronger scattering intensities
and could open the door to realizing angular scattering patterns which have not been
explored to date.

9.6 Conclusion

Although in the non-resonant, long wavelength regime, the dramatic effects on phase
shifts, transmission and reflection attributed to Mie resonances are absent, it offers
another powerful advantage: the flexibility for a robust and broadband index engineer-
ing. Using constituent materials with high refractive indices like silicon allow for a
wide range of effective dielectric constants and index values to be obtained by con-
trolling the filling fraction of the subwavelength structures. Furthermore a strong form
birefringence can be created by shaping the subwavelength elements into anisotropic
structures such as layers or rods. These can then be arranged to create artificial bire-
fringence values not seen in nature – and not only for a single frequency but in the
whole long wavelength range. The ability to control the effective index in a plane of-
fers the possibility to create a planar GRIN-photonic platforms for realizing lenses,
phase plates, and cloaking devices. The use of effective indices in subwavelength
grating waveguides allows a much larger flexibility for mode matching and disper-
sion engineering. New waveguide concepts employing metamaterial claddings have
been realized for enhancing mode confinement and minimizing bending losses and
cross-talk. In general, the concept of metamaterials is not bound to periodic structures,
although most of the investigated designs have employed a periodic lattice. In the fu-
ture systems with a controlled disorder, such as hyperuniform disorder, ensembles of
scattering elements may become interesting. These structures relax the requirements
for nanofabrication opening the door to large-scale 3D dielectric metamaterials em-
ploying bottom up self-ordering techniques. Although ohmic losses might be avoided
in such metamaterials, when loss-free components are used, the level of scattering
losses due to disorder needs to be further investigated. This can still lead to a large
extinction of a propagating wave especially for wavelengths close to the Mie reso-
nances [77].
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