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Preface

Most monographs on metamaterials deal with electromagnetic aspects. Very few
involve mechanical aspects. Although metamaterials need not necessarily exhibit
negative properties, it is those that manifest negative behavior that provide wider
options for designing materials that can outperform what can be achieved by
conventional materials. This monograph introduces the reader to negative Poisson’s
ratio (auxetic) materials, negative thermal expansion (NTE) materials, negative
compressibility (NC) materials, negative moisture expansion (NME) materials and
negative stiffness (NS). In addition, sign-switching materials are also added. These
are materials that can toggle between positive and negative characteristics. This
monograph is suitable as a textbook for an introductory graduate course in
mechanical metamaterials with negative properties, and can be used as a reference
by researchers and practicing engineers in academia and industry.

Singapore Teik-Cheng Lim
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Chapter 1
Introduction

Abstract This chapter gives a brief introduction to metamaterials starting from
its definition to the generic (including electromagnetic) metamaterials, through
mechanical metamaterial, and finally to the mechanics of metamaterials with special
emphasis on negative properties.

Keywords Metamaterials ·Mechanical metamaterials ·Mechanics of
metamaterials

1.1 Mechanical Metamaterials

From a combination of the Greekwordμετ ά (meta), whichmeans “beyond,” and the
Latinwordmateria, whichmeans “matter” or “material,” today the term“metamateri-
als” refers to materials that are microarchitectured such that their effective properties
are primarily controlled by the microstructural geometries rather than by the base
materials. The term “metamaterials” has been popularly adopted within the broad
field of electromagnetic metamaterial, which incorporates photonic, or optical, meta-
materials. The repeating patterns of the optical metamaterials are smaller than the
wavelengths of the phenomena they affect. There is no lack of resources in the field
of electromagnetic metamaterials. Interested readers are referred to the following
books in this area as of the year 2019 (Andreone et al. 2011; Borja 2017; Brener
et al. 2019; Cai and Shalaev 2010; Caloz and Itoh 2006; Canet-Ferrer 2019; Capolino
2009; Chipouline and Küppers 2018; Choudhury 2017; Choudhury et al. 2016; Cui
et al. 2010, 2016; Denz et al. 2010; Diest 2013; Eleftheriades and Balmain 2005;
Engheta and Ziolkowski 2006; Hao and Mittra 2009; Hess and Gric 2018; Krowne
and Zhang 2007; Lee et al. 2016; Lheurette 2013; Li and Huang 2013; Maier 2011;
Maradudin 2011; Marqués et al. 2007; Munk 2009; Nair et al. 2018; Nakano 2016;
Noginov and Podolskiy 2011; Pendry 2007; Ramakrishna and Grzegorczyk 2009;
Rout and Sonkusale 2017; Sarychev and Shalaev 2007; Shvets and Tsukerman 2011;
Smolyaninov 2018a, b; Solymar and Shamonina 2009; Tong 2018; Vanbésien 2012;
Werner 2017; Werner and Kwon 2014; Zayats and Maier 2013; Zouhdi et al. 2002;
Zouhdi et al. 2009).
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Alongside this progress is the development of mechanical metamaterials. As the
name suggests, mechanical metamaterials refer to materials whose mechanical prop-
erties are due to the designed geometrical properties of the microstructure. The capa-
bility to produce microarchitectured materials is further facilitated by 3D printing
and other technological advancements in additive manufacturing that are able to
design material architecture at the microscale level. Due to the manner by which
they are designed, metamaterials can be made to function in certain ways that cannot
be achieved by conventional materials (Bertoldi et al. 2017; Che et al. 2017; Chris-
tensen et al. 2015; Dudek et al. 2018; Gao et al. 2018; Huang et al. 2019; Jackson
et al. 2018; Matlack et al. 2018; Mirzaali et al. 2018a, b; Pan et al. 2019; Powell
2018; Sujardi et al. 2019; Vangelatos et al. 2019; Wu et al. 2019; Yang andMa 2019;
Zadpoor 2016; Zhao et al. 2019).

1.2 Mechanical Metamaterials with Negative Parameters

Although mechanical metamaterials, in general, are artificially microstructured for
achieving desired mechanical properties, great interest has especially been placed
on those with negative values. This is because metamaterials with negative param-
eters are not only able to perform in certain ways that cannot be accomplished by
conventional materials, but whose counter-intuitive behavior opens up opportunities
to design materials and structures with ground-breaking novelties that inspire inven-
tions. Mechanical metamaterials with negative parameters include, but not limited
to, the following:

• negative Poisson’s ratio (NPR), or auxetic, materials
• negative thermal expansion (NTE) materials
• negative compressibility (NC) materials
• negative stiffness phases or (micro)structures
• negative hygroscopic expansion (NHE) or negative moisture expansion (NME)

materials
• negative swelling materials.

In addition, mechanical metamaterials with negative properties have been attained
by a combination of multiple negative properties. To date, sufficient progress has
been made on doubly negative and triply negative materials. By focusing on the
mechanics of metamaterials, it therefore implies that the subject matter is within the
domain of mechanical metamaterials, and that the approaches adopted for obtaining
the effective negative properties are primarily based on the principles of mechanics.
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1.3 Doubly Negative and Triply Negative Metamaterials

As the name suggests, a doubly negative metamaterial is one which manifests two
kinds of negative properties. One such category is the combination of auxetic and
negative thermal expansion features. This has been demonstrated using the examples
of connected triangles (Grima et al. 2007), natrolite (Grima et al. 2012), and intercon-
nected array of rings and sliding rods (Lim 2017). Using a combination of bimaterial
strips and rigid beams to form rectangular cells, it been shown that the rectangles
transform into shapes that approximate re-entrant geometry, which is associated with
negative Poisson’s ratio (Li et al. 2016; Lim 2019a), and at the same time the transfor-
mation itself exhibits negative thermal expansivity. These microstructures were then
extended such that the square cells can be thermally deformed to produce intercon-
nected star network (Lim 2019b), which is known to be auxetic, while the transforma-
tion from square cells to star cells demonstrates negative thermal expansivity. In the
category for the combination of negative thermal expansion and negative compress-
ibility, this has been proven to exist in methanol monohydrate (Fortes et al. 2011) and
a unimodemetamaterial (Dudek et al. 2016),while examples of combined auxetic and
negative compressibility have been established using 3D cellular structures (Grima
et al. 2012) and wine-rack-like carbon allotropes and related poly(phenylacetylene)
systems (Degabriele et al. 2019). Systems comprising both auxetic and negative
stiffness elements have been developed (Hewage et al. 2016; Dudek et al. 2018), as
do those that manifest both negative thermal and negative moisture expansivities;
the latter has been termed negative hygrothermal expansion (NHTE) materials (Lim
2019c, d).

Although being less established in comparison with doubly negative metamate-
rials, triply negative metamaterials offer greater design options for the engineering
and materials design practitioners. Some examples of triply negative metamaterials
include the combination of negative thermal expansion, negative linear compress-
ibility, and negative Poisson’s ratio induced by specific topology in Zn[Au(CN)2]2
(Wang et al. 2017). A combination of auxetic, negative stiffness, and negative bulk
modulus has been established by using instability (Jia and Wang 2019), while a
system that exhibits negative thermal expansion, negative compressibility, and nega-
tive moisture expansion has been analyzed (Lim 2019e); the latter has been termed
negative environmental expansion due to its reversed reaction in response to the trio
of environmental fluctuations—temperature, pressure, and moisture.

1.4 International Conferences

Since the year 2004, a series of auxetics conferences has been held almost every
year. Initially named the Workshop on Auxetics and Related Systems, the scope has
been expanded over the years to include “other materials and models with ‘negative’
characteristics,” with special attention on negative mechanical properties. Although
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Table 1.1 List of auxetics conferences arranged by year

Year Auxetics conference Location

2004 Workshop on auxetics and related systems Bedlewo, Poland

2005 2nd workshop on auxetics and related systems Bedlewo, Poland

2006 International conference and 3rd workshop on auxetics and
anomalous systems

Exeter, UK

2007 4th international workshop on auxetics and related systems Msida, Malta

2008 2nd conference and 5th international workshop on auxetics
and related systems

Bristol, UK

2009 6th international workshop on auxetics and related systems Bolton, UK

2010 3rd international conference and the 7th international
workshop on auxetics and related systems

Gozo, Malta

2011 8th workshop on auxetics and related systems Szczecin, Poland

2012 4th international conference and 9th international workshop
on auxetics and related systems

Bolton, UK

2014 5th international conference on auxetics and other materials
and models with “negative” characteristics, and the
10th international workshop on auxetics and related systems

Poznan, Poland

2015 6th international conference on auxetics and other materials
and models with “negative” characteristics, and the
11th international workshop on auxetics and related systems

Malta

2016 7th international conference on auxetics and other materials
and models with “negative” characteristics, and the 12th
international workshop on auxetics and related systems

Szymbark, Poland

2017 8th international conference on auxetics and other materials
and models with “negative” characteristics, and the 13th
international workshop on auxetics and related systems

Heraklion, Crete, Greece

2018 9th international conference on auxetics and other materials
and models with “negative” characteristics, and the 14th
international workshop on auxetics and related systems

Sheffield, UK

2019 10th international conference on auxetics and other materials
and models with “negative” characteristics, and the
15th international workshop on auxetics and related systems

Bedlewo, Poland

a number of similarly named conferences have emerged in recent years, the most
authoritative ones are the auxetics conference series. See Table 1.1.

1.5 A Note on the Nomenclature Adopted

The symbols adopted in this book follow their usual meaning in the literature. For
example, it is well established that the symbol α has been used for indicating the
coefficient of linear expansion (CTE) (e.g., Grima et al. 2007, 2012; Lim 2017;
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Boley and Weiner 1997; Nowacki 1987; Hetnarski and Eslami 2009). However, the
symbol β has been used in the past to indicate both the material compressibility
(e.g., Fortes et al. 2011; Dudek et al. 2016; Grima et al. 2012; Degabriele et al. 2019;
Fine and Millero 1973; Baughman et al. 1998; Miller et al. 2015; Lim 2017) as well
as the coefficient of moisture expansion (CME) or the coefficient of hygroscopic
expansion (CHE) (e.g., Lim 2019c, d; Kaw 2006; Mallick 2008; Gibson 2012; Lim
2018). As such, in this book, different symbols have to be assigned for material
compressibility and the CME or CHE. Under some circumstances, it has been found
to be convenient if the expansion coefficient is generally indicated by α. As such, the
use of superscripts helps to differentiate the type of expansion coefficient. Hence,
α(T ) refers to the CTE, in which “T” indicates thermal or temperature, while α(P)

the compressibility; the letter “P” denotes pressure (e.g., Lim 2019f, 2020). As for
CME or CHE, α(C) is adopted wherein the letter “C” corresponds to the moisture or
hygroscopic concentration.
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Chapter 2
Auxetic Microstructures

Abstract This chapter gives an overview of auxetic microstructures by considering
the various geometries and their intermittent microstructures via gradation. This is
followed by some comments on analogies between different auxetic models. Finally,
an example is given for the extension of a 2D auxetic model to a 3D one, as well as
an example of a rarely discussed auxetic model.

Keywords Auxetic microstructures · Microstructural gradation · Microstructural
relationships

2.1 Introduction

Various geometrical microstructures have been conceptualized for elucidating the
negative Poisson’s ratio observation of naturally occurring and technologically
processed auxetic materials. These microstructural geometries include, but are not
limited to, the following:

(a) re-entrant models in 2D (Evans et al. 1991; Masters and Evans 1996; Smith
et al. 2000; Li et al. 2019; Hou et al. 2019; Zhang et al. 2019; Wang et al. 2020)
and 3D (Friis et al. 1988; Choi and Lakes 1995),

(b) double arrowhead in 2D (Larsen et al. 1997) and a related composite (Shilko
et al. 2008) as well as in 3D (Lim 2016),

(c) interconnected star models in 2D (Grima et al. 2005a) and its related version
in the form of interconnected petals (smoothed stars) (Wang et al. 2017, 2019;
Wang and Poh 2018; Kumar et al. 2019), as well as interconnected stars in 3D
(Rad et al. 2015)

(d) nodule-fibril model in 2D with rectangular nodules (Alderson and Evans 1995,
1997), hexagonal nodules (Lim and Acharya 2009), circular nodules (Jiang
et al. 2016a) and eye-shaped (or oval) nodules (Smardzewski 2019), as well as
in 3D with cuboid or tetragonal nodules (tethered-nodule model) (Gaspar et al.
2011) and spherical nodules (Lim 2015a)

(e) rotating unitmodels such as the rotating squares (Grima andEvans 2000;Grima
et al. 2007a, 2008a; Attard et al. 2009a), rotating rectangles (Grima et al. 2004,
2005b, 2011a), rotating triangles (Grima and Evans 2006; Grima et al. 2007b,
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2012; Chetcuti et al. 2014; Gao et al. 2018), rotating rhombi and parallel-
ograms (Grima et al. 2008b; Attard and Grima 2008; Attard et al. 2009b),
rotating tetrahedrals (Grima et al. 2008c), rotating cubes (Jun et al. 2019),
rotating cuboids (Attard and Grima 2012), rotating octahedrons in tetrahedral
framework (Tanaka et al. 2019), and hierarchical rotating rigid units (Gatt et al.
2015; Dudek et al. 2017),

(f) slit perforated models (Grima and Gatt 2010; Taylor et al. 2013; Grima et al.
2016; Mizzi et al. 2019),

(g) hard cyclic hexamers (Wojciechowski 1987; Wojciechowski 1989;
Wojciechowski and Branka 1989) and other hard cyclic polymers
(Wojciechowski and Tretiakov 2000; Wojciechowski et al. 2003),

(h) swastika models (Smith et al. 2000; Gaspar et al. 2005; Jiang and Li 2018;
Farrugia et al. 2019a; Bahaloo and Li 2019; Jin et al. 2019) and other missing
rib models (Lim et al. 2014),

(i) chiral and anti-chiral models in 2D (Prall and Lakes 1997; Spadoni et al.
2009; Spadoni and Ruzzene 2012; Alderson et al. 2010a, b; Miller et al. 2010;
Lorato et al. 2010; Abramovitch et al. 2010; Chen et al. 2013; Pozniak and
Wojciechowski 2014; Ki et al. 2019; Niu et al. 2019; Su et al. 2019; Chen et al.
2019a; Zhu et al. 2019) and in 3D (Ha et al. 2016a; b; Fu et al. 2017; 2018; Wu
et al. 2018; Farrugia et al. 2019b; Zheng et al. 2019; Reasa and Lakes 2019; Li
et al. 2020),

(j) interlocking and sliding models (Ravirala et al. 2007; Hewage et al. 2016; Lim
2019a),

(k) indented sheet models, which include the egg-rack model (Grima et al. 2005c;
Li et al. 2017; Smardzewski and Wojciechowski 2019), a related foldable
macrostructure (Grima et al. 2011b), folded or origami sheets (Wei et al. 2013;
Schenk and Guest 2013; Lv et al. 2014; Eidini and Paulino 2015; Yasuda and
Yang 2015; Kamrava et al. 2017; Janbaz et al. 2017), dimpled sheet (Javid et al.
2015), and uneven graphene sheets (Coluci et al. 2008; Grima et al. 2015; Wen
et al. 2019),

(l) helical yarns (Miller et al. 2009, 2012; Sloan et al. 2011; Wright et al. 2012),
plied yarns (Ge et al. 2016; Ng and Hu 2017) and stitched-through yarns (Lim
2014), auxetic textiles (Ge and Hu 2013; Ge et al. 2013; Wang and Hu 2014a,
b; Wang et al. 2014; Glazzard and Breedon 2014) and auxetic tubular braids
(Jiang and Hu 2018; Chen et al. 2019b; Jiang et al. 2020),

(m) liquid crystalline polymeric models (He et al. 1998, 2005; Boba et al. 2016),
(n) instability-induced auxetic models (Bertoldi et al. 2008; Shim et al. 2012;

Babaee et al. 2013; Javid et al. 2016; Jia and Wang 2019),
(o) ring-rod assembly models in 2D and 3D (Lim 2017a, 2019b),
(p) linkage mechanism models (Broeren et al. 2019; Lim 2019c),
(q) Voronoi structures in 2D (Bouakba et al. 2012; Li et al. 2016) and 3D (Gao

et al. 2019),
(r) other models such as the 3D pre-buckled lattices (Albertini et al. 2019), star

perforations (Li et al. 2018), and composites with hollow tetrahedral inclusions
(Hou and Hu 2015).
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Due to the rapid expansion in the area of auxetics, it is inevitable that somemodels
are not listed above while others may be subsumed under the listed models due to
certain similar features. Various reviews on auxetic materials have been furnished,
some of which are more generic in nature (Lakes 1993; Alderson 1999; Yang et al.
2004; Alderson and Alderson 2007; Liu and Hu 2010; Greaves et al. 2011; Prawoto
2012; Critchley et al. 2013; Saxena et al. 2016; Lakes 2017; Lim 2017b; Kolken and
Zadpoor 2017; Ren et al. 2018) while others are scoped toward specific subfields
and/or applications (Darja et al. 2013; Jiang et al. 2016b; Park andKim 2017; Duncan
et al. 2018; Kwietniewski andMiedzińska 2019; Pasternak and Dyskin 2019; Surjadi
et al. 2019; Wu et al. 2019); in addition, there has been two monographs on auxetics
(Lim 2015b; Hu et al. 2019) to date. An overview of auxetic microstructures is
best understood by comparing and classifying their various geometrical structures.
These have been done in most of the abovementioned reviews, and therefore are
not repeated here, except for a few for illustration purposes. The proceeding topics
illustrate how each type of auxetic microstructure is related to another by gradually
altering some parts of the microstructures, followed by an example where a 2D
axuetic microstructure is extended to its 3D version and an example of a relatively
overlooked microstructural geometry.

2.2 Gradation Between 2D Auxetic Microstructures

Figure 2.1 demonstrates a few examples on how the prescription of incremental
geometrical changes gives rise to a series of auxetic models of the same family. With
reference to Fig. 2.1a, we have a re-entrant model on one extreme and a nodule-
fibril model with rectangular nodules on the other extreme. It is easy to see that
as the width of the rectangular block diminishes, they reduce to vertical ribs in the
re-entrant model. While contact region between the fibril and the rectangular blocks
is defined by the width of the rectangular blocks (or the area due to the width and the
depth of the blocks), the contact region in the case of re-entrant model diminishes
to a point contact (or a line defined by the depth of the ribs). For both extremes,
the contact regions are fixed. This is not so for the intermediate auxetic models. In
the circular (or cylinder) nodule model, there exists contact points (or contact lines)
between the fibrils (or sheets) with the circles (or cylinders) when the fibrils or sheets
are horizontal. Upon vertical compression, the fibril or sheet slope increases while
the contact arc length (or contact curved area) increases. The same is expected in the
case of the eye-shaped nodules, but with greater increase in contact arc length (or
contact curved area) for initial compression due to the oval-shaped nodules. Suppose
the re-entrant model is rotated by 90° as shown in the extreme left of Fig. 2.1b, it can
be seen that the re-entrant “properties” are somewhatmanifested in themetamaterials
investigated by Qin et al. (2018), whereby the middle left and middle right models
exhibit mild and large auxeticities, respectively. Recently, Meena and Singamneni
(2019) introduced the so-called S-shaped rib that exhibits hollow “X” and hollow
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Increasing contact area with nodule Decreasing contact area with nodule 

Nodules 
vertical ribs 

Circular 
nodules 

Oval cells or eye-shaped 
nodules (Smardzewski 2019) 

Rectangular 
nodules 

(a)

Increasing node size Decreasing node size 

Swastika (missing 
rib)

Swastika with 
junction nodes 

Hybrid swastika-
tetrachiral model 

Tetrachiral 
structure 

(c)

Increasing horizontal rib complexity Decreasing horizontal rib complexity 

Straight 
horizontal rib 

Smaller split in 
horizontal rib (Qin et 

al. 2018)

Larger split in 
horizontal rib (Qin et 

al. 2018)

Horizontal rib  hollow 
cross (Meena & 

Singamneni 2019)
(b) 

Fig. 2.1 Gradation between the a re-entrant and nodule-fibril models, b re-entrant and the “S”
structure, and c swastika and tetrachiral models

“+” cells, as shown on the extreme right of Fig. 2.1b, which correspond to the re-
entrant cell and the horizontal ribs, respectively. During the initial stage of vertical
compression, the hollow “X” regions collapse while the hollow “+” regions remain
comparatively undeformed, thereby corresponding to the collapse of the re-entrant
cells at (almost) fixed horizontal rib dimension. The missing rib model shown on the
extreme left of Fig. 2.1cwas sonameddue to the removal of ribs froma rhombicmesh.
To be more precise, these are herein called the tilted-swastika model to differentiate
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them from other missing rib, or rib deletion, models. Suppose the “cross” parts of the
swastikas are remodeled as circular nodes, one obtains the tetrachiral model depicted
on the extreme right of Fig. 2.1c. If the “cross” parts of the swastikas are rigid, they
are effectively the circular nodes of the tetrachiral model.

Figure 2.2 shows how a few auxetic models can be related to each other in
a loop by gradual alteration to the connecting parts and the corresponding void
shapes. Take, for example, the rotating square model displayed in Fig. 2.2a where
the squares are connected to one another by pin joints to permit rotation. Suppose

Shortening of connecting rods 
into pin-joints to form rotating 
units.

Smoothing of 
rhombic
voids into 
elliptical 
voids.

Lengthening 
of joints from 
rotating 
points to 
bending ribs.

Change of 
super-elliptic 
voids to 
voids in the 
form of “8”.

Realignment 
of 45° tilted 
swastikas to 
right-angled
swastikas.

Remodeling 
of swastikas 
into circular 
nodes to form 
tetrachirals.

From curves 
to piece-wise 
ribs to form 
tilted 
swastikas.

Continued shrinking of 
rotating nodes into cross 
junctions.

(a)

(b)

(c)

(d)

(h)

(g)

(f)

(e)

Fig. 2.2 Gradation from the a rotating squares model to the b perforated sheet model, and a
topologically optimized c linear and d nonlinear designs (Clausen et al. 2015) toward the e smoothed
curved ribs and its f piece-wise version, that exhibits tilted swastikas, as well as the g right-angled
swastikas, in which the crosses are remodeled into circular nodes to form the h anti-tetrachiral
model, and finally, the shortening of the connecting robs and the changing of circles to squares lead
back to a
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the squares are distorted such that the rhombic voids transform into ellipses, which
leads to the “point” joints being widened, one obtains a pattern that resembles an
instability-triggered auxeticity from uniaxial compression of a sheet with square
array of circular holes (Bertoldi et al. 2010). Suppose the distortion trend continues,
the elliptical voids transform into superelliptical ones, which approximate rectan-
gles with rounded corners, while the joints begin to form connecting ribs, as indi-
cated in Fig. 2.2c. Continuing this trend with decreasing node sizes, we have the
voids taking on the shape of “8” or “∞”, as shown in Fig. 2.2d. Figure. 2.2c, d
resembles the topology optimization study of auxetic microstructures by Clausen
et al. (2015). Further reduction of the node size converts them into cross junctions
denoted in Fig. 2.2e. Suppose these curved ribs are converted into piece-wise linear
ribs, one may observe tilted swastikas. See Fig. 2.2f. It should be pointed out that the
alternating swastikas are mirror images, unlike those shown on the extreme left of
Fig. 2.1c. Another swastika model can be obtained by reorienting the tilted swastikas
to give the connected right-angled swastikas furnished in Fig. 2.2g. Unlike the tilted
swastikas, the ribs of the right-angled swastikas are aligned to the swastika array.
Using the same alteration in Fig. 2.1c, the right-angled swastikas can be remodeled
as circular nodes to form the anti-tetrachiral model furnished in Fig. 2.2h. Finally, if
the circular nodes are replaced by squares such that the connecting ribs are attached
to the corners of the squares, and if the connecting ribs are made to shorten until
becoming points, then the rotating square model shown in Fig. 2.2a is recovered.
Further examples for geometry-based gradation of auxetic models are aplenty, but
no further exposition is given in the interest of maintaining brevity of this book,
except for the next topic which deals with geometrical analogies between different
auxetic models undergoing microstructural evolution during large deformation.

2.3 Analogies Between Evolved Auxetic Microstructures
During Large Deformation

The occurrence of microstructural evolution in auxetic microporous polymers has
been earlier discussed pertaining to its processing (Alderson et al. 2007). This topic
considers two auxetic models undergoing large deformation with an analogy estab-
lished between both sets of deformations. The firstmodel undergoes uniaxial in-plane
compression of a thick sheet with square array of circular perforations (Shim et al.
2013) while the secondmodel entails the uniaxial in-plane tension of a slit perforated
thick sheet (Dubrovski et al. 2019), as indicated at the top half and bottom half of
Fig. 2.3, respectively. For visual aid, a 2-by-2 cluster of rotating units is identified
from each model at the original state and indicated as “start.” The rotating units are
assigned different colors for ease of tracking from the original states, or the “start”
positions, to the “end” positions. It is clear that the original state of the former is
geometrically analogous to the final fully opened state of the latter, as shown on the
left side of Fig. 2.3. Likewise, the final collapsed state of the former is geometrically
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Increasing compression

Increasing tension

Original state ε = ε = ε =

ε ε ε ε ε

- 0.07 - 0.15 - 0.21

Original state= 0.08= 0.15= 0.23= 0.30= 0.38

Analogy Analogy
compression

tension

compression

tension

Start End

StartEnd

Fig. 2.3 Deformation-triggered microstructural evolution, as exemplified by the compression of
sheets with square array of circular perforation (Adapted from Shim et al. (2013) with permission
from The Royal Society of Chemistry) (top) and tension of slit perforated sheet (Dubrovski et al.
2019) (bottom)

analogous to the original closed state of the latter, as observed on the right side of
Fig. 2.3. The intermediate states, i.e., the intermediate compression of the former and
the intermediate tension of the latter reveal voids of elliptical and rhombic shapes,
respectively. In other words, the gradation of one microstructural model during a
large deformation can be matched against that of another microstructural model
under opposing load directions.
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2.4 Extending from 2D and 3D: Example from Double
Arrowhead Microstructure

Typically, 2D auxetic microstructures are extended to their 3D versions. In this
section, an example is made for the case where the double arrowhead microstructure
is extended to its 3D version (Lim 2016). The Intersecting Pair of Double Arrow-
heads (IPDA) for generating this 3D auxetic microstructure is shown in Fig. 2.4a,
showing two double arrowheads intersecting one another at their axis of symmetry,
such that one double arrowhead is rotated at 90° with reference to the other double
arrowhead about the intersection line. The arrangement of the IPDA arrays is shown
in Fig. 2.4b–d, whereby the arrangement between two IPDAs is shown in Fig. 2.4b–d
for arrangement of IPDAs side-by-side, back-to-back, and top-to-down, respectively.
It should be pointed out here that the cuboids that encompass two back-to-back IPDA
overlaps one another because the longer apex from one IPDA is joined to the shorter
apex of the shorter IPDA. Figure 2.4e shows four IPDAs arranged side-by-side and
top-down. This arrangement shows four longer apex pointing to the left while at the
straight line, in which all the four IPDAs are in contact, there is one longer apex
pointing to the right. In other words, an arrangement of 3 by 3 IPDAs pointing in
one direction inherently introduces 2 by 2 IPDAs pointing in the opposite direction,
as schematically indicated by Fig. 2.4f.

Fig. 2.4 Schematics for the
3D auxetic microstructure of
the intersecting double
arrowhead, showing: a a
single representative volume
element (IPDA), b two
IPDAs side-by-side, c two
IPDAs back-to-back, d one
IPDA on top of another,
e four IPDAs (2 by 2) with
apex pointing in one
direction resulting in an apex
pointing in the opposite
direction, and f nine (3 by 3)
IPDAs denoted in gray that
inherently introduces four (2
by 2) IPDAs denoted in black

(a)

(b)

(c)

(d)

(e) (f)
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TheCartesian coordinate system selected for the IPDA is such that the straight line
joining the longer apex and shorter apex, which is also the intersection line between
the two double arrowheads, forms the x-axis, while the other two orthogonal axes
parallel to the sides of the IPDA are the y′-axis and z′-axis (see Fig. 2.5a). In this
analysis, a rotated axes of y-axis and z-axis, as shown in Fig. 2.5b, are used because
one of the double arrowheads falls on the x-y plane, while the intersecting double
arrowhead lies on the x-z plane. It should be pointed out that if the geometry of
both intersecting double arrowheads is identical, then not only is εy = εz , it must be
noted that additionally we have εy = εy′ and εy = εz′ . This is because the original
dimensions measured along the y′-axis and z′-axis are greater than those along the
y′-axis and z′-axis by a factor of

√
2, and that the displacements measured along

the y′-axis and z′-axis are also greater than those along the y′-axis and z′-axis by a
factor of

√
2. Hence, the Poisson’s ratios for both the x, y′, and z′ and the x, y, and z

coordinate systems are similar.
Perusal to Fig. 2.5c shows the major and minor linkages are of lengths l1 and l2,

respectively, subtending at angles θ1 and θ2 from the x-axis, such that l1 > l2 > 0
and 0 < θ1 < θ2 < π/2. Since point A is the point at which an IPDA is joined
to neighboring IPDAs along the side-to-side and top-to-down directions, we let the
lateral dimension be represented by y0, which is the perpendicular distance of pointA
from the x-axis. On the other hand, the neighboring IPDA joined from back-to-back
is at point B, i.e., point O of the IPDA in Fig. 2.5c is joined to point B of another
IPDA on its left while point B of the IPDA in Fig. 2.5c is joined to pointO of another

Fig. 2.5 a A Cartesian coordinate system (x, y′, and z′) for the IPDA, b a rotated Cartesian coor-
dinate system (x, y, and z) for analysis, c a quarter of the IPDA (i.e., half of an arrowhead) before
displacement, and d a quarter of the IPDA after displacement within the same x-y plane with the
original location indicated in gray
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IPDA on its right. Hence, the displacement of point B in the x-direction causes a
similar displacement to the neighboring IPDA on the right. As such we let the axial
dimension be represented by x0, which is the distance of B from the origin. From
Fig. 2.5c,

x0 = OB = l1 cos θ1 − l2 cos θ2 (2.4.1)

and

y0 = (
OA

)
y

= l1 sin θ1 = l2 sin θ2 (2.4.2)

from which we have the relation

l1
l2

= sin θ2

sin θ1
(2.4.3)

Arising from displacement, point A moves to point A′ at constant linkage length
of l1 such that the angle θ1 changes by dθ1; point B slides along the x-axis to B′ at
constant linkage length of l2 such that the angle θ2 changes by dθ2. With reference
to Fig. 2.5d,

x0 + dx = OB ′ = l1 cos(θ1 + dθ1) − l2 cos(θ2 + dθ2) (2.4.4)

and

y0 + dy = (
OA′)

y = l1 sin(θ1 + dθ1) = l2 sin(θ2 + dθ2) (2.4.5)

thereby giving displacements

dx = l1(cos θ1 cos dθ1 − sin θ1 sin dθ1 − cos θ1)

− l2(cos θ2 cos dθ2 − sin θ2 sin dθ2 − cos θ2) (2.4.6)

and

dy = l1(sin θ1 cos dθ1 + cos θ1 sin dθ1 − sin θ1)

= l2(sin θ2 cos dθ2 + cos θ2 sin dθ2 − sin θ2) (2.4.7)

For infinitesimal change in angle, Eqs. (2.4.6) and (2.4.7) simplify to

dx = −l1dθ1 sin θ1 + l2dθ2 sin θ2 (2.4.8)

and

dy = l1dθ1 cos θ1 = l2dθ2 cos θ2 (2.4.9)
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respectively. These displacement components give the strain components

εx = dx

x0
= − l1dθ1 sin θ1 − l2dθ2 sin θ2

l1 cos θ1 − l2 cos θ2
(2.4.10)

and

εy = dy

y0
= dθ1

tan θ1
= dθ2

tan θ2
(2.4.11)

Using the relation described by Eq. (2.4.3), we have the strain ratio

εx

εy
= tan θ1 tan θ2 (2.4.12)

Recalling the definition of Poison’s ratio being vi j = −ε j/εi , we obtain

vyx = 1

vxy
= − tan θ1 tan θ2 (2.4.13)

Since the half angles of the double arrowheads comply with 0 < θ1 < θ2 < π/2,
it follows that both vyx and vxy are negative. If the double arrowhead in the x-z plane
is identical to that of the x-y plane, then vyx = vzx and vxy = vxz .

Suppose the geometry of the linkages lying on the x-z plane differs from those on
the x-y plane, as shown in Fig. 2.6, in which the major and minor linkage lengths L1

and L2, and their subtending half angles φ1 and φ2 on the x-z plane correspond to l1,
l2, θ1 and θ2 respectively on the x-y plane, then

vzx = 1

vxz
= − tan φ1 tan φ2 (2.4.14)

by comparison, in which a relation similar to Eq. (2.4.3)

L1

L2
= sin φ2

sin φ1
(2.4.15)

holds. While both Equations (2.4.3) and (2.4.15) describe geometrical relation-
ship within its own plane, the relation between both planes can be established by
recognizing common axial length

l1 cos θ1 = L1 cosφ1

l2 cos θ2 = L2 cosφ2
(2.4.16)

and common displacement along the x-axis

l1dθ1 sin θ1 − l2dθ2 sin θ2 = L1dφ1 sin φ1 − L2dφ2 sin φ2 (2.4.17)
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Fig. 2.6 3D representation of intersecting double arrowheads, showing: a 2×2×2 IPDAs projected
on x-y plane, b 2× 2× 2 IPDAs projected on x-z plane, c 2× 2× 2 IPDAs projected on y-z plane,
d isometric view of a single IPDA, and e comparison of geometries for each of the half intersecting
double arrowheads

Since auxeticity is achievable in two perpendicular planes x-y and x-z, it follows
that auxeticity is also achievable in the third orthogonal plane y-z. The geometrical
properties of the linkages in one plane (l1, l2, θ1, and θ2) can be related to the
geometrical properties in the other plane (L1, L2, φ1, and φ2) by taking the ratio of
l1 to L2 from Eqs. (2.4.3) and (2.4.15) to give

l1
L2

= l2
L1

sin θ2 sin φ2

sin θ1 sin φ1
(2.4.18)
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The variables l2 and L1 in Eq. (2.4.18) can be substituted by L2 and l1, respectively,
by using Eq. (2.4.16) to give

l1
L2

=
√
tan θ2 sin 2φ2

tan φ1 sin 2θ1
(2.4.19)

A 2D planar auxeticity is graphically represented in Fig. 2.7 based on Eq. (2.4.13),
which is in reference to the x-y plane. A family of vyx and vxy versus θ2 were plotted
for various θ1. The trend shown in Fig. 2.7 is valid for the x-z plane, i.e., vyx = vzx
and vxy = vxz , if φ1 and φ2 are identical to θ1 and θ2 respectively, thereby leading to
transversely isotropic 3D auxeticity with the y-axis and z-axis forming the plane of
isotropy.

An overview on the auxeticity of the proposed structure is displayed in Fig. 2.8
in terms of vyx contour plot as a function of θ1 and θ2 with the condition θ1 < θ2 as
defined by the structural geometry set out in Fig. 2.5c and the condition θ2 < π/2
to confine the plots within the auxetic region. The former condition requires that
the contour plot be made undefined for θ1 > θ2 in Fig. 2.8, i.e., only the portion
of the contour plots below the dashed diagonal lines are shown. As expected from

Fig. 2.7 Plots of Poisson’s ratio vyx (top) and vxy (bottom) versus θ2 for various θ1
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Fig. 2.8 Contour plots of vyx as function of θ1 and θ2

Eq. (2.4.13), Figure 2.8 (top left) shows the limiting values of vyx = 0 and vyx →
−∞ corresponding to θ1 = 0 and θ2 = π/2, respectively. Due to the sharp change in
vyx as θ → π/2, a narrower range of vyx contour plot is shown in Fig. 2.8 (top right);
of special interest is the condition vyx = −1 at θ1 = θ2 = π/4. A further narrowing
of the contour plot range is displayed in Fig. 2.8 (bottom left), which indicates an
almost gradual change in vyx for very sharp double arrowheads. Conversely for cases
where the double arrowheads are blunt, very large auxeticity is observed, as evident
from Fig. 2.8 (bottom right).

In the more generic case where φ1 and φ2 are not identical to θ1 and θ2, the
Poisson’s ratio of the two planes vyx and vzx are calculated separately; however, the
conditions laid down by Eqs. (2.4.16) and (2.4.17) apply. Nine special cases that
satisfy these conditions, as listed in Table 2.1, are selected for illustration purposes.
It is convenient to express the subtending half angles of the linkages with reference to
the x-axis in terms of their tangents. A full description of the geometry is attainable by
two broad approaches. One approach is by listing all four half angles or their tangents.
Another approach is by listing both the intraplane linkage length ratio (i.e., l1/ l2 and
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Table 2.1 Summary of special case Poisson’s ratioswhere the geometry of themutually intersecting
double arrowheads are different

Cases
tan

[
θ1 θ2

φ1 φ2

] l1
l2

L1
L2

l1
L2

Poisson’s ratios Schematics
showing relative
linkage lengths
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L1/L2) and one interplane linkage ratio (l1/L1, l2/L2, l2/L1 or l1/L2). Both the half
angle tangents and the linkage length ratios, as well as graphical representations,
of the nine special cases are furnished in Table 2.1. The calculated Poisson’s ratio
implies that a change in the linkage length ratios significantly alters the Poisson’s
ratio, thereby showing that the auxeticity of such a system is not only achievable in
3D, but also can be effectively tailor-made.

With the possibility of attaining tailor-made auxeticity, it is now suggested that
a functionally graded plate that exhibits a change in Poisson’s ratio from negative
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to positive is possible, akin to the case of functionally graded (FG) beam consisting
of honeycomb structures in which the re-entrant angles change values from the top
surface to the bottom surface (Lim 2002b). Unlike the previous work, the use of inter-
secting double arrowhead is easier to achieve due to its simpler geometrical descrip-
tion and therefore can be extended from a FG beam undergoing single curvature
bending to FG plates undergoing double curvature bending. A 2D representation of
a functionally graded bulk solid changing from auxetic IPDAs of intersecting double
arrowheads to conventional IPDAs of intersecting rhombi is shown in Fig. 2.9a. The
semi-auxetic (or partial auxetic) material as shown in Fig. 2.9b, i.e., θ1 < 90◦ < θ2
with φ1 < φ2 < 90◦ or alternatively θ1 < θ2 < 90◦ with φ1 < 90◦ < φ2, is
analogous to that based on combined re-entrant and hexagonal microstructures in
different planes (Lim 2004); it further allows the possibility of producing an “oppos-
ing” functionally graded material that exhibits change from auxetic to conventional
from top to bottom in one plane but conventional to auxetic from top to bottom in
another plane, as shown in Fig. 2.9c.

2.5 Ring-Rod Assembly as a Unique Example of Auxetic
Microstructure

In this example, a 2D analysis of single ring structures is firstly presented, followed by
a3Danalysis of double-ring structures. Thereafter, some special cases are considered,
while discussion on its NTE properties is given in Sect. 11.11. A 2D auxetic behavior
can be attained based on the ring and a pair of sliding rods. Each rod is attached to the
inner surface of the ring and protrudes from a small hole diametrically opposite, as
shown in Fig. 2.10a. It is herein assumed that the ring is thin and flexible, while the
rod is rigid. The dimensions of such a ring with a pair of sliding rods are determined
from the ends of the protruding rods and the outer surface of the ring perpendicular to
the rods. When the rods are compressed as shown in Fig. 2.10b, the ring transforms
into an ellipse with the major axis coinciding with rod alignment while the minor
axis is formed in the transverse direction, thereby leading to overall contraction of
the ring-rod structure along the rod direction and in their transverse directions.When
the rods are pulled as indicated in Fig. 2.10c, the ring becomes narrow in the direction
of the sliding rods, thereby leading to ring elongation in the direction perpendicular
to the rods. This gives a 2D auxetic behavior.

To prevent each ring from rotating about the axis perpendicular to the sliding rods,
the sliding rods are arranged in an alternate manner to cancel any rotating effects.
Figure 2.11a shows the alternating arrangement of the sliding rods in connecting
neighboring rings in the direction of the sliding rods. The arrangement of the sliding
rods is also alternated, as illustrated in Fig. 2.11b, in the direction perpendicular
to the sliding rods. Therefore, when the alternating arrangement of the sliding rods
is implemented in both directions, we have a rectangular array of ring and sliding
rod shown in Fig. 2.11c. In what follows, we herein consider the small deformation



2.5 Ring-Rod Assembly as a Unique Example of Auxetic Microstructure 25

(a)

Auxetic 
portion

Conventional 
portion

(b)

(c)

xO

A

B

z

A

C

C

xO

A

B

yz

A

C

C
x-y conventional plane

x-z auxetic plane

x-y auxetic plane

x-z conventional plane

y

Auxetic

Auxetic

Conventional

Conventionalx

z
y

Fig. 2.9 a A 2D representation of a functionally graded bulk solid changing from auxetic IPDAs
as indicated by intersecting double arrowhead from the top to conventional IPDAs as shown by the
intersecting rhombus toward the bottom, b schematics of semi-auxetic (or partial auxetic) structure
with the x-y and x-z axes forming the conventional and auxetic planes, respectively (left), and auxetic
and conventional planes, respectively (right), and c the arrangement of functionally graded material
with decreasing and increasing auxeticity on x-y and x-z planes, respectively, with increasing x
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(a)
(b)

(c)

Fig. 2.10 a A ring structure with a pair of sliding rods at rest, b compressive load on sliding rods
causes contraction of ring dimension in transverse direction, and c tensile load on sliding rods
causes expansion of ring dimension in transverse direction

nature of the model development. Suppose a thin ring of radius R is subjected to a
tensile or compressive load of magnitude P on two opposite sides, the change in the
ring dimension along the load line is (Timoshenko 1948)

δP = ±
(

π

4
− 2

π

)
PR3

E I
(2.5.1)
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(a)

(b) (c)

Fig. 2.11 Alternate arrangement to prevent turning of rings about any axis: a a series of four
connected rings parallel to the sliding rods, b a series of four connected rings perpendicular to the
sliding rods, and c an array of 4 by 4 rings

while the change in the ring dimension perpendicular or transverse to the load line is

δT = ∓
(
2

π
− 1

2

)
PR3

E I
(2.5.2)

where I is the second moment area of the ring’s cross section about its neutral axis,
and E is Young’s modulus of the ring material. The upper and lower signs on the
RHS of Eqs. (2.5.1) and (2.5.2) refer to the application of tensile and compressive
loads, respectively, on the sliding rods.

Poisson’s ratio, being defined as

vxz = − εz

εx
(2.5.3)

can be used for the ring structure shown in Fig. 2.12 whereby a tensile load of P is
applied on A and B to give

vxz = −�K L

K L
/
�AB

AB
= −�K L

�AB
× AB

K L
(2.5.4)

Suppose we let the portion of rods measured radially outward from the thin ring
be l1 and l3 along the x and z axes, respectively, then we have the lengths of short
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Fig. 2.12 Single ring structure exhibiting a conventional behavior, b auxetic behavior, c auxetic
behavior, and d conventional behavior

rods that are fixed to the outer surface of the ring as l1 and l3 along the x and z axes,
respectively, while the lengths of the sliding rods that are fixed to the inner surface
of the rings are (2R + l1) and (2R + l3) along the x and z axes, respectively. This
gives

vxz = −�K L

�AB

(
R + l1
R + l3

)
(2.5.5)

where
∣∣�AB

∣∣ = ∣∣�CD
∣∣ and

∣∣�K L
∣∣ = ∣∣�EF

∣∣ or

∣∣�AB
∣∣ = |δP | = π2 − 8

4π

PR3

E I
(2.5.6)

and

∣∣�K L
∣∣ = |δT | = 8 − 2π

4π

PR3

E I
(2.5.7)

The denominators of Eqs. (2.5.6) and (2.5.7) aremade common to facilitate conve-
nient calculations of Poisson’s ratio in Table 2.2, whereby appropriate signs are
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Table 2.2 Summary of effective Poisson’s ratio based on �AB > 0 for the ring structure

Schematics. See Fig. 2.12 for details Effective Poisson’s ratio based on

�AB = π2−8
4π

PR3

E I

Remarks

∣
∣�K L

∣
∣ = − 8−2π

4π
PR3

E I

∴ vxz = + 8−2π
π2−8

(
R+l1
R+l3

)
Conventional

∣∣�K L
∣∣ = + 8−2π

4π
PR3

E I

∴ vxz = − 8−2π
π2−8

(
R+l1
R+l3

)
Auxetic

∣∣�K L
∣∣ = + 8−2π

4π
PR3

E I

∴ vxz = − 8−2π
π2−8

(
R+l1
R+l3

)
Auxetic

∣
∣�K L

∣
∣ = − 8−2π

4π
PR3

E I

∴ vxz = + 8−2π
π2−8

(
R+l1
R+l3

)
Conventional

incorporated into �K L based on �AB > 0. For clarity, details shown in Fig. 2.12
are removed from Table 2.2. Calculations of vxz are summarized in Table 2.2 based
on Eqs. (2.5.5)–(2.5.7). It is clear that of the four single ring structures displayed
in Fig. 2.12, two of them—Fig. 2.12b, c—are geometrically equivalent, but differ
only in the loading direction; loading is applied on the sliding rods and fixed rods,



30 2 Auxetic Microstructures

(a) (b)
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(c)

D
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G

H

Fig. 2.13 a A double-ring fabricated from b four half rings, and c two incomplete rings

respectively. Hence vzx for the single ring structure in Fig. 2.12b can be inferred from
vxz of Fig. 2.12c and vice versa. For square array, i.e., l1 = l3, we have vzx = vxz .

A 3D analysis is made herein for a double-ring shown in Fig. 2.13a. The double-
ring is essentially a pair of rings of equal thickness and radius, joined at the pole.
There are two possible methods to produce the double-ring. The first method requires
four half rings, referred to as ECF, EDF, EGF, and EHF in Fig. 2.13b, such that
perfect bonds are made at the poles E and F. The second method requires two rings
as indicated by ECFDE and FGEHF in Fig. 2.13c and cut at locations E and F,
respectively, to allow attachment with one another. Regardless of how the double-
ring ismade, the following analysis on the effective Poisson’s ratio and effective CTE
of the double-ring is based on perfect and seamless bonding indicated by Fig. 2.13a.
Two sets of analyses are presented, i.e., Poisson’s ratio analysis for loading of the
double-ring along the pole direction (i.e., z-axis), and Poisson’s ratio analysis for
loading of the double-ring along the equator direction (i.e., either x-axis or y-axis).
The effective CTE analysis is furnished in Sect. 11.11. Poisson’s ratio analysis for
pole-loading is simpler than that for equator-loading; hence, the former is furnished
before that latter.

To qualitatively illustrate the auxeticity of the pole-loaded double-ring with and
without the sliding rods, Figure 2.14 shows four sample examples of this double-ring
being stretched in the z-axis. The first example, Fig. 2.14a, is straight forward, as
stretching of the double-ring at points E and F contracts the CD and GH distances,
thereby exhibiting conventional behavior. The double-ring also behaves similarly
for the structure shown in Fig. 2.14b. However, the contraction of the CD distance
pushes out the sliding rods such that the AB distance increases and therefore giving
auxetic behavior in the x-z plane. Likewise the contraction of CD andGH, due to the
stretching apart of E and F indicated by Fig. 2.14c, leads to elongation of the AB and
IJ distances. For this structure, the pair of sliding rods AD and CB is placed slightly
above the equator while the pair of sliding rods GJ and IH is placed slightly below
the equatorial plane. The arrangement results in auxeticity being demonstrated in
both the x-z and y-z planes, i.e., fully auxetic behavior. However, the trend reverses
when a pair of sliding rods is implemented along the z-axis direction. Perusal to
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Fig. 2.14 Double-rings exhibiting conventional behavior for a and d, partial auxeticity for b, and
full auxeticity for c, based on loading in z-axis (pole-loading)
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Fig. 2.14d shows that the application of tension on K and L causes contraction to the
EF distance, thereby extending the CD and GH distances, which in turn gives rise
to the shortening of the AB and IJ distances, respectively—therefore the structure is
conventional. Due to geometrical reason, the middle portion of the pairs of sliding
rods EL and KF are made to avoid the other two pairs of the sliding rods in the
vicinity of the double-ring’s center.

For a load applied at the pole of a double-ring, the actual load on each ring is
halved, and as a consequence, both the change in the pole dimension as well as the
changes in the equatorial dimensions are halved, i.e.

�EF = ±
(

π

8
− 1

π

)
PR3

E I
(2.5.8)

�CD = �GH = ∓
(
1

π
− 1

4

)
PR3

E I
(2.5.9)

where the upper and lower signs correspond to the application of tensile and compres-
sive loads, respectively, on points E and F. In the following calculations, we consider
eight combinations of double-ring with pairs of fixed short rods and/or pairs of long
sliding rods. The fixed short rods are attached to the outer surface of the ring and are
of lengths l1, l2 and l3 aligned in the x, y and z axes, respectively. The long sliding
rods are attached to the inner surface of the ring and are of lengths 2R + l1, 2R + l2
and 2R + l3 oriented in the x, y and z axes, respectively, so that the partial lengths
measured radially outward from the ring surface are l1, l2 and l3 along the three axes.
The locations of points A to L, the Cartesian axes, and the pole-loading direction for
the schematics in Table 2.3 follow the convention described in Fig. 2.14, but are not
shown in the table for clarity. In the calculation of Poisson’s ratio, a tensile load P
is applied on the ends of either the pair of fixed rods or the pair of sliding rods, i.e.,
K and L, so that the strain in the loading direction (z-axis) is positive. We further
recognize that the elongation, or shortening magnitudes, of KL, AB, and IJ must be
equal to those of EF, CD, and GH on the basis of rigid rods, i.e.

∣∣�K L
∣∣ =

(
π

8
− 1

π

)
PR3

E I
(2.5.10)

∣
∣�AB

∣
∣ = ∣

∣�I J
∣
∣ =

(
1

π
− 1

4

)
PR3

E I
(2.5.11)

For pole-loading, Poisson’s ratio

vzx = −εx

εz
(2.5.12)

and
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vzy = −εy

εz
(2.5.13)

can be written for the double-ring structure in Fig. 2.14 as

vzx = −�AB

AB

/
�K L

K L
= −�AB

�K L
× K L

AB
(2.5.14)

and

vzy = −�I J

I J

/
�K L

K L
= − �I J

�K L
× K L

I J
(2.5.15)

respectively. In terms of double-ring geometry, Poisson’s ratios are written as

vzx = −�AB

�K L

(
R + l3
R + l1

)
(2.5.16)

and

vzy = − �I J

�K L

(
R + l3
R + l2

)
(2.5.17)

Specific calculations of vzx and vzy from Eqs. (2.5.16) and (2.5.17) are furnished
in Table 2.3 with incorporation of appropriate signs for Eqs. (2.5.10) and (2.5.11).

To qualitatively illustrate the auxeticity of the equator-loaded double-ring with
and without the sliding rods, Figure 2.15 shows four sample examples of this double-
ring being stretched in the x-axis. Figure 2.15a shows a double-ring without sliding
rods being pulled at points C and D such that the EF distance decreases while the
GH distance increases, hence producing auxeticity in the x-y plane while the x-z
plane remains conventional. In the case of a pair of sliding rods aligned in the x-
direction, as shown in Fig. 2.15b, the application of stretching force on points A and
B brings C and D closer together and, consequently, EF and GH distances increases
and decreases, respectively. This gives auxetic and conventional behavior in the x-z
and x-y planes, respectively. Figure 2.15a, b is therefore partially auxetic structures.
Figure 2.15c gives an example of two pairs of sliding rods. The deformation of the
double-ring in Fig. 2.15c is similar to that in Fig. 2.15b; however, the motion of G
and H toward each other translates to increasing distance of I and J. The increasing
distance of EF and IJ arising from stretching of AB therefore exhibits auxeticity in
both x-y and x-z planes and hence full auxeticity. The final example of three pairs
of sliding rods illustrated in Fig. 2.15d gives the same ring deformation as those in
Fig. 2.15b, c. However, the elongation of the EF distance leads to contraction of the
KL distance; the resulting auxetic and conventional characteristics in the x-y and x-z
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Fig. 2.15 Double-rings exhibiting auxeticity on a x-y plane, b x-z plane, c both x-y and x-z planes,
and d x-y plane, based on loading in x-axis (equator-loading)
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planes, respectively, puts this double-ring and triple pair sliding rod structure under
the category of partially auxetic structure.

In the 3D analysis of Poisson’s ratio for equator-loading, a two-stage calculation
is imposed. The first stage assumes that the double-ring consists of two unbonded
rings, in which one of them is loaded at two opposite points indicated by C and
D in Fig. 2.15a. The arising gap between both unbonded rings at E and F is then
eliminated in the second stage calculation by applying an internal load between both
rings at E and F, thereby leading to changes in the GH distance as well as a second
change in the CD distance.

In the first stage calculation, a load P is applied on C and D such that the CD
distance changes by

�
(
CD

)
1 = ±δP1 = ±

(
π

4
− 2

π

)
PR3

E I
(2.5.18)

where subscript “#1” refers to the first stage calculation, while the EF distance
changes by

�
(
EF

)#1
1 = ∓δT 1 = ∓

(
2

π
− 1

2

)
PR3

E I
(2.5.19)

where superscript “#1” refers to the first ring indicated byCEDF. The upper and lower
signs correspond to the application of tensile and compressive loads, respectively.

By geometrical compatibility, the EF distance for both rings must be made equal.
Hence, an internal force Q is applied to E and F on both rings to bridge the gap. Let
δ#1Q2 and δ#2Q2 be the change for the EF distance in the first ring (CEDF) and second
ring (GEHF), respectively, due solely to the application of Q in the second stage
calculation such that

∣∣δ#1Q2

∣∣ + ∣∣δ#2Q2

∣∣ = |δT 1| (2.5.20)

where subscript “2” refers to the second stage calculation while superscript “#2”
refers to the second ring indicated by GEHF. Let Q be the internal force on the first
ring to change the EF distance by δ#1Q2,

�
(
EF

)#1
2 = ±δ#1Q2 = ±

(
π

4
− 2

π

)
QR3

E I
(2.5.21)

while the resulting change in the CD distance is

�
(
CD

)
2 = ∓δP2 = ∓

(
2

π
− 1

2

)
QR3

E I
(2.5.22)
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Recognizing that Q is also an opposite internal force on E and F of the second
ring, we have the change in EF distance for the second ring

�
(
EF

)#2
2 = ∓δ#2Q2 = ∓

(
π

4
− 2

π

)
QR3

E I
(2.5.23)

and the corresponding change in GH distance

�GH = ±δW2 = ±
(
2

π
− 1

2

)
QR3

E I
(2.5.24)

Since
∣∣δ#1Q2

∣∣ = ∣∣δ#2Q2

∣∣ as evidenced from Eqs. (2.5.21) and (2.5.23), it is possible
to express the internal force Q in terms of the applied load P from Eq. (2.5.20)

∣∣δ#1Q2

∣∣ = ∣∣δ#2Q2

∣∣ = 1

2
|δT1| (2.5.25)

to give

Q = 4 − π

π2 − 8
P (2.5.26)

Expressing all the deformations in terms of applied load P , it is possible to obtain
the overall change in dimension. The overall change to the CD distance is summed
from Eqs. (2.5.18) and (2.5.22) from both calculation stages to give

�CD = �
(
CD

)
1 + �

(
CD

)
2 = ±

{
π2 − 8

4π
∓ (4 − π)2

2π
(
π2 − 8

)

}
PR3

E I
(2.5.27)

The overall change to the EF distance can be obtained by two ways. The first
way is to sum up the change of EF distance on the first ring from both stages of
calculation using Eqs. (2.5.19) and (2.5.21). The second, and more convenient, way
is to recognize that the second stage calculation for the change in EF distance for the
second ring, i.e., Equation (2.5.23), is the overall change in the EF distance itself.
Hence

�EF = �
(
EF

)#1
1 + �

(
EF

)#1
2 = �

(
EF

)#2
2 = ∓

(
1

π
− 1

4

)
PR3

E I
(2.5.28)

Substituting Eq. (2.5.26) into Eq. (2.5.24), we have the change in GH distance

�GH = ±
[

(4 − π)2

2π
(
π2 − 8

)

]
PR3

E I
(2.5.29)
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Note that the expressions contained within the parentheses {. . .}, (. . .) and [. . .]
in Eqs. (2.5.27), (2.5.28) and (2.5.29), respectively, are positive values; the extension
and contraction are taken care by the upper and lower signs, which correspond
to the application of tensile and compressive loads, respectively. In the following
calculations, we consider again eight combinations of double-ring with pairs of
short fixed rods and/or pairs of long sliding rods. The fixed short rods (l1, l2, l3)
and long sliding rods (2R + l1, 2R + l2, 2R + l3) are oriented along the x, y, z axes.
The locations of points A to L, the Cartesian axes, and the equator-loading direction
for the schematics follow the convention described in Fig. 2.15 and are not shown
in Table 2.3 for clarity. Similarly in the calculation of Poisson’s ratio, a tensile load
P is applied on the ends of either the pair of fixed rods or the pair of sliding rods,
i.e., A and B, so that the strain in the loading direction (x-axis) is positive. We further
recognize that the elongation magnitudes of AB, KL, and IJ must be equal to the
elongation magnitudes of CD, EF, and GH on the basis of rigid rods, i.e.

∣∣�AB
∣∣ =

{
π2 − 8

4π
∓ (4 − π)2

2π
(
π2 − 8

)

}
PR3

E I
(2.5.30)

∣∣�K L
∣∣ =

(
1

π
− 1

4

)
PR3

E I
(2.5.31)

∣∣�I J
∣∣ =

[
(4 − π)2

2π
(
π2 − 8

)

]
PR3

E I
(2.5.32)

Hence, Poisson’s ratio in the x-z plane vxz = −εz/εx is described by Eq. (2.5.4)
while Poisson’s ratio in the x-y plane vxy = −εy/εx is written as

vxy = −�I J

I J

/
�AB

AB
= − �I J

�AB
× AB

I J
(2.5.33)

In terms of double-ring geometry, Poisson’s ratio vxz is described by Eq. (2.5.5),
whereby �K L for double-ring is half that of a single ring while �AB for double-
ring is different from that of a single ring. The corresponding Poisson’s ratio in the
x-y plane is

vxy = − �I J

�AB

(
R + l1
R + l2

)
(2.5.34)

when expressed in terms of double-ring geometry. Poisson’s ratio for equator-loaded
double-ring with pairs of sliding rods and/or fixed rods can be calculated from
Eqs. (2.5.5) and (2.5.34) using appropriate incorporation of signs for Eqs. (2.5.30)
to (2.5.32); a summary of Poisson’s ratio calculations based on equator-loading for
the eight specific cases of double-ring is furnished Table 2.3.
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Poisson’s ratio vzx and vzy expressions using Eqs. (2.5.16) and (2.5.17) for pole-
loading as well as vxz and vxy expressions using Eqs. (2.5.5) and (2.5.34) for equator-
loading are summarized in Table 2.3. No expressions were made for equator-loading
in the y-axis as vyz and vyx can be inferred from vxz and vxy . Appropriate signs
have been incorporated into Eqs. (2.5.10) and (2.5.11) as well as for Eqs. (2.5.30) to
(2.5.32) for pole-loading and equator-loading cases, respectively. The incorporation
of signs adheres to the following rules: (a) the extension (or contraction) of CD
distance leads to the contraction (or extension) and extension (or contraction) of EF
and GH, respectively, and (b) the ends of the sliding rods possess opposite motion
from the point of the double-rings where the sliding rods pass through. Here, we
introduce the terms “conventional” for loadingwhich leads to positive Poisson’s ratio
in two planes, “partially auxetic” for loading that gives positive Poisson’s ratio in
one plane and negative Poisson’s ratio in another plane, and “fully auxetic” behavior
for loading which gives rise to negative Poisson’s ratio in two planes. We can see
that when the double-ring structure is fully auxetic under pole-loading, it is also fully
auxetic under equator-loading. To a certain extent, the double-ring is partially auxetic
under pole-loading if it is also partially auxetic under equator-loading. However, it
is of interest to note that, to a large extent, there is a combination of conventional
and partially auxetic behavior depending on the loading direction.

The 2D and 3D analyses of ring and double-ring structures, respectively, with
combinations of short fixed rods and/or long sliding rods provide Poisson’s ratio
values that are strongly determined by the ratio of the ring radius and the rod lengths.
For example, the 2D analyses summarized in Table 2.2 show that Poisson’s ratio
magnitudes for all the four combinations are

|vxz| = 8 − 2π

π2 − 8

(
R + l1
R + l3

)
= 0.918

R + l1
R + l3

(2.5.35)

Likewise, strong influence from ring radius and rod length on the Poisson’s ratio
is observed for the 3D analysis. Table 2.3 indicates that Poisson’s ratio magnitudes
for all the eight combinations are

|vzx | = 8 − 2π

π2 − 8

(
R + l3
R + l1

)
= 0.918

R + l3
R + l1

(2.5.36)

and

∣∣vzy
∣∣ = 8 − 2π

π2 − 8

(
R + l3
R + l2

)
= 0.918

R + l3
R + l2

(2.5.37)

for pole-loading (z-axis), while

|vxz| =
[
π2 − 8

4 − π
− 8 − 2π

π2 − 8

]−1
R + l1
R + l3

= 0.794
R + l1
R + l3

(2.5.38)
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and

∣
∣vxy

∣
∣ =

[
1

2

(
π2 − 8

4 − π

)2

− 1

]−1
R + l1
R + l2

= 0.729
R + l1
R + l2

(2.5.39)

for equator-loading (x-axis).
We shall now consider a few special cases. For the first special case of l1 = l2 = l3,

i.e., the short fixed rods are of equal length l and the long sliding rods are of equal
length 2R + l such that the single ring and the double-ring structures are arranged
in square and cube arrays, respectively, then

|vxz| = 8 − 2π

π2 − 8
= 0.918 (2.5.40)

for the single ring structure, while

|vzx | = ∣∣vzy
∣∣ = 8 − 2π

π2 − 8
= 0.918 (2.5.41)

for the double-ring structure under pole-loading (z-axis), and

|vxz| =
[
π2 − 8

4 − π
− 8 − 2π

π2 − 8

]−1

= 0.794 (2.5.42)

and

∣∣vxy
∣∣ =

[
1

2

(
π2 − 8

4 − π

)2

− 1

]−1

= 0.729 (2.5.43)

for the double-ring structure under equator-loading (x-axis).
The second special case is where Poisson’s ratio magnitude is set at 1. This is

attainable for the single ring structure, i.e., |vxz| = 1, if

R + l1
R + l3

= π2 − 8

8 − 2π
= 1.089 (2.5.44)

and |vzx | = 1 or
∣
∣vzy

∣
∣ = 1 for the double-ring structure under pole-loading if

R + l3
R + l1

= π2 − 8

8 − 2π
= 1.089 (2.5.45)

or

R + l3
R + l2

= π2 − 8

8 − 2π
= 1.089 (2.5.46)
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respectively. For equator-loading of the double-ring, |vxz| = 1 or
∣∣vxy

∣∣ = 1 are
obtained if

R + l1
R + l3

= π2 − 8

4 − π
− 8 − 2π

π2 − 8
= 1.260 (2.5.47)

or

R + l1
R + l2

= 1

2

(
π2 − 8

4 − π

)2

− 1 = 1.372 (2.5.48)

are satisfied, respectively.
The third special case is made for extreme positive and negative Poisson’s ratio.

This can be achieved when a pair of rod lengths along one axis is made very large in
comparison to the summation of rod lengths and radius in another axis. Specifically,

|vxz| → ∞ ⇔ l1 	 R + l3
|vzx | → ∞ ⇔ l3 	 R + l1

(2.5.49)

for the single and double-ring structures, and

∣∣vxy
∣∣ → ∞ ⇔ l1 	 R + l2∣∣vzy
∣∣ → ∞ ⇔ l3 	 R + l2

(2.5.50)

for the double-ring structures.

2.6 Concluding Remarks

Thus far the examples of geometrical gradation have been taken from 2Dmicrostruc-
tures due to their simplicity and for aiding understanding. Obviously, gradation of 3D
auxetic microstructures is more varied due to greater number of possible combina-
tions. This includes 3D partially auxetic models that exhibit auxetic behavior in one
plane but non-auxetic behavior in another plane (Lim 2002a, 2007; Wojciechowski
2005; Tretiakov and Wojciechowski 2014; Piglowski et al. 2016; Tretiakov et al.
2018). Similar to previous reviews on auxetic systems, the analogies discussed in
Sects. 2.2 and 2.3 cluster auxetic models according to their geometrical similarities.
A less intuitive but more meaningful approach is discussed in the next chapter.
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Chapter 3
Analogies Across Auxetic Models

Abstract This chapter views 2D auxetic models, including 3D deformation models
with 2D auxetic behavior, from mechanism perspective instead of geometrical
perspective. On this basis, auxetic models across different geometrical groups can be
regrouped into clusters that exhibit analogy in deformation mechanism. Factors that
are taken into consideration include the identification of corresponding rotation and
non-rotation units, as well as linkages/joints between rotation and non-rotation units
and non-linkages/non-joints across various auxetic models. As a result, five clusters
of auxetic models have been identified, in which auxetic models within each cluster
are analogous to each other. The identified clusters are those that exhibit: (1) double
periodicity in the rotation direction of their rotating units, (2) synchronized rotation
direction of their rotation units, (3) single periodicity in the rotation direction of their
rotating units, (4) random rotation of their rotation units, and (5) non-rotation of
units. Results from this analogy identification place auxetic models in a systematic
representation andwill enrich the future development of auxetic models, particularly,
those that do not fall within these five clusters.

Keywords Analogies · Auxetics · Geometrical models · Mechanism

3.1 Introduction

This chapter lays out the analogies across different auxetic models; in particular,
the attempt herein places less emphasis on the geometrical properties of the auxetic
models, but places greater emphasis on the deformation mechanism as a means to
establish analogies (Lim 2017a) based on deformation mechanisms. The scope of
this chapter is confined to 2D geometry, and where 3D deformations are concerned,
consideration is made only for those that exhibit auxetic properties only on one plane
so as to focus on the fundamental principles involved.
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3.2 Analogies Across Rotating Square, Perforated Sheet,
Anti-tetrachiral, Missing Rib, and Re-entrant Models

An obvious comparison between two types of auxetic models is furnished in Fig. 3.1.
Here, the rotating squares model by Grima and Evans (2000) compares well with
the perforated sheet by Taylor et al. (2013), in which the presence of long and
narrow perforation is analogous to a closed-up rotating square model (Fig. 3.1, top).

Fig. 3.1 Comparison between the rotating square model (left) and the perforated sheet (right)
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On the other extreme, the fully opened rotating square model is analogous to a
sheet with circular cut-outs in square array (Fig. 3.1, bottom). The intermediate
case of rotating squares in the partially opened position corresponds to the sheet
with perforated ellipses (Fig. 3.1, middle). Inasmuch as a uniaxial compression of
the fully opened rotating squares (Fig. 3.1, bottom left) leads to the fully closed
rotating squares (Fig. 3.1, top left) through the partially opened rotating squares
(Fig. 3.1, middle left), a uniaxial compression on the perforated sheet of circular
holes (Fig. 3.1, bottom right) results in closing of the holes (Fig. 3.1, top right) via
the intermediary state of elliptical perforated holes (Fig. 3.1, middle right). This
case of buckling is further discussed in Sects. 3.9 and 3.10. To aid comparison, four
neighboring squares indicated in red are transposed on the perforated sheets while
four neighboring perforations denoted in blue are transposed on the rotating squares
model.

In spite of the rotating nature in a number of auxetic models, one may identify and
isolate certain boundaries in which there is no overall rotation. Reference to Fig. 3.2
shows some typical auxetic models, i.e., the rotating squares model by Grima and
Evans (2000), the anti-tetrachiral model by Chen et al. (2013), the rotating rigid cross
model by Grima et al. (2007), and the re-entrant model by Gibson and Ashby (1988),

Fig. 3.2 Identification of the overall non-rotating group of the rotating square model (first column),
anti-tetrachiral model (second column), a type of missing rib model (third column), and re-entrant
model (last column), at various stages of deformation from top to bottom
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in which clusters of 2-by-2 rotating elements are grouped within red boundaries that
do not encounter overall rotation but exhibit expansion and contraction.

Detailed comparison of these four auxeticmodels can bemade in conjunctionwith
Fig. 3.3. The four rotating squares on the top left of Fig. 3.3a are transposed on the top
left of Fig. 3.3b–d,while the four rotating cylinders at the bottom right of Fig. 3.3b are
similarly transposed on the bottom right of Fig. 3.3a, c, and d. The rotating hinges for
the missing rib model on the top right of Fig. 3.3c is likewise colored on the top right
of Fig. 3.3a, b, and d. It can be noticed that the point hinges in Fig. 3.3a, c correspond
to linkages that connect the rotating cylinders of Fig. 3.3b, and that the two vertically
aligned hinges in Fig. 3.3a, c each correspond to a pair of hinges at the ends of the
horizontal linkages of the re-entrant structure. Finally, the rotating linkages of the

(a) (b)

(c) (d)

Fig. 3.3 Comparison between a the rotating square model, b anti-tetrachiral model, c a type of
missing rib model, and d re-entrant model
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re-entrant structure indicated at the bottom left of Fig. 3.3d is correspondingly given
the same color on the bottom left of Fig. 3.3a–c. The similarities between Fig. 3.3a,
c have been pointed out by Grima et al. (2007), in which the ends of the rotating
crosses are essentially the hinges for the rotating squares. The rotating crosses in
Fig. 3.3c are herein called a type of missing rib model as it is formed from a square
grid with alternating vertical and horizontal ribs removed.

Arising from this comparison, an analogy can be established on the auxetic mech-
anism of the five auxetic models discussed so far. This is illustrated in Fig. 3.4 for the
expansion and contraction of the perforated sheet, rotating square, anti-tetrachiral,
missing rib, and re-entrant models.

Fig. 3.4 Mechanism
similarities for the expansion
(left) and contraction (right)
of (from top) perforated
sheet, rotating square model,
anti-tetrachiral model, a type
of missing rib model, and
re-entrant model

Expansion Contraction
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3.3 Analogy Between the Missing Rib Models
with the Tetrachiral and Anti-tetrachiral Models

Amore established type of missing rib model, as depicted in Fig. 3.5a, was proposed
by Smith et al. (2000) and has been investigated by Gaspar et al. (2005) and later by
Jiang and Li (2017). This is herein termed the tilted-swastika missing rib model as
the swastika ribs are tilted at 45° from the square array alignment of the swastikas.
This model is analogous to the tetrachiral model reviewed by Alderson et al (2010)
and displayed in Fig. 3.5b. The swastika on the top right of Fig. 3.5a, being colored
in red, is transposed onto the top right corner of Fig. 3.5b for comparison against the
tetrachiral model. Conversely, the cylinder at the top left of Fig. 3.5b, being colored in
blue, is transposed on the top left corner of Fig. 3.5a. Such transposes visually reveal

(a) Tilted-swastika (b) Tetrachiral

(c) Right-angled swastika (d) Anti-tetrachiral

Swastika-type missing rib Chiral/anti-chiral group
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Fig. 3.5 Analogy between swastika-type missing rib model and the (anti)tetrachiral model
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the analogy between the tilted-swastika model and the tetrachiral model. The “rigid”
parts that rotate are bolded on the bottom left corners of Fig. 3.5a, b. Likewise, the
corresponding hinges that permit rotation mechanism are pointed out in green at the
bottom right corners of Fig. 3.5a, b. Finally, the corresponding connecting parts for
both models are indicated by purple at the middle portion of Fig. 3.5a, b. A similar
comparison can be made to reveal the analogy between the right-angled swastika
model by Gaspar et al. (2005) and the anti-tetrachiral model (Alderson et al. 2010,
Chen et al. 2013) furnished in Fig. 3.5c, d, respectively.

This one-to-one correspondence between both groups ofmodels is colored accord-
ingly for ease of comparison. Such comparison reveals that while the tilted-swastika
and the right-angled swastika models belong to the same group by virtue of geom-
etry, and likewise the tetrachiral and anti-tetrachiral models are correctly grouped
together again by virtue of their geometrical properties, perspective frommechanism
viewpoint suggests otherwise. Reference to Fig. 3.5a, b shows that the rotating units
from both the tilted-swastika and the tetrachiral models rotate synchronously, i.e.,
every rotating unit rotates in the one direction during contraction and reverses during
expansion. On the other hand, perusal to Fig. 3.5c, d indicates that every unit rotates
in the opposite direction in comparison with its immediate neighbor along both the
horizontal and vertical directions, i.e., during contraction half of the units rotate in
the opposite direction from the other half and the rotational direction of all these
units reverse during expansion.

3.4 Analogies Among the Egg-Rack, Dimpled Sheet,
and a Class of Graphene Sheet

The egg-rack model by Grima et al. (2005a) is shown in Fig. 3.6 (top), the dimpled
sheet by Javid et al. (2015) is displayed in Fig. 3.6 (middle) and the uneven graphene
sheet by Grima et al. (2015) furnished in Fig. 3.6 (bottom) would not be typically
clustered together, and for good reason—their geometrical difference is obvious.
Their mechanisms, however, exhibit commonalities and therefore these models are
analogous to one another. For convenience, we consider one unit of the egg-rack
model displayed in Fig. 3.7 (top), in which application of tensile load at the ends of
the blue linkage in the x-direction would lead to a similar deformation on the red
linkage due to the requirement for the ends of both linkages to be constrained on the
same plane indicated by gray. Likewise, the application of x-direction load on the
dome rim that coincides with the blue meridian (Fig. 3.7, middle) would unbend the
red meridian so as to retain the dome rim on a plane. The imposition of flat base for
the egg-rack and dimpled sheet is a result of alternating out-of-plane bulge direction,
which provides cancelation effect to the out-of-plane displacement of the unit cell
boundary. Hence, auxetic property is observed in the x-y plane but conventional
properties are exhibited on the x-z and y-z planes, and this would, therefore, place
both the egg-rack and dimpled sheet models as plane auxetics or 2D auxetics. A
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Fig. 3.6 Grouping of the egg-rack model (Top, reproduced from Grima et al. (2005a) with permis-
sion of The Royal Society of Chemistry); dimpled sheet (middle, attributed to Javid et al. (2015));
and uneven graphene sheet (bottom, reproduced from Grima et al. (2015) with permission from
John Wiley & Sons) into a category



3.4 Analogies Among the Egg-Rack, Dimpled Sheet, … 61

Fig. 3.7 Common
mechanism for the
deformation of egg-rack
model, dimpled sheet, and
uneven graphene sheet

x y

z

similar mechanism can be seen for the case of the uneven graphene sheet, although
the bulges deform to different extent due to their irregularities.

3.5 Analogy Between the Metatetrachiral Units and Double
Arrowheads

A lesser known cousin to the tetrachiral and anti-tetrachiral models is the metate-
trahiral model proposed by Grima et al. (2008). With reference to Fig. 3.8a, the
cylinders along the odd columns rotate in the opposite direction to those in the even
columns. This mechanism is analogous to the double arrowhead model proposed by
Larsen et al. (1997) as shown in Fig. 3.8b. To aid comparison, a 2-by-2 group of
cylinders on the top left of Fig. 3.8a is colored in red and transposed onto the top left
of Fig. 3.8b, while the double arrowhead at the top right corner of Fig. 3.8b is colored
blue and transposed on the top right of Fig. 3.8a. The corresponding rotating parts
of both models are similarly colored at the bottom left of Fig. 3.8a, b. Finally, the
connecting parts for the metatetrachiral and the double arrowhead model are iden-
tified and correspondingly colored as connecting linkages and connecting hinges at
the bottom of Fig. 3.8a, b, respectively. Analogies between these two auxetic models
at different stages of deformations are depicted in Fig. 3.8c.
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(a) (b)

(c)

Fig. 3.8 Analogy between a metatetrachiral model and b double arrowhead model, with their
c deformation shapes (note the chirals’ circular centers coincidewith the double arrowhead’s linkage
mid-spans)

3.6 Analogy Between the Star-Honeycomb Structures
and Anti-chiral Models

In this section, an analogy is established between the star-connected models and a
type of anti-chiral models.We firstly examine the relationship between the 4-pointed,
square array star-connected model that was proposed by Theocaris et al. (1997)
and the anti-tetra-octachiral model illustrated in Fig. 3.9a, b, respectively. The red-
colored star and its connecting linkages at the top left of Fig. 3.9a are transposed
onto the top left of Fig. 3.9b, while the blue-colored anti-tetra-octachiral unit at the
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Fig. 3.9 Analogy between a 4-pointed, square array star-connected model, b anti-octa-tetrachiral
model, c 3-pointed, hexagonal array star-connected model, and d anti-deca-hexa-tetrachiral model

top right of Fig. 3.9b is transposed on the top right of Fig. 3.9a for a one-to-one
comparison. Having established this connection, the rotating parts of both models
are correspondingly colored at the bottom left of Fig. 3.9a, b. The parts that function
as connectors to the rotating units are indicated at the bottom right of Fig. 3.9a,
b. For completeness’ sake, the parts that connect one unit cell to its four closest
neighbors are indicated by bold black lines at the middle of Fig. 3.9a, b. A similar
analogy can be established between the 3-pointed, hexagonal array of star-connected
model as one of the star-connected models studied by Grima et al. (2005b) and the
anti-tetra-hexa-dodecachiral model displayed in Fig. 3.9c, d, respectively. It can be
observed that the hexagon, the star and the linkages in Fig. 3.9c are analogous to
the anti-dodecachiral, anti-hexachiral, and the anti-tetrachiral units, respectively, as
shown in Fig. 3.9d.
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3.7 Analogy Between the Ring-Rod Model
and the Re-entrant Model

Recently, Lim (2017b, 2019) introduced a ring-rod structure (Fig. 3.10, left) that
exhibits auxetic behavior, in which a pair of rods are attached at points B and C,
such that the rod passes through an opening on the ring and ending at points A
and D, respectively. The application of compressive force at points A and D in the
direction of the rod axis pushes points B and C further apart and as a consequent
the points E and F move closer toward each other. The motion reverses when the
applied load is tensile. This mechanism compares well, and finds its analogy to, the
re-entrant model (Fig. 3.10, right). To prevent rotation about the axis passing through
EF, the ring-rod structure is assembled in such a manner that the tendency to rotate
about the EF axis is opposed by its neighboring ring, as indicated in Fig. 3.11a. It
can now be pointed out that both the ring as well as the space between four rings
constitutes different set of re-entrant units. As with Fig. 3.10, the top left corner of
the re-entrant structure in Fig. 3.11b, colored in red, is transposed onto the top left
ring in Fig. 3.11a; accordingly, the points A to F in Fig. 3.11a correspond to points
A to F in Fig. 3.11b. However, this is not the only re-entrant analogy—the re-entrant
units in alternate columns of Fig. 3.11b is equivalent to the space formed at the center
of 2-by-2 rings. This is indicated by the re-entrant unit colored in blue, on the top
right of Fig. 3.11b, which is transposed onto Fig. 3.11a. As such the points K to P
in Fig. 3.11b is identified in Fig. 3.11a. Illustrations on these two auxetic models

Fig. 3.10 Analogies
between a single ring-rod
assembly (left) and a single
re-entrant structure (right)
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Fig. 3.11 Additional analogies between a an array of ring-rod assembly, b its relation with the
re-entrant structure, as well as their comparison at c compressive, and d tensile deformation states

at compressive and tensile deformations are furnished in Fig. 3.11c, d, respectively,
with the re-entrant models transposed on the ring-rod structures for indicating their
analogy at deformed states.

3.8 Analogies Between the Semi-auxetic Yarn Model,
the Liquid Crystalline Polymer Chain and the Rotating
Square Model

Wenow shift our attention to the case of semi-auxetic yarn introduced by Lim (2014),
which can be categorized as a chain-type auxetic system. The “main” chain is the
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Fig. 3.12 Analogies across the semi-auxetic yarn (left), idealized liquid crystalline polymer
(center), and the rotating square model (right)

thin inextensible cord that is stitched through a thick elastic cord in a zig-zag trian-
gular pattern, as shown in Fig. 3.12 (top left). When stretched, the inextensible cord
straightens, during which the thick elastic cord is simultaneously bent and stretched,
thereby pushing other semi-auxetic yarns away if the arrangement of the semi-auxetic
yarns are 180° out of phase from their immediate neighbor. The thin inextensible cord
and the thick elastic cord for the semi-auxetic yarn find their counterparts with the
main polymeric chain and the rigid groups, respectively, of the idealized liquid crys-
talline polymer (LCP) proposed by He et al. (1998, 2005), as illustrated in Fig. 3.12
(center column). In the latter, stretching of the LCP straightens the main polymer
chain as with the straightening of the thin inextensible cord while the rotation of the
rigid groups toward alignment in the lateral direction is similar to the lateral in-plane
bulging of the thick elastic cord. This lateral alignment of rigid groups pushes the
rigid groups from neighboring chain, thereby increasing the lateral distance between
the main polymer chains. It is also interesting to note that these two chain-type
auxetic systems can be related to the rotating square model as shown in Fig. 3.12
(right). To facilitate comparison, a zig-zag pattern is drawn across every row of the
rotating square model. This zig-zag pattern represents the main chain while the two
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remaining corners are analogous to the thick elastic cord and the rigid groups in the
semi-auxetic yarn and LCP, respectively.

3.9 Analogies Between the Buckling-Based Auxeticity
and Related Models

Perusal to Fig. 3.13 (top) shows one of the buckling modes encountered by a
square honeycomb or square grid, in which the buckled mode is analogous to other
auxetic models displayed in Fig. 3.13 (bottom). To facilitate comparison, the ribs of
the buckled mode are colored correspondingly with rotating units of other auxetic
models. A similar pattern of buckled deformation is observed when the square holes
shown at the top left corner of Fig. 3.13 are replaced with circular holes. The cross
formed by four holes act as a rotating unit similar to that of the rotating squares
model, as observed by Bertoldi et al. (2010) (Fig. 3.14). During the course of rota-
tion, the circular holes transform into elliptical holes and eventually take on the shape
of number “8” or symbol “∞”, as shown in Fig. 3.14c; this approximates the hole
shape arising from buckling of square grid (Fig. 3.13, top right). Therefore, in addi-
tion to analogies between buckling-based auxetic models with other auxetic models,

Undeformed 
state

Buckling

Buckled mode

Fig. 3.13 Analogies between the buckled mode of a square grid (top) with other auxetic models
(bottom)
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Fig. 3.14 Buckling of
perforated sheet with square
array of circular holes by
Bertoldi et al. (2010)
Reproduced with permission
from John Wiley & Sons

one can establish analogies among buckling-based auxetic models. Further details
are furnished in the next section.

3.10 Analogies Between Instability-Based Auxetic Models

Arising from the pioneering work of instability-based auxeticity by Bertoldi et al.
(2010), the same group (Shim et al. 2013) extended their investigation to include
hexagonal array and related patterns of circular perforations, with the square array
being coded as a 4.4.4.4 structure; the hexagonal structure is coded 3.3.3.3.3.3 while
the other two related structures are coded 3.6.3.6 and 3.4.6.4, as furnished in Fig. 3.15
(top). These buckled modes are similar to some of the theoretical buckled modes
modeled by Haghpanah et al. (2014). Specifically, the buckling mode of Bertoldi
et al.’s (2010) and Shim et al.’s (2013) 4.4.4.4 structure is analogous to the mode II,
or the non-swaying buckled mode, from the compression of square grid predicted by
Haghpanah et al. (2014), while the buckled mode of the 3.3.3.3.3.3 structure by Shim
et al. (2013) is analogous to the mode I buckling mode due to uniaxial compression
of regular honeycomb predicted by Haghpanah et al. (2014). In addition, the 3.6.3.6
structure by Shim et al. (2013) buckles in a manner analogous to the mode III, also
termed as the flower-like or chiral, buckling of regular honeycombmodeled byHagh-
panah et al. (2014). Comparison between these three buckling modes by Shim et al.
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Fig. 3.15 Analogy between buckling of perforated sheet by experiment (top) Reproduced from
Shim et al. (2013) with permission of The Royal Society of Chemistry and buckling of honeycombs
by analysis (middle) adapted fromHaghpanah et al. (2014), with experimental verification (bottom)
adapted from Mousanezhad et al. (2015)



70 3 Analogies Across Auxetic Models

(2013) and Haghpanah et al. (2014) are furnished in Fig. 3.15 (middle). The reader’s
attention is brought to the buckling of the 3.4.6.4 structure by Shim et al. (2013),
which resembles that of 3.6.3.6 to a certain extent. More recently, Mousanezhad
et al. (2015) investigated the instability behavior of hierarchical honeycomb struc-
tures, one of which has been experimentally shown to be analogous to the buckling of
3.3.3.3.3.3 structure by Shim et al. (2013) andmode I buckling of regular honeycomb
by Haghpanah et al. (2014), as shown in Fig. 3.15 (bottom).

3.11 Concluding Remarks

An attempt has been made herein to establish analogies across different auxetic
models by identifying their deformation patterns. Interestingly, the results suggest
that the existing groups of auxetic models can be re-classified into fewer classes
due to overlapping similarities in patterns of deformation mechanism from a larger
number of geometry-based auxetic models. Majority of auxetic models can be clas-
sified under a generic mechanism group in which neighboring units alternate in their
rotation direction. Auxetic models that fall within this category are analogous to one
another, and include the anti-chiral models, the rotating unit models, the missing rib
models (consisting of crosses, as well as those consisting of right-angled swastikas),
connected star models, re-entrant model, ring-rod model, semi-auxetic yarn, perfo-
rated sheet of 4.4.4.4 structure, and the mode II (i.e., non-swaying mode) of square
grid. The code + − +− is introduced to refer to the alternating rotational direc-
tions. Opposed to this mechanism pattern is where all the units rotate in the same
direction and reverse only when the direction of applied load changes. Hence, the
code + + ++ is proposed for all the chiral models, the missing rib (tilted swastika)
model, the perforated sheets of 3.6.3.6 and 3.4.6.4 structures and the mode III (i.e.,
flower-like or chiral) buckling of hexagonal grids, to reflect their synchronous rota-
tional direction and hence their analogous characteristics. An intermediate case is
where the units rotate in the same direction when one considers all the rotating units
along one axis but the units rotate in alternating direction when one observes all the
rotating units along another axis. Auxetic models under this category are, therefore,
analogous to one another, and include the metatetrachiral model, the double arrow-
head model, the perforated sheet of 3.3.3.3.3.3 structure, and the mode I buckling of
hexagonal grid due to uniaxial compression. To reflect this intermediate mechanism
pattern, the code + + −− is suggested. A special class of 2D auxetics can be found
from the pioneering works of Wojciechowski (1987, 1989) and Wojciechowski and
Branka (1989) which involves rigid hexamers. Auxetic behavior near a phase transi-
tion has also been observed in computer simulations of hard cyclic hexamer models
by Tretiakov and Wojciechowski (2005). For this case, there is no linking fibrils that
mechanically connect neighboring hexamers so, during the course of simulation,
the hexamers rotate in a manner that is relatively random in comparison to all the
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auxetic models discussed in preceding sections. As such the code ± ± ±± would
intuitively describe the randomness of the rotational direction, including the fact that
the rotational direction for each hexamer can change during the simulation. Such
randomness is also seen for the generic case of LCP, which are therefore grouped
under ± ± ±±; however, the LCP discussed in Sect. 3.8 is highly idealized for the
sake of comparing against the semi-auxetic yarn and rotating squares and so the
idealized LCP is classified under + − +−. Finally, the code 0 0 0 0 is introduced for
models that do not exhibit rotational units. These include the interlocking building
block for theMagnox nuclear reactor (Alderson 1999,Muto et al. 1963), aswell as the
interlocking hexagon model pioneered by Ravirala et al. (2007) and a recent related
work extended by Hewage et al. (2016). The egg-rack model and the dimpled sheet
involve 3D deformation but their auxeticity is confined to their in-planes, i.e., 2D
auxeticity; although rotation exists, observation of their mechanism from the direc-
tion normal to their auxetic planes reveal non-rotation—therefore, these models are
analogous to the interlocking models and are included in the 0 0 0 0 classification.
Finally, while the graphene sheet essentially falls under the 0 0 0 0 broad category,
the unevenness of the graphene sheet bulge permits observation of rotation from the
direction normal to the graphene sheet, and so to a lesser extent the uneven graphene
sheet is associated with the ± ± ±± group.

Figure 3.16 summarizes the entire chapter into a table consisting of horizontal
grouping by geometry and vertical grouping by analogy of rotational mechanism
pattern. Essentially, what appears to be geometrically similar may not necessarily
possess similarities in deformation mechanism, and that what appears to be different
auxetic geometries could possess similar deformation mechanism, and that it is the
deformation mechanism across the different auxetic models that constitute analogy.
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Chapter 4
Thin Auxetic Plates

Abstract This chapter discusses some non-circular and non-rectangular thin auxetic
plates—such as equilateral triangular plates, elliptical plates, sectorial plates and
rhombic plates—with special emphasis on their performances such as bending stress
minimization or in terms of deflection minimization.

Keywords Elliptical plates · Equilateral triangular plates · Rhombic plates ·
Sectorial plates

4.1 Fundamentals

The analysis on the effects of auxeticity on thin plates (Lim 2014a) has been inves-
tigated for constrained plates (Strek et al. 2008; Pozniak et al. 2010), circular and
rectangular plates (Lim 2013a, b), nanoscale plates (Ho et al. 2014), and for auxetic
plates resting on auxetic foundations (Lim 2014b). These have been summarized in
Chap. 8 of Lim (2015).

For a plate of Young’s modulus E, Poisson’s ratio v and thickness h lying on
the x, y plane of a Cartesian coordinate system, it is well known that the bending
moment relation

My = −D

(
v
∂2w

∂x2
+ ∂2w

∂y2

)
(4.1.1)

and

Mx = −D

(
∂2w

∂x2
+ v

∂2w

∂y2

)
(4.1.2)

where

D = Eh3

12
(
1 − v2

) (4.1.3)

simplifies to
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Mx + My = 0 ⇔ v = −1 (4.1.4)

Likewise, the bending moments under the polar coordinate system

Mr = −D

(
∂2w

∂r2
+ v

r

∂w

∂r

)
(4.1.5)

and

Mθ = −D

(
v
∂2w

∂r2
+ 1

r

∂w

∂r

)
(4.1.6)

obviously gives

Mr + Mθ = 0 ⇔ v = −1 (4.1.7)

Other unique, and even surprising, properties can be found in the auxetic region for
other values of Poisson’s ratio. More details on the effect of auxeticity on thin plates
are illustrated in the following examples in Sects. 4.2–4.5 for equilateral triangular
plates, elliptical plates, sectorial plates, and rhombic plates.

4.2 Example: Equilateral Triangular Auxetic Plates

We consider herein three special cases on the basis of loading distribution on a simply
supported equilateral triangular plate. A “central” special case is considered in the
form of uniformly loaded plate, such that two extreme cases can be identified. In one
extreme case, the transverse uniform load is redistributed toward the plate boundary.
Since neither deflection nor bending stresses take place when the load is directly
on top of the simple supports, we consider line load uniformly distributed near to
the simple supports; in practice, this loading condition translates into uniformly
distributed bending moment applied at the plate boundary. In the other extreme case,
the transverse uniform load is redistributed toward the plate center to form a central
point load.

For a simply supported equilateral triangular plate of sides 2l/
√
3 as shown in

Fig. 4.1, its bending moment distributions are

Mx = M0

2

[
1 + v − 3(1 − v)

x

l

]

My = M0

2

[
1 + v + 3(1 − v)

x

l

]
(4.2.1)

in the presence of uniformly distributed edge moment M0,
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Fig. 4.1 Geometrical
description of a simply
supported equilateral
triangular plate x
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27
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(4.2.2)

arising from uniformly distributed load q0, and

Mx = P

4π

[
(1 + v)

(
ln

l
√
3

πc
− 0.379

)
− 1 − v

2

]

My = P

4π

[
(1 + v)

(
ln

l
√
3

πc
− 0.379

)
+ 1 − v

2

]
(4.2.3)

at a small distance c from a point load P applied at plate center. Since the bending
stress is related to the bending moment as

σmax = 6M

h2
(4.2.4)

the following dimensionless bending stresses are introduced

σ ∗ = σmaxh2

3M0

σ ∗∗ = 8σmaxh2

3q0l2

σ ∗∗∗ = 2πσmaxh2

3P
(4.2.5)

so that

σ ∗
x = 1 + v − 3(1 − v)

x

l
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σ ∗
y = 1 + v + 3(1 − v)

x

l
(4.2.6)

for uniform edge moment M0,

σ ∗∗
x = (5 − v)

( x
l

)3 − (3 + v)
( x
l

)2 − 3(1 + 3v)
( x
l

)( y

l

)2

− 2

3
(1 − v)

x

l
− (1 + 3v)

( y

l

)2 + 8

27
(1 + v)

σ ∗∗
y = (1 − 5v)

( x
l

)3 − (1 + 3v)
( x
l

)2 − 3(3 + v)
( x
l

)( y

l

)2

+ 2

3
(1 − v)

x

l
− (3 + v)

( y

l

)2 + 8

27
(1 + v) (4.2.7)

for uniform load q0, and

σ ∗∗∗
x = (1 + v)

(
ln

l
√
3

πc
− 0.379

)
− 1 − v

2

σ ∗∗∗
y = (1 + v)

(
ln

l
√
3

πc
− 0.379

)
+ 1 − v

2
(4.2.8)

at a small distance c from the central point load P. It is not surprising that, in general,
we have (Lim 2016a)

σ ∗
x

σ ∗
y

= σ ∗∗
x

σ ∗∗
y

= σ ∗∗∗
x

σ ∗∗∗
y

= −1 (4.2.9)

when v = −1; this is a consequence from Eq. (4.1.4). In addition, it is worthy to
note that

σ ∗
x = σ ∗

y = σ ∗∗
x = σ ∗∗

y = 0 (4.2.10)

at the plate center when v = −1.
Equation (4.2.6) is plotted in Fig. 4.2 showing that auxeticity has adverse effect

on triangular plates with uniformly distributed bending moment applied at the edge.
Specifically, the dimensionless bending moment σ ∗

x plotted in Fig. 4.2a is within
its lower range for −1/4 < v < 1/2, while the range −1 ≤ v ≤ −1/4 leads to
higher range of σ ∗

x at the plate apex. In the case of dimensionless bending moment
furnished in Fig. 4.2b, σ ∗

y is maximum at the apex. The magnitude of σ ∗
x is confined

within
∣∣σ ∗

x

∣∣ ≤ 2 for −1/3 ≤ v ≤ 1/2 while the maximum value of σ ∗
y is minimized

to σ ∗
y = 2.5 when v = 1/2. Therefore, the bending stress in a simply supported

equilateral triangular plate, under uniform applied bending at the sides, is minimized
if the platematerial is incompressible.When the same bending load,M0, is applied on
a simply supported circular plate or a square plate, the bending moment is uniformly
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(a) (b)

Fig. 4.2 Dimensionless bending stress distributions of a σ ∗
x and b σ ∗

x versus x/ l arising from
uniformly applied bending moment along the plate edge

distributed throughout the plate as M0 (Timoshenko and Woinowsky-Krieger 1959),
i.e., independent from the Poisson’s ratio of the plate material—this is unlike the
case of triangular plates.

The effect of auxeticity on uniformly loaded triangular plate is shown inFig. 4.3, in
which the dimensionless bending stresses are evaluated along the x-axis. Substituting
y = 0 into Eq. (4.2.7), plots of σ ∗∗

x and σ ∗∗
y against x/ l are furnished in Fig. 4.3a,

b, respectively, for the entire range of Poisson’s ratio. Reference to Fig. 4.3a shows
that the maximum σ ∗∗

x magnitudes for v = −1,−3/4,−1/2 take place between
the plate center and the plate corners, while the maximum σ ∗∗

x magnitudes for v =
−1/4, 0, 1/4, 1/2 occur between the plate center and the middle of the plate sides.
Furthermore, the maximum σ ∗∗

x magnitude decreases from v = −1 to v = −1/2
and from v = 1/2 to v = −1/4, thereby implying that there exists a minimized
maximum σ ∗∗

x magnitude between v = −1/2 and v = −1/4, such that at the optimal
Poisson’s ratio there exists a minimum and a maximum σ ∗∗

x of equal magnitude, i.e.,
this magnitude is the least of all the maximum σ ∗∗

x magnitudes. The exact value of
this optimal Poisson’s ratio is v = −1/3, such that a maximum and a minimum
σ ∗∗
x = ±0.256 take place at x/ l = −2/15 and x/ l = 7/15, respectively. Similarly,

in Fig. 4.3b, it can be seen that themaximumσ ∗∗
y decreases from v = 1/2 tov = 0 and

also from v = −1 to v = −1/4. The exact value for the optimal Poisson’s ratio that
gives the least maximum stress of σ ∗∗

y = 0.384 is v = −1/15. Using the Poisson’s
ratio of v = −1/15, we obtain the maximum stress of σ ∗∗

x = 0.313 < 0.384. As
such, it is the stress in the y-direction, rather than the x-direction, along the x-axis that
determines the greatest extent of stress. Hence, the Poisson’s ratio of v = −1/15 is
selected as the optimal value that minimizes the maximum stress. For comparison
with its conventional counterpart and further extent of auxeticity, plots of σ ∗∗

x versus
x/ l for −1 ≤ v ≤ 1/3 at Poisson’s ratio increments of 2/3 and σ ∗∗

y versus x/ l for
−1/5 ≤ v ≤ 1/5 at Poisson’s ratio increments of 2/15 are shown in Fig. 4.3c, d,
respectively. In comparison to plates of other shapes with similar boundary condition
and load pattern, the optimal Poisson’s ratio for minimizing bending stresses in
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(a) (b)

(c) (d)
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Fig. 4.3 Dimensionless bending stress distributions of a σ ∗∗
x and b σ ∗∗

y versus x/ l along y = 0
arising from uniform load for the entire range of Poisson’s ratio, as well as the dimensionless
bending stress distribution c at the optimal σ ∗∗

x at v = −1/3 with σ ∗∗
x at v = −1/3 ± 2/3 for

comparison, and d at the optimal σ ∗∗
y at v = −1/15 with σ ∗∗

y at v = −1/15±2/15 for comparison

circular and square plates are v = −1/3 and v = 0.115, respectively (Lim 2013a,
b).

Dimensionless bending stresses under a central point load are plotted only for
0 ≤ c/ l ≤ 0.1 based on Eq. (4.2.8) because it is known that bending stresses under
point load is maximum at the loading point, as displayed in Fig. 4.4. It is therefore
of special interest to note that the bending stresses are constant within 0 ≤ c/ l ≤
0.1 when v = −1, thereby implying that when v = −1, the bending stresses do
not approach infinity as c/ l → 0. Figure 4.4a suggests that the magnitude of the
dimensionless bending stress σ ∗∗∗

x is effectively reduced at plate center (c/ l = 0)
when v = −1, at 0 < c/ l < 0.05 when v = −3/4, and at 0.05 ≤ c/ l ≤ 0.1 when
v = −1/2, while reference to Fig. 4.4b indicates that the dimensionless bending
stress σ ∗∗∗

y is minimized throughout the plate when v = −1. Since both σ ∗∗∗
x and

σ ∗∗∗
y tend to infinity at load point c/ l = 0 for −1 < v ≤ 1/2, it follows that bending
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(a) (b)

Fig. 4.4 Dimensionless bending stress distributions of a σ ∗∗∗
x and b σ ∗∗∗

y versus c/ l arising from
central point load

stress is minimized only when v = −1, thereby agreeing with the cases of circular
and square plates under central point load.

Results suggest that for simply supported triangular plates, the use of

1. conventional materials are advisable under applied bending at plate boundary
2. mildly auxetic materials are advisable under uniformly distributed load

throughout plate and
3. highly auxetic materials are advisable under concentrated load at plate center.

An extremely auxetic isotropic plate (v = −1) is consistently the best for limiting
the maximum bending stress of a central point load in circular, square, and trian-
gular plates. In the case of uniformly distributed load, mildly auxetic materials are
recommended for circular and triangular plates, while mildly conventional materials
are suggested for square plates (Lim 2016a).

4.3 Example: Elliptical Auxetic Plates

Consider an elliptical plate of Young’s modulus E and thickness hwith a and b being
the radius of an elliptical plate along the major (x) and minor (y) axes, respectively,
as illustrated in Fig. 4.5. It has been shown that under uniform load q, the maximum
bending stress occurs at the ends of the shorter principal axis if the plate edge is fully
clamped (Timoshenko andWoinowsky-Krieger 1959), and that this bendingmoment
is independent from the Poisson’s ratio of the plate material. On the other hand, the
bending moment is greatest at the plate center if the plate edge is simply supported
(Timoshenko andWoinowsky-Krieger 1959), and that this bendingmoment is depen-
dent on thePoisson’s ratio of the platematerial.Due to the complexity of the analytical
model for simply supported elliptical plate, the deflection and bending moments at
the plate center are typically furnished by the formulas
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Fig. 4.5 Geometrical
description of an elliptical
plate

x

y

2a

2b

(w)x=y=0 = α
qb4

Eh3
(4.3.1)

(Mx )x=y=0 = βqb2 (4.3.2)

(
My

)
x=y=0 = β1qb

2 (4.3.3)

where the numerical values of α, β, and β1 have only beenmade available for v = 0.3
(Timoshenko and Woinowsky-Krieger 1959; Ventsel and Krauthammer 2001). In
order to conveniently observe the effect of Poisson’s ratio for the entire range of
isotropic solids, −1 ≤ v ≤ 1/2, a simplified model based on the Kirchhoff–Love
plate theory for an elliptical plate with a �= b is introduced herein in the form

w = w0

(
1 − x2

a2
− y2

b2

)(
C − x2

a2
− y2

b2

)
(4.3.4)

where C is determined from boundary condition. This form of expression is selected
because its deflection profiles along the principal axes are similar to the deflection
profile of a simply supported circular plate, while at the same time catering for the
major and minor axes of the elliptical plates. It can be seen that Eq. (4.3.4) fulfills
the boundary condition w = 0, and that C = 1 applies for fully clamped edge.
Another boundary condition is that the bending moment perpendicular to the tangent
of the simply supported elliptical plate is zero. Hence, applying

(
My

)
x=0,y=±b = 0

and (Mx )x=±a,y=0 = 0 for the bending moment equations furnished in Eqs. (4.1.1)
and (4.1.2) based on the deflection profile in Eq. (4.3.4)

gives two solutions for C, i.e.,

C1 = 5a2 + vb2

a2 + vb2
(4.3.5a)

and

C2 = 5b2 + va2

b2 + va2
(4.3.5b)
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respectively. The choice of eitherC1 and/orC2 can be elucidated after the expression
of w0 is established (Lim 2016b). To obtain w0, there is a need to solve

��w = q

D
(4.3.6)

where

� = ∇2 = ∂2

∂x2
+ ∂2

∂y2
(4.3.7)

Substituting

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂4w

∂x4

∂4w

∂x2∂y2

∂4w

∂y4

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= 8w0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3

a4
1

a2b2
3

b4

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.3.8)

into Eq. (4.3.6) leads to

w0 = q

D

(
24

a4
+ 16

a2b2
+ 24

b4

)−1

(4.3.9)

Hence, Eq. (4.3.4) can be written as

w = q

D

(
24

a4
+ 16

a2b2
+ 24

b4

)−1(
1 − x2

a2
− y2

b2

)(
C − x2

a2
− y2

b2

)
(4.3.10)

such that when b = a and x2 + y2 = r2, it reduces to the familiar plate deflection
profile of a simply supported circular plate under uniform load

w = q

64D

(
a2 − r2

)(5 + v

1 + v
a2 − r2

)
(4.3.11)

where r is the radial distance from the center of the circular plate. In addition, the
substitution of C = 1 into Eq. (4.3.10) converts it into the deflection profile of a
fully clamped elliptical plate (Timoshenko and Woinowsky-Krieger 1959; Ventsel
and Krauthammer 2001),

w = q

D

(
24

a4
+ 16

a2b2
+ 24

b4

)−1(
1 − x2

a2
− y2

b2

)2

(4.3.12)
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It is clear that Eqs. (4.3.5a) and (4.3.5b) are equal only for circular plates, but differ
for elliptical plates. As a guiding principle on the selection of C, we note that the
deflection of simply supported plates exceeds those that are fully clamped, so it is a
requirement that the deflection stated inEq. (4.3.4)must exceed that for fully clamped
elliptical plates. Since the expression ofw0 is common for both simply supported and
fully clamped elliptical plates, it follows that the deflection of the simply supported
elliptical plate can only exceed that of fully clamped plate if C > 1. Reference to
Eqs. (4.3.5a) and (4.3.5b) reveals that in the case of negative Poisson’s ratio, C1 < 1
for 0 < a/b < 1 and C2 < 1 for a/b > 1. A graphical view is shown in Fig. 4.6.
As such, both C1 and C2 are applicable with their validity range being a/b ≥ 1
and a/b ≤ 1, respectively. In the subsequent formulation, we adopt C1 to facilitate
comparison with the exact numerical values of α, β, and β1, which are based on
a/b ≥ 1 (Timoshenko and Woinowsky-Krieger 1959; Ventsel and Krauthammer
2001).

Based on Eqs. (4.3.5a) and (4.3.10), we have the deflection at the plate center,

(w)x=y=0 = qb4

Eh3

(
1 − v2

)(
5 a2

b2 + v
)

(
2 b4
a4 + 4

3
b2
a2 + 2

)(
a2
b2 + v

) (4.3.13)

which, upon comparison with Eq. (4.3.1), gives

α =
(
1 − v2

)(
5 a2

b2 + v
)

(
2 b4
a4 + 4

3
b2
a2 + 2

)(
a2
b2 + v

) (4.3.14)

Based on Eqs. (4.3.5a) and (4.3.10) again, the bending moments can be expressed
as

(a) (b)
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Fig. 4.6 Plots of a C1 and b C2 for −1 ≤ v ≤ 1/2 and 10−1.5 ≤ a/b ≤ 101.5
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{
Mx

My

}
= −D

[
1 v

v 1
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∂2w
∂x2
∂2w
∂y2

}
(4.3.15)

where

∂2w

∂x2
= q

D
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24

a4
+ 16

a2b2
+ 24

b4
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− 2
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(
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+ 12x2
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∂2w
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= q

D
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24
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(4.3.16a)

At the plate center, Eq. (4.3.16a) simplifies to

(
∂2w

∂x2

)
x=y=0

= − 2q

a2D

(
1 + 5a2 + vb2

a2 + vb2

)(
24

a4
+ 16

a2b2
+ 24
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= − 2q

b2D

(
1 + 5a2 + vb2

a2 + vb2

)(
24

a4
+ 16

a2b2
+ 24

b4

)−1

(4.3.16b)

such that the bending moment (Mx )x=y=0 at the plate center can be expressed as
Eq. (4.3.2) with

β =
(
b2

a2 + v
)(

3 a2

b2 + v
)

(
6 b4
a4 + 4 b2

a2 + 6
)(

a2
b2 + v

) (4.3.17)

while the bending moment
(
My

)
x=y=0 at the plate center can be expressed as

Eq. (4.3.3) with

β1 = 3 + v b2

a2

6 b4
a4 + 4 b2

a2 + 6
(4.3.18)

It can be observed that

(β) a
b →1 = (β1) a

b →1 = 3 + v

16
(4.3.19)

and

(β) a
b →∞ = v

2
, (β1) a

b →∞ = 1

2
(4.3.20)

Having obtained the analytical forms ofβ andβ1, it is nowof interest to understand
how the bending stresses can be minimized. As such, we herein define the optimal



86 4 Thin Auxetic Plates

Poisson’s ratio as the value of Poisson’s ratio that gives the minimum magnitude to
themaximum bending stress. Since σmax = ±6M/h2, it follows that minimization of
the maximum bending stress can be performed by minimizing the bending moment.
The bending moment (Mx )x=y=0 can be minimized by setting (Mx )x=y=0 = 0 (i.e.,
by substituting β = 0) into Eq. (4.3.17) to give

v = −
(
3a2

2b2
+ b2

2a2

)
±

√(
3a2

2b2
+ b2

2a2

)2

− 3 (4.3.21)

Since the range of the upper and lower solutions is −1 ≤ vupp < 0 and −∞ <

vlow ≤ −3, respectively, for a/b ≥ 1, the upper solution of Eq. (4.3.21) prescribes
the Poisson’s ratio that gives (Mx )x=y=0 = 0 while the lower solution of Eq. (4.3.21)
has no physical meaning. This is because the Poisson’s ratio range for the upper and
lower solutions falls inside and outside the range of Poisson’s ratio of isotropic solids,
respectively. With reference to the numerator of Eq. (4.3.18), i.e., 3 + v(b/a)2, the
bending moment

(
My

)
x=y=0 can be minimized by using auxetic materials of v = −1

and circular plates (i.e., a = b). In order to minimize the effective maximum bending
stress, we recall the von Mises stress

σeff =
√

σ 2
x + σ 2

y + σ 2
z − σyσz − σzσx − σxσy + 3

(
τ 2
yz + τ 2

zx + τ 2
xy

)
(4.3.22)

At the top and bottom surfaces where the bending stresses are maximum, the
following shearing stresses are zero, τyz = τzx = 0. Considering an element at the
plate center aligned to the principal axes, the in-plane shear stress is zero, τxy = 0.
The out-of-plane stresses at the upper and lower surfaces are σz = −q and σz = 0,
respectively; the former is negligible in comparison to the bending stresses. Hence,
the effective stress at the plate center reduces to

σeff =
√

σ 2
x + σ 2

y − σxσy (4.3.23)

Since σmax = 6M/h2, substitution of

{
σx

σy

}
= 6

h2

{
Mx

My

}
= 6qb2

h2

{
β

β1

}
(4.3.24)

into Eq. (4.3.23) gives σeff = 6Meff/h2 where the effective maximum bending
moment is expressed as

Meff = β2qb
2 (4.3.25)

in which

β2 =
√

β2 + β2
1 − ββ1 (4.3.26)
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is the dimensionless parameter for the effective bending moment. Equation (4.3.25)
is expressed in a form similar to Eqs. (4.3.2) and (4.3.3) to facilitate comparison.

Substituting v = 0.3 into Eqs. (4.3.14), (4.3.17) and (4.3.18) allows a comparison
to be made between the exact model (Timoshenko and Woinowsky-Krieger 1959;
Ventsel and Krauthammer 2001) and the simplified model developed herein; the
latter is listed in Table 4.1 under the columns indicated by “Approx”. A graphical
comparison is plotted in Fig. 4.7 revealing that the simplified model gives a more
severe, and hence more conservative, prediction for a wide range of a/b ratio at
v = 0.3. Equation (4.3.14) gives an overestimation of α, while Eqs. (4.3.17) and
(4.3.18) provide reasonable correlation to the exact values of β and β1, respectively;
the latter models are used for evaluating the bending stresses at the elliptical plate
center in the major axis direction, (Mx )x=y=0, and minor axis direction,

(
My

)
x=y=0,

in terms of their dimensionless parameters.
Having established the validity of β and β1 for v = 0.3 by comparison against the

exact numerical values, it is now of interest to make use of Eqs. (4.3.17) and (4.3.18)
to evaluate the effect of negative Poisson’s ratio on the bending stresses at the plate
center. The dimensionless parameter β, as shown in Fig. 4.8a, suggests that the
corresponding bending stress (σx )x=y=0 is minimized (a) by using auxetic materials
for elliptical plates that are almost circular a/b ≈ 1, and (b) by using zero Poisson’s
ratio materials for elliptical plates that are very long or very narrow a/b → ∞.
The Poisson’s ratio for maintaining (σx )x=y=0 = 0 is plotted in Fig. 4.8b using the
upper solution of Eq. (4.3.21), suggesting that stresses is minimized by using mildly
auxetic and highly auxetic materials for elliptical plates of high (a/b � 1) and low
(a/b ≈ 1) aspect ratios, respectively.

The family of curves in Fig. 4.8a can be explained for both a/b ≈ 1 and a/b � 1.
In the case of a/b ≈ 1, the boundary condition dictates that both Mx and My possess
equal sign, although the bending into a synclastic shape is more easily attained
when the plate possesses negative Poisson’s ratio. For this reason, the value of β

Table 4.1 A comparison between the exact and the approximate α, β, and β1 for various plate
aspect ratio at v = 0.3
a
b α (Exact) α (Approx) β (Exact) β (Approx) β1 (Exact) β1 (Approx)

1 0.7 0.695625 0.206 0.20625 0.206 0.20625

1.1 0.83 0.856504 0.215 0.218724 0.235 0.242313

1.2 0.96 1.008221 0.219 0.226232 0.261 0.274891

1.3 1.07 1.146751 0.223 0.229879 0.282 0.303556

1.4 1.17 1.270527 0.223 0.230719 0.303 0.328353

1.5 1.26 1.379599 0.222 0.229631 0.321 0.349587

2 1.58 1.747544 0.21 0.213323 0.379 0.416949

3 1.88 2.039995 0.188 0.185136 0.433 0.465341

4 2.02 2.143804 0.184 0.171223 0.465 0.481196

5 2.1 2.191473 0.17 0.16402 0.48 0.4882



88 4 Thin Auxetic Plates

0.15

0.3

0.45

0.6

0.75

0.9

1.05

1.2

1.35

1.5

1.65

1.8

1.95

2.1

1 2 3 4 5a/b

Fig. 4.7 A comparison between the exact (data points) and the approximate (smooth curves) of α,
β, and β1 for various plate aspect ratio (a/b) at v = 0.3

(a) (b)

Fig. 4.8 Bending stress Mx at plate center: a effect of plate aspect ratio and Poisson’s ratio, and
b optimal Poisson’s ratio for minimizing Mx

decreases slightly as the Poisson’s ratio becomes more negative. The case of very
long or very narrow elliptical plate (a/b � 1) is worth elucidating, in which the
value of β converges as a/b → ∞ as mathematically described in Eq. (4.3.20) and
plotted in Fig. 4.8a. As the aspect ratio becomes very large, the elliptical plate can
be viewed as a very long rectangular plate that is simply supported along y = ±b.
Under transverse load, the plate exhibits positive curvature along the y-axis with
a corresponding positive My . If the plate is conventional, it will exhibit negative
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curvature along the x-axis, with a positive Mx required to transform the anti-clastic
shell into a cylindrical shell. Conversely, if the plate is auxetic, it will exhibit positive
curvature along the x-axis, with a negative Mx required to transform the synclastic
curve into a cylindrical shell. For this reason, positive and negative Mx are obtained
for conventional and auxetic elliptical plates with large aspect ratio as evidenced in
Fig. 4.8a. Likewise, if the plate material possesses v = 0, the long elliptical plate will
transform into a cylindrical-like shell, and therefore Mx = 0 as shown in Fig. 4.8a
as a/b → ∞.

The other dimensionless parameter β1, as illustrated in Fig. 4.9, not only confirms
that the bending stress

(
σy

)
x=y=0 can be minimized by using auxetic materials of

v = −1 and circular plates (i.e., a = b), but clearly shows that the plate aspect ratio
and the material’s Poisson’s ratio play primary and secondary roles, respectively, in
influencing

(
σy

)
x=y=0. It is also of interest to observe that the bending moments Mx

and My at the plate center tend to v/2 and 1/2, respectively, as the plate aspect ratio
goes to infinity, as proven in Eq. (4.3.20). By way of analogy, this is a direct result
of a uniformly loaded infinitely long rectangular plate (a/b → ∞) that is simply
supported at y = ±b/2, such that ∂2w/∂x2 = 0.

A graphical description for the von Mises stress at the plate center is furnished
as a contour plot in Fig. 4.10, in terms of its dimensionless parameter expressed in
Eq. (4.3.26). It can be seen that for a/b = 1 plate aspect ratio, the maximum effective
stress is minimized if the plate material is chosen such that its Poisson’s ratio is
approximately v = −3/4. As the plate aspect ratio a/b increases, the Poisson’s
ratio for minimizing the maximum effective stress also increases. Essentially the
maximum effective stress is minimized with the use of auxetic and conventional
materials for elliptical plates of low and high aspect ratios, respectively.

Table 4.2 puts in perspective the current deflection model for simply supported
elliptical plates in relation with the well-known fully clamped elliptical plates as
well as with circular plates of both boundary conditions, by using Eq. (4.3.2) such
that w0 and C are reduced for the latter cases. Emphasis is given for the case where

Fig. 4.9 Bending stress My
at plate center
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Fig. 4.10 Contour plot of β2 for indicating the influence of elliptical plate aspect ratio and Poisson’s
ratio on the effective maximum bending stress

Table 4.2 Reduction of the simply supported elliptical plate deflection model, Eq. (4.3.2), to the
deflections of fully clamped elliptical plates, as well as with the deflections of simply supported
and fully clamped circular plates

Edge condition Elliptical plate Circular plate Effect of auxeticity

Simply supported w0 =
q
D

(
24
a4

+ 16
a2b2

+ 24
b4

)−1

C =
{

5a2+vb2

a2+vb2
; a ≥ b

5b2+va2

b2+va2
; a ≤ b

w0 = q
D

(
64
a4

)−1

C = 5+v
1+v

Auxetic, C > 5

Conventional, 3 2
3 ≤ C ≤ 5

For both auxetic and
conventional,
lima/b→∞ C = 5

Fully clamped w0 =
q
D

(
24
a4

+ 16
a2b2

+ 24
b4

)−1

C = 1

w0 = q
D

(
64
a4

)−1

C = 1

No effect

the plate material is auxetic in comparison to conventional ones, in which the coef-
ficient C = 5 demarcates simply supported elliptical (including circular) auxetic
plates from conventional ones, while no such demarcation exists when the plates are
fully clamped. Further details on circular auxetic plates have been discussed earlier
(Lim 2013a). Reference to Table 4.2 also shows that a geometrically long or narrow
elliptical plate (a/b → ∞) of any Poisson’s ratio has mechanical equivalence to a
circular plate a/b = 1 of zero Poisson’s ratio, as both possess C = 5.

In conclusion, calculated results for the dimensionless bending stresses at the
center of elliptical plates of aspect ratio 1–5 and v = 0.3 reveal reasonably good
approximation in comparison to results from exact solution. When extended over
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the entire range of Poisson’s ratio for isotropic solids, generated results suggest that
the use of auxetic materials is useful for reducing the maximum bending stresses
for elliptical plates of aspect ratio close to 1, while conventional materials are more
advantageous for elliptical plates of higher aspect ratio (Lim 2016b).

4.4 Example: Sectorial Auxetic Plates

This section identifies a type of sectorial plate that encounters severe deflection
and investigates the effect of material auxeticity on limiting the extent of deflection.
Thereafter, this section proposes a newequation, in the formof semi-empiricalmodel,
for convenient and reliable quantification for the maximum deflection of the sectorial
plate under consideration. Let S,C, andF indicate the simply supported, clamped, and
free boundary conditions, respectively.Weconsider a broad categoryof sectorial plate
possessing radius R and angle α in which both straight sides are simply supported
(SS), with the curved side being simply supported (SSS), clamped (SSC) or free
(SSF). See Fig. 4.11.

The deflection of such a plate—of thickness h, Young’s modulus E and Poisson’s
ratio v—due to uniform load q0 is described as by Mansfield (1989), based on
Kirchhoff–Love kinematic assumption, as

w = 1

D

∞∑
m=1

{
qmr4(

16 − μ2
)(
4 − μ2

) + Amr
μ + Bmr

μ+2

}
sin(μθ), m = 1, 2, 3, 4, . . . .

(4.4.1)

qm = 2q0
mπ

[
1 − (−1)m

] = 4q0
mπ

{
1
0

}
,

m = 1, 3, 5, . . .
m = 2, 4, 6, . . .

(4.4.2)

μ = mπ

α
(4.4.3)

and D is the plate flexural rigidity described in Eq. (4.1.3). For the exact solution, α
is in radians. Among the three types of sectorial plates mentioned above, the SSC
sectorial plate experiences the least deflection while the SSF plate encounters the

Fig. 4.11 Schematic view of
a sectorial plate

R

R

r
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most severe deflection—hence the latter class of sectorial plate is considered herein.
For such a plate, the coefficients in Eq. (4.4.1) has been obtained by Wang et al.
(2000) as

Am =

4q0
mπ

R4−μ
{
(μ − 4)

[
8 + μ(5 + v) + vμ2

]
[μ(1 − v) + 2(1 + v)]

+2μ(3 + v)
[
4(3 + v) − vμ2

]}
2μ2

(
16 − μ2

)(
4 − μ2

)
(1 − μ)(1 − v)(3 + v)

(4.4.4)

Bm = −
4q0
mπ

R2−μ[8 + 5μ + vμ(1 + μ)]

2μ
(
4 − μ2

)
(4 + μ)(1 + μ)(3 + v)

(4.4.5)

where m = 1, 3, 5, 7, . . .. Considering symmetry about θ = α/2 and the free
boundary condition at the curved side r = R, we recognize that the maximum
deflection takes place at θ = α/2 and r = R, i.e.,

wmax = w(r,θ)=(R,α/2) (4.4.6)

It is further convenient to introduce a dimensionless form for the deflection as

w∗ = wD

q0R4
(4.4.7)

Equation (4.4.1) converges rapidly because the use of the first three summative
terms (m = 1, 2, 3), i.e.,

w∗
max = 4

π

⎧⎨
⎩

1(
16 − π2

α2

)(
4 − π2

α2

) − 8 + 5π
α + v π

α

(
1 + π

α

)
2 π

α

(
4 − π2

α2

)(
4 + π

α

)(
1 + π

α

)
(3 + v)

+

(π

α
− 4

)[
8 + π

α
(5 + v) + v

π2

α2

][π

α
(1 − v) + 2(1 + v)

]

+ 2
π

α
(3 + v)

[
4(3 + v) − v

π2

α2

]

2 π2

α2

(
16 − π2

α2

)(
4 − π2

α2

)(
1 − π

α

)
(1 − v)(3 + v)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− 4

3π

⎧⎨
⎩

1(
16 − 9π2

α2

)(
4 − 9π2

α2

) − 8 + 15π
α + 3v π

α

(
1 + 3π

α

)
6π

α

(
4 − 9π2

α2

)(
4 + 3π

α

)(
1 + 3π

α

)
(3 + v)
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+

(
3
π

α
− 4

)[
8 + 3

π

α
(5 + v) + 9v

π2

α2

][
3
π

α
(1 − v) + 2(1 + v)

]

+ 6
π

α
(3 + v)

[
4(3 + v) − 9v

π2

α2

]

18π2

α2

(
16 − 9π2

α2

)(
4 − 9π2

α2

)(
1 − 3π

α

)
(1 − v)(3 + v)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ 4

5π

⎧⎨
⎩

1(
16 − 25π2

α2

)(
4 − 25π2

α2

) − 8 + 25π
α + 5v π

α

(
1 + 5π

α

)
10 π

α

(
4 − 25π2

α2

)(
4 + 5π

α

)(
1 + 5π

α

)
(3 + v)

+

(
5
π

α
− 4

)[
8 + 5

π

α
(5 + v) + 25v

π2

α2

][
5
π

α
(1 − v) + 2(1 + v)

]

+ 10
π

α
(3 + v)

[
4(3 + v) − 25v

π2

α2

]

50 π2

α2

(
16 − 25π2

α2

)(
4 − 25π2

α2

)(
1 − 5π

α

)
(1 − v)(3 + v)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4.8)

is sufficient to give accurate dimensionless maximum deflection.
Reference to Table 4.3 shows that for v = 0.3 and α = π/2, the use of Eq. (4.4.1)

with m = 1, 2, 3—i.e., Eq. (4.4.8)—would give sufficient accuracy for comparison
with results given by Wang et al. (2000) and Timoshenko and Woinowsky-Krieger
(1959). In addition, the extension of the dimensionless maximum deflection for the
entire range of Poisson’s ratio in the case of isotropic solids (−1 ≤ v ≤ 0.5) shows
that the Poisson’s ratio plays an important role in influencing the plate deflection.
Specifically, the deflection reduces as thePoisson’s ratio of the platematerial becomes
more negative. Hence, it is of interest to understand the extent of deflection reduction
arising frommaterial auxeticity. In addition, there is a need to establish themaximum
α value such that the plate does not fall off from the supports arising from the effective
load line occurring beyond the dotted line shown in Fig. 4.12.

The maximum α under uniform load can be established by recognizing that the
sectorial plate will topple from the simply supported straight sides if the load on the
triangle area is less than the load outside the triangular area. In the case of uniform
load, the maximum α is defined as the plate angle in which the triangle area is equal
to half the entire plate area, hence

1

2
R2 sin α = 1

2

(
πR2 α

2π

)
(4.4.9)
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Table 4.3 Dimensionless exact maximum deflection computation results for conventional and
auxetic SSF sectorial plates with α = π/2

v Timoshenko and
Woinowsky-Krieger
(1959) for v = 0.3

Wang et al. (2000)
for v = 0.3

w∗
max for

−1 ≤ v ≤ 0.5 using
m = 1, 2, 3

Remarks

−1 0.030775 Auxetic region

−0.9 0.031297

−0.8 0.031983

−0.7 0.032846

−0.6 0.033907

−0.5 0.035194

−0.4 0.036746

−0.3 0.038612

−0.2 0.040865

−0.1 0.043599

0 0.046952 Conventional region

0.1 0.051123

0.2 0.056409

0.3 0.0633 0.06328 0.063283

0.4 0.072529

0.5 0.085563

Simply 
supported 
straight 

Simply 
supported 
straight 

Simply 
supported 
straight 

Simply 
supported 
straight 

Free 
curved 

side

Free 
curved 

side

Effective 
transverse 
load line

Effective 
transverse 
load line

Plate remains supported upon 
application of uniform load

Plate falls off upon application of 
uniform load

Fig. 4.12 Schematics for showing the effective transverse line load being inside (left) and outside
(right) the triangle formed by the simple supports
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or sin α = α/2, which gives αmax = 1.8955 rad or αmax = 108.6◦. In the proceeding
analysis, the maximum deflection is calculated for α = 15◦ to α = 105◦ with an
increment of 15◦.

Reference to Eq. (4.4.8) shows that, even by considering only the first three terms
(m = 1, 3, 5), the exact solution for the maximum deflection is cumbersome. Great
simplification can be attained by obtaining the dimensionless maximum deflection
of the SSF sectorial plate in the form

w∗
max =

∑
n

anv
n (4.4.10)

where

an = an(α) (4.4.11)

or

w∗
max =

∑
n

bnα
n (4.4.12)

where

bn = bn(v) (4.4.13)

by semi-empirical modeling (Lim 2017). Both sets of semi-empirical models can be
obtained by performing surface fitting on the basis of least square method.

Table 4.4 lists the dimensionless maximum deflection of SSF sectorial plates from
α = 15◦ to α = 105◦ at the typical Poisson’s ratio of v = 0.3 using Eq. (4.4.8). To
exhibit the negativity effect from thePoisson’s ratio, the corresponding dimensionless
maximum deflection at v = −0.3 was computed, so as to facilitate comparison

Table 4.4 Reduction of maximum SSF sectorial plate deflection as the plate material’s Poisson’s
ratio changes from v = 0.3 to v = −0.3

Plate angle w∗
max at typical Poisson’s

ratio of v = 0.3
w∗
max at a negative

Poisson’s ratio of
v = −0.3

Change in w∗
max as v

reduces from 0.3 to −0.3

α = 15◦ 0.00005916 0.00004438 −24.99%

α = 30◦ 0.0008383 0.0005945 −29.09%

α = 45◦ 0.003943 0.002669 −32.31%

α = 60◦ 0.012041 0.007834 −34.94%

α = 75◦ 0.029421 0.018498 −37.13%

α = 90◦ 0.063283 0.038612 −38.98%

α = 105◦ 0.126602 0.075222 −40.58%
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Fig. 4.13 Dimensionless maximum deflection of an SSF sectorial plate versus its Poisson’s ratio
for a α = 0◦, 15◦, 30◦ and 45◦, and b α = 60◦, 75◦, 90◦ and 105◦

between a typical conventional material and an auxetic material with equal Poisson’s
ratio magnitude. Due to the singularities encountered for α = π/4 and α = π/2,
computations of w∗

max for these plate angles were made at μ ± 1× 10−10 so that the
values of w∗

max based on the upper and lower μ do not differ up to five significant
figures, and both the w∗

max results from the upper and lower μ are averaged to give
the final w∗

max up to five significant figures for α = π/4 and α = π/2.
In assessing the effect of material auxeticity, it is insufficient to merely compare

the maximum deflection of an SSF sectorial plate based on a positive value and a
negative value of Poisson’s ratio. Since the Poisson’s ratio of isotropic solids range
from v = −1 to v = 1/2, a more comprehensive comparison between conventional
and auxetic SSF sectorial plates can be made by observing the maximum deflection
for the entire range of the plate’s Poisson’s ratio, as plotted in Fig. 4.13, based on
Eq. (4.4.8).

The reduction in deflection with decreasing plate angle is trivial. It can be seen
that the deflection decreases as the Poisson’s ratio of the plate material becomes
more negative. This observation is attributed to the anti-clastic shape formed at
the vicinity of the plate rim because the deformation of a plate into an anti-clastic
shell is facilitated by highly positive Poisson’s ratio. To visually indicate the effect
of material auxeticity on the plate deformation, Fig. 4.14 demarcates the auxetic
region (−1 ≤ v < 0) from the conventional region (0 ≤ v ≤ 1/2) in the plots of
dimensionless maximum deflection versus the sectorial plate angle.

To obtain a highly accurate surface fit, the semi-empirical equation is confined
within 30◦ ≤ α ≤ 90◦, to give

w∗
max =

4∑
n=0

anv
n (4.4.14)
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Fig. 4.14 Dimensionless maximum deflection regions of conventional and auxetic SSF sectorial
plates versus its angle for a narrow-angled sectorial plate (0◦ ≤ α ≤ 55◦), and b wide-angled
sectorial plate (50◦ ≤ α ≤ 105◦)

where
⎡
⎢⎢⎢⎢⎢⎣

a0
a1
a2
a3
a4

⎤
⎥⎥⎥⎥⎥⎦

= 10−6

⎡
⎢⎢⎢⎢⎢⎣

4799.05 432.36 14.177
4789.45 433.72 14.474
5771.05 521.52 17.298

0.19442 0.0016412
0.21529 0.0016883
0.25085 0.0020080

6245.65 564.85 18.771
3238.35 284.77 9.2693

0.27425 0.0021845
0.13301 0.0010450

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

+α0

−α1

+α2

−α3

+α4

⎤
⎥⎥⎥⎥⎥⎦

(4.4.15)

or

w∗
max =

4∑
n=0

bnα
n (4.4.16)

where

⎡
⎢⎢⎢⎢⎢⎣

+b0
−b1
+b2
−b3
+b4

⎤
⎥⎥⎥⎥⎥⎦

= 10−6

⎡
⎢⎢⎢⎢⎢⎣

4799.05 4789.45 5771.05 6245.65 3238.35
432.36 433.72 521.52 564.85 284.77
14.177 14.474 17.298 18.771 9.2693
0.19442 0.21529 0.25085 0.27425 0.13301

0.0016412 0.0016883 0.0020080 0.0021845 0.0010450

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

v0

v1

v2

v3

v4

⎤
⎥⎥⎥⎥⎥⎦

(4.4.17)

For obvious reason, the square matrices in Eqs. (4.4.15) and (4.4.17) are transpo-
sition of each other. For the convenience of the designer, the sectorial plate angle α in
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Fig. 4.15 Comparison
between exact (circles) and
semi-empirical (curves)
maximum dimensionless
deflection of an SSF plate

the semi-empirical models of Eqs. (4.4.15) and (4.4.16) is in terms of degrees instead
of radians. The validity of the semi-empirical model described by Eqs. (4.4.14) and
(4.4.15) or Eqs. (4.4.16) and (4.4.17) is confirmed by making comparison against
the exact solution given in Eq. (4.4.8). The use of Eqs. (4.4.14) and (4.4.15) would
be more expedient for plotting w∗

max against α for different curves denoting different
v, while Eqs. (4.4.16) and (4.4.17) are more convenient for plotting w∗

max versus
v for different curves indicating different α. Based on Eqs. (4.4.16) and (4.4.17),
graphical plots in Fig. 4.15 for α = 30◦, 45◦, 60◦, 75◦, and 90◦ exhibit very good
agreement between the exact solution and the semi-empirical model. The accuracy
of the semi-empirical models with reference to the analytical model can be described
by the coefficient of determination at 99.996%.

As the auxetic and conventional regions are defined by −1 ≤ v < 0 and 0 ≤
v ≤ 1/2, respectively, the use of the limiting Poisson’s ratio in Eq. (4.4.14) allows
representation of

4∑
n=0

(−1)nan ≤ w∗
max < a0 (4.4.18)

for auxetic range and

a0 ≤ w∗
max ≤

4∑
n=0

an
2n

(4.4.19)

for conventional range, whereby the coefficients an for n = 0, 1, 2, 3, 4 are defined
by Eq. (4.4.15). Alternatively the implementation of the limiting Poisson’s ratio in
Eq. (4.4.17) permits representation of
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⎡
⎢⎢⎢⎢⎢⎣

2773.35
240.08
7.4983
0.08874
0.0008214

⎤
⎥⎥⎥⎥⎥⎦

T⎡
⎢⎢⎢⎢⎢⎣

+α0

−α1

+α2

−α3

+α4

⎤
⎥⎥⎥⎥⎥⎦

× 10−6 ≤ w∗
max <

⎡
⎢⎢⎢⎢⎢⎣

4799.05
432.36
14.177
0.19442
0.0016412

⎤
⎥⎥⎥⎥⎥⎦

T⎡
⎢⎢⎢⎢⎢⎣

+α0

−α1

+α2

−α3

+α4

⎤
⎥⎥⎥⎥⎥⎦

× 10−6

(4.4.20)

for auxetic range and

⎡
⎢⎢⎢⎢⎢⎣

4799.05
432.36
14.177
0.19442
0.0016412

⎤
⎥⎥⎥⎥⎥⎦

T⎡
⎢⎢⎢⎢⎢⎣

+α0

−α1

+α2

−α3

+α4

⎤
⎥⎥⎥⎥⎥⎦

× 10−6 × 10−6 ≤ w∗
max ≤

⎡
⎢⎢⎢⎢⎢⎣

9619.64
868.004
28.6643
0.40737
0.0033257

⎤
⎥⎥⎥⎥⎥⎦

T⎡
⎢⎢⎢⎢⎢⎣

+α0

−α1

+α2

−α3

+α4

⎤
⎥⎥⎥⎥⎥⎦

× 10−6

(4.4.21)

for conventional range, based on the semi-empirical model described in Eq. (4.4.16),
whereby the superscript T indicates matrix transposition. A graphical representation
for the conventional and auxetic windows is furnished in Fig. 4.16.

Although the Poisson’s ratio range in the auxetic region is twice that in the conven-
tional region, the auxetic window for w∗

max versus α is narrower than that in the
conventional region. This is attributed to the diminishing reduction in deflection as
the plate material’s Poisson’s ratio becomes more negative, as shown in Fig. 4.15,
i.e.,

Fig. 4.16 Exact (circles)
and semi-empirical (curves)
of maximum dimensionless
deflection of SSF plates for
demarcation of conventional
and auxetic regions
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v1 < v2 ⇔
(

∂w∗
max

∂v

)
v1

<

(
∂w∗

max

∂v

)
v2

(4.4.22)

To appreciate the convenience of the semi-empirical model, we note that the
boundary that demarcates the conventional and auxetic regions, being defined as
v = 0, is written in the exact solution form

w∗
max = 4

π

⎧⎨
⎩

1(
16 − π2

α2

)(
4 − π2

α2

) −
4
3 + 5

6
π
α

π
α

(
4 − π2

α2

)(
4 + π

α

)(
1 + π

α

)

+
(

π
α

− 4
)[

4
3 + 5

6
π
α

][
π
α

+ 2
] + 12π

α

π2

α2

(
16 − π2

α2

)(
4 − π2

α2

)(
1 − π

α

)
⎫⎬
⎭

− 4

3π

⎧⎨
⎩

1(
16 − 9π2

α2

)(
4 − 9π2

α2

) −
4
9 + 5

6
π
α

π
α

(
4 − 9π2

α2

)(
4 + 3π

α

)(
1 + 3π

α

)

+
(

π
α

− 4
3

)[
4
9 + 5

6
π
α

][
3π

α
+ 2

] + 4π
α

π2

α2

(
16 − 9π2

α2

)(
4 − 9π2

α2

)(
1 − 3π

α

)
⎫⎬
⎭

+ 4

5π

⎧⎨
⎩

1(
16 − 25π2

α2

)(
4 − 25π2

α2

) −
4
15 + 5

6
π
α

π
α

(
4 − 25π2

α2

)(
4 + 5π

α

)(
1 + 5π

α

)

+
(

π
α

− 4
5

)[
4
15 + 5

6
π
α

][
5π

α
+ 2

] + 12
5

π
α

π2

α2

(
16 − 25π2

α2

)(
4 − 25π2

α2

)(
1 − 5π

α

)
⎫⎬
⎭ (4.4.23)

based on the first three terms m = 1, 2, 3 remains cumbersome while the
corresponding semi-empirical model is greatly simplified to (Lim 2017)

w∗
max = (

4799.05 − 432.36α + 14.177α2 − 0.19442α3 + 0.0016412α4
) × 10−6

(4.4.24)

with the sectorial plate angle α in Eqs. (4.4.23) and (4.4.24) in units of radians and
degrees, respectively.

In conclusion, results show that the severity of plate deflection can be effectively
reduced by using auxetic material for the sectorial plate. For convenience to the
mechanical designer, a semi-empirical model has been developed herein to allow
convenient calculation of the SSF plate’s maximum deflection as a function of secto-
rial angle and Poisson’s ratio. Comparison between the semi-empirical model and
the exact solution exhibits very good agreement. It is therefore suggested that the
deflection of an SSF sectorial plate can be reduced by replacing conventional mate-
rials with auxetic materials, and that the proposed semi-empirical model is a useful
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design equation for providing simple and yet accurate indication of the maximum
allowable deflection.

4.5 Example: Rhombic Auxetic Plates

This section develops a set of design equations that is simple to execute and suffi-
ciently accurate for a class of rhombic plates, which are simply supported and
uniformly loaded, with special emphasis on the use of auxetic materials.

With reference to Fig. 4.17 for a simply supported rhombic plate of thickness h,
sides a, and complementary angles of 2α and (π − 2α) under uniformly distributed
load of q0, the deflection of such plate within the context of Kirchhoff plate theory

w = w0 + w1 (4.5.1)

at any point (r, θ) is given by the summation of a particular solution w0

w0 = q0
D

r4

64

(
1 − 4 cos 2θ

3 cos 2α
+ cos 4θ

3 cos 4α

)
(4.5.2)

which is applicable for all 0 < α < π/2 except α = π/8, π/4, 3π/8, whereby
the plate’s flexural rigidity D is defined in Eq. (4.1.3). Hereafter, we consider the
approaches by Morley (1962) and Warren (1964).

In the first approach, the complementary function w1 is (Morley 1962)

w1 = q0
D

∞∑
m=1

(
am + bmr

2
)
rλm+1 cos(λm + 1)θ (4.5.3)

Fig. 4.17 Schematic
diagram of a rhombic plate
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where

λm + 1 = (2m − 1)π

2α
(4.5.4)

The calculations leading to Morley’s (1962) solutions of coefficients bm require

δ

a sin α∫
−a sin α

[
∂

∂x
∇2w

]2

x=a cosα

dy = 0 (4.5.5)

that leads to a system ofM equations

⎡
⎢⎢⎢⎣

A11 A12 · · · A1M

A21 A22
...

. . .

AM1 AMM

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b1
b2
...

bM

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A1

A2
...

AM

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.5.6)

where

Amn = Anm = 16(λm + 2)(λm + 1)(λn + 2)(λn + 1)
a sin α∫

−a sin α

[
rλm+λn cos λmθ cos λnθ

]
x=a cosα

dy (4.5.7)

and

Amn

4(λm + 2)(λm + 1)
= 1

2

(
1

cos 2α
− 1

) a sin α∫
−a sin α

[
rλm+1 cos λmθ cos θ

]
x=a cosα

dy

= (−1)m+1(1 − cos 2α)aλm+2

λm + 1
(4.5.8)

while calculations leading to the solutions of coefficients am requires

δ

a sin α∫
−a sin α

[
∂w

∂x

]2

x=a cosα

dy = 0 (4.5.9)

that leads to another system of M equations
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⎡
⎢⎢⎢⎣

A′
11 A′

12 · · · A′
1M

A′
21 A′

22
...

. . .

A′
M1 A′

MM

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1
a2
...

aM

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A′
1

A′
2
...

A′
M

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.5.10)

where

A′
mn = A′

nm = Amn

16(λm + 2)(λn + 2)
(4.5.11)

and

A′
m = (λm + 1)

a sin α∫
−a sin α

[
χrλm cos λmθ

]
x=a cosα

dy (4.5.12)

in which Amn is given by Eq. (4.5.7) while

χ = r3

16

[(
1 − 1

cos 2α

)
cos θ + 1

3

(
1

cos 4α
− 1

cos 2α

)
cos 3θ

]

+
M∑

m=1

bm{(λm + 2) cos λmθ + cos(λm + 2)θ}rλm+2 (4.5.13)

In the second approach, the complementary function w1 is (Warren 1964)

w1 = q0
D

∞∑
n=1

(
an + bnr

2
)
rλn cos λnθ (4.5.14)

where

λn = (2n − 1)π

2α
(4.5.15)

The coefficients an and bn are chosen ideally so as to satisfy symmetry boundary
conditions along the diagonal AB (see Fig. 4.17). These conditions require

∂

∂x
∇2w

∣∣∣∣
AB

= 0 (4.5.16)

and

∂w

∂x

∣∣∣∣
AB

= 0 (4.5.17)
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which give

{
a cosα

(
1 − 1

cos 2α

)
+ 8

∞∑
n=1

λn(λn + 1)bnr
λn−1 cos(λn − 1)θ

}

AB

= 0

(4.5.18)

and

{
r3

16

[(
1 − 1

cos 2α

)
cos θ + 1

3

(
1

cos 4α
− 1

cos 2α

)
cos 3θ

]

+
∞∑
n=1

λnanr
λn−1 cos(λn − 1)θ

+
∞∑
n=1

bnr
λn+1[(λn + 1) cos(λn − 1)θ + cos(λn + 1)θ ]

}

AB

= 0 (4.5.19)

Warren (1964) appreciated the fact that the coefficients bm and am are chosen by
Morley (1962) so as to minimize the integral square error over AB. This leads to
numerous integrals which are tedious to evaluate, and then finally to the solution of
M by M simultaneous linear equations for determining these coefficients. Warren
(1964) proposed themethod of “pointmatching” that requires satisfyingEqs. (4.5.18)
and (4.5.19) exactly atM discrete points along AB, which leads directly to two sets
ofM byM simultaneous linear equations for determining the said coefficients. Both
ways are nevertheless tedious to the designer, and a simplified model would be of
great practical importance. To provide simplified design equations for thin rhombic
plates, results from Morley (1962) are used for generating semi-empirical models
that are very convenient and yet sufficiently accurate.

Perusal to the expressions for the rhombic plate deflection shows that it is a
function of load q0, location (r, θ), half angle of obtuse corner α as well as the
Young’s modulus, plate thickness, and Poisson’s ratio. If one were to express the
plate deflection in the form of D/

(
q0a4

)
, then this dimensionless plate deflection

is independent from the material properties (E, v) of the plate. Based on Morley’s
(1962) numerical results for the dimensionless deflection as well as the bending
moments at the center of the plate for v = 0.3 and 45◦ ≤ α ≤ 75◦, a curve-fitting
exercise yields the following semi-empirical models for the plate center (Lim 2018)

wmaxD

q0a4
=

{
1.907 3.578 2.069 3.397

}
⎧⎪⎪⎨
⎪⎪⎩

+10−7α3

−10−5α2

+10−3α1

−10−2α0

⎫⎪⎪⎬
⎪⎪⎭

(4.5.20)
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D

q0a2

{
∂2wmax

∂x2
∂2wmax

∂y2

}
=

[
3.768 3.861 6.039
0 −1.071 −8.604

]⎧⎨
⎩

+10−5α2

−10−3α1

+10−2α0

⎫⎬
⎭ (4.5.21)

where α in the above semi-empirical models is expressed in degrees. Since the
rhombic plate deflection functions are independent from the plate’s Poisson’s ratio
when non-dimensionalized, it follows that this independence holds for Eqs. (4.5.20)
and (4.5.21). Nevertheless, the Poisson’s ratio plays its role in the bending moment,
as described in Eq. (4.5.22).

Verification of the semi-empirical maximum deflection model described in
Eq. (4.5.20) is made by plotting it in comparison to the discrete data points by
Morley, as shown in Fig. 4.18 (left). Apart from the maximum deflection, another
plate response that is of interest to the designer is the maximum stresses. Since the
bending stress is related to the bending moment, i.e., σmax = 6Mmax/h2, it suffices to
evaluate the maximum bending moments. Substitution of Eq. (4.5.21) and v = 0.3
into

{
Mx,max

My,max

}
= −D

[
1 −v

−v 1

]{ ∂2wmax
∂x2

∂2wmax
∂y2

}
(4.5.22)

allows the semi-empirical bending moments to be compared with the exact results,
as plotted in Fig. 4.18 (right), in which Mmax = Mx,max > My,max for α > 45◦.
Having established their validity, the semi-empirical models are used for plotting the
loci of dimensionless maximum bending moments in the conventional 0 ≤ v ≤ 1/2,
moderately auxetic −1/2 ≤ v < 0 and highly auxetic −1 ≤ v < −1/2 regions.
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Fig. 4.18 Comparison between the semi-empirical (smooth curves) and Morley’s (1962) exact
numerical results (data points) for the dimensionless maximum deflection (left) and the dimen-
sionless maximum bending moments along the x- and y-axes (right) for v = 0.3 and 45◦ ≤ α ≤
75◦
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Fig. 4.19 Loci of
dimensionless maximum
bending stress for
conventional, moderately
auxetic, and highly auxetic
regions
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Reference to Fig. 4.19 shows that, with all other parameters fixed, the maximum
bendingmoment—and hence themaximum bending stress—is reduced by the extent
of material auxeticity (Lim 2018).
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Chapter 5
Thick Auxetic Plates

Abstract This chapter considers shear deformation in transversely loaded thick
plates—such as rectangular plates, equilateral triangular plates, isosceles right trian-
gular plates, hexagonal plates, and regular polygonal plates—with special emphasis
on the effect of auxeticity on their performances and the use of Reddy plate theory
to extract the shear correction factors of Mindlin plates. Thereafter a comparison is
made between the shear deformation in thick plates and buckling of thick columns
to establish an analogy between them. Finally, a discussion is made on vibration of
thick auxetic plates.

Keywords Mindlin plates · Reddy plates · Shear deformation · Thick plates

5.1 Preamble

The use of Kirchhoff plate theory, or the classical plate theory (CPT), is justifiable for
thin plates of thickness-to-length ratio of 1/20 (Yuan and Miller 1992; Reddy 2006).
Beyond this limit, shear deformable theories are required to take into consideration
the transverse shear deformation. Following the work of Reissner (1945), the first-
order shear deformation theory (FSDT) by Mindlin (1951) assumes constant shear
strain and shear stress through the plate thickness. Hence, a shear correction factor,
κ, is required to correct the difference between the actual transverse shear force
distributions and those calculated using the kinematic relationships of the FSDT.
However, the Reddy (1984) plate theory, which falls under the third-order shear
deformation theory (TSDT), accounts for the variation of transverse shear strain
and shear stress through the plate thickness and therefore needs no shear correction.
Although the TSDT is more rigorous, the FSDT is nevertheless attractive due to
its relative simplicity; accurate prediction can still be achieved using FSDT with
judicious selection of shear correction factor. The analysis of shear deformation in
auxetic plates within the framework of FSDT has been done for plates for circular
(Lim 2013) and rectangular (Lim 2014a) shapes, and are summarized in Chap. 15 of
Lim (2015) alongside shear deformation of auxetic beams and columns. This chapter
explores the use of Reddy plate theory for extracting the shear correction factors for
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Mindlin plates of various shapes, with special emphasis on the effect of material
auxeticity.

Consider a flat plate lying on the x-y plane with application of transverse load
parallel to the z-axis within a 3D Cartesian coordinate system. The displacement
field of a plate according to the Kirchhoff plate theory is written as

ux (x, y, z) = −z ∂w0
∂x

uy(x, y, z) = −z ∂w0
∂y

w(x, y, z) = w0(x, y)

(5.1.1)

where
(
ux , uy, w

)
denotes the displacement components parallel to the x-axis, y-axis,

and z-axis, respectively, while w0 refers to the transverse deflection of a plate point
on the mid-plane z = 0. Due to the Kirchhoff plate assumption that deflection is
attained purely be bending such that straight lines normal to the mid-surface remain
straight and normal to the mid-surface after deflection, the rotations are −∂w/∂x
about the in-plane y-axis (Fig. 5.1, top). The incorporation of shear deformation but
with a simplifying assumption of uniform shear strain across the plate thickness,
which results in a constant rotation φx about the y-axis, would therefore require a
shear correction factor for the Mindlin plate (Fig. 5.1, middle). This is reflected in
the displacement field of a flat plate according to the Mindlin plate theory

ux (x, y, z) = zφx (x, y)
uy(x, y, z) = zφy(x, y)
w(x, y, z) = w0(x, y)

(5.1.2)

No shear correction is required for the Reddy plate (Fig. 5.1, bottom) due to its
allowance for variation in φx across the plate thickness

ux (x, y, z) = zφx (x, y) − 4z3

3h2
(
φx + ∂w0

∂x

)

uy(x, y, z) = zφy(x, y) − 4z3

3h2

(
φy + ∂w0

∂y

)

w(x, y, z) = w0(x, y)

(5.1.3)

which qualifies it to be suitable for extracting the shear correction factor of Mindlin
plates. In addition to the emphasis on material auxeticity, the subsequent sections
in this chapter develop models that are tractable. In the proceeding sections, w0 is
denoted as w for brevity.

5.2 Fundamentals

This section establishes, in a generic manner, the fundamentals for extracting the
Mindlin plate’s shear correction factor using Reddy plate theory for transversely
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Fig. 5.1 Schematics of
displacements based on
Kirchhoff (top), Mindlin
(middle), and Reddy
(bottom) plate theories

Kirchhoff 
plate theory

Mindlin 
plate theory

Reddy 
plate theory

loaded simply supported polygonal plates, including irregular ones. For the purpose
of the present analysis, the superscripts (·)K , (·)M , and (·)R refer to the Kirchhoff,
Mindlin, and Reddy plates, respectively. For a simply supported polygonal plate of
shear modulusG, Young’s modulus E, Poisson’s ratio v, and thickness h, the relation-
ship between the Mindlin plate deflection, wM , and the Kirchhoff plate deflection,
wK , has been given by Wang and Alwis (1995) as

wM = wK + MK

κGh
(5.2.1)

where the Marcus moment of the Kirchhoff plate

MK = MK
x + MK

y

1 − v
(5.2.2)

is related to the Kirchhoff plate deflection as
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MK = −D�wK (5.2.3)

in which the plate flexural rigidity D has been described by Eq. (4.1.3) while �

is defined in Eq. (4.3.7). The deflection relationship between Kirchhoff and Reddy
plate theories has been given by Reddy and Wang (1998) as

wR = wK + 1

Gh

(
αC1D�wR + C4MK

)
(5.2.4)

or

�wR − λ2wR = −λ2

(
wK + C4

Gh
MK

)
(5.2.5)

where C4 = 17/14,

280C1 = 3h2 = 4

α
(5.2.6)

and

λ2 = Gh

αC1D
= 70Gh

D
(5.2.7)

From the plate flexural rigidity described in Eq. (4.1.3) and themoduli relationship

G = E

2(1 + v)
(5.2.8)

we have

D

G
= h3

6(1 − v)
(5.2.9)

The relation furnished in Eq. (5.2.9) is useful for recasting Eq. (5.2.1) in a more
tractable form

wM = wK − h2

6κ(1 − v)
�wK (5.2.10)

Likewise, the use of Eqs. (5.2.6) or (5.2.7) with Eq. (5.2.9) allows Eq. (5.2.4) to
be expressed in a more tractable form

wR − h2

420(1 − v)
�wR = wK − 17h2

84(1 − v)
�wK (5.2.11)
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The forms of CPT-FSDT and CPT-TSDT relationships furnished in Eqs. (5.2.10)
and (5.2.11) are used for forming the FSDT-TSDT relationship to extract the shear
correction factor of Mindlin plates within the framework of Reddy plate theory. Two
approaches are hereafter furnished: the direct approach and the iteration approach.

In the direct approach, we let wR = wM (and hence �wR = �wM ), so that
Eq. (5.2.11) becomes

wM − h2

420(1 − v)
�wM = wK − 17h2

84(1 − v)
�wK (5.2.12)

or, with reference to Eq. (5.2.10),

[
wK − h2

6κ(1 − v)
�wK

]
− h2

420(1 − v)

[
�wK − h2

6κ(1 − v)
�2wK

]

= wK − 17h2

84(1 − v)
�wK (5.2.13)

Setting �wR = 0 in Eq. (5.2.11) commensurates with imposing zero for the
second parenthesis [...] in Eq. (5.2.13), which would lead to κ = 14/17. If we do
not let the entire second parenthesis in Eq. (5.2.13) be zero, but set only �2wK = 0,
then κ = 5/6. If we do not neglect any term, then

κ = 5

6

(
1 − h2

420(1 − v)

�2wK

�wK

)
(5.2.14)

Since �wK < 0 < �2wK for simply supported polygonal plates, the ratio
�2wK /�wK is negative. Therefore, Eq. (5.2.14) can be written as (Lim 2020)

κ = 5

6

(

1 + h2

420(1 − v)

�2wK

∣∣�wK
∣∣

)

(5.2.15)

Knowing the signs of �wK and �2wK , it can be seen that κ = 5/6 is a lower
bound. Examples of specific shear correction factors obtained for rectangular plates
in Sect. 5.3 and isosceles right triangular plates in Sect. 5.5 are subsets of the more
generalized Eq. (5.2.15).

In the iteration approach, we begin by setting �wR = 0 initially for Eq. (5.2.11)
to give

wR = wK − 17h2

84(1 − v)
�wK (5.2.16)

and hence
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�wR = �wK − 17h2

84(1 − v)
�2wK (5.2.17)

Substituting Eq. (5.2.17) into Eq. (5.2.11) gives

wR = wK − h2

5(1 − v)
�wK − 17h4

84(420)(1 − v)2
�2wK (5.2.18)

which leads to

�wR = �wK − h2

5(1 − v)
�2wK − 17h4

84(420)(1 − v)2
�3wK (5.2.19)

Substituting Eq. (5.2.19) into Eq. (5.2.11) and proceeding similarly, an infinite
series expansion

wR = wK − h2�wK

5(1 − v)
− h4�2wK

5(420)(1 − v)2

− h6�3wK

5(420)2(1 − v)3
− h8�4wK

5(420)3(1 − v)4
− · · · (5.2.20)

is obtained, which can be expressed in the following contracted form

wR = wK −
∞∑

n=1

h2n�nwK

5(420)n−1(1 − v)n
(5.2.21)

Recall now that Eqs. (5.2.16), (5.2.18), and (5.2.20) are the series expansions
based on one, two, and infinite iterations, respectively. If we let wR = wM based
on Eqs. (5.2.10) and (5.2.16), the latter being of one iteration, then κ = 14/17.
Suppose we let wR = wM based on Eqs. (5.2.10) and (5.2.18), the latter being of
two iterations, then κ = 5/6 if the highest order term is neglected. Now if we let
wR = wM based on Eqs. (5.2.10) and (5.2.20), the latter being of infinite iterations,
then

κ

= 5

6

(

1 + h2

420(1 − v)

�2wK

�wK
+ h4

4202(1 − v)2
�3wK

�wK
+ h6

4203(1 − v)3
�4wK

�wK
+ · · ·

)−1

(5.2.22)

or

κ = 5

6

(

1 +
∞∑

n=1

h2n

420n(1 − v)n
�n+1wK

�wK

)−1

(5.2.23)
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Truncating the higher-order terms in Eq. (5.2.22), or neglecting terms of n ≥ 2
in Eq. (5.2.23), we have

κ = 5

6

(
1 + h2

420(1 − v)

�2wK

�wK

)−1

(5.2.24)

which is related to Eq. (5.2.14) by virtue ofMaclaurin expansion followed by neglect
of higher orders. Considering again that �wK < 0 < �2wK for simple supports,
Eq. (5.2.24) can be expressed as (Lim 2020)

κ = 5

6

(

1 − h2

420(1 − v)

�2wK

∣∣�wK
∣∣

)−1

(5.2.25)

Examples of specific shear correction factors obtained for equilateral triangular
plates in Sect. 5.4, hexagonal plates in Sect. 5.6, and the regular polygonal plates in
Sect. 5.7 are subsets of the more generalized Eq. (5.2.25).

5.3 Example: Rectangular Auxetic Plates

Figure 5.2 illustrates a simply supported thick rectangular plate of sides a and b,
measured along the x and y axes, respectively, while the thickness h is measured
along the z-axis. Equating theMindlin andReddyplate deflections gives the following

x

y

x

z

y

z

a

b

a

b

h

h

Fig. 5.2 Geometrical nomenclature adopted for analysis of thick rectangular plates
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general relationship under the same boundary condition,

1

κ
= 17

14
− 1

70

�wR

�wK
(5.3.1)

Perusal to Eq. (5.3.1) suggests that a meaningful exact shear correction factor
can be obtained if both the Reddy plate and Kirchhoff plate deflections are known.
Neglecting the higher-order term in Eq. (5.3.1) gives a shear correction factor of
κ = 14/17. We shall now consider two types of loads: uniform load and sinusoidal
load.

As the Kirchhoff plate deflection for a simply supported rectangular plate under
uniform load q = q0 is

wK = 16q0
π6D

∞∑

m=1

∞∑

n=1

sin mπx
a sin nπy

b

mn
(
m2

a2 + n2
b2

)2 (5.3.2a)

with m, n = 1, 3, 5, . . ., we adopt a similar deflection profile for the Reddy plate

wR = AR
∞∑

m=1

∞∑

n=1

sin mπx
a sin nπy

b

mn
(
m2

a2 + n2
b2

)2 (5.3.2b)

where AR is the amplitude termof theReddy plate. Substituting the deflection profiles
of Kirchhoff and Reddy plates into the relationships described by Eqs. (5.2.10) and
(5.2.11) leads to

wM = 16q0
π6D

⎧
⎪⎨

⎪⎩

∞∑

m=1

∞∑

n=1

sin mπx
a sin nπy

b

mn
(
m2

a2 + n2
b2

)2 + π2h2

6κ(1 − v)

∞∑

m=1

∞∑

n=1

sin mπx
a sin nπy

b

mn
(
m2

a2 + n2
b2

)

⎫
⎪⎬

⎪⎭

(5.3.3)

and

AR = 16q0
π6D

∑∞
m=1

∑∞
n=1

sin mπx
a sin nπy

b

mn
(

m2

a2
+ n2

b2

)2 + 17π2h2

84(1−v)

∑∞
m=1

∑∞
n=1

sin mπx
a sin nπy

b

mn
(

m2

a2
+ n2

b2

)

∑∞
m=1

∑∞
n=1

sin mπx
a sin nπy

b

mn
(

m2

a2
+ n2

b2

)2 + π2h2
420(1−v)

∑∞
m=1

∑∞
n=1

sin mπx
a sin nπy

b

mn
(

m2

a2
+ n2

b2

)
(5.3.4)

respectively. Introducing the function

f (a, b, x, y) =
∑∞

m=1

∑∞
n=1

sin mπx
a sin nπy

b

mn( b
a m

2+ a
b n

2)
∑∞

m=1

∑∞
n=1

sin mπx
a sin nπy

b

mn( b
a m

2+ a
b n

2)
2

(5.3.5)
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allows Eq. (5.3.4) to be contracted as

AR = 16q0
π6D

1 + 17π2h2

84(1−v)ab f (a, b, x, y)

1 + π2h2
420(1−v)ab f (a, b, x, y)

(5.3.6)

The termsa/b inEq. (5.3.5) andh/
√
ab inEq. (5.3.6) indicate the plate aspect ratio

and its relative thickness, respectively; for a square plate, these reduce to a/b = 1
and h/a. Using Eq. (5.3.6) and equating the Mindlin and Reddy plate deflections
gives

1 + π2h2

420(1 − v)ab
f (a, b, x, y) + π2h2

6κ(1 − v)ab
f (a, b, x, y)

+ π4h4

2520κ(1 − v)2a2b2
( f (a, b, x, y))2

= 1 + 17π2h2

84(1 − v)ab
f (a, b, x, y) (5.3.7)

Hence, the shear correction factor κ = 14/17 is obtained from Eq. (5.3.7) if the
terms containing π2h2/420 and π4h4/2520 are neglected, and that the usual shear
correction factor of κ = 5/6 is obtained from Eq. (5.3.7) if only the highest order
term is neglected. Taking into account the highest order term, we have the exact shear
correction factor

κ = 5

6

[
1 + π2

420(1 − v)

h2

ab
f (a, b, x, y)

]
(5.3.8)

Since the maximum deflection takes place at the plate center, it is practical to
consider the shear correction factor therein (Lim 2016a)

κ = 5

6

[
1 + π2

420(1 − v)

h2

ab
f

(
a, b,

a

2
,
b

2

)]
(5.3.9)

where the function described by Eq. (5.3.5) becomes

f

(
a, b,

a

2
,
b

2

)
=
∑∞

m=1

∑∞
n=1

(−1)
m+n
2 −1

mn( b
a m

2+ a
b n

2)
∑∞

m=1

∑∞
n=1

(−1)
m+n
2 −1

mn( b
a m

2+ a
b n

2)
2

= f
(a
b

)
(5.3.10)

at the plate center. For an extremely long and narrow plate, Eq. (5.3.10) reduces to

lim
a
b →∞

f
(a
b

)
= a

b
(5.3.11)
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Table 5.1 Computed results of Eq. (5.3.10)

Plate aspect
ratio, a/b

Numerator
∑∞

m=1
∑∞

n=1
(−1)

m+n
2 −1

mn
(
b
a m

2+ a
b n

2
)

Denominator
∑∞

m=1
∑∞

n=1
(−1)

m+n
2 −1

mn
(
b
a m

2+ a
b n

2
)2

Ratio
f
(
a, b, a

2 , b
2

)

1.0 0.44895 0.24409 1.839281

1.2 0.44059 0.23578 1.868649

1.5 0.40575 0.20627 1.967082

2.0 0.34749 0.15215 2.283865

3.0 0.24622 0.08167 3.014816

5.0 0.15405 0.031175 4.941460

7.5 0.10389 0.013907 7.470339

10.0 0.07859 0.007824 10.04473

It can be seen that both the numerator and denominator of Eq. (5.3.10) are depen-
dent on the plate aspect ratio a/b. Setting a ≥ b for the uniformly loaded plate,
Table 5.1 lists the denominator and numerator of Eq. (5.3.10) by performing double
series summation. The summation was performed up to m = n = 41 in order to
obtain sufficient numerical accuracy.

A simple curve-fit based on Table 5.1 gives the function

f

(
a, b,

a

2
,
b

2

)
= f

(a
b

)
= −0.0062

(a
b

)3

+ 0.1281
(a
b

)2 + 0.1956
(a
b

)
+ 1.4598 (5.3.12)

for 1 ≤ a/b ≤ 10 with a statistical accuracy of R2 = 0.9998.
Suppose the load distribution takes a sinusoidal form

q = q0 sin
mπx

a
sin

nπy

b
(5.3.13)

instead of being uniformly distributed—wherebym and n quantify the load waviness
along the x and y axes, respectively—then Eqs. (5.3.5) and (5.3.8) reduce to

f (a, b, x, y) = b

a
m2 + a

b
n2 (5.3.14)

and

κ = 5

6

[
1 + π2

420(1 − v)

h2

ab

(
b

a
m2 + a

b
n2
)]

(5.3.15)

respectively. Although Eq. (5.3.15) can be written in a simpler way as
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Table 5.2 Shear correction factor expressions for special cases of rectangular plates under
sinusoidal loads

Simple sinusoidal load
distribution (m = n = 1)

General sinusoidal load
distributions (m, n ≥ 1)

Square plates a = b κ = 5
6

[
1 + π2

210(1−v)
h2

a2

]
κ = 5

6

[
1 + π2

420(1−v)
h2

a2
(
m2 + n2

)]

Rectangular plates a �= b κ =
5
6

[
1 + π2

420(1−v)
h2
ab

( b
a + a

b

)] κ =
5
6

[
1 + π2

420(1−v)
h2
ab

( b
a m

2 + a
b n

2
)]

κ = 5

6

[
1 + π2h2

420(1 − v)

(
m2

a2
+ n2

b2

)]
(5.3.16)

the former is instructive for showing the effect of relative plate thickness h/
√
ab and

aspect ratio a/b, in addition to the Poisson’s ratio. Unlike the previous subsection on
uniform load, this subsection on sinusoidal load allows one to observe the interlacing
effect of load waviness pattern and plate aspect ratio on the shear correction factor.

For the special case of square plate, perusal to Table 5.2 shows that load waviness
increases the shear correction factor. Reference to the same table also shows that
waviness is strongly influenced by the aspect ratio of the plate; the effect of load
waviness along the longer side diminishes as the plate becomes long or very narrow,
i.e.,

κ = 5
6

[
1 + n2π2

420(1−v)
h2

b2

]
; a � b

κ = 5
6

[
1 + m2π2

420(1−v)
h2

a2

]
; a 	 b

(5.3.17)

and consequently the relative thickness is governed by the ratio of the plate thickness
to its shorter side.

In determining the range of relative thickness that is applicable for the shear
deformation theories, one may classify the plate thickness into four categories: (i)
a/h > 100, (ii) 20 < a/h < 100, (iii) 3 < a/h < 20, and (iv) a/h < 3. This
implies that one may then adopt the membrane theory for h/a < 0.01, CPT for
h/a < 0.05, shear deformation theories for h/a < 0.3333, and elasticity theory for
h/a > 0.3333. It therefore follows that the TSDT-based shear correction factor for
FSDT problems is therefore applicable for relative thickness range of h/a < 0.3333.
As such the following results were computed for relative thickness up to 0.2 since
shear deformation theories are not applicable for relative thickness of 1/3 and above.
As with CPT and FSDT, the TSDT is applicable for auxetic materials since the
development of these theories is not confined to cases where the Poisson’s ratio is
positive.

Figure 5.3a, b shows the effect of relative plate thickness and plate aspect ratio
on the shear correction factor of a uniformly loaded plate for the entire range of
Poisson’s ratio. Specifically, the shear correction factor increases when (i) the plate
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(a) (b)
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Fig. 5.3 Shear correction factor versus Poisson’s ratio of a simply supported rectangular plate
under uniform load with a variation in relative thickness for a square plate and b variation in aspect
ratio for a thick plate

becomes thicker, (ii) the plate becomes longer or narrower, and (iii) the Poisson’s
ratio of the plate material is greater. The curves of the shear correction factors are
plotted for the Poisson’s ratio of the range −1 ≤ v ≤ 1/2. The dashed lines in this
and subsequent figures indicate the lower bound for the shear correction factor, i.e.,
κ = 5/6, for comparison. The influence of the plate geometry, in terms of the in-
plane aspect ratio and the relative thickness, on the shear correction factor is plotted
in Fig. 5.4 for v = 0.3.

In the case of sinusoidal load, there is a qualitatively comparable trend in the
effect of plate geometry (aspect ratio and relative thickness) and Poisson’s ratio on

Fig. 5.4 Influence of aspect
ratio and relative thickness
on the shear correction factor
of a plate with v = 0.3
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uniform load. In addition, the waviness of the transverse static load increases the
shear correction factor, as evidenced in Fig. 5.5 for square plates.

In the special case of square plates, the shear correction factor is unchanged when
the load waviness changes direction. For example, the shear correction factor for
(m, n) = (3, 1) is similar to that for (m, n) = (1, 3); likewise the shear correction
factor for (m, n) = (5, 1) is similar to that for (m, n) = (1, 5). This observation,
however, does not hold for rectangular plates. Perusal to Eqs. (5.3.15) or (5.3.17)
shows that for very long or very narrow plates, the load waviness measured along
the shorter side has a greater influence than that along the longer side, as shown in
Fig. 5.6.

(a) (b)
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Fig. 5.5 Effect of load waviness on the shear correction factor of a sinusoidally loaded square plate
with varying a relative thickness and b Poisson’s ratio

Fig. 5.6 Asymmetric effect
of load waviness on shear
correction factor of a
rectangular plate with
Poisson’s ratio 0.3 and
relative thickness 0.2
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In summary, the results obtained herein for uniform and sinusoidal loads show that
the exact shear correction factor is higher than the commonly used shear correction
factor of 5/6 under the following conditions:

1. very thick plates
2. very long or narrow plates
3. plates made from large Poisson’s ratio (especially incompressible) materials and
4. highly patterned loading pattern, or sinusoidal load with high load waviness.

However, the use of the lower-bound shear correction factor of κ = 5/6 is valid
under the following conditions:

1. marginally thick plates
2. square or almost square plates
3. plates made from auxetic materials and
4. less wavy load pattern, especially uniform loads.

5.4 Example: Equilateral Triangular Auxetic Plates

In the case of a simply supported equilateral triangle plate under a uniformly
distributed load as shown in Fig. 5.7, the plate deflection according to CPT has
been given by Woinowsky–Krieger (1933) as

wK = q

64LD

[
x3 − 3xy2 − L

(
x2 + y2

)+ 4

27
L3

][
4

9
L2 − (x2 + y2

)]
(5.4.1)

Notwithstanding the availability of the CPT model, it can be easily seen that the
TSDT-CPT relation given in Eq. (5.2.11) is not readily applicable due to the need
for solving for both wR and �wR . Although one may set �wR = 0 in Eq. (5.2.11)
in order to conveniently solve for wR directly, this simplification could possibly
affect its accuracy—as will be shown later—thereby resulting in a lower accuracy

Fig. 5.7 Geometrical
description of an equilateral
triangular plate

x

y

L

L / 3

L / 3
2L /3
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in comparison to the FSDT model. Suppose we set �wR = 0 in Eq. (5.2.11), then
substitution of Eq. (5.4.1) and

�wK = q

64LD
(−16)

[
x3 − 3xy2 − L

(
x2 + y2

)+ 4

27
L3

]
(5.4.2)

into Eq. (5.2.11) gives the simplified TSDT deflection as

wR∼ q

64LD

[
x3 − 3xy2 − L

(
x2 + y2

)+ 4

27
L3

][
4

9
L2 − (x2 + y2

)+ 68h2

21(1 − v)

]

(5.4.3)

In order to directly solve Eq. (5.2.11) for the considered plate, the following
solution is proposed herein in a similar form

wR = q

64LD

{[
x3 − 3xy2 − L

(
x2 + y2

)+ 4

27
L3

]

[
4

9
L2 − (x2 + y2

)+ C1h2

1 − v

]
− C2Lh4

(1 − v)2

}
(5.4.4)

where C1 and C2 are dimensionless constants. Substituting Eqs. (5.4.1), (5.4.2),
(5.4.4), and

�wR = q

64LD
(−16)

[
x3 − 3xy2 − L

(
x2 + y2

)+ 4

27
L3 + C1Lh2

4(1 − v)

]
(5.4.5)

into Eq. (5.2.11) leads to

(
C1 − 16

5

)[
x3 − 3xy2 − L

(
x2 + y2

)+ 4

27
L3

]
=
(
C2 − C1

105

)
Lh2

1 − v
(5.4.6)

The above equation is satisfied if the coefficients are chosen as

C1 = 16

5
, C2 = 16

525
(5.4.7)

The exact plate deflection by TSDT as described by Eq. (5.4.4) with Eq. (5.4.7)
can also be arrived at by an indirect route, which also serves to confirm the choice of
Eqs. (5.4.4) and (5.4.7), by means of iteration in analytical form instead of numer-
ical form. Based on the first approximation, which is the simplified deflection of
Eq. (5.4.3), substitution of

�wR∼ q

64LD
(−16)

[
x3 − 3xy2 − L

(
x2 + y2

)+ 4

27
L3 + 17Lh2

21(1 − v)

]
(5.4.8)
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togetherwithEqs. (5.4.1) and (5.4.2) intoEq. (5.2.11) gives the second approximation

wR ≈ q

64LD

{[
x3 − 3xy2 − L

(
x2 + y2

)+ 4

27
L3

]

[
4

9
L2 − (x2 + y2

)+ 16h2

5(1 − v)

]
− 68Lh4

2205(1 − v)2

}
(5.4.9)

From Eq. (5.4.9), substitution of

�wR ≈ q

64LD
(−16)

[
x3 − 3xy2 − L

(
x2 + y2

)+ 4

27
L3 + 4Lh2

5(1 − v)

]
(5.4.10)

as well as Eqs. (5.4.1) and (5.4.2) into Eq. (5.2.11) gives the third “approximation,”
which is the converged solution

wR = q

64LD

{[
x3 − 3xy2 − L

(
x2 + y2

)+ 4

27
L3

]

[
4

9
L2 − (x2 + y2

)+ 16h2

5(1 − v)

]
− 16Lh4

525(1 − v)2

}
(5.4.11)

Equation (5.4.11) is said to have converged, and is therefore no longer an approx-
imation, for two reasons: (a) proceeding similarly will no longer change the form,
and that (b) it is exactly the same as Eq. (5.4.4) with the constants described by
Eq. (5.4.7).

Having obtained the plate deflection by exact TSDT, it is now of interest to refine
the shear correction factor of Mindlin plates. Substituting Eqs. (5.4.1) and (5.4.2)
into Eq. (5.2.1) gives (Wang et al. 2000a; Reddy 2006)

wM = q

64LD

[
x3 − 3xy2 − L

(
x2 + y2

)+ 4

27
L3

][
4

9
L2 − (x2 + y2

)+ 16D

κGh

]

(5.4.12)

Substitution of Eq. (5.2.9) into Eq. (5.4.12) yields

wM = q

64LD

[
x3 − 3xy2 − L

(
x2 + y2

)+ 4

27
L3

][
4

9
L2 − (x2 + y2

)+ 8h2

3κ(1 − v)

]

(5.4.13)

Comparing terms between the simplified TSDT model, Eq. (5.4.3) and the FSDT
model, Eq. (5.4.13) the shear correction factor is κ = 14/17. This suggests that, by
matching the FSDT and the simplified TSDT, the shear correction factor is a constant.
Likewise, the typically adopted shear correction factor κ = 5/6 is also a constant.
When the exact TSDT model in Eq. (5.4.11) is compared against the FSDT model
in Eq. (5.4.13), the shear correction factor is
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κ = 5

6 − 6(h/L)2

105(1−v)

[(
x
L

)3 − 3 x
L

( y
L

)2 −
(

x2
L2 + y2

L2

)
+ 4

27

]−1 (5.4.14)

Equation (5.4.14) suggests that, by matching the FSDT and exact TSDT, the
“exact” shear correction factor is a function of plate relative thickness (h/L), the
Poisson’s ratio v, and the plate’s in-plane coordinates (x, y). Since one is normally
concerned with the maximum deflection, then in the case of uniform load the
maximum deflection for the plate under consideration takes place at the center
x = y = 0 to give (Lim 2016b)

κ = 5

6

[

1 − 9

140(1 − v)

(
h

L

)2
]−1

(5.4.15)

The customary shear correction factor of κ = 5/6 is therefore valid when the
plate’s relative thickness (h/L) is small or when the Poisson’s ratio is negative.

To compare the present exact TSDT for triangular plates with the FSDT and the
simplified TSDT, a dimensionless maximum deflection is introduced as

w∗
max = 972D

qL4
wx=y=0 (5.4.16)

so that w∗
max = 1 for CPT, while Eqs. (5.4.3), (5.4.4), and (5.4.13) become

w∗
max = 1 + 51

7(1 − v)

(
h

L

)2

(5.4.17)

for simplified TSDT,

w∗
max = 1 + 36

5(1 − v)

(
h

L

)2

− 81

175(1 − v)2

(
h

L

)4

(5.4.18)

for exact TSDT based on Eq. (5.4.11), and

w∗
max = 1 + 36

5(1 − v)

(
h

L

)2

(5.4.19)

for FSDT whereupon κ = 5/6 had been substituted in Eq. (5.4.13).
A family of curves based on Eqs. (5.4.17) and (5.4.18) is plotted in Fig. 5.8,

showing the overestimation of the simplified TSDT in relation to the exact TSDT,
especially for large relative thickness and large Poisson’s ratio. To put into perspective
the maximum dimensionless deflection based on both the simplified and the exact
TSDTwith reference to that of FSDT, calculated dimensionlessmaximumdeflections
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Fig. 5.8 Combined effect of
Poisson’s ratio and relative
thickness on the maximum
deflection of uniformly
loaded simply supported
equilateral triangular plate
based on exact (continuous
curves) and simplified
(dashed curves) TSDT
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are consolidated in Fig. 5.9 based on the range of relative thickness 0 ≤ h/L ≤ 0.2
and the range of Poisson’s ratio −1 ≤ v ≤ 1/2, which applies for isotropic solids.

Figure 5.10 illustrates the effect of Poisson’s ratio and relative thickness on the
shear correction factor at the plate center, indicating the departure of the shear correc-
tion factor from 5/6 as the Poisson’s ratio and the relative thickness increase. For
very thin plate, such as h/L ≤ 0.01, the equivalent shear correction factor based on

Fig. 5.9 Dimensionless
maximum deflections by the
simplified and the exact
TSDT with reference to the
dimensionless maximum
deflection by FSDT
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Fig. 5.10 Combined effect
of Poisson’s ratio and relative
plate thickness on the shear
correction factor of Mindlin
plate based on TSDT (exact
and simplified) and FSDT
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the exact TSDT is very close to that by FSDT. It is of interest to note that the shear
correction factor for the simplified TSDT is furthest from those of the exact TSDT,
thereby suggesting that the FSDT is more accurate than the simplified TSDT and
that a higher-order analysis need not necessarily give better prediction when certain
assumptions are used prematurely during analysis.

Now it can also be shown that the shear correction factor varies with the in-plane
coordinates of the triangular plate. Table 5.3 lists the exact shear correction factor
using Eq. (5.4.14) for v = 0.3 and h/L = 0.2. Since the plate boundary encounters
no deflection, no calculation is made on the shear correction factor at the boundary.
Reference to Table 5.3 reveals that the shear correction factor is lowest at the plate
center but greatest near the sides and corners. These results would be of special
interests to precision engineers and design engineers, although for different reasons.
The analytical model for the shear correction factor, as a function of relative plate
thickness and Poisson’s ratio, would be of interest to precision engineers to attain
TSDT accuracy by using FSDT model with the variable shear correction factor. On
the other hand, the analytical model is useful as a basis for design engineers to justify
the use of FSDT with constant shear correction factor even for very thick plates so
long as the Poisson’s ratio is sufficiently negative to ensure that the numerical value
of the variable shear correction factor is insignificantly higher than 5/6.

In summary, the validity of the proposed exact form was verified by using the
simplified TSDT as the starting equation, such that convergence is rapidly achieved
by only two steps of analytical iterations. Using the plate deflection from the exact
TSDT as reference, the FSDT (using κ = 5/6) gives a better accuracy than the
simplified TSDT, where the equivalent shear correction factor is κ = 14/17 for the
latter. Using the exact TSDT, comparison of terms with the FSDT gives rise to a
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shear correction factor that is a function of Poisson’s ratio, relative thickness and
in-plane location on the plate. It was also established that the use of the typical shear
correction factor κ = 5/6 for Mindlin plate is suitable when the plate is moderately
thick and when the Poisson’s ratio is small or negative, while the use of the refined
shear correction factor for Mindlin plate, on the basis of the exact TSDT, is advised
for very thick plates with large Poisson’s ratio.

5.5 Example: Isosceles Right Triangular Auxetic Plates

Figure 5.11 shows an isosceles right triangular plate of sides a and hypotenuse side
length of

√
2a. Under uniform load q and simply supported boundary condition, the

CPT gives the Kirchhoff plate deflection as

wK = 16qa4

π6D

( ∞∑

m=1,3,...

∞∑

n=2,4,...

n sin mπx
a sin nπy

a

m
(
n2 − m2

)(
m2 + n2

)2

+
∞∑

m=2,4,...

∞∑

n=1,3,...

m sin mπx
a sin nπy

a

n
(
m2 − n2

)(
m2 + n2

)2

)

(5.5.1)

where D, E, h, and v refer to the flexural rigidity, Young’s modulus, thickness, and
Poisson’s ratio of the plate, respectively.

Since theMindlin plate deflection according to theFSDT is related to theKirchhoff
plate deflection as described by Eq. (5.2.10), substitution of Eq. (5.5.1) and

Fig. 5.11 Schematic of an
isosceles right triangular
plate

x

y

a

a
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�wK = −16qa2

π4D( ∞∑

m=1,3,...

∞∑

n=2,4,...

n sin mπx
a sin nπy

a

m
(
n2 − m2

)(
m2 + n2

) +
∞∑

m=2,4,...

∞∑

n=1,3,...

m sin mπx
a sin nπy

a

n
(
m2 − n2

)(
m2 + n2

)

)

(5.5.2)

into Eq. (5.2.10) gives

wM = 16qa4

π6D

{
φ + π2h2

6κa2(1 − v)
ψ

}
(5.5.3)

where

φ =
∞∑

m=1,3,...

∞∑

n=2,4,...

n sin mπx
a sin nπy

a

m
(
n2 − m2

)(
m2 + n2

)2 +
∞∑

m=2,4,...

∞∑

n=1,3,...

m sin mπx
a sin nπy

a

n
(
m2 − n2

)(
m2 + n2

)2

(5.5.4)

and

ψ =
∞∑

m=1,3,...

∞∑

n=2,4,...

n sin mπx
a sin nπy

a

m
(
n2 − m2

)(
m2 + n2

)

+
∞∑

m=2,4,...

∞∑

n=1,3,...

m sin mπx
a sin nπy

a

n
(
m2 − n2

)(
m2 + n2

) (5.5.5)

are introduced for simplicity. Let the Reddy plate deflection according to the TSDT
be expressed as

wR = Aφ (5.5.6)

Since the Reddy plate deflection according to the TSDT is related to the Kirchhoff
plate deflection as described by Eq. (5.2.11), substitution of Eq. (5.5.6) and

�wR = −A
π2

a2
ψ (5.5.7)

into Eq. (5.2.11) leads to

A

{
φ + π2h2

420a2(1 − v)
ψ

}
= 16qa4

π6D

{
φ + 17π2h2

84a2(1 − v)
ψ

}
(5.5.8)

so that Eq. (5.5.6) becomes
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wR = 16qa4φ

π6D

1 + 17π2h2

84a2(1−v)

ψ

φ

1 + π2h2
420a2(1−v)

ψ

φ

(5.5.9)

To obtain the shear correction factor of theMindlin plate based on the Reddy plate
deflection, we let wR = wM . As a result,

1

6κ
+ π2h2

2520κa2(1 − v)

ψ

φ
= 1

5
(5.5.10)

The usually assumed shear correction factor of κ = 5/6 in the FSDT is therefore
recovered from Eq. (5.5.10) if the highest order term is neglected. Had the term
containing�wR in Eq. (5.2.11) been neglected, one would obtain a simplified TSDT
which gives the approximate Reddy plate deflection

wR ≈ wK − 17h2

84(1 − v)
�wK = 16qa4

π6D

{
φ + 17π2h2

84a2(1 − v)
ψ

}
(5.5.11)

Comparing this with the Mindlin plate deflection described in Eq. (5.5.3) would
give κ = 14/17. Suppose the highest order term in Eq. (5.5.10) is taken into account,
we have the exact shear correction factor

κ = 5

6

(
1 + π2h2

420a2(1 − v)

ψ

φ

)
(5.5.12)

where φ andψ are described by Eqs. (5.5.4) and (5.5.5), respectively. It is of practical
importance to evaluate the shear correction factor where the deflection is significant.
Therefore, substituting x = y = a/3 into Eq. (5.5.12) for the plate centroid, we have

κ = 5

6

⎛

⎜
⎝1 + π2h2

420a2(1 − v)

∑∞
m=1,3,...

∑∞
n=2,4,...

n sin mπ
3 sin nπ

3

m(n2−m2)(m2+n2)
∑∞

m=1,3,...

∑∞
n=2,4,...

n sin mπ
3 sin nπ

3

m(n2−m2)(m2+n2)
2

⎞

⎟
⎠ (5.5.13)

The shear correction factor at the plate centroid can be obtained by solving the two
double summation series in Eq. (5.5.13). The double summation series are evaluated
as

∞∑

m=1,3,...

∞∑

n=2,4,...

n sin mπ
3 sin nπ

3

m
(
n2 − m2

)(
m2 + n2

) = 0.08817 (5.5.14)

and

∞∑

m=1,3,...

∞∑

n=2,4,...

n sin mπ
3 sin nπ

3

m
(
n2 − m2

)(
m2 + n2

)2 = 0.019303 (5.5.15)
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using (m, n) values up to (59, 60) and (29, 30), respectively. The (m, n) values for
evaluating Eq. (5.5.14) are higher than those of Eq. (5.5.15) due to a more rapid
convergence for the latter, as shown in Fig. 5.12. Substituting Eqs. (5.5.14) and
(5.5.15) into Eq. (5.5.13) gives (Lim 2016c)

κ = 5

6

{

1 + 0.10734

1 − v

(
h

a

)2
}

(5.5.16)

To compare the shear corrections factors κ = 5/6, κ = 14/17 and Eq. (5.5.16),
curves of these shear correction factors are plotted in Fig. 5.13 using the commonly
adopted Poisson’s ratio of v = 0.3. The shear correction factor of κ = 14/17 is the
least accurate, as truncation of an entire term containing �wR in Eq. (5.2.11) was
performed prematurely. The shear correction factor of κ = 5/6 is more accurate,
as truncation of the term containing ψ/φ is performed at the final stage described
by Eq. (5.5.12). Similar to κ = 14/17, the more accurate shear correction factor of
κ = 5/6 underestimates the actual shear correction factor. Unlike κ = 14/17, the
shear correction factor κ = 5/6 coincides with the exact shear correction factor as
the plate thickness diminishes. In practical applications, the actual shear correction
factor exceeds the commonly adopted shear correction factor of κ = 5/6 due to the
relative thickness h/a and the Poisson’s ratio v of the plate.

Having established the validity of the obtained refined shear correction factor by
comparison against commonly used shear correction factors, it is now of interest to
observe the effect from relative thickness and Poisson’s ratio of the plate. A graphical
representation on the combined effect of relative plate thickness and Poisson’s ratio
of the plate material is illustrated in Fig. 5.14a, with the case of κ = 5/6 being
incorporated for comparison purposes. When plotted differently, one can observe
the conventional and auxetic regions, defined by −1 ≤ v < 0 and 0 ≤ v ≤ 1/2,
respectively, as furnished in Fig. 5.14b.

(a) (b)
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Fig. 5.12 Plots of a Eq. (5.5.14) up to m = 59, n = 60 and b Eq. (5.5.15) up to m = 29, n = 30
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Fig. 5.13 Graphical comparison of Eq. (5.5.16), κ = 5/6, and κ = 14/17
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Fig. 5.14 A family of refined shear correction factor curves, a plotted against the Poisson’s ratio
for various relative plate thicknesses, and b plotted against the relative plate thickness with clear
demarcation of conventional and auxetic regions

For plates that are very thin or whose Poisson’s ratio is very negative the shear
correction factor approaches 5/6, which is the commonly adopted shear correction
factor; for very thick plates or for plates with very large Poisson’s ratio, the use of
the variable shear correction factor is more accurate. The developed refined shear
correction factor also provides an avenue for the use of the constant shear correc-
tion factor of 5/6 to be justified. By way of example, the term (h/a)2/(1 − v) in
Eq. (5.5.16) reveals that the shear correction factor of a conventional plate of lesser
thickness h/a = 0.1 and v = 0.5 is equal to the shear correction factor of an auxetic
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plate of greater thickness h/a = 0.2 and v = −1. In other words, a geometrically
thick plate is a mechanically thin plate if the plate’s Poisson’s ratio is sufficiently
negative to suppress the shear deformation in favor of bending deformation.

5.6 Example: Hexagonal Auxetic Plates

Figure 5.15 shows schematics of a hexagonal plate of inradius a with simply
supported boundary condition and uniform load q. With reference to Fig. 5.15, the
deflections according to Mindlin wM and Reddy wR plate theories are greater than
the deflection of Kirchhoff wK plate theory due to the incorporation of transverse
shear deformation in addition to deflection due to bending.

By method of point matching, the deflection and bending moment results for
regular polygonal plates have been obtained with clamped edge (Conway 1960)
and simply supported edge (Conway 1961). The bending moments at the center
of a simply supported regular hexagonal plate under uniform load, q, have been
established by Conway (1961) as

(Mx )x=y=0 = (My
)
x=y=0 = 0.17578qa2 (5.6.1)

where the distance between two parallel sides is 2a, as well as the maximum
deflection

Fig. 5.15 Schematics of
hexagonal plate with
boundary conditions and
load

q

q
a

w K

w M , w R

wKw M

w R
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wx=y=0 = 0.054788
qa4

D
(5.6.2)

for Poisson’s ratio of v = 0.3,whereD is defined in Eq. (4.1.3) for a plate of Young’s
modulus E and thickness h. A very convenient deflection model has been proposed
by Lim (2017a) for a hexagonal Kirchhoff plate in the following form

wK = 0.054788
qa4

D
cos
(πx

2a

)
cos
(πy

2a

)
(5.6.3)

whereby substitution of

∂2wK

∂x2
= ∂2wK

∂y2
= − π2

4a2
0.054788

qa4

D
cos
(πx

2a

)
cos
(πy

2a

)
(5.6.4)

into Eqs. (4.1.1) and (4.1.2) gives

MK
x = MK

y = 0.135184(1 + v)qa2 cos
(πx

2a

)
cos
(πy

2a

)
(5.6.5)

The maximum deflection of wK
x=y=0 = 0.054788qa4/D according to Eq. (5.6.3)

is exactly the same as that obtained by Conway (1961). Using v = 0.3, we have(
MK

x

)
x=y=0 = (

MK
y

)
x=y=0

= 0.17574qa2, which has an error of only −0.02%
compared with Conway’s (1961) result for simply supported hexagonal plate. The
proposed form of deflection function is selected because it facilitates convenient
execution of FSDT and TSDT for thick plates. The use of circular plates for approx-
imating the hexagonal plate is less appropriate. This is because if we approximate
the hexagonal plate by a circular plate, the deflection and bending moment at the
plate center are wmax = 0.063702qa4/D and Mmax = 0.20625qa2, respectively, for
v = 0.3. Even if the circular plate deflection is modified by a factor of 0.86 so as
to exactly match its maximum deflection with that by Conway (1961), the corre-
sponding maximum bending moment is 0.17739qa2, which deviates by 0.9%. See
Table 5.4.

Table 5.4 Deflections and moments at center of a uniformly loaded, simply supported hexagonal
plate with v = 0.3

Deflection at plate center, with
% error w.r.t. Conway (1961)

Moment at plate center, with %
error w.r.t. Conway (1961)

Conway (1961) 0.054788qa4/D 0.17578qa2

Equations (5.6.3) and (5.6.5) 0.054788qa4/D (error = 0%) 0.17574qa2 (error = − 0.02%)

Circ. plate approx. 0.063702qa4/D (error =
16%)

0.20625qa2 (error = 17%)

Modified circ. plate 0.054788qa4/D (error = 0%) 0.17739qa2 (error = 0.9%)
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Having established the validity of Eq. (5.6.3) for quantifying both the deflection
and bending moment at the plate center vis-à-vis the results by Conway (1961), we
shall now proceed to investigate the deflection of thick hexagonal plates considering
shear deformation for both conventional and auxetic plate material. In determining
the shear deformation characteristics onhexagonal plates, recall that theMindlin plate
deflection wM is related to the Kirchhoff plate deflection wK for simply supported
edges as furnished in Eq. (5.2.1) while the Reddy plate deflection wR is related
to the Kirchhoff plate deflection as described by Eq. (5.2.4). To pave a way for
expressing the FSDT-CPT and TSDT-CPT relationship in a tractable manner, recall
that Eqs. (5.2.1) and (5.2.4) can be expressed as Eqs. (5.2.10) and (5.2.11), respec-
tively. Substituting Eq. (5.6.3) into Eq. (5.2.10) gives the hexagonal Mindlin plate
deflection

wM =
[
1 + π2h2/a2

12κ(1 − v)

]
0.054788

qa4

D
cos
(πx

2a

)
cos
(πy

2a

)
(5.6.6)

The hexagonal Reddy plate deflection can be obtained by iteration from
Eq. (5.2.11), wherein the terms wK and �wK are from Eq. (5.6.6). For the first
iteration, we set �wR = 0 to Eq. (5.2.11) to get

wR =
[
1 + 17π2h2/a2

168(1 − v)

]
0.054788

qa4

D
cos
(πx

2a

)
cos
(πy

2a

)
(5.6.7)

In the second iteration, we obtain from Eq. (5.6.7)

�wR = − π2

2a2

[
1 + 17π2h2/a2

168(1 − v)

]
0.054788

qa4

D
cos
(πx

2a

)
cos
(πy

2a

)
(5.6.8)

for substitution into Eq. (5.2.11) to give

wR =
[
1 + π2h2/a2

10(1 − v)
− 17π4h4/a4

141120(1 − v)2

]
0.054788

qa4

D
cos
(πx

2a

)
cos
(πy

2a

)

(5.6.9)

Similarly for the third iteration we obtain from Eq. (5.6.9)

�wR = − π2

2a2

[
1 + π2h2/a2

10(1 − v)
− 17π4h4/a4

141, 120(1 − v)2

]

0.054788
qa4

D
cos
(πx

2a

)
cos
(πy

2a

)
(5.6.10)

which, upon substitution into Eq. (5.2.11), leads to
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wR =
[
1 + π2h2/a2

10(1 − v)
− π4h4/a4

8400(1 − v)2
+ 17π6h6/a6

118, 540, 800(1 − v)3

]

0.054788
qa4

D
cos
(πx

2a

)
cos
(πy

2a

)
(5.6.11)

Likewise for the fourth iteration, we have

�wR = − π2

2a2

[
1 + π2h2/a2

10(1 − v)
− π4h4/a4

8400(1 − v)2
+ 17π6h6/a6

118, 540, 800(1 − v)3

]

0.054788
qa4

D
cos
(πx

2a

)
cos
(πy

2a

)
(5.6.12)

from Eq. (5.6.11) for substitution into Eq. (5.2.11) to yield

wR =
[
1 + π2h2/a2

10(1−v)
− π4h4/a4

8400(1−v)2
+ π6h6/a6

7,056,000(1−v)3
− 17π8h8/a8

99,574,272,000(1−v)4

]

0.054788 qa4

D cos
(

πx
2a

)
cos
(

πy
2a

) (5.6.13)

Performing similarly for the fifth iteration, we obtain from Eq. (5.6.13) the
following

�wR = − π2

2a2

[
1 + π2h2/a2

10(1 − v)
− π4h4/a4

8400(1 − v)2
+ π6h6/a6

7, 056, 000(1 − v)3

− 17π8h8/a8

99, 574, 272, 000(1 − v)4

]
0.054788

qa4

D
cos
(πx

2a

)
cos
(πy

2a

)

(5.6.14)

and substituting it into Eq. (5.2.11) gives

wR

=
[
1 + π2h2/a2

10(1 − v)
− π4h4/a4

8400(1 − v)2
+ π6h6/a6

7, 056, 000(1 − v)3

− π8h8/a8

5, 927, 040, 000(1 − v)4
+ 17π10h10/a10

83, 642, 388, 480, 000(1 − v)5

]

0.054788
qa4

D
cos
(πx

2a

)
cos
(πy

2a

)
(5.6.15)

The terms of wR contained within [] parenthesis of Eqs. (5.6.7), (5.6.9), (5.6.11),
(5.6.13), and (5.6.15) are summarized in Table 5.5.

It can now be observed from these five iterations that a total of n + 1 terms are
generatedwithin the [...] parenthesis of thewR expression at the nth iteration,with the
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Table 5.5 Terms of wR contained within [] parenthesis based on n number of iterations

n Terms of wR contained within the [] parenthesis.

1 1 + 17π2h2/a2

168(1−v)

2 1 + π2h2/a2

10(1−v)
− 17π4h4/a4

141,120(1−v)2

3 1 + π2h2/a2

10(1−v)
− π4h4/a4

8400(1−v)2
+ 17π6h6/a6

118,540,800(1−v)3

4 1 + π2h2/a2

10(1−v)
− π4h4/a4

8400(1−v)2
+ π6h6/a6

7,056,000(1−v)3
− 17π8h8/a8

99,574,272,000(1−v)4

5 1 + π2h2/a2

10(1−v)
− π4h4/a4

8400(1−v)2
+ π6h6/a6

7,056,000(1−v)3
− π8h8/a8

5,927,040,000(1−v)4
+ 17π10h10/a10

83,642,388,480,000(1−v)5

first term being unity. The first n terms are exact because they no longer change with
increasing iteration, while the (n + 1)th term rapidly diminishes with increasing
number of iterations. With reference to Table 5.5 for n number of iterations, the
general expression of wR can be written as

wR =
[

1 − 1

10

n−1∑

m=1

(−1)m
π2mh2m/a2m

840m−1(1 − v)m
− (−1)n

17π2nh2n/a2n

168(840)n−1(1 − v)n

]

wK

(5.6.16)

The shear correction factor can be extracted by comparing terms of wM and wR

within the [...] parenthesis and, in the case of the first iteration, we have κ = 14/17.
Likewise, comparing terms based on the second and third iterations suggests that

κ = 5

6

(
1 − 17π2h2/a2

14112(1 − v)

)−1

(5.6.17)

and

κ = 5

6

(
1 − π2h2/a2

840(1 − v)
+ 17π4h4/a4

11854080(1 − v)2

)−1

(5.6.18)

respectively. Performing similarly, we have

κ = 5

6

(
1 − π2h2/a2

840(1 − v)
+ π4h4/a4

705, 600(1 − v)2
− 17π6h6/a6

9, 957, 427, 200(1 − v)3

)−1

(5.6.19)

and

κ
5

6

(
1 − π2h2/a2

840(1 − v)
+ π4h4/a4

705, 600(1 − v)2
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− π6h6/a6

592, 704, 000(1 − v)3
+ 17π8h8/a8

8, 364, 238, 848, 000(1 − v)4

)−1

(5.6.20)

based on the fourth and fifth iterations, respectively. In other words, the general shear
correction factor up to the nth iteration is

κ = 5

6

(
n−2∑

m=0

(−1)m
π2mh2m/a2m

840m(1 − v)m
+ (−1)n−1 17π

2(n−1)h2(n−1)/a2(n−1)

16.8(840)n−1(1 − v)n−1

)−1

(5.6.21)

for n ≥ 2. Since neither Eqs. (5.6.16) nor (5.6.21) are exact except when n → ∞,
therefore exact expressions for them are best written in the forms

wR =
[

1 − 1

10

∞∑

m=1

(−1)m
π2mh2m/a2m

840m−1(1 − v)m

]

wK (5.6.22)

and

κ = 5

6

( ∞∑

m=0

(−1)m
π2mh2m/a2m

840m(1 − v)m

)−1

(5.6.23)

respectively.
To assess the number of iterations required for providing accurate central deflec-

tion and shear correction factor, the ratio of wR/wK and κ, in Eqs. (5.6.22) and
(5.6.23), respectively, have been computed using Poisson’s ratio of ±0.3 for various
h/a ratio up tom = 5 number of terms. With reference to Table 5.6, thewR/wK ratio
is accurate up to six decimal points with m = 2. For the case of the shear correc-
tion factor, accuracy of six decimal points is achieved with m = 1, as furnished in
Table 5.7.

Table 5.6 wR/wK ratio of hexagonal plates at v = ±0.3 for various h/a ratio

m v = 0.3 v = −0.3

h/a =
0.20

h/a =
0.15

h/a =
0.10

h/a =
0.05

h/a =
0.20

h/a =
0.15

h/a =
0.10

h/a =
0.05

0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

1 1.056398 1.031724 1.014099 1.003525 1.030368 1.017082 1.007592 1.001898

2 1.056360 1.031712 1.014097 1.003525 1.030357 1.017079 1.007591 1.001898

3 1.056360 1.031712 1.014097 1.003525 1.030357 1.017079 1.007591 1.001898

4 1.056360 1.031712 1.014097 1.003525 1.030357 1.017079 1.007591 1.001898

5 1.056360 1.031712 1.014097 1.003525 1.030357 1.017079 1.007591 1.001898
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Table 5.7 Shear correction factor of hexagonal plates at v = ±0.3 for various h/a ratio

v = 0.3 v = −0.3

m h/a =
0.20

h/a =
0.15

h/a =
0.10

h/a =
0.05

h/a =
0.20

h/a =
0.15

h/a =
0.10

h/a =
0.05

0 0.833333 0.833333 0.833333 0.833333 0.833333 0.833333 0.833333 0.833333

1 0.833893 0.833648 0.833473 0.833368 0.833635 0.833503 0.833409 0.833352

2 0.833893 0.833648 0.833473 0.833368 0.833635 0.833503 0.833409 0.833352

3 0.833893 0.833648 0.833473 0.833368 0.833635 0.833503 0.833409 0.833352

4 0.833893 0.833648 0.833473 0.833368 0.833635 0.833503 0.833409 0.833352

5 0.833893 0.833648 0.833473 0.833368 0.833635 0.833503 0.833409 0.833352

The rapid convergence therefore suggests that the plate deflection and shear
correction factor can be simplified as (Lim 2017a)

wR =
[

1 + π2

10(1 − v)

(
h

a

)2

− π4

8400(1 − v)2

(
h

a

)4
]

wK (5.6.24)

and

κ = 5

6

(

1 − π2

840(1 − v)

(
h

a

)2
)−1

(5.6.25)

respectively, while maintaining very good accuracy. These are used for plotting
Fig. 5.16.

The conventional and auxetic regions, separated by v = 0, can be compared in
Fig. 5.16 (top) by means of the wR/wK versus h/a plane (left) and the κ versus
h/a plane (right). In spite of the wider range of Poisson’s ratio in the auxetic region
−1 ≤ v < 0 in comparison to the conventional region 0 ≤ v ≤ 1/2, these plots reveal
that the auxetic regions within the context of wR/wK versus h/a and κ versus h/a
planes are narrower than the conventional region. This narrower region is attributed
to a more gradual change in wR/wK and κ at a more negative Poisson’s ratio, as
shown in Fig. 5.16 (bottom). Reference to Eqs. (5.6.24) and (5.6.25) also suggests
that the extent of shear deformation vis-à-vis the bending deformation is reduced not
only by the decreasing plate thickness according to current solid mechanics practice,
but also by using auxetic materials for the plates. In the case of hexagonal plates
considered herein, the ratio wR/wK and shear correction factor are maintained with
increasing plate thickness if the plate Poisson’s ratio decreases sufficiently.
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Fig. 5.16 Curves of Reddy-to-Kirchhoff deflection ratio (left column) and shear correction factor
(right column) plotted against the relative plate thickness (top row) and Poisson’s ratio of plate
material (bottom row)

5.7 Example: Regular Polygonal Auxetic Plates

The purposes of this section are twofold. The first objective is to develop a set of
shear correction factors using known CPT models for regular polygonal plates (i.e.,
of sides n = 3, 4, 5, 6, 7, 8, 9, 10, 15), and FSDT-TSDT relationship. The
second objective is to develop a semi-empirical model for the shear correction factors
so as to facilitate the shear correction factor prediction of other regular polygonal
plates (e.g., n = 11, 12, 13, etc.) and to show how the shear correction factor varies
with the number of plate sides.

A convenient CPT model is developed as follows. For a simply supported regular
polygonal plate of n sides with thickness h, Young’s modulus E, and Poisson’s ratio
v, the Kirchhoff deflection model under uniform load q has been given by Leissa
et al. (1965) as
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wK =
M∑

m=0

(
Amr

m + Bmr
m+2
)
cosmθ + qr4

64D
(5.7.1)

where Am and Bm are determined from boundary conditions, the upper limit M
is determined from by the accuracy of solution desired from the point-matching
process, D is the plate flexural rigidity, and θ is the angle measured from an axis
bisecting a side. To facilitate the development of a convenient shear deformable
model, the regular polygonal plate model is approximated by circular plates, in
which the deformation is

wK = q
(
a2 − r2

)

64D

(
5 + v

1 + v
a2 − r2

)
(5.7.2)

based on solving the circular plate differential equation using the following boundary
conditions

(
dwK

dr

)

r=0

= (Mr )r=a = wK
r=a = 0 (5.7.3)

The dimension a refers to the radius of the inscribed circle on the polygonal plate
(see Fig. 5.17), as well as the radius of the circular plate as n → ∞.

To pave away for the circular plate approximation, we introduce three coefficients
c0, c2 and c4 such that

a a

a

a

aa

n = 3 n = 4 n = 5

n = 6 n = 8 n = 10

Fig. 5.17 A sample of regular polygonal plates, illustrating the definition of a
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wK = q

64D

(
c0
5 + v

1 + v
a4 − 2c2

3 + v

1 + v
a2r2 + c4r

4

)
(5.7.4)

It can be seen that for circular plates (i.e., n → ∞), Eq. (5.7.2) is recovered by
substituting c0 = c2 = c4 = 1 into Eq. (5.7.4). For regular polygonal plates, these
coefficients need to be calculated from the boundary conditions

wK
r=0 , (Mr )r=0 ,

(
dwK

dr

)

(r,θ)=(a,0)

(5.7.5)

furnished by Leissa et al. (1965). See Table 5.8. To view the deflection profiles of the
various regular polygonal plates based on the circular plate approximation, a family
of dimensionless deflection profiles is plotted in Fig. 5.18.

To obtain the CPT-TSDT relationship, we begin with Eq. (5.2.11) where

�w = ∂2w

∂r2
+ 1

r

∂w

∂r
(5.7.6)

To establish the TSDT deflection model, we begin by setting �wR = 0 in
Eq. (5.2.11) to give

64D

qa4
wR∼c0

5 + v

1 + v
− 2c2

3 + v

1 + v

r2

a2
+ c4

r4

a4

+ 17

84

(h/a)2

1 − v

[
8c2

3 + v

1 + v
− 16c4

r2

a2

]
(5.7.7)

Table 5.8 Dimensionless central deflections and moments, as well as dimensionless side slopes by
Leissa et al. (1965), with corresponding calculated coefficients c0, c2 and c4 based on Eqs. (5.7.4)
and (5.7.5)

n D
qa4

wK
r=0

(Mr )r=0
qa2

D
qa3

(
dwK

dr

)

(r,θ)=(a,0)
c0 c2 c4

3 0.0833 0.217 −0.1406 1.307653 1.052121 0.421169

4 0.0650 0.192 −0.1078 1.020377 0.930909 0.638277

5 0.0581 0.181 −0.0942 0.912060 0.877576 0.720492

6 0.0548 0.176 −0.0871 0.860257 0.853333 0.772554

7 0.0532 0.174 −0.0833 0.835140 0.843636 0.808738

8 0.0525 0.173 −0.0813 0.824151 0.838788 0.828431

9 0.0523 0.173 −0.0803 0.821011 0.838788 0.844431

10 0.0523 0.174 −0.0798 0.821011 0.843636 0.864738

15 0.0537 0.179 −0.0809 0.842989 0.867879 0.908677

∞ 0.0637 0.206 −0.0962 0.999970 0.998788 0.996185
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(a) (b)
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Fig. 5.18 Dimensionless deflection profiles of regular polygonal plates of n sides: a 3 ≤ n ≤ 9,
and b 9 ≤ n ≤ ∞

From this we introduce two coefficients B1 and B2 into Eq. (5.7.7) so as to give

64D

qa4
wR = c0

5 + v

1 + v
− 2c2

3 + v

1 + v

r2

a2
+ c4

r4

a4

+ B1
(h/a)2

1 − v

[
8c2

3 + v

1 + v
− 16c4

r2

a2
− B2

(h/a)2

1 − v

]
(5.7.8)

It can be seen that Eq. (5.7.8) reduces to Eq. (5.7.7) when B1 = 17/84 and
B2 = 0. To obtain the exact values of B1 and B2 within the framework of the
CPT-TSDT relationship, Eqs. (5.7.4) and (5.7.8) are substituted into Eq. (5.2.11) to
yield

64D

qa4

{
wK − 17h2

84(1 − v)
�wK

}
= c0

5 + v

1 + v

− 2c2
3 + v

1 + v

r2

a2
+ c4

r4

a4
+ 34

21

(h/a)2

1 − v

[
c2
3 + v

1 + v
− 2c4

r2

a2

]
(5.7.9)

and

64D

qa4

{
wR − h2

420(1 − v)
�wR

}

= c0
5 + v

1 + v
− 2c2

3 + v

1 + v

r2

a2
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+ c4
r4

a4
+ (h/a)2

1 − v
[
c2
3 + v

1 + v

(
8B1 + 2

105

)
− 2c4

r2

a2

(
8B1 + 2

105

)

− (h/a)2

1 − v
B1

(
B2 − 16c4

105

)
(5.7.10)

on the RHS and LHS of Eq. (5.2.11), respectively. Comparison of terms between
Eqs. (5.7.9) and (5.7.10) leads to

B1 = 1

5
, B2 = 16

105
c4 (5.7.11)

Therefore, the TSDT deflection model becomes

64D

qa4
wR = c0

5 + v

1 + v
− 2c2

3 + v

1 + v

r2

a2
+ c4

r4

a4

+ (h/a)2

5(1 − v)

[
8c2

3 + v

1 + v
− 16c4

r2

a2
− 16c4

105

(h/a)2

1 − v

]
(5.7.12)

This TSDT deflection model can alternatively be obtained by analytical iteration.
From Eq. (5.7.7) we obtain

64D

qa4
�wR ≈ −8c2

3 + v

1 + v

1

a2
+ 16c4

r2

a4
− 17

84

(h/a)2

1 − v

64c4
a2

(5.7.13)

which, upon substitution into Eq. (5.2.11), gives rise to

64D

qa4
wR ≈ c0

5 + v

1 + v
− 2c2

3 + v

1 + v

r2

a2
+ c4

r4

a4

+ (h/a)2

420(1 − v)

[
672c2

3 + v

1 + v
− 1344c4

r2

a2
− 17

84

(h/a)2

1 − v
64c4

]
(5.7.14)

From Eq. (5.7.14) we have

64D

qa4
�wR = −8c2

3 + v

1 + v

1

a2
+ 16c4

r2

a4
− (h/a)2

5(1 − v)

64c4
a2

(5.7.15)

whereupon substitution into Eq. (5.2.11) yields Eq. (5.7.12). The latter is said to have
converged since one obtains Eq. (5.7.15) by calculating �wR from Eq. (5.7.12).

To obtain the refined shear correction factor, there is a need to establish the CPT-
FSDT relationship. Substituting Eq. (5.7.4) into Eq. (5.2.10) gives
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64D

qa4
wM = c0

5 + v

1 + v
− 2c2

3 + v

1 + v

r2

a2

+ c4
r4

a4
+ (h/a)2

6κ(1 − v)

[
8c2

3 + v

1 + v
− 16c4

r2

a2

]
(5.7.16)

which, upon comparing with Eq. (5.7.12), allows the shear correction factor to be
extracted as

κ = 5

6

c2
3+v
1+v

− 2c4 r2

a2

c2
3+v
1+v

− 2c4 r2
a2 − 2c4

105
(h/a)2

1−v

(5.7.17)

The customary adoption of κ = 5/6 has its merit, for it can be seen that

κ ≈ 5

6
↔ h 	 a (5.7.18)

and

lim
v→−1

= 5

6
(5.7.19)

From a practical viewpoint, one is interested in the maximum deflection, which
takes place at the plate center, wherein the shear correction factor is (Lim 2017b)

κ = 5

6

[

1 − 2c4
105c2

1 + v

(1 − v)(3 + v)

(
h

a

)2
]−1

(5.7.20)

Figure 5.19 shows the contour plots of shear correction factors at the center of
the regular polygonal plates with increments of 5 sides. The Poisson’s ratio range
adopted for illustration is −1 ≤ v ≤ 1/2, as this is the range for isotropic solids.
In addition to agreeing with previously established finding that geometrically thick
plates are mechanically thin plates if the Poisson’s ratio are sufficiently negative,
Fig. 5.19 also suggests that the shear correction factor increases with increasing
polygon sides. However, the increase in the shear correction factor diminishes when
the polygon sides are large. Specifically, the shear correction factor increases more
significantly from n = 5 to n = 10, but the increase is negligible from n = 10 to
n = 15. It is therefore sufficient to use the shear correction factor of n = 10 for any
regular polygonal plates of n > 10 if accuracy is not important.

Since most solids possess Poisson’s ratio of about 0.3, a contour plot of the shear
correction factor at the plate center is plotted inFig. 5.20 at this value ofPoisson’s ratio
with respect to h/a and n. Reference to Fig. 5.20 indicates that the plate thickness
exerts a greater influence on the shear correction factor than the plate shape. An
advantage of using the regular polygonal plate vis-à-vis separate plate geometries
is that the former permits one to observe the variation of the shear correction factor
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Fig. 5.19 Contour plots of shear correction factor, as functions of Poisson’s ratio and plate relative
thickness, for pentagonal (top), decagonal (middle), and pentadecagonal (bottom) plates
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Fig. 5.20 Combined effect of plate shape and thickness on the shear correction factor at v = 0.3

with increasing plate sides, thereby allowing one to predict values of κ for cases that
have not been considered. With reference to the middle column of Table 5.9, one can
see that the shear correction factor can be generally written as

κ = 5

6

[

1 − f (n)
1 + v

(1 − v)(3 + v)

(
h

a

)2
]−1

(5.7.21)

where f (n) increases, albeit diminishingly, with the number of polygon sides. Using
the analytical f (n), a semi-empirical model for f (n) is obtained as

1

f (n)
= 49.4 + 257.572

(n − 1.3)2.239
(5.7.22)

with an accuracy indicated by R2 = 0.99728. See Fig. 5.21 for the compar-
ison between the analytical and semi-empirical f (n) values. The semi-empirical
model is useful since no thin plate data was furnished by Leissa et al. (1965)
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Table 5.9 List of shear correction factors by the analytical method, and those by semi-empirical
modeling

Regular polygonal
plates

Analytical shear correction factor, κ Semi-empirical shear correction
factor, κ

Triangle (n = 3) 5
6

[
1 − 0.007625 1+v

(1−v)(3+v)

( h
a

)2]−1
5
6

[
1 − 0.007818 1+v

(1−v)(3+v)

( h
a

)2]−1

Square (n = 4) 5
6

[
1 − 0.01360 1+v

(1−v)(3+v)

( h
a

)2]−1
5
6

[
1 − 0.012942 1+v

(1−v)(3+v)

( h
a

)2]−1

Pentagon (n = 5) 5
6

[
1 − 0.015638 1+v

(1−v)(3+v)

( h
a

)2]−1
5
6

[
1 − 0.015832 1+v

(1−v)(3+v)

( h
a

)2]−1

Hexagon (n = 6) 5
6

[
1 − 0.017245 1+v

(1−v)(3+v)

( h
a

)2]−1
5
6

[
1 − 0.017405 1+v

(1−v)(3+v)

( h
a

)2]−1

Heptagon (n = 7) 5
6

[
1 − 0.018260 1+v

(1−v)(3+v)

( h
a

)2]−1
5
6

[
1 − 0.018305 1+v

(1−v)(3+v)

( h
a

)2]−1

Octagon (n = 8) 5
6

[
1 − 0.018812 1+v

(1−v)(3+v)

( h
a

)2]−1
5
6

[
1 − 0.018853 1+v

(1−v)(3+v)

( h
a

)2]−1

Nonagon (n = 9) 5
6

[
1 − 0.019176 1+v

(1−v)(3+v)

( h
a

)2]−1
5
6

[
1 − 0.019206 1+v

(1−v)(3+v)

( h
a

)2]−1

Decagon (n = 10) 5
6

[
1 − 0.019524 1+v

(1−v)(3+v)

( h
a

)2]−1
5
6

[
1 − 0.019444 1+v

(1−v)(3+v)

( h
a

)2]−1

Hendecagon
(n = 11)

Not available 5
6

[
1 − 0.019612 1+v

(1−v)(3+v)

( h
a

)2]−1

Dodecagon
(n = 12)

Not available 5
6

[
1 − 0.019733 1+v

(1−v)(3+v)

( h
a

)2]−1

Tridecagon
(n = 13)

Not available 5
6

[
1 − 0.019823 1+v

(1−v)(3+v)

( h
a

)2]−1

Tetradecagon
(n = 14)

Not available 5
6

[
1 − 0.019893 1+v

(1−v)(3+v)

( h
a

)2]−1

Pentadecagon
(n = 15)

5
6

[
1 − 0.019943 1+v

(1−v)(3+v)

( h
a

)2]−1
5
6

[
1 − 0.019946 1+v

(1−v)(3+v)

( h
a

)2]−1

for n = 11, 12, 13, 14, and so the shear correction factors for thick plates of
n = 11, 12, 13, 14 are not readily available. Comparison between the analytical
and semi-empirical models for f (n) in Table 5.9 shows that the semi-empirical
model is accurate, the error magnitude being less than 0.25% for n = 7, 8, 9, 10, 15,
thereby providing confidence for the empirically obtained f (n), and hence κ, for
n = 11, 12, 13, 14.

By establishing the CPT-TSDT and CPT-FSDT relationships, the subsequently
obtained FSDT-TSDT relationship allows the extraction of shear correction factors
that reveals its gradual change with increasing number of plate sides. As such, the
FSDT description of thick pentagonal, hexagonal, heptagonal, octagonal, and other
polygonal plate of high number of sides can be easily computed with the availability
of shear correction factors for thick polygonal plates with n = 3 to n = 10 and
n = 15 sides. Computed results show that the shear correction factor increases with
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Fig. 5.21 Comparison
between the analytical and
semi-empirical f (n) values
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the number of plate edges, but the rate of increase then tapers off and asymptotically
approaches the factor for a circular plate. While a linear interpolation would give
a reasonable approximation of the shear correction factor for n = 11, 12, 13, 14, a
better shear correction factor is obtained from Eqs. (5.7.21) and (5.7.22) as they cater
for nonlinear increment with the number of plate sides.

5.8 Example: Buckling of Thick Auxetic Plates

The buckling load of simply supported circular and polygonal Mindlin plates has
been given by Wang (1995a, b) as

NM = NK

1 + NK

κGh

(5.8.1)

where NK is the buckling load of the Kirchhoff plate, while the corresponding
solution for the Reddy plates (Wang and Reddy 1997) is

N R =
NK
(
1 + 1

70
NK

Gh

)

1 + 17
14

NK

Gh

(5.8.2)

Although the extraction of shear correction factor for the case of buckling is
straightforward, i.e., κ = 5/6, an attempt is made herein to show that the alternate
shear correction factor of κ = 14/17 is similarly inferior, and that a generalized
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refined shear correction factor for buckling is analogous to that of plate deflection.
Aswith Sect. 5.2, two approaches are furnished herein, namely the direct comparison
and the series expansion approaches.

In the direct comparison approach, we let NM = N R , so that

1 + NK

κGh
= 1 + 17

14
NK

Gh

1 + 1
70

NK

Gh

(5.8.3)

or

1 + NK

κGh
+
[
1

70

NK

Gh
+ 1

70κ

(
NK

Gh

)2
]

= 1 + 17

14

NK

Gh
(5.8.4)

The neglect of the NK /(70Gh) term in the denominator of Eq. (5.8.3) is tanta-
mount to imposing zero for the square parenthesis [...] in the LHS of Eq. (5.8.4),
which would lead to κ = 14/17. If we do not let the entire parenthesis in Eq. (5.8.4)
be zero, but set only its last term as zero, i.e.,

(
NK /Gh

)2 = 0, then κ = 5/6. If we
do not neglect any term, then (Lim 2020)

κ = 5

6

(
1 + 1

70

NK

Gh

)
(5.8.5)

This solution is analogous to Eq. (5.2.15), and it also shows that κ = 5/6 is a
lower bound.

In the series expansion approach, we apply the Maclaurin series expansion on the
term

(
1 + NK /70Gh

)
in the numerator of Eq. (5.8.2) to give

N R = NK

(
1 + 17

14
NK

Gh

)[
1 − NK

70Gh +
(

NK

70Gh

)2 −
(

NK

70Gh

)3 + · · ·
] (5.8.6)

or, in compact form,

N R = NK

(
1 + 17

14
NK

Gh

)∑∞
n=0

(
− NK

70Gh

)n (5.8.7)

Suppose we let NM = N R based on Eqs. (5.8.1) and (5.8.6) then κ = 14/17 is
recovered if the series summation in the latter is neglected. Equation (5.8.6) can also
be expressed as

N R = NK

1 + 6
5
NK

Gh

[
1 − NK

70Gh +
(

NK

70Gh

)2 −
(

NK

70Gh

)3 + · · ·
] (5.8.8)
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or, more conveniently,

N R = NK

1 + 6
5
NK

Gh

∑∞
n=0

(
− NK

70Gh

)n (5.8.9)

so that comparison with Eq. (5.8.1) leads to

κ = 5

6

[

1 − NK

70Gh
+
(

NK

70Gh

)2

−
(

NK

70Gh

)3

+ · · ·
]−1

= 5

6

(
1 + NK

70Gh

)

(5.8.10)

The shear correction factor of κ = 5/6 is recovered if the term NK /(70Gh) is
neglected in Eq. (5.8.10). For the sake of comparison, the higher-order terms in the
infinite series can be truncated to give (Lim 2020)

κ = 5

6

(
1 − NK

70Gh

)−1

(5.8.11)

thereby revealing its analogy with Eq. (5.2.25).

5.9 Analogy Between Plates Under Transverse
and Buckling Loads

Having obtained the refined generalized shear correction factors for transverse deflec-
tion and buckling load, one may now consolidate the results. Equations (5.2.15) and
(5.2.25) can be combined as

κ = 5

6

(

1 ± h2

420(1 − v)

�2wK

∣∣�wK
∣∣

)±1

(5.9.1)

in which the upper and lower signs correspond to the direct approach and the iteration
approach, respectively. Similarly, Eqs. (5.8.5) and (5.8.11) can be consolidated as

κ = 5

6

(
1 ± NK

70Gh

)±1

(5.9.2)

whereby the upper and lower signs correspond to the direct comparison and the
series expansion comparison, respectively. These results again suggest that the shear
correction factor of κ = 14/17 is the least accurate, while the customary κ = 5/6
is the best shear correction factor in the form of a constant; the latter forming the
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better of the two constant lower bounds. The shear correction factors of Eqs. (5.9.1)
and (5.9.2), with the positive signs, are exact within the framework of Reddy plate
theory; the same set of shear correction factors, with the negative signs, forms a
very tight upper bound. Table 5.10 summarizes the exact and other shear correction
factors discussed herein.

To visually observe these generic correction factors, a family of κ curves

κ = 5

6
(1 ± �)±1 (5.9.3)

are plotted in Fig. 5.22, where � denotes the generic correction term

Table 5.10 Summaryof shear correction factors ofMindlin plate,within the frameworkofmatching
against Reddy plate

Category Transverse deflection Buckling load Remarks

Variable κ κ =
5
6

(
1 + h2

420(1−v)
�2wK

|�wK |
)+1 κ = 5

6

(
1 + NK

70Gh

)+1 Exact, within Reddy plate
framework

Variable κ κ =
5
6

(
1 − h2

420(1−v)
�2wK

|�wK |
)−1 κ = 5

6

(
1 − NK

70Gh

)−1 Tight upper bound, and
very accurate

Constant κ κ = 5
6 κ = 5

6 Tight lower bound, and
accurate

Constant κ κ = 14
17 κ = 14

17 A lower bound, and
acceptable
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Fig. 5.22 Visual observation of the four shear correction factors discussed: a small but significant
� and b very small and insignificant �
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� =
{

h2

420(1−v)
�2wK

|�wK |
NK

70Gh

(5.9.4)

such that the exact and the upper bound correspond to the+ and− signs, respectively,
in Eq. (5.9.3). The tight lower bound κ = 5/6 is represented by � = 0, while the
other lower bound κ = 14/17 refers to � = −1/85 and � = −1/84 corresponding
to the + and - signs, respectively, in Eq. (5.9.3).

Where the attainment of simple but nevertheless accurate shear deformation
solution is concerned, the use of

κ = 5

6
(1 + �)+1 (5.9.5)

as shear correction factor for the simpler Mindlin plate would give the Reddy plate
solution exactly, and that a tight bound can be attained as

5

6
< κ <

5

6
(1 − �)−1 (5.9.6)

for design purposes. The simple change in the signs between Eq. (5.9.5) and the
upper bound of Eq. (5.9.6), established herein as the exact and tight upper bound,
respectively, suggests that previouswork on obtaining refined shear correction factors
can be easily extended on the basis of the present generalized analysis. While the
choice of obtaining the exact or upper-bound shear correction factors for previous
sections was based on convenience for each plate—the plate deflection description
being unique for each plate shape—the generalized exact and upper-bound shear
correction relationships developed in this section allow very convenient conversion
from one to the other. A summary of shear correction factor conversion from the
tight upper bound to the exact model, within Reddy plate framework, and vice versa
is furnished in Table 5.11.

Table 5.11 shows that the shear correction factors for transversely loaded plates are
conserved for varying plate thickness so long as the ratio (h/a)2/(1 − v) is preserved.
For example, if the relative plate thickness increases by a factor of

√
2, there is no

change to the shear correction factor if the plate’s Poisson’s ratio decreases from
incompressibility condition v = 1/2 to zero Poisson’s ratio v = 0, or from v = 1/3
to v = −1/3. The latter change refers to a change in the sign of the Poisson’s ratio
at the same magnitude. Similarly, if the relative plate thickness is doubled there is
no change to the shear correction factor if the plate’s Poisson’s ratio decreases from
the upper limit v = 1/2 to the lower limit v = −1 for isotropic material.

We now turn our attention to an example application for plate buckling where the
use of κ = 14/17 is critical compared to κ = 5/6. Since 14/17 < 5/6, it follows
that the substitution of these shear correction factors into the RHS of Eq. (5.8.1)
leads to
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Table 5.11 Conversion between the tight upper bound and the exact shear correction factors for
uniformly loaded simply supported polygonal plates of specific shapes on the basis of the generalized
irregular polygonal plates

Plate shapes Schematics Tight upper-bound shear
correction factor

Exact shear correction
factor

Lower
bound

Rectangular
plates of
aspect ratio
a/b ≥ 1

a
b

Inferring from Lim (2016a)
and this section,

5
6

[
1 − π2

420(1−v)
h2
ab f

( a
b

)]−1

From Lim (2016a),
5
6

[
1 + π2

420(1−v)
h2
ab f

( a
b

)]
5
6

Equilateral
triangular
plates

a
From Lim (2016b),

5
6

[
1 − 9

140(1−v)

( h
L

)2]−1

Inferring from Lim
(2016b) and this section,
5
6

[
1 + 9

140(1−v)

( h
L

)2]

5
6

Isosceles
right
triangular
plates

a

a

Inferring from Lim (2016c)
and this section,

5
6

[
1 − 0.10734

1−v

( h
a

)2]−1

From Lim (2016c),
5
6

[
1 + 0.10734

1−v

( h
a

)2]
5
6

Hexagonal
plates a

From Lim (2017a),

5
6

[
1 − π2

840(1−v)

( h
a

)2]−1

Inferring from Lim
(2017a) and this section,
5
6

[
1 + π2

840(1−v)

( h
a

)2]

5
6

Regular
polygonal
plates of n
sides

a
From Lim (2017b),

5
6

[
1 − f (n)(1+v)

(1−v)(3+v)

( h
a

)2]−1

Inferring from Lim
(2017b) and this section,
5
6

[
1 + f (n)(1+v)

(1−v)(3+v)

( h
a

)2]

5
6

Irregular
polygonal
plates

From Lim (2020),

5
6

[
1 − h2

420(1−v)
�2wK

|�wK |
]−1

From Lim (2020),
5
6

[
1 + h2

420(1−v)
�2wK

|�wK |
]

5
6

NK

1 + 17
14

NK

Gh

<
NK

1 + 6
5
NK

Gh

(5.9.7)

or
NM=14/17 < NM

=5/6 . Suppose the critical buckling load, Ncr , falls between these
two bounds, i.e., NM=14/17 < Ncr < NM

=5/6, then the use of κ = 14/17 would predict
that the critical buckling load has not being attained, while the use of the more
accurate κ = 5/6 reveals that the plate would undergo buckling failure. As such, if
NM=14/17 < Ncr < NM

=5/6, then the use of κ = 14/17 would be catastrophic while the
use of κ = 5/6 is more conservative.

It can be concluded that the shear correction factor of κ = 14/17 is consistently
shown to be the least accurate for all plate shapes but reasonably valid, while the
customary κ = 5/6 is the best correction factor in the form of a constant. The
twin counterpart of the exact shear correction factor, obtained by replacing the +
signs with − signs, forms the tight upper bound. While the exact shear correction
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factor permits the Mindlin plate solution to exactly match the Reddy plate solution,
the tight bounds are useful for precision design purposes. The availability of shear
correction factors in terms of lower bounds, upper bounds, and exact forms, avails
to the engineer more options in the design of thick plates, and to also permit very
convenient conversion between the tight upper bound and the exact shear correction
factors when one of them is known.

5.10 Vibration of Thick Auxetic Plates

So far previous sections deal with static transverse loads and in-plane buckling loads.
From the instability and vibration study of thin auxetic plates (Lim 2014b), anal-
yses have been extended on the instability (Lim 2014c) and vibration (Lim 2014d)
characteristics of thick auxetic plates.

The shear correction factor that is commonly used for conventional plates (i.e.,
positive Poisson’s ratio), κ = 5/6, is obtained by matching the Mindlin constitu-
tive shear forces against those proposed by Reissner (1947). However, this constant
shear correction factor does not allow for the effect of Poisson’s ratio. When dealing
with auxetic solids it is obviously important to allow for the effect of Poisson’s ratio
because the range of Poisson’s ratio for isotropic auxetic solids is twice the Poisson’s
ratio range for conventional solids. A variable shear correction factor for isotropic
plates has been obtained by equating the angular frequency of the first antisym-
metric mode of thickness-shear vibration according to the exact 3D theory to the
corresponding frequency according to Mindlin’s (1951) theory to give (Liew et al.
1998)

κ3 − 8κ2 + 8

(
2 − v

1 − v

)
κ − 8

1 − v
= 0 (5.10.1)

This variable shear correction factor is selected because the exact 3D theory
adopted for extracting Eq. (5.10.1) is not limited to positive Poisson’s ratio; the
formulation implicitly caters for Poisson’s ratio of either signs. It will later be shown
that the use of Eq. (5.10.1) instead of κ = 5/6 gives a better agreement with Reddy’s
third-order shear deformation theory and has the same effect as the inclusion of rotary
inertia. Recall that the circular natural frequency for polygonal Mindlin plates ωM ,
without considering rotary inertia, is related to that of Kirchhoff plates ωK as (Wang
et al. 2000a)

ω2
M = ω2

K

1 + ωK h2

6(1−v)κ

√
ρh
D

(5.10.2)

where h, v, ρ, and D are the thickness, Poisson’s ratio, density, and flexural rigidity
of the plate, respectively. Introducing the dimensionless natural frequency in terms
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of the natural frequency, density, thickness, and flexural rigidity of the plate

ω∗ = ω

√
ρh5

D
(5.10.3)

gives

ω∗
M = ω∗

K√
1 + ω∗

K
6(1−v)κ

(5.10.4)

By adopting the choice of dimensionless frequency shown in Eq. (5.10.3), the
curves of ω∗

M versus ω∗
K are independent of other plate properties. Considering

rotary inertia, the natural frequency of a polygonal Mindlin plate is related to that of
Kirchhoff plate as (Wang et al. 2000a)

ω2
M = 6κG

ρh2

{

1 + h2ωK

12

√
ρh

D

(
1 + 2

κ(1 − v)

)

−
√√√
√
[

1 + h2ωK

12

√
ρh

D

(
1 + 2

κ(1 − v)

)]2
− ρh2ω2

K

3κG

⎫
⎪⎬

⎪⎭
(5.10.5)

where G is the shear modulus of the plate material. Using Eq. (5.2.9) such that G is
expressed in terms of D, v and h, Eq. (5.10.5) can be written as
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(5.10.6)

Table 5.12 shows a list of variable κ calculated from Eq. (5.10.1). When the
constant κ is compared with the variable κ, the percentage error falls within 10%
when the plate’s Poisson’s ratio is positive but exceeds 10%when the plate’s Poisson’s
ratio is negative. Hence, the variable κ, instead of the constant κ, is to be used when
dealing with auxetic plates.

Figure 5.23 shows a family of ω∗
M versus ω∗

K curves for the entire range of
Poisson’s ratio within the framework of isotropic solids.When κ is assumed constant
throughout the entire range of Poisson’s ratio of the plate material and the rotary
inertia is neglected, as furnished in Fig. 5.23 (top left), the dimensionless natural
frequency natural for Mindlin plates approximates that of Kirchhoff plates as the
Poisson’s ratio of the plate material becomes more negative. This result is consistent
to earlier sections, in which the maximum lateral deflection of a uniformly loaded
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Table 5.12 Comparison between constant and variable shear correction factors for a plate

Region Poisson’s
ratio, v

Variable shear
correction
factor, κ = κ(v)

Constant
shear
correction
factor,
κ = 5/6

Percentage
error of
κ = 5/6 with
reference to
κ = κ(v)

Remarks

Auxetic region −1 0.474572 5/6 75.59682 Percentage
error exceeds
10%

−0.9 0.496042 5/6 67.99653

−0.8 0.519175 5/6 60.51107

−0.7 0.544078 5/6 53.16431

−0.6 0.570826 5/6 45.98728

−0.5 0.599446 5/6 39.01725

−0.4 0.629884 5/6 32.29949

−0.3 0.661966 5/6 25.88763

−0.2 0.695367 5/6 19.84079

−0.1 0.729580 5/6 14.22097

Conventional
region

0 0.763932 5/6 9.084753 Percentage
error within
10%

0.1 0.797638 5/6 4.475129

0.2 0.829914 5/6 0.412011

0.3 0.860094 5/6 −3.11137

0.4 0.887732 5/6 −6.12783

0.5 0.912622 5/6 −8.68801

simply supported Mindlin plate approaches that of a Kirchhoff plate as v → −1.
However, reference to Fig. 5.23 (top right) shows that the natural frequency of the
same Mindlin plate generally decreases when rotary inertia is taken into considera-
tion. A similar effect is observed when the variable κ is adopted without considering
rotary inertia, as evidenced in Fig. 5.23 (bottom left). When both the variable κ and
rotary inertia are taken into account, the natural frequency of the Mindlin plate is
further reduced, as plotted in Fig. 5.23 (bottom right). In all the four sets of combi-
nations shown in Fig. 5.23, the natural frequency of Mindlin plates increases at
decreasing rate as the plate’s Poisson’s ratio becomes more negative. This is espe-
cially observed when the variable κ is used, in which the ω∗

M versus ω∗
K curves

for −1 ≤ v ≤ −0.25 are very close, i.e., the Poisson’s ratio has insignificant incre-
mental effect on the incrementalω∗

M/ω∗
K ratio when the Poisson’s ratio is sufficiently

negative.
In order to compare how the ω∗

M to ω∗
K relationship varies according to the choice

of shear correction factor and the inclusion or exclusion of rotary inertia, a family of
ω∗

M versus ω∗
K curves were plotted under the four different combinations of assump-

tions at fixed Poisson’s ratio of the plate. When the plate is incompressible, i.e., the
plate’s Poisson’s ratio is set at the upper limit, all the four curves fall within very close
proximity, as shown in Fig. 5.24 (top left). At v = 0, the four curves are slightly
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Fig. 5.23 Plots of ω∗
M versus ω∗

K for −1 ≤ v ≤ 1/2 based on constant shear correction factor
(top), variable shear correction factor (bottom), without rotary inertia (left), and with rotary inertia
(right)

further apart but are nevertheless moderately close to one another, as depicted in
Fig. 5.24 (top right). Figure 5.24 (bottom left), however, exhibits a significant differ-
ence to the ω∗

M to ω∗
K relationship at v = −1/2, whereby the natural frequency of

Mindlin plates with both simplifying assumptions gives the highest value while the
natural frequency of Mindlin plates with variable shear correction factor and rotary
inertia gives the lowest value. Interestingly, theω∗

M toω∗
K relationships on the assump-

tion of either constant κ or no rotary inertia are almost equal. As the Poisson’s ratio
becomes more negative, further differentiation is exhibited. As shown in Fig. 5.24
(bottom right) for v = −1, the ω∗

M to ω∗
K relationship is primarily influenced by the

choice of shear correction factor and secondarily influenced by the rotary inertia.
In order to clearly observe how ω∗

M relates to ω∗
K for the entire range of Poisson’s

ratio, a set of ω∗
M/ω∗

K curves was plotted against the plate’s Poisson’s ratio, as
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Fig. 5.24 Plots of ω∗
M versus ω∗

K for different combinations of assumptions at v = 1/2 (top left),
v = 0 (top right), v = −1/2 (bottom left), and v = −1 (bottom right)

furnished in Fig. 5.25. At very low natural frequencies, such as ω∗
K = 1 shown

in Fig. 5.25 (top left), the Mindlin plate’s natural frequencies at the conventional
region 0 ≤ v ≤ 1/2 is primarily controlled by rotary inertia. At the lower limit of the
plate’s Poisson’s ratio (v = −1), the Mindlin plate’s natural frequency based on the
assumption of no rotary inertia at variable shear correction factor is almost equal to
that based on the assumption of constant shear correction factor with rotary inertia.
At very high natural frequencies, such as ω∗

K = 100 depicted in Fig. 5.25 (bottom
right), the Mindlin plate’s natural frequency is common at v = 0.2. This implies
that at very high natural frequencies, the Mindlin plate’s natural frequency can be
sufficiently accurate without taking into account the variation of κ with Poisson’s
ratio and without considering rotary inertia only if the plate’s Poisson’s ratio is posi-
tive. However, if the plate is auxetic, then the Mindlin plate’s natural frequency
is primarily influenced by κ, whereby the Mindlin natural frequencies considering
constant κ are higher than those at variable κ. Figure 5.25 (top right) and (bottom
left) show the transition of the ω∗

M/ω∗
K curves from low to high frequencies.

Finally, it is of interest to evaluate the effectiveness of the variable shear correction
factor described byEq. (5.10.1) against the constant shear correction factor, bymeans
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K = 1 (top left), ω∗
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of comparison with Reddy’s third-order shear deformation theory. Limitations on
the present analysis when the plate is very thick or when it is vibrating at very
high frequency can be concurrently evaluated using the dimensionless frequency
described by Eq. (5.10.3), in which ω∗ ∝ ω

√
h5/D or ω∗ ∝ ωh/

√
E . Using the

Reddy–Kirchhoff relations (Wang et al. 2000b)
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as well as the Mindlin–Kirchhoff relations given in Eq. (5.10.4) and (5.10.6), a set
of relationship between the Mindlin and Reddy dimensionless frequencies can be
obtained. To facilitate a graphical representation between the Mindlin and Reddy
plates, it is useful to firstly make the following conversions

8Gh

15
= 16D

5h2
(1 − v) (5.10.11)

ρh3ω2
R = D

h2
ρh5ω2

R

D
= D

h2
(
ω∗

R

)2
(5.10.12)

ρhω2
R = D

h4
ρh5ω2

R

D
= D

h4
(
ω∗

R

)2
(5.10.13)

so that Eqs. (5.10.9) and (5.10.10) are commonly expressed in terms of plate flex-
ural rigidity and frequency of Reddy plates. Figure 5.26 shows the dimensionless
frequencies between the Mindlin and Reddy plates for v = −1,−1/2, 0, 1/2 based
on constant (top) and variable (bottom) shear correction factors, as well as without
(left) and with (right) rotary inertia.

Perusal to Fig. 5.26 (top left) shows that theMindlin plate approximates the Reddy
plate well for v ≈ 0, with the conventional and auxetic Mindlin plate generally over-
estimating and underestimating the frequency in comparison to the Reddy plate.
When only the rotary inertia is taken into account, as shown in Fig. 5.26 (top right),
there is good agreement between the Mindlin and Reddy plates for auxetic plates but
not for conventional plates. A similar trend is observed when only the variable shear
correction factor is incorporated, as shown in Fig. 5.26 (bottom left). However, when
both the variable shear correction factor and rotary inertia are taken into account,
as shown in Fig. 5.26 (bottom right), the improvement to the Reddy–Mindlin rela-
tion is slightly less satisfactory in comparison to the case when only one of them
is considered—this could possibly be a result of overcorrection. Nevertheless, it
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Fig. 5.26 Plots of dimensionless frequencies of Mindlin plates considering constant κ (top), vari-
able κ (bottom), without rotary inertia (left), and with rotary inertia (right) versus the dimensionless
frequencies of Reddy plates

is interesting to point out that in the auxetic region the Mindlin and Reddy vibra-
tional frequency relationship is almost linear. Figure 5.27 represents a conventional
plate (left) and an auxetic plate (right) so as to allow comparison to be made under
Poisson’s ratio of equal magnitude |v| = 1/2. In the case of incompressible solids,
unsatisfactory correlation between the Mindlin and Reddy vibrational frequencies is
found when constant shear correction factor is used, especially so when the rotary
inertia is neglected. Better correlation is found when the variable shear correction
factor is used, although there is no appreciable difference whether rotary inertia is
used or not. In the case where v = −1/2, good correlations between the Mindlin
and Reddy vibrational frequencies are found when variable shear correction factor
is used.

It can be concluded that the use of Mindlin plate theory with simplifications (i.e.,
constant shear correction factor and no rotary inertia) is sufficient to approximate the
caseMindlin plates without simplifications (i.e., variable shear correction factor with
rotary inertia) when the plate’s Poisson’s ratio is positive. When the plate is auxetic,
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Fig. 5.27 Dimensionless vibrational frequency of Mindlin plates ω∗
M in comparison to Reddy

plates ω∗
R at v = ±1/2

the natural frequency for the Mindlin plate is overestimated when at least one of
the simplifying assumptions is used and the overestimation is especially large when
both simplifying assumptions are used. As such, both the variable shear correction
factor and rotary inertia must be taken into account when calculating the natural
frequency of thick auxetic plates. The results also show that as the Poisson’s ratio
of the plate becomes more negative, the natural frequency of Mindlin-to-Kirchhoff
plates increases at a decreasing rate. Finally, comparison with Reddy’s third-order
shear deformation theory confirms that sufficient improvement to the accuracy of
vibration frequencies is found when either the rotary inertia or the variable shear
correction factor is used.
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Chapter 6
Longitudinal Elastic Waves in Auxetic
Solids

Abstract This chapter discusses the longitudinal wave speed in prismatic rods,
plates, and bulk solids made from isotropic auxetic materials—as well as their inter-
mediate structural elements—with special emphasis on the changes in cross-sectional
area and density while retaining the traditional strength-of-materials flavor in order
to keep the practical solutions tractable.

Keywords Cross-sectional area change · Density change · Longitudinal waves

6.1 Preamble

Classical, or elementary, models of wave speed do not take into account the strain,
the change in material density and the variation of cross-sectional area perpendicular
to the wave direction. Take, for example, the longitudinal wave speed in prismatic
rods are illustrated in Fig. 6.1.

The elementary equation of motion for longitudinal wave in a prismatic rod is
long well established and can be set up by applying Newton’s second law of motion
to the elemental volume, shaded in Fig. 6.1, to give

Fx+dx − Fx = dm
∂2ux

∂t2
(6.1.1)

where the elemental mass dm = ρ0dV and elemental volume dV = A0dx are
substituted so that (Timoshenko and Goodier 1951)

A0(σx + dσx ) − A0σx = ρ0A0dx
∂2ux

∂t2
(6.1.2)

whereby both A0, the cross-sectional area, and ρ, the rod density, are assumed
constant. This simplification allows Eq. (6.1.1) to be reduced to

dσx = ρ0dx
∂2ux

∂t2
(6.1.3)
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Fig. 6.1 Schematic for analysis of longitudinal wave motion through a prismatic rod assuming no
changes to the cross-sectional geometry

Let E be the Young’s modulus of the rod material, then the substitution of

dσx = Edεx = E
∂εx

∂x
dx = E

∂2ux

∂x2
dx (6.1.4)

into Eq. (6.1.3) leads to

∂2ux

∂x2
= ρ0

E

∂2ux

∂t2
(6.1.5)

Since the longitudinal wave velocity, c, is defined as (Kolsky 1963; Graff 1975)

c2 =
(

∂2ux
∂t2

)
(

∂2ux
∂x2

) (6.1.6)

the substitution of Eq. (6.1.5) into Eq. (6.1.6) gives the classical elementary
longitudinal wave speed in a prismatic rod as

c =
√

E

ρ0
(6.1.7)
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The assumption of constant density is exactly valid only when v = 1/2, i.e., the
absence of volumetric change with mass preservation ensures constancy of density.
On the other hand, the assumption of constant cross-sectional area is exactly valid
only when v = 0. The simultaneous assumptions of constant cross-sectional area
and constant density is, therefore, theoretically inconsistent and is only justified
as a simplified or design equation for isotropic solids whose Poisson’s ratio falls
within 0 < v < 1/2. Due to their negativity of Poisson’s ratio, auxetic solids expand
laterallywhen stretched axially and contract laterallywhen compressed axially; these
triaxial expansion and contraction responses to uniaxial tension and compression,
respectively, give rise to a large change in the density of auxetic solids in comparison
with solids with positive Poisson’s ratio. See Fig. 6.2.

This justifies why the change in density must be taken into consideration for wave
motion through auxetic solids.When the density changes is accounted for, the change
in cross-sectional area is to be considered not only for the sake of consistency, but
also because in the case of isotropic solids the range of Poisson’s ratio is larger in
auxetic materials (−1 ≤ v < 0) than in conventional ones (0 ≤ v ≤ 1/2). In other
words, the change in lateral strain can be as much as the applied strain for auxetic
solids while the magnitude change in lateral strain can be at most only half of the
applied strain for conventional material. It should also be clarified that the actual
problem is that of 3D mechanics; although the stress state is 1D, the strain state is

c
c

c
c

Fig. 6.2 Wave speed, c, as a result of prescribed compressive (left) and tensile (right) strains—
indicated by arrows—on rods with Poisson’s ratio of positive (top) and negative (bottom) values.
Note the larger change in volume, and hence larger change in density, for solids with negative
Poisson’s ratio
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3D. However, the classical elementary treatment is that of 1Dmechanics on the basis
of 1D stress state with 1D strain state assumption.

The classical approach for obtaining the longitudinal wave speed in prismatic rods
has also been extended to those in infinite flat plates and in plane waves of dilatation;
the former is equivalent to plates with prescribed zero strain in the width direction
while the latter applied for bulk solids where strains orthogonal to the direction of
wave propagation is prescribed zero. Note that Eq. (6.1.7) is expressed in terms of
Young’s modulus and the original, or unstressed, density of the rod material. In the
case of longitudinal wave in infinite plates,

c =
√

E

ρ0
(
1 − v2

) (6.1.8)

and in the case of plane waves of dilatation

c =
√

E(1 − v)

ρ0(1 + v)(1 − 2v)
(6.1.9)

their classical wave speeds additionally include the Poisson’s ratio of the material
(Kolsky 1963; Graff 1975). Although the Poisson’s ratio of the materials is taken
into account, it remains that the wave speed in the flat plate does not account for
the change in plate thickness under stressed condition and the corresponding change
in density. Even though cross-sectional change is not applicable for plane waves of
dilatation, the prescribed strain in the direction of wave preparation forms a source
of density change. Historically, the study of auxetic solids under dynamic conditions
have been reported by Chen and Lakes (1996), Ruzzene and Scarpa (2003), Scarpa
andMalischewsky (2008), Koenders (2009), Trzupek and Zielinski (2009), Tee et al.
(2010), Kolat et al. (2010, 2011), Hou et al. (2011), Malischewsky et al. (2012),
Bianchi and Scarpa (2013), Lim (2013), Goldstein et al. (2014), Lim et al. (2014a,
b), Sobieszczyk et al. (2015), Boldrin et al. (2016), Reda et al. (2016), and He
and Huang (2018). The effect of auxeticity on various types of waves as well as
wave reflections and transmissions involving auxetic solids has been summarized in
Chaps. 12 and 13 of Lim (2015a).

6.2 Fundamentals

This section establishes a generic approach for obtaining the longitudinal waves with
cross-section and density corrections. Throughout the entire chapter, we set up solids
such that the wave propagates parallel to the x-axis of a Cartesian coordinate system,
with the y–z plane defining the cross-section of the solids. For the section on wave
motion through a cylindrical rod parallel to its axis, it is obviously expedient to use
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the cylindrical coordinate system. We further confine ourselves to cases where the
solids are prismatic such that their cross-sections retain their respective geometry
throughout the x-axis in their original unstressed state so that any change to the
cross-section arises from the presence of stresses.

The equation of motion for longitudinal wave based on the indicated elemental
volume, allowing for variable cross-sectional area and variable density, is written as
Ax+dxσx+dx − Axσx = dm

(
∂2ux/∂t2

)
based on Eq. (6.1.1), whereby Ax = A is the

cross-sectional area corresponding to stress σx at location x, while Ax+dx = A+ dA
is the cross-sectional area corresponding to stress σx + dσx at location x + dx . Note
that A0 is the cross-sectional area corresponding to the original, unstressed, solid,
which is not applicable to the elemental volume under consideration. As such, the
equation of motion can be expressed as

(A + dA)(σx + dσx ) − Aσx = ρdV
∂2ux

∂t2
(6.2.1)

where the elemental mass, again, is the product of density ρ and elemental volume
dV = Adx . Alternatively, Eq. (6.2.1) can be expressed as

σx
dA

A0
+ A

A0
dσx + dσx

dA

A0
= ρAdx

∂2ux

∂t2
(6.2.2)

in which the mean cross-sectional area is confined within the elemental volume of
length dx and is assumed to be a simple average of the cross-sectional areas at x and
x + dx , i.e.,

A = Ax + Ax+dx

2
= A + (A + dA)

2
= A + 1

2
dA (6.2.3)

while the altered density ρ can be expressed in term of the original density ρ0 on the
basis of mass conservation m = m0, i.e.,

ρV = ρ0V0 (6.2.4)

and that the choice of Eq. (6.2.2) over Eq. (6.2.1) is for the sake of convenience; the
ratio of cross-sectional area in the stressed part over that in the unstressed part can
be expressed in terms of strain.

Consider an elemental cuboid of unstressed original dimensions x0, y0, and z0
measured along the x-, y- and z-axes, respectively, which undergoes the following
deformation

x = x0 + dx

y = y0 + dy
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z = z0 + dz (6.2.5)

This gives the original cross-sectional area

A0 = y0z0 (6.2.6)

while the cross-sectional area at a distance x from the reference plane is

A = (y0 + dy)(z0 + dz) = y0z0 + z0dy + y0dz + dydz (6.2.7)

or, in terms of strain,

A

A0
= 1 + dy

y0
+ dz

z0
+ dy

y0

dz

z0
= 1 + εy + εz + εyεz (6.2.8)

From Eq. (6.2.4), we have

ρxyz = ρ0x0y0z0 (6.2.9)

Dividing Eq. (6.2.9) by V0 = x0y0z0 we obtain

ρ

(
1 + dx

x0

)(
1 + dy

y0

)(
1 + dz

z0

)
= ρ0 (6.2.10)

or

ρ = ρ0

(1 + εx )
(
1 + εy

)
(1 + εz)

(6.2.11)

within the context of Cartesian coordinate system. In the case ofwavemotion through
a cylindrical solid, it is expedient to use the cylindrical coordinate system, in which
the original radius r0 changes to

r = r0 + dr (6.2.12)

This gives the original cross-sectional area

A0 = πr20 (6.2.13)

while the cross-sectional area at a distance x is

A = π(r0 + dr)2 = π
(
r20 + 2r0dr + (dr)2

)
(6.2.14)
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or, in terms of strain

A

A0
= 1 + 2

dr

r0
+
(
dr

r0

)2

= 1 + 2εr + ε2r (6.2.15)

From Eq. (6.2.4), we have

ρxπr2 = ρ0x0πr
2
0 (6.2.16)

Dividing Eq. (6.2.16) by V0 = x0πr20 , we obtain

ρ

(
1 + dx

x0

)(
1 + dr

r0

)2

= ρ0 (6.2.17)

or

ρ = ρ0

(1 + εx )(1 + εr)
2 (6.2.18)

within the context of cylindrical coordinate system. Although a generic solution can
be obtained by proceeding, it is more practical to state the specific structural elements
and any imposed boundary condition in subsequent formulation. It is sufficient at
this juncture to identify some relations that will be repeatedly used in subsequent
sections and, due to their generality, are produced here the constitutive relationships
for isotropic solids

⎧
⎨
⎩

εx

εy

εz

⎫
⎬
⎭ = 1

E

⎡
⎣

1 −v −v

−v 1 −v

−v −v 1

⎤
⎦
⎧
⎨
⎩

σx

σy

σz

⎫
⎬
⎭ (6.2.19)

and

⎧⎨
⎩

σx

σy

σz

⎫⎬
⎭ = E

(1 + v)(1 − 2v)

⎡
⎣
1 − v v v

v 1 − v v

v v 1 − v

⎤
⎦
⎧⎨
⎩

εx

εy

εz

⎫⎬
⎭ (6.2.20)

as well as the following relationship between strain and displacement along the
direction of wave propagation

dεx = ∂εx

∂x
dx = ∂2ux

∂x2
dx (6.2.21)

The constitutive relationships are useful in subsequent sections involving rods(
σy = σz = 0

)
, plates

(
εy = σz = 0

)
, bulk

(
εy = εz = 0

)
in Sects. 6.3–6.5. Themore
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complicating conditions in Sects. 6.6–6.8 require the use of boundary parameters for
quantifying elastic restraints on rods acting along the radial direction br, on plates
acting along the width direction bw, and on slabs acting along the thickness direction
bt such that the lateral strains can be written as functions of the boundary parameters
and longitudinal strains. Equation (6.2.21) is useful for converting dεx , arising from
dσx , into the form of

(
∂2ux/∂x2

)
dx so as to execute Eq. (6.1.6). The approaches are

more instructive by considering examples of individual solid geometries and their
complicating boundary conditions in the subsequent sections.

6.3 Example: Longitudinal Waves in Prismatic Auxetic
Rods

Here, we consider the problem as being 1D stress state with 3D strain state,
hence, effectively a 3D mechanics problem, albeit maintaining a classical approach.
Adopting Fig. 6.3, the equation of motion for longitudinal wave in a prismatic rod,
allowing for variable cross-sectional area A and variable density ρ, is written as
Eq. (6.2.2). Substituting εy = εz = −vεx for a laterally unconstrained isotropic rod
into Eq. (6.2.8) gives

A

A0
= 1 − 2vεx + v2ε2x (6.3.1)

z

x dx
A

c

x

y

Cross-
sectional 

area A+dA
for 

Mean cross-sectional 
area within dx

Cross-
sectional 

area A0 for 

Cross-
sectional 
area A for 

 0 
∂
∂

xu
t

2

2
x ≠ x = 0x +d x

x x+d x

Fig. 6.3 Schematic adopted for analysis of longitudinal wave motion with changes to the cross-
sectional area. Note that A �= A �= A + dA �= A0, unlike Fig. 6.1
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Writing the change in the stresses, strains and cross-sectional areas from x to
x + dx as

⎧
⎨
⎩

σx

εx

A

⎫
⎬
⎭

x

→
⎧
⎨
⎩

σx + dσx

εx + dεx
A + dA

⎫
⎬
⎭

x+dx

(6.3.2)

we have from Eq. (6.3.1)

A + dA

A0
= 1 − 2v(εx + dεx ) + v2(εx + dεx )

2 (6.3.3)

or its expanded form

A + dA

A0
= 1 − 2v

(
εx + ∂εx

∂x
dx

)
+ v2

[
ε2x + 2εx

∂εx

∂x
dx +

(
∂εx

∂x
dx

)2
]

(6.3.4)

The incremental change in the cross-sectional area, dA, along the infinitesimal
thickness dx can then be obtained by subtracting Eq. (6.3.1) from Eq. (6.3.4) to give

dA

A0
= −2v

∂εx

∂x
dx + 2v2εx

∂εx

∂x
dx + v2

(
∂εx

∂x
dx

)2

(6.3.5)

Substituting Eqs. (6.3.1) and (6.3.5) into Eq. (6.2.3) allows the mean cross-
sectional area within dx to be written in terms of longitudinal strain as

A

A0
= 1 − 2vεx + v2ε2x − v

∂εx

∂x
dx + v2εx

∂εx

∂x
dx + v2

2

(
∂εx

∂x
dx

)2

(6.3.6)

Substituting Eqs. (6.3.1), (6.3.5), (6.3.6), and

{
σx

dσx

}
= E

{
εx

∂εx
∂x dx

}
(6.3.7)

into Eq. (6.2.2) leads to

(
1 − 2vεx + v2ε2x

)
E

∂εx

∂x
dx + Eεx

[
−2v

∂εx

∂x
dx + 2v2εx

∂εx

∂x
dx + v2

(
∂εx

∂x
dx

)2
]

+
[
−2v

∂εx

∂x
dx + 2v2εx

∂εx

∂x
dx + v2

(
∂εx

∂x
dx

)2
]
E

∂εx

∂x
dx
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= ρ

[
1 − 2vεx + v2ε2x − v

∂εx

∂x
dx + v2εx

∂εx

∂x
dx + v2

2

(
∂εx

∂x
dx

)2
]
dx

∂2ux

∂t2

(6.3.8)

For isotropic rod that is laterally unconstrained, the substitution of εy = εz =
−vεx into Eq. (6.2.11) gives

ρ = ρ0

(1 + εx )(1 − vεx )
2 (6.3.9)

Substituting Eq. (6.3.9) into Eq. (6.3.8) gives

(
1 − 2vεx + v2ε2x

)
E

∂εx

∂x
dx + Eεx

[
−2v

∂εx

∂x
dx + 2v2εx

∂εx

∂x
dx + v2

(
∂εx

∂x
dx

)2
]

+
[
−2v

∂εx

∂x
dx + 2v2εx

∂εx

∂x
dx + v2

(
∂εx

∂x
dx

)2
]
E

∂εx

∂x
dx

= ρ0

(1 + εx )(1 − vεx )
2

[
1 − 2vεx + v2ε2x − v

∂εx

∂x
dx + v2εx

∂εx

∂x
dx

+v2

2

(
∂εx

∂x
dx

)2
]
dx

∂2ux

∂t2
(6.3.10)

Dividing with Edx, and substituting εx = ∂ux
dx , we have the following differential

equation

[
1 − 2v

∂ux
∂x

+ v2
(

∂ux
∂x

)2]∂2ux
∂x2

+ ∂ux
∂x

⎡
⎣−2v

∂2ux
∂x2

+ 2v2
∂ux
∂x

∂2ux
∂x2

+ v2

(
∂2ux
∂x2

)2
dx

⎤
⎦

+
⎡
⎣−2v

∂2ux
∂x2

+ 2v2
∂ux
∂x

∂2ux
∂x2

+ v2

(
∂2ux
∂x2

)2
dx

⎤
⎦∂2ux

∂x2
dx

= ρ0

E(1 + εx )(1 − vεx )
2

[
1 − 2v

∂ux
∂x

+ v2
(

∂ux
∂x

)2
− v

∂2ux
∂x2

dx

+v2
∂ux
∂x

∂2ux
∂x2

dx + v2

2

(
∂2ux
∂x2

dx

)2⎤
⎦∂2ux

∂t2
(6.3.11)

for describing the longitudinal wave motion in prismatic bars with lateral inertia. At
zero Poisson’s ratio, Eq. (6.3.11) reduces to

∂2ux

∂x2
= ρ0

E(1 + εx )

∂2ux

∂t2
(6.3.12)
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which further simplifies to Eq. (6.1.5) for negligible strain. Neglecting terms with dx
and (dx)2, Eq. (6.3.11) becomes

[
1 − 4v

∂ux

∂x
+ 3v2

(
∂ux

∂x

)2
]

∂2ux

∂x2
= ρ0

E(1 + εx )(1 − vεx )
2

[
1 − 2v

∂ux

∂x

+v2

(
∂ux

∂x

)2
]

∂2ux

∂t2
(6.3.13)

Substituting ∂ux/∂x = εx into the square parentheses of Eq. (6.3.13), the phase
velocity with lateral inertia and its corresponding density correction can be expressed
in terms of strain as (Lim 2015b)

c =
√(

∂2ux

∂t2

)
/

(
∂2ux

∂x2

)
=
√

(1 + εx )(1 − vεx )(1 − 3vεx )
E

ρ0
(6.3.14)

on the basis of Eq. (6.1.6). Here, we observe three special cases in which two of the
most obvious are at the limiting Poisson’s ratio in the auxetic range, i.e.,

c =
{

(1 + εx )
E
ρ0

; v = 0

(1 + εx )
√

(1 + 3εx ) E
ρ0

; v = −1
(6.3.15)

Another special case takes place under Cauchy relation to give the following
approximation

c =
√(

1 − 13

16
ε2x + 3

16
ε3x

)
E

ρ0
≈
√

E

ρ0
; v = 1

4
(6.3.16)

To provide a visual clarity on the interlacing effect of auxeticity and strain on the
longitudinal wave velocity, a family of c

√
ρ0/E versus v curves are shown in Fig. 6.4

for εx = −5, −2.5, 0, 2.5, 5%. These results suggest that the use of elementary
wave velocity, as described by Eq. (6.1.7), is valid only when the rod is made from
isotropic and conventional materials. However, if the rod is made from isotropic
auxetic material, both the Poisson’s ratio and strain must be taken in account in order
to incorporate their influence on the wave velocity.

To shed insight on the effects from density and cross-section corrections, it is
instructive to express from Eq. (6.3.13) the wave speed
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Fig. 6.4 Effect of constant
axial strain and rod
auxeticity on the velocity of
longitudinal waves
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c =
√(

∂2ux

∂t2

)
/

(
∂2ux

∂x2

)
=
√[

(1 + εx )(1 − vεx )
2
]

ρ0
E

[
1 − 4vεx + 3v2ε2x

1 − 2vεx + v2ε2x

]

=
√

E

ρ0

[
(1 + εx )(1 − vεx )

2
][1 − 3vεx

1 − vεx

]
=
√

E

ρ0
f (v, εx )g(v, εx ) (6.3.17)

where the terms in the first square parenthesis

f (v, εx ) = (1 + εx )(1 − vεx )
2 (6.3.18)

reflects the density correction originating from Eq. (6.3.9), while the terms in the
second parenthesis

g(v, εx ) = 1 − 4vεx + 3v2ε2x

1 − 2vεx + v2ε2x
= 1 − 3vεx

1 − vεx
(6.3.19)

involve the cross-sectional corrections, in which the numerator 1 − 4vεx + 3v2ε2x
and denominator 1− 2vεx + v2ε2x originate from the LHS and RHS of Eq. (6.3.13),
respectively. Had there been no correction then f (v, εx ) = g(v, εx ) = 1 to give the
horizontal straight line of c

√
ρ0/E versus v as shown in Fig. 6.5 (top left). Suppose

only density correction is made, i.e., no cross-sectional correction g(v, εx ) = 1,
then one would obtain Fig. 6.5 (top right), in which the dimensionless wave speed
is common only for the condition of incompressibility v = 1/2. If only the cross-
sectional area correction is implemented, i.e., no density correction f (v, εx ) = 1
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Fig. 6.5 Dimensionless longitudinal wave speed in a prismatic rod based on classical elementary
model (top left), density corrected model (top right), cross section-corrected model (bottom left),
and combined density and cross section-corrected model (bottom right)

then one would obtain Fig. 6.5 (bottom left), whereby the wave speed is common
when there is no change to the cross-sectional area v = 0. When both corrections
are made, we obtain the plots in Fig. 6.5 (bottom right), which clearly shows that the
wave speed’s deviation becomes larger when the Poisson’s ratio of the rod material
is negative. The dashed rectangular box is added for visual aid.

Having shown that the plots of dimensionless wave velocity versus rod Poisson’s
ratio being almost linear, it is desirable to introduce a simplified model for ease of
application by design and other practice-oriented engineers. Expanding the terms
inside the square root of Eq. (6.3.14) gives

c

√
ρ0

E
=
√
1 + (1 − 4v)εx + (3v − 4)vε2x + 3v2ε3x (6.3.20)

Using Taylor series expansion

√
1 + ψ =

∞∑
n=0

(−1)n(2n)!
4n(n!)2(1 − 2n)

ψn (6.3.21)
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where

ψ = (1 − 4v)εx + (3v − 4)vε2x + 3v2ε3x (6.3.22)

we have a series

√
1 + ψ = 1 + 1

2
ψ − 1

8
ψ2 + 1

16
ψ3 − 5

128
ψ4 + 7

256
ψ5 − 21

1024
ψ6 + · · ·

(6.3.23)

Neglecting higher orders of εx leads to

c

√
ρ0

E
≈ 1 + 1 − 4v

2
εx (6.3.24)

A family of longitudinal wave velocity curves by this design equation in compar-
ison with the theoretical approach described Eq. (6.3.14) is plotted in Fig. 6.6. It
can be seen that the design equation gives a very good approximation, especially for
|εx | ≤ 5%and even at a considerably large strainmagnitude of |εx | = 10%,with only
a slight under estimation and overestimation for v ≤ −0.2 and v > −0.1, respec-
tively. The illustration using large strain demonstrates the accuracy of the design
model well beyond actual strain encountered in practice.

The validity range of the elementary model in terms of percentage error with
reference to the corrected model is listed in Table 6.1. Suppose a strict criterion is
imposed such that only a 1% error is allowed, then the range of longitudinal strain

Fig. 6.6 Comparison
between the theoretical
curves and the proposed
design equation
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Table 6.1 Validity range of wave velocity by the elementary model as a percentage error with
respect to the corrected model

Poisson’s ratio of rod Error within ±1% Error within ±5%

v = −1 −0.4% < εx < 0.4% −2.01% < εx < 1.99%

v = −3/4 −0.5% < εx < 0.5% −2.51% < εx < 2.49%

v = −1/2 −0.67% < εx < 0.67% −3.35% < εx < 3.32%

v = −1/4 −1% < εx < 1% −5.02% < εx < 4.98%
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Fig. 6.7 Plots of dimensionless longitudinal wave speed in a prismatic rod versus longitudinal
strain for various Poisson’s ratio (left) and loci of conventional and auxetic regions (right)

in which the elementary model is valid is very narrow. Outside this validity range,
the corrected model is to be used for accuracy.

As an alternative to Fig. 6.4, one may plot the dimensionless wave speed against
the longitudinal wave strain for various Poisson’s ratio of the rod material, as shown
in Fig. 6.7 (left). If the curves are plotted for Poisson’s ratio of v = −1, 0, 1/2, then
the conventional and auxetic regions are demarcated as in Fig. 6.7 (right), whereby
the theoretically impossible regions are shaded. These results suggest that the use of
elementarywave velocity, as described byEq. (6.1.7), is valid onlywhen the isotropic
rod is made from conventional materials, and especially so when v = 1/4. For this
reason, the usual derivation of longitudinal wave velocity in prismatic bars neglects
any changes to the cross-sectional area as well as any changes to the volume, and
hence density, of the bar. However, deviation from the elementary model becomes
large in the auxetic region, especially as v → −1; hence, the use of the current wave
velocity model provides a more accurate prediction. Plotted results also suggest
that auxetic rods can be beneficial if there is a need to control the speed of wave
propagation in rods, i.e., the use of highly auxetic rods can slow down or speed up
the propagation of compressive and tensile stress waves, respectively.

In summary, the elementary model for describing the longitudinal wave velocity
in a prismatic bar is in terms of Young’s modulus and density. Density correction
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is taken into consideration due to the larger change of density in auxetic solids,
while lateral inertia is accounted for because the range of Poisson’s ratio is larger
in the auxetic range than in the conventional range for isotropic solids. When both
the density correction and lateral inertia are incorporated, the wave velocity is also
a function of the Poisson’s ratio and axial strain. Results show that the use of the
wave velocity by the elementary model suffices if the rod is made from isotropic
conventional materials, but the proposed model must be used if the rod is made
from isotropic auxetic materials. Plotted results also suggest that auxetic rods can be
beneficial if there is a need to control the speed of wave propagation in rods, i.e., the
use of highly auxetic rods can slow down or speed up the propagation of compressive
and tensile stress waves, respectively. A proposed design equation has been shown
to be reliable even up to a strain magnitude of 10%.

6.4 Example: Longitudinal Waves in Width-Constrained
Auxetic Plates

Figure 6.8 illustrates a longitudinal wave propagating in the x-direction through an
isotropic plate that lies in the x, y plane, with the thickness being in the z-direction.
We consider herein the case whereby the wavelength is long in comparison with
the plate thickness. Furthermore, an attempt is made to present a nonlinear model,
though the effects of finitewave amplitude are neglected in the interest of allowing the
formulation to be more tractable. It should now be pointed out that for a longitudinal
wave to propagate through a plate that is constrained from motion in the width
direction, the physical problem is that of 2D stress and 2D strain, but 3D mechanics.
The reason is that the stresses are in the x–y plane while the strains are in the x–z
plane, thereby rendering the stress and strain mechanics effectively in all directions;
this differs from the purely 2D approach in the classical elementary treatment.

To apply Eq. (6.2.2) for solving this plate problem, there is a need to obtain a
set of stress-strain relationship for the given problem of constrained width, i.e., the
plate is arrested from motion in the y-direction, but the plate material is allowed
to displace in the wave propagation direction (or x-direction) and in the thickness

Fig. 6.8 Schematic diagram
for a longitudinal wave in a
plate

x

z

y

longitudinal 
wave velocity, c 

x dx

z0

y0
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direction (or z-direction). Arising from this constraint, it follows that every point on
the plate is constrained from moving in the y-direction. This constraint is inherent
for the case of an “infinite” plate, in which the infinite width renders the strain to be
zero in the width direction. Without this width constraint, an isotropic plate of finite
width will exhibit equal strain in the thickness and width directions, thereby leading
to a longitudinal wave velocity similar to that in prismatic bars. Naturally, the stress
is assumed zero in the out-of-plane direction as the upper and lower surfaces of the
plate are traction free. Applying the restriction of strain in the width direction of the
plate in the constitutive relation of Eq. (6.2.19) with

εy = σz = 0 (6.4.1)

gives the following relations

σy = vσx (6.4.2)

εx = (1 − v2
)σx

E
(6.4.3)

εz = −v(1 + v)
σx

E
(6.4.4)

With reference to Eqs. (6.4.3) and (6.4.4), it is useful to write the following
formulae in differential forms

σx = E

1 − v2
εx

dσx = E

1 − v2
dεx (6.4.5)

and

εz = − v

1 − v
εx

dεz = − v

1 − v
dεx (6.4.6)

For small strain, we write

εz = dA

A0
(6.4.7)

since εy = 0 as per definition of infinitesimal strain. In the case of nonlinear analysis,
we write the infinitesimal strain
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dεz = dA

A
(6.4.8)

Since εy = 0, Eq. (6.2.11) becomes

ρ = ρ0

(1 + εx )(1 + εz)
(6.4.9)

Substituting Eqs. (6.4.5) and (6.4.9) into Eq. (6.2.2) gives

E

1 − v2
εx

dA

A
+ E

1 − v2
dεx + E

1 − v2
dεx

dA

A

= ρ0

(1 + εx )(1 + εz)

(
1 + 1

2

dA

A

)
dx

∂2ux

∂t2
(6.4.10)

To obtain the wave velocity defined in Eq. (6.1.6), there is a need to express every
term on the LHS of Eq. (6.4.10) in terms of ∂2ux/∂x2, and the term dx on the RHS
of Eq. (6.4.10) can be eliminated by writing every term on the LHS of Eq. (6.4.10)
in terms of dx . It must be noted that every term on the LHS should have only one
∂2ux/∂x2 and one dx , while the excess ∂2ux/∂x2 are to be retained in terms of εx .
With reference to Eqs. (6.4.6) and (6.4.8), Eq. (6.4.10) becomes

E

1 − v2

[
1 − v

1 − v
(εx + dεx )

]
dεx

= ρ0

(1 + εx )
(
1 − v

1−v
εx
)
[
1 − 1

2

(
v

1 − v

)
dεx

]
dx

∂2ux

∂t2
(6.4.11)

upon rearranging terms. Substituting Eq. (6.2.21) into the LHS of Eq. (6.4.11) while
retaining the terms (εx + dεx ) as they are, we obtain the longitudinal wave velocity

c =
√(

∂2ux

∂t2

)
/

(
∂2ux

∂x2

)

=
√√√√ E

ρ0
(
1 − v2

) (1 + εx )
(
1 − v

1−v
εx
)[
1 − v

1−v
(εx + dεx )

]

1 − 1
2

(
v

1−v

)
dεx

(6.4.12)

Neglecting the terms containing dεx , Eq. (6.4.12) reduces to (Lim 2016a)

c =
(
1 − v

1 − v
εx

)√
E(1 + εx )

ρ0
(
1 − v2

) (6.4.13)

Suppose the strain is neglected (i.e., εx = 0), Eq. (6.4.13) greatly simplifies to the
classical wave velocity of longitudinal waves in plates as described by Eq. (6.1.8).
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Fig. 6.9 Combined effect of Poisson’s ratio and longitudinal strain on wave velocity, normalized
against Young’s modulus and density (left), and the classical longitudinal wave velocity in plates
(right)

Figure 6.9 shows the combined effect of Poisson’s ratio and longitudinal strain
on the wave velocity in width-constrained plates using Eq. (6.4.13). As a way of
non-dimensionalization, the wave velocity plotted in Fig. 6.9 (left) is normalized
against the original density ρ0 and the Young’s modulus E of the plate material so
as to clearly observe the effect from Poisson’s ratio. To reflect the deviation of the
wave velocity from that of the classical elementary plate model, the wave velocities
in Fig. 6.9 (right) are normalized against Eq. (6.1.8).

Figure 6.9 (right) reveals that the deviation is negligible in the conventional range,
i.e., the wave velocity error magnitudes are about 1.25% and 2.5% for εx = ±2.5%
and εx = ±5%, respectively, when 0 ≤ v ≤ 1/2. Furthermore, Eq. (6.4.13) approx-
imates the classical model when 0.3 < v < 0.4. Since the Poisson’s ratio of most
materials is about 0.3, it follows that the use of the classical model is quite accurate
for most materials. However, the wave velocity deviates to a larger extent in the
auxetic region. This is especially so when v = −1, which results in error magnitudes
of 2.5% and 5% for εx = 2.5% and εx = 5%, respectively.

To shed insight on the result, it is useful to rewrite Eq. (6.4.13) in the form

c =
√

E

ρ0
(
1 − v2

) f (v, εx )g(v, εx ) (6.4.14)

where

f (v, εx ) = (1 + εx )

(
1 − v

1 − v
εx

)
(6.4.15)

is the density correction function, while

g(v, εx ) = 1 − v

1 − v
(εx + dεx ) ≈ 1 − v

1 − v
εx (6.4.16)
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Fig. 6.10 Dimensionless longitudinalwave speed inwidth-constrained flat plates based on classical
elementary model (top left), density corrected model (top right), thickness-corrected model (bottom
left), and combined density and thickness-corrected model (bottom right)

is the cross-section or thickness correction function. Using Eqs. (6.4.14)–(6.4.16),
Fig. 6.10 shows the plots of dimensionless longitudinal wave velocity in a width-
constrained plate considering the classical model, i.e., f (v, εx ) = g(v, εx ) = 1 (top
left), the density corrected model g(v, εx ) = 1 (top right), the thickness-corrected
model f (v, εx ) = 1 (bottom left), and the combined thickness and density corrected
model (bottom right), at εx = ±5%.

To aid comparison, the range of the normalized wave velocity and Poisson’s ratio

are being standardized as 0.95 ≤ c
√

ρ0
(
1 − v2

)
/E ≤ 1.05 and −1 ≤ v ≤ 1/2.

Although obvious, Fig. 6.10 (top left) is shown for completeness’ sake. When only
the density correction is taken into consideration, the wave velocity deviates when
v �= 1/2, as shown in Fig. 6.10 (top right). This is because v = 1/2 is synonymous
with incompressibility. When only the thickness correction is applied, the wave
velocity deviates when v �= 0, as shown in Fig. 6.10 (bottom left). This is because
there is no change in the cross-sectional area when v = 0. When both the thickness
and the density corrections are taken into account, the wave velocity deviates as
shown in Fig. 6.10 (bottom right), i.e., deviation is more significant in the auxetic
range than in conventional range, and that the deviation is the most at v = −1
and the least at about v = 1/3. It can be seen from Fig. 6.10 (bottom right) that



6.4 Example: Longitudinal Waves in Width-Constrained Auxetic Plates 187

for εx = ±5%, the range of the normalized wave velocity within the conventional

region can be approximated by 0.975 ≤ c
√

ρ0
(
1 − v2

)
/E ≤ 1.025. For comparison

with the classical model and the inconsistent models, a dashed rectangle defining

0.975 ≤ c
√

ρ0
(
1 − v2

)
/E ≤ 1.025 and 0 ≤ v ≤ 1/2 are superposed in all graphs

of Fig. 6.10.

Figure 6.11 (left) shows a family of c
√

ρ0
(
1 − v2

)
/E curves plotted against the

longitudinal strain εx . It is interesting to point out that when v = 1/3, the curves

of c
√

ρ0
(
1 − v2

)
/E versus εx suggest that the wave velocity’s deviation from the

classical model is negligible. For this reason, the use of Eq. (6.1.8) for modeling the
wave velocity of plates is acceptable since the Poisson’s ratio of most materials is
about v ∼ 0.3. However, when the Poisson’s ratio deviates from 1/3, and especially
when the Poisson’s ratio is negative, the corrected model is required. The loci of
conventional and auxetic regions are furnished in Fig. 6.11 (right), showing that the
auxetic region is narrower than the conventional region even though the Poisson’s
ratio of the auxetic range (−1 ≤ v < 0) is larger than that for the conventional range
(0 ≤ v ≤ 1/2).

In summary, changes to the plate density and thickness have opposing effect on the
wave velocity in the conventional region, but they have additive effect in the auxetic
region. When both the effects of dimensional (thickness) and density variations are
taken into account in the wave model and normalized against the longitudinal wave
velocity according to the classical model for plates, it was found that the developed
wave velocity model herein coincides with that of the classical model when the
Poisson’s ratio is about 1/3. Within the range of strain demonstrated the normalized
wave velocity exhibits an almost linear correlation with the longitudinal strain, while
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auxeticity suppresses and enhances thewave velocities under compressive and tensile
loads, respectively. The results derived from this study suggest that the developed
wave velocity model is more accurate than the classical model when dealing with
large strains and auxetic materials, and that auxetic materials can be taken advantage
of in order to implement passive control of elastic wave speed in plates.

6.5 Example: Longitudinal Waves in Infinite Bulk Auxetic
Solids

The opposing nature of the transverse strain of unbounded auxetic solids in compar-
isonwith conventional solids translates into opposite transverse stresses in the case of
bounded auxetic solids vis-à-vis conventional ones. An example of this case is that of
plane waves of dilatation in infinite solids, whereby the application of compressive or
tensile impact leads to tensile or compressive lateral stresses, respectively, as opposed
to compressive and tensile lateral stresses, respectively, behind thewave front in satis-
fying zero transverse strain. See Fig. 6.12. Unlike other works on plane waves of
dilatation, which considers fluctuating density, the present analysis is confined to
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Fig. 6.12 Comparison of lateral stresses for plane waves of dilatation in conventional and auxetic
bulk materials



6.5 Example: Longitudinal Waves in Infinite Bulk Auxetic Solids 189

the case where the load at the impacted end is sustained in such a manner so as to
maintain a constant strain behind the wave front.

In the previous analyses of wave speed in auxetic rods and plates, both the dimen-
sional and density changes are incorporated. For example, the analysis of longitu-
dinal wave speed in prismatic auxetic rods takes into consideration the lateral strain
while the analysis of longitudinal wave speed in width-constrained plates takes into
consideration the thickness strain in addition to accounting for the density variation
in both analyses. The analysis of plane waves of dilatation is comparatively straight
forward as no dimensional correction is required—only density correction is needed.
Nevertheless, analysis on plane waves of dilatation in auxetic solids is justified at
this juncture to complement the previous analyses of longitudinal waves in rods and
plates.

The classical model for the plane wave of dilatation’s speed has been given in
Eq. (6.1.9). In the stressed part of the solid, the strain alters the density. Hence,

c =
√

E(1 − v)

ρ(1 + v)(1 − 2v)
(6.5.1)

where ρ is the variable density in the stressed portion of the solid. Although the use
of the variable ρ is more accurate, it is the original density ρ0 data that is easily
available for predictive modeling; hence, there is a need to express ρ in terms of ρ0.
Since the boundary condition of the RVE must satisfy εy = εz = 0 for plane waves
of dilatation propagating in the x-direction, Eq. (6.2.11) simplifies to

ρ = ρ0

1 + εx
(6.5.2)

Using this variable density for Eq. (6.5.1) leads to (Lim 2016b)

c =
√

E(1 + εx )(1 − v)

ρ0(1 + v)(1 − 2v)
(6.5.3)

A possible dimensionless speed for plane waves of dilatation can be introduced
in the form

c

√
ρ0

E
=
√(

1 + εx

1 + v

)(
1 − v

1 − 2v

)
(6.5.4)

so as to facilitate observation of Poisson’s ratio as the sole mechanical property on
the wave speed. As shown in Fig. 6.13 (left), the Poisson’s ratio and the strain play
primary and secondary roles, respectively, on the dimensionless wave speed. Due to
the small gap between the curves, a close-up view of the dimensionless wave speed
is furnished in Fig. 6.13 (right) for clarity. It is evident that while the dimensionless
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wave speed increases with the magnitude of the Poisson’s ratio, there is better control
of wave speed in the auxetic region as the change in the dimensionless wave speed
in that region is more gradual than in the conventional region.

It should be noted that the dimensionless wave speed described in Eq. (6.5.4)
is essentially a normalization against the classical speed of longitudinal waves in
prismatic rods, i.e., c = √

E/ρ0 and was used in the analysis of longitudinal wave
speed in prismatic rods with lateral and density corrections in Sect. 6.3. On the other
hand, the longitudinal wave speed in width-constrained plates, considering thickness
and density corrections, was normalized against the classical speed of longitudinal

waves in plates, i.e., c =
√
E/
[
ρ0
(
1 − v2

)]
, in Sect. 6.4. Going by the same line of

thought, it is possible to normalize the presently proposed speed of plane waves of
dilatation, considering density correction, against the classical speed of plane waves
of dilatation as described by Eq. (6.1.9). Hence, we have the normalized speed of
plane waves of dilatation as

c

√
ρ0(1 + v)(1 − 2v)

E(1 − v)
= √1 + εx (6.5.5)

The plot of Eq. (6.5.5) against the longitudinal strain is shown in Fig. 6.14. The
strain magnitude being small, it can be said that the normalized speed of plane waves
of dilatation is approximately linear, i.e.,

c

√
ρ0(1 + v)(1 − 2v)

E(1 − v)
≈ 1 + εx

2
(6.5.6)

It can be seen that Eq. (6.5.3) reduces to the classical elementary wave speed in
prismatic rods Eq. (6.1.7) if the strain is chosen such that
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Fig. 6.14 Plane wave of
dilatation’s speed,
normalized against its
classical model
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In summary, the results reveal that, other than Young’s modulus and original
density, the Poisson’s ratio of the bulk material plays a major role while the longi-
tudinal strain plays a minor role at influencing the wave speed. These results
further suggest that the propagation speed of plane waves of dilatation can be better
controlled when the Poisson’s ratio is negative as the change in the dimensionless
wave speed is more gradual in comparison to solids with positive Poisson’s ratio.

6.6 Example: Longitudinal Waves in Cylindrical Auxetic
Rods with Surface Elastic Restraint in Radial Direction

Consider a cylindrical rod with its lateral surface being elastically restrained in the
radial direction but the entire rod cross-section is free to move along the direction
of the wave propagation, as indicated in Fig. 6.15, then the magnitudes of the lateral
strains would reduce correspondingly.

One can thenobtain two extremes of thewave speed. For thefirst extreme,whereby
the elastic constraint diminishes, the wave speed as described in Eq. (6.3.14)—with
density and cross-section corrections—is recovered. For the other extreme, whereby
the elastic constraint in the radial direction is infinite, the radial strain diminishes.
Therefore, the wave speed for the latter is that for plane waves of dilatation described
by Eq. (6.5.3), with density correction.
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Side view Axial view

Fig. 6.15 Idealized schematic 2D views for a prismatic rod with lateral surface that is elastically
constraint in the radial direction and prevented from circumferential displacement, but free to
displace along the longitudinal direction

In the following analysis, we consider (i) intermediate case where the elastic
constraint is at neither extremes, (ii) the influence of Poisson’s ratio with special
emphasis on the casewhere the Poisson’s ratio is negative, and (iii) the influence from
the longitudinal strain. Assumptions include: (a) the rod being elastically isotropic
and (b) the absence of twisting. The latter assumption may fail in very thin rods made
of chiral or anti-chiral layers oriented perpendicularly to the rod axis.

With reference to Fig. 6.16, the equation of motion for longitudinal wave in a
prismatic rod, allowing for variable cross-sectional area A and variable density ρ, is

x dx
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Fig. 6.16 Schematic view for analysis of longitudinal wave motion in a cylindrical rod considering
changes to the cross-section and density with the lateral boundary condition specified in Fig. 6.15
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generally written as Eq. (6.2.2), whereby (A, A + dA) are the cross-sectional areas
corresponding to stresses (σx , σx + dσx ) at longitudinal distances (x, x + dx) from
the origin. This removes the simplifying assumptions of constancy in the rod’s cross-
sectional area and density. The mean cross-sectional area of the rod confined within
the elemental volume of length dx is assumed to be a simple average of the cross-
sectional areas at x and x + dx as described by Eq. (6.2.3). Substituting εr = −vεx
into Eq. (6.2.15) for a cylindrical isotropic rod, we have

A

A0
= 1 − 2vεx + v2ε2x (6.6.1)

To implement the elastic constraint in the radial direction, as illustrated in
Fig. 6.15, we impose a spring constant per unit area ks such that the two extremes are
ks = 0 and ks → ∞ for achieving longitudinal wave speeds of unconstrained rods
and plane waves of dilatation, respectively. It is more convenient, however, to adopt
a modified quantity, herein termed as the boundary parameter acting on the curved
surface along the radial direction

br = kc
kc + ks

= 1

1 + (ks/kc)
(6.6.2)

where kc is a constant that possesses a similar unit as ks. As such, the extreme values
of ks = 0 and ks → ∞ can be described by br = 1 (rod with no lateral direction
constraint) and br = 0 (plane wave of dilatation or rod with no lateral displacement
allowed), respectively. This boundary parameter is multiplied to the lateral strains

εr = εθ = −brvεx (6.6.3)

so that a value of br = 1 permits full lateral strain, i.e., the elastic constraint vanishes,
while a value of br = 0 diminishes the lateral strain. Implementing this boundary
parameter on Eq. (6.6.1), we have

A

A0
= 1 − 2brvεx + b2r v

2ε2x (6.6.4)

Writing the changes in the cross-sectional area and longitudinal strains as A →
A+dA and εx → εx +dεx , respectively, from x to x+dx , we extend fromEq. (6.6.4)
to obtain

A + dA

A0
= 1 − 2brv(εx + dεx ) + b2r v

2(εx + dεx )
2 (6.6.5)

or its expanded form
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A + dA

A0
= 1 − 2brv

(
εx + ∂εx

∂x
dx

)

+ b2r v
2

[
ε2x + 2εx

∂εx

∂x
dx +

(
∂εx

∂x
dx

)2
]

(6.6.6)

The incremental change in the cross-sectional area, dA, along the infinitesimal
thickness dx can then be obtained by subtracting A/A0 from (A + dA)/A0 to give

dA

A0
= −2brv

∂εx

∂x
dx + 2b2r v

2εx
∂εx

∂x
dx + b2r v

2

(
∂εx

∂x
dx

)2

(6.6.7)

Substituting A/A0 and dA/A0 into Eq. (6.2.3) allows the mean cross-sectional
area within dx to be written in terms of longitudinal strain as

A

A0
= 1 − 2brvεx + b2r v

2ε2x − brv
∂εx

∂x
dx

+ b2r v
2εx

∂εx

∂x
dx + 1

2
b2r v

2

(
∂εx

∂x
dx

)2

(6.6.8)

Substituting Eq. (6.6.3) into the constitutive relation of Eq. (6.2.20), with
subscripts (y, z) → (r, θ), gives

σx = E
(
1 − v − 2brv2

)

(1 + v)(1 − 2v)
εx (6.6.9)

and, therefore,

dσx = E
(
1 − v − 2brv2

)

(1 + v)(1 − 2v)
dεx = E

(
1 − v − 2brv2

)

(1 + v)(1 − 2v)

∂εx

∂x
dx (6.6.10)

Substituting Eq. (6.6.3) for isotropic rod into Eq. (6.2.18)

ρ = ρ0

(1 + εx )(1 − brvεx )
2 (6.6.11)

Substituting A/A0, dA/A0, A/A0, ρ, σx , and dσx into Eq. (6.2.2) would give an
equation with second order of εx . Neglecting its highest order, we have

[
1 − 2brvεx + b2r v

2ε2x
] E(1 − v − 2brv2

)

(1 + v)(1 − 2v)

∂εx

∂x
dx

+ E
(
1 − v − 2brv2

)

(1 + v)(1 − 2v)
εx

[
−2brv

∂εx

∂x
dx + 2b2r v

2εx
∂εx

∂x
dx
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+b2r v
2

(
∂εx

∂x
dx

)2
]

= ρ0

(1 + εx )(1 − brvεx )
2

[
1 − 2brvεx + b2r v

2ε2x − brv
∂εx

∂x
dx

+b2r v
2εx

∂εx

∂x
dx + 1

2
b2r v

2

(
∂εx

∂x
dx

)2
]
dx

∂2ux

∂t2
(6.6.12)

Diving Eq. (6.6.12) by dx on both sides and let

∂εx

∂x
= ∂2ux

∂x2
(6.6.13)

while

∂εx

∂x
dx → 0 (6.6.14)

we have

E
(
1 − v − 2brv2

)

(1 + v)(1 − 2v)

[
1 − 4brvεx + 3b2r v

2ε2x
]∂2ux

∂x2

= ρ0

(1 + εx )(1 − brvεx )
2

[
1 − 2brvεx + b2r v

2ε2x
]∂2ux

∂t2
(6.6.15)

This gives the longitudinal wave speed (Lim 2019a)

c =
√(

∂2ux

∂t2

)
/

(
∂2ux

∂x2

)
=
√

E(1 + εx )(1 − brvεx )(1 − 3brvεx )
(
1 − v − 2brv2

)

ρ0(1 + v)(1 − 2v)

(6.6.16)

The longitudinal wave speed described in Eq. (6.6.16) can be simplified under
some special cases. Substituting br = 1 for the case of unconstrained rod gives
the longitudinal wave speed in prismatic rods with corrections as indicated in
Eq. (6.3.14). Substituting br = 0 or the case of rod that is fully constrained in the
radial direction but free to move in the longitudinal direction, we obtain the speed of
plane wave of dilatation with density correction described in Eq. (6.5.3).

Within the category of negligible strain εx → 0, we have

c =
√

E
(
1 − v − 2brv2

)

ρ0(1 + v)(1 − 2v)
(6.6.17)
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which can be further abridged to c = √
E/ρ0, i.e., the elementary longitudinal wave

speed in prismatic rods for br = 1, while the speed of the elementary plane wave of
dilatation given in Eq. (6.1.9) is recovered for br = 0. In addition, c = √

E/ρ0 for
any value of br if v = 0; this is unsurprising since the elementary model neglects the
lateral strain, which is exact when v = 0.

Special cases with εx → 0, i.e., Eq. (6.6.17), have been briefly discussed for
br = 0, 1. For other values of 0 < br < 1, the wave speed can be visualized
by plotting against the Poisson’s ratio with normalization against the elementary
longitudinal wave speed in rods

c

√
ρ0

E
=
√

1 − v − 2brv2

(1 + v)(1 − 2v)
(6.6.18)

as shown in Fig. 6.17 (left). Due to the denominator at the RHS of Eq. (6.6.18), the
wave speed goes to infinity as the Poisson’s ratio approaches both limits. As such,
Eq. (6.6.17) can be alternatively normalized against the elementary plane wave of
dilatation speed

c

√
ρ0(1 + v)(1 − 2v)

E(1 − v)
=
√
1 − v − 2brv2

1 − v
(6.6.19)
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Fig. 6.17 Dimensionless longitudinal wave speed in prismatic rods for infinitesimal strain with
normalization against the elementary longitudinal wave speed in prismatic rods (left) and the
elementary wave speed in plane waves of dilatation (right). The shaded parts indicate theoretically
impossible region within the discussed framework
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as plotted in Fig. 6.17 (right). Both plots suggest that the wave speed is more easily
controlled when the Poisson’s ratio is negative rather than positive.

In consideration of the strain—alongside the Poisson’ ratio and the boundary
parameter—the wave speed as indicated in Eq. (6.6.16) can be normalized against
c = √

E/ρ0 so as to provide a dimensionless wave speed

c

√
ρ0

E
=
√

(1 + εx )(1 − brvεx )(1 − 3brvεx )
(
1 − v − 2brv2

)

(1 + v)(1 − 2v)
(6.6.20)

This is plotted in Fig. 6.18, which shows that at br = 1 the Poisson’s ratio of
conventional materials plays an insignificant role on the wave speed. However, the
Poisson’s ratio plays an increasing role in auxetic materials. In auxetic rods that are
not laterally constrained, the tensile wave speed is greater than compressive wave
speed, and the difference is accentuated when the Poisson’s ratio of the rod becomes
more negative. As the lateral boundary elastic constraint increases (i.e., br reduces),
the chosen dimensionless wave speed increases at both limits of the Poisson’s ratio,
thereby forming minimum points. In the case of 0 < br < 1, the minimum point for
εx = 0 is at v = 0, while the minimum points for tensile and compressive waves
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Fig. 6.18 Plots of dimensionless wave speed c
√

ρ0/E against Poisson’s ratio for various
longitudinal strains at different values of br
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are in the conventional and auxetic regions, respectively. As the boundary parameter
br reduces toward zero, their minimum points shift toward v = 0. The choice of
dimensionless wave speed shown in Eq. (6.6.20) is useful for larger values of br;
for smaller values of br, this choice of dimensionless wave speed is still useful for
observing wave speed for materials in which the magnitude of Poisson’s ratio is very
small.

Due to the sharp rise of c or c
√

ρ0/E toward infinity at both limits of the Poisson’s
ratio for 0 ≤ br < 1, an alternative normalization of the wave speed can be
made against the classical speed of plane waves of dilatation so as to give another
dimensionless wave speed

c

√
ρ0(1 + v)(1 − 2v)

E(1 − v)
=
√

(1 + εx )(1 − brvεx )(1 − 3brvεx )
(
1 − v − 2brv2

)

1 − v

(6.6.21)

This is plotted in Fig. 6.19, in which for the range 0 < br ≤ 1, the dimensionless
wave speed drops at both limits of Poisson’s ratio. For this range of br, there exists
a maximum point such that it occurs at v = 0 when εx = 0; for εx �= 0, the
maximum points take place in the auxetic and conventional regions under tensile
and compressive waves, respectively. As the boundary parameter br reduces, the
curvatures reduce such that these dimensionless wave speed become constant at
br = 0. Either way of normalization, both sets of dimensionless wave speeds show
that, to a large extent, the wave speed is enhanced and slowed down by tensile and
compressive impact loads, respectively. The choice of dimensionless wave speed
as shown in Eq. (6.6.21) is useful for smaller values of br; for larger values of br,
this choice of dimensionless wave speed is still useful for observing wave speed
for materials in which the magnitude of Poisson’s ratio is very small. Both schemes
of making the wave speed dimensionless are shown to be applicable when the rod
material is auxetic.

An overview is furnished in Fig. 6.20 for relating the longitudinal wave speed
cylindrical rods subjected to elastic restraint in radial direction with other known
wave speeds. In summary, the interlacing effect from the lateral boundary parameter,
material auxeticity, and strain on the longitudinal wave speed has been considered. A
lateral boundary parameter acting along the radial direction br, bounded by 0 and 1, is
introduced so as to cater for varying extent of elastic constraint in the radial direction
on the rods surface such that values of br = 1 and br = 0 fully permits and totally
prohibits radial strain, respectively. When the longitudinal strain is negligible, the
values of br = 1 and br = 0 correspond to elementary wave speed in prismatic rods
and in plane waves of dilatation, respectively. Two forms of making the wave speed
dimensionless have been implemented, one by normalizing the wave speed against
the classical wave speed in prismatic rods and the other against the classical wave
speed for plane waves of dilatation; the former is more advantageous for visualizing
wave speed when the lateral constraint is non-existent or very small while the latter
is more suitable for when the elastic constraint in the radial direction is very large or
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Fig. 6.19 Plots of dimensionless wave speed—normalized against Eq. (6.1.9)—versus Poisson’s
ratio for various longitudinal strains at different values of br

when the radial strain is zero. Both types of dimensionless wave speeds are suitable
for auxetic materials, as they are able to clearly discriminate the plotted curves for
various longitudinal strains when the Poisson’s ratio is negative. Results from the
developed wave speed herein that takes the longitudinal strain into consideration
reveal that in most cases, especially in auxetic range, tensile waves travel faster than
compressive waves. An understanding on these factors enables the wave speed to be
controlled by adjusting the strain and selecting appropriate material properties for a
given boundary condition.
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8

Fig. 6.20 Overview of the longitudinal wave speed cylindrical rods subjected to elastic restraint in
radial direction with classical solutions and those from Sects. 6.3 and 6.5

6.7 Example: Longitudinal Waves in Auxetic Plates
with Edge Elastic Restraint in Width Direction

Consider a flat plate of Young’s modulus E and Poisson’s ratio v with width y and
thickness z, measured along the y- and z-axes as illustrated in Fig. 6.21, in which
a longitudinal wave propagates along the x-axis. Let the cross-sectional area of the
unstressed portion of the plate be A0 while in the stressed portion the cross-sectional
areas are Ax = A and Ax+dx = A+dA at locations x and x +dx , respectively, being
measured along the x-axis, as shown in Fig. 6.21. Taking the equation of motion for
the elemental volume between x and x + dx , we have Eq. (6.2.2) where ux is the
displacement parallel to the x-axis while the mean cross-sectional area between x
and x + dx is averaged as described by Eq. (6.2.3).

Based on the constitutive relation of Eq. (6.2.20), we impose the conditions of
plane stress σz = 0 and elastically restraint width with spring stiffness ks at the plate
side acting along the plate width direction or parallel to the y-axis, i.e.,

εy = −bwvεx (6.7.1)
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Fig. 6.21 Schematic views of a plate with longitudinal wave motion parallel to the x-axis and
elastic restraint at two opposing sides in the y-axis

where the imposed elastic constraint is more conveniently executed by introducing
a boundary parameter

bw = kc
kc + ks

= 1

1 + (ks/kc)
(6.7.2)

An arbitrary spring constant kc is introduced to non-dimensionalize the boundary
parameter so as to confine it within 0 ≤ bw ≤ 1. The choice of bw = 0 denotes
infinite spring stiffness ks → ∞, thereby preventing expansion or contraction of the
width. It is conveniently shown that the substitution of bw = 0 into Eq. (6.7.1) gives
εy = 0, thereby indicating a problem of plane stress in x–y plane as well as plane
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strain in x–z plane. The choice of bw = 1 indicates zero spring stiffness ks = 0, such
that the plate width is allowed to freely expand or contract without restraint, akin to
the case of prismatic rods. Substitution of σz = 0 and Eq. (6.7.1) into Eq. (6.2.20)
gives

εz = −v
1 − bwv

1 − v
εx (6.7.3)

and

σx = 1 − bwv2

1 − v2
Eεx (6.7.4)

Substitution of Eqs. (6.7.1) and (6.7.3) into the middle row of Eq. (6.2.20) would
give σy = 0 if bw = 1. Hence, bw = 1 denotes a problem of uniaxial stress in x-axis
and triaxial strain. It follows from Eq. (6.7.4) that

dσx = 1 − bwv2

1 − v2
Edεx (6.7.5)

Based on the unstressed plate of width y0 and thickness z0, we have the unstressed
cross-sectional area A0 = y0z0 parallel to the y–z plane; at locations x and x +
dx , we have the cross-sectional areas A = yz and A + dA = (y + dy)(z + dz),
respectively,which gives dA = zdy+ydz+dydz. Normalizing against the unstressed
cross-sectional area, we have from Eq. (6.2.8)

A

A0
= 1 + εy + εz + εyεz = 1 − bwvεx

− v
1 − bwv

1 − v
εx + bwv2 1 − bwv

1 − v
ε2x (6.7.6)

which implies

A + dA

A0
= 1 − bwv(εx + dεx ) − v

1 − bwv

1 − v
(εx + dεx )

+ bwv2 1 − bwv

1 − v

(
ε2x + 2εxdεx + (dεx )

2
)

(6.7.7)

The above area expressions give

dA

A0
= −bwvdεx − v

1 − bwv

1 − v
dεx + bwv2 1 − bwv

1 − v

(
2εxdεx + (dεx )

2
)

(6.7.8)

In addition to the variation in the cross-sectional area, the change in density can
be established from Eq. (6.2.11) on the basis of mass conservation to give



6.7 Example: Longitudinal Waves in Auxetic Plates with Edge Elastic … 203

ρ = ρ0

(1 + εx )(1 − bwvεx )
(
1 − v 1−bwv

1−v
εx
) (6.7.9)

Substituting σx , dσx , A/A0, dA/A0 and ρ into Eq. (6.2.2) leads to

1 − bwv2

1 − v2
Eεx

[
−bwvdεx − v

1 − bwv

1 − v
dεx + bwv2 1 − bwv

1 − v

(
2εxdεx + (dεx )

2
)]

+
[
1 − bwvεx − v

1 − bwv

1 − v
εx + bwv2 1 − bwv

1 − v
ε2x

]
1 − bwv2

1 − v2
Edεx

+ 1 − bwv2

1 − v2
Edεx

[
−bwvdεx − v

1 − bwv

1 − v
dεx

+bwv2 1 − bwv

1 − v

(
2εxdεx + (dεx )

2
)]

= ρ

{
1 − bwv

(
εx + dεx

2

)
− v

1 − bwv

1 − v

(
εx + dεx

2

)

+ bwv2 1 − bwv

1 − v

(
ε2x + εxdεx + (dεx )

2

2

)}
dx

∂2ux

∂t2
(6.7.10)

where ρ is described in Eq. (6.7.9). Rearranging Eq. (6.7.10), such that only one dεx
is a common multiplier on the LHS, we have

1 − bwv2

1 − v2
Edεx

[
1 − bwv(2εx + dεx ) − v

1 − bwv

1 − v
(2εx + dεx )

+bwv2 1 − bwv

1 − v

(
3ε2x + 3εxdεx + (dεx )

2)
]

= ρ

{
1 − bwv

(
εx + dεx

2

)
− v

1 − bwv

1 − v

(
εx + dεx

2

)

+bwv2 1 − bwv

1 − v

(
ε2x + εxdεx + (dεx )

2

2

)}
dx

∂2ux

∂t2
(6.7.11)

Substituting Eq. (6.2.21) for the common dεx on the LHS while setting the
remaining dεx → 0, as well as substituting Eq. (6.7.9) into the above, we arrive
at

1 − bwv2

1 − v2
E

[
1 − 2bwvεx − 2v

1 − bwv

1 − v
εx + 3bwv2 1 − bwv

1 − v
ε2x

]
∂2ux

∂x2

= ρ0

(1 + εx )(1 − bwvεx )
(
1 − v 1−bwv

1−v
εx
)
{
1 − bwvεx − v

1 − bwv

1 − v
εx

+bwv2 1 − bwv

1 − v
ε2x

}
∂2ux

∂t2
(6.7.12)
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after canceling dx on both sides. Based on the longitudinal wave speed is defined in
Eq. (6.1.6)

we have from Eq. (6.7.12) (Lim 2019b)

c =
√√√√ E

ρ0

(
1 − bwv2

1 − v2

)
(1 + εx )(1 − bwvεx )

(
1 − v

1 − bwv

1 − v
εx

) 1 − 2bwvεx − 2v 1−bwv
1−v

εx + 3bwv2 1−bwv
1−v

ε2x

1 − bwvεx − v
1−bwv
1−v

εx + bwv2 1−bwv
1−v

ε2x

(6.7.13)

The general equation described above can be simplified under a few special cases.
For a plate with fully constrained width (bw = 0), Eq. (6.7.13) reduces to

c =
√

E

ρ0

(
1 + εx

1 − v2

)(
1 − 2v

1 − v
εx

)
(6.7.14)

Recognizing that

(
1 − v

1 − v
εx

)2

≈ 1 − 2v

1 − v
εx (6.7.15)

since |εx | 	 1, Eq. (6.7.14) can also be written as Eq. (6.4.13), which is the
longitudinal wave speed in plates with constrained width but unconstrained thick-
ness. If the plate’s width is totally unconstrained bw = 1, Eq. (6.7.13) abridges to
Eq. (6.3.14), which is the longitudinal wave speed in prismatic rods with corrections.
In the case where the strain is infinitesimal εx → 0, Eq. (6.7.13) becomes

c =
√

E

ρ0

(
1 − bwv2

1 − v2

)
(6.7.16)

This neglect of εx is typical of elementary solutions. Selecting bw = 0 for
Eq. (6.7.16) reduces it to the elementary longitudinal wave speed in plates of infinite
width or plates of constrained width described by Eq. (6.1.8) while the choice of
bw = 1 greatly simplifies Eq. (6.7.16) to the case of elementary longitudinal wave
speed in prismatic rods given in Eq. (6.1.7). Suppose the plate’s Poisson’s ratio is
v = 0, Eq. (6.7.13) simplifies to the first of Eq. (6.3.15), which is independent from
bw.

In what follows, we shall firstly consider the case of infinitesimal strain as laid
out in Eq. (6.7.16). While the extreme cases bw = 0, 1 have been pointed out, it
remains to observe how the wave speed varies with this boundary parameter. This
is best achieved by portraying the wave speed as the parameter bw varies between
these extremes. To furnish a family of dimensionless plots, the wave speed is normal-
ized against the elementary longitudinal wave speed in prismatic rods described by
Eq. (6.1.7). This is shown in Fig. 6.22 (left). An alternate non-dimensionalization is
attainable by normalizing the wave speed against the elementary longitudinal wave
speed in plates of infinite width or of constrained width described in Eq. (6.1.8), as
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Fig. 6.22 Plots of dimensionless wave speed in plates with elastically constrained width based
on normalization against the elementary longitudinal wave speed in prismatic rods (left) and the
elementary longitudinal wave speed in plates of infinite width (right). The shaded loci indicate
physically inadmissible region

displayed in Fig. 6.22 (right). The former and latter non-dimensionalizations allow
the dimensionless wave speeds to be constant at bw = 1 and bw = 0, respectively.
The latter non-dimensionalization, however, exhibits more uniform variation of the
wave speed with bw.

While Fig. 6.22 displays plots of dimensionless wave speeds under a special case
of infinitesimal strain, the following discussion takes into consideration the strain
effect. More specifically, Fig. 6.23 exhibits the culminating interlacing effect arising
from the boundary parameter, Poisson’s ratio, and longitudinal strain on the wave
speed normalized against the elementary longitudinal wave speed in prismatic rods.
The plots generally indicate that tensile waves travel faster through conventional
plates with lower Poisson’s ratio, and especially so in auxetic plates, but compressive
waves travel faster in conventional plates of higher Poisson’s ratio. This choice of
normalization gives a minimum value approximately at v = 0 for εx ≈ 0 (the
minimum falls exactly at v = 0 for εx = 0) when bw = 0, and linear variation with
the Poisson’s ratio for bw = 1. The gradual transition of the wave speed between
these two values of boundary parameters is furnished in Fig. 6.23, where by the scale
on the vertical axis remain consistent to facilitate better comparison.

An alternative non-dimensionalization of the wave speed, again with the strain
being accounted for, is plotted in Fig. 6.24 by normalizing it against the longi-
tudinal wave speed in width-constrained plates. As before, tensile waves propagate
faster through conventional plates of lower Poisson’s ratio, and especially so through
auxetic plates, while compressive waves move faster in conventional plates of higher
Poisson’s ratio. Unlike the other non-dimensionalization, this normalization does
not lead to linear plots. Instead, the plots for bw = 0 indicate negative and positive
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Fig. 6.23 Combined influence from the boundary parameter, Poisson’s ratio, and longitudinal strain
on the wave speed normalized against the elementary longitudinal wave speed in prismatic rods

curvatures for tensile and compressive waves, respectively. At bw = 1, the normal-
ized wave speed exhibits a maximum value approximately at v = 0 for εx ≈ 0 (the
maximum occurs exactly at v = 0 for εx = 0). The manner in which this dimension-
less wave speed progresses from bw = 0 to bw = 1 is also displayed in Fig. 6.24,
whereby the scale on the vertical axis remains consistent to facilitate better compar-
ison. In both Figs. 6.23 and 6.24, it can be seen that the dimensionless wave speed
can be more effectively controlled in the auxetic region than in the conventional
region. The availability for the two types of non-dimensionalization allows better
comparison to be made. Normalization of the wave speed against Eqs. (6.1.7) and
(6.1.8) are more suitable for high bw (or low elastic restraint) and low bw (or high
elastic restraint), respectively.

An overview on how the longitudinal wave speed in plates with elastic restraint
along the width direction is related to other longitudinal wave speed models is
furnished in Fig. 6.25. The classical or elementary models are placed inside a dashed



6.7 Example: Longitudinal Waves in Auxetic Plates with Edge Elastic … 207

0.8

0.85

0.9

0.95

1

1.05

-1 -0.75 -0.5 -0.25 0 0.25 0.5
v

+4%

bw = 0

+2%
0%

-4%
-2%

c√ρ0(1-v2)/E

0.8

0.85

0.9

0.95

1

1.05

-1 -0.75 -0.5 -0.25 0 0.25 0.5
v

+4%
εx

bw = 0.1

+2%
0%

-4%
-2%

c√ρ0(1-v2)/E

0.8

0.85

0.9

0.95

1

1.05

-1 -0.75 -0.5 -0.25 0 0.25 0.5
v

bw = 0.5
c√ρ0(1-v2)/E

+4%
+2%
0%

-2%
-4%

εx

0.8

0.85

0.9

0.95

1

1.05

-1 -0.75 -0.5 -0.25 0 0.25 0.5
v

bw = 1
c√ρ0(1-v2)/E

+4%
+2%
0%

-2%
-4%

εx

Fig. 6.24 Interlacing effect from the boundary parameter, Poisson’s ratio, and longitudinal strain
on the wave speed normalized against the elementary longitudinal wave speed in plates of infinite
width or of constrained width

oval. In summary, the generalized speed of longitudinal waves in plates with elas-
tically restrained sides along the width direction, taking into account the change in
lateral dimensions and density, has been establishedwith special consideration on the
effect from material auxeticity. In addition to the well-known approach of selecting
the Young’s modulus and density for controlling the wave speed, results indicate that
the wave propagation can be slowed down by decreasing the width elastic restraint.
In the case of high elastic restraint, the speed of both tensile and compressive waves
can be minimized by selecting plate materials with Poisson’s ratio of lowmagnitude.
In the case of low elastic restraint, the speed of tensile and compressive waves can
be greatly reduced by selecting plate materials with large positive and large negative
Poisson’s ratio, respectively.
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Fig. 6.25 Reduction from the longitudinal wave speed in plates with elastically restrained width to
other wave speedmodels, including the classical solutions for longitudinal wave speeds in prismatic
rods and in infinite plates inside the dashed oval

6.8 Example: Longitudinal Waves in Rectangular Slabs
with Mixed Restraints in Lateral Directions

Consider the propagation of longitudinal wave in the x-direction, through a rectan-
gular slab of original dimensions y0 and z0 measure along the y- and z-axes, respec-
tively, as illustrated in Fig. 6.26. Taking the equation of motion in the x-direction for
an elemental volume dV confined within

• x ∈ [x, x + dx]
• y ∈ [0, y0]
• z ∈ [0, z0]

with the following boundary conditions

• uy = 0; y = 0, y0
• uz = −Fs/ks; z = 0, z0
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Fig. 6.26 Schematics for analysis ofwave propagation in an auxetic rectangular slabwith combined
fixed and elastic constraints, viewed from various angles

where Fs and ks are the overall restraint force and equivalent spring stiffness, respec-
tively, acting along the z-direction at the surfaces z = 0, z0, we arrive at Eq. (6.2.2)
after performing non-dimensionalization on the cross-sectional area.

Based on the first boundary condition uy = 0 at y = 0, y0, substitution of εy = 0
into the constitutive relation of Eq. (6.2.19) gives

{
εx

εz

}
= 1 + v

E

[
1 − v −v

−v 1 − v

]{
σx

σz

}
(6.8.1)

A relation between strains in the x- and z-directions can be easily established
by introducing a dimensionless boundary parameter bt acting along the thickness
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direction, i.e., the z-direction, as

bt = 1

1 + (ks/kc)
(6.8.2)

where kc is a constant that possesses an identical unit as ks. Therefore, the extreme
values of ks = 0 (plate problem) and ks → ∞ (bulk problem) can be quantified via
bt = 1 and bt = 0, respectively. In order to incorporate bt into the strain relationship,
we set σz = 0 for Eq. (6.8.1) in the first instance to yield the first of Eq. (6.4.6).
Bearing in mind that Eq. (6.4.6) must apply for 0 ≤ ks ≤ ∞, we introduce bt into
the strain relationship as

εz = − btv

1 − v
εx (6.8.3)

such that the first of Eq. (6.4.6) is recovered when ks = 0 (or bt = 1), while εz = 0
is obtained when ks → ∞ (or bt = 0). Substituting εy = 0 and Eq. (6.8.3) into the
constitutive relationship of Eq. (6.2.20) gives rise to

σx = E
1 − 2v + v2(1 − bt)

(1 + v)(1 − 2v)(1 − v)
εx (6.8.4)

from the first row. It follows that

dσx = E
1 − 2v + v2(1 − bt)

(1 + v)(1 − 2v)(1 − v)
dεx (6.8.5)

Hence, Eqs. (6.8.4) and (6.8.5) can be substituted into the LHS of Eq. (6.2.2).
Substituting εy = 0 and Eq. (6.8.3) into the mass conservation of Eq. (6.2.11) gives

ρ = ρ0

(1 + εx )
(
1 − btv

1−v
εx
) (6.8.6)

for subsequent substitution into the RHS of Eq. (6.2.2). Finally, the expressions of
A/A0 and dA/A0, which appear on both sides of Eq. (6.2.2), can be incorporated by
recognizing that the change in the cross-sectional area is solely due to the change in
thickness, since εy = 0. Hence, A/A0 = 1 + εz or

A

A0
= 1 − btv

1 − v
εx (6.8.7)

by virtue of Eq. (6.8.3). It therefore follows that



6.8 Example: Longitudinal Waves in Rectangular Slabs with Mixed … 211

A + dA

A0
= 1 − btv

1 − v
(εx + dεx ) (6.8.8)

thereby leading to

dA

A0
= − btv

1 − v
dεx (6.8.9)

Substituting σx , dσx , ρ, A/A0, and dA/A0 into Eq. (6.2.2) leads to

E
1 − 2v + v2(1 − bt)

(1 + v)(1 − 2v)(1 − v)
εx

(
− btv

1 − v
dεx

)

+
(
1 − btv

1 − v
εx

)
E

1 − 2v + v2(1 − bt)

(1 + v)(1 − 2v)(1 − v)
dεx

+ E
1 − 2v + v2(1 − bt)

(1 + v)(1 − 2v)(1 − v)
dεx

(
− btv

1 − v
dεx

)

= ρ0

(1 + εx )
(
1 − btv

1−v
εx
)
[
1 − btv

1 − v

(
εx + dεx

2

)]
dx

∂2ux

∂t2
(6.8.10)

Neglecting the highest order terms on both sides of Eq. (6.8.10) and substituting
Eq. (6.2.21), we have

E
1 − 2v + v2(1 − bt)

(1 + v)(1 − 2v)(1 − v)

(
1 − 2btv

1 − v
εx

)
∂2ux

∂x2
= ρ0

1 + εx

∂2ux

∂t2
(6.8.11)

which leads to the longitudinal wave speed (Lim 2019c)

c =
√(

∂2ux

∂t2

)
/

(
∂2ux

∂x2

)
=
√

E

ρ0

(
1 + εx

1 − v2

)(
1 + v2(1 − bt)

1 − 2v

)(
1 − 2btv

1 − v
εx

)

(6.8.12)

The wave speed furnished in Eq. (6.8.12) can now be reduced to a few special
cases. For Special Case I, where the spring stiffness diminishes (ks = 0), substitution
of bt = 1 simplifies it to the case of plates with width constraint

(
εy = σz = 0

)
but

with unconstrained thickness described inEq. (6.7.14). For the opposingSpecialCase
II, where the spring stiffness becomes infinitely large (ks → ∞), substitution of bt =
0 into Eq. (6.8.12) reduces it to the case of plane waves of dilatation

(
εy = εz = 0

)
with due consideration of the change in density described in Eq. (6.5.3). Finally,
in the Special Case III, where the Poisson’s ratio of the rectangular slab is v =
0, Eq. (6.8.12) reduces to the first of Eq. (6.3.15), which is independent from the
boundary parameter bt.
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Although the longitudinalwave speeds at the extreme cases of boundary parameter
bt = 1 and bt = 0 have been shown to be simplified to the wave speed in plates with
constrained width and in plane waves of dilatation, respectively, it is of interest to
observe how the wave speed varies with bt. To observe the effect of the dimensionless
boundary parameter bt and the Poisson’s ratio v of the rectangular slab at infinitesimal
deformation, we set εx = 0 for Eq. (6.8.12) to give

c =
√

E

ρ0
(
1 − v2

)
(
1 + v2(1 − bt)

1 − 2v

)
(6.8.13)

This permits the wave speed to be observed as a material property, which is
independent from whether the stress wave is tensile or compressive. It is expedient
to normalize this wave speed so as to give it a dimensionless form. One way to do
so is to normalize it against the classical longitudinal wave speed in prismatic rods
described in Eq. (6.1.7), to give rise to

c

√
ρ0

E
=
√

1

1 − v2

(
1 + v2(1 − bt)

1 − 2v

)
(6.8.14)

Under this dimensionless wave speed, it is clear that the Poisson’s ratio v and
dimensionless boundary parameter bt constitute the primary and secondary influ-
encing factors, respectively, as evident from Fig. 6.27. Specifically, this dimension-
less wave speed can be greatly enhanced by increasing the Poisson’s ratio magnitude

Fig. 6.27 Family of wave
speed curves—normalized
against the wave speed in
prismatic rods—versus the
Poisson’s ratio for various
boundary parameters when
the strain in insignificant
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|v|, and moderately incremented by lowering bt, i.e., increasing the spring stiffness
acting in the thickness direction.

As the wave speed falls in between that of plates with constrained width (bt = 1)
and that of plane waves of dilatation (bt = 0), it follows that there are two physically
meaningful ways to normalize the wave speed in such a manner that facilitates a
clearer observation on the effect of bt. Hence, the second way to non-dimensionalize
the wave speed is to normalize it with respect to the classical wave speed in width-
constrained plates to yield

c

√
ρ0
(
1 − v2

)

E
=
√
1 + v2(1 − bt)

1 − 2v
(6.8.15)

The third way to non-dimensionalize Eq. (6.8.13) is to normalize it with reference
to the classical wave speed in plane waves of dilatation to give

c

√
ρ0(1 + v)(1 − 2v)

E(1 − v)
=
√
1 − bt

(
v

1 − v

)2

(6.8.16)

Based on the second and third types of non-dimensionalization, it can be seen that
the following inequality holds

c

√
ρ0(1 + v)(1 − 2v)

E(1 − v)
≤ 1 ≤ c

√
ρ0
(
1 − v2

)

E
(6.8.17)

More importantly,

lim
bt→1

c

√
ρ0
(
1 − v2

)

E
= lim

bt→0
c

√
ρ0(1 + v)(1 − 2v)

E(1 − v)
= 1 (6.8.18)

It is therefore not surprising that these two sets of dimensionless wave speeds can
be combined in themanner furnished in Fig. 6.28, whereby each of the dimensionless
wave speed appears as an almost symmetrical image of the other.

Since the effect from the boundary parameter is clearer when the wave speed is
non-dimensionalized against Eqs. (6.1.8) and (6.1.9), these two schemes of normal-
izations are extended to the more general case, i.e., Eq. (6.8.12), when the strain
in not negligible. The interlacing influence from the (i) tensile and compressive
longitudinal strains, (ii) Poisson’s ratio of the rectangular slab, and (iii) the boundary
parameter is furnished in Fig. 6.29 (left) for the wave speed being normalized against
Eq. (6.1.8), and in Fig. 6.29 (right) for the wave speed being normalized against
Eq. (6.1.9). Generally, tensile and compressive strains increase and decrease the
wave speed, respectively. In addition, the wave speed is more easily controlled when
the Poisson’s ratio is negative. In comparison with the longitudinal wave speed in
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Fig. 6.28 Family of wave
speed curves—normalized
against the wave speeds in
infinite plates (upper half)
and against the plane waves
of dilatation (bottom
half)—versus the Poisson’s
ratio for various boundary
parameters when the strain in
insignificant
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width-constrained plates, Fig. 6.29 (left) suggests that the increasing spring stiff-
ness acting in the thickness direction (or decreasing bt) enhances the wave speed in
the rectangular slabs when v �= 0. With reference to the plane wave of dilatation,
Fig. 6.29 (right) indicates that the decreasing spring stiffness acting in the thickness
direction (or increasing bt) slows down the wave speed when v �= 0.

In conclusion, the longitudinal wave speed through a rectangular slab—with the
top and bottom surfaces being elastically restrained in the thickness direction, while
the other two opposing side surfaces are constrained from motion in the width
direction—has been established herein with due consideration to the change in
cross-sectional area and density of the rectangular slab. A dimensionless boundary
parameter has been introduced for quantifying a normalized spring compliance along
the slab thickness direction. Three types of dimensionless wave speeds have been
explored by normalizing the wave speed against some classical wave speeds. When
normalized against the longitudinal wave speed in prismatic rods, results show that
the Poisson’s ratio magnitude and spring stiffness exert major and minor influences,
respectively, on the wave speed. A clearer visualization on the effect of the boundary
parameter is exhibited when the wave speed is normalized either against the clas-
sical wave speed in plates of constrained width and against the classical plane waves
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Fig. 6.29 Plots of dimensionless longitudinal wave speeds—being normalized against longitu-
dinal waves in width-constrained plates (left) and against plane waves of dilatation (right)—versus
Poisson’s ratio of the rectangular slab for various longitudinal strains and boundary parameters
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Special Case I

ks = 0 (bt = 1)

Special Case II

ks (bt = 0)

Longitudinal wave speed in rectangular slabs with combined fixed and elastic 
constraints (this section) 

Special 
Case III

(v = 0)

εx → ε → 0εx → 0 x  0

Classical solutions

Longitudinal waves in 
width-constrained plates 

Plane waves of 
dilatation

Longitudinal 
waves in 

prismatic bars

→ ∞

Fig. 6.30 Various special cases of wave speeds arising from simplifying assumptions as well as
further simplifications that lead to elementary classical solutions

of dilatation speed. Results show that tensile and compressive strains quicken and
depress, respectively, in comparison with the classical solutions. In addition, the
wave speed under the current boundary condition shows that the wave speed is higher
and lower than those in longitudinal wave speed in width-constrained plates and in
plane waves of dilatation, respectively, unless v = 0. The incorporation of dimen-
sional and density changes not only facilitates a more accurate wave speed model,
but also permits greater design options for the engineering practitioner. A summary
of the established longitudinal wave speed in rectangular slabs with mixed lateral
constraints as well as its reduction to three special cases and further simplifications
to classical models are displayed in Fig. 6.30.
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Sobieszczyk P, Majka M, Kuźma D, Lim TC, Zieliński P (2015) Effect of longitudinal stress on
wave propagation in width-constrained elastic plates with arbitrary Poisson’s ratio. Phys Status
Solidi B 252(7):1615–1619



218 6 Longitudinal Elastic Waves in Auxetic Solids

Tee KF, Spadoni A, Scarpa F, Ruzzene M (2010) Wave propagation in auxetic tetrachiral
honeycombs. J Vib Acoust 132(3):031007

Timoshenko S, Goodier JN (1951) Theory of elasticity, 2nd edn. McGraw-Hill, New York
TrzupekD, Zielinski P (2009) Isolated true surfacewave in a radiative band on a surface of a stressed
auxetic. Phys Rev Lett 103(7):075504



Chapter 7
Elasticity of Auxetic Beams

Abstract This chapter employs elasticity models to understand the effect of
Poisson’s ratio negativity. Somediscussions include how the use of classical elasticity
models differs from the refined models as applied to auxetic beams.

Keywords Auxetic beams · Correction terms · Elasticity models

7.1 Fundamentals

Unlike the mechanics of materials (previously known as the strength of materials)
approach for beam theory—which oversimplifies the beam cross section upon defor-
mation—and its shear deformation theories—thefirst-order shear deformation theory
(FSDT) and the third-order shear deformation theory (TSDT)—which makes less
simplifying assumptions, the elasticity theory removes these simplifying assump-
tions. As a result, the elasticity solutions are good candidates as verifier of the
mechanics of materials and the shear deformation theories. This chapter considers
only the elasticity solutions of some beams and how they are related to their corre-
sponding mechanics of materials models. Special emphasis is given to the effect of
auxeticity on their solutions. For this reason, four examples are furnished in this
chapter based on 2D problems in rectangular coordinates. Unlike the elementary
beam theory according to the Euler–Bernoulli hypotheses that plane sections remain
plane and normal to the axis of the beam, the theory of elasticity removes such
simplifying assumptions in order to permit a more realistic stress and displacement
fields.

For a 2D problem in rectangular coordinates, the Airy stress function φ = φ(x, y)
takes the form of the biharmonic equation

∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
+ ∂4φ

∂y4
= 0 (7.1.1)

in the absence of body force, whereby

σx = ∂2φ

∂y2
; σy = ∂2φ

∂x2
; τxy = − ∂2φ

∂x∂y
(7.1.2)
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The effect of Poisson’s ratio, and hence its negativity, is not apparent. In the
presence of body force acting in the x- and y-directions

Fx = −∂V

∂x
; Fy = −∂V

∂y
(7.1.3)

written in the form of a potential function V, the biharmonic equation becomes

∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
+ ∂4φ

∂y4
= −1 − 2v

1 − v

(
∂2V

∂x2
+ ∂2V

∂y2

)
(7.1.4)

under plane strain condition, and

∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
+ ∂4φ

∂y4
= −(1 − v)

(
∂2V

∂x2
+ ∂2V

∂y2

)
(7.1.5)

under plane stress condition. Both equations become identical when v = 0

∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
+ ∂4φ

∂y4
= −

(
∂2V

∂x2
+ ∂2V

∂y2

)
(7.1.6)

which demarcates the auxetic region from the conventional region. Very little infor-
mation on the effect of auxeticity can be extracted unless one considers specific
elasticity problems, in which the Airy stress function must be determined.

The assumed solution for the Airy stress function can be taken in the form of

φ =
∞∑

m=0

∞∑
n=0

Amnx
m yn (7.1.3)

where Amn are constant coefficients to be evaluated, or in the form of φ = eαxeβy ,
i.e.,

φ = sin βx[(A + Cβy) sinh βy + (B + Dβy) cosh βy]

+ cosβx
[(
A′ + C ′βy

)
sinh βy + (

B ′ + D′βy
)
cosh βy

]
+ sin αy[(E + Gαx) sinh αx + (F + Hαx) cosh αx]

+ cosαy
[(
E ′ + G ′αx

)
sinh αx + (

F ′ + H ′αx
)
cosh αx

]
+ C0 + C1x + C2x

2 + C3x
3 + C4y + C5y

2 + C6y
3

+ C7xy + C8x
2y + C9xy

2 (7.1.4)

where the constant coefficients are obtained from the boundary conditions. Examples
on the effect of auxeticity on transversely loaded beams with supports on both ends
are furnished in Sects. 7.2 and 7.3 for uniform and sinusoidal loads, respectively. For
the uniform load in Sect. 7.2, the polynomial solution to the trial Airy stress function
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is taken from Eq. (7.1.3) to give

φ = A20x
2 + A21x

2y + A03y
3 + A23x

2y3 − 1

5
A23y

5 (7.1.5)

where the last term is required to satisfy the biharmonic equation, while in the case
of sinusoidal load in Sect. 7.3, the trial solution is taken from Eq. (7.1.4) to give

φ = sin βx[(A + Cβy) sinh βy + (B + Dβy) cosh βy] (7.1.6)

For the examples of end-loaded cantilever in Sects. 7.4 and 7.5, the trial solution
is again taken from Eq. (7.1.3) to give

φ = A11xy + A13xy
3 (7.1.7)

7.2 Example: Auxetic Beams Under Uniform Load

As a first example, we consider a loaded beam of length 2l and thickness 2c as
measured along the x-axis and y-axis, respectively, with unit width. As shown in
Fig. 7.1, a uniform load of

q = q0 (7.2.1)

is prescribed such that the overall load on each ends of the beam is q0l.
Recall that the displacement field for this problem is (Timoshenko and Goodier

1970; Saad 2014)

ux = q0x

2E I

[(
l2 − x2

3

)
y +

(
2y3

3
− 2c2y

5

)
+ v

(
y3

3
− c2y + 2c3

3

)]
(7.2.2)

and

Fig. 7.1 Uniformly loaded
beam

q0

q0l q0lc

c

ll

x

y
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uy = − q0
2E I

{
y4 − x4

12
− c2y2

2
+ 2c3y

3
+ v

[(
l2 − x2

)
y2

2
+ y4

6
− c2y2

5

]

+
[
l2

2
+

(
4

5
+ v

2

)
c2

]
x2

}
+ 5q0l4

24E I

[
1 + 12

5

(
4

5
+ v

2

)
c2

l2

]
(7.2.3)

The displacement field simplifies to

ux = q0xy

2E I

[(
l2 − x2

3

)
+

(
2y2

3
− 2c2

5

)]
(7.2.4)

and

uy = − q0
2E I

{
y4 − x4

12
− c2y2

2
+ 2c3y

3
+

[
l2

2
+ 4c2

5

]
x2

}
+ 5q0l4

24E I

[
1 + 48

25

c2

l2

]

(7.2.5)

when Poisson’s ratio is zero, which demarcates the auxetic region from the conven-
tional region. Substituting (x, y) = (0, 0) intoEq. (7.2.3) for themaximumdeflection
gives

uy,max = 5q0l4

24E I

[
1 + 12

5

(
4

5
+ v

2

)
c2

l2

]
(7.2.6)

which is comparable to the mechanics of materials solution

uy,max = 5q0l4

24E I
(7.2.7)

with the difference being the correction term due to the presence of shear force in
the beam. This shows that the beam’s dimensionless thickness c/ l plays a major role
in contrasting the elasticity solution from the mechanics of materials solution, i.e.,
for thick beams, the use of the mechanics of materials solution underestimates the
deflection. From the materials viewpoint, the use of materials with high Poisson’s
ratio creates greater difference between the elasticity and the mechanics of materials
solution. For example, the use of incompressible materials (v = 0.5) would give

uy,max = 5q0l4

24E I

[
1 + 2.52

c2

l2

]
(7.2.8)

while the use of auxetic materials with v = −1 would give

uy,max = 5q0l4

24E I

[
1 + 0.72

c2

l2

]
∼ 5q0l4

24E I
(7.2.9)
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In other words, a geometrically thick beam approximates a mechanically thin
beam if the negativity of Poisson’s ratio is sufficient to reduce the correction term.

7.3 Example: Auxetic Beams Under Sinusoidal Load

Figure 7.2 shows a schematic for a simply supported beam of Young’s modulus E,
Poisson’s ratio v, length l, and thickness 2c subjected to a sinusoidal load

q = q0sin
πx

l
(7.3.1)

inwhich the displacement fields ux (x, y) and uy(x, y) are functions of the coordinate
position (x, y) of the beam. In the classical elasticity solution to this problem (Saad
2014; Soutas-Little 1999), themid-plane transverse deflection of the beam is obtained
as

uy(x, 0) = Dβ

E
sin βx[2 + (1 + v)βc tanh βc] (7.3.2)

where β = π/ l and

D = q0 cosh πc
l

2π2

l2
(

πc
l − sinh πc

l cosh πc
l

) (7.3.3)

In typical elasticity textbooks, it is assumed that l � c, and so substituting

cosh
πc

l
≈ 1 (7.3.4)

and

Fig. 7.2 Schematics of a
beam under transverse
sinusoidal load with simple
supports at both ends

x

y

l

c

c

q0sin( x/l)
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sinh
πc

l
cosh

πc

l
≈

(
πc

l
+ 1

3!
π3c3

l3

)(
1 + 1

2!
π2c2

l2

)
≈ πc

l
+ 2

3

π3c3

l3
(7.3.5)

into the numerator and denominator of Eq. (7.3.3), respectively, gives

D ≈ − 3q0l5

4c3π5
(7.3.6)

Using Eq. (7.3.6) and β = π/ l, Eq. (7.3.2) becomes

uy(x, 0) = − 3q0l4

2c3π4E
sin

πx

l

[
1 +

(
1 + v

2

)
πc

l
tanh

πc

l

]
(7.3.7)

Hence, Eq. (7.3.7) is typically taken to be the typical “textbook” elasticity solution
for the transverse deflection of a sinusoidally loaded beam,which can then be reduced
to the mechanics of materials solution

uy(x, 0) = − 3q0l4

2c3π4E
sin

πx

l
(7.3.8)

by considering l � c again such that the second term in Eq. (7.3.7) diminishes. The
premature assumption of l � c that leads to Eq. (7.3.7) therefore disqualifies this
elasticity solution as a verifier for the mechanics of materials deflection model of this
beam problem, except for cases where the beam thickness is very small compared to
its length, as the corresponding textbooks correctly state (Saad 2014; Soutas-Little
1999). In referring to some monographs (Fung 1965; Landau and Lifshitz 1959;
Lim 2015) pertaining to the range of Poisson’s ratio being −1 ≤ v ≤ 1/2 for
isotropic solids, Eq. (7.3.7) gives a false impression that the use of auxetic materials
of v = −1 reduces the elasticity solution to the mechanics of materials solution. This
interpretation is untrue, and it will be proven that the use of materials with v = −1
will not reduce the deflection model by elasticity theory to that by the elementary
theory. From Eq. (7.3.3) and β = π/ l, we have

Dβ

E
= q0l

2πE

cosh πc
l

πc
l − 1

2 sinh
2πc
l

(7.3.9)

To facilitate comparison with Eqs. (7.3.7) and (7.3.8), it is expedient to rewrite
Eq. (7.3.9) as

Dβ

E
= − 3q0l4

2c3π4E

{
−π3c3

3l3
cosh πc

l
πc
l − 1

2 sinh
2πc
l

}
(7.3.10)

which, upon substitution into Eq. (7.3.2), leads to (Lim 2018)

uy(x, 0)
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= − 3q0l4

2c3π4E
sin

πx

l

[
1 +

(
1 + v

2

)
πc

l
tanh

πc

l

]{
−2

3

(πc

l

)3 cosh πc
l

πc
l − 1

2 sinh
2πc
l

}

(7.3.11)

It can be seen that the {...} term in Eq. (7.3.11) can be alternatively expressed as

{
−2

3

(πc

l

)3 cosh πc
l

πc
l − 1

2 sinh
2πc
l

}
= 1 + 1

2

(
πc
l

)2 + 1
24

(
πc
l

)4 + · · ·
1 + 1

5

(
πc
l

)3 + 2
105

(
πc
l

)5 + · · ·
(7.3.12)

so as to show that {...} = 1 as c/ l → 0. Nevertheless, the form of {...} furnished in
Eq. (7.3.11) is adopted herein instead of that shown in Eq. (7.3.12) as the former is
exact. The substitution of v = −1 into Eq. (7.3.11) gives

uy(x, 0) = − 3q0l4

2c3π4E
sin

πx

l

{
−2

3

(πc

l

)3 cosh πc
l

πc
l − 1

2 sinh
2πc
l

}
(7.3.13)

which is different from the mechanics of materials model. To put in a systematic
perspective, one may write the mid-plane deflection profile of the given beam as

uy(x, 0) = − 3q0l4

2c3π4E
sin

πx

l
f
(c
l
, v

)
g
(c
l

)
(7.3.14)

where the correction functions

f
(c
l
, v

)
= 1 +

(
1 + v

2

)
πc

l
tanh

πc

l
(7.3.15)

and

g
(c
l

)
= −2

3

(πc

l

)3 cosh πc
l

πc
l − 1

2 sinh
2πc
l

(7.3.16)

can be reduced to the mechanics of materials and the simplified elasticity models, as
furnished in Table 7.1.

Table 7.1 Comparison of mechanics of materials, simplified elasticity, and exact elasticity models
for the given problem

Models for uy(x, 0) f
( c
l , v

)
g
( c
l

)
Mechanics of materials, uMech Mater

y 1 1

Simplified elasticity, usimpl Elast
y 1 + ( 1+v

2

)
πc
l tanh πc

l 1

Exact elasticity, uexact Elasty 1 + ( 1+v
2

)
πc
l tanh πc

l − 2
3

(
πc
l

)3 cosh πc
l

πc
l − 1

2 sinh 2πc
l
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To give an appreciation on the exact model, the deflection profiles based on
the mechanics of materials, simplified elasticity and exact elasticity models can
be plotted, preferably in the form of dimensionless deflection uEπ/q0l, as shown in
Fig. 7.3 for the typical Poisson’s ratio of v = 0.3, as well as at the upper and lower
limits of Poisson’s ratio for isotropic solids (v = 0.5, −1) with c/l = 0.2.

Plots of the dimensionless deflection profile are useful to show that the gaps
between the three models widen and narrow when Poisson’s ratio of the beam
increases and decreases, respectively.More importantly, plots of the deflection profile
for themechanics ofmaterials model and the simplified elasticitymodel collapse into
a single curve when v = −1, which underestimate the extent of deflection predicted
by the exact elasticity model.

Reference to Eqs. (7.3.7), (7.3.8), and (7.3.11) shows that the ratio of elasticity’s
(both simplified and exact) mid-plane deflection to themechanics ofmaterials deflec-
tion model is independent from the location x. Figure 7.4 displays these ratios using
the case of a “thin” beam of c/l= 0.1 and a “thick” beam of c/l= 0.2, clearly showing
that the deflection by the simplified elasticity model underestimates that by the exact
elasticity model, especially for thick beams. Elasticity textbooks that adopt this beam
problem correctly declare upfront in their derivation that Eq. (7.3.7) is obtained by
assuming l � c. On what situation, then, is Eq. (7.3.7) applicable? This question is
best answered in a quantitative manner. Suppose we let the acceptable level of error
be confined within 5%, then Eq. (7.3.7) is valid for c/ l ≤ 0.135, as indicated by the
curve of the simplified-to-exact elasticity ratio plotted against the c/l ratio in Fig. 7.5.
The error exceeds 10% for c/l = 0.2.

In summary, an exact elasticity model for the deflection of a simply supported
beam under a sinusoidal load has been furnished in this section. By ending the exact
formulation for the beam deflection at Eq. (7.3.2) in current textbooks, one may
get the impression that the exact deflection profile is not in the form that can be
readily reduced to the mechanics of materials deflection profile unless a first l � c
assumption is made to simplify the expression of D from Eq. (7.3.3) to Eq. (7.3.6),
and thereafter, a second l � c assumption is made on the simplified elasticity
solution, Eq. (7.3.7), to recover the mechanics of materials solution, Eq. (7.3.8).
However, this section shows that it is not only possible, but also very convenient, to
express the exact elasticity solution of Eq. (7.3.2) in the form of Eq. (7.3.11), which
is easily reduced to both Eqs. (7.3.7) and (7.3.8). In a practical sense, the effect
from the first l � c assumption is quantified in terms of the simplified elasticity’s
deflection percentage error vis-à-vis the exact elasticity model, which stands at 5%
for c/ l = 0.135. Unlike the current simplified elasticity model, the exact model does
not reduce to the mechanics of materials model when v = −1.

7.4 Example: Deflections of Auxetic Cantilever Beams

The example that is considered in this section is that of end-loaded cantilever beam,
as shown in Fig. 7.6 (top left), which has been discussed in a number of elasticity
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Fig. 7.3 Dimensionless
deflection profile, uEπ/q0l
along the dimensionless
beam length, x/l for a beam
of c/l = 0.2 with v = 0.5
(top), v = 0.3 (middle), and
v = −1 (bottom)
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Fig. 7.4 Ratio of exact and
simplified elasticity to
mechanics of materials
deflection versus the entire
range of Poisson’s ratio for a
typical “thick” beam (c/l =
0.2) and a relatively “thin”
beam (c/l = 0.1)
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textbooks (Sokolnikoff 1956;Atanankovic andGuran 2000; Saada 2009; Boresi et al.
2011; Gould 2013; Saad 2014). The discourse by Love (1906) on this subject matter
suggests that the condition of the fixed end is that illustrated in Fig. 7.6 (top right),
which is the mechanics of materials solution. In addition to this profile, Timoshenko
andGoodier (1970) andHousner andVreeland (1965) explained the effect of shearing
force on the beamdeflection,which results in thefixed endprofile furnished inFig. 7.6
(bottom left). Having demonstrated these two profiles, Barber (2010) suggested the
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Fig. 7.6 Isometric view of an end-loaded cantilever (top left) with strong boundary conditions
akin to the elementary mechanics of materials approach (top right), strong boundary conditions
that account for the effect of shearing force on the deflection (bottom left), and weak boundary
conditions (bottom right)

weak boundary conditions that lead to the end condition indicated in Fig. 7.6 (bottom
right) as the best solution.

Figure 7.7 shows a cantilever of Young’s modulus E and Poisson’s ratio v with
rectangular cross section of length a, thickness 2b, and unit width that is loaded by
a force P at the free end, i.e., the boundary conditions are

σx = 0; x = 0

σy = 0; y = ±b

τxy = 0; y = ±b (7.4.1)

and
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Fig. 7.7 Schematic view of
an end-loaded cantilever

P

y

x b

b

a

b∫
−b

τxydy = P; x = 0 (7.4.2)

in which Eq. (7.4.2) is prescribed in the weak form.
The two-dimensional elasticity solution gives rise to the displacement field (e.g.,

Barber 2010) described as

ux = 3Px2y

4Eb3
+ 3P(1 + v)y

2Eb
− P(2 + v)y3

4Eb3
+ A − Cy (7.4.3)

uy = −3vPxy2

4Eb3
− Px3

4Eb3
+ B + Cx (7.4.4)

To obtain the constants A, B, and C, the required three boundary conditions at the
built-in end, as illustrated in Fig. 7.6 (top left), are ideally ux = uy = 0 at x = a
and −b ≤ y ≤ b. However, the displacement field does not permit such boundary
condition to be implemented. In the mechanics of materials approach, the following
strong boundary condition imposed

ux = uy = ∂uy

∂x
= 0; (x, y) = (a, 0) (7.4.5)

is illustrated in Fig. 7.6 (top right). The substitution of Eq. (7.4.5) into Eqs. (7.4.3)
and (7.4.4) gives

A = 0; B = − Pa3

2Eb3
; C = 3Pa2

4Eb3
(7.4.6)

If one were to implement an alternate strong boundary condition whereby

ux = uy = ∂ux

∂y
= 0; (x, y) = (a, 0) (7.4.7)
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then substitution of Eq. (7.4.7) into Eqs. (7.4.3) and (7.4.4) leads to

A = 0; B = − Pa3

2Eb3

(
1 + 3(1 + v)

b2

a2

)
; C = 3Pa2

4Eb3

(
1 + 2(1 + v)

b2

a2

)

(7.4.8)

As opposed to the two strong boundary conditions, a set of weak boundary
conditions (Barber 2010)

b∫
−b

uxdy =
b∫

−b

uydy =
b∫

−b

yuxdy = 0; x = a (7.4.9)

yields the following coefficients

A = 0; B = − Pa3

2Eb3

(
1 + (12 + 11v)

5

b2

a2

)
; C = 3Pa2

4Eb3

(
1 + (8 + 9v)

5

b2

a2

)

(7.4.10)

The displacement of the loaded end at the mid-plane (x, y) = (0, 0) can therefore
be obtained by substituting these coefficients into Eqs. (7.4.3) and (7.4.4) to give the
horizontal displacement

ux = A = 0 (7.4.11)

regardless of the type of boundary conditions selected, while the vertical deflection at
the same location (x, y) = (0, 0), uy,max = B is dependent on the chosen boundary
conditions, i.e.,

uy,max = − Pa3

2Eb3
(7.4.12)

basedon themechanics ofmaterials’ strongboundary conditions set out inEq. (7.4.5),

uy,max = − Pa3

2Eb3

(
1 + 3(1 + v)

b2

a2

)
(7.4.13)

based on the alternate strong boundary condition described in Eq. (7.4.7), and

uy,max = − Pa3

2Eb3

(
1 + (12 + 11v)

5

b2

a2

)
(7.4.14)

based on the weak boundary condition indicated in Eq. (7.4.9).
The deflection model described in Eq. (7.4.13) takes into consideration the shear

deflection. Note that if we let v = −1 in Eq. (7.4.13), then the effect of shear
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deflection diminishes such that it reduces to Eq. (7.4.12). In other words, the shear
deflection vanishes for the choice of v = −1 material.

Since the term containing 3(1 + v) has been identified as the correction due to
shear deflection, one may express Eq. (7.4.14) in the form

uy,max = − Pa3

2Eb3

[
1 +

(
3(1 + v) − 3 + 4v

5

)
b2

a2

]
(7.4.15)

so that by isolating the shear correction term, the other term containing (3 + 4v)/5 is
identified as the remaining end correction. This remaining end correction diminishes
if v = −3/4.Again, the choice of auxeticmaterials diminishes one type of correction.

7.5 Example: Deflection of Beams with Partially
Built-in End

While the method that adopts weak boundary conditions appears to be the best
solution for a cantilever that is transversely loaded at its free end, an exact solu-
tion using strong boundary conditions remains elusive. For this reason, a modified
example is introduced herein so that an exact solution using strong boundary condi-
tions can be achieved. Recall that to obtain the constants A, B, and C, the required
three boundary conditions at the built-in end, as illustrated in Fig. 7.6 (top left), are
ideally ux = uy = 0 at x = a and −b ≤ y ≤ b. However, the displacement field as
described by Eqs. (7.4.3) and (7.4.4) does not permit such boundary condition to be
implemented.

An exact result using strong boundary conditions can be obtained from the given
displacement field if one were to select a different boundary condition from that of
totally built end, i.e., by defining a different problem in which the end conditions
permit displacement so that the imposed strong boundary condition is exact. This
modified boundary condition is illustrated in Fig. 7.8 (left), which shows that at
x ≥ a the cantilever is perfectly bonded to the wall at top and bottom but the left
and right sides are free surfaces. In other words, the boundary condition at x = a
prevents displacement at the upper and lower surfaces (y = ±b) while permitting
displacement for −b < y < b.

Implementing the boundary conditions

ux = uy = 0; (x, y) = (a,±b) (7.5.1)

as indicated in Fig. 7.8 (right), we have

B + Ca = 3vPab2

4Eb3
+ Pa3

4Eb3
(7.5.2)

and
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Fig. 7.8 Variant of cantilever, showing partially built-in end, which is clamped at the top and
bottom surfaces but free at the other two side surfaces (left), and the corresponding strong boundary
condition (right)

+ Cb − A = +3Pa2

4Eb2
+ 3P(1 + v)

2E
− P(2 + v)

4E

− Cb − A = −3Pa2

4Eb2
− 3P(1 + v)

2E
+ P(2 + v)

4E
(7.5.3)

which can be solved to give (Lim 2021)

A = 0; B = − Pa3

2Eb3

(
1 + (2 + v)

b2

a2

)
; C = 3Pa2

4Eb3

(
1 + (4 + 5v)

3

b2

a2

)

(7.5.4)

It can be deduced, by symmetry, that the following boundary condition holds

ux = 0; (x, y) = (a, 0) (7.5.5)

However, this boundary condition need not be imposed since it is intrinsically
attained by the imposition of Eq. (7.5.1) on the displacement field. At the partially
built-in end, the horizontal displacement profile is

(ux )x=a = P

E

(
1

2
+ v

4

)(
1 − y2

b2

)
y

b
(7.5.6)

wherein its maximum magnitude of horizontal displacement occurs at
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Fig. 7.9 Dimensionless
horizontal displacement
profile at x = a for various
Poisson’s ratio of the
cantilever material
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3

(7.5.7)

Figure 7.9 shows the dimensionless horizontal displacement, of the cantilever,
defined as (E/P)ux , at x = a for −1 ≤ v ≤ 1/2. It can be seen that the use of
cantilever with v= −1 gives the least horizontal displacement at the partially built-in
end.

The vertical displacement profile at the partially built-in end

(
uy

)
x=a = 3vPa

4Eb

(
1 − y2

b2

)
(7.5.8)

is reduced to zero if Poisson’s ratio of the cantilever is v = 0. Since the horizontal
and vertical displacement profiles are minimized at v = −1 and v = 0, respectively,
it follows that the use of auxetic materials, i.e., −1 ≤ v < 0, is more effective than
conventional materials in reducing the amount of displacement at the partially built-
in end. The reduced displacement at the fixed end for auxetic cantilevers implies that
while the ideal boundary condition of ux = uy = 0 at x = a and −b ≤ y ≤ b is still
elusive, it is better approximated in comparison with conventional materials. The
deflection at the mid-point of the free end can be obtained by substituting x = y = 0
into Eq. (7.4.4) to give
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uy,max = B = − Pa3

2Eb3

(
1 + (2 + v)

b2

a2

)
(7.5.9)

Perusal to Eq. (7.5.9) suggests that the use of auxetic materials can reduce the
maximum deflection, but this reduction is negligible since a > 2b. To compare the
new solution, based on the partially clamed boundary condition, against the standard
approach for fully clamped end, we recall that the displacement field indicated by
Eqs. (7.4.3) and (7.4.4) holds. Comparing Eqs. (7.4.14) and (7.5.9), the difference
between both maximum deflections is

	uy,max = ufully - clamped
y,max − upartially - clamped

y,max = − P

E

(
1 + 3v

5

)
a

b
(7.5.10)

Since the displacement field expressed in Eqs. (7.4.3) and (7.4.4) is 2D in
the x-y plane, the width effect is undefined. The restriction of displacements at
(x, y) = (a,±b) gives a lesser displacement than the standard model’s weak
boundary condition, which permits displacements at the built-in corners. However,
both maximum displacements coincide when v = −1/3, and that the partially
clamped beam gives a greater maximum deflection than the fully clamped beam
if −1 ≤ v < −1/3.

In summary, an exact solution to the end-loaded cantilever problemwith the use of
strong boundary conditions has been proposed not by a different route of formulation,
but by changing the problem into one in which the existing displacement field can
satisfactorily fit the boundary conditions. Specifically, the boundary condition is one
in which clamping exists, but provision is made so that displacement is prohibited
only at the top and bottom surfaces. The results confirm that the horizontal displace-
ment is zero at (x, y) = (a, 0), as one would expect, and that the use of auxetic
cantilevers helps to reduce horizontal displacement at x = a for −b ≤ y ≤ b.
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Chapter 8
Auxetic Composites with Mixed
Auxeticity

Abstract This chapter considers composites containing phases with opposing
Poisson’s ratio signs. Special emphasis is placed on the overall sign of the composite,
which differs depending on the mode of loading.

Keywords Auxetic composites · Loading mode dependency · Mixed auxeticity

8.1 Fundamentals

This chapter deals with the phenomenon of composites that possess both overall
auxetic and conventional properties depending on the mode of loading. Consider a
concentric cylindrical core and shell shown in Fig. 8.1 (top left), whereby the cross-
sectional area of the cylindrical core is greater than the cross-sectional area of the
cylindrical shell, as shown in Fig. 8.1 (top right). Therefore, under the prescription of
uniform axial strain, as illustrated in Fig. 8.1 (bottom left), the cylindrical core mate-
rial properties have greater influence than the cylindrical shell material properties.
However, under the prescription of an angular twist, as shown in Fig. 8.1 (bottom
right), the cylindrical shell encounters a greater extent of shear strain in comparison
with the cylindrical core. As a result, under the action of twisting, the cylindrical
shell material properties exert a greater influence over the cylindrical core mate-
rial properties. Now if Poisson’s ratio of the cylindrical core and cylindrical shell
possesses opposite signs, there is a possibility that the overall Poisson’s ratio of the
composite cylindrical assembly possesses a sign similar to the core under the action
of axial load, but exhibits a sign similar to the shell under the action of twisting
load. The example illustrated in Sect. 8.2 includes the effects arising from Young’s
modulus and shear modulus of the cylindrical core and shell. Thereafter, the theory
is extended into an assembly of trilayered concentric core and shell assembly in
Sect. 8.3 to account for the influence of interface adhesive material.

Section 8.4 considers a sandwich structure consisting of a core and two facesheets
as depicted in Fig. 8.2 (top left), whereby the cross-sectional area of the core is
greater than the cross-sectional area of both facesheets added together. Since the
width of the core and facesheets is common, their cross-sectional areas can also
be represented by their thicknesses, as shown in Fig. 8.2 (top right). By similar
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under axial and torsional loading modes

Facesheet thickness, tf

Facesheet thickness, tf

Core thickness, tc > 2tf

Facesheet

Facesheet

Core 

Axial view Side view

Axial tension or 
compression

Pure bending

Core has greater 
influence

Facesheet has less influence

Facesheet has less influence

Core has smaller 
influence

Facesheet has more influence

Facesheet has more influence

Fig. 8.2 Opposing effective Poisson’s ratio signs for a sandwich structure under axial and bending
loading modes



8.1 Fundamentals 239

reasoning, under the prescription of uniform axial strain, as indicated in Fig. 8.2
(bottom left), the core material properties have stronger influence than the facesheet
material properties. On the other hand, under the action of bending in the manner
described by the linearly varying axial strain in Fig. 8.2 (bottom right), the facesheets
encounter a greater amount of axial strain in comparison with the core. As a result,
under the action of bending, the facesheets material properties exert greater influence
over the core material properties. Suppose Poisson’s ratio of the core and facesheets
possesses opposite signs, there is a similar possibility that the overall Poisson’s
ratio of the sandwich structure possesses a sign similar to the core under axial load,
but displays a sign similar to the facesheets under the action of pure bending. The
example furnished in Sect. 8.4 includes the influence arising fromYoung’s moduli of
the core and facesheet materials. Finally, an example is given in Sect. 8.5 for the case
of sandwich structure under the action of axial load, bending and twisting on their
effective auxeticity arising from the three loading modes.

8.2 Example: Semi-auxetic Rods

This example demonstrates a way to evaluate the effective Poisson’s ratio of a rod
consisting of a core and shell of similar shape but possessing opposite Poisson’s
ratio signs. Consider a rod of length L made from N number of disks in a series
arrangement as shown in Fig. 8.3a and another rod also of length L made from
N number of hollow rods of similar shape in concentric arrangement as shown in
Fig. 8.3b.

With reference to Fig. 8.3a, a rod consisting of different material properties
arranged in series will experience common torsion while the twist angle distribution
is piecewise. Therefore, a single or constant torque is imposed

T = Tn (8.2.1)

for n = 1, 2, . . . , N while the overall angular twist over the entire length of the rod
is summed up from individual twist angles from every disk, i.e.,

φ =
N∑

n=1

φn (8.2.2)

Conversely, the torsion of a rod made from concentrically similar-shaped rods, as
shown in Fig. 8.3b, produces common angular twist from one end to the other, while
the torsional load is piecewise distributed radially. Therefore, a single or constant
angular twist is imposed

φ = φn (8.2.3)
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Fig. 8.3 Rod made from N
different materials in a series
arrangement and
b concentric arrangement

forn = 1, 2, . . . , N while the total torsional load is summed from individual torsional
load from each concentric rod.

T =
N∑

n=1

Tn (8.2.4)

The framework specified by Eqs. (8.2.3) and (8.2.4) is adopted in the proceeding
analysis. It follows that this model is valid for perfect bonding at the interfaces
of adjacent cylinders, and that the elastic properties from the bonding adhesive are
negligible if its modulus is in the same order as those of the concentric cylinders with
the adhesive thickness being very small in comparison with the radial dimension of
each cylinder. The relation between the applied torsion, rod length, shear modulus,
polar moment area perpendicular to the torsional axis, and the angular twist for a
solid prismatic rod is given by

T L

φ
= GJ = GCD4 (8.2.5)

whereby the polar moment area of the solid rod’s cross section is J = CD4, in
whichD is a characteristic dimension of the rod cross section andC is cross-sectional
shape-dependent coefficient. Using E/G = 2(1 + v), we have the following relation
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1 + v = CD4Eφ

2LT
(8.2.6)

whereby the RHS term is a dimensionless group. Since the polar moment of area is

J = C
(
D4

o − D4
i

)
(8.2.7)

we have

1 + v = CD4
o Eφ

2LT

[
1 −

(
Di

Do

)4
]

(8.2.8)

whereby a similar dimensionless group appears on the RHS. It can be seen for both
cases that the effective Poisson’s ratio of a rod consisting of an inner core of arbitrary
cross section and a similarly shaped outer shell undergoing torsion is a function of
two dimensionless groups

vTOR = f

(
CD4

o Enφ

2LT
,
Di

Do

)
(8.2.9)

for n = 1, 2. The overall torsion is combined from both components while the
angular twist is common

T = Ti + To = φ

L
(Gi Ji + Go Jo) (8.2.10)

such that

T L

φ
= CD4

i Ei

2(1 + vi )
+ C

(
D4

o − D4
i

)
Eo

2(1 + vo)
(8.2.11)

To pave a way for comparison and illustration, normalization is imposed for both
the inner core and outer shell materials. Normalizing Young’s modulus Ei = E0 =
E , we obtain an expression for the inverse of the dimensionless group,

2T L

CD4
o Eφ

=
(

Di
Do

)4

1 + vi
+

1 −
(

Di
Do

)4

1 + vo
(8.2.12)

On the basis of the effective torsional Poisson’s ratio being functions of the iden-
tified dimensionless groups as described in Eq. (8.2.6), the effective Poisson’s ratio
under torsional load can be inferred as

1 + vTOR = CD4
o Eφ

2LT
(8.2.13)
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such that substituting Eq. (8.2.12) into Eq. (8.2.13) gives (Lim 2011)

vTOR = (1 + vo)(1 + vi )

(1 + vo)
(

Di
Do

)4 + (1 + vi )

[
1 −

(
Di
Do

)4] − 1 (8.2.14)

For comparison with Poisson’s ratio under axial loading, we have its corre-
sponding effective Poisson’s ratio

vAX =
(
Di

Do

)2

vi +
[
1 −

(
Di

Do

)2
]
vo (8.2.15)

To illustrate the change in the overall auxeticity of a semi-auxetic rod, we consider
a special category whereby Poisson’s ratio of the core and shell possesses equal
magnitude but opposite signs. Since Poisson’s ratio of an isotropic material is within
the range −1 ≤ v ≤ 0.5, we select two cases: (i) auxetic core, in which the inner
core Poisson’s ratio is vi = −0.5 and the outer shell Poisson’s ratio is vo = 0.5, and
(ii) auxetic shell in which vi = 0.5 and vo = −0.5. See Fig. 8.4.

For the special case of auxetic core rod, the effective Poisson’s ratio under axial
loading mode and torsional loading mode is

vAX = 1

2
−
(
Di

Do

)2

(8.2.16)

and

vTOR = 3

6
(

Di
Do

)4 + 2

[
1 −

(
Di
Do

)4] − 1 (8.2.17)

respectively. Plots of the effective Poisson’s ratioswith reference to the inner-to-outer
characteristic dimension ratio, Di/D0, are shown in Fig. 8.5.

Fig. 8.4 Semi-auxetic rod based on auxetic core (left) and auxetic shell (right)
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Fig. 8.5 Effective Poisson’s
ratio of a semi-auxetic rod
with an auxetic core under
axial load (dashed curve) and
torsional load (solid curve)
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Perusal to this figure, as well as to Eqs. (8.2.16) and (8.2.17), shows that such
rods possess zero Poisson’s ratio at Di/D0 = 0.50.5 such that they exhibit an overall
conventional behavior for Di/D0 < 0.50.5 and overall auxetic behavior for Di/D0 >

0.50.5. More strikingly, the effective Poisson’s ratio is of higher magnitude when the
rod undergoes torsion as compared to axial loading.

In the special case of auxetic shell, the effective Poisson’s ratio for axial and
torsional loading modes is

vAX = −1

2
+
(
Di

Do

)2

(8.2.18)

and

vTOR = 3

2
(

Di
Do

)4 + 6

[
1 −

(
Di
Do

)4] − 1 (8.2.19)

respectively. Variations of the effective Poisson’s ratios with respect to the inner-to-
outer characteristic dimension ratio, Di/D0, are plotted in Fig. 8.6.

As in the previous section, the effective Poisson’s ratio for axial loading is zero
at Di/D0 = 0.50.5 . Unlike the previous case, the effective Poisson’s ratio, under the
influence of torsional load, is zero at Di/D0 = 0.750.25.As a result, the rod exhibits an
overall auxetic behavior for Di/D0 < 0.50.5 and an overall conventional behavior for
Di/D0 > 0.750.25 regardless of the loading mode. For the range 0.50.5 < Di/D0 <

0.750.25, the rod exhibits a mixed behavior which is loading mode dependant, i.e., it
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Fig. 8.6 Effective Poisson’s
ratio of a semi-auxetic rod
with an auxetic shell under
axial load (dashed curve) and
torsional load (solid curve)
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behaves as a conventional rod when an axial load is imposed but as an auxetic rod
during twisting (Lim 2011).

For the purpose of symmetry, the plots of effective Poisson’s ratio of the combined
rods in Figs. 8.5 and 8.6 are replotted against the inner-to-outer characteristic dimen-
sions raised to the second and fourth powers, respectively, as depicted in Figs. 8.7
and 8.8.

Fig. 8.7 Symmetric plot of
the effective Poisson’s ratio
of a semi-auxetic rod with an
auxetic core under axial load
(dashed curve) and torsional
load (solid curve)
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Fig. 8.8 Symmetric plot of
the effective Poisson’s ratio
of a semi-auxetic rod with an
auxetic shell under axial load
(dashed curve) and torsional
load (solid curve)
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The range of the inner-to-outer rod dimension that gives rise to different auxeticity
levels, i.e.,
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(8.2.20)

for the auxetic core and

vTOR < vAX < 0; 0 <
(

Di
Do

)4
< 1

4

vTOR < 0 < vAX; 1
4 <
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Do

)4
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(8.2.21)

for the auxetic shell may well be elucidated by the area property of the rod’s cross
section. In the case of auxetic shell, the higher auxeticity that is manifested during
torsional loading mode as compared to axial loading mode is attributed to the greater
influence of the outermost rod material. This results in a more negative effective
Poisson’s ratio during torsion than during axial loading for any value of Di/D0. In
the case of auxetic core, the lower auxeticity for torsional loading as compared to
that of axial loading for a relatively small core is due to the strong influence of the
conventional shell. As Di/D0 increases, the overall auxeticity of the rod in the context
of torsional loading catches up and exceeds the overall auxeticity in the context of
axial loading.
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Within the category whereby the core and shell possess equal Poisson’s ratio
magnitude, plotted results reveal different torsional loading auxeticity but equal axial
loading auxeticity. For a concentric compound rodwith auxetic core and conventional
shell, the sign of the effective Poisson ratio under torsional loading follows that under
axial loading, but with slightly greater magnitude. For a concentric compound rod
with conventional core and auxetic shell, there is a range of relative volume fraction
whereby the rod exhibits overall conventional and auxetic behavior under axial and
torsional loading modes, respectively. This phenomenon has been elucidated herein
from the standpoint of cross-sectional area properties of rods undergoing axial and
torsional loading modes. Hence, a compound rod with auxetic shell exhibits greater
extent of loading mode-dependent auxeticity than that with auxetic core. The present
results suggest the use of a compound rod with conventional core and auxetic shell
as a smart structure that gives different response depending on the type of loading
imposed on it.

8.3 Example: Concentric Auxetic Cylinders with Interface
Adhesives

This example models a single trilayered cylindrical rod consisting of a solid inner
foam rod adhered to a hollow outer foam rod, with significant adhesive modulus as
the interface of the two foam rods. The overall auxeticity of a concentric rod whereby
the core and shell possess Poisson’s ratio of opposite signs is influenced by the mode
of loading. It is obvious that during axial loading both the core and shell experience
equal longitudinal strain, but during torsional loading the shell undergoes greater
shear strain than the core. In this concentrically bilayered rod system, the auxeticity
during axial and torsional loading modes changes at different rate with respect to the
ratio of the inner-to-outer diameters, thereby implying a range of this ratio whereby
the concentric rod exhibits overall Poisson’s ratio of different signs depending on the
loading mode. However, the assumption of a bilayered concentric foam system is no
longer validwhen a layer of highmodulus adhesive exists between the two concentric
rods. The adhesive layer can be thought of as an intermediate layer that fills up the
gap between the two concentric cylinders. Even in the case where the surfaces of the
inner and outer cylinders are in contact with each other, the slight seepage of adhesive
fluid into the foam before its solidification gives rise to a high modulus intermediate
layer. The effect of the adhesive elastic properties on the concentric foam rods of
opposing Poisson’s ratio signs under torsional load is investigated in this section as
a trilayered concentric rod system.

Unlike uniaxial loadingwhereby the diameter changes for nonzero Poisson’s ratio,
there is no salient change in the rod diameter under torsional load. With reference to
Fig. 8.9, a component of radial increase due to one principal strain is canceled by a
component of radial decrease due to another principal strain in the same plane.Hence,
there is no change in the rod diameter under torsion. Nevertheless, it is obvious that
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Fig. 8.9 Schematic for a rod under torsion (left), and elemental volume under pure shearing
(middle), and an equivalent stress state at 45° showing in-plane principal strains (right)

the auxeticity of the rod must be related to that of the material that constitutes the
rod. The analysis consists of three parts, namely the single solid rods, the bilayered
concentric rods, and the trilayered concentric rods. In the trilayered concentric rods,
we let the middle material be the adhesive material.

Consider the case of a single solid rod. Since an observation on rod diameter yields
no change regardless of the rod auxeticity, we herein consider the rod auxeticity—
under torsional loading—in terms of themoduli ratioG/E (or E/G) using the elastic
relation

G = E

2(1 + v)
(8.3.1)

for isotropic solids. By virtue of Eq. (8.3.1), the moduli ratio indicates Poisson’s ratio
and hence its auxeticity. Therefore, the auxeticity of a material can be inferred from
the moduli ratio, as an alternative to the usual way of measuring change in dimension
during axial loading. For a single solid rod of diameter D and length L undergoing
torsion T, the angular twist φ is given as

φ = T L

GJ
(8.3.2)
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whereby the polar moment area of the circular cross section J is

J = πD4

32
(8.3.3)

Substituting Eqs. (8.3.1) and (8.3.3) into Eq. (8.3.2), we have Poisson’s ratio of
the rod as

v = D4Eπφ

64T L
− 1 (8.3.4a)

or, for convenient comparison with subsequent formulation, we write

vSingle =
(

64T L

D4Eπφ

)−1

− 1 (8.3.4b)

We now turn our attention to the case of bilayered concentric rods. As opposed
to summative angular twist and common transmitted torsional load for two rods
arranged in series, the case of two concentrically arranged rods is governed by
common angular twist with summative torsional loads as depicted in Fig. 8.10 (top)
and (bottom), respectively. Hence, the common angular twist for the inner and outer
rods

φi = φo (8.3.5)

T T

Tleft

Tright

left

right

T T

Tinner

Touter

inner

outer

series = left + right

T = Tleft = Tright

conc = inner = outer

T = Tinner + Touter

φ

φ

φ

φ

φ φ φ

φ φ φ

Fig. 8.10 Comparison between two rods in series arrangement (top) and concentric arrangement
(bottom)
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and the summative torsional load

T = Ti + To = φiGi Ji
L

+ φoGo Jo
L

(8.3.6)

give

T L

φ
= Gi Ji + Go Jo (8.3.7)

Substituting Eqs. (8.3.1) and (8.3.3) into Eq. (8.3.7) leads to

64T L

D4
o Eoπφ

=
Ei
Eo

(
Di
Do

)4

1 + vi
+

1 −
(

Di
Do

)4

1 + vo
(8.3.8)

It can be easily seen that substituting Di = 0 (or Di = D0 with Ei = E0) into
Eq. (8.3.8) reduces it to Eq. (8.3.4). By virtue of Eq. (8.3.4) and neglecting adhesive
layer, the effective Poisson’s ratio for two perfectly bonded concentric cylinders
under torsional loading mode is

vBi-layered =
(

64T L

D4
o Eπφ

)−1

− 1 (8.3.9)

where the term in the parenthesis is given by Eq. (8.3.8) in the case of a bilayered
concentric rod.

Finally, for this example, we consider the case of trilayered concentric rod. Perusal
to Fig. 8.11 shows the adhesive layer being the interlayer, thereby extending the
bilayered concentric rod into a more realistic trilayered concentric rod, with the
thickness of the adhesive layer, δ being

δ = DA − Di

2
(8.3.10)

As in the case of bilayered concentric rod, the angular twist for a trilayered rod is
common

φi = φA = φo (8.3.11)

while the torsional load is carried by all three layers

T = Ti + TA + To (8.3.12)

Proceeding similarly as in the case of bilayered concentric rod, the effective
Poisson’s ratio for a trilayered concentric rod under torsional loading mode is (Lim
2018)
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Outer cylinder

Inner cylinder

Adhesive 
material

Di

DA

Do

Fig. 8.11 Side (left) and axial (right) views of a rod made from two concentric foams with opposite
Poisson’s ratio sign, in which the adhesive material is assumed to take on the shape of a thin
cylindrical shell

vTri-layered =
(

64T L

D4
o Eπφ

)−1

− 1 (8.3.13)

with

64T L

D4
o Eoπφ

=
Ei
Eo

(
Di
Do

)4

1 + vi
+

EA
Eo

[(
DA
Do

)4 −
(

Di
Do

)4]

1 + vA
+

1 −
(

DA
Do

)4

1 + vo
(8.3.14)

where

(
DA

Do

)4
−
(
Di

Do

)4
= 8

δ

Do

(
Di

Do

)3
+ 24

(
δ

Do

)2( Di

Do

)2
+ 32

(
δ

Do

)3 Di

Do
+ 16

(
δ

Do

)4

(8.3.15)

and

1 −
(
DA

Do

)4
= 1 −

(
Di

Do

)4
− 8

δ

Do

(
Di

Do

)3
− 24

(
δ

Do

)2( Di

Do

)2
− 32

(
δ

Do

)3 Di

Do
− 16

(
δ

Do

)4

(8.3.16)

It can be seen from Eqs. (8.3.15) and (8.3.16) that as δ → 0, Eq. (8.3.14) reduces
to Eq. (8.3.8). If the adhesive layer is very small in comparison with other radial
dimensions and the adhesivemodulus is in the same order as that of the foammaterial,



8.3 Example: Concentric Auxetic Cylinders … 251

then the following simplifications

(
DA

Do

)4

−
(
Di

Do

)4

≈ 8
δ

Do

(
Di

Do

)3

(8.3.17)

and

1 −
(
DA

Do

)4

≈ 1 −
(
Di

Do

)4

(8.3.18)

for Eqs. (8.3.15) and (8.3.16), respectively, are valid. A direct consequence of this
simplification is that Eq. (8.3.14) resembles Eq. (8.3.8), i.e.,

64T L

D4
o Eoπφ

=
Ei
Eo

(
Di
Do

)4

1 + vi
+

8 EA
Eo

δ
Do

(
Di
Do

)3

1 + vA
+

1 −
(

Di
Do

)4

1 + vo
(8.3.19)

such that the influence from the adhesive material is confined to only one term, i.e.,
on the second term on the RHS of Eq. (8.3.19). Here, the relative modulus of the
adhesive-to-outer foammaterial EA/E0 and the relative adhesive thickness δ/D0 play
equal importance. The simplification suggested in Eq. (8.3.17), however, is no longer
valid when the relative modulus of the adhesive material EA/E0 is several orders
higher. Hence, the retention of Eq. (8.3.15) with the use of Eq. (8.3.18) provides a
balanced simplification and accuracy.

The influence of the intermediate layer on the overall Poisson’s ratio of a rod
made from foams of opposing Poisson’s ratio signs can be observed by considering
the adhesive layer’s elastic and geometrical properties listed below:

1. Elastic properties

a. adhesive modulus relative to that of the foam, EA/EFoam

b. adhesive Poisson’s ratio, vA

2. Geometrical properties

a. adhesive thickness relative to the rod diameter, δ/Do

b. adhesive diameter relative to that of the rod, Di/Do

In the plotted results of the effective Poisson’s ratio that follow, we adopt the
concentrically trilayered cylinder using Eqs. (8.3.13)–(8.3.15) and (8.3.17), for the
case of equal inner and outer foam modulus

Ei = Eo = EFoam (8.3.20)

and equal the Poisson’s ratio magnitudes for the inner and outer foams

±vi = ∓v0 = 1

2
(8.3.21)
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The effect of relative moduli ratio EA/EFoam on the variation of the combined
rod’s effective Poison’s ratio, veff with the inner-to-outer cylinder diameters, Di/D0 is
plotted in Fig. 8.12 with relative adhesive thickness at δ/D0 = 0.001, Poisson’s ratio
of solidified adhesive at vA= 0 and relative adhesive modulus at EA/EFoam = 10n

for n = 1, 2, 3, 4, 5. Figure 8.12 (top and bottom) corresponds to the use of auxetic
core (−vi = v0 = 0.5) and auxetic shell (vi = −v0 = 0.5), respectively.

As expected, the rod auxeticity increases (or the overall Poisson’s ratio decreases)
with the relative size of the auxetic core, as shown in Fig. 8.12(top). However, an
unexpected trend is observed whereby the overall Poisson’s ratio approaches −1 as
the inner-to-outer diameter approaches 1, although none of the material component
possesses any Poisson’s ratio lower than−0.5. Plotted results also reveal that the rod
auxeticity increaseswith the use of higher adhesivemodulus.When the position of the
auxetic and conventional parts is swopped, only the case of moderate relative adhe-
sive modulus gives an intuitive trend, i.e., increasing Poisson’s ratio with increasing
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Fig. 8.12 Effect of relative adhesive modulus on the compound rod auxeticity with auxetic core
(top) and auxetic shell (bottom)
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conventional inner cylinder size. However, the trend reverses for extremely large
adhesive modulus. This may well be due to the high torsional stiffness that translates
into high G/E ratio, which is associated with auxeticity.

The effect of relative thickness ratio δ/D0 on the variation of the combined rod’s
effective Poison’s ratio, veff with the inner-to-outer cylinder diameters, Di/D0 is
plotted in Fig. 8.13 with relative adhesive modulus at EA/EFoam = 1000, Poisson’s
ratio of solidified adhesive at vA = 0 and relative adhesive thickness at δ/D0 = 10n

for n = −1,−2,−3,−4,−5. Figure 8.13 (top and bottom) corresponds to the use
of auxetic core (−vi = v0 = 0.5) and auxetic shell (vi = −v0 = 0.5), respectively.

The trends obtained in Fig. 8.13 are somewhat similar to those of Fig. 8.12,
signifying an almost similar effect of adhesive thickness with adhesive modulus.
The similarity is attributed to the increasing stiffness contributed by the intermediate
layer’s increasing modulus and increasing thickness.

The effect of adhesive Poisson’s ratio, vA on the variation of the combined rod’s
effective Poison’s ratio, veff with the inner-to-outer cylinder diameters, Di/D0 is
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Fig. 8.13 Effect of relative adhesive thickness on the compound rod auxeticity with auxetic core
(top) and auxetic shell (bottom)
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plotted in Fig. 8.14 with relative adhesive modulus at EA/EFoam = 1000, rela-
tive adhesive thickness at δ/D0 = 0.001, and adhesive Poisson’s ratio at vA =
−0.5,−0.3,−0.1, 0.1, 0.3, 0.5. Figure 8.14 (top and bottom) corresponds to the use
of auxetic core (−vi = v0 = 0.5) and auxetic shell (vi = −v0 = 0.5), respectively.
Aswith Figs. 8.12 and 8.13, a drop in the overall Poisson’s ratio toward−1 is obtained
with increasing adhesive ring diameter. As expected, the overall Poisson’s ratio is
influenced by Poisson’s ratio of the adhesive material, thereby causing an upward or
downward shift to the overall Poisson’s ratio arising from the positive and negative
signs of the adhesive material’s Poisson’s ratio.

In summary, an indirect way for inferring Poisson’s ratio of a concentrically
multilayered rod was obtained. Results show that the following factors increase
the auxeticity of the rod under consideration: (a) adhesive modulus, (b) adhesive
Poisson’s ratio, (c) adhesive thickness, and (d) adhesive radius. Plotted results also
suggest that, even with each components possessing Poisson’s ratio not lower than−
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Fig. 8.14 Effect of adhesive Poisson’s ratio on the compound rod auxeticity with auxetic core (top)
and auxetic shell (bottom)
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0.5, the overall Poisson’s ratio within the framework of torsional loading approaches
−1 as the outer shell thins (Lim 2018).

8.4 Example: Semi-auxetic Sandwich Plates

Consider a three-layered laminate as shown in Fig. 8.15. Based on this layup, a
symmetric laminate can be obtained by assigning the facesheet and core portions to
isotropicmaterials possessing Poisson’s ratio of opposite signs. It follows that we can
have two broad categories: (i) the positive–negative–positive (PNP) layup whereby
the facesheets and core have positive and negative Poisson’s ratio, respectively, and
(ii) the negative–positive–negative (NPN) layup whereby the facesheets and the core
possess negative and positive Poisson’s ratio, respectively.

For k number of plieswithin a laminate of thickness twhose plane is perpendicular
to the z-axis, the force Nij and moment Mij resultants of the laminate can be related
to the reference plane strains ε0i j and curvatures κi j via the ABD matrices

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

N11

N22

N12

M11

M22

M12

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A16

A22 A26

A66

B11 B12 B16

B12 B22 B26

B16 B26 B66

sym
D11 D12 D16

D22 D26

D66

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ε011
ε022
γ 0
12

κ11

κ22

κ12

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(8.4.1)

where the stiffness matrices of the laminate can be obtained from the transformed
reduced stiffness matrix as

⎧
⎨

⎩

[
Ai j
]

[
Bi j
]

[
Di j
]

⎫
⎬

⎭ =
n∑

k=1

[
Qi j

]
k

⎧
⎨

⎩

(
z1k − z1k−1

)
/1(

z2k − z2k−1

)
/2(

z3k − z3k−1

)
/3

⎫
⎬

⎭ (8.4.2)

Fig. 8.15 Generalized 3-ply
symmetrical laminate
consisting of facesheets
(subscript f ) and core
(subscript c) for analysis Neutral

axis

tf

tf

tc t
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based onClassical LaminationTheory (CLT). In the case of isotropic plies considered
herein,

[
Qi j

] = [
Qi j

]
(8.4.3)

where by the reduced stiffness matrix
[
Qi j

]
can be expressed in terms of Young’s

modulus E and Poisson’s ratio v as

[
Qi j

] = E

1 − v2

⎡

⎣
1 v 0
v 1 0
0 0 1−v

2

⎤

⎦ (8.4.4)

The transformed reduced stiffness matrix
[
Qi j

]
for an orthotropic ply rotated at

an angle θ clockwise about the z-axis can be obtained from the reduced stiffness
matrix

[
Qi j

]
as

Q11 = c4Q11 + s4Q22 + 2c2s2(Q12 + 2Q66) (8.4.5)

Q22 = s4Q11 + c4Q22 + 2c2s2(Q12 + 2Q66) (8.4.6)

Q12 = c2s2(Q11 + Q22 − 4Q66) + (
c4 + s4

)
Q12 (8.4.7)

Q16 = c3s(Q11 − Q12 − 2Q66) − cs3(Q22 − Q12 − 2Q66) (8.4.8)

Q26 = cs3(Q11 − Q12 − 2Q66) − c3s(Q22 − Q12 − 2Q66) (8.4.9)

Q66 = c2s2(Q11 + Q22 − 2Q12) + (
c2 − s2

)2
Q66 (8.4.10)

where c = cos θ and s = sin θ . Due to the symmetric layup, the force–strain and
moment–curvature relations are decoupled since

[
Bi j
] = 0 (8.4.11)

based on Eqs. (8.4.2)–(8.4.4), we obtain the other two stiffness matrices

[
Ai j
] = E f

1 − v2
f

⎡

⎣
1 v f 0
v f 1 0
0 0 1−v f

2

⎤

⎦(t − tc) + Ec

1 − v2
c

⎡

⎣
1 vc 0
vc 1 0
0 0 1−vc

2

⎤

⎦(tc) (8.4.12)
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[
Di j
] = E f

1 − v2
f

⎡

⎣
1 v f 0
v f 1 0
0 0 1−v f

2

⎤

⎦
(
t3 − t3c
12

)
+ Ec

1 − v2
c

⎡

⎣
1 vc 0
vc 1 0
0 0 1−vc

2

⎤

⎦
(
t3c
12

)

(8.4.13)

where subscripts f and c refer to the facesheet and core properties, respectively. We
herein consider a special case in which Young’s modulus for both the facesheet and
the core materials are equal

E f = Ec = E0 (8.4.14)

and that Poisson’s ratio for both materials is of equal magnitude but opposite signs
such that

∣∣v f

∣∣ = |vc| = v0 (8.4.15)

whereby both E0 and v0 are positive. As such, we arrive at the following laminate
stiffness

1 − v2
0

E0

(
1

t

)[
Ai j
] =

⎡

⎢⎣
1 v f + ( tc

t

)(
vc − v f

)
0

v f + ( tc
t

)(
vc − v f

)
1 0

0 0
1−[v f +( tc

t )(vc−v f )]
2

⎤

⎥⎦

(8.4.16)

and

1 − v20
E0

(
12

t3

)[
Di j

] =

⎡

⎢⎢⎢⎢⎢⎣

1 v f +
(
tc
t

)3(
vc − v f

)
0

v f +
(
tc
t

)3(
vc − v f

)
1 0

0 0
1−
[
v f +

(
tc
t

)3(
vc−v f

)]

2

⎤

⎥⎥⎥⎥⎥⎦

(8.4.17)

which can be readily compared with the normalized laminate stiffness matrices

[
Ai j
] =

⎡

⎢⎣
1 vA

eff 0
vA
eff 1 0

0 0 1−vA
eff

2

⎤

⎥⎦ (8.4.18)

and

[
Di j
] =

⎡

⎢⎣
1 vD

eff 0
vD
eff 1 0

0 0 1−vD
eff

2

⎤

⎥⎦ (8.4.19)
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The effective laminate Poisson’s ratios are vA
eff and vD

eff as a result of the application
of axial loading and bending moment, respectively. Comparison of terms among
Eqs. (8.4.16)–(8.4.19) implies (Lim 2007)

{
vA
eff

vD
eff

}
=
[
1 (tc/t)

1

1 (tc/t)
3

]{
v f

vc − v f

}
(8.4.20)

The obtained [A] and [D] matrices can then be extended for application to plates
via the consideration of plate governing equations—(a) equilibrium equations and
(b) boundary conditions. By substituting v f = −vc = v0 for the PNP layup, we have
vA
eff = 0 and vD

eff = 0.75v0 > 0 for tc/t = 1/2, while vA
eff = −0.5874v0 < 0 and

vD
eff = 0 for tc/t = (1/2)1/3. In the same manner, by substituting −v f = vc = v0
for the NPN layup, we have vA

eff = 0 and vD
eff = −0.75v0 < 0 for tc/t = 1/2,

with vA
eff = 0.5874v0 > 0 and vD

eff = 0 for tc/t = (1/2)1/3. The implications of
these effective laminate Poisson’s ratios are shown in Table 8.1. If the relative core
thickness falls between 1/2 and (1/2)1/3, then one may expect the properties to also
fall in between the properties corresponding to the abovementioned relative core
thickness. Since the intermediary between zero and a particular value takes the same
sign as the latter, then it can be inferred that for the type of 3-ply symmetric laminate
considered herein, the sign of the effective Poisson’s ratio is determined by the type
of loading—whether axial loading or bending moment (see Table 8.1).

To provide a graphical view for the change in the effective Poisson’s ratios with
different core thickness, curves of the relative effective Poisson’s ratio veff/v0 versus
the relative core thickness tc/t are plotted in Fig. 8.16 (top) and (bottom) for PNP
and NPN layups, respectively.

Since vA
eff and vD

eff correspond to [Aij] and [Dij], respectively, any opposing signs
in the mixed region (See Fig. 8.16) do not cancel off but coexist. This implies the
manifestation of both auxetic and non-auxetic behavior as a result of combined
loading modes.

The occurrence of interfacial stresses between laminas is inherent in almost
all composite laminates, and there is no exception in the case of Poisson’s ratio
mismatch. The consequence of opposing Poisson’s ratio signs is schematically shown
in Fig. 8.17. The CLT is formulated on the assumption that the laminate and all

Table 8.1 Effective laminate
Poisson’s ratio

Relative core
thickness

Loading modes PNP layup NPN layup

tc
t = 1

2 Axial 0 0

Pure bending Positive Negative
tc
t = ( 1

2

) 1
3 Axial Negative Positive

Pure bending 0 0
1
2 < tc

t <
( 1
2

) 1
3 Axial Negative Positive

Pure bending Positive Negative
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Fig. 8.16 Changes in the effective Poisson’s ratio for axial loading (dashed lines) and bending
moment (thick curves) based on the PNP lay-up (top) and NPN lay-up (bottom)

its layers are in-plane stress, thereby neglecting all the out-of-plane stresses. This
assumption is valid in regions away from the free edges. Near the edges, however,
shear stresses may arise between the neighboring layers, as shown in Fig. 8.17f.
Therefore, the use of good bonding material is important for preventing interlaminar
delamination.

It can be concluded that for the special case where Young’s moduli are equal for
all plies and the core ply possesses a Poisson’s ratio of equal magnitude but opposite
sign compared to the facesheet plies, the CLT shows that a region of relative core
thickness exists which exhibit loading mode dependency on the laminate’s effective
Poisson’s ratio. For combined loading, such as stretch bending, the PNP laminate
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Shear stress 

(a)

(b) (c)

(d) (e)

Laminate width

(f)

Fig. 8.17 Effect of opposing Poisson’s ratio on in-plane transverse deformation without interlam-
inar bonding for a a 3-ply laminate with: b PNP in tension, cNPN in tension, d PNP in compression,
e NPN in compression, and f a typical interlaminar shear stress profile with perfect interlaminar
bonding
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exhibits lateral expansion (due to negative Poisson’s ratio) and anti-clastic shape
(due to positive Poisson’s ratio) while the NPN laminate gives lateral shrinkage (due
to positive Poisson’s ratio) and synclastic shape (due to negative Poisson’s ratio).
Therefore, a semi-auxetic structure can be designed to exhibit a positive, negative, or
both signs for the effective Poisson’s ratio as a result of loading modes (Lim 2007).

8.5 Example: Mixed Auxeticity of Semi-auxetic Sandwich
Structures

Unlike axial loading and bending, which indicates the sign of the overall Poisson’s
ratio from the transverse deformation and the shape of the bent plate, respectively, as
shown in Fig. 8.18, no geometrical observation can be obtained for identifying the
effectivePoisson’s ratio for torsional loading.This can again be inferred fromFig. 8.9,
where the resulting state of pure shear on an element can be viewed as principal
stresses in a rotated element with equal in-plane tensile and compressive stress.
Here, the out-of-plane deformation of the rotated element (i.e., radial deformation)
is canceled, thereby preventing any indication arising from the sign of the overall
Poisson’s ratio to be ascertained on the basis of the deformed geometry. This example
demonstrates a more physical approach for obtaining the overall Poisson’s ratio of a
sandwich structure than an earlier approach for that of a compound rod. Specifically,
the case of sandwich structure where both the core and the facesheets are isotropic
but possess Poisson’s ratio of opposite signs is considered, for comparison with the
overall Poisson’s ratio of the same structure during axial loading and bending.

Conventional behavior during 
axial loading (upper picture)

Auxetic behavior during axial 
loading (upper picture)

Conventional behavior 
during bending (lower 
picture)

Auxetic behavior during 
bending (lower picture)

Fig. 8.18 Signs of overall Poisson’s ratio during axial loading and bending are determined from
transverse deformation and the resulting shell shape from the bent plate, respectively
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Fig. 8.19 Although torsion
of a conventional or auxetic
rod does not show any
difference in terms of the
deformed size nor shape, as
shown in Fig. 8.9, auxeticity
can still be inferred from the
E/G ratio

Based on the relation E/G = 2(1 + v) for isotropic solids, substitution of v = −
1, 0, and 0.5 gives E/G = 0, 2, and 3, respectively. It follows that the range

0 <
E

G
< 2 ⇒ v < 0 (8.5.1)

or G/E > 1/2 indicate auxetic behavior, while the range

2 <
E

G
< 3 ⇒ v > 0 (8.5.2)

or 1/3 < G/E < 1/2 imply conventional behavior. See Fig. 8.19. This is the first
basis on which the overall Poisson’s ratio can be inferred for a sandwich structure
undergoing only torsion loading, which may differ under other modes of loading.

The second basis is to obtain two sets of torsional load per twisted angle, one for
a homogeneous block and another one for a sandwich structure with similar overall
geometry, for a comparison to be made. This paves a way for an equivalent Poisson’s
ratio of the sandwich structure within the context of torsional load. For convenience,
the polar moment area of a rectangular cross section of width w and thickness t

J = wt

12

(
w2 + t2

)
(8.5.3)

may be used as a gross approximation to the torsional polar moment area described
in Eq. (8.5.30). The torsional load, T, on a homogenous rectangular block of length L
has been given in Eq. (8.2.5) where φ is the angular twist andG is the shear modulus
of the rectangular block material. Substituting E/G = 2(1 + v) and Eq. (8.5.3) into
Eq. (8.2.5) gives
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Fig. 8.20 Sandwich
structure of core and
facesheet thickness tc and tf,
respectively

T L

φ
= Eequivw

3t

24
(
1 + vequiv

)
(
1 + t2

w2

)
(8.5.4)

where the subscript equiv refers to the homogeneous equivalence for comparison
with the sandwich structure.

For a sandwich structure shown in Fig. 8.20, the total torsional load is carried by
the core and facesheets

T = Tc + T f (8.5.5)

or

T L

φ
= TcL

φ
+ T f L

φ
= Gc Jc + G f J f (8.5.6)

whereby subscripts c and f refer to the core and both facesheets, respectively.
Substituting the component shear modulus

{
Gc

G f

}
= 1

2

{
Ec/(1 + vc)

E f /
(
1 + v f

)
}

(8.5.7)

and their corresponding simplified polar moment area

{
Jc
J f

}
= 1

12

{
wtc

(
w2 + t2c

)

wt
(
w2 + t2

)− wtc
(
w2 + t2c

)
}

(8.5.8)

into Eq. (8.5.6) yields

T L

φ
= Ecw

3tc
24(1 + vc)

(
1 + t2c

w2

)
+ E f w

3t

24
(
1 + v f

)
[(

1 + t2

w2

)
− tc

t

(
1 + t2c

w2

)]

(8.5.9)
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An equivalent or effective Poisson’s ratio for this sandwich structure can be
approximated by equating Eq. (8.5.4) with Eq. (8.5.9) to give (Lim 2012)

1

1 + vequiv
= 1

1 + v f

(
E f

Eequiv

)
+ tc

t

(
w2 + t2c
w2 + t2

)[
1

1 + vc

(
Ec

Eequiv

)
− 1

1 + v f

(
E f

Eequiv

)]

(8.5.10)

To emphasize the influence of the core and facesheet Poisson’s ratios, the subse-
quent analysis considers a broad case whereby both the core and facesheets possess
equal Young’s modulus, i.e.,

Ec = E f = Eequiv (8.5.11)

Under this condition, Eq. (8.5.10) reduces to

1

1 + vequiv
= 1

1 + v f
+ tc

t

(
w2 + t2c
w2 + t2

)[
1

1 + vc
− 1

1 + v f

]
(8.5.12)

or

vequiv = −1 +
(
1 + v f

)
(1 + vc)

(1 + vc) + (
v f − vc

) tc
t

(
w2+t2c
w2+t2

) (8.5.13)

In calculating the special case where the core and facesheets possess Poisson’s
ratio of equal magnitude but opposite signs, the torsional Poisson’s ratio is proposed
as

vT = 1

2

{
vequiv

(
v f = +v0, vc = −v0

)− vequiv
(
v f = −v0, vc = +v0

); vc < 0 < v f
vequiv

(
v f = −v0, vc = +v0

)− vequiv
(
v f = +v0, vc = −v0

); vc > 0 > v f

}

(8.5.14)

where v0 > 0, i.e.,

vT = 1 − v2
0

2

⎡

⎣ 1

1 − v0 + 2v0
tc
t

(
w2+t2c
w2+t2

) − 1

1 + v0 − 2v0
tc
t

(
w2+t2c
w2+t2

)

⎤

⎦ (8.5.15)

for auxetic core, and

vT = 1 − v2
0

2

⎡

⎣ 1

1 + v0 − 2v0
tc
t

(
w2+t2c
w2+t2

) − 1

1 − v0 + 2v0
tc
t

(
w2+t2c
w2+t2

)

⎤

⎦ (8.5.16)

for auxetic facesheets.
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For a square cross section, w = t , or

lim
w
t →1

(
w2 + t2c
w2 + t2

)
= 1

2

(
1 + t2c

t2

)
(8.5.17)

This leads to

vT = 1 − v2
0

2

⎡

⎣ 1

1 − v0

[
1 − tc

t − ( tc
t

)3] − 1

1 + v0

[
1 − tc

t − ( tc
t

)3]

⎤

⎦ (8.5.18)

and

vT = 1 − v2
0

2

⎡

⎣ 1

1 + v0

[
1 − tc

t − ( tc
t

)3] − 1

1 − v0

[
1 − tc

t − ( tc
t

)3]

⎤

⎦ (8.5.19)

for auxetic core and auxetic facesheets, respectively. In comparison with similar
condition whereby E f = Ec and v f /vc = −1, the effective Poisson’s ratios under
axial loading and bending were established in the previous example as

vA = v f + tc
t

(
vc − v f

)
(8.5.20)

and

vB = v f +
(
tc
t

)3(
vc − v f

)
(8.5.21)

respectively. Hence,

{
vA

vB

}
= v0

{+1 − 2(tc/t)
1

+1 − 2(tc/t)
3

}
(8.5.22)

and

{
vA

vB

}
= v0

{−1 + 2(tc/t)
1

−1 + 2(tc/t)
3

}
(8.5.23)

for auxetic core and auxetic facesheets, respectively, with equal Poisson’s ratio
magnitude. Figure 8.21 shows the variation of loading modes on the auxeticity
with reference to the relative core thickness for the case of auxetic core, i.e.,
vc = −v f = −0.5, using Eqs. (8.5.18) and (8.5.22), and auxetic facesheets, i.e.,
vc = −v f = +0.5, using Eqs. (8.5.19) and (8.5.23). As expected, the curves fall
within −1/2 ≤ v ≤ 1/2 for 0 ≤ tc/t ≤ 1.



266 8 Auxetic Composites with Mixed Auxeticity

0 0.2 0.4 0.6 0.8 1

v

tc /t

No auxeticity

Low 
auxeticity

High
auxeticity

Full
auxeticity

0 0.2 0.4 0.6 0.8 1

v

tc /t

No
auxeticity

Low
auxeticity

High
auxeticity

Full auxeticity

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 8.21 Effect of loading modes on the auxeticity of semi-auxetic sandwich structure with square
cross section for the case of auxetic core (top) and auxetic facesheets (bottom), where tc/t refers
to the relative core thickness

Based on these plots, four levels of auxeticity are identified (Lim 2012). They are
as follows:

1. full auxeticity (FA) if the structure behaves as an auxetic structure under all three
modes of loading

2. high auxeticity (HA) if the structure behaves as an auxetic structure in two of the
loading modes

3. low auxeticity (LA) if the structure behaves as an auxetic structure in only one
of the loading modes, and

4. no auxeticity (NA) if the structure behaves as a conventional structure under all
of the three loading modes.
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The relative core thickness at which the switch from one level of auxeticity to the
next, in the context of Fig. 8.21, is tc/t = 0.5, 0.682328, and 0.793701. The relative
core thickness at which change in the level of auxeticity occurs will be different if
the Poisson’s ratio of the core and facesheets is altered because of the accompanying
shift in the curves.

Unlike the axial loading and bending modes, the auxeticity of torsion modes is
influenced by the width-to-thickness aspect ratio, w/t. To observe the effect of aspect
ratio, we consider the limiting states

lim
w
t →∞

(
w2 + t2c
w2 + t2

)
= 1 (8.5.24)

and

lim
w
t →0

(
w2 + t2c
w2 + t2

)
= t2c

t2
(8.5.25)

The limiting state described by Eq. (8.5.24) refers to a very wide sandwich plate
which leads to

vT = 1 − v2
0

2

[
1

1 − v0
[
1 − 2

( tc
t

)] − 1

1 + v0
[
1 − 2

( tc
t

)]
]

(8.5.26)

and

vT = 1 − v2
0

2

[
1

1 + v0
[
1 − 2

( tc
t

)] − 1

1 − v0
[
1 − 2

( tc
t

)]
]

(8.5.27)

for auxetic core and auxetic facesheets, respectively. The limiting state described by
Eq. (8.5.25) refers to a very narrow sandwich beam, which leads to

vT = 1 − v2
0

2

⎡

⎣ 1

1 − v0

[
1 − 2

( tc
t

)3] − 1

1 + v0

[
1 − 2

( tc
t

)3]

⎤

⎦ (8.5.28)

and

vT = 1 − v2
0

2

⎡

⎣ 1

1 + v0

[
1 − 2

( tc
t

)3] − 1

1 − v0

[
1 − 2

( tc
t

)3]

⎤

⎦ (8.5.29)

for auxetic core and auxetic facesheets, respectively. Figure 8.22 shows the torsional
Poisson’s ratio plotted against the relative core thickness for various aspect ratios in
the case of auxetic core, i.e., vc = −v f = −0.5, using Eqs. (8.5.18), (8.5.26) and
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Fig. 8.22 Effect of cross-sectional aspect ratio on the auxeticity of semi-auxetic sandwich structure
in the case of auxetic core (top) and auxetic facesheets (bottom), where tc/t refers to the relative
core thickness

(8.5.28), and auxetic facesheets, i.e., vc = −v f = +0.5, using Eqs. (8.5.19), (8.5.27)
and (8.5.29). As expected, the curves fall within −1/2 ≤ v ≤ 1/2 for 0 ≤ tc/t ≤ 1.

The plots of torsional Poisson’s ratio, vT versus relative core thickness, tc/t for
w/t = 0 and w/t∞, in Fig. 8.22 further imply that vT approaches its limits when
the cross-sectional aspect ratio tends to extreme values. However, the curves will
shift when core and facesheets of other Poisson’s ratio are used. To illustrate two
special cases that give antisymmetric curves, the relative core thickness that gives
zero torsional Poisson’s ratio was solved from either Eqs. (8.5.15) or (8.5.16) to give
tc/t = 0.682328 forw/t = 1.Based on this value of relative core thickness, variation
of the torsional Poisson’s ratio with respect to the cross-sectional aspect ratio can be
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plotted as shown in Fig. 8.23. The plot also shows the rate at which vT varies with
respect to w/t at tc/t = 0.682328. Unlike Fig. 8.22, the plots in Fig. 8.23 show
clearly that vT varies rapidly with respect to w/t for the range 10−1 < w/t < 10+1.
Outside this range, vT is almost constant for tc/t = 0.682328. The two curves are
antisymmetric when the horizontal axis is in logarithmic scale.

As a further comment in regard to non-antisymmetric curves, the equivalent
torsional Poisson’s ratio curves for auxetic core and auxetic facesheets will become
more positive and more negative, respectively, for lower relative core thickness.
Similarly, the equivalent torsional Poisson’s ratio curves for auxetic core and auxetic
facesheets will become more negative and more positive, respectively, for higher
relative core thickness. As a numerical example, the equivalent torsional Poisson’s
ratio of vT = +1/4 for auxetic core and vT = −1/4 for auxetic facesheets is
obtained at w/t = 1 if tc/t = 0.351146. This gives the range of equivalent torsional
Poisson’s ratio 0.114 < v < 0.433 and −0.433 < v < −0.114 for auxetic core and
auxetic facesheets, respectively, as shown in Fig. 8.24 (top). Likewise, the equivalent
torsional Poisson’s ratio of vT = −1/4 for auxetic core and vT = +1/4 for auxetic
facesheets is obtained at w/t = 1 if tc/t = 0.892831. This gives the range of equiv-
alent torsional Poisson’s ratio −0.348 < v < −0.166 and 0.166 < v < 0.348 for
auxetic core and auxetic facesheets, respectively, as shown in Fig. 8.24 (bottom).
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Fig. 8.23 Effect of cross-sectional aspect ratio on the auxeticity of semi-auxetic sandwich structure
at relative core thickness of tc/t = 0.682328
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Fig. 8.24 Effect of cross-sectional aspect ratio on the auxeticity of semi-auxetic sandwich structure
at relative core thickness of tc/t = 0.351146 (top) and tc/t = 0.892831 (bottom)

In considering three modes of loading on a semi-auxetic sandwich structure, four
categories of loading mode auxeticity have been identified, namely (i) full auxeticity
(FA), (ii) high auxeticity (HA), (iii) low auxeticity (LA), and (iv) no auxeticity
(NA). It was found that, unlike axial loading and bending auxeticities, the cross-
sectional aspect ratio affects torsional auxeticity and that the change in the torsional
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Poisson’s ratio is largest in the range 10−1 < w/t < 10+1. In addition, the torsional
auxeticity approaches its limits for extreme cross-sectional aspect ratios. Therefore,
the overall Poisson’s ratio at structural level can be designed to respond differently
under different loading modes as a means to achieve structural optimization. The
polarmoment area given in Eq. (8.5.3) is highly simplistic for convenient calculation.
Further refinement can be achieved by using (Young et al. 2011)

J = wt3
[
1

3
− 0.21

t

w

(
1 − t4

12w4

)]
(8.5.30)

for w > t .

8.6 Advanced Topics

Strek and Jopek (2012) performed computationalmodeling and simulation to provide
efficient alternatives to predict the parameters of the composites where one of
the phases is auxetic. They used a finite element method o find the engineering
constants (Young’s modulus and Poisson’s ratio) of auxetic composites consisting
of concentric cylindrical inclusions made of combinations of auxetic and classic
(non-auxetic) materials and observed that not only the mechanical properties of the
different composite phases influence the effectivemechanical properties of the whole
composite, but also the location of the same material phases do matter (Strek and
Jopek 2012). Thereafter, Strek et al. (2014) analyzed sandwich-structured composites
consisting of two different materials: auxetic and structural steel. The optimization
criterion adopted was minimum compliance for the load case where the frame’s top
boundary was downward loaded. Outer layers are made of steel while the middle
layer is two-phase solid material composite. Only the middle layer is optimized by
means of minimization of the objective function defined as the internal strain energy.
In the first part of this paper, Strek et al. (2014) studied the application of the solid
isotropic material with penalization (SIMP) model to find the optimal distribution of
a given amount of materials in sandwich-structured composite. In the second part,
they proposed a multilayered composite structure in which internal layers surfaces
are wavy. In both cases, the total energy strain was analyzed. Subsequently, Strek
et al. (2015) analyzed the effective properties and dynamic response of a sandwich
panel made of two facesheets and auxetic core by computer simulations, whereby
the inner composite layer is made of a cellular auxetic structure immersed in a filler
material of a given Poisson’s ratio (filler material fills the voids in structure), and each
cell is composed of an auxetic structure (reentrant honeycomb or rotating square),
i.e., exhibiting negative Poisson’s ratio without any filler. The effect of filler material
on the effective properties of the sandwich panel was investigated, and their proposed
structure showed interesting structural characteristics and dynamic properties. Strek
et al. (2015) clearly demonstrated that it is possible to create auxetic sandwich panels
made of two solid materials with positive Poisson’s ratio. They showed that it is even
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possible if the filler material is nearly incompressible, but can move in out-of-plane
direction, and that the effective Young’s modulus of such sandwich panels becomes
very large if Poisson’s ratio of the filler material tends to −1.
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Chapter 9
Auxetic Composites with Enhanced
Moduli

Abstract This chapter evaluates the extent of moduli increase, especially beyond
the simple rule-of-mixture mode, for composites consisting of positive and nega-
tive Poisson’s ratio phases. Specific topics include fiber composites, laminates, and
particle composites. The refinedmoduli models include correction terms or functions
to cater for the increased stiffness.

Keywords Auxetic composites · Correction terms · Enhanced moduli

9.1 Fundamentals

Arising from opposing Poisson’s ratio signs in constituents of composite mate-
rials, the requirement for retaining geometrical compatibility translates into higher
modulus. In this chapter, we consider the extent of moduli increase beyond the Voigt
rule-of-mixture.

9.2 Example: Semi-Auxetic Unidirectional Fiber
Composites

The 1D micromechanical model for the longitudinal Young’s modulus of a
continuous unidirectional fiber composite follows the Voigt formula

EL = EL f V f + ELm
(
1 − V f

)
(9.2.1)

The 3D model incorporates Poisson’s ratios of the individual phases, such as that
given by the self-consistent method

EL = EL f V f + ELm
(
1 − V f

)

+ 4
(
vLTm − vLT f

)2
KT f KTmGTTm

(
1 − V f

)
V f(

KT f + GTTm
)
KTm + (

KT f − KTm
)
GTTmV f

(9.2.2)
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In this example, we assume isotropic phases, i.e., EL f = E f , ELm = Em , vLTm =
vm , vLT f = v f , KT f = K f , KTm = Km and GTTm = Gm so that

EL

Em
= 1 +

(
E f

Em
− 1

)
V f + 4

(
vm − v f

)2(
1 − V f

)
V f[(

1
Gm

+ 1
K f

)
+
(

1
Km

− 1
K f

)
V f

]
Em

(9.2.3)

where the following moduli relations for isotropic phases

Gm = Em

2(1 + vm)
, Km = Em

3(1 − 2vm)
, K f = E f

3
(
1 − 2v f

) (9.2.4)

are valid. This leads to

EL

Em
= 1 +

(
E f

Em
− 1

)
V f

+ 4
(
vm − v f

)2(1 − V f
)
V f

2(1 + vm ) + 3
(
1 − 2v f

) Em
E f

+
(
3(1 − 2vm ) − 3

(
1 − 2v f

) Em
E f

)
V f

(9.2.5)

such that one may consider two special cases: (i) Special Case I in which the
constituents possess equal Poisson’s ratio magnitudes but opposite signs and (ii)
Special Case II whereby the phases have equal Young’s modulus and volume
fractions.

For Special Case I where each phase’s Poisson’s ratio is equal

∣∣v f

∣∣ = |vm | = v0 (9.2.6)

but with opposite signs

vm < 0 < v f (9.2.7)

then

EL

Em
= 1 +

(
E f

Em
− 1

)
V f + (4v0)2

(
1 − V f

)
V f

2(1 − v0) + 3(1 + 2v0)V f + 3(1 − 2v0)
(
1 − V f

)(
Em/E f

) (9.2.8)

For illustration, we select a typical value of Poisson’s ratio magnitude of v0 = 0.3
to give

EL

Em
= 1 +

(
E f

Em
− 1

)
V f + 1.44

(
1 − V f

)
V f

1.4 + 4.8V f + 1.2
(
1 − V f

)(
Em/E f

) (9.2.9)

This illustration was performed for various E f /Em ratio, as furnished in Fig. 9.1.
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Fig. 9.1 Dimensionless longitudinal Young’s modulus, EL/Em , versus fiber volume fraction of
continuous unidirectional fiber composites considering constituent Poisson’s ratios (dashed curves)
and based on rule-of-mixture (straight lines) at v f = 0.3, vm = −0.3 for various E f /Em ratio

Reference to Fig. 9.1 shows that the mismatch in Poisson’s ratio cannot be
neglected when the Young’s moduli ratio of the constituent materials fall between
0.5 and 2. Specifically when the difference in Young’s moduli is less than 10%, the
effect of Poisson’s ratio mismatches, which result in Young’s modulus that exceeds
the rule-of-mixture description, is significant for a semi-auxetic composite.

ForSpecialCase II,where the phases possess of equalYoung’smodulus E f = Em ,
we have (Lim and Acharya 2010)

EL

Em
= 1 + 4

(
vm − v f

)2(
1 − V f

)
V f

5 + 2
(
vm − 3v f

)+ 6
(
v f − vm

)
V f

(9.2.10)

For illustration,we let the volume fraction of each phase to be equal, i.e.,V f = 0.5,
such that
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EL

Em
= 1 +

(
vm − v f

)2

5 − 3v f − vm
(9.2.11)

This illustration was performed for −1/2 ≤ v f ≤ 1/2 and −1/2 ≤ vm ≤ 1/2
and furnished in Fig. 9.2.

It can be seen that the surpassing of the rule-of-mixture is insignificant for a fully
positive and a fully negative Poisson’s ratio phases, i.e., v f vm > 0. However, the
overshooting of Young’s modulus above the rule-of-mixture becomes significant for
a semi-auxetic composite, whereby v f vm < 0.

It can be concluded that the surpassing of the rule-of-mixture relation is significant
when the phases possess Poisson’s ratios of opposing signs and where the difference
of Young’s moduli between the phases is insignificant. As a design practice, it is
suggested that the rule-of-mixtures equation be replaced by other descriptions, which
take into account Poisson’s ratios of the constituents, when dealing with composites
that possess positive and negative Poisson’s ratio phases.

9.3 Example: Out-of-Plane Modulus of Semi-auxetic
Laminates

With reference to Fig. 9.3, the effective in-plane Young’s modulus, i.e., in the X-
direction or Y-direction, obeys the simple rule-of-mixture by Voigt (1889, 1910)

EVoigt = VAEA + VBEB (9.3.1)
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Fig. 9.3 a Schematics for a semi-auxetic laminate, and b idealized representative volume element
for analysis

while the effective out-of-plane Young’s modulus, i.e., in the Z-direction, obeys the
inverse rule-of-mixture by Reuss (1929)

1

EReuss
= VA

EA
+ VB

EB
(9.3.2)

where the volume fractions for materials A and B obey

VA + VB = 1 (9.3.3)

Although it iswidely believed that the effectiveYoung’smodulus of any composite
EC is bounded by the simple and inverse rules-of-mixtures
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EReuss < EC < EVoigt (9.3.4)

and that the out-of-plane Young’s modulus of a laminate consisting of isotropic
laminas is EC = EReuss, it will be shown that not only Poisson’s ratio mismatch
gives EC > EReuss for the latter, but also that

EC > EVoigt (9.3.5)

Taking Hooke’s Law in three dimension, the stress–strain relations for materials
A and B are

⎧
⎨

⎩

εAX

εAY

εAZ

⎫
⎬

⎭
= 1

EA

⎡

⎣
1 −vA −vA

−vA 1 −vA

−vA −vA 1

⎤

⎦

⎧
⎨

⎩

σAX

σAY

σAZ

⎫
⎬

⎭
(9.3.6)

and

⎧
⎨

⎩

εBX

εBY

εBZ

⎫
⎬

⎭
= 1

EB

⎡

⎣
1 −vB −vB

−vB 1 −vB

−vB −vB 1

⎤

⎦

⎧
⎨

⎩

σBX

σBY

σBZ

⎫
⎬

⎭
(9.3.7)

respectively. Prescribing a normal load PZ on the Z-surface as shown in Fig. 9.3,
equilibrium consideration leads to

σAZ = σBZ = σZ = PZ

xy
(9.3.8)

and

σBX = −a

b
σAX , σBY = −a

b
σAY (9.3.9)

Substituting Eqs. (9.3.8) and (9.3.9) into Eqs. (9.3.6) and (9.3.7), and imposing
common in-plane deformation, i.e.,

εAX = εBX , εAY = εBY (9.3.10)

give

(
1 + aEA

bEB

)
σAX −

(
vA + vB

aEA

bEB

)
σAY = PZ

xy

(
vA − vB

EA

EB

)
(9.3.11)

and

−
(

vA + vB
aEA

bEB

)
σAX +

(
1 + aEA

bEB

)
σAY = PZ

xy

(
vA − vB

EA

EB

)
(9.3.12)
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Comparison of terms in Eqs. (9.3.11) and (9.3.12) suggests σAX = σAY , which
leads to

σAX = σAY =
PZ
xy

(
vA − vB

EA
EB

)[
(1 + vA) + (1 + vB) aEA

bEB

]

(
1 − v2

A

)+ 2(1 − vAvB) aEA
bEB

+ (
1 − v2

B

)( aEA
bEB

)2 (9.3.13)

Substituting

εAZ = 1

EA
[σAZ − vA(σAX + σAY )] = 1

EA

[
PZ

xy
− 2vAσAX

]
(9.3.14)

and

εBZ = 1

EB
[σBZ − vB(σBX + σBY )] = 1

EB

[
PZ

xy
+ 2vB

a

b
σAX

]
(9.3.15)

into

εZ = a

a + b
εAZ + b

a + b
εBZ (9.3.16)

gives

εZ = PZ

xy

[
a

a + b

(
1

EA

)
+ b

a + b

(
1

EB

)
− C

]
(9.3.17)

where

C =
2

a+b

(
vA
EA

− vB
EB

)2(
1+vA
aEA

+ 1+vB
bEB

)

1−v2A
(aEA)2

+ 2(1−vAvB )

(aEA)(bEB )
+ 1−v2B

(bEB )2

(9.3.18)

Since EC = σZ/εZ and

VA = a

a + b
, VB = b

a + b
(9.3.19)

for the laminate under consideration, therefore

1

EC
= εZ

PZ/(xy)
= VA

EA
+ VB

EB
− C (9.3.20)

where
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C =
2
(

vA
EA

− vB
EB

)2(
1+vA
VAEA

+ 1+vB
VB EB

)

1−v2A
(VAEA)2

+ 2(1−vAvB )

(VAEA)(VB EB )
+ 1−v2B

(VB EB )2

(9.3.21)

When EA = EB and vA = vB , we have C = 0, therefore with reference to
Eq. (9.3.20), we have EC = EReuss under this specific condition. When EA = EB

but vA �= vB , it is possible to have C > 0, therefore implying EC > EReuss. Hence,
this example illustrates the out-of-plane Young’s modulus exceeding the inverse
rule-of-mixturewhen there is amismatch inPoisson’s ratios of the individual laminas.

To visually observe the influence of Poisson’s ratios of the individual phases,
we consider a special case whereby Young’s moduli of both phases are equal, i.e.,
EA = EB = E0. With this condition, both the simple and inverse rules-of-mixture
collapse into a constant independent of the volume fraction of constituents. When
VA = VB = 0.5, the dimensionless out-of-plane Young’s modulus can be expressed
as (Lim 2009)

EC

E0
=
(
1 − (2 + vA + vB)(vA − vB)2

4 − (vA + vB)2

)−1

(9.3.22)

Figure 9.4a shows the plot of Eq. (9.3.22) for each phase with individual Poisson’s
ratios ranging between −1/2 and 1/2 (Lim 2013). It is observed that Poisson’s
ratios of the individual phases do not significantly influence the out-of-plane Young’s
modulus of a conventional laminate (i.e., both vA and vB are positive) and also for
the case of fully auxetic laminate (i.e., both vA and vB are negative), as evident from
the symmetric moduli profile about vA = vB but not so about vA = −vB , as shown
in Fig. 9.4b. However, Poisson’s ratios of individual phases significantly influence
the out-of-plane Young’s moduli for a semi-auxetic laminate (i.e., vAvB < 0). This
is an example whereby both the fully conventional and fully auxetic structures share
common characteristics, while a semi-auxetic structure possesses behavior that is
unique from fully conventional and fully auxetic structures.

To investigate the effect of varying Young’s moduli of the constituent materials,
we plot EC/EA based on Eqs. (9.3.20) and (9.3.21) at vAvB = −0.1 whereby vA and
vB are of equal magnitude but opposite signs. The magnitude |vA| = |vB | = √

0.1 =
0.316 would be realistic for illustration since most materials possess Poisson’s ratio
between 0.3 and 1/3. Substituting ±vA = ∓vB = √

0.1, and hence vAvB = −0.1
and v2

A = v2
B = 0.1, into Eqs. (9.3.20) and (9.3.21) leads to (Lim 2009)

EC

EA
=
(
VA(1 − d) + VB

EA

EB

)−1

(9.3.23)

where
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Fig. 9.4 Out-of-planeYoung’smodulus profile of a laminatewith laminas of equal volume fractions
and equal Young’s moduli for −1/2 ≤ vi ≤ 1/2 where i = A, B, showing: a large out-of-plane
modulus when Poisson’s ratio of alternating laminas possesses opposite Poisson’s ratio signs, and
b a contour plot showing symmetry about vA = vB but no symmetry about vA = −vB
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d =
0.2

(
1 + EA

EB

)2((
1 ± √

0.1
)

+
(
1 ∓ √

0.1
)
VAEA
VB EB

)

0.9 + 2.2 VAEA
VB EB

+ 0.9
(
VAEA
VB EB

)2 (9.3.24)

Figure 9.5 shows the plots of EC/EA versus VA for EB/EA = 1.2, 1.4, 1.6, 1.8
with alternating laminas of equal Poisson’s ratio magnitude but opposing signs
±vA = ∓vB = √

0.1 (Lim 2013).
It is noted that when Young’s moduli of both phases are equal or almost equal

EB/EA ≈ 1, such as in Fig. 9.5, the effective out-of-plane Young’s moduli for
±vA = ∓vB = √

0.1 are not only greater than the inverse rule-of-mixture, but also
significantly overshoots the simple rule-of-mixture. This observation is crucial as
it reveals that many simplified micromechanical models, which are bounded by the
simple and inverse rules-of-mixture, give significantly underestimated out-of-plane
Young’s modulus of a semi-auxetic laminates. More importantly, the inverse rule-of-
mixture, which is commonly used for quantifying the out-of-plane Young’s modulus
of laminates, gives the worst estimation. The out-of-plane Young’s modulus of a
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Fig. 9.5 Plots of dimensionless out-of-planeYoung’smoduliwith respect to themodulus ofmaterial
A versus the volume fraction of materialAwith±vA = ∓vB = √

0.1 in comparison with the simple
rule-of-mixture and inverse rule-of-mixture for various EB/EA ratio
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Fig. 9.6 Out-of-plane
Young’s modulus profile for
a laminate with laminas of
equal volume fractions and
equal Young’s moduli for
−1 ≤ vi ≤ 1/2 where
i = A, B

semi-auxetic laminate reduces for higher EB/EA ratio; however, both out-of-plane
Young’s moduli for ±vA = ∓vB = √

0.1 are still significantly above the inverse
rule-of-mixture. Therefore, the use of laminas of alternating Poisson’s ratio signs
gives rise to very high out-of-plane modulus that not only exceeds the inverse rule-
of-mixture, but also the simple rule-of-mixture especially when the Young’s moduli
of the laminas are very close.

Reference to Eq. (9.3.22) for laminates of isotropic laminas with equal Young’s
moduli and equal thicknesses, computed results for the effective out-of-plane
modulus at ±vA = ∓vB = 1/2 is EC = 2E0, i.e., twice the modulus of the
lamina. When extended to either (vA, vB) = (−1, 1/2) or (vA, vB) = (1/2,−1), the
computed results give EC = 10E0, or ten times the modulus of the lamina. A plot of
dimensionless out-of-plane modulus EC/E0 for the entire range of Poisson’s ratio
is shown in Fig. 9.6.

9.4 Example: In-Plane Modulus of Semi-auxetic Laminates

Extending the Young’s modulus according to Voigt (1889, 1910) for n number of
phases, we have

EVoigt = V1E1 + V2E2 + · · · + VnEn (9.4.1)

where V1+V2+· · ·+Vn = 1,which is applicable for describing the in-planemodulus
of a laminate of isotropic laminas. Alternatively, Eq. (9.4.1) can be rewritten in a
dimensionless form as

EC

E0
= V1E1 + V2E2 + · · · + VnEn

n
√
E1E2 . . . En

(9.4.2)
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Fig. 9.7 Representative
volume element for a
laminate of alternating
laminas
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where E0 = n
√
E1E2 . . . En . For a two-phase composite, the dimensionless modulus

form reduces to

EC

E0
= VA

√
EA

EB
+ VB

√
EB

EA
(9.4.3)

where

E0 = √
EAEB (9.4.4)

in paving a way for comparison with a model that considers Poisson’s ratios

EC
E0

= VA

√
EA

EB
fA(VA, VB , EA, EB , vA, vB)

+ VB

√
EB

EA
fB(VA, VB , EA, EB , vA, vB) (9.4.5)

With reference to Fig. 9.7, the application of Hooke’s law gives the constitutive
relations

⎧
⎨

⎩

εAX

εAY

εAZ

⎫
⎬

⎭
= 1

EA

⎡

⎣
1 −vA −vA

1 −vA

sym 1

⎤

⎦

⎧
⎨

⎩

σAX

σAY

σAZ

⎫
⎬

⎭
(9.4.6)

and

⎧
⎨

⎩

εBX

εBY

εBZ

⎫
⎬

⎭
= 1

EB

⎡

⎣
1 −vB −vB

1 −vB

sym 1

⎤

⎦

⎧
⎨

⎩

σBX

σBY

σBZ

⎫
⎬

⎭
(9.4.7)

for laminas A and B, respectively.
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Prescribing an applied load PX on the x-surface, we have

σAX (ay) + σBX (by) = PX (9.4.8)

and

σAY (ax) + σBY (bx) = 0 (9.4.9)

based upon equilibrium in the x- and y-directions, respectively. Imposing equal in-
plane normal strains as indicated by Eq. (9.3.10), plane stress condition

σAZ = σBZ = 0 (9.4.10)

zero shear strains

τAi j = τBi j = 0 (i, j = X,Y, Z) (9.4.11)

and the equilibrium relations on the constitutive relations give

σAX

(
EB

EA
+ a

b

)
− σAY

(
vA

EB

EA
+ vB

a

b

)
= PX

by

σAY

(
EB

EA
+ a

b

)
− σAX

(
vA

EB

EA
+ vB

a

b

)
= −vB

PX

by
(9.4.12)

The stresses σAX and σAY can be simultaneously solved from Eq. (9.4.12) to give

σAX =
PX
by(

EB
EA

+ a
b

)2−
(
vA

EB
EA

+vB
a
b

)2

[
+
(

EB
EA

+ a
b

)
− vB

(
vA

EB
EA

+ vB
a
b

)]

σAY =
PX
by(

EB
EA

+ a
b

)2−
(
vA

EB
EA

+vB
a
b

)2

[
−vB

(
EB
EA

+ a
b

)
+
(
vA

EB
EA

+ vB
a
b

)] (9.4.13)

Substituting the expression of σAX from Eq. (9.4.13) into Eq. (9.4.8),we have

σBX =
PX
by

(
EB
EA

+ a
b

)2 −
(
vA

EB
EA

+ vB
a
b

)2

[
EB

EA

(
EB

EA
+ a

b

)
− vA

EB

EA

(
vA

EB

EA
+ vB

a

b

)]
(9.4.14)

These three stresses would be sufficient for calculating the in-plane Young’s
modulus, defined as EX = σX/εX or
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EC =
PX

(a+b)y

εAX
= σAX

(
a

a+b

)+ σBX
(

b
a+b

)

1
EA
[σAX − vAσAY ]

(9.4.15)

Substituting Eqs. (9.4.13) and (9.4.14) into Eq. (9.4.15) leads to (Lim 2010)

EC
E0

= VA

√
EA

EB

aEA

(
1 − v2B

)
+ bEB (1 − vAvB )

aEA

(
1 − v2B

)
+ bEB

(
1 − v2A

)

+ VB

√
EB

EA

aEA(1 − vAvB ) + bEB

(
1 − v2A

)

aEA

(
1 − v2B

)
+ bEB

(
1 − v2A

) (9.4.16)

Comparing Eq. (9.4.16) with Eq. (9.4.5) implies

f A =
VAEA

(
1 − v2B

)
+ VB EB(1 − vAvB)

VAEA

(
1 − v2B

)
+ VB EB

(
1 − v2A

) ,

fB =
VAEA(1 − vAvB) + VB EB

(
1 − v2A

)

VAEA

(
1 − v2B

)
+ VB EB

(
1 − v2A

) (9.4.17)

The following may then be inferred from Eq. (9.4.17)

(i) f A = fB = 1 when vA = vB , therefore EC = EVoigt

(ii) f A > 1, fB > 1 when vAvB < 0, therefore EC > EVoigt

(iii) f A > fB = 1 when vA �= vB = 0, therefore EC > EVoigt

(iv) fB > f A = 1 when vB �= vA = 0, therefore EC > EVoigt

Of the four special cases considered, the first case reduces the in-plane Young’s
modulus of the semi-auxetic laminate into the rule-of-mixture. The other three
conditions (vAvB < 0, vA �= vB = 0, and vB �= vA = 0) give descriptions of
Young’s modulus surpassing that of the rule-of-mixture. The variation of the relative
constituents’ volume fraction, moduli, and Poisson’s ratios are separately discussed.

To investigate the effect of Poisson’s ratio product, we let EA = EB = E0 and
vA = −vB in order to observe the change in the in-plane Young’s modulus when both
the constituent material possess equal Young’s moduli. The dimensionless Young’s
moduli are hence reduced to

EC

E0
= VA fA + VB fB (9.4.18)

where

f A = VA
(
1 − v2

0

)+ VB
(
1 + v2

0

)

1 − v2
0

, fB = VA
(
1 + v2

0

)+ VB
(
1 − v2

0

)

1 − v2
0

(9.4.19)
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Fig. 9.8 Variation in the dimensionless in-plane Young’s modulus with the volume fraction for
increasing magnitude of Poisson’s ratio product vAvB whereby EA = EB and vA = −vB

in which v0 is a non-negative number defined as

v0 = |vA| = |vB | (9.4.20)

Figure 9.8 shows the variation of EC/E0 with one of the constituent’s volume
fraction for incremental product of the constituents’ Poisson’s ratios vAvB = −n/20
for n = 0, 1, 2, 3, 4. It can be seen that the EC/E0 profile is symmetric due to equal
magnitudes of the Poisson’s ratios, and that the increase in EC/E0 is up to 25%
at VA = VB = 0.5 for vAvB = −0.2. This significance is overlooked when the
rule-of-mixture is used.

The effect of relative constituent moduli, i.e., EA/EB , on EC/E0 can be evaluated
for constituents of opposing Poisson’s ratio signs. The composite’s in-plane Young’s
modulus remains as the form given in Eq. (9.4.5) with the functions in Eq. (9.4.17)
reduced to

f A = VAEA
(
1 − v2

0

)+ VBEB
(
1 + v2

0

)

EVoigt
(
1 − v2

0

) , fB = VAEA
(
1 + v2

0

)+ VBEB
(
1 − v2

0

)

EVoigt
(
1 − v2

0

)

(9.4.21)

Figure 9.9 shows the plots of EC/E0 curves at relative constituent moduli of
EA/EB = 22n−1 with n = −1, 0, 1, 2, i.e., geometric increment of 22, with vA =
−vB and vAvB = −0.1. The straight lines that connect the two ends of each curve
are EVoigt/E0.
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Fig. 9.9 Variation in the semi-auxetic’s in-plane Young’s modulus with volume fraction of material
A for various EA/EB ratio at vAvB = −0.1 with vA = −vB

The EC/E0 profiles with varying vA and vB at VA = VB = 0.5 are considered
next to observe the effect of constituents’ relative Poisson’s ratio. The constituents’
Young’s moduli are set equal for this illustration. For this category, the dimensionless
in-plane Young’s modulus simplifies to

EC

E0
= 1

2
( f A + fB) (9.4.22)

with

f A = 2 − vAvB − v2
B

2 − v2
A − v2

B

, fB = 2 − vAvB − v2
A

2 − v2
A − v2

B

(9.4.23)

Figure 9.10 shows the plot of EC/E0 for −1/2 ≤ vi ≤ 1/2 with i = A, B
fixed at EA/EB = VA/VB = 1. The results range from EC/E0 = 1 at vA = vB to
EC/E0 = 4/3 at vAvB = −1/4, exhibiting symmetry about vA = vB and vA = −vB .

Basedon the plot of Fig. 9.10, it is evident that themagnitude of difference between
the constituents’ Poisson’s ratios, |vA − vB |, contributes significantly toward the
laminate’s in-plane Young’s modulus. The summary in Fig. 9.11 reiterates the effect
of combined positive and negative Poisson’s ratio laminas. The attainment of in-plane
Young’s modulus beyond the upper limit set by the rule-of-mixture is salient only
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Fig. 9.11 Map summarizing
the extent of in-plane
Young’s modulus of a
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when both conventional and auxetic laminas are present to constitute a semi-auxetic
laminate.

The higher than rule-of-mixture in-plane modulus of a laminate consisting of
laminas with alternating Poisson’s ratio sign based on present analytical approach
compares well with finite element approach (Kocer et al. 2009), Cosserat elas-
ticity and homogenization approach (Donescu et al. 2009), self-consistent approach
(Chirima et al. 2009), and the formulation byLiu et al. (2009). The enhanced effective
modulus can be elucidated as follows. Assuming an RVE to be defined by a layer of
conventional material and an auxetic material being stretched in the x-direction, the
dimensions in the y- and z-directions shrink for the conventional layer but expand for
the auxetic layer, if there is no bonding between both layers. Due to perfect bonding
between the two layers, there exists an interlaminar shear stress (Fig. 8.4.3) that tends
to expand the conventional layer and contract the auxetic layer in the y-direction. This
results in reduced elongation in the x-direction. The reduced strain in the x-direction
translates to increased modulus in the same direction (Lim 2010).

Although the rule-of-mixture is commonly applied for predicting the in-plane
modulus of laminates and longitudinal modulus of continuous unidirectional fiber
composites, and hence known to be the upper bound in a general sense, it has been
shown that the rule-of-mixture is actually the lower bound within the context of in-
plane properties of semi-auxetic composite laminates. For a fixed volume fraction of
constituent materials, the in-plane modulus reduces to a minimum when Poisson’s
ratios for both constituents are zero. Laminates with isotropic laminas possess in-
plane properties that overshoot themodulus by rule-of-mixture when there is a differ-
ence in the laminas’ Poisson’s ratios. The characteristic of surpassing the rule-of-
mixture formula is therefore generally existent, albeit not significant, in conven-
tional and fully auxetic materials. However, for laminates that consist of laminas
with opposing Poisson’s ratio signs arranged in alternative sequence, the effects of
increased in-plane Young’s modulus above the rule-of-mixture are significant and
therefore must be accounted for in engineering design.

9.5 Example: Further Counter-Intuitive Modulus
from Semi-auxetic Laminates

Following Sect. 9.4which shows the effectiveYoung’smodulus exceeding the simple
rule-of-mixture, this example shows that for a composite whereby there is a range
of volume fraction in which the in-plane composite modulus, EC , is greater than the
modulus of the phase with higher modulus, i.e.,

EA < EB < EC (9.5.1)

whereby phaseB has greatermodulus than phaseA, under certain circumstances. This
is one counter-intuitive property as it is normally taken for granted that the composite
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modulus falls between the moduli of the constituent phases, i.e., EA < EC < EB .
The second counter-intuitive property is that, under limited cases, the maximum
point of the in-plane composite modulus occurs with the volume fraction of the
stiffer phase being less than that of the other phase, i.e.,

∂EC

∂VB
= 0; (VA > VB, EA < EB) (9.5.2)

This characteristic is counter-intuitive because one would intuitively expect that
if a maximum point was to occur, it would take at VA < VB if EA < EB .

Recall that for a multiphase composite, its effective modulus EC on the basis of
one-dimensional analysis falls within the range

(
n∑

i=1

Vi

Ei

)−1

≤ EC ≤
n∑

i=1

Vi Ei ,

n∑

i=1

Vi = 1 (9.5.3)

where n is the total number of phases, while Vi and Ei are the volume fraction and
Young’s modulus, respectively, of the i th phase. This can be reduced for the case of
two-phase composite

(
VA

EA
+ VB

EB

)−1

≤ EC ≤ VAEA + VBEB, VA + VB = 1 (9.5.4)

whereupon the upper and lower limits are easily recognizable as the direct rule-of-
mixture, or Voigt model (1889, 1910), and the inverse rule-of-mixture, or the Reuss
model (1929), respectively. However, the analysis in the previous section gave the
in-plane modulus of laminates as

EC = VAEA fAB + VBEB fBA (9.5.5)

where

fi j =
Vi Ei

(
1 − v2

j

)
+ Vj E j

(
1 − viv j

)

Vi Ei

(
1 − v2

j

)
+ Vj E j

(
1 − v2

i

) (9.5.6)

for i, j = A, B. Since fi j = 1 if and only if vi = v j , it follows that EC ≥
VAEA + VBEB . In the case of laminates with layers of alternating Poisson’s ratio,
the in-plane modulus always exceeds the rule-of-mixture. Due to the 3D nature of
Eq. (9.5.5) while retaining its resemblance to the rule-of-mixture, this equation is
adapted for obtaining a criterion by which the laminate’s in-plane modulus exceeds
the stiffness of the stiffer phase. To pave a way for this analysis, Eqs. (9.5.5) and
(9.5.6) are rewritten as
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EC =
EA + VB

[
EB

(
1−vAvB

1−v2B

)
− EA

]

1 + VB
1−VB

EB
EA

(
1−v2A
1−v2B

)

+
EA

(
1−vAvB

1−v2A

)
+ VB

[
EB − EA

(
1−vAvB

1−v2A

)]

1 + 1−VB
VB

EA
EB

(
1−v2B
1−v2A

) (9.5.7)

so as to obtain the first derivative with respect to the volume fraction of the stiffer
phase

dEC

dVB
=

(1 − VB)
[
EB

(
1−vAvB

1−v2B

)
− EA

]

1 − VB + VB
EB
EA

(
1−v2A
1−v2B

)

−
{
EA + VB

[
EB

(
1−vAvB

1−v2B

)
− EA

]}
EB
EA

(
1−v2A
1−v2B

)

[
1 − VB + VB

EB
EA

(
1−v2A
1−v2B

)]2

+
VB

[
EB − EA

(
1−vAvB

1−v2A

)]

VB + (1 − VB) EA
EB

(
1−v2B
1−v2A

)

+
{
EA

(
1−vAvB

1−v2A

)
+ VB

[
EB − EA

(
1−vAvB

1−v2A

)]}
EA
EB

(
1−v2B
1−v2A

)

[
VB + (1 − VB) EA

EB

(
1−v2B
1−v2A

)]2 (9.5.8)

Imposing the boundary condition

dEC

dVB
= 0; (VB = 1) (9.5.9)

on Eq. (9.5.8), we have the threshold moduli ratio

(
EB

EA

)∗
= 2(1 − vAvB) − (

1 − v2
B

)

1 − v2
A

(9.5.10)

As such, there will be certain range of volume fraction in which EC > EB ,
whereby lamina B is the stiffer phase if EB/EA < (EB/EA)

∗. Since we consider
EB > EA, then there exists a maximum point when the following range condition

1 <
EB

EA
<

2(1 − vAvB) − (
1 − v2

B

)

1 − v2
A

(9.5.11)

is complied with (Lim and Acharya 2011).
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To obtain the range of volume fraction whereby the in-plane laminate modulus is
higher than that of the stiffer lamina, we substitute EC = EB into Eq. (9.5.7) to give

V 2
B − [1 + g(A, B)]VB + g(A, B) = 0 (9.5.12)

where

g(A, B) = EA(EA − EB)
(
1 − v2

B

)

(EA − EB)2 − (EAvB − EBvA)
2 (9.5.13)

and that the solutions to Eq. (9.5.12) are

VB = 1

2

{
[1 + g(A, B)] ±

√
[1 − g(A, B)]2

}
(9.5.14)

Since the upper solution

V upp
B = 1 (9.5.15)

is trivial, the range for EC > EB is defined by the lower solution

V low
B = g(A, B) (9.5.16)

i.e., (Lim and Acharya 2011)

(
1 − EB

EA

)(
1 − v2

B

)

(
1 − EB

EA

)2 −
(
vB − EB

EA
vA

)2 < VB < 1 (9.5.17)

for EC > EB > EA.
To demonstrate the criterion for the in-plane laminate modulus that exceeds the

modulus of the stiffer phase, we use a typical case whereby |vA| = |vB | = 1/3
such that vA = −vB . This gives the threshold moduli ratio (EB/EA)

∗ described in
Eq. (9.5.10) as 1.5. Figure 9.12 depicts a plot of dimensionless in-plane modulus,
EC/EA, against the volume fraction of the stiffer phase, VB , for moduli ratio EB/EA

of 1.2, 1.5, and 1.8, based on Eq. (9.5.7). It can be seen that for EB/EA < 1.5,
there exists a range of VB where EC > EB but not when EB/EA > 1.5, while a
threshold point is observedwhen EB/EA = 1.5. Figure 9.12 (bottom right) combines
the other three plots by replacing EC/EA with the normalized in-plane modulus
(EC − EA)/(EB − EA). Subsequent illustrations adopt this normalized modulus
instead of the dimensionless modulus in order to collapse the end points (at VB = 1)
into a single point for better comparison.

Figure 9.13 shows a 3D surface plot of the threshold moduli ratio described in
Eq. (9.5.10). This diagram shows a U-shaped surface that determines the existence
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Fig. 9.12 Plots of dimensionless laminate in-plane modulus versus volume fraction of the stiffer
phase with |vA| = |vB | = 1/3 and vA = −vB for various EB/EA ratio

Fig. 9.13 Distribution of
threshold moduli ratio
(EB/EA)∗ for
−1/2 ≤ vi ≤ 1/2 where
i = A, B

of a maximum point for the in-plane modulus within 0 < VB < 1. One can expect
the in-plane modulus to exceed that of the stiffer phase for a certain combination of
Poisson’s ratio of both phases if themoduli ratio EB/EA is trapped between the plane
EB/EA and the curved surface. Since the surface touches the plane at vA = vB , it
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follows that there are two separate regions (one on each side of the line vA = vB) by
which the in-plane modulus can exceed the modulus of the stiffer phase. The nature
of this surface shows that the in-plane modulus is more likely to exceed the modulus
of the stiffer phase when the two phases possess Poisson’s ratio of opposite signs.

Although the present model allows plotting of the in-planemodulus for maximum
Poisson’s ratio of 0.5, it does not cater to Poisson’s ratio of exactly −1. As such,
illustration is made for cases where Poisson’s ratio of the laminas is being alternated
at 0.5 and −0.99. Figure 9.14 (top) shows the plots of normalized in-plane modulus
against the volume fraction of the stiffer phase at vA = −0.99 and vB = 1/2 for
EB/EA = 2, 10, 50, and 250. The rule-of-mixture is incorporated for comparison.
Since the threshold moduli ratio is (EB/EA)

∗ = 112.6, there exists a range of VB

where EC > EB for EB/EA = 2, 10, and 50 but not for EB/EA = 250. When
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Fig. 9.14 Plots of normalized in-plane laminate modulus against the volume fraction of the stiffer
phase for vA = −0.99 and vB = 1/2 (top), and vA = 1/2 and vB = −0.99 (bottom)
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Poisson’s ratios are switched to vA = 1/2 and vB = −0.99 as in Fig. 9.14 (bottom),
only the EB/EA = 2 curve exhibits a range of VB where EC > EB . This is not
surprising since the corresponding threshold ratio is (EB/EA)

∗ = 3.96. What is
counter-intuitive, however, is that the maximum point occurs at VB = 0.13. In other
words, the maximum modulus can occur even when the volume fraction of the more
compliant phase is greater than that of the stiffer phase.

Perusal to Fig. 9.14 (top) again shows that as the moduli ratio increases from
EB/EA = 2 to 10 and then to 50, the VB of the maximum point drops from 0.83
to 0.73 and then to 0.67, respectively. Correspondingly, the drop in the moduli ratio
widens the range in which EC > EB . Reference to Fig. 9.14 (top) reveals the range
as 0.37 < VB < 1, 0.25 < VB < 1 and 0.15 < VB < 1 for EB/EA = 50,
10, and 2, respectively. In Fig. 9.14 (bottom), the range is extremely wide, i.e.,
0.0067 < VB < 1 for EB/EA = 2.

The range of VB at which the in-plane modulus exceeds the modulus of the stiffer
phase can be visualized from Eq. (9.5.16), which is the lower solution for VB for
EC = EB , since it is known that the upper solution is VB = 1. The curves of moduli
ratio which gives rise to this property, (EB/EA)

∗∗, against the corresponding volume
fraction of the stiffer phase

V low
B =

(
1 −

(
EB
EA

)∗∗)(
1 − v2

B

)

(
1 −

(
EB
EA

)∗∗)2 −
(
vB −

(
EB
EA

)∗∗
vA

)2 (9.5.18)

are plotted in Fig. 9.15 for vA = −0.99 with vB = 1/2 (top) and vA = 1/2 with
vB = −0.99 (bottom).

For the extreme case where vA = −0.99 and vB = 1/2, a range of VB where
EC > EB begins to exist from the threshold point of VB = 1 at EB/EA = 112.6,
and this range widens with decreasing moduli ratio with diminishing rate until about
EB/EA ≈ 20 and thereafter with increasing rate until EB/EA = 1. As for the other
extreme condition of vA = 1/2 and vB = −0.99, the range of VB where EC > EB

begins to exist from the threshold point of VB = 1 at EB/EA = 3.96, and this range
widens rapidly with decreasing moduli ratio until EB/EA = 3.5 and thereafter very
little change in the VB range is seen until EB/EA = 1.

We may now conclude that there exist certain conditions that lead to further
counter-intuitive properties whereby the in-plane laminate modulus exceeds the
modulus of the stiffer phase. The conditions that enable this phenomenon to take
place have been established together with the corresponding range of volume frac-
tion. In addition, it has been shown for one of the extreme cases that the maximum
point of the laminate modulus can occur even when the volume fraction of the stiffer
phase is lower than the volume fraction of the more compliant phase (Lim and
Acharya, 2011).
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Fig. 9.15 Plots of moduli
ratio versus the lower limits
of the VB range whereby
EC = EB for vA = −0.99
and vB = 1/2 (top), and
vA = 1/2 and vB = −0.99
(bottom)
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9.6 Example: Comparison Between In-Plane
and Out-of-Plane Modulus of Semi-auxetic Laminates

Since most materials possess Poisson’s ratio of between 0.3 and 1/3, the magnitude
|vA| = |vB | = √

0.1 ≈ 0.316 was selected in Sect. 9.3 such that the adoption of
vAvB = −0.1 and v2

A = v2
B = 0.1 gave Eqs. (9.3.23) and (9.3.24). Using lamina

modulus ratio of EB/EA = 1.2, 1.4, 1.6, and 1.8, it was shown in Fig. 9.5 that

the maximum point of EC/EA at (vA, vB) =
(
+√

0.1,−√
0.1

)
is higher than the

maximum point of EC/EA at (vA, vB) =
(
−√

0.1,+√
0.1

)
, and that the maximum
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Fig. 9.16 Plots of dimensionless effective Young’s modulus with respect to the moduli of materials
A and B, EC/E0, versus the volume fraction of materials A, VA, whereby EA = EB = E0 with
+vA = −vB = √

0.1 and−vA = +vB = √
0.1 for out-of-plane direction and with±vA = ∓vB =√

0.1 for in-plane direction

point of EC/EA becomes significantly higher than the modulus of the stiffer material
when the difference in modulus between both lamina decreases. What happens when
both the laminas possess equal Young’s modulus?

For such a unique case, the same maximum out-of-plane modulus of EC =
1.258E0 occurs at VA = 0.42 for (vA, vB) =

(
+√

0.1,−√
0.1

)
and at VA = 0.58

for (vA, vB) =
(
−√

0.1,+√
0.1

)
, as shown in Fig. 9.16. A uniqueness exhibited in

Fig. 9.16 is that the maximum out-of-plane modulus is higher than the maximum in-
plane modulus of semi-auxetic laminate under the condition of equal constituent
Young’s modulus EA = EB and equal Poisson’s ratio magnitude vA = −vB .
Normally, the out-of-plane modulus is lower than that in the in-plane direction. It
can therefore be concluded that the out-of-plane modulus of a laminate is higher than
that in the in-plane direction under the conditions of equal Young’s modulus if the
laminate is semi-auxetic with opposite Poisson’s ratio signs in alternating laminas.

9.7 Example: Particulate Auxetic Composites

Zhu et al. (2015) established the design of single-level two-phase composite mate-
rials, whereby the designed single-level composite materials are assumed to be
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Fig. 9.17 Cubic periodic representative volumeelement (RVE)of the two-phase compositematerial
(Zhu et al. 2015): a a cubic periodic unit RVE, and b cubic periodic mechanics model

composed of a large number of identical cubic periodic cells, as shown in Fig. 9.17a
which is one representative volume element (RVE) of the composite. In the RVE,
material A is a hollow cubic box which has square walls of uniform thickness t/2
and an external edge length L; material B is a solid cube which is inside the hollow
cubic box of material A and has an edge length L − t . The interfaces of materials A
and B are assumed to be perfectly bonded.

In the two-phase composite, the volume fraction of material A is

f A = 1 − (L − t)3

L3
(9.7.1)

and the volume fraction of material B is thus

fB = (L − t)3

L3
(9.7.2)

The designed composite material has a cubic symmetry and thus has only up to
three independent elastic constants, namely Exx ,Gxy , and vxy . To obtain the effective
Young’smodulus Exx and the Poisson’s ratio vxy for the compositematerial, the cubic
periodic RVE shown in Fig. 9.17b, Zhu et al. (2015) prescribed strain εx in the x-
direction by an effective uniaxial tension. The periodic boundary conditions and the
symmetry of the applied load require that all the six outside planes of the cubic
periodic unit RVE in Fig. 9.17a remain plane after deformation.

To simplify the analysis, Zhu et al. (2015) divided the RVE into eight paral-
lelepipeds, as can be seen in Fig. 9.17b. In order to carry out analytical solution,
they considered only the normal stresses within each of the eight parallelepipeds in
the RVE and the periodic conditions (i.e., compatibility conditions) on the outside
surfaces of the RVE and ignore the shear stresses inside the parallelepipeds and
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the compatibility conditions on the interfaces between the parallelepipeds inside
the RVE. Thus, the cubic periodic representative volume element (RVE) shown in
Fig. 9.17b can be used as a simplified mechanics model of the two-phase composite,
where the three normal stresses in each of the eight parallelepipeds are assumed
to have constant values. When the RVE is stretched in the x-direction, the normal
stresses and strains on the top plane of the RVE shown in Fig. 9.17b are exactly the
same as those on the right plane. By symmetry, there are seven different unknown
normal stresses, namely σx1, σx2, and σx3 on the front surface of the RVE and σy1,
σy2, σy3, and σy4 on the right surface of the RVE, as shown in Fig. 9.17b. Based
on Hooke’s law and the periodic boundary conditions of the RVE, Zhu et al. (2015)
obtained the following stress–strain relations

L − t

L

(
σx1 − vAσy1 − vAσy4

EA

)
+ t

L

(
σx1 − vAσy2 − vAσy3

EA

)
= εx (9.7.3)
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L

(
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EA

)
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L

(
σx2 − 2vAσy2
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)
= εx (9.7.4)
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)
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L

(
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)
= εx (9.7.5)
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)
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L

(
σy1 − vAσx2 − vAσy1

EA

)
= εy (9.7.6)
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σy2 − vAσx1 − vAσy3

EA

)
+ t

L

(
σy2 − vAσy2 − vAσx2

EA

)
= εy (9.7.7)

L − t

L

(
σy3 − vAσx3 − vAσy3

EA

)
+ t

L

(
σy3 − vAσx1 − vAσy2

EA

)
= εy (9.7.8)

L − t

L

(
σy4 − vBσy4 − vBσx3

EB

)
+ t

L

(
σy4 − vAσx1 − vAσy1

EA

)
= εy (9.7.9)

In addition, the zero total force in the normal direction of the top or right plane
of the RVE in Fig. 9.17b requires

(L − t)2σy4 + (L − t)tσy1 + (L − t)tσy3 + t2σy2 = 0 (9.7.10)

For a given value of the tensile strain εx , we have in total only eight unknowns to
be determined: σx1, σx2, σx3, σy1, σy2, σy3, σy4, and εy . They can be solved from the
eight simultaneous linear Eqs. (9.7.3)–(9.7.10). Thus, the effective Young’s modulus
and Poisson’s ratio of the composite material can be obtained as

Exx = t2σx2 + 2(L − t)tσx1 + (L − t)2σx3

L2εx
(9.7.11)
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Fig. 9.18 Young’s modulus
of the two-phase composite
with the cubic periodic RVE
structure shown in Fig. 9.17
and with EA = 2EB and
vA = vB versus the volume
fraction of material A (Zhu
et al. 2015), compared with
the Voigt limit, the Reuss
limit, and the
Hashin–Shtrikman upper and
lower limits. Young’s moduli
are normalized by EB

and vxy = −εy/εx . For single-level two-phase composite materials with the cubic
periodic RVE structure shown in Fig. 9.17 and with EA = 2EB and vA = vB = 0.3,
the relationship between the effective Young’s modulus Exx and the volume fraction
f A is plotted in Fig. 9.18. The Voigt bound, the Reuss bound, and the Hashin–
Shtrikman (1963) upper and lower bounds are also presented for comparison, with
Young’s moduli being normalized by EB . As can be seen from Fig. 9.18, the effec-
tive Young’s modulus of the composite material predicted from ourmechanics model
shown in Fig. 9.17b is larger than theHashin–Shtrikman upper limit when the volume
fraction f A is smaller than 82%. As the possible effect of the Poisson’s ratios of
materials A and B is completely absent in Fig. 9.18, the enhancement of the effec-
tive Young’s modulus (i.e., larger than the Hashin–Shtrikman upper limit) can be
attributed to the geometrical structure. Zhu et al. (2015) have also tested cases of
vA = vB = 0 and other values and found that as long as vA = vB , the results of the
effective Young’s modulus of the composite materials remain unchanged.

An exploration was then attempted to make Young’s modulus of a single-level
compositematerial larger than theVoigt limit. For a single-level two-phase composite
material with the cubic periodic RVE structure shown in Fig. 9.17, the effects of
different combinations of Young’s moduli and Poisson’s ratios of materials A and
B on the relationship between the effective Young’s modulus of the composite and
the volume fraction f A are illustrated in Fig. 9.19, where Young’s modulus of the
composite is normalized by the Voigt limit (EC)upp = EA fA + EB fB . As the Voigt
limit normalized by itself is constantly 1.0, a value above 1.0 in Fig. 9.19 indicates
that Young’s modulus of the composite material is larger than the Voigt limit.

It can be observed from Fig. 9.19 that when EA = EB (i.e., when the possible
effects of the difference between EA and EB are absent), the difference between
vA and vB can make the normalized Young’s modulus of the composite material
larger than 1.0 (i.e., exceeding the Voigt limit). Moreover, the larger the difference
between vA and vB , the larger the Young’s modulus of the two-phase composite
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Fig. 9.19 Effects of the value of EA/EB on the relationship between the normalized Young’s
modulus of the composites and the volume fraction of material A (Zhu et al. 2015): a vA = 0.05
and vB = 0.495; b vA = 0.45 and vB = −0.5; c vA = 0.45 and vB = −0.8; d vA = 0.495 and
vB = 0.05; e vA = −0.5 and vB = 0.45; f vA = −0.8 and vB = 0.45

material. Comparing Fig. 9.19b, c to e, f, it can be found that if vA is negative and
vB is positive, the composite material has a larger Young’s modulus than the case
when vA is positive and vB is negative. In the case when vA = −0.8 and vB = 0.45,
Young’s modulus of the composite material is about 150% larger than the Voigt limit.
Figure 9.20 shows that by properly choosing Young’s moduli and Poisson’s ratios of
materials A and B, Poisson’s ratio of a two-phase composite material can be designed
to have a desired value, e.g., positive, or negative, or zero.

To validate the analytical results for the effective Young’s moduli and Poisson’s
ratios of the two-phase composite materials obtained from Eqs. (9.7.3) to (9.7.10),
Zhu et al. (2015) used the commercial finite element software ABAQUS to perform
a number of simulations (i.e., to do numerical experiments) for the cubic periodic
RVE structural model shown in Fig. 9.17a. The RVEwas partitioned into 8000 C3D8
elements. Periodic boundary conditions were used in all the finite element simula-
tions, and the obtained simulation results can be assumed to be the exact results.
Zhu et al. (2015) presented in Table 9.1 the analytical results and the finite element
simulation results for the two-phase composite materials with different combinations
among the values of EA, EB , vA, vB , and f A, where the effective Young’s moduli of
the composites are normalized by the Voigt limit (EC)upp.

Table 9.1 shows that the analytical results for Young’s modulus of the single-level
composite materials obtained from Eqs. (9.7.3) to (9.7.10) are always smaller than
the simulation results, suggesting that the analytical results always tend to underes-
timate Young’s modulus of the composite materials. Zhu et al. (2015) pointed out
that this is consistent with the mechanics principle because any additional restraint
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Fig. 9.20 Effects of the value of EA/EB on the relationship between Poisson’s ratio of the
composite and the volume fraction of material A (Zhu et al. 2015): a vA = 0.05 and vB = 0.495;
b vA = 0.45 and vB = −0.5; c vA = 0.45 and vB = −0.8; (d) vA = 0.495 and vB = 0.05;
(e) vA = −0.5 and vB = 0.45; (f) vA = −0.8 and vB = 0.45

Table 9.1 Comparison between the analytical results and finite element simulation results where
EA = 2EB by Zhu et al. (2015)

Volume fraction and
constituents’ Poisson’s ratio

Analytical results Simulation results

f A vA vB Exx/(EC )upp vxy Exx/(EC )upp vxy

0.271 0.05 0.495 1.0794 0.4453 1.0858 0.4550

0.271 0.45 −0.8 1.8128 −0.3981 1.8930 −0.3792

0.271 0.495 −0.99 2.9665 −0.8896 3.5342 −0.9175

0.488 0.05 0.495 1.0986 0.3828 1.1156 0.3920

0.488 0.45 −0.8 1.8216 −0.0680 1.9637 −0.0237

0.488 0.495 −0.9 2.5586 −0.2554 2.9617 −0.1282

0.488 0.495 −0.95 3.0174 −0.4095 3.9841 −0.2998

0.488 0.495 −0.99 3.6526 −0.4976 5.5141 −0.5817

always makes a material or structure stiffer. In the analysis of Eqs. (9.7.3)–(9.7.10),
only normal stresses in the RVE and periodic conditions on the outside boundaries
of the RVE are considered, while all the possible shear stresses and all the compat-
ibility conditions inside the RVE are ignored. This could result in possible gaps or
overlaps between the eight deformed parallelepipeds inside the RVE. To remove the
gaps and overlaps (i.e., to make the interfaces between the eight deformed paral-
lelepipeds inside the RVE perfectly bonded), additional work has to be done, and
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Fig. 9.21 Bottom-up
structure of hierarchical
composites (Zhu et al. 2015)

this consequently increases the stored strain energy in the RVE and hence makes
the composite stiffer. In contrast, all the actual normal and shear stresses and all the
compatibility conditions inside and outside the RVE have already been considered
in the finite element simulations using the ABAQUS software. As the finite element
simulations have considered muchmore restraints between the interfaces of the eight
parallelepipeds than the simplified mechanics model shown in Fig. 9.17b, the exact
results for the effectiveYoung’smodulus obtained from the finite element simulations
are consequently always larger than the analytical results obtained fromEqs. (9.7.3)–
(9.7.10). Table 9.1 shows that when vB ≥ −0.8, the difference between the effective
Young’s modulus of the composite materials obtained from Eqs. (9.7.3)–(9.7.10)
and that obtained from the ABAQUS finite element simulation is constantly less
than 8%, indicating that the analytical results shown in Figs. 9.19 and 9.20 are quite
accurate and hence reliable. When vB → −1, although the error of the analytical
results becomes larger, the predicted trend of the effects remains correct.

Zhu et al. (2015) also demonstrated how structure hierarchy could further enhance
the elastic properties of a two-phase composite material. The two-phase hierarchical
composite material is assumed to be made of isotropic materials A and B with
Young’s moduli EA and EB , Poisson’s ratios vA and vB , and volume fraction fB .
At each hierarchical level n, the composite material is assumed to be composed
of a large number of identical RVEs, as shown in Fig. 9.21, and each of the cubic
fillers/inclusions (i.e., equivalent tomaterial ‘B’ in Fig. 9.17) in theRVEs is alsomade
of a large number of identical lower level (i.e., level n − 1) cubic periodic RVEs.
For simplicity, Zhu et al. (2015) assumed that the hierarchical composite material is
self-similar in structure and the volume fraction of the cubic fillers/inclusions (i.e.,
material ‘B’) in the RVEs is assumed to remain fixed at all hierarchical levels,

fB(n) = ( fB)1/N , n = 1, 2, 3, . . . , N (9.7.12)

where n is the specific hierarchical level and N is the total number of the hierarchical
levels.

For a given material volume fraction fB and a given number of the total hierar-
chical levelsN, the volume fraction of the cubic fillers/inclusions in the RVEs at each
hierarchical level, fB(n), can be obtained fromEq. (9.7.12) andYoung’smodulus E(n)

and Poisson’s ratio v(n) at each hierarchical level can be obtained from Eqs. (9.7.3)
to (9.7.11) and vxy = −εy/εx . Figures 9.22 and 9.23 show the analytical results of
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Fig. 9.22 Dimensionless Young’s modulus of hierarchical composites as a function of the total
number of the hierarchical levels (Zhu et al. 2015): a vA = 0.45 and vB = −0.8; b vA = −0.8 and
vB = 0.45

Fig. 9.23 Poisson’s ratio of hierarchical composites as a function of the total number of the
hierarchical levels (Zhu et al. 2015): a vA = 0.45 and vB = −0.8; b vA = −0.8 and vB = 0.45

Young’s modulus EN and Poisson’s ratio vN for a few hierarchical and self-similar
composite materials as functions of the number of the total hierarchical levels N,
where Young’s modulus is normalized by the Voigt limit (EC)upp = EA fA + EB fB .
In Figs. 9.22 and 9.23, the results of the case N = 1 are those of the single-level
composites, which can also be seen from Figs. 9.19c, f and 9.20c, f. The results in
Fig. 9.22 indicate that increasing the number of hierarchical levels tends to enhance
the stiffness of composite materials.
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9.8 Example: Three-Layered Plates with Cubic Auxetic
Materials

This section reports a study on three-layered cubic plates inwhich the cubic layers are
sequenced as non-auxetic–auxetic–non-auxetic and auxetic–non-auxetic–auxetic.
Cubic materials belong to a broad category of anisotropic solids such as body-
centered cubic (BCC) and face-centered cubic (FCC) crystals. The constitutive rela-
tionship of cubic materials can be described by three material constants: Young’s
modulus E, shear modulus G, and Poisson’s ratio v. However, the usual relationship
that relates these three material constants in the case of isotropic materials does not
apply for cubic materials. The analyses consist of two parts: the stretching analysis
and the bending analysis.

The stretching of a thin three-layered plate, lying on a plane defined by x- and
y-axes, with layers of cubic crystals in the approximation of a plane-stressed state in
the absence of forces on external horizontal surfaces is characterized by the following
simplifying relations

σ 1
z = σ 2

z = σ 3
z = 0 (9.8.1)

where the subscript z is the out-of-plane direction and the superscripts 1,2,3 refer to
the layer numbers, as defined in Fig. 9.24.

By virtue of Hooke’s law for small elastic strains, we have linear connections
between normal stresses and strains for three layers

εkx = sk11σ
k
x + sk12σ

k
y

εky = sk11σ
k
y + sk12σ

k
x

εkz = sk12σ
k
x + sk12σ

k
y

(9.8.2)

where k = 1, 2, 3 are the layer numbers. The conditions for the common in-plane
strains ε1x = ε2x = ε3x and ε1y = ε2y = ε3y of three perfectly bonded layers for strains
are rewritten in the following conditions for stresses

Fig. 9.24 Geometrical
nomenclature of the
three-layered plate

h1

h2

h3

h

x

zy

h

(a) (b)
z
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s111σ
1
x + s112σ

1
y = s211σ

2
x + s212σ

2
y = s311σ

3
x + s312σ

3
y

s111σ
1
y + s112σ

1
x = s211σ

2
y + s212σ

2
x = s311σ

3
y + s312σ

3
x

(9.8.3)

The equilibrium conditions when the plate is stretched in the direction of the x-
axis by force P when the transverse width of the plate is assumed to be equal to unity
have the form

h1σ 1
x + h2σ 2

x + h3σ 3
x = P

h1σ 1
y + h2σ 2

y + h3σ 3
y = 0

(9.8.4)

where h1, h2, and h3 are the thicknesses of layers 1, 2, and 3, respectively, as indicated
by Fig. 9.24b.

Equations (9.8.3) and (9.8.4) allow the following expressions for the stress
components to be obtained

σ 1
x = P

2

(
1

(s111+s112)S+
+ 1

(s111−s112)S−

)

σ 2
x = P

2

(
1

(s211+s212)S+
+ 1

(s211−s212)S−

)

σ 3
x = P

2

(
1

(s311+s312)S+
+ 1

(s311−s312)S−

)
(9.8.5a)

σ 1
y = P

2

(
1

(s111+s112)S+
− 1

(s111−s112)S−

)

σ 2
y = P

2

(
1

(s211+s212)S+
− 1

(s211−s212)S−

)

σ 3
y = P

2

(
1

(s311+s312)S+
− 1

(s311−s312)S−

)
(9.8.5b)

where

S± =
3∑

k=1

hk
sk11 ± sk12

(9.8.6)

We have then, in accordance with Hooke’s law, the following expressions for the
strains

ε1x = ε2x = ε3x = P
2

(
1
S+ + 1

S−

)
= εx

ε1y = ε2y = ε3y = P
2

(
1
S+ − 1

S−

)
= εy

(9.8.7a)

ε1z = P s112
(s111+s112)S+

ε2z = P s212
(s211+s212)S+

ε3z = P s312
(s311+s312)S+

(9.8.7b)

Using these expressions for strains, one can now obtain the results for effective
Poisson’s ratios and Young’s modulus for a thin three-layered plate by means of



308 9 Auxetic Composites with Enhanced Moduli

constraints

vxy = −εy

εx
= v1

xy = v2
xy = v3

xy (9.8.8a)

v1
xz = − ε1z

εx
, v2

xz = − ε2z
εx

, v3
xz = − ε3z

εx

vxz = 1
h1+h2+h3

3∑

k=1
hkvk

xz

(9.8.8b)

Ex = P

(h1 + h2 + h3)εx
(9.8.8c)

to get

vxy = S+ − S−
S+ + S−

(9.8.9a)

v1
xz = − 2s112

s111+s112

(
S−

S++S−

)

v2
xz = − 2s212

s211+s212

(
S−

S++S−

)

v3
xz = − 2s312

s311+s312

(
S−

S++S−

)

vxz = − 2
h1+h2+h3

(
S−

S++S−

) 3∑

k=1

hksk12
sk11+sk12

(9.8.9b)

Ex = 2

h1 + h2 + h3

(
S+S−

S+ + S−

)
(9.8.9c)

These results are invariant with respect to permutations of the layers. By this
symmetry, the case of a three-layered plate with any pair of identical layers is reduced
to the case of a two-layered plate. If all the layers have the same thickness, then the
results for effective Poisson’s ratios and Young’s modulus are independent of the
thickness of the layers (Gorodtsov et al. 2018)

vxy = −
∑

k
sk12

(sk11)
2−(sk12)

2

∑
k

sk11

(sk11)
2−(sk12)

2

(9.8.10a)
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(9.8.10b)

Ex = 1

3

∑
k

1
sk11+sk12

∑
k

1
sk11−sk12

∑
k

sk11

(sk11)
2−(sk12)

2

(9.8.10c)

All these relations for the three-layered plates remain valid also in the case of
plates with more layers if we assume that the index k ranges from 1 to n. The uniform
longitudinal stretching of the layers when the crystallographic axes coincide with the
edges of the rectangular plate makes it possible to use the following substitutions
of the compliance coefficients sk11, s

k
12 through original Young’s modulus Ek and

Poisson’s ratios vk for the individual layers

sk11 = 1

Ek
, sk12 = − vk

Ek
(9.8.11)

Cubic crystals with negative Poisson’s ratio when oriented in a crystallographic
direction coinciding with the direction of the rectangular plate edge will be termed
below as in-plane auxetics. The term in-plane non-auxeticwill be used in the opposite
situation.

So far, the definition of Poisson’s ratio has been defined from the stretching of
a rod. One can also obtain Poisson’s ratio of a plate by pure bending, specifically
by applying pure bending moments on two opposing sides of a rectangular plate.
Recall that for an isotropic plate made from a single layer, the bending moments are
as follows:

Mx = −D
(
κx + vκy

)

My = −D
(
κy + vκx

) (9.8.12)

where curvatures along the x- and y-axes are defined as κx = ∂2w/∂x2 and κy =
∂2w/∂y2 in which w is the plate deflection, while D is the plate’s flexural rigidity.
For application of Mx only (i.e., My = 0), effective in-plane Poisson’s ratio can be
obtained from the second of Eq. (9.8.12) as
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vxy = −κy

κx
(9.8.13)

It can be seen that Eq. (9.8.13) is a bending mode analogy to the usual Poisson’s
ratio definition vxy = −εy/εx under stretching mode. For a plate made of a single
material, Poisson’s ratios are the same under both the stretching and bending modes,
but it will later be shown that for the three-layered plate, the effective in-plane
Poisson’s ratios are different. The effective in-plane Poisson’s ratio for the three-
layered plate under the bending mode can be obtained by using the Classical Lami-
nation Theory (CLT), in which the in-plane normal and shearing loads

(
Nx , Ny, Nxy

)

and bending and twisting loads
(
Mx , My, Mxy

)
are related to the mid-plane strains(

ε0x , ε
0
y, γ

0
xy

)
and curvatures

(
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)
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(9.8.14)

where the extensional [A], coupling [B], and bending [D] stiffness matrices are
defined as

[
Ai j

] =
n∑

k=1

[
Q̄i j

]
k(zk − zk−1)

[
Bi j
] = 1

2

n∑

k=1

[
Q̄i j

]
k

(
z2k − z2k−1

)

[
Di j

] = 1
3

n∑

k=1

[
Q̄i j

]
k

(
z3k − z3k−1

)

(9.8.15)

with i, j = 1, 2, 6 and, in the case of three-layered plate n = 3, the elements of the
transformed reduced stiffness matrix

[
Q̄
]
for each layer are related to the reduced

stiffness matrix coefficients [Q] as

Q̄11 = Q11 cos
4 θ + Q22 sin

4 θ + 2(Q12 + 2Q66) cos
2 θ sin2 θ

Q̄22 = Q11 sin
4 θ + Q22 cos

4 θ + 2(Q12 + 2Q66) cos
2 θ sin2 θ

Q̄12 = (Q11 + Q22 − 4Q66) cos
2 θ sin2 θ + Q12

(
cos4 θ + sin4 θ

)

Q̄16 = (Q11 − Q12 − 2Q66) cos
3 θ sin θ − (Q22 − Q12 − 2Q66) cos θ sin3 θ

Q̄26 = (Q11 − Q12 − 2Q66) cos θ sin3 θ − (Q22 − Q12 − 2Q66) cos
3 θ sin θ

Q̄66 = (Q11 + Q22 − 2Q12) cos
2 θ sin2 θ + Q66

(
cos2 θ − sin2 θ

)2
(9.8.16)

where



9.8 Example: Three-Layered Plates with Cubic Auxetic Materials 311

Q11 = Q22 = E

1 − v2
, Q12 = vE

1 − v2
, Q66 = G (9.8.17)

Simplifications can be obtained if (a) the principal axes of the cubic material
are rotated such that they are aligned to the sides of the plates, i.e., θ = 0, so that[
Q̄
] = [Q], and (b) the plates are layered symmetrically with the first and third

layers being Q1
i j = Q3

i j and h1 = h3 so that [B] = 0. Let h2 = xh1 = xh3, then

D11 = D22 = h31
3

[(
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2
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4
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]

(9.8.18)

In the absence of prescribed strain and twisting, the bending moments are related
to the curvatures as

Mx = D11κx + D12κy

My = D12κx + D22κy
(9.8.19)

For our present problem (My = 0, D22 = D11), we obtain information regarding
the curvatures

κx = D11

D2
11−D2

12
Mx

κy = D12

D2
12−D2

11
Mx

(9.8.20)

by solving Eqs. (9.8.19) simultaneously. Substituting Eqs. (9.8.20) into Eq. (9.8.13),
we therefore obtain effective in-plane Poisson’s ratio by bending mode, through
prescription of Mx , as

vB
eff = D12

D11
=
(
1 + 3

2 x + 3
4 x

2
)

v1E1

1−v21
+ x3

4
v2E2

1−v22
+ (

1 + 3
2 x + 3

4 x
2
)

v3E3

1−v23(
1 + 3

2 x + 3
4 x

2
) E1

1−v21
+ x3

4
E2

1−v22
+ (

1 + 3
2 x + 3

4 x
2
) E3

1−v23

(9.8.21)

Equation (9.8.21) can also be obtained directly, without obtaining the curvatures
κx and κy in Eq. (9.8.20); substituting My = 0 and D22 = D11 into the second of
Eq. (9.8.19) gives D12κx = −D11κy , by which the Poisson’s ratio by bending mode
can be inferred from Eq. (9.8.13). In the case of effective Poisson’s ratio of the same
three-layered plate via stretching mode, Eqs. (9.8.9a) can be expressed as
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vS
eff =

v1E1

1−v21
+ x v2E2

1−v22
+ v3E3

1−v23

E1

1−v21
+ x E2

1−v22
+ E3

1−v23

(9.8.22)

for comparison with Eq. (9.8.21). If the layers are of equal thickness x = 1, then

D11 = D22 = h31
3

[
3.25 E1

1−v21
+ 0.25 E2

1−v22
+ 3.25 E3

1−v23

]

D12 = h31
3

[
3.25 v1E1

1−v21
+ 0.25 v2E2

1−v22
+ 3.25 v3E3

1−v23

] (9.8.23)

which leads to effective in-plane Poisson’s ratio under bending mode (Gorodtsov
et al. 2018)

vB
eff =

13 v1E1

1−v21
+ v2E2

1−v22
+ 13 v3E3

1−v23

13 E1

1−v21
+ E2

1−v22
+ 13 E3

1−v23

(9.8.24)

while fromEq. (9.8.10a), or more conveniently fromEq. (9.8.22), we obtain effective
in-plane Poisson’s ratio under stretching mode

vS
eff =

v1E1

1−v21
+ v2E2

1−v22
+ v3E3

1−v23

E1

1−v21
+ E2

1−v22
+ E3

1−v23

(9.8.25)

for comparison with Eq. (9.8.24). Regardless of whether the layers are of equal or
unequal thicknesses, bending-based Poisson’s ratio for the symmetrically arranged
three-layered plates gives more influence to layers 1 and 3, and less influence to layer
2.

As mentioned earlier, the usual relationship that connects Young’s modulus E, the
shear modulus G, and Poisson’s ratio v for isotropic materials is not valid for cubic
materials. Specifically, its elastic compliances are related as sii = 1/E , si j = −v/E ,
and skk = 1/G where i, j = 1, 2, 3 and k = 4, 5, 6 with the remaining elastic
compliances being zero. As such, a measure of the cubic material’s anisotropy is

A = 2(1 + v)
G

E
= 2

sii − si j
skk

(9.8.26)

where a value of A = 1 indicates isotropy. Coefficient A is called Zener’s anisotropy
factor.

Some results on the effective elastic properties of the three-layered plates made
from different cubic materials are listed in Table 9.2. The non-auxetic–auxetic–non-
auxetic plates are sub-categorized into the (i) NiTi–Sm0.75Y0.25S–non-auxetic plates,
the (ii) Al–Sm0.75Y0.25S–non-auxetic plates, and the (iii) LiBr–Sm0.75Y0.25S–non-
auxetic plates where the third layers of cubic non-auxetic materials are KI, LiBr, Al,
Ge, and Mo, W, Ir in the first case and KI, NaBr, Mg2Pb, Ge and Mo, W, Ir in the
second and third cases. All the layers are equal thicknesses h1 = h2 = h3, and the
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Table 9.2 Effective elastic properties results for three-layered non-auxetic–auxetic–non-auxetic
plates category consisting cubic materials of equal thicknesses

Non-auxetics E1, GPa E2, GPa E3, GPa Eef f , GPa v1 v2 v3 vxy vxz

NiTi-Sm0.75Y0.25S-non-auxetics

KI 47.8 55.6 26.2 60.0 0.44 −0.67 0.14 −0.20 0.22

LiBr 27.2 62.1 0.33 −0.17 0.34

Al 62.5 77.3 0.36 −0.07 0.34

Ge 103 90.5 0.27 −0.04 0.27

Mo 380 187 0.26 0.11 0.22

W 408 198 0.28 0.14 0.23

Ir 446 211 0.30 0.16 0.23

Al–Sm0.75Y0.25S–non-auxetics

KI 62.5 55.6 26.2 64.2 0.36 −0.67 0.14 – 0.19 0.13

NaBr 35.6 68.3 0.21 – 0.16 0.17

Mg2Pb 61.3 78.4 0.23 – 0.11 0.17

Ge 103 94.6 0.27 – 0.04 0.19

Mo 380 191 0.26 0.11 0.15

W 408 202 0.28 0.13 0.16

Ir 446 216 0.30 0.16 0.17

LiBr–Sm0.75Y0.25S–non-auxetics

KI 27.2 55.6 26.2 46.5 0.33 −0.67 0.14 −0.34 0.11

NaBr 61.3 51.3 0.23 −0.30 0.15

NiTi 47.8 62.1 0.44 −0.17 0.34

Mg2Pb 61.3 62.4 0.23 −0.22 0.16

Ge 103 79.8 0.27 −0.12 0.17

Mo 380 178 0.26 0.09 0.13

W 408 189 0.28 0.12 0.14

Ir 446 203 0.30 0.14 0.15

properties of the layers are denoted by subscripts 1, 2, and 3 for the first, middle, and
last layers, respectively. In-plane Poisson’s ratio vxy , out-of-plane Poisson’s ratio
vxz , and Young’s modulus Eef f were calculated using Eq. (9.8.10). There are no
cases when a three-layered plate exhibited auxeticity in the out-of-plane direction,
i.e., vxz > 0. Calculated in-plane Poisson’s ratio vxy reveals auxeticity in the case of
relatively soft non-auxetic layers. As Young’s modulus of the third layer increases,
in-plane Poisson’s ratio vxy increases. This coefficient becomes positive for such high
stiffness non-auxetics of the third layer as Mo, W, and Ir. Some plates (with rela-
tively soft original layers) show that effectiveYoung’smodulus is higher thanYoung’s
moduli of all the layers. An example of such a situation, together with the depen-
dence of effective Young’s modulus of the three-layered plate NiTi–Sm0.75Y0.25S–Al
on the thickness parameter x = h2/h1 = h2/h3, is given in Fig. 9.25 (left). Effec-
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Fig. 9.25 Dependence of effective Young’s modulus Eeff (left) and Poisson’s ratios vxy and vxz
(right) on the ratio of the thicknesses of the layers x = h2/h1 = h2/h3 for three-layered NiTi–
Sm075Y0.25S–Al plate

tive Young’s modulus is larger than Young’s modulus of the layer with the greatest
modulus at x > 0.2 and the maximum is attained at x = 1.62. At the same time,
out-of-plane Poisson’s ratio vxz remains always positive, reaching a maximum at
x = 0.66, and in-plane Poisson’s ratio vxy decreases rapidly with increasing x and
becomes negative at x > 0.77 (Fig. 9.25 right).

The effective Young’s moduli and Poisson’s ratios of three-layered NiTi–
Sm0.75Y0.25S–non-auxetic plates, Al–Sm0.75Y0.25S–non-auxetic plates, LiBr–
Sm0.75Y0.25S–non-auxetic plates, and Mo–Sm0.75Y0.25S–non-auxetic plates at the
thickness parameter x = 1 for more than seven hundred different non-auxetics
had been calculated. It was found that effective Young’s moduli for NiTi–
Sm0.75Y0.25S–non-auxetic plates and Al–Sm0.75Y0.25S–non-auxetic plates exceeded
Young’s moduli of the three original layers in the case of more than two hundred
non-auxetics. Whereas out-of-plane Poisson’s ratio is always positive and in-plane
Poisson’s ratio for such three-layered plates is negative for half of the original non-
auxetics of the third layer.One-third among such three-layered plates isweak auxetics
(−1 < vxy < 0). It was found that effective Young’s modulus of the three-layered
LiBr–Sm0.75Y0.25S–non-auxetic plates exceeds all three original Young’s moduli in a
smaller number of cases (about 50), while in-plane Poisson’s ratio ismore often nega-
tive than for the two previous three-layered plates. However, out-of-plane Poisson’s
ratio is still always positive. Finally, the three-layeredMo–Sm0.75Y0.25S–non-auxetic
plates are always non-auxetics (vxy > 0, vxz > 0) because of the overwhelming
influence of the high stiffness non-auxetic Mo for the first layer.

The category auxetic–non-auxetic–auxetic plates was considered on the examples
of Sm0.75Y0.25S–non-auxetic–Sm0.7Y0.3S plates at the thickness parameter x = 1
with the same numerous set (about 700) of non-auxetics. It was found that effec-
tive Young’s moduli for three-layered plates exceeded Young’s moduli of the three
original layers for one-tenth non-auxetics. Most of these three-layered plates were
auxetics both in the ratio of in-plane Poisson’s ratio and out-of-plane Poisson’s ratio.
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A small selection of such three-layered plates is given in Table 9.3. This table also
shows the results for Sm0.65La0.35S–non-auxetic–Sm0.75Tm0.25Splateswith twoother
auxetics and non-auxetics from the same set. It demonstrates the role of stiffness
for non-auxetics in the negativity of in-plane Poisson’s ratio vxy for the auxetic–
non-auxetic–auxetic plate category. Poisson’s ratio vxy increases with increasing
Young’s modulus of the original non-auxetics, similar to the case of the auxetic–non-
auxetic–auxetics category discussed above. The change in Poisson’s ratios vxy and
vxz with an increase in the relative thickness of the inner layer x for the three-layered
Sm0.75Y0.25S–KI–Sm0.7Y0.3S plate is shown in Fig. 9.26.

For plates of equal layer thicknesses, comparison between Eqs. (9.8.24) and
(9.8.25) shows that in-plane Poisson’s ratio is contributed equally by all layers under
stretching mode but in the case of bending mode each of the outer layers has a factor

Table 9.3 Effective elastic properties results for three-layered of auxetic–non-auxetic–auxetic plate
category consisting cubic materials of equal thicknesses

Non-auxetics E1,
GPa

E2,
GPa

E3,
GPa

Eeff,
GPa

v1 v2 v3 vxy vxz

Sm0.75Y0.25S-non-auxetics-Sm0.7Y0.3S

BaCa2(C2H5CO2)6 55.6 4.31 76.3 47.2 −0.67 0.37 −0.59 −0.60 −0.10

KI 26.2 57.4 0.14 −0.54 −0.32

LiBr 27.2 61.2 0.33 −0.51 −0.15

NiTi 47.8 78.0 0.44 −0.40 0.01

Al 62.5 82.6 0.36 −0.38 −0.09

Ge 103 98.1 0.27 −0.32 −0.18

Si 129 111 0.29 −0.27 −0.16

V 148 123 0.34 −0.21 −0.10

Mo 380 208 0.26 −0.05 −0.15

W 408 220 0.28 −0.02 −0.13

Ir 446 236 0.30 0.01 −0.11

Sm0.65La0.35S–non-auxetics–Sm0.75Tm0.25S

BaCa2(C2H5CO2)6 50.8 4.31 65.4 41.3 −0.35 0.37 −0.46 −0.39 0.01

KI 26.2 49.8 0.14 −0.33 −0.18

LiBr 27.2 52.5 0.33 −0.28 −0.04

NiTi 47.8 65.1 0.44 −0.16 0.09

Al 62.5 69.3 0.36 −0.15 0.00

Ge 103 82.8 0.27 −0.11 −0.07

Si 129 93.2 0.29 −0.07 −0.07

V 148 103 0.34 0.00 −0.02

Mo 380 181 0.26 0.09 −0.07

W 408 192 0.28 0.11 −0.05

Ir 446 206 0.30 0.14 −0.04
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Fig. 9.26 Dependence of
effective Poisson’s ratios vxy
and vxz on the ratio of the
thicknesses of the layers
x = h2/h1 = h2/h3 for
three-layered Sm0.75Y0.25S–
KI–Sm0.7Y0.3S
plate

of 13. Table 9.4 shows sample results for three groups of symmetric three-layered
plates in which in-plane auxeticity is dependent on the loading mode. Non-auxetics
and complete auxetics used in it have positive or negative values of Poisson’s ratios
for any orientations of such crystals. However, the original single-layer plates are
characterized by Poisson’s ratios vk for crystallographic orientations corresponding
to the edges of the plates. Since effective Poisson’s ratios vxy are calculated for
these same particular directions in the three-layered plates, we will use the terms
in-plane auxetics and in-plane non-auxetics for them in the cases vxy < 0 and
vxy > 0, respectively. The first group of symmetric three-layered plates consists
of non-auxetic–Sm0.75Y0.25S–non-auxetic symmetric plates that are in-plane auxetic
under stretching mode but in-plane non-auxetic under bending mode; the second
group consists of Sm0.65La0.35S–non-auxetic–Sm0.65La0.35S symmetric plates that
are in-plane non-auxetic under stretching mode but in-plane auxetic under bending
mode; the third group consists of Sm0.75Y0.25S–non-auxetic–Sm0.75Y0.25S symmetric
plates that are in-plane auxetics for both modes. Examples for the cases of unequal
layer thickness with x = h2/h1 = h2/h3 are plotted in Figs. 9.27, 9.28, and 9.29.

In-plane Poisson’s ratio of symmetrical Al–Sm0.75Y0.25S–Al plates is plotted in
Fig. 9.27. Specifically, Fig. 9.27 (left) reveals that this plate is fully in-plane non-
auxetic when x < 0.766 and fully in-plane auxetic when x > 3.743; within the
range 0.766 ≤ x ≤ 3.743 this plate behaves as an in-plane auxetic plate when the
loading mode is stretching but behaves as an in-plane non-auxetic plate when the
loading mode is bending. Figure 9.27 (right) shows a zoomed out view to reveal
that the in-plane Poisson’s ratios under both modes of loading converge for extreme
values of x. This is not surprising because the plate becomes 100% Al and 100%
Sm0.75Y0.25S when x = 0 and x → ∞, respectively. As mentioned earlier in the
bending analysis, Poisson’s ratios of a plate are the same under both the stretching
and bending modes if the plate is made of a single material.



9.8 Example: Three-Layered Plates with Cubic Auxetic Materials 317

Ta
bl
e
9.
4

E
ff
ec
tiv

e
in
-p
la
ne

Po
is
so
n’
s
ra
tio

of
th
re
e-
la
ye
re
d
sy
m
m
et
ri
c
w
ith

eq
ua
ll
ay
er

th
ic
kn
es
s
un
de
r
st
re
tc
hi
ng

an
d
be
nd
in
g
m
od
es

Sy
m
m
et
ri
c
th
re
e-
la
ye
re
d
pl
at
e
of

eq
ua
l

la
ye
r
th
ic
kn

es
s

E
1
,
E
3

G
Pa

E
2
G
Pa

E
ef
f
G
Pa

v
1
,

v
3

v
2

v
x
y
(s
tr
et
ch
)

v
x
y
(b
en
d)

R
em

ar
ks

K
I–
Sm

0.
75
Y
0.
25
S–

K
I

26
.2

55
.6

43
.6

0.
14

−0
.6
7

−0
.3
9

0.
03

In
-p
la
ne

au
xe
tic

be
ha
vi
or

un
de
r
ax
ia
l

lo
ad
,b
ut

in
-p
la
ne

no
n-
au
xe
tic

be
ha
vi
or

un
de
r
be
nd
in
g
lo
ad

L
iB
r–
Sm

0.
75
Y
0.
25
S–

L
iB
r

27
.2

49
.3

0.
33

−0
.3
0

0.
21

M
g 2
Pb

–S
m

0.
75
Y
0.
25
S–

M
g 2
Pb

61
.3

75
.0

0.
23

−0
.1
6

0.
18

A
l–
Sm

0.
75
Y
0.
25
S–

A
l

62
.5

81
.4

0.
36

−0
.0
7

0.
31

G
e–
Sm

0.
75
Y
0.
25
S–

G
e

10
3

10
8

0.
27

−0
.0
2

0.
24

Sm
0.
65
L
a 0

.3
5
S–

Si
-S
m

0.
65
L
a 0

.3
5
S

50
.8

12
9

85
.2

−0
.3
5

0.
29

0.
00

−0
.2
9

In
-p
la
ne

no
n-
au
xe
tic

by
ax
ia
ll
oa
d,

in
-p
la
ne

au
xe
tic

by
be
nd
in
g
lo
ad

Sm
0.
65
L
a 0

.3
5
S–

C
r–
Sm

0.
65
L
a 0

.3
5
S

32
8

15
1

0.
16

0.
03

−0
.2
5

Sm
0.
65
L
a 0

.3
5
S–

M
o–
Sm

0.
65
L
a 0

.3
5
S

38
0

17
1

0.
26

0.
12

−0
.2
2

Sm
0.
65
L
a 0

.3
5
S–

W
–S

m
0.
65
L
a 0

.3
5
S

40
8

18
2

0.
28

0.
15

−0
.2
0

Sm
0.
65
L
a 0

.3
5
S–

Ir
–S

m
0.
65
L
a 0

.3
5
S

44
6

19
6

0.
30

0.
18

−0
.1
9

Sm
0.
75
Y
0.
25
S–

A
l–
Sm

0.
75
Y
0.
25
S

55
.6

62
.5

76
.8

−0
.6
7

0.
36

−0
.4
0

−0
.6
4

In
-p
la
ne

au
xe
tic

by
ax
ia
ll
oa
d,

in
-p
la
ne

au
xe
tic

by
be
nd

in
g
lo
ad

Sm
0.
75
Y
0.
25
S–

G
e–
Sm

0.
75
Y
0.
25
S

10
3

92
.6

0.
27

−0
.3
4

−0
.6
3

Sm
0.
75
Y
0.
25
S–

Si
–S

m
0.
75
Y
0.
25
S

12
9

10
5

0.
29

−0
.2
8

−0
.6
2

Sm
0.
75
Y
0.
25
S–

C
r–
Sm

0.
75
Y
0.
25
S

32
8

17
6

0.
16

−0
.1
5

−0
.5
8

Sm
0.
75
Y
0.
25
S–

M
o–
Sm

0.
75
Y
0.
25
S

38
0

20
3

0.
26

−0
.0
5

−0
.5
5

Sm
0.
75
Y
0.
25
S–

W
–S

m
0.
75
Y
0.
25
S

40
8

21
5

0.
28

−0
.0
2

−0
.5
3



318 9 Auxetic Composites with Enhanced Moduli

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5

Al-Sm0.75Y0.25S-Alvxy

x

In
-p

la
ne

 
no

n-
au

xe
tic

In-plane 
auxetic

In-plane non-auxetic by 
bending. In-plane auxetic 

by stretching

-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

0 80 160 240 320 400

Al-Sm0.75Y0.25S-Alvxy

x

vxy = 0.36

vxy = −0.67

Fig. 9.27 Mode dependency of in-plane Poisson’s ratio vxy in symmetric Al–Sm0.75Y0.25S–
Al plates, showing: fully in-plane auxetic region, fully in-plane non-auxetic region, and mode-
dependent mixed region in zoomed-in view (left), and convergence of bending and stretching-based
vxy at extreme values of x (right)
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Fig. 9.28 Mode dependency of in-plane Poisson’s ratio vxy in symmetric Sm0.65La0.35S–Mo–
Sm0.65La0.35S plates, showing: fully in-plane auxetic region, fully in-plane non-auxetic region,
and mode-dependent mixed region in zoomed-in view (left), and convergence of bending and
stretching-based vxy at extreme values of x (right)

Curves of Poisson’s ratio vxy for symmetrically layered Sm0.65La0.35S–Mo–
Sm0.65La0.35S plates are plotted in Fig. 9.25 (left), in which the plate is fully in-plane
auxetic when x ≤ 0.382 but fully in-plane non-auxetic when x ≥ 2.381. More inter-
estingly, the plate exhibits in-plane auxeticity dependency based on loading mode
when the middle layer’s relative thickness is within 0.382 < x < 2.381. As with the
other plate, Poisson’s ratios for both loading modes converge at extreme values of x
for the same reason. See Fig. 9.28 (right). Comparison between Figs. 9.27 and 9.28
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stretching-based vxy at extreme values of x (right)

suggests that in the case of non-auxetic–auxetic–non-auxetic plates, the effective in-
plane Poisson’s ratio is more positive under bending mode than in stretching mode,
while in the case of auxetic–non-auxetic–auxetic plate the vxy is more negative under
bending mode than in stretching mode.

Symmetric three-layered plates of the Sm0.75Y0.25S–non-auxetic–Sm0.75Y0.25S
type with equal thickness of the layers from Table 9.4 are characterized by negative
in-plane Poisson’s ratios for both stretchingmode and bendingmode. Themagnitude
of in-plane Poisson’s ratios for both types increases with increasing stiffness of non-
auxetics. Themodal dependence of in-plane Poisson’s ratios on the relative thickness
of the inner layer x on the example of symmetrical Sm0.75Y0.25S–Cr–Sm0.75Y0.25S
plate is shown in Fig. 9.29. In this case, the region of the fully in-plane auxetic is
realized at x < 2.530, and the region of the fully in-plane non-auxetics is reached
when x > 9.332. Mixed behavior takes place within the region 2.530 ≤ x ≤ 9.332.

In-plane Poisson’s ratio of symmetrical Ca–Sm0.65La0.35S–Ca plates is plotted in
Fig. 9.30. Specifically, Fig. 9.30 (left) reveals that this plate is fully in-plane non-
auxetic when x ≤ 0.452 and fully in-plane auxetic when x > 2.642; within the
range 0.452 < x ≤ 2.642, this plate behaves as an in-plane auxetic plate when the
loading mode is stretching but behaves as an in-plane non-auxetic plate when the
loading mode is bending. Figure 9.30 (right) shows a zoomed out view to reveal that
in-plane Poisson’s ratios under both modes of loading converge for extreme values
of x.

Many cubic crystals are partial auxetics (about 300), i.e., they have negative or
positive Poisson’s ratio, depending on their orientation. Nevertheless, often in-plane
Poisson’s coefficients vk for the original single-layer plates are positive (or nega-
tive), so that one can speak of in-plane non-auxetics (or in-plane auxetics). Exam-
ples of symmetrical three-layered plates with such crystals and complete auxetics,
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dependent mixed region in zoomed-in view (left), and convergence of bending and stretching-based
vxy at extreme values of x (right)

Sm0.65La0.35S in particular, are given in Table 9.5. Since the following cubic crystals
thatwere discussed—Sm0.65La0.35S, Sm0.75Y0.25S, Sm0.7Y0.3S, andSm0.75Tm0.25S—
are complete auxetics, i.e., their Poisson’s ratio sign does not changewith orientation,
and they are herein simply referred to as auxetics.

In summary, the effective Young’s moduli of the laminated plates were larger than
Young’s moduli of all layers in many cases except for composites with very stiffness
crystals. Effective in-planePoisson’s ratios for stretching of three-layered plates often
increase with increasing rigidity of non-auxetics stiffness, changing the negative
sign to positive. In many cases, the three-layered non-auxetic–auxetic–non-auxetic
plates are characterized by positive effective out-of-plane Poisson’s ratios, whereas
both effective Poisson’s ratios may be negative in the three-layered auxetic–non-
auxetic–auxetic plates. In the case for bending of symmetric plates, the outer layers
impose stronger influence under the bending mode than in stretching mode, thereby
resulting three regions of characteristics: (a) fully in-plane auxetic, (b) fully in-plane
non-auxetic, and (c) combination of in-plane auxetic and non-auxetic, depending
on the loading mode applied. Since it is well known that both auxetic and non-
auxetic materials have their own advantages and disadvantages, the possibility to
allow coexistence of dual properties—both auxetic and non-auxetic—means that
materials can be tailor-made so that the structures can behave as an auxetic material
when it is more advantageous to be auxetic under one type of loading mode, and
to also behave as a non-auxetic material when it is disadvantageous to be auxetic
under another type of loading mode. An example application is in the case where
a sheet needs to be wrapped into a dome of double curvature, which undergoes
stretching. For such an application, negative Poisson’s ratio under bending mode
will generate less bending stresses when wrapped onto the dome. Poisson’s ratio of
low magnitude will be beneficial in preserving the sheet thickness in the presence
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of in-plane stretching. Hence, in this application, a low magnitude of Poisson’s ratio
for in-plane stretching and a large negative Poisson’s ratio for pure stretching will
reduce both the stretching and bending stresses.
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Chapter 10
Auxetic Membranes

Abstract This chapter evaluates the deflection and stretching stresses occurring in
large deflection of auxetic membranes using strain energy minimization approach.
Results show that auxeticity tends to increase the deflection. Optimization study
shows that the membrane stresses can be minimized by controlling the Poisson’s
ratio and aspect ratio of the rectangular membranes.

Keywords Auxetic membranes · Circular membranes · Rectangular membranes ·
Large deflection

10.1 Preliminaries

In assessing the effect of auxeticity, we have so far considered infinitesimal defor-
mation is previous chapters, as well as in a previous monograph (Lim 2015). In soft
materials as well as in very thin rods and plates, one encounters large deformation.
This chapter dealswith large deflection ofmembranes that possess negative Poisson’s
ratio. Unlike plates, membranes do not carry bending moments. Hence, bending
stresses are absent in membranes and stresses are evaluated based on stretching at
the mid-surface of the membrane. Unlike plates where a fully clamped edge requires
zero slope therein in the direction perpendicular to the side, the absence of bending
moment permits free rotation at the clamped side akin to simply supported plates. In
this chapter, we consider circular and rectangular membranes subjected to pressure
on one side with fully clamped sides.

Consider an originally linear element in the radial direction as illustrated in
Fig. 10.1, and the radial and tangential strains under large deflection are

εr = dur
dr

+ 1

2

(
dw

dr

)2

(10.1.1)

and

εθ = ur
r

(10.1.2)
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O A B

A’

r
dr

B’

+

h

v , E

R

p

r
w

Fig. 10.1 A circular membrane of Young’s modulus E, Poisson’s ratio v, thickness h, and effective
radiusR (top left) being subjected to a net pressure p on one surface to produce deflectionw at a radial
distance r from the membrane center (top right), and schematics for description of displacements
and strains (bottom)

respectively. For very large deflection, Reissner (1949) showed that

εr = dur
dr

+ 1

2

[(
dur
dr

)2

+
(
dw

dr

)2
]

(10.1.3)

In this chapter, we shall adopt the large strain, rather than the very large strain,
model.

We note that σz = −p on the surface subjected to pressure p while σz = 0
on the opposing side for being a free surface. Since σz is relatively insignificant in
comparison to in-plane stresses σx and σy , it is reasonable to assume that the out-of-
plane stress is negligible σz = 0. Based on constitutive relations in the absence of
shearing as given in Eq. (6.2.20) and substituting σx = σr , σy = σθ and σz = 0, we
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have

⎧⎨
⎩

σr

σθ

0

⎫⎬
⎭ = E

(1 + v)(1 − 2v)

⎡
⎣1 − v v v

v 1 − v v

v v 1 − v

⎤
⎦
⎧⎨
⎩

εr

εθ

εz

⎫⎬
⎭ (10.1.4)

from which

εz = − v

1 − v
(εr + εθ ) (10.1.5)

This gives

σr = E

1 − v2
(εr + vεθ )

σθ = E

1 − v2
(vεr + εθ ) (10.1.6)

At the center of the circular membrane (r = 0), σθ = σr and εθ = εr such that

σr = Eεr

1 − v
(10.1.7)

wherein

E

2
≤ σr

εr
≤ 2E ; −1 ≤ v ≤ 1

2
(10.1.8)

In other words, at the center of isotropic circular membranes, we have the range
E/2 ≤ σr/εr ≤ E for auxetic membranes while E ≤ σr/εr ≤ 2E for conventional
membranes. Writing in terms of tensile force per unit length (Nr , Nθ ) = (σr h, σθh)

and using Eqs. (10.1.1) and (10.1.2), we have from Eq. (10.1.6)

Nr = Eh
1−v2

(
dur
dr + 1

2

(
dw
dr

)2 + v ur
r

)
Nθ = Eh

1−v2

(
v dur

dr + v
2

(
dw
dr

)2 + ur
r

) (10.1.9)

which will be used in Sect. 10.2.
While the polar coordinate system is expedient for circular membranes, the Carte-

sian coordinate system is obvious choice for rectangular membranes. As such the
large strain descriptions for rectangular membranes are
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εx = ∂ux
∂x + 1

2

(
∂w
∂x

)2
εy = ∂uy

∂y + 1
2

(
∂w
∂y

)2
γxy = ∂ux

∂y + ∂uy

∂x + ∂w
∂x

∂w
∂y

(10.1.10)

With reference to the constitutive relations given in Eq. (6.2.19), we again apply
σz = 0. In addition, the out-of-plane shear stress is also zero γyz = γzx = 0.
Therefore,

εx = 1
E

(
σx − vσy

)
εy = 1

E

(
σy − vσx

)
γxy = τxy

G = 2(1+v)τxy
E

(10.1.11)

It is worth noticing that

lim
v→−1

εx = lim
v→−1

εy = lim
v→0

(
εx + εy

) = σx+σy

E

lim
v→−1

γxy E
τxy

= 0
(10.1.12)

The first of Eq. (10.1.12) can also be observed for the strains and stresses in
polar coordinate. Writing in terms of tensile force per unit length

(
Nx , Ny, Nxy

) =(
σxh, σyh, τxyh

)
, we have

Nx = Eh
1−v2

(
εx + vεy

)
Ny = Eh

1−v2

(
εy + vεx

)
Nxy = Eh

2(1+v)
γxy

(10.1.13)

such that substituting Eq. (10.1.10) into the above gives

Nx = Eh
1−v2

(
∂ux
∂x + 1

2

(
∂w
∂x

)2 + v
∂uy

∂y + v
2

(
∂w
∂y

)2)

Ny = Eh
1−v2

(
∂uy

∂y + 1
2

(
∂w
∂y

)2 + v ∂ux
∂x + v

2

(
∂w
∂x

)2)

Nxy = Eh
1−v2

(
1−v
2

)(
∂ux
∂y + ∂uy

∂x + ∂w
∂x

∂w
∂y

)
(10.1.14)

which will be used in Sect. 10.3.

10.2 Example: Approximate Approach for Circular
Membranes by Strain Energy of Stretching

Suppose a circular membrane of radius R is imposed with uniform load on one
surface, one may, for the sake of simplicity, assume that the deflection takes the
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profile

w = w0

(
1 − r2

R2

)2

(10.2.1)

where w0, the maximum deflection, occurs at r = 0. As for the radial displacement,
one may adopt an expression of the form

ur = r(R − r)
∞∑
n=1

Cnr
n−1 = r(R − r)

(
C1 + C2r + C3r

2 + · · ·) (10.2.2)

wherein the condition ur = 0 must be satisfied at r = 0 and r = R. The stretching
energy based on the mid-plane of the membrane can be obtained via

U = 2π
∫ R

0

(
1

2
Nrεr + 1

2
Nθ εθ

)
rdr = π

∫ R

0
(Nrεr + Nθ εθ )rdr (10.2.3)

where the strains and tensile forces per unit length are obtained from Eqs. (10.1.1),
(10.1.2), and (10.1.9) to give

Nrεr = Eh
1−v2

(( dur
dr

)2 + dur
dr

(
dw
dr

)2 + 1
4

(
dw
dr

)4 + v ur
r

dur
dr + v

2
ur
r

(
dw
dr

)2)
Nθ εθ = Eh

1−v2

(
v ur

r
dur
dr + v

2
ur
r

(
dw
dr

)2 + ( urr )2
) (10.2.4)

Considering only the first two terms of the series in Eq. (10.2.2), we have from
Eq. (10.2.3)

U = πEhR2

1 − v2

(
0.25C2

1 R
2 + 0.3C1C2R

3 + 0.1167C2
2 R

4

−0.06768
C1w2

0

R
+ 0.05456C2w

2
0 + 0.30528

w4
0

R4

)
(10.2.5)

The constants C1 and C2 are evaluated from the condition that the total stretching
energy of the membrane is a minimum at equilibrium. Prescribing

∂U

∂C1
= ∂U

∂C2
= 0 (10.2.6)

leads to

C1 = 1.185
w2
0

R3
; C2 = −1.75

w2
0

R4
(10.2.7)

such that
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U = 0.2159
πEhw4

0(
1 − v2

)
R2

(10.2.8)

In other words, the range of stretching energy for moderately auxetic v = −0.5
to incompressibility v = 0.5 is

0.216
πEhw4

0

R2
≤ U ≤ 0.288

πEhw4
0

R2
(10.2.9)

while the stretching energy for highly auxetic range −1 ≤ v < −0.5 is

U > 0.288
πEhw4

0

R2
(10.2.10)

The membrane deflection can be evaluated by applying the principle of virtual
displacements, i.e.,

dU

dw0
δw0 = 2π

∫ R

0
pδwrdr (10.2.11)

Substituting Eq. (10.2.8) into the LHS of Eq. (10.2.11) gives

dU

dw0
δw0 = 0.8636

πEhw3
0(

1 − v2
)
R2

δw0 (10.2.12)

while the substitution of Eq. (10.2.1) into the RHS of Eq. (10.2.11) yields

2πpδw0

∫ R

0

(
1 − 2

r2

R2
+ r4

R4

)
rdr = π

3
pδw0R

2 (10.2.13)

Therefore, substituting Eqs. (10.2.12) and (10.2.13) into Eq. (10.2.11) leads to

w0 =
(
pR4

(
1 − v2

)
2.591Eh

) 1
3

(10.2.14)

Reference to Eq. (10.2.14) implies that if the Young’s modulus remains constant
with the change in Poisson’s ratio, the deflection is highest when the Poisson’s ratio
of the membrane material is zero, and the deflection decreases with the magnitude of
the Poisson’s ratio. Itmust be borne inmind that, in addition to being an approximated
approach, the above analysis applies only for membranes, which carry no bending
moment. If such analysis is to be extended for large deflection of circular plates, then
the strain energy of bending must be included.
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10.3 Example: Approximate Approach for Rectangular
Membranes by Strain Energy of Stretching

The approximate strain energy of stretching in membranes of other shapes follow
the same approach as with the circular membrane, and a brief outline is furnished
in this section for the case of rectangular membranes to highlight the differences by
virtue of the different geometry. Figure 10.2 shows a rectangular membrane of sides
2a by 2b so as to place the origin of the coordinate system at the center of the square
membrane. Again, the membrane possesses a Young’s modulus of E, Poisson’s ratio
of v, and thickness h. This membrane is being subjected to the following boundary
conditions:

• x = −a, a, y ∈ 〈−b, b〉 and z ∈ 〈−h/2, h/2〉: ux = uy = w = 0
• y = −b, b, x ∈ 〈−a, a〉 and z ∈ 〈−h/2, h/2〉: ux = uy = w = 0
• x ∈ 〈−a, a〉, y ∈ 〈−b, b〉, z = h/2 : σz = −p
• x ∈ 〈−a, a〉, y ∈ 〈−b, b〉, z = −h/2 : σz = 0

2a

2b

y

x z

y

p

p
z

xh

Fig. 10.2 Schematic view of rectangular membrane for analysis
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As with the circular membrane, there is a need to assume a deflection profile
that gives zero slope at the center and zero deflection at all four sides. This can be
achieved by assuming the deflection profile of the form

w = w0 cos
πx

2a
cos

πy

2b
(10.3.1)

while the in-plane displacements can be well approximated by

ux = cx sin πx
a cos πy

2b
uy = cy sin

πy
b cos πx

2a

(10.3.2)

Unlike the case of circular membranes being subjected to pressure where the
choice of polar coordinates removes the need for shear strain components, in the
case of rectangular membranes one must add the stretching strain due to in-plane
shearing. Hence, the strain energy for rectangular membranes consists of three terms,
namely Nxεx , Nyεy and Nxyγxy . Again, unlike circular membranes whereby only
a single integral is performed due to the axisymmetrical profile of the deflected
membrane, double integral needs to be performed for obtaining the stretching energy
of rectangular membranes. Hence

U = 1

2

∫ b

−b

∫ a

−a

(
Nxεx + Nyεy + Nxyγxy

)
dxdy (10.3.3)

Substituting Eqs. (10.1.10) and (10.1.14) into Eq. (10.3.3), we have

U = Eh

2
(
1 − v2

)
b∫

−b

a∫
−a

⎧⎨
⎩
[

∂ux

∂x
+ 1

2

(
∂w

∂x

)2
]2

+
[

∂uy

∂y
+ 1

2

(
∂w

∂y

)2
]2

+ 2v

[
∂ux

∂x
+ 1

2

(
∂w

∂x

)2
][

∂uy

∂y
+ 1

2

(
∂w

∂y

)2
]

+1 − v

2

(
∂ux

∂y
+ ∂uy

∂x
+ ∂w

∂x

∂w

∂y

)2
}
dx dy (10.3.4)

Since the displacements contain arbitrary magnitude parameters w0, cx , and cy ,
the principle of virtual displacements is employed to fulfil the following conditions

∂U

∂cx
= ∂U

∂cy
= 0

∂U

∂w0
δw0 =

b∫
−b

a∫
−a

pδw dx dy = pδw0

b∫
−b

a∫
−a

cos
πx

2a
cos

πy

2b
dx dy (10.3.5)
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from which the arbitrary parameters can be solved to yield the strains and stresses.
A special case of this problem has been furnished by Timoshenko and Woinowsky-
Krieger (1959) for a squaremembrane a = b (and hence cx = cy = c)with v = 0.25
to give

U = Eh

7.5

[
5π4

64

w4
0

a2
− 17π2

6

cw2
0

a
+ c2

(
35π2

4
+ 80

9

)]
(10.3.6)

wherein the application of the principle of virtual displacements leads to

c = 0.147w2
0
a

w0 = 0.802
(

pa4

Eh

) 1
3 (10.3.7)

The in-plane tensile strain εx = εy at the center of the membrane is obtained from
either the second or third of Eq. (10.3.2)

ε = ∂ux

∂x
= ∂uy

∂y
= πc

a
= 0.462

w2
0

a2
(10.3.8)

From Hooke’s law in 3D with σz ∼ 0, we have the in-plane stress σx = σy =
Eε/
(
1 − v2

)
. Since this special case applies only for v = 0.25, we have

σ = 0.616E
w2
0

a2
(10.4.9)

Themore generic caseswherea 	= bwith other Poisson’s ratio (including negative
values) are discussed in Sect. 10.5.

10.4 Example: Circular Auxetic Membranes

Consider again a circular membrane of radius R and thickness h with Young’s
modulus E and Poisson’s ratio v as shown in Fig. 10.1 (top), the deflection w due
to a uniform load p has been given as a function of the radial distance r from the
membrane center according to Hencky (1915) as

w

R
=
(
pR

Eh

) 1
3

∞∑
n=0

a2n

[
1 −

( r
R

)2n+2
]

(10.4.1)

where the coefficients are

a0 = b−1
0
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a2 = 1

2
b−4
0

a4 = 5

9
b−7
0

a6 = 55

72
b−10
0

a8 = 7

6
b−13
0

a10 = 205

108
b−16
0

a12 = 17, 051

5292
b−19
0

a14 = 2, 864, 485

508, 032
b−22
0

a16 = 103, 863, 265

10, 287, 648
b−25
0

a18 = 27, 047, 983

1, 469, 664
b−28
0

a20 = 42, 367, 613, 873

1, 244, 805, 408
b−31
0 (10.4.2)

in which b0 is numerically solved from

(1 − v)b0 − 3 − v

b20
− 2(5 − v)

3b50
− 13(7 − v)

18b80
− 17(9 − v)

18b110
− 37(11 − v)

27b140

− 1205(13 − v)

567b170
− 219, 241(15 − v)

63, 504b200
− 6, 634, 069(17 − v)

1, 143, 072b230

− 51, 523, 763(19 − v)

5, 143, 824b260
− 998, 796, 305(21 − v)

56, 582, 064b290
− · · · = 0 (10.4.3)

A major setback of this analytical model to compute the membrane deflection
is the need to perform three stages of calculations. In the first stage, a Poisson’s
ratio is selected so as to numerically solve for b0 from Eq. (10.4.3). Thereafter, the
coefficients a2n in Eq. (10.4.2) are directly calculated from the obtained b0. Finally,
the membrane deflection is calculated from Eq. (10.4.1) using the values of a2n ,
bearing in mind that this solution is based on the particular Poisson’s ratio that
was selected earlier for calculating b0. In order to facilitate convenient calculation of
circular membrane deflection for all Poisson’s ratio within the bounds−1 ≤ v ≤ 0.5
for isotropic membrane materials, a closed-form semi-empirical solution is proposed
as (Lim 2016)

w

R
=
(
pR

Eh

) 1
3
{
c0 − c2

( r
R

)2 − c4
( r
R

)4}
(10.4.4)
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where the coefficients ci (i = 0, 2, 4) are to be obtained by curve-fitting.
Hencky (1915) used only the first seven terms of Eq. (10.4.3) to solve b0 for

v = 0.3. The underestimated value is, however, due to a computation error, in
which his last term’s coefficient was 407/189 instead of 1205/567. This error was
corrected by Campbell (1956), whose analysis includes initial tension. Both Hencky
(1915) and Campbell (1956) calculated b0 for v = 0.3 only, hence the validity of
their subsequent results are confined to circular membranes of this Poisson’s ratio
only. By extending Eq. (10.4.3) up to the 11th term, Fichter (1997) obtained a more
accurate value of b0 for v = 0.3; a comparison between the b0 results of Campbell
(1956) and Fichter (1997) confirms the accuracy of the former up to three decimal
places. In addition, Fichter (1997) obtained results of b0 for v = 0.2 and v = 0.4,
thereby allowing interpolated values of deflection for 0.2 ≤ v ≤ 0.4 as well as
extrapolated values of deflection for Poisson’s ratio slightly outside this range but
still within the confines of positive Poisson’s ratio. The deflection results based on
v = 0.2, v = 0.3 and v = 0.4, however, are not applicable for extrapolating the
deflection of circular membranes into the auxetic range. As such the values of b0 are
computed for the entire range of Poisson’s ratio of isotropic solids −1 ≤ v ≤ 0.5
as shown in Table 10.1. It can be seen that as the Poisson’s ratio of the membrane
material becomes more negative, the value of b0 decreases at diminishing rate.

Suppose the deflection is expressed in the following dimensionless form

Table 10.1 Comparison of computed b0 results

Poisson’s ratio Hencky (1915) Campbell
(1956)

Fichter (1997) Lim (2016) Remarks

0.5 1.845309 Conventional

0.4 1.7769 1.776866 Conventional

0.3 1.713 1.724 1.7244 1.724393 Conventional

0.2 1.6827 1.682711 Conventional

0.1 1.648699 Conventional

0 1.620353 Conventional

−0.1 1.596323 Auxetic

−0.2 1.575662 Auxetic

−0.3 1.557686 Auxetic

−0.4 1.541886 Auxetic

−0.5 1.527875 Auxetic

−0.6 1.515357 Auxetic

−0.7 1.504095 Auxetic

−0.8 1.493902 Auxetic

−0.9 1.484627 Auxetic

−1 1.476147 Auxetic
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w∗ = w

R

(
Eh

pR

) 1
3

(10.4.5)

then the exact analytical model can be expressed as

w∗ = 1

b0

(
1 − r2

R2

)
+ 1

2b40

(
1 − r4

R4

)
+ 5

9b70

(
1 − r6

R6

)

+ 55

72b100

(
1 − r8

R8

)
+ 7

6b130

(
1 − r10

R10

)
+ 205

108b160

(
1 − r12

R12

)

+ 17, 051

5292b190

(
1 − r14

R14

)
+ 2, 864, 485

508, 032b220

(
1 − r16

R16

)

+ 103, 863, 265

10, 287, 648b250

(
1 − r18

R18

)
+ 27, 047, 983

1, 469, 664b280

(
1 − r20

R20

)

+ 42, 367, 613, 873

1, 244, 805, 408b310

(
1 − r22

R22

)
(10.4.6)

where b0 is solved from Eq. (10.4.3) for various Poisson’s ratio. Using results from
this exact solution, a first stage curve-fitting was performed to give the coefficients in
Eq. (10.4.4), for each value of Poisson’s ratio from v = −1 to v = 0.5 at increment
of 0.1, as listed in Table 10.2.

Table 10.2 List of
semi-empirical coefficients
for various Poisson’s ratio

v c0 c2 c4

−1.0 0.8473 0.6298 0.2136

−0.9 0.8375 0.6288 0.2051

−0.8 0.8273 0.6275 0.1964

−0.7 0.8165 0.6259 0.1875

−0.6 0.8050 0.6239 0.1783

−0.5 0.7929 0.6214 0.1689

−0.4 0.7799 0.6184 0.1592

−0.3 0.7660 0.6148 0.1492

−0.2 0.7511 0.6104 0.1389

−0.1 0.7349 0.6050 0.1283

0.0 0.7173 0.5986 0.1174

0.1 0.6981 0.5907 0.1062

0.2 0.6767 0.5812 0.0946

0.3 0.6529 0.5694 0.0828

0.4 0.6258 0.5547 0.0706

0.5 0.5946 0.5360 0.0582
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From this result, a second-stage curve-fitting to fit the variation of the coefficients
across the Poisson’s ratio was then performed, thereby completing the surface fit, to
express the coefficients of Eq. (10.4.4) in terms of the Poisson’s ratio as

⎧⎨
⎩
c0
c2
c4

⎫⎬
⎭ = 1

10, 000

⎡
⎣ 7176 1881

5989 754
1173 1107

932 356
782 346
146 0

⎤
⎦
⎧⎪⎪⎨
⎪⎪⎩

1
−v

−v2

−v3

⎫⎪⎪⎬
⎪⎪⎭

(10.4.7)

It should also be pointed out at this juncture that the solution in the form given
by Eq. (10.4.4) is also a truncation of Eq. (10.4.1) with summation up to the term
containing r4/R4, i.e.

w

R
=
(
pR

Eh

) 1
3
{
(a0 + a2 + a4 + · · ·) − a0

( r
R

)2 − a2
( r
R

)4}
(10.4.8)

or, with reference to Eqs. (10.4.2) and (10.4.5),

w∗ =
{
1

b0
+ 1

2b40
+ 5

9b70
+ · · ·

}
− 1

b0

( r
R

)2 − 1

2b40

( r
R

)4
(10.4.9)

In considering only the first three terms of a2n (n = 0, 1, 2), the corresponding
first three terms of Eq. (10.4.3)

(1 − v)b60 − (3 − v)b30 − 2

3
(5 − v) = 0 (10.4.10)

can be solved to give several mathematical solutions but in which only one root is
physically possible, which is

b0 =
[
1

2

(
3 − v

1 − v

)(
1 +

√
1 + 8

3

(1 − v)(5 − v)

(3 − v)2

)] 1
3

(10.4.11)

To display the comparative validity of the semi-empirical solution described
by Eqs. (10.4.4) and (10.4.7) with the truncated analytical solution described by
Eqs. (10.4.9) and (10.4.11), the dimensionless deflection distribution by the exact
method, Eq. (10.4.6), was indirectly solved and compared with the dimensionless
deflection distribution by the semi-empirical method

w∗ = 7176 − 1881v − 932v2 − 356v3

10, 000
− 5989 − 754v − 782v2 − 346v3

10, 000

( r
R

)2

− 1173 − 1107v − 146v2

10, 000

( r
R

)4
(10.4.12)
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and the dimensionless deflection distribution by the truncated analytical method

w∗ =
⎧⎨
⎩
[
1

2

(
3 − v

1 − v

)(
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√
1 + 8

3
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√
1 + 8

3
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)(
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√
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3
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(3 − v)2
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⎭

−
[
1

2

(
3 − v

1 − v

)(
1 +

√
1 + 8
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(3 − v)2
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− 1
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1
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(
3 − v

1 − v

)(
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√
1 + 8

3

(1 − v)(5 − v)

(3 − v)2

)]− 4
3 ( r

R

)4
(10.4.13)

both of which take the form described in Eq. (10.4.4) and can be solved directly.
To assess the accuracy of the semi-empirical model vis-à-vis the truncated analyt-

ical model, a comparison is made between the dimensionless deflection distributions
of these twomodelswith that of the exact analyticalmodel, in terms ofw∗ versus r/R,
at a typical Poisson’s ratio value of v = 0.3. Figure 10.3 shows that the truncated
analytical model overestimates the exact analytical model while the semi-empirical
model agrees well with the exact analytical model. Figure 10.3 further suggests that
the semi-empirical model, in addition to being more convenient than the truncated
analytical model, gives superior accuracy at v = 0.3. The better accuracy of the
semi-empirical model in comparison to the truncated analytical model is attributed
to the former taking more terms from the exact analytical model into consideration
as compared to the truncated analytical model.

Having established the accuracy of the semi-empirical model, there is now a
need to investigate the consistency of its accuracy for the entire range of Poisson’s
ratio of the isotropic membrane material. Figure 10.4 compares the distribution of
dimensionless deflection, w∗, versus dimensionless radial distance, r/R; for clarity,
the families of w∗ curves with even and odd values of 10v are separately plotted.
A very good agreement can be observed between the exact and the semi-empirical
solutions, thereby verifying the validity of the proposed semi-empirical model across
the entire Poisson’s ratio range for isotropic solids. It follows that there exists a
separation of auxetic and conventional regions bounded by v = −1, 0, 0.5, as shown
in Fig. 10.5. Although the Poisson’s ratio range in the auxetic region (−1 ≤ v < 0)
is twice that in the conventional region (0 ≤ v ≤ 0.5), the area bounded by both
regions in Fig. 10.5 is almost equal. This is due to the diminishing increment of the
membrane deflection as the Poisson’s ratio becomes more negative.
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Fig. 10.3 Comparison of the truncated analytical deflection (dashed curve) and the semi-empirical
deflection (continuous curve) against the exact analytical deflection (circles)
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Fig. 10.4 Comparison between the dimensionless deflection distributions between
the exact model (discrete data points) and the semi-empirical model (contin-
uous curves) for v = −1,−0.8,−0.6,−0.4,−0.2, 0, 0.2&0.4 (left), and v =
−0.9,−0.7,−0.5,−0.3,−0.1, 0.1, 0.3 and 0.5 (right)
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Fig. 10.5 Loci of dimensionless deflection versus dimensionless radial distance for the auxetic and
conventional regions

The deflection is obviously maximum at the center of the membrane, r = 0.
Hence, the exact maximum dimensionless deflection by Eq. (10.4.6) and the semi-
empirical maximum deflection of Eq. (10.4.12) reduce to

w∗
max = 1

b0
+ 1

2b40
+ 5

9b70
+ 55

72b100
+ 7

6b130
+ 205

108b160
+ 17, 051

5292b190
+ 2, 864, 485

508, 032b220

+ 103, 863, 265

10, 287, 648b250
+ 27, 047, 983

1, 469, 664b280
+ 42, 367, 613, 873

1, 244, 805, 408b310
(10.4.14)

and

w∗
max = 7176 − 1881v − 932v2 − 356v3

10000
(10.4.15)

respectively at r = 0. Figure 10.6 (left) shows the maximum deflection of the
membrane based on the definition of dimensionless deflection plotted against the
dimensionless radial distance. The exact and semi-empirical plots are denoted by
discrete points and discontinuous curve, respectively. There appears to be a slight
underestimation of themaximumdeflection by the semi-empiricalmodelwhen r = 0
is simply substituted into Eq. (10.4.12) to yield Eq. (10.4.15), especially in the auxetic
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Fig. 10.6 Plots of dimensionless maximum membrane deflection versus the dimensionless radial
distance for generic and specific semi-empirical results compared against exact solution (left), and
percentage error of generic and specific semi-empirical with reference to the exact solution (right)

region. When measured as a percentage error with reference to the exact solution,
the maximum percentage error is approximately −0.36% at v = −0.8, as shown by
the discontinuous curve in Fig. 10.6 (right). Although this error magnitude is very
small and can be neglected, it is of interest to understand the reason for its overall
trend.

In the curve-fitting process for obtaining the semi-empiricalmodel, the dimension-
less deflection was fitted as a function of both the Poisson’s ratio and the dimension-
less radial distance, with the error being generally underestimated and overestimated
at the central and outer portions of the membrane. As a result, the mere substitution
of r = 0 into Eq. (10.4.12) inherently leads to deflection underestimation therein.
Reference to Fig. 10.6 (right) shows that the percentage error is very small especially
in the conventional region. To obtain a more accurate maximum deflection model for
auxetic membranes, it is useful to curve-fit the maximum deflection directly from
the exact solution. The resulting dimensionless semi-empirical maximum deflection
is thus

w∗
max = 7186 − 1896v − 930v2 − 356v3

10, 000
(10.4.16)

To differentiate both semi-empirical models for the maximum deflection, we
define Eq. (10.4.15) as the generic semi-empirical model, for it comes from
Eq. (10.4.12) which includes the radial distance, and the specific semi-empirical
model, for it is specifically curve-fitted at the maximum deflection. Reference to
Fig. 10.6 (left) shows the extremely good agreement between the specific semi-
empirical model for the maximum deflection and the exact model. When assessed in
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terms of the percentage error, the maximum error of 0.2% takes place in the conven-
tional region, or v = 0.5 to be precise. In the auxetic range, the errormagnitude is less
than 0.1%. Perusal to Fig. 10.6 (left) again provides evidence that as the Poisson’s
ratio of themembrane becomesmore negative themaximum deflection increases, but
this change takes place with diminishing effect. This observation is not surprising,
as biaxial stretching is facilitated by negative Poisson’s ratio. Consequently, the
deflection of the entire membrane increases with auxeticity.

Finally, it is of interest to evaluate the combined effect of auxeticity on large
deformation vis-à-vis infinitesimal deformation theory of thin plates. To do so, a
normalized deflection distribution is introduced as w/wr=v=0; this ratio normalizes
the deflection distribution against the deflection at the pole (r = 0) and, to observe
the effect of Poisson’s ratio sign, at zero Poisson’s ratio. For the infinitesimal theory,
the flexural rigidity described in Eq. (4.1.3) is substituted into the plate deflection
profile of a simply supported circular plate under uniform load

w = p

64D

(
R2 − r2

)(5 + v

1 + v
R2 − r2

)
(10.4.17)

to give

w = 3p
(
1 − v2

)
16Eh3

(
R2 − r2

)(5 + v

1 + v
R2 − r2

)
(10.4.18)

and hence

w

wr=v=0
= 1

5

(
1 − r2

R2

)[
(5 + v)(1 − v) − (1 − v2

) r2
R2

]
(10.4.19)

while the corresponding ratio for large deflection of membranes is based on
Eq. (10.4.12)

w

wr=v=0
= 1

0.7176

[
7176 − 1881v − 932v2 − 356v3

10, 000

− 5989 − 754v − 782v2 − 346v3

10, 000

( r
R

)2

−1173 − 1107v − 146v2

10, 000

( r
R

)4]
(10.4.20)

due to its impeccable accuracy. The comparison of membrane deflection is made
herein against that of the simply supported circular plates due to the similarity
of boundary condition for both problems. Figure 10.7 shows that while auxeticity
increases deflection, the increment of deflection is lower for large deformation of
membranes than for infinitesimal deformation of thin plates when normalization is
performed against their respective maximum deflection (r = 0) at v = 0. In other
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Fig. 10.7 Comparison of normalized deflection distributions between infinitesimal deformation
theory of plates with the large deformation theory of membranes with v = 0.5 (top left), v = 0 (top
right), v = −0.5 (bottom left), and (d) v = −1 (bottom right)

words, an auxetic membrane performs better than an auxetic plate under the selected
normalization criterion.

In summary, the plotted deflection results reveal that the negativity of Poisson’s
ratio facilitates deflection but with diminishing effect. Using these exact results, a
semi-empirical model has been developed to facilitate convenient and direct calcula-
tion of the membrane deflection. The generic semi-empirical model exhibits excel-
lent agreement with the exact result, with the highest error magnitude at 0.36% at
the point of maximum deflection, and this reduces to 0.2% for the specific semi-
empirical model. It is known that membranes are compliant and are therefore not
used for structural support functions; they are used as diaphragms or other extremely
thin-walled structures that function by large deflection. Hence, auxetic membranes
exhibit greater flexibility and stretching (bio)functions in comparison conventional
membranes, at equal Young’s modulus.
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10.5 Example: Rectangular Auxetic Membranes

With reference to the rectangular membrane furnished in Fig. 10.2 and its boundary
conditions, the strain energy has been obtained from the assumed displacements
given in Eqs. (10.3.1) and (10.3.2) as (Conway, 1946)

U = Ehπ2
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{
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(10.5.1)

The arbitrary parameters cx and cy are evaluated by the minimization ofU, as per
the first of Eq. (10.3.5), to give
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and

cy = 3π2w
2
0

ab

∣∣∣∣ b
(
16b2 + a2

)
a
(
16a2 + b2

)
9π2
(
32b2 + 3a2

)
320ab

∣∣∣∣∣∣∣∣ 320ab 9π2
(
32a2 + 3b2

)
9π2
(
32b2 + 3a2

)
320ab

∣∣∣∣
(10.5.3)

Applying the principle of virtual displacement as described in the second of
Eq. (10.3.5), from which

∂U

∂w0
= p

16ab

π2
(10.5.4)

leads to the deflection at the membrane center

w0 = γ

(
pa4

Eh

) 1
3

(10.5.5)

where γ is dependent on the membrane aspect ratio a/b. For convenience, Conway
(1946) introduced coefficients α and β for selected values of cx and cy in the form



10.5 Example: Rectangular Auxetic Membranes 343

Table 10.3 Coefficients α, β
and γ for various membrane
aspect ratios by Conway
(1946)

a/b α β γ

1.0 0.1468 0.1468 0.818

1.5 0.1238 0.2217 0.569

2.0 0.0982 0.3254 0.411

3.0 0.0503 0.4964 0.248

4.0 0.0194 0.6650 0.171

{
cx
cy

}
= w2

0

a

{
α

β

}
(10.5.6)

while the values of γ were calculated from the abovementioned principle of virtual
displacement; these coefficients were calculated for a/b = 1, 1.5, 2, 3 and 4 (see
Table 10.3).

To facilitate convenient analysis of such rectangular membranes at other
membrane aspect ratios, empirical modeling from Table 10.3 gives the following
simplified relations

α = 0.1873 − 0.0433
a

b
(10.5.7)

β = 0.1745
a

b
− 0.03031 (10.5.8)

γ = 0.8684
b

a
− 0.034 (10.5.9)

that are applicable for 1 ≤ a/b ≤ 4. The validity of the empirical models can be
established by comparing them to the data by Conway (1946), as shown in Fig. 10.8.
The use of Eqs. (10.5.7)–(10.5.9) allows calculations of cx , cy andw0 that are simpler
and more direct than Eqs. (10.5.2)–(10.5.4), respectively.

Having established the correlation between the empirical models and the exact
values of the coefficient α, β, and γ , we now apply them for evaluating the extent of
stresses

{
σx

σy

}
x=y=0

= πE

1 − v2

[
1 v

v 1

]{
cx/a
cy/b

}
(10.5.10)

at the center of the rectangular membranes. Where stresses are concerned, Conway
(1946) evaluated the maximum membrane stress only for the case where v = 0.25.
Since

(
σy
)
x=y=0 > (σx )x=y=0 for a > b, we evaluate the maximum membrane

stresses in terms of σy at the membrane center. As it is well known that the
membrane stresses are aggravated by their Young’s modulus and the applied load, a
dimensionless maximum stress is introduced as
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Fig. 10.8 Comparison
between exact (points) and
empirical (lines) values of
coefficients α, β and γ
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to give

σ ∗
max = γ 2

1 − v2

(
β + vα

b

a

)
(10.5.12)

so as to allow direct observation on the effects of Poisson’s ratio and the aspect ratio
of the membrane. Substitution of Eqs. (10.5.7)–(10.5.9) into Eq. (10.5.12) gives

σ ∗
max = 1

1 − v2

(
0.8684

b

a
− 0.034

)2

{
0.1745

a

b
− 0.03031 + v

(
0.1873

b

a
− 0.0433

)}
(10.5.13)

To find the optimum Poisson’s ratio, that minimizes the dimensionless maximum
stress, we impose

∂σ ∗
max

∂v
= 0 (10.5.14)
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on Eq. (10.5.12) to give two possiblemathematical solutions on the optimal Poisson’s
ratio (Lim 2020)

vopt = −a

b

β

α
±
√(

a

b

β

α

)2

− 1 (10.5.15)

Since only one solution exists, the choice of physically admissible solution from
Eq. (10.5.15) has to be made based on the bounds of Poisson’s ratio for isotropic
materials, as will be shown later in Eq. (10.5.16).

A comparison on the effect of Poisson’s ratio negativity can be made using
Eq. (10.5.13) for−0.5 ≤ v ≤ 0.5.This is the rangeof Poisson’s ratio atwhich one can
compare mechanical responses for Poisson’s ratio of opposite signs while retaining
the magnitude, hence comparison is therefore made on purely the effect of Poisson’s
ratio negativity but not its magnitude. Figure 10.9 shows that for v = 0, the dimen-
sionlessmaximumstress exhibits an exponential-like decay as themembrane’s aspect
ratio increases. Perusal to the maximum stress plots for v = ±0.1,±0.3and ± 0.5
shows that the trend remains the same for conventional membranes, in which the
dimensionless maximum stress increases with the Poisson’s ratio. However, in the
case of auxetic membranes, it is observed that there is no clear increase in the dimen-
sionless maximum stress within−0.5 ≤ v < 0 and that a buildup of maximum point
becomes more evident as the Poisson’s ratio becomes more negative. More impor-
tantly, the dimensionless maximum stress is lower when the membrane is auxetic in
comparison to conventional membranes for the same Poisson’s ratio magnitude. This
is attributed to the ease of forming synclastic deformation when the Poisson’s ratio
is negative. The remaining Poisson’s ratio range −0.999 ≤ v < −0.6, for which
there is no counterpart in the conventional range, is also furnished for the sake of
completeness. Due to the presence of 1− v2 at the denominator of Eq. (10.5.13), the
plot of v = −0.999 was used instead of v = −1. As the aspect ratio increases, the
portion of the membrane away from the short side approximates a cylindrical shape.
When a flat surface transforms into a surface of single (not double) curvature, the
Poisson’s ratio sign becomes insignificant. An alternate view of Fig. 10.9 is given in
Fig. 10.10, for emphasizing the variation of the dimensionless maximum stress for
gradual change in Poisson’s ratio.

To observe the effect from a wider range of auxeticity, −1 < v < 0, a family
of dimensionless maximum stress curves is plotted against the membrane aspect
ratio from v = −0.1 to v = −0.9. Plotted results in Fig. 10.11 (top) show that the
peak dimensionlessmaximum stress increases and occurs at highermembrane aspect
ratio (indicated by a dashed curve) as the membrane’s Poisson’s ratio becomes more
negative. These dimensionless maximum stress curves also suggest that stresses can
be minimized by judicious choice of Poisson’s ratio indicated by the lower boundary
formed in Fig. 10.11 (top). A zoomed in view of this boundary is shown in Fig. 10.11
(bottom), indicating that the dimensionless maximum stress can be minimized by
controlling the Poisson’s ratio. Specifically, the optimal Poisson’s ratio is v = 0 as
the membrane becomes very long and narrow; the optimal Poisson’s ratio tends to
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Fig. 10.9 Effect from the negativity of the Poisson’s ratio on the dimensionless maximum
membrane stresses

v → −1 for square membranes. The former observation is attributed to the tendency
for very long and narrow membranes to deform into a cylindrical-like shell, hence
a Poisson’s ratio of v = 0 would give the least stress. The latter observation is
attributed to the tendency for the square membrane to approximate a spherical shell
at its central portion, such that the value of v = −1 would give the lowest stress.
These two extremes suggest that a negative Poisson’s ratio is beneficial in lowering
the membrane stresses of rectangular membranes.

While the optimal Poisson’s ratio in Fig. 10.11 (bottom) is based on piece-
wise increments of Poisson’s ratio of 0.1, a continuous and smooth relationship
between this optimal Poisson’s ratio and its corresponding minimized dimensionless



10.5 Example: Rectangular Auxetic Membranes 347

0.04

0.08

0.12

0.16

0.2

-1 -0.75 -0.5 -0.25 0 0.25 0.5 -1 -0.75 -0.5 -0.25 0 0.25 0.5

max* a/b =1.00

v

1.10
1.05
1.02

1.20

0

0.04

0.08

0.12

0.16
max*

v

a/b =1.4

1.5

2.0

3.0

5.0

Fig. 10.10 Variation of the dimensionless maximum stress with the Poisson’s ratio for square and
almost square membranes (left), and rectangle membranes of higher aspect ratio (right)

maximum stress can be obtained as follows. Substituting Eqs. (10.5.7) and (10.5.8)
into Eq. (10.5.15) gives

−∞ < vlow
opt < −1 < v

upp
opt < 0 (10.5.16)

for 1 ≤ a/b ≤ 4, hence the lower solution is discarded in favor of the upper solution.
Based on the latter, the optimal Poisson’s ratio

vopt = − f (a, b) +
√

( f (a, b))2 − 1 (10.5.17)

where

f (a, b) = 0.1745 a
b − 0.03031

0.1873 b
a − 0.0433

(10.5.18)

can be substituted into Eq. (10.5.13) to give the minimized dimensionless maximum
stress (Lim 2020)

min
a
b ∈[1,4]

σ ∗
max = (σ ∗

max

)
v=vopt

(10.5.19)

both of which are plotted in Fig. 10.12 with reference to the membrane aspect ratio.
While minimization of the dimensionless maximum stress is effectively carried out
for square membranes as well as long and narrowmembranes via v = −1 and v = 0,
respectively, the minimization is less effective for slightly rectangular membranes of
aspect ratio 1.1 < a/b ≤ 1.2 whereby the required Poisson’s ratio would be about
v ∼ −0.4.
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Fig. 10.11 Dimensionless maximum stresses for rectangular auxetic membranes, showing: locus
of maximum stress indicated by dashed curve (top) and optimal Poisson’s ratio, that minimizes the
maximum stresses for various membrane aspect ratio (bottom)

Since the influence of the membrane’s Young’s modulus, relative thickness and
load are obvious, a dimensionless maximum stress description has been introduced
to observe the less obvious effects stemming from the Poisson’s ratio and aspect ratio
of the membrane. Results from the empirical model reveal that:

(a) as the membrane aspect ratio increases, the dimensionless maximum stress
decreases monotonically and non-monotonically for conventional and auxetic
membranes, respectively
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Fig. 10.12 Curves of dimensionless maximum stress, minimized with respect to the Poisson’s ratio
(top), and the corresponding optimal Poisson’s ratio (bottom) plotted against the membrane aspect
ratio

(b) for the same Poisson’s ratio magnitude, the dimensionless maximum stress is
lower in auxetic membranes than in conventional ones

(c) minimization of the dimensionless maximum stress is very effective for square
membranes and very long and narrow membranes with the use of v = −1 and
v = 0, but less effective for slightly rectangular membranes (1.1 < a/b ≤ 1.2)
and

(d) it is easier to control the dimensionless maximum stress for a/b ≥ 1.2 due to
the more gradual change in the optimal Poisson’s ratio.

In other words, the use of auxetic materials with low Young’s modulus is recom-
mended for lowering the extent of stresses in rectangular membranes under uniform
load.
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Chapter 11
Negative Thermal Expansion

Abstract This chapter reviews the various 2D NTE systems, including those
constructed from bimaterial strips, laminates (of various stiffness disparity), trusses
(of triangular cells, Y-shaped elements, and Hoberman circle), meshes, rigid unit
modes, and ring-rod assemblies (both 2D and 3D). Finally, a few examples of 3D
NTE structures are briefly mentioned.

Keyword Negative thermal expansion

11.1 Fundamentals and Historical Development

For an original length L0 of a solid at a reference temperature T0, an increase in
temperature dT = T − T0 brings about an increase to the length by an amount
dL = L − L0. The thermal strain in terms of dimensional change is no different
from the strain due to uniaxial loading

ε
(T )
L = dL

L0
(11.1.1)

while the thermal strain in terms of temperature change is

ε
(T )
L = α

(T )
L dT (11.1.2)

where α
(T )
L , the linear coefficient of thermal expansion (CTE) is a proportionality

constant that describes the extent of strain per unit change in temperature. From
Eqs. (11.1.1) and (11.1.2), the linear CTE can be written as

α
(T )
L = 1

L0

dL

dT
(11.1.3)

Typically, an increase in dimension dL > 0 results from an increase in the temper-
ature of the solid dT > 0, or a decrease in dimension dL < 0 results from a decrease
in the temperature of the solid dT < 0. For this reason, the linear CTE is normally
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Fig. 11.1 An example of
anharmonicity (see
blue-dashed curve) passing
through the center of the
mean bond length for various
energy levels (red lines) for a
2-body bond energy between
bonded carbon atoms within
each C60 molecules.
Adapted from Lim (2010)
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positive because dL/dT > 0, and this can be attributed to the anharmonicity of the
lattice vibration. See Fig. 11.1 for example. Suppose the changes in the lattice vibra-
tion frequency arising from anharmonicity is linearly correlated to the infinitesimal
change in the volume V, then the linear CTE is described by

α
(T )
L = γGCDeb

3KV
(11.1.4)

where γG is the Grüneisen parameter, CDeb is the Debye specific heat, and K is the
bulk modulus.

Two illustrations of local vibrational modes responsible for NTE are illustrated
in Fig. 11.2 for single-atom linkage (left) and diatomic linkage (right). The larger
circles (in black) refer to heavier atoms such as metals, while the smaller circles (in
white) correspond with lighter atoms such as C, N, or O. The vibration of the lighter
atoms in transverse direction to the bond, due to heating, causes the heavier atoms

Fig. 11.2 Local vibrational
modes responsible for with
single-atom (left) and
diatomic (right) linkages
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to move closer to one another. This results in NTE along the line formed by the two
heavier atoms.

A solid is said to exhibit negative thermal expansion (NTE) when a decrease in
dimension dL < 0 results from an increase in the temperature of the solid dT > 0,
or an increase in dimension dL > 0 results from a decrease in the temperature of the
solid dT < 0. Under such a condition the solid is said to possess negative thermal
expansion (NTE), and consequently its CTE is negative, α(T )

L < 0. Some solids may
exhibit NTE in one direction but conventional, or positive thermal expansion (PTE),
in another direction. The overall negativity of thermal expansion for these solids is
therefore assessed by considering its volumetric CTE

α
(T )
V = 1

V0

dV

dT
(11.1.5)

for a change in volume per unit temperature change dV/dT in a solid of original
volume V0 at reference temperature T0. For comparison with gases, recall that its
CTE is

α
(T )
V = 1

V0

(
dV

dT

)
P=const.

(11.1.6)

at constant pressure. In an anisotropic solid that exhibits NTE and PTE in different
directions, overall NTE is defined by α

(T )
V < 0. For completeness’ sake, one may

also define an areal CTE in a similar fashion for an area change per temperature
change dA/dT

α
(T )
A = 1

A0

dA

dT
(11.1.7)

where A0 can the original area for a 2D material or an original area on a plane of
consideration. If both NTE and PTE exist at right angles from one another within the
plane of consideration, then overall planar NTE is said to be demonstrated ifα(T )

A < 0
for that plane. Historically, the shrinkage of a solid was reported by Scheel (1907a, b)
for quartz and vitreous silica at low temperatures at the turn of the previous century,
and further documentations ofmaterials that contract over various temperature ranges
appeared in the literature throughout the years, including work on lithium aluminum
silicates by Hummel (1948, 1951) half a century later.

A number of landmark reports on NTE have been made before the turn of the
millennium; these include, but not limited to, the works by Chu et al. (1987), Sleight
(1995, 1998a, b), Mary et al. (1996), Evans et al. (1999). A recent review on NTE
by Takenaka (2018) classifies NTE materials into two broad categories: “conven-
tional NTE” and phase transition-type of NTE, as outlined in Fig. 11.3. The working
mechanisms of theseNTE systems are illustrated by Takenaka (2018) as follows. The
schematic of anisotropic thermal expansion in the silicates is shown in Fig. 11.4 (top).
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Fig. 11.3 Classification of negative thermal expansion materials by Takenaka (2018)

Fig. 11.4 Schematics of NTE in silicates (top) and in flexible network (bottom), as reviewed by
Takenaka (2018)



11.1 Fundamentals and Historical Development 355

As the shaded layers undergo thermal expansion, they are pulled closer together in
the direction perpendicular to the layer. This causes significant thermal contraction
in the perpendicular direction and yields slight net volumetric thermal contraction.
The schematic of NTE in a flexible network is furnished in Fig. 11.4 (bottom). A
vibrational mode consuming an open space in a crystal lattice is thermally excited,
which yields net volumetric thermal contraction.

The concept of total volume change�V/V related to NTE is employed for eluci-
dating the case of phase transition-type NTE materials. With reference to Fig. 11.5
(top), the “slope” α

(T )
V (coefficient of volumetric thermal expansion) shares a tradeoff

relation with the width of the operating-temperature window �T , roughly described

as �V/V ∼
∣∣∣α(T )

V

∣∣∣�T . As an isotropic material, a linear CTE α
(T )
L is related to the

volumetric CTE α
(T )
V as α

(T )
V = 3α(T )

L . Therefore, coefficients α
(T )
V and α

(T )
L are not

intrinsic for such phase transition-type materials. Instead, the total volume change
�V/V is the intrinsic index indicating the potential of NTE. Figure 11.5 (bottom)
shows a schematic explanation of microstructural effect for bulk negative thermal
expansion. The ceramic body consists of crystal grains with anisotropic thermal
expansion and pores. Upon an increase in temperature, the crystal grain expands in
one direction but contracts in a perpendicular direction. If there exists open space in

Fig. 11.5 Phase transition-type NTE (top) andNTE in ceramics (bottom), as reviewed by Takenaka
(2018)
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the direction in which the crystal grain expands, then this ceramic body encounters
overall contraction (Takenaka 2018), thereby exhibiting NTE.

With reference to Fig. 11.4 (bottom), which is an idealized 2D representation, we
shall nowconsider its 3Dequivalences as examples fromLind (2012); Fig. 11.6 shows
the crystal structures of α-ZrW2O8 (top left), ZrV2O7, an ideal high-temperature
structure, (top right), chabazite (bottom left), and AlPO-17 (bottom right). ZrW2O8

was first discovered by Graham et al. (1959), and its crystal structure was determined
by Auray et al. (1995). This led Mary et al. (1996) to elucidate the NTE behavior of
ZrW2O8 from 0.3 to 1050 K based on its structure and the rigid units mode (RUM)
of vibration. Negative thermal expansion in the zirconium vanadate family was first
reported byKorthuis et al. (1995). Unlike ZrW2O8, vibrational modes always involve
distortions of the polyhedral, and hence, the vibration is described as quasi-rigid unit
modes, or qRUM (Tao and Sleight 2003). ZrV2O7 exhibits NTE with CTE values
between −7 × 10−6K−1 and −10 × 10−6K−1 for T > 375K, but shows PTE at
room temperature (Khosrovani et al. 1997; Evans et al. 1998; Withers et al. 1998).
With reference to Fig. 11.6 (bottom), the CTE of chabazite and AlPO-17 have been

Fig. 11.6 Crystal structures of α-ZrW2O8 (top left), ZrV2O7, an ideal high-temperature structure,
(top right), chabazite (bottom left), and AlPO-17 (bottom right), as reviewed by Lind (2012)
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measured to be about zero and −11.7× 10−6K−1, respectively (Attfield and Sleight
1998; Woodcock et al. 1999; Lightfoot et al. 2001)

A comprehensive survey of NTE materials has been given by Fisher (2018).
Subsequent sections consider examples of composites consisting of phases with
non-negative CTEs, but whosemicroarchitectures are designed such that they exhibit
overall NTE properties.

11.2 Example: NTE Systems via Bimaterial Strips

An early account on an innovative approach for producing NTE and PTEmicrostruc-
ture was proposed in the form of cellular structures made from bimaterial strips
(Lakes 1996). See Fig. 11.7 (left). It is known that bimaterial strips are made from
materials (normally metals) with vastly different CTEs, i.e., α(T )

1 and α
(T )
2 for layers

1 and 2, respectively. Arising from their differential strain and the perfect bond at
the interface, the straight bimaterial strip transforms into a curve during a change in
temperature dT . For a bimaterial layer thicknesses h1 and h2, this curvature κ has
been obtained by Timoshenko (1925) as

κ =
6
(
α

(T )
2 − α

(T )
1

)
dT
(
1 + h1

h2

)2

(h1 + h2)

[
3
(
1 + h1

h2

)2 +
(
1 + E1h1

E2h2

)(
h21
h22

+ E2h2
E1h1

)] (11.2.1)

Fig. 11.7 An example of cellular structure consisting of bimaterial strips (left) and a bimaterial
strip with initial curvature (right) studied by Lakes (1996)
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where E1 and E2 are Young’s moduli of layers 1 and 2, respectively. While
Eq. (11.2.1) applies for the curvature formed from an initially straight bimaterial, it
is also valid for describing the change in curvature for an initially curved bimaterial
strip. Suppose the temperature increases, the curving of the bimaterial strips brings
the junctions closer together. This essentially causes contraction. In other words,
the microstructure exhibits an effective CTE with a negative value for increasing
temperature.

Consider a curved rib of arc length larc with radius of curvature r and an included
angle of θ. With reference to Fig. 11.7 (right), the rib length l, defined as the straight
line connecting both ends, is

l = larc
2

θ
sin

(
θ

2

)
(11.2.2)

The thermal strain as measured by the distance between the ends of the rib is

εT = dl

l
(11.2.3)

while the effect of curvature change due to thermal bending is

εT =
[
1

2
cot

(
θ

2

)
− 1

θ

]
larcdκ (11.2.4)

Since the CTE is defined as

α(T ) = εT

dT
(11.2.5)

we obtain the effective CTE of the cellular solid as (Lakes 1996)

α
(T )
eff =

6larc
(
α

(T )
2 − α

(T )
1

)(
1 + h1

h2

)2[
1
2 cot
(

θ
2

)− 1
θ

]

(h1 + h2)

[
3
(
1 + h1

h2

)2 +
(
1 + E1h1

E2h2

)(
h21
h22

+ E2h2
E1h1

)] (11.2.6)

The sign of the effective CTE is dependent on the positioning of the layers in
the binaterial strips. With reference to Fig. 11.8 (top), if the bimaterial layer with
the higher CTE is on its concave side, an increase in temperature will cause the
rib to straighten, thereby exhibiting PTE. Suppose the bimaterial layer with the
higher CTE is on its convex side, an increase in temperature will cause the rib to
curve more such that the distance between the junctions become shorter, leading
to NTE. With reference to Fig. 11.8 (bottom) whereby the bimaterial strips are
initially straight, an increase or decrease in temperature will cause the bimaterial
strips to curve in opposing manner. Now, if the difference in the curved length of
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Fig. 11.8 Square array of cells where the walls are initially curved (top) and initially straight
(bottom)

the bimaterial strip under the effect of increasing and decreasing temperature is
negligible, then the cellular solid encounters contraction regardless of increasing or
decreasing temperature. In otherwords, this cellular solid behaves as anNTEmaterial
with increasing temperature, but a PTE material with decreasing temperature. Such
sign-toggling of expansion coefficients has been investigated recently byLim (2019a,
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b, c, d, e; 2020a, b, c) as a follow up on work with sign-toggling Poisson’s ratio (Lim
2019f, g).

Furtherwork on the use of bimaterial strips for developing cellularmicrostructures
with NTE and PTE by this group can be found in Lakes (2007) and Ha et al. (2015,
2017). In the alternate arrangement by Ha et al. (2015), the bimaterial strips of
alternating orientation are adopted for constructing in-plane isotropic NTE system
that resembles chiral structure, as shown in Fig. 11.9 (top).With reference to Fig. 11.9
(bottom), the strain is geometrically related to the rotation φ, node outer radius rnode
and the spacing between the centers of the nodes R as

ε = rnodeφ

R
(11.2.7)

A change in temperature dT in an initially straight bimaterial strip produces a
radius of curvature r with included half-angle φ of

Fig. 11.9 NTE system using bimaterial strips to construct chiral structure by Ha et al. (2015)
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φ = L rib

4r
(11.2.8)

where L rib is the rib length. From Pythagoras’ theorem, we have

R =
√
L2
rib + (2rnode)

2 (11.2.9)

Substituting Eqs. (11.2.8) and (11.2.9) into Eq. (11.2.7) gives

ε = rnode
4r

1√
1 +
(
2rnode
L rib

)2 = α
(T )
eff dT (11.2.10)

where r−1 = κ as given in Eq. (11.2.1).

11.3 Example: NTE System via Multilayered Systems
with Large Stiffness Disparity

An early work on the use of multilayered systems to produce NTE has been estab-
lished by Grima et al. (2010) through the use of thin layers with high modulus and
high CTE and thick layers of lowmodulus and low CTE; the latter possessing signif-
icantly higher Poisson’s ratio than the former. Both materials are isotropic. With
reference to Fig. 11.10 (top left), let the CTE of materials A and B be α

(T )
A and α

(T )
B ,

respectively, whereby α
(T )
A > α

(T )
B so that upon heating, material A has a propen-

sity to expand to a much greater extent than material B if they are not bonded to
each other. Let Young’s moduli of materials A and B be EA and EB , respectively,
whereby EA � EB so that the middle layer encounters an in-plane stretching much
greater than the in-plane contraction of the upper and lower layers in fulfillment of
geometrical compatibility at the boundaries on the condition of the perfectly bonded
interface. Finally, let vA and vB be Poisson’s ratio of materials A and B, respectively,
whereby vB > vA so that the magnitude of the negative thickness strain of the middle
layer is greater than the thickness strain of the upper and lower layers. TheNTE effect
is also enhanced by increasing the thickness of material B vis-à-vis material A.

The subsequent analysis by Grima et al. (2010) further assumes no necking. With
reference to Fig. 11.11 (bottom), where total thickness is

z = 2zA + zB (11.3.1)

the change in the total thickness is accordingly

dz = 2dzA + dzB (11.3.2)
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Heating

A

A

A

A

B B

Material B

Material A

Material A

Fig. 11.10 NTE in the direction orthogonal to the layers (top) and schematics for analysis (bottom)
by Grima et al. (2010)

Fig. 11.11 Comparison
between Eq. (11.3.5) (line)
with finite element results
(circles) for dT = 100K by
Grima et al. (2010)

where the change of thickness in material A is

dzA = zAα
(T )
A dT (11.3.3)

while the thickness change in material B is given by Rees (1990) as
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dzB = zB

⎛
⎝α

(T )
B dT −

2vB

(
α

(T )
A − α

(T )
B

)
dT

1 − vB

⎞
⎠ (11.3.4)

These descriptions of dzA and dzB in Eqs. (11.3.3) and (11.3.4), respectively,
are valid only if EA � EB in that the in-plane dimension of the material A in
not influenced by material B, whereas the in-plane dimension of material B when
unbonded must be stretched to match the in-plane dimensions of material A. This
results in a contraction ofmaterialB thickness due to its Poisson’s ratio by the amount
stated in the second term on the RHS of Eq. (11.3.4). Substituting Eqs. (11.3.3) and
(11.3.4) into Eq. (11.3.2) gives

dz =
(
2zAα

(T )
A + zBα

(T )
B − 2zBvB

α
(T )
A − α

(T )
B

1 − vB

)
dT (11.3.5)

With reference to Eq. (11.3.5), the NTE condition is satisfied if

2zBvB
α

(T )
A − α

(T )
B

1 − vB
> 2zAα

(T )
A + zBα

(T )
B (11.3.6)

A comparison between the Eq. (11.3.5) and finite element results are furnished in
Fig. 11.11 for validating the former. In the FE simulation, Grima et al. (2010) adopted
x = y = 200mm, zA = 0.076mm, zB in multiples of zA (see horizontal axis of
Fig. 11.11) and the material properties are listed in Table 11.1. The finite element
results in Fig. 11.11 reveals that the CTE is less negative when compared against
Eq. (11.3.5). This observation can be attributed to the assumption of EB/EA → 0,
which enhances the negativity of the out-of-planeCTE. Since the out-of-planeCTE is
defined by the ratio of the thermal strain in that direction to the change in temperature
α

(T )
Z = εZ/dT , we obtain from Eqs. (11.3.1) and (11.3.5)

α
(T )
Z = 2zAα

(T )
A + zBα

(T )
B − 2zBvB

α
(T )
A −α

(T )
B

1−vB

2zA + zB
(11.3.7)

Note that the relative thicknesses of the layers can be expressed in terms of
their volume fractions VA and VB for materials A and B, respectively. Therefore,

Table 11.1 Material
properties of material A and
material B layers

Material i Material B

Young’s modulus EA = 0.552GPa EB =
0.000517GPa

CTE α
(T )
A =

190 × 10−6K−1
α

(T )
B =

19 × 10−6K−1

Poisson’s ratio vA = 0.333 vB = 0.499
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substituting

2zA
2zA + zB

= VA

zB
2zA + zB

= VB (11.3.8)

into Eq. (11.3.7) yields

α
(T )
Z = VAα

(T )
A + VBα

(T )
B − 2VB

(
α

(T )
A − α

(T )
B

) vB

1 − vB
(11.3.9)

In other words, the out-of-plane CTE description in Eq. (11.3.9) simplifies to the
rule-of-mixture model, also known as the Voigt model, if the effect of Poisson’s ratio
for material B is neglected. The use of Eq. (11.3.9) is, therefore, more accurate than
the Voigt model because it takes into account the elastic properties of material B.
Since it has been assumed that EA � EB , the in-plane CTE is dictated by the CTE
of material A, i.e.,

α
(T )
X = α

(T )
Y = α

(T )
A (11.3.10)

If Young’s moduli for bothmaterialsA andB are of the same order, then the elastic
properties of both materials must be taken into account. This is discussed in the next
example which, in addition to establishing the out-of-plane CTE, also includes the
in-plane CTE.

11.4 Example: NTE System via Multilayered Systems
with Comparable Stiffness

In this example, the CTE of laminates, with isotropic laminas, are developed for
predicting the effective in-plane and out-of-plane laminate CTE. The laminate
consists of 2 types of laminas arranged in alternate layers, in which both materials
possess Young’s moduli of equal order. Thereafter, 3 special cases are discussed for
the laminate. They are: (a) alternating conventional (positive Poisson’s ratio and posi-
tive thermal expansion) with non-conventional (auxetic and NTE) laminas, (b) alter-
nating auxetic (with positive thermal expansion) and NTE (with positive Poisson’s
ratio) laminas, and (c) simplification to the models developed in Sect. 11.3. The CTE
of composites is well-established, especially in the engineering design field. The
effective in-plane CTE of a laminate with two types of isotropic laminas is given as

αin = α
(T )
f V f E f + α(T )

m VmEm

V f E f + VmEm
(11.4.1)
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This equation was developed based on 1D approach, i.e., with the imposition
of equal strain whereby the laminas are considered as elements in parallel, without
the consideration of Poisson’s ratio. Since most engineering materials possess the
range of Poisson’s ratio of between 1/4 and 1/3, then Eq. (11.4.1) is valid. A similar
equation can be arrived when one considers the effective CTE of a unidirectional
(UD) fiber composite in the longitudinal direction based on 1D analysis by Schapery
(1968). The effective out-of-plane CTE of the same laminate is easily obtained as

αout = α
(T )
f V f + α(T )

m Vm (11.4.2)

based on 1D approach. Equation (11.4.2) is based on the summation of individual
lamina thickness expansion, whereby the laminas are considered as elements in
series. The validity of this equation is justified when the difference in the CTE
of both materials is negligible such that the difference in the unrestrained thermal
in-plane deformation is insignificant.

In this section, correction factors fi and gi (for i = A, B), with A and B repre-
senting the two lamina materials, are incorporated into Eq. (11.4.1) to give the
effective in-plane CTE of a laminate

αin = α
(T )
A VAEA fBgA + α

(T )
B VB EB fAgB

VAEA fBgA + VBEB fAgB
(11.4.3)

such that Eq. (11.4.3) reduces to Eq. (11.4.1) when Poisson’s ratio and CTE of both
lamina materials are negligible. These correction factors—together with the volume
fraction, modulus and CTE of individual phases—are incorporated into Eq. (11.4.2)
to give the effective out-of-plane CTE of the same laminate

αout = α
(T )
A VA + α

(T )
B VB − 2

(
α

(T )
A − α

(T )
B

) vB EAgA − vAEBgB
EAV

−1
B fBgA + EBV

−1
A fAgB

(11.4.4)

so that Eq. (11.4.4) simplifies to Eq. (11.4.2) when Poisson’s ratio and CTE of
both phases are negligible, or when both phases possess equal CTE. In addition, if
EA � EB such that the terms containing EB vanish, then Eq. (11.4.4) reduces to
Eq. (11.3.9) if fB = 1 − vB . This will be proven later in Eq. (11.4.30). Likewise if
EA � EB such that the terms containing EB in Eq. (11.4.3) vanish, then Eq. (11.4.3)
simplifies to Eq. (11.3.10).

Formulation of the effective laminate CTE in the in-plane and out-of-plane direc-
tion is made in two stages. In the first stage, it is assumed that there is no bonding
between adjacent laminas such that the contact surfaces of adjacent laminas are
allowed to freely slide relative to one another in the in-plane direction. Geomet-
rical compatibility is then imposed in the second stage by application of load on
the sides of every laminas such that (a) the in-plane dimensions are made equal,
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and that (b) the net load is zero. This sideload approximates the interlaminar shear
stresses that arise following the unrestrained thermal expansion in the first stage.
Figure 11.12(top) shows an RVE that consists of two laminas—materials A and B
with original thickness a0 and b0, respectively, both with original side dimensions
l0. For clarity, we let material A possess positive CTE while material B be an NTE
material such that an increment of temperature alters the dimensions of both laminas
as shown in Fig. 11.12(middle), considering no restraint.

From the definition of thermal strain

εT = α(T )dT ≡ dl

l0
= l1 − l0

l0
(11.4.5)

Fig. 11.12 Representative
volume element of laminate
before thermal strain (top),
unrestrained thermal strain
(middle), and restrained
thermal strain (bottom)
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we have the unrestrained resultant dimension, l1, as a function of original dimension,
l0, as

l1 = l0
(
1 + α(T )dT

)
(11.4.6)

This translates to the unrestrained dimensions for material A

a1 = a0
(
1 + α

(T )
A dT

)
lA1 = l0

(
1 + α

(T )
A dT

) (11.4.7)

and those of material B

b1 = b0
(
1 + α

(T )
B dT

)
lB1 = l0

(
1 + α

(T )
B dT

) (11.4.8)

For perfect bonding between laminas A and B, there exists interlaminar shear
stresses acting on the contact surfaces of the laminas, whereby the shear stress on
the z-surfaces on materials A and B acts inward and outward, respectively, in the x–y
plane. In this analysis, normal forces are prescribed such that the load on the sides of
lamina A and B acts inward and outward, respectively, to bridge the gap (lA1 − lB1).
Since the interlaminar shear stresses are internal stresses, prescribed normal stresses
are governed by zero net force in the following equilibrium equation

σAX (a1lA1) + σBX (b1lB1) = 0
σAY (a1lA1) + σBY (b1lB1) = 0

(11.4.9)

such that the final in-plane dimensions are common, i.e.,

lA2 = lB2 ≡ l2 (11.4.10)

while incurring further changes to the out-of-plane dimensions, as shown in
Fig. 11.12 (bottom).

Considering isotropic laminas, the constitutive relations for materials A and B are
described by Eqs. (9.4.6) and (9.4.7), respectively. Since the in-plane dimensions
along the x- and y-axes have been set equal, and that the individual laminas are
isotropic, it follows that the in-plane stresses and strains along both axes for each
lamina are identical by virtue of symmetry, i.e.,

[
σAX σBX

εAX εBX

]
=
[

σAY σBY

εAY εBY

]
(11.4.11)
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The above relation reduces the number of variables for analysis; i.e., its first row
combines both the first and second of Eq. (11.4.9) into one common equation. Further
reduction of variables is made possible by assuming plane stress condition described
in Eq. (9.4.10) by virtue of free z-surface of the laminate. This free surface further
implies zero out-of-plane internal stresses, and that any internal out-of-plane stresses
would cancel out one another. Variable reduction as specified by Eq. (11.4.11) and
the plane stress condition simplify the constitutive relations to⎧⎨

⎩
εAX2

εAY2

εAZ2

⎫⎬
⎭ = σAX

EA

⎧⎨
⎩
1 − vA

1 − vA

−2vA

⎫⎬
⎭ (11.4.12a)

and ⎧⎨
⎩

εBX2

εBY2

εBZ2

⎫⎬
⎭ = σBX

EB

⎧⎨
⎩
1 − vB

1 − vB

−2vB

⎫⎬
⎭ (11.4.12b)

for laminas A and B, respectively. Substituting from the first rows of Eqs. (11.4.12a)
and (11.4.12b)

σAX = EAεAX2

1 − vA

σBX = EBεBX2

1 − vB
(11.4.13)

as well as Eqs. (11.4.7) and (11.4.8) into the first of Eq. (11.4.9) leads to

EAεAX2a0
(
1 + α

(T )
A dT

)2
1 − vA

+
EBεBX2b0

(
1 + α

(T )
B dT

)2
1 − vB

= 0 (11.4.14)

The second stage of in-plane strain, being defined as

εAX2 = lA2 − lA1
lA1

εBX2 = lB2 − lB1
lB1

(11.4.15)

gives the final in-plane dimension

l2 ≡ lA1(1 + εAX2) = lB1(1 + εBX2) (11.4.16a)

Using the second rows of Eqs. (11.4.7) and (11.4.8), the above equation can be
written as
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(
1 + α

(T )
A dT

)
(1 + εAX2) =

(
1 + α

(T )
B dT

)
(1 + εBX2) (11.4.16b)

The second stage of out-of-plane strain, being defined as

εAZ2 = a2 − a1
a1

εBZ2 = b2 − b1
b1

(11.4.17)

together with the first rows of Eqs. (11.4.7) and (11.4.8), give the final thickness of
laminas A and B as

a2 = a0
(
1 + α

(T )
A dT

)
(1 + εAZ2)

b2 = b0
(
1 + α

(T )
B dT

)
(1 + εBZ2)

(11.4.18)

Based on the criterion of zero net force on the lamina sides as furnished in
Eq. (11.4.14), we have the second stage in-plane strain of lamina B

εBX2 = −εAX2
EAa0
EBb0

(
1 − vB

1 − vA

)(
1 + α

(T )
A dT

1 + α
(T )
B dT

)2

(11.4.19)

Based on the criterion of equal in-plane dimensions as shown in Eq. (11.4.16b),
we have the second stage in-plane strain of lamina B in a different form,

εBX2 = (1 + εAX2)
1 + α

(T )
A dT

1 + α
(T )
B dT

− 1 (11.4.20)

The second stage in-plane strain of lamina A can then be obtained by equating
Eqs. (11.4.19) and (11.4.20) to give

εAX2 =
1 − 1+α

(T )
A dT

1+α
(T )
B dT

1+α
(T )
A dT

1+α
(T )
B dT

[
1 + a0EA

b0EB

(
1−vB
1−vA

)(
1+α

(T )
A dT

1+α
(T )
B dT

)] (11.4.21)

which is a function of Young’s modulus, CTE, Poisson’s ratio, and thickness of
individual laminas. With reference to Eqs. (11.4.6) and (11.4.16a), as well as the
definition of overall in-plane thermal strain

εin = α
(T )
in dT ≡ l2 − l0

l0
=

l0
(
1 + α

(T )
A dT

)
(1 + εAX2) − l0

l0
, (i = A, B)

(11.4.22)



370 11 Negative Thermal Expansion

we arrive at the effective in-plane CTE of the laminate (Lim 2011)

α
(T )
in =

α
(T )
A VAEA(1 − vB)

(
1 + α

(T )
A dT

)
+ α

(T )
B VB EB(1 − vA)

(
1 + α

(T )
B dT

)

VAEA(1 − vB)
(
1 + α

(T )
A dT

)
+ VBEB(1 − vA)

(
1 + α

(T )
B dT

)
(11.4.23)

where the volume fractions are defined as

VA = a0
a0 + b0

VB = b0
a0 + b0

(11.4.24)

Defining the overall out-of-plane strain as

εout = (a2 + b2) − (a0 + b0)

(a0 + b0)
(11.4.25a)

and considering the relations given in Eq. (11.4.18), then Eq. (11.4.25a) can be
expressed as

εout =
a0
(
1 + α

(T )
A dT

)
(1 + εAZ2) + b0

(
1 + α

(T )
B dT

)
(1 + εBZ2)

a0 + b0
− 1 (11.4.25b)

Substituting the expressions for σAX and σBX from the first rows of Eqs. (11.4.12a)
and (11.4.12b) into the expressions for εAZ2 and εBZ2 in the last rows of the same
equation, we have the relation

εAZ2 = −2εAX2
vA

1 − vA

εBZ2 = −2εBX2
vB

1 − vB
(11.4.26)

This out-of-plane strain, being functions of εAZ2 and εBZ2, is hence in terms
of εAX2 and εBX2. With reference to the expression of εAX2 in Eq. (11.4.21), the
expression for εBX2 can be inferred as

εBX2 =
1 − 1+α

(T )
B dT

1+α
(T )
A dT

1+α
(T )
B dT

1+α
(T )
A dT

[
1 + b0EB

a0EA

(
1−vA
1−vB

)(
1+α

(T )
B dT

1+α
(T )
A dT

)] (11.4.27)

Hence, the out-of-plane strain in Eq. (11.4.25b) can be expressed purely in terms
of temperature increment and individual lamina properties such as thickness, CTE,
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Poisson’s ratio, and Young’s modulus by substituting Eqs. (11.4.21) and (11.4.27)
into Eq. (11.4.26), which is then substituted into Eq. (11.4.25b). The overall out-of-
plane thermal strain, being defined as

εout = α
(T )
out dT (11.4.28)

can then be equated with Eq. (11.4.25b) to give the effective out-of-plane CTE of
the laminate as (Lim 2011)

α
(T )
out = VAα

(T )
A + VBα

(T )
B − 2

(
α

(T )
A − α

(T )
B

)

vB EA

(
1 + α

(T )
A dT

)
− vAEB

(
1 + α

(T )
B dT

)

EAV
−1
B (1 − vB)

(
1 + α

(T )
A dT

)
+ EBV

−1
A (1 − vA)

(
1 + α

(T )
B dT

) (11.4.29)

Comparing the effective in-plane CTE, Eq. (11.4.23), and the effective out-of-
plane CTE, Eq. (11.4.29), with Eqs. (11.4.3) and (11.4.4), respectively, leads to the
expressions of the correction factors

fi = 1 − vi

gi = 1 + α
(T )
i dT

(11.4.30)

for i = A, B. Here, the correction factor fi takes into account Poisson’s ratio, while
the correction factor gi considers the CTE of each lamina. The coupling of Poisson’s
ratio and CTE in the laminate’s effective thermal expansion, that embodies large
temperature change, is generally described in Eqs. (11.4.23) and (11.4.29).

There exist two forms of CTE nonlinearity, namely (a) material nonlinearity and
(b) geometrical nonlinearity. Material nonlinearity refers to the individual phase’s
CTE not being a constant but varies either with the change in temperature, i.e.,α(T )

i =
α

(T )
i (dT ) for significant thermal fluctuation, or, within the context of infinitesimal

change in temperature, the CTE is a function of the instantaneous temperature, i.e.,
α

(T )
i = α

(T )
i (T ). Geometrical nonlinearity refers to the existence of CTE nonlinearity

of the entire laminate for significant change in temperature even if every lamina
possesses constant CTE with respect to the temperature. Thus, Eqs. (11.4.23) and
(11.4.29) per se accommodate geometrical nonlinearity, while material nonlinearity
can be incorporated by substituting the individual lamina’s CTE with curve-fitted
CTEs as functions of temperature.

The general expressions of the considered laminate CTE can be further simplified
under specific conditions. In the case where the temperature change is insignificant,
we take the limits of Eqs. (11.4.23) and (11.4.29) as the temperature change tends to
zero, to give
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α
(T )
in = α

(T )
A VAEA(1 − vB) + α

(T )
B VB EB(1 − vA)

VAEA(1 − vB) + VBEB(1 − vA)
(11.4.31)

and

α
(T )
out = VAα

(T )
A + VBα

(T )
B − 2

(
α

(T )
A − α

(T )
B

) vB EA − vAEB

EAV
−1
B (1 − vB) + EBV

−1
A (1 − vA)

(11.4.32)

respectively. For the case where Poisson’s ratios of both phases are equal or
insignificant, then Eq. (11.4.23) reduces to

α
(T )
in =

α
(T )
A VAEA

(
1 + α

(T )
A dT

)
+ α

(T )
B VB EB

(
1 + α

(T )
B dT

)

VAEA

(
1 + α

(T )
A dT

)
+ VBEB

(
1 + α

(T )
B dT

) (11.4.33)

while Eq. (11.4.29) simplifies to

α
(T )
out = α

(T )
ROM − 2VAVB

(
α

(T )
A − α

(T )
B

)( vi

1 − vi

) (EA − EB) +
(
EAα

(T )
A − EBα

(T )
B

)
dT

EROM +
(
EAVAα

(T )
A + EBVBα

(T )
B

)
dT

(11.4.34)

if vi ≡ vA = vB �= 0, whereby α
(T )
ROM and EROM denote the simple rule-of-mixtures

for the CTE and Young’s modulus, respectively. This out-of-plane CTE reduces to
simple rule-of-mixtures when vA = vB = 0, thereby giving rise to the relation

α
(T )
in α

(T )
out = α

(T )
ROM

EROM

∑
i=A,B,...

α
(T )
i Vi Ei (11.4.35)

if dT = 0, which can be extended to more than 2 types of isotropic laminas. At this
juncture, we consider a group of special cases for illustration under the following
conditions

EA

EB
=
∣∣∣α(T )

A

∣∣∣∣∣∣α(T )
B

∣∣∣ = |vA|
|vB | = 1 (11.4.36)

whereby |vA| = |vB | = 1/3 and dT → 0. Further, we consider two sub-cases
illustrated below, in which the property α

(T )
0 is positive.

In the first sub-case, we let α
(T )
A = −α

(T )
B = α

(T )
0 and vA = −vB = 1/3. Here,

we have the following normalized in-plane CTE
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α
(T )
in

α
(T )
0

= 2 − 3VB

2 − VB
(11.4.37)

and normalized out-of-plane CTE

α
(T )
out

α
(T )
0

= 1 − 2VB + 4VB(1 − VB)

2 − VB
(11.4.38)

In the second sub-case, we let α(T )
A = −α

(T )
B = α

(T )
0 and vA = −vB = −1/3. For

this sub-case, we have

α
(T )
in

α
(T )
0

= 1 − 3VB

1 + VB
(11.4.39)

and

α
(T )
out

α
(T )
0

= 1 − 2VB − 4VB(1 − VB)

1 + VB
(11.4.40)

Figure 11.13 shows the plots of normalized in-plane and out-of-plane CTEs as
described in Eqs. (11.4.37)–(11.4.40).

When temperature change is substantial, there are two types of nonlinearities as
previously mentioned. In the following illustration, we consider a simplified case of
geometrical nonlinearity only with

Fig. 11.13 Plots of
normalized CTE with respect
to NTE volume fraction
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EA

EB
= VA

VB
=
∣∣∣α(T )

A

∣∣∣∣∣∣α(T )
B

∣∣∣ = |vA|
|vB | = 1 (11.4.41)

in order to illustrate the interlacing effect of Poisson’s ratio and CTE. Again we
consider the two sub-cases mentioned earlier. For the first sub-case whereby α

(T )
A =

−α
(T )
B = α

(T )
0 and vA = −vB = 1/3, the normalized in-plane and normalized

out-of-plane laminate CTEs are

α
(T )
in

α
(T )
0

= 1 + 3α(T )
0 dT

3 + α
(T )
0 dT

(11.4.42)

and

α
(T )
out

α
(T )
0

= 2

3 + α
(T )
0 dT

(11.4.43)

respectively. Based on Eqs. (11.4.42) and (11.4.43), the normalized effective in-plane
and out-of-plane CTE versus the dimensionless change in temperature, α(T )

0 dT , are
plotted in Fig. 11.14. The in-plane and out-of-plane CTEs increase and decrease,
respectively, with respect to the dimensionless temperature change—with decreasing
slope. Essentially, the change in CTE with the temperature change is gradual.

The corresponding normalized CTEs for the second sub-case whereby α
(T )
A =

−α
(T )
B = α

(T )
0 and vA = −vB = −1/3 are

α
(T )
in

α
(T )
0

= −1 − 3α(T )
0 dT

3 − α
(T )
0 dT

(11.4.44)

Fig. 11.14 Plots of
normalized effective CTE
against dimensionless
temperature change for
alternating conventional and
non-conventional (auxetic
and NTE) laminas

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10

N
or

m
al

iz
ed

 C
TE

CTE X (Change in Temperature)

in-plane

out-of-plane



11.4 Example: NTE System via Multilayered Systems with Comparable Stiffness 375

and

α
(T )
out

α
(T )
0

= − 2

3 − α
(T )
0 dT

(11.4.45)

On the basis ofEqs. (11.4.44) and (11.4.45), plots of normalized effectiveCTEs for
this case are shown in Fig. 11.15. For this sub-case whereby α

(T )
A = −α

(T )
B = α

(T )
0

and vA = −vB = −1/3, the effective in-plane and out-of-plane CTEs possess
extreme values at α(T )

0 dT = |vA|−1 = |vB |−1. This is an interesting phenomenon in
that the alternating layup of auxetic lamina with NTE lamina gives extremal thermal
expansion, i.e., very extreme positive and negative values of laminate CTE when the
increase in temperature reaches certain values.

It should be borne in mind that the plots of normalized CTEs in Figs. 11.14
and 11.5 are based on positive dT . To reflect the variation in CTE with decreasing
temperature, i.e., negative dT , the range of dimensionless temperature change is
extended to −10, as shown in Fig. 11.16. The results exhibit rotational symmetry of
the plotted CTE curves about the origin.

Finally, the CTEmodels developed in this section can be related to those furnished
inSect. 11.3,whereby EA � EB . Substituting EB = 0 intoEq. (11.4.23) reduces it to
Eq. (11.3.10). Similarly, if we let EB = 0 then Eq. (11.4.29) abridges to Eq. (11.3.9).
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Fig. 11.15 Plots of normalized effective CTE against dimensionless temperature change for
alternating auxetic and NTE laminas
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Fig. 11.16 Plots of normalized in-plane and out-of-plane CTE with respect to dimensionless
temperature change for alternating conventional (positive v andPTE) laminaswith non-conventional
(negative v and NTE) laminas (left), as well as alternating positive v and NTE laminas with negative
v and PTE laminas (right)

11.5 Example: 2D Truss System with Triangular Cells

An early 2D truss system with pin joints was introduced by Grima et al. (2007). With
reference to Fig. 11.17, the lattice is made from three types of rod materials; rods
made from the same materials are aligned in the same direction.

Fig. 11.17 Two-dimensional truss system with pin joints by Grima et al. (2007)
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The geometry of the construct by Grima et al. (2007) can be described using a
parallelogramunit cell consisting of 2 adjacent triangles.With reference toFig. 11.17,
one may identify two unit cell vectors

a = (X11, X12)

b = (0, X22)
(11.5.1)

where

X11 = 1
2l2

√
(l1 + l2 + l3)(−l1 + l2 + l3)(l1 − l2 + l3)(l1 + l2 − l3)

X22 = l2

X12 =
√
l21 − X2

11 = 1
2

(
l21−l23
l2

+ l2
) (11.5.2)

Since the three types of rods, in general, possess different CTEs of α
(T )
Sm for rods

m = 1, 2, 3, then a change in temperature by dT will change the lengths by

dlm = lmα
(T )
Sm dT (11.5.3)

and the anisotropic CTE α
(T )
i j is described by the thermal strain

εi j = α
(T )
i j dT (11.5.4)

where ε11 and ε22 are the strain components parallel to the Ox1 and Ox2 direc-
tions, respectively, while ε12 and ε21 are each half of the shear strain γ . These strain
components are expressed as

ε11 = dX11
X11

ε22 = dX22
X22

γ = 2ε12 = 2ε21 = 1
X11

[
dX12 −

(
X12
X22

)
dX22

] (11.5.5)

Since

dXi j =
3∑

m=1

∂Xi j

∂lm
dlm =

3∑
m=1

∂Xi j

∂lm
lmα

(T )
Sm dT (i, j = 1, 2) (11.5.6)

the elements of thermal expansion tensor α
(T )
i j can be simplified to

α
(T )
11 = ε11

dT
=
[
l21
(
l22 + l23

)
α

(T )
S1 + l22

(
l21 + l23

)
α

(T )
S2 + l23

(
l21 + l22

)
α

(T )
S3

] 1

2l22X
2
11



378 11 Negative Thermal Expansion

−
[
2l22X

2
11α

(T )
S2 + l41α

(T )
S1 + l42α

(T )
S2 + l43α

(T )
S3

] 1

2l22X
2
11

(11.5.7)

α
(T )
22 = ε22

dT
= α

(T )
S2 (11.5.8)

α
(T )
12 = α

(T )
21 = ε12

dT
= 1

2

γ

dT
=

l21

(
α

(T )
S1 − α

(T )
S2

)
− l23

(
α

(T )
S3 − α

(T )
S2

)
2X11l2

(11.5.9)

By adopting the standard axis transformation techniques by Nye (1957), the CTE
at a direction subtending by an angle ζ to the Ox1 axis was obtained as

α(T )(ζ ) = α
(T )
11 cos2(ζ ) + 2α(T )

12 sin(ζ ) cos(ζ ) + α
(T )
22 sin2(ζ ) (11.5.10)

while using the standard theory of principal strains (Gere 2001) the maximum and
minimum CTEs obtained

α(T )(ζ )max /min = α
(T )
11 + α

(T )
22

2
±
√√√√
(

α
(T )
11 − α

(T )
22

2

)2

+
(
α

(T )
12

)2
(11.5.11)

are at mutually orthogonal directions with

ζmax /min = 1

2
tan−1

(
2α(T )

12

α
(T )
11 − α

(T )
22

)
(11.5.12)

Thereafter, Grima et al. (2007) gave solutions and plotted results for the following
special cases: equilateral triangles with α

(T )
S1 = α

(T )
S3 �= α

(T )
S2 , equilateral triangles

with α
(T )
S1 = α

(T )
S2 �= α

(T )
S3 , equilateral triangles with α

(T )
S1 �= α

(T )
S3 �= α

(T )
S2 , isosceles

triangles with l1 = l3 �= l2 and α
(T )
S1 = α

(T )
S3 �= α

(T )
S2 , and more general cases. Results

are plotted in Fig. 11.18 (equilateral triangles) and Fig. 11.19 (triangles of other
shapes).

11.6 Example: 2D Truss System with Y-Shaped Elements

Another 2D microstructure that exhibits NTE was recently proposed by Cabras et al.
(2019) by the joining of Y-shapes elements of lower CTEs α

(T )
low with rod elements of

higher CTEs α
(T )
high as shown in Fig. 11.20 (top left) such that a temperature increase

deforms the microstructure into that illustrated in Fig. 11.20 (top right). All connec-
tions are pin joints so as to permit free rotations. When considering the analysis
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Fig. 11.18 EffectiveCTE for equilateral triangles byGrima et al. (2007). Reprintedwith permission
from the Royal Society

shown in Fig. 11.20 (bottom), one observes an essentially triangular cell, although
arranged in a different manner from Sect. 11.5.

A description of the triangle formed by two Y-shaped elements and a connecting
rod can be established by introducing two geometrical parameters; l and θ, as shown
in Fig. 11.20 (bottom left). This gives the base length 2l cos θ and the height L0 =
l sin θ . The CTE in the direction of the connecting rod is none other than the CTE of
the connecting rod. The movement of the apex can be obtained by vector addition of
the thermally induced displacement. Assuming α

(T )
high = 0, an increase of temperature

by dT would elongate the inclined rod by an amount lα(T )
lowdT such that,when resolved

along the vertical axis gives an upward displacement of



380 11 Negative Thermal Expansion

Fig. 11.19 Effective CTE for triangles of other shapes by Grima et al. (2007). Reprinted with
permission from the Royal Society
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Fig. 11.20 Illustrations on the deformation of an NTE microstructure (top) and schematics for
analysis (bottom) by Cabras et al. (2019)

dL ′
1 = lα(T )

lowdT

sin θ
(11.6.1)

as shown in Fig. 11.20 (bottom right). Assuming α
(T )
low = 0, an increase of tempera-

ture by dT would elongate the horizontal rod by an amount 2l cos θα
(T )
highdT , which

would cause a horizontal displacement of each inclined rod by l cos θα
(T )
highdT , as

shown in Fig. 11.20 (bottom right). When resolved along the vertical axis, the apex
displacement is downward by the amount
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dL ′′
1 = l cos θα

(T )
highdT

tan θ
(11.6.2)

The overall displacement of the apex is thus

L1 − L0 = dL ′
1 − dL ′′

1 = lα(T )
lowdT

sin θ
− l cos θα

(T )
highdT

tan θ
(11.6.3)

Equation (11.6.3) is a linearization in dT , and the exact, nonlinear in dT , has been
given by Cabras et al. (2019), thereby leading to the effective CTE

α
(T )
eff =

(
1 − η cos2 θ

)
sin2 θ

α
(T )
low (11.6.4)

where

η = α
(T )
high

α
(T )
low

(11.6.5)

in which NTE is obtained when η > 1/ cos2 θ .
In addition to the analytical model, Cabras et al. (2019) performed simulation as

shown in Fig. 11.21 (left), which was substantiated by their experimental verification
shown in Fig. 11.21 (right). Taking the difference between the initial temperature
T0 = 26.4 °C and a final temperature T f = 55.74 °C, Cabras et al. (2019) showed
that the effective CTEs are α

(T )
eff = −2048μm/(m °C) based on simulation results

and α
(T )
eff = −2162μm/(m °C) from their experimental results. See Fig. 11.22.

11.7 Example: 2D Truss System Inspired by Hoberman
Sphere

An NTE system inspired by the Hoberman sphere has been introduced by Li et al.
(2018). Its 2D version—the Hoberman circle—is shown in Fig. 11.23. Unlike the
usual Hoberman sphere or circle, an additional connecting rod element is incor-
porated. By joining the outer and inner end points, the rod elements are therefore
aligned radially. In order to exhibit NTE, the CTE of the joining rods must be higher
than the CTE of the rod elements in the Hoberman circle. As temperature increases,
the connecting rods expand to a greater extent than the rods in the Hoberman circle,
which causes the circumference to contract. The opposite effect takes place with
decreasing temperature. See Figs. 11.24 and 11.25.
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Fig. 11.21 Simulated (left) and experimental (right) deformation of an NTE microstructure by
Cabras et al. (2019) at 22 °C (top row), 39◦C (middle row) and 56 °C (bottom row)

Due to symmetry, only a triangle is required for analysis, as shown in Fig. 11.26
and, by symmetry again, the apex of the triangle is arrested from moving circumfer-
entially; i.e., it can only displace radially. Let each Hoberman circle’s rod element
be of length m0 and the length of each connecting rods is l0. The distance of the
apex from the origin is R0, and the half-angle formed by the apex within the triangle
is θ0, while the distance of the outer joint from the origin is s0. With a change in
temperature by dT , the Hoberman circle’s rod length changes tom1 while the length
of the connecting rod changes to l1. During the course of the changing rod lengths,
both the connecting rod and the apex displace radially. In the selected triangle shown
in Fig. 11.26, the connecting rod displaces along the x-axis while the apex moves
along a straight line that subtends at an angle ϕ to the x-axis. As a consequence, the
apex moves a location at a distance R1 from the origin and the half-angle formed
by the apex changes to θ1 while the outer joint is displaced to a location s1 from the
origin.

By geometrical consideration involving the rod lengths

hi = mi cos θi = Ri sin ϕ

li = 2Ri sin ϕ tan θi

}
i = 0, 1 (11.7.1)

we have the distances of the outer joints
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Fig. 11.22 Simulated (left) and experimental (right) deformation of an NTE microstructure by
Cabras et al. (2019) at 26.4 °C (top row) and 55.74 °C (middle row), giving the effective CTE as
−2048μm/(m °C) by simulation and −2162μm/(m °C) by experiment (bottom row)
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Fig. 11.23 Design of the lattice metamaterials with tunable thermal expansion: a Hoberman
expandable sphere, b the planar element, c the unit cell fabricated by 3D printing technique, and
d the lattice metamaterial with 4 × 4 unit cells by Li et al. (2018). Reprinted with permission from
Elsevier

si = Ri cosϕ + mi sin θi = Ri (cosϕ + sin ϕ tan θi ) (11.7.2)

before (i = 0) and after (i = 1) temperature change. Thus, thermal strain ε =
(s1 − s0)/s0 leads to the effective CTE (Li et al. 2018)

α
(T )
eff = 1

dT

s1 − s0
R0(cosϕ + sin ϕ tan θ0)

(11.7.3)

By solving for s1−s0 computationally, Li et al. (2018) gave solutions of the effec-
tive CTE based on different combinations of rod materials. In addition to analytical
model, Li et al. (2018) performed computational modeling for the same problem, on
the basis of Fig. 11.27.
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Fig. 11.24 Representative unit cells of the proposed lattice metamaterials. Those unit cells
including a–e are characterized by the radius of the circle (distance between the center and green
cross-point) R0 with R0 = 10 mm, the half vertex angle between blue beams in the triangle θ0, and
the number of triangles in a circle, n. (f) One quarter unit cell with definitions including R0, θ0, and
n, as well as Higher-CTE (the material of higher coefficient of thermal expansion), Lower-CTE (the
material of lower coefficient of thermal expansion) constituents. Reprinted with permission from
Elsevier (Li et al. 2018)

11.8 Example: A 2D Anepectic Mesh System

Raminhos et al. (2019) introduced the term “anepectic” from the Greek root
“Eπšκταση” (Epéktasi’), meaning expansion, for materials capable of simultane-
ously demonstrating both auxetic and NTE behavior. In this section, emphasis is on
its NTE behavior. An illustration on this microstructure and its deformation with
temperature change is shown in Fig. 11.28. The extension of the rods with greater
CTE causes the inclined rods, of lower CTE, to reorientate such that the star-shape
voids appear sharper, thereby shortening the distances between the four sharp corners
of each star. A set of experiments on this microstructure using various combinations
of materials have been reported by Raminhos et al. (2019).
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Fig. 11.25 An NTE system based on Hoberman circle by Li et al. (2018)

11.9 Example: 2D Thermal Shearing with Opposing CTE
Signs in Orthogonal Directions

This example is a definite anisotropic system with no possibility of reducing into
an isotropic system based on the stipulated geometry which ensures that the CTE
is positive (maximum) and negative (minimum) in orthogonal directions, thereby
leading to thermal shearing. Consider a cellular microstructure shown in Fig. 11.29
and its idealized representative volume element (RVE), as shown in Fig. 11.30,
which consists of thermally inexpandible rod elements (thick lines) and thermally
expandible rod elements (thin lines). The connections are in the form of pin joints
to permit free rotation except at the cross-junction of the thermally inexpandible rod
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Fig. 11.26 A schematics for Hoberman sphere-inspired NTE system by Li et al. (2018) for analysis

elements. The sides of the RVE remain mutually orthogonal under thermal loading
such that the RVE dies not to undergo a distortion leading to repeat-cell angles
departing from 90° in the plane. However, unequal principal normal strains lead to
maximum shearing that can be observed for an element rotated by 45° from the
principal axes. We let the inexpandible rod be rigidly fixed at the central junction
(i.e., θ3 and θ4 being constant). The assumption of rigid rods at the central junction is
highly essential to ensure that point C remains fixed to enable RVE contraction with
increase in temperature—hence a negative thermal expansion—when both θ1 and θ2
are less than π/4. The magnitude of negative thermal expansion is greatly reduced
when the central junction angles and rods are rotatable and expandible, respectively.

The thermal strains for every rod elements in this system are thus

εexpand = α(T )dT
εinexpand = 0

(11.9.1)
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Fig. 11.27 Beam element and representative isosceles triangle frame with boundary conditions.
a Beam element with nodal displacements, rotations, forces, and moments. b Conversion from the
local system to the global system. c Elements, nodes, and constraint conditions. The global elements
are I, II, and III. The global nodes are designated as 1, 2, and 3. The global nodal displacements are
x1, x2, x3, x4, x5, x6, x7, x8, and x9. Al , El, and Il are the sectional area, Young’s Modulus, and the
inertia moment of the lower-CTE beam, respectively. Ah, Eh, and Ih are the sectional area, Young’s
Modulus, and the inertia moment of the higher-CTE beam, respectively. Reprinted with permission
from Elsevier (Li et al. 2018)

where �T refers to the change in temperature, we define effective relationship for
the entire RVE as

εeff = α
(T )
eff dT (11.9.2)

such that the effective property is obtained by considering the geometry of the RVE
and every elements contained therein. The effective shear strain for the RVE as a
result of temperature change can be written in a form analogous to Eq. (11.9.2), that
is

γ = β dT (11.9.3)
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Fig. 11.28 Thermal deformation of the anepectic microstructure by Raminhos et al. (2019)

where β is herein defined as the coefficient of thermal shearing. The following anal-
ysis expresses the shear strain in terms of temperature induced geometrical alteration
of the proposed RVE. With reference to Eq. (11.9.1), the new lengths of l1 and l2 are

l ′i = li
(
1 + α(T )dT

) ; (i = 1, 2) (11.9.4)

with a change in environmental temperature by dT , as shown in Fig. 11.31.
Taking equal projected length, we have the new angles of θ1 and θ2 as

θ ′
i = sin−1

(
sin θi

1 + α(T )dT

)
(11.9.5)

This gives the displacements of points A and B as
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Fig. 11.29 A 2D thermal shearing microstructure exhibiting PTE and NTE in the vertical and
horizontal directions (Lim 2005)

dxi = li cos θi − li
(
1 + α(T )dT

)
cos

[
sin−1

(
sin θi

1 + α(T )dT

)]
(11.9.6)

along axes x1 and x2 respectively. Perusal to Fig. 11.31 shows that the half widths of
the RVE are

Xi = l cos θi+2 − li cos θi + li+2 (11.9.7)

such that the principal strains are

εi = dxi
Xi

(11.9.8)

Since the relationship between the inexpandible and expandible rods of lengths l
and li (i = 1, 2), respectively, is
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Fig. 11.30 Geometrical
properties for one RVE of
the thermal shearing system

Fig. 11.31 Changes in
lengths and angles in
one-quarter of RVE

l

li
= sin θi

sin θi+2
(11.9.9)

the coefficient of thermal shearing is therefore

β = ε1 − ε2

dT
(11.9.10)

where the principal strains for the RVE are
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εi =
cos θi − (1 + α(T )dT

)
cos
[
sin−1

(
sin θi

1+α(T )dT

)]
sin θi
tan θi+2

− cos θi + li+2

li

(11.9.11)

For illustration purposes, a special case is considered whereby the criss-cross
inexpandible rod element is symmetrical about diagonal axes θ3 = θ4 = π/4; the
extendible rod elements are of equal length l1 = l2; the RVE is a square X1 = X2,
the angles θ1,2 = 90◦ ∓ φ such that θ1 + θ2 = π , and l4 = 0. For such a geometry,
the principal thermal strains and the coefficient of thermal shearing reduce to (Lim
2005)

ε1 = −ε2 = −
cos θ2 − (1 + α(T )dT

)
cos
[
sin−1

(
sin θ2

1+α(T )dT

)]
sin θ2 − cos θ2

(11.9.12)

and

β = 2

dT

(
(−1)i+1 cos θi

sin θi + (−1)i+1 cos θi

)
(11.9.13)

respectively. Plots of principal strains and shear strain versus θ1 are furnished in
Fig. 11.32 to demonstrate the influence of microstructural geometry on the thermally
induced shear strain.

11.10 A 2D NTE System by Rigid Unit Modes

Grima et al. (2015) introduced a group of 2D NTEmechanism based on rotating unit
modes (RUM) shown in Fig. 11.33.With reference to the Type I connected rectangles
shown in Fig. 11.33 (b), the unit cell projections along the Ox1 and Ox2 axes are

X11 = 2
[
a cos θ

2 + b sin θ
2

]
X22 = 2

[
a sin θ

2 + b cos θ
2

] (11.10.1)

from which one obtains the unit cell area at any angle θ

A(θ) = X11X22 = 2
(
a2 + b2

)
sin θ + 4ab (11.10.2)

Writing the instantaneous angle θ in terms of its original angle θ0 and its change
�θ , then the area at an angle θ = θ0 ± �θ is

A(θ0 ± �θ) = 2
(
a2 + b2

)
sin(θ0 ± �θ) + 4ab (11.10.3)
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Fig. 11.32 Effect of special case RVE geometry on the thermally induced principal strains (top)
and shear strain (bottom)

If the connected rectangles are in its open state in its original condition, i.e.,
θ0 = π/2, then for a given �θ we have sin(π/2 ± �θ) = cos�θ . One may express
the average unit cell area at temperature T, 〈A〉T, as

〈A〉T = 2
(
a2 + b2

)
cos�θ + 4ab ≈ 2

(
a2 + b2

)(
1 −
〈
�θ2
〉
T

2

)
+ 4ab (11.10.4)

where
〈
�θ2
〉
T is the thermal average of �θ2. The potential energy due to rotations

arising from thermal fluctuations of �θ is (Dove et al. 1998).
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Fig. 11.33 Connected networks composed of a squares, b Type I rectangles, c Type II rectangles,
d Type α rhombi, and e Type β rhombi by Grima et al. (2015). The respective RUM for the square-
based network is also shown in a; it is assumed that the other geometries follow a similar mode of
motion. Reprinted with permission from the Royal Society

1

2
Iω2
〈
�θ2
〉
T = 1

2
kBT (11.10.5)

where I is the moment of inertia for each rigid unit, ω is the angular frequency of
the rotational motion, and kB is the Boltzmann constant. Substituting

〈
�θ2
〉
T from

Eq. (11.10.5) into Eq. (11.10.4) gives

〈A〉T = 2
(
a2 + b2

)(
1 − kBT

2Iω2

)
+ 4ab (11.10.6)

from which the area CTE is obtained as

α
(T )
A = 1

〈A〉T
∂〈A〉T
∂T

= − kB
(
a2 + b2

)
Iω2
[−(a2 + b2

) kBT
Iω2 + 2

(
a2 + 2ab + b2

)] (11.10.7)

With reference to the Type II connected rectangles shown in Fig. 11.33 (c), the
unit cell projections along the Ox1 and Ox2 axes are

X11 = 2b sin

(
θ

2
+ π

4

)

X22 = 2a sin

(
θ

2
+ π

4

)
(11.10.8)

fromwhich, through a similar approach to that of Type I, gives the area CTEwherein
θ0 = π/2
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α
(T )
A = − kB

Iω2
[
4 − kBT

Iω2

] (11.10.9)

Referring to Fig. 11.33 (d) for the Type α rhombi, the unit cell dimensions are

X11 = 2a sin
(

φ+θ

2

)
X22 = 2a cos

(
φ−θ

2

) (11.10.10)

which gives the unit cell area

A(θ) = 2a2(sin θ + sin φ) (11.10.11)

Assuming again that the initial state is that of the open state θ0 = π/2 and that
the angular displacement ±�θ gives a symmetric function such that A(θ0 + �θ) =
A(θ0 − �θ), then using similar approach

〈A〉T = 2a2(sin(θ0 + �θ) + sin φ) = 2a2(cos�θ + sin φ)

≈ 2a2
(
1 −
〈
�θ2
〉
T

2

)
+ 2a2 sin φ = 2a2

(
1 − kBT

2Iω2

)
+ 2a2 sin φ

(11.10.12)

which leads to the area CTE

α
(T )
A = − kB

Iω2
[
2 − kBT

Iω2 + 2 sin φ
] (11.10.13)

In the case of the Type β rhombi shown in Fig. 11.33 (e), the most open confor-
mation in the “cold state” is θ0 = π − φ, from which the area CTE is given by
Eq. (11.10.9). See Fig. 11.34 for plotted CTE results, as well as illustrations for
extreme shapes.

11.11 Example: 2D and 3D NTE from Ring-Rod
Assemblies

Following up from Sect. 2.5 on the single-ring and double-ring structures that
give auxetic behavior, this section explores their NTE properties (Lim 2017). See
Fig. 11.35a, wherein the ring has positive CTE and that the rods, being rigid, possess
zero CTE. Suppose there is an increase to the environmental temperature, the ring
expands such that the rods are drawn toward into the ring as shown in Fig. 11.35b,
thereby decreasing the dimension along the rod alignment direction while the dimen-
sion perpendicular to the rod direction expands. As shown in Fig. 11.35c, the ring
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Fig. 11.34 Results of areaCTE for the four types ofRUMs for varying shapes (top), and illustrations
on deformation mechanism of Type I rectangles (middle) and Type α rhombi (bottom) with extreme
aspect ratio Grima et al. (2015). Reprinted with permission from the Royal Society

(a) (b) (c)

dT > 0

dT < 0

Fig. 11.35 a A ring structure with a pair of sliding rods before temperature change, b increase
in temperature causes increase in ring diameter and draw-in of sliding rods, and c decrease of
temperature contracts the ring and pushes out the sliding rods
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Fig. 11.36 Single-ring structure exhibiting a planar PTE, b NTE in x-axis, c NTE in y-axis, and
d planar NTE

deformation and rod movement reverse with a drop in temperature. Hence, this ring-
rod structure exhibits both NTE and positive thermal expansion (PTE) parallel and
perpendicular, respectively, to the rod alignment. See Fig. 11.36a–c. In follows that an
equi-biaxial NTE structure can be obtained if two pairs of sliding rods perpendicular
to each other are incorporated into the ring, as shown in Fig. 11.36d.

Since the rods are assumed to be rigid, the thermal motion of the rods is deter-
mined by the ring expansion and contraction resulting from temperature increase and
decrease, respectively. Let α(T )

r be the coefficient of thermal expansion (CTE) of the
ring and consider an increase in temperature by dT . From the general definition of
the thermal strain ε = α(T )dT or, in the case of the flexible ring,

2π(R + dR) − 2πR

2πR
= α(T )

r dT (11.11.1)

we have the change in radius Rα(T )
r dT or the change in diameter 2Rα(T )

r dT . Consid-
ering increasing temperature, there is a thermal expansion by 2Rα(T )

r dT in the direc-
tion where the short rods are attached to the outer surface to the ring and a thermal
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contraction of 2Rα(T )
r dT in the direction where the long sliding rods are attached to

the inner surface of the ring. Writing the effective CTE of the ring and rod structure
as ε/dT , we have

α(T )
x = 1

dT

�AB

AB

α(T )
z = 1

dT

�K L

K L
(11.11.2)

or

α(T )
x = 1

dT

�AB

2R + 2l1

α(T )
z = 1

dT

�K L

2R + 2l3
(11.11.3)

where

∣∣�AB
∣∣ = ∣∣�K L

∣∣ = 2Rα(T )
r dT (11.11.4)

The calculations of α(T )
x and α(T )

z are summarized in Table 11.2.
Figure 11.37a shows further details on the use of two pairs of sliding rods to give

a fully planar NTE ring structure. Expansion of the ring due to temperature increase
draws in the sliding rods while contraction of the ring due to temperature decrease
pushes out the sliding rods, as indicated in Fig. 11.37b, c, respectively. Hence, the use
of two pairs of sliding rods gives fully planar NTE characteristics but this structure
results in non-auxetic property, as discussed in Sect. 2.5. The turning propensity of
the rings about the axes can be arrested by arranging the sliding rods as suggested
in Fig. 11.37d, in which the possibility of turning in one ring is canceled by its
neighboring ring with a propensity of turning in the opposite direction.

An appreciation on the effective structural CTE is given in Fig. 11.38. Essentially,
the CTE is positive and negative along the axes where the sliding rods are absent and
present, respectively. With that, the case of purely double-ring, i.e., no sliding rods
as in Fig. 11.38a, exhibits positive thermal expansion. Where one pair of sliding rods
is incorporated, the structure displays NTE in the direction of the sliding rods while
positive thermal expansion remains on the plane perpendicular to the sliding rods.
With reference to the structure shown in Fig. 11.38b, NTE and PTE are evident in
the x-axis and y-z plane, respectively. Since the NTE behavior is confined to one axis
while the PTE behavior applies for a plane (i.e., two axes), we say that this structure
has “low NTE.” Suppose two pairs of sliding rods are inserted, the structure exhibits
NTE in the plane where the sliding rods lie, while the other direction remains PTE.
Perusal to Fig. 11.38c therefore suggests that this structure demonstrates NTE and
PTE in the x–y plane and the z-axis, respectively. Since the structure gives NTE
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Table 11.2 Summary of effective CTE for the ring structure

Schematics. See Fig. 11.35 for details Effective CTE Remarks

�AB = +2Rα
(T )
r dT

�K L = +2Rα
(T )
r dT

∴ α
(T )
x = +α

(T )
r

R
R+l1

α
(T )
x = +α

(T )
r

R
R+l3

PTE

�AB = −2Rα
(T )
r dT

�K L = +2Rα
(T )
r dT

∴ α
(T )
x = −α

(T )
r

R
R+l1

α
(T )
x = +α

(T )
r

R
R+l3

1D NTE

�AB = +2Rα
(T )
r dT

�K L = −2Rα
(T )
r dT

∴ α
(T )
x = +α

(T )
r

R
R+l1

α
(T )
x = −α

(T )
r

R
R+l3

1D NTE

�AB = −2Rα
(T )
r dT

�K L = −2Rα
(T )
r dT

∴ α
(T )
x = −α

(T )
r

R
R+l1

α
(T )
x = −α

(T )
r

R
R+l3

2D NTE

characteristic in two axes, we shall term it “high NTE.” In the final example shown
in Fig. 11.38d, pairs of sliding rods are incorporated in all three axes, and hence, we
have a fully NTE structure.
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Fig. 11.37 a A conventional (non-auxetic) ring structure that exhibits full NTE in 2D, b draw-in
of sliding rods arising from thermally expanded ring, c push out of rods due to thermally contracted
ring, and d arrangement to prevent turning of rings about any axis

In addition to the validity of Eqs. (11.11.3) and (11.11.4), we herein add

α(T )
y = 1

dT

�I J

2R + 2l2
(11.11.5)

where
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Fig. 11.38 NTE evaluation on double-rings: a fully PTE, b NTE in x-axis, c NTE in x- and y-axes,
and d fully NTE
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∣∣�I J
∣∣ = 2Rα(T )

r dT (11.11.6)

Specific CTEs for all the 8 combinations of double-rings with fixed and/or sliding
rods are listed in Table 11.3. The following terms are introduced for the double-
ring structure and are listed in the remarks column of Table 11.3: (i) “PTE” for the
double-ring structure that has no sliding rods due to its positive thermal expansion
in all three axes, (ii) “1D NTE” refers to double-ring structures that possess one pair
of sliding rods because they exhibit NTE in one axis, (iii) “2D NTE” term is used
for double-ring structures with two pairs of sliding rods due to their manifestation of
NTE is two axes, and (iv) “3D NTE” for the double-ring structure that exhibits NTE
in all three axes as a consequence of three pairs of sliding rods. See Table 11.2.

For the first special case of l1 = l2 = l3, i.e., the short fixed rods are of equal
length l and the long sliding rods are of equal length 2R + l such that the single-ring
and the double-ring structures are arranged in square and cube arrays, respectively,
the effective CTEs reduce to

∣∣∣α(T )
i

∣∣∣ = α(T )
r

R

R + l
; i = x, y, z (11.11.7)

So far the rings and pairs of rods have been arranged in such a manner that the
thermal expansion and contraction of the rings do not alter the distance between the
ring center. Recall that the expansion and contraction of the rings occur simultane-
ously with the rod draw-in and push-out of, respectively, from the rings. Consider
now the case where the rings are arranged in such a way that the holes from 4
neighboring rings face one another, as shown in Fig. 11.39. A consequence of this
arrangement is the shift of ring centers toward one another as well as away from
each other. This is shown in Fig. 11.40a, in which contraction of the rings causes the
rods to be pushed out. When the rings expand due to temperature rise, as shown in
Fig. 11.40b, the rings move in the opposite direction as compared to Fig. 11.40a.

Reference to Fig. 11.40 also reveals that the change in ring diameter occurs in
tandemwith the lateral shiftingof the rods.As such there are two factors in influencing
the void size (excluding the voids confined within each ring), which is herein defined
by the area confined by the rods and the outer surface of the rings. The first factor
is the change in ring size, in which contracting ring diameter (due to dT < 0) and
expanding ring diameter (due to dT > 0) lead to expanding and contracting void
size, respectively. In other words, the increasing and decreasing void size in response
to the decreasing and increasing temperature, respectively, suggests that the voids
behave in an NTE manner. The second factor is the in-plane transverse motion of
the rods, which transforms the original mid-sized squares voids into small squares,
large squares, and rectangles.

Bearing in mind that the rings behave as PTE while the voids behave as NTE,
we shall now see that the entire structure, being defined by its boundary, exhibits
zero thermal expansion (ZTE) characteristic. Figure 11.41 provides an appreciation
of this combined PTE, NTE, and ZTE characteristics with the usual PTE and NTE
behavior, in which the top, middle, and bottom rows correspond to the usual PTE,
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Table 11.3 Effect of microstructural arrangement in the double ring structure on the negativity of
thermal expansion

Schematics Effective CTE in x-, y-, and z-axes based on dT > 0 Remarks
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1D NTE

(continued)
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Table 11.3 (continued)

Schematics Effective CTE in x-, y-, and z-axes based on dT > 0 Remarks
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Fig. 11.39 An overall zero thermal expansion (ZTE) structure that exhibits internal NTE
characteristics

usual NTE and the currently combined PTE/NTE/ZTE models, respectively, while
the left, middle, and right columns refer to the original state, decreased temperature,
and increased temperature, respectively. Needless to say, the overall expansion of
the usual PTE and NTE structures occurs in conjunction with the expansion of the
voids, and conversely, their overall contraction takes place simultaneously with the
contraction of the voids. In other words, the change in void size necessitates like
changes to the boundary of the entire structure. In some applications, such as sieves,
it is desirable to have a design that can thermally control the void size and at the
same time prevent any change to the size of the overall structure so as to limit the
built-up of thermal stresses at the boundary and the consequential stresses within
the boundary. It is instructive to incorporate the markings of “X” and “Y” at the
bottom row of Fig. 11.41, to indicate the locations that experience significant and
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Fig. 11.40 Change in area bounded by the rods and ring outer surface as well as the in-plane
transverse shift of the rods during a ring contraction, and b ring expansion

insignificant changes in void size; the former due to compounding effect from both
factors and the latter due to the cancelation effect fromboth factors.More importantly,
the last row of Fig. 11.41 visually shows that the alternating direction in which the
rods move facilitates the preservation of the overall size of the structure.

Section 2.5 and this section report the extent of auxeticity and NTE in different
combinations. To put into perspective, the extent and interrelation between auxeticity
and NTE characteristics, it is useful to place each of these single-ring and double-
ring structures on Euler diagrams displayed in Figs. 11.42 and 11.43, respectively
(Lim 2017); the axes and loading directions for auxeticity evaluation are defined in
Sect. 2.5.

11.12 Example: Three-Dimensional Truss Systems with Pin
Joints

With reference to the 2D periodic network that consists of isosceles triangles shown
in Fig. 11.44, it is easily seen that when the horizontal rod begins expanding (at fixed
diagonal rod length) there is an increase in the triangular area until a maximum point
is reached, whereupon further expansion of the horizontal rod is accompanied by
area reduction until a state of zero area is attained when the triangle collapses into
a horizontal line. However, an increase in the length of the diagonal rods (at fixed
horizontal rod length) does not lead to area reduction.

On the basis of this understanding, the 3D version is identified as a tetrahedron
consisting of 2 sets of rods: (a) the first set of 3 rods of length a and CTE α(T )

a are
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Fig. 11.41 A comparison between the overall ZTE characteristics of the ring-rod array with the
usual PTE and NTE characteristics. The dashed squares indicate the original overall size for
convenient comparison

branched from the tetrahedron apex, while (b) the second set of 3 rods of length b and
CTE α

(T )
b forms a triangular loop that defines the boundary of the tetrahedron base

(Lim 2012). This combination is selected due to its analogy with the 2D network
mentioned; i.e., an increase in the “apex” rod length (at fixed “base” rod length) does
not give any volumetric reduction. Increase in the “base” rod length (at fixed “apex”
rod length) from the state of sharp tetrahedron is followed by volumetric increase.
However, the same increment of base rod length from the state of tetrahedron is
followed by volumetric decrease. A state of zero volume is finally attained when all
6 rods lie on the same plane. (Figure 11.45)

To establish the ratio of the apex-to-base rod length at the optimum point, we
write the volume of the tetrahedron as

V = b3

12

√
3
a2

b2
− 1 (11.12.1)
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Conventional

2D NTE

PTE

Auxetic & 1D 
NTE

Fig. 11.42 Euler diagram for auxeticity and NTE mapping of single-ring structure with short fixed
rods and/or long sliding rods. Ring, axes, and loading details are defined in Sect. 2.5

such that the condition

dV

da
= 0 (11.12.2)

has no solution, thereby confirming positive thermal expansion (PTE) of the
tetrahedron when α(T )

a > α
(T )
b = 0. On the other hand, there is a solution for

dV

db
= 0 ⇔ a

b
= 1√

2
(11.12.3)

thereby quantifying the earlier qualitative elucidation forα(T )
b > α(T )

a = 0. Table 11.4
summarizes the geometrical condition that leads to NTE for the scope of tetrahedral
structure considered herein.

As a solid undergoes thermal expansion from its original volume V0 to its final
volume V f by an amount dV resulting from a temperature increment of dT , i.e.,

V f = V0 + dV (11.12.4)

the volumetric strain by definition is
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Fig. 11.43 Euler diagram for auxeticity and NTEmapping of double-ring structure with short fixed
rods and/or long sliding rods. Double-ring, axes, and loading details are defined in Sect. 2.5

εV = dV

V0
(11.12.5)

while its relationship with the coefficient of volumetric thermal expansion (CVTE),
α

(T )
V is

εVT = α
(T )
V dT (11.12.6)

Equating both volumetric strains
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Fig. 11.44 A triangular periodic rod/truss structure that gives variable CTE: 2D periodic structure
(left), and a representative area element (right)

b
b

b

a
a

a

Fig. 11.45 A tetrahedral periodic rod/truss structure that gives variable CTE: 3D periodic structure
(left), and a representative volume element (right) by Lim (2012)

Table 11.4 Geometrical
condition for NTE α

(T )
b > α

(T )
a = 0 α

(T )
a > α

(T )
b = 0

a
b < 1√

2
NTE PTE

a
b > 1√

2
PTE PTE

dV = α
(T )
V V0dT (11.12.7)

we have

V f = V0

(
1 + α

(T )
V dT

)
(11.12.8)

Hence, the volumetric strain resulting from thermal expansion
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εVT = V f

V0
− 1 (11.12.9)

can be expressed in terms of the rod dimensions before and after thermal expansions,
i.e.,

V f = b3f
12

√
3
a2f
b2f

− 1

V0 = b30
12

√
3 a20
b20

− 1
(11.12.10)

Substituting

a f = a0
(
1 + α(T )

a dT
)

b f = b0
(
1 + α

(T )
b dT

) (11.12.11)

we arrive at

εVT = −1 +
(
1 + α

(T )
b dT

)2
√√√√√√3 a20

b20

(
1 + α

(T )
a dT

)2 −
(
1 + α

(T )
b dT

)2
3 a20
b20

− 1
(11.12.12)

It follows that, for a solid to exhibit NTE, the volumetric thermal strain must be
less than zero. Hence, the condition

(
1 + α

(T )
b dT

)2
√√√√√√3 a20

b20

(
1 + α

(T )
a dT

)2 −
(
1 + α

(T )
b dT

)2
3 a20
b20

− 1
< 1 (11.12.13)

must be fulfilled for the considered space frame structure to be NTE. The CVTE
can be obtained by taking the first derivative of the volumetric thermal strain with
respect to the thermal increment

α
(T )
V = ∂εVT

∂(dT )
(11.12.14)
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to give

α
(T )
V = 2α(T )

b

(
1 + α

(T )
b dT

)
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b20

(
1 + α

(T )
a dT
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− 1
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)
√
3 a20
b20

− 1 ×
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(
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)2 −
(
1 + α

(T )
b dT

)2
(11.12.15)

Equation (11.12.15) implies that the CVTE of a structure composed of rods in
tetrahedral arrangement is dependent on the magnitude of temperature change. This
result is not surprising since it is understood that the structural geometry changes
with changes to the rod length.

The CVTE as a material property that is independent from the change in
temperature is obtained by taking the limits (Lim 2012)

lim
dT→0

α
(T )
V = α

(T )
b

⎛
⎝2 +

3α
(T )
a

α
(T )
b

a20
b20

− 1

3 a20
b20

− 1

⎞
⎠ (11.12.16)

Equation (11.12.16) refers to the CVTE at infinitesimal change in temperature and
is hence valid for small change in temperature. It is also valid for moderate change
in temperature under the condition that the changes in the tetrahedron volume and
shape are insignificant. It follows that, for the structure to possess a negative CVTE,
the condition

(
2 + α(T )

a

α
(T )
b

)
a20
b20

< 1 (11.12.17)

must be met. The following discusses the results of variation in volumetric thermal
strain and volumetric CTE with reference to a dimensionless rod CTE and the rod
ratio, respectively. Figure 11.46 shows variation of the volumetric thermal strain with
reference to a dimensionless rod CTE, α(T )

b dT , under various rod length ratios. This
parameter α

(T )
b dT was selected over α(T )

a dT due to the role that the “base” rods play
in giving rise to NTE. The effect of the “apex” rods’ CTE is taken into consideration
on Fig. 11.46 for α(T )

a /α
(T )
b = 0.0, 0.1, 0.2.

Perusal to Fig. 11.46 shows that the extent of negative expansivity becomes more
significant with

(a) decreasing rod length ratio a0/b0,
(b) increasing dimensionless rod CTE, α(T )

b dT , and
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Fig. 11.46 Plots of
volumetric thermal
expansion versus
dimensionless rod CTE for
various rod ratios at
α

(T )
a /α

(T )
b of 0 (top), 0.1

(middle), and 0.2 (bottom)

(c) decreasing rod CTE ratio α(T )
a /α

(T )
b .

In addition to the above, it can be seen that under the condition where there is
a slight PTE, the overall volumetric thermal expansion goes into a negative region
beyond a certain increase in temperature, hence temperature change-dependent NTE.

Figure 11.47 (top) shows general variation of the infinitesimal volumetric CTE
with reference to the rod length ratio, under various ratios of base rod CTE to apex
rod CTE. Due to the close variation in the curves, an appreciation on the influence
of rod length ratio and rod CTE ratio is made in Fig. 11.47 (bottom) which zooms
into a narrow range of dimensionless volumetric CTE.
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Fig. 11.47 Plots of
dimensionless volumetric
CTE versus rod ratio for
various rod CTE ratios,
showing the general trend
(top) and zoomed in view at
dimensionless volumetric
CTE near zero (bottom)

As with Fig. 11.46, reference to Fig. 11.47 reveals that the degree of negative
expansivity is more pronounced with decreasing rod length ratio a0/b0 and rod CTE
ratio α(T )

a /α
(T )
b . More striking, however, is that the extent of negative expansivity

increases gradually with decreasing rod ratio for a0/b0 > 0.6, but the negative
expansivity increases sharply with decreasing rod ratio for a0/b0 < 0.6. This may
well be attributed to the limiting geometrical condition, in which the minimum limit
for the rod ratio is a0/b0 > 3−0.5 = 0.57735.

To possess an overview of tetrahedrons with PTE and/or NTE characteristics
within the context of nonnegative CTE rods, it is convenient to confine, in the first
instance, our consideration into only two types of rods: (a) PTE rods (of equal CTE),
and (b) zero thermal expansion (ZTE) rods. In so doing, it is possible to list up to 11
types of tetrahedron as shown in Fig. 11.48 (Lim 2013).
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Special category:

Isotropic 
PTE 
tetrahedron

One 
PTE link

Two 
PTE 
links in 
contact

Two 
PTE 
links 
without 
contact

Three 
PTE 
links in 
series

Three 
PTE 
links in 
loop

Three 
PTE 
branched
 links

Four 
PTE 
links in 
loop and 
one 
branch

Four 
PTE 
links in 
loop

Five 
PTE 
links

ZTE 
tetrahedron

Zero Thermal 
Expansion (ZTE)
Positive Thermal 
Expansion (PTE)

Fig. 11.48 Graphical list of tetrahedrons made from two types of rods: PTE rods (of equal CTE)
denoted by fine red lines, and ZTE rods denoted by bold black lines

Qualitative understanding on the thermal expansion behavior of these tetrahe-
drons can be obtained by the following elucidations, with the obvious cases omitted.
Figure 11.49 shows a tetrahedron in which one of the rods possess PTEwhile the rest
possess ZTE, such that initial expansion from the former from zero length increases
the tetrahedron’s volume by the opening of an equilateral triangle into a tetrahedron,
hence a volumetric PTE, until a maximum volume is attained. Further expansion of
the PTE rod flattens the tetrahedron into a rhombus, thereby signifying an effective
NTE for the tetrahedron. For this case, the ratio of PTE to ZTE rod lengths range
from 0 to

√
3.

There are twopossibleways bywhich twoPTEand fourZTE rods can be arranged.
Figure 11.50a, b shows the two variations, in which the PTE rods of the former are
in contact in one of their vertices, while the PTE rods for the latter are not in contact.
From a PTE to ZTE rod ratio in the form of the nested radical

√
2 − √

3 that gives

PTE NTE

Fig. 11.49 PTE followed by NTE tetrahedral truss from one PTE and five ZTE rods
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(a)

(b)

PTE NTE

PTE NTE

Fig. 11.50 PTE followed by NTE tetrahedral truss from two PTE and four ZTE rods: a PTE rods
in contact, and b PTE rods not in contact (except in planar form)

the shape of a kite, thermal expansion of the PTE rod transforms the flat kite into a
tetrahedron until a maximum volume is attained, as shown in Fig. 11.50a. Continued
lengthening of the PTE rod reduces the tetrahedron volume so that the structure
collapses into a bilateral triangle such that the ratio of PTE to ZTE rod lengths takes

the value of the nested radical
√
2 + √

3. In the case depicted by Fig. 11.50b, the
tetrahedron takes the shape of a rod whose length is equal to that of the ZTE when
the PTE rod is at zero length. Increase in the PTE rod length transforms the rod
into a tetrahedron, and further, expansion of the PTE rods causes the tetrahedron to
collapse into a square in which the PTE to ZTE rod lengths ratio is

√
2.

Figure 11.51 shows three possible ways by which three PTE and three ZTE
rods can be arranged. For the case where the PTE and ZTE rods are in series,
as in Fig. 11.51a, an expansion of the PTE rods eventually leads to an isosceles
trapezoid when the ratio of the PTE to ZTE rod length achieves the golden ratio
φ = 1.61803 . . ., which is the upper limit. A contraction of the PTE rods also leads
to an isosceles trapezoid when the ratio of the PTE to ZTE rod length achieves the
inverse of the golden ratio, i.e., 1/φ = φ − 1 = 0.61803 . . ., which is the lower
limit. In the arrangement shown in Fig. 11.51b, the tetrahedron takes the shape of
a sharp needle when the PTE rods are at zero length such that lengthening of these
rods increases the volume of the tetrahedron until a maximum volume is achieved.
Further lengthening of the PTE rods collapses the tetrahedron into an equilateral
triangle. As such, the ratio of the PTE to ZTE rod lengths ranges from 0 to

√
3. The

opposite configuration, as depicted in Fig. 11.51c, shows that the minimal PTE to
ZTE rod lengths ratio is 1/

√
3. However, this arrangement does not lead to negative

volumetric thermal expansion.
As a final qualitative discussion, we refer to the tetrahedron made from four PTE

rods and two ZTE rods. The arrangement shown in Fig. 11.52a, b is conjugates of
Fig. 11.50a, b, respectively. Starting from a bilateral triangle whose PTE to ZTE rod
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Fig. 11.51 Tetrahedral trusses from three PTE and three ZTE rods: a PTE followed by NTE for
series PTE rods b PTE followed by NTE for looped PTE rods, and c PTE with branched PTE rods

PTE

PTE PTE

NTE

(a)

(b)

Fig. 11.52 Tetrahedral truss from four PTE and two ZTE rods: a PTE followed byNTE tetrahedron
from PTE rods in end contact, and b PTE tetrahedron from skew PTE rods
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lengths ratio is
(
2 + √

3
)−1/2

or
√
2 − √

3, the structure exhibits positive thermal

expansion until its maximum volume is attained. Thereafter, further increase in the
PTE rods reduces the tetrahedron volume until a zero volume is reached whereby
the tetrahedron collapses into a kite-shaped planar structure whereby the PTE to

ZTE rod lengths ratio is at
(
2 − √

3
)−1/2

or
√
2 + √

3. In the case depicted by

Fig. 11.52b, the PTE to ZTE rod length ratio begins at 1/
√
2 in the shape of a square

such that lengthening the PTE rods increases the tetrahedron volume with no optimal
condition; i.e., the structure does not exhibit negative volumetric thermal expansion.

Of the several 3D configurations outlined, only the case described by Fig. 11.51b
is selected for analysis due to its analogy to the 2D version that gives NTE with
two of its rods being equal in length and properties. These 2D and 3D arrangements
share a similarity in its symmetric change in shape. Recall that the volumetric strain
for this tetrahedral model is described by Eq. (11.12.12). Instead of plotting for
temperature increase only, Fig. 11.53 shows the volumetric strains for both increasing
and decreasing temperature.

Fig. 11.53 Volumetric thermal strain versus dimensionless change in temperature in the base rods
for various initial rod length ratios of 0.0 (top left), 0.1 (top right), 0.2 (bottom left), and 0.3 (bottom
right)
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Fig. 11.54 Graphical representation of PTE (dashed curves) and NTE (continuous curves) of the
tetrahedral space frame trusses based on overall definition of NTE (left) and incremental definition
of NTE (right)

Recall that the condition of NTE described by Eq. (11.12.14) is on the basis of
incremental change to the volumetric strain and hence defined by the negativity of
the slopes in the curves plotted in Fig. 11.53. An alternative description of CTE can
be conceptualized as

α
(T )
V = εVT

dT
(11.12.18)

from which the condition of NTE is satisfied when εVT and dT possess opposite
signs. The difference in both definitions of NTE can be graphically represented in
Fig. 11.54.

Arising from the overall and the incremental definitions of NTE, there exists a
region which is NTE by one definition but PTE by the other definition. Where the
space frame trusses are consistently NTE or PTE by both definitions, we say that the
structure is definite NTE or definite PTE, respectively. When the trusses are NTE by
only one of the definitions, then we say that it exhibits selective NTE. The conditions
that lead to both PTE and NTE by virtue of different NTE definitions is hence called
“selective NTE,” because whether the truss is deemed NTE or PTE depends on the
selected reference point. An example is shown in Fig. 11.55 (Lim 2013).

11.13 Other 3D NTE Systems

There have been extensions of 2D NTE models to 3D ones, and for each 2D model,
there can be more than one version of its 3D counterpart. It is therefore impossible
to cover all of them within this book. It suffices to consider a few examples and only
briefly as the fundamentals is more easily understood from the 2D models. The first
example of 3D model is that of tetrakaidecahedral structure, which resembles open
cell foams shown in Fig. 11.56 envisaged by Lakes (2007) as a 3D extension of his
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Fig. 11.55 Range of selective NTE as well as definite NTE and PTE of space frame trusses (NTE
and PTE are denoted by continuous and dashed lines, respectively)

2D NTE models—discussed in Sect. 11.2 in Figs. 11.7 and 11.8—in which each rib
is made by curved bimaterial strip. If the layer on the convex side possesses a greater
CTE than that on the concave side, then an increase in temperature will cause the
curved rib to curve even more; i.e., the junctions move closer together. The resulting
shrinkage of the cell indicates NTE. Wu et al. (2016) investigated both 2D and 3D
NTE models using anti-chiral structures. Specifically, Wu et al. (2016) performed
experiment and simulation on 2D NTE based on anti-tetrachiral and anti-trichiral
structures. The 2D anti-tetrachiral structure was then extended to its 3D version. See
Fig. 11.57 for the simulation results of the total displacement, in mm, using node
radii of 20 mm (top left), 25 mm (top center), 30 mm (top right), 35 mm (bottom
center), and 40 mm (bottom right) with ligament length of 100 mm and thickness
2 mm, as furnished in the supplementary materials by Wu et al. (2016). A number
of microlattice structural systems have been investigated by Xu and Pasini (2016),
which the effective CTE, effective Young’s modulus, and effective yield strength
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Fig. 11.56 Example of 3D NTE model in the form of tetrakaidecahedral structure with ribs made
from curved bimaterial strips by Lakes (2007). Reprinted with permission from AIP

Fig. 11.57 Example of NTE structure using 3D anti-tetrachiral structure by Wu et al. (2016).
Reprinted with permission from ACS
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Fig. 11.58 Structurally efficient 3Dmetamaterials with controllable CTEs by Xu and Pasini (2016)

were evaluated. This work is an exhaustive study which approximately extends from
earlier works, e.g., in Sects. 11.5–11.9 and Sect. 11.12. Plots of the effective CTEs
by Xu and Pasini (2016) are furnished in Fig. 11.58. Finally, it can be seen that one of
the 3D microstructures developed by Ai and Gao (2018), as shown in Fig. 11.59, is a
3D counterpart to the 2D version by Raminhos et al. (2019) discussed in Sect. 11.8.
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Fig. 11.59 One of the 3D
metamaterials with auxetic
and non-positive NTE
investigated by Ai and Gao
(2018). Reprinted with
permission from Elsevier
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Chapter 12
Negative Compressibility

Abstract This chapter surveys work done on negative compressibility (NC)
systems, which can be broadly categorized into cellular system, bimaterial strip
system, and interconnectedmembrane system. In the category of cellular NC system,
topics include deformation solely by rib stretching and those solely by joint rotation,
as well as those with combined modes of deformation.

Keywords Negative compressibility · Negative linear compressibility · Negative
area compressibility · Negative volume compressibility

12.1 Introduction

For a typical solid, an increase in its surrounding pressure p, such as the environmental
pressure or hydrostatic pressure, decreases its dimension at constant temperature.
The compressibility—also known as the coefficient of compressibility, isothermal
compressibility, or the coefficient of pressure expansion—can be defined for linear,
areal, and volumetric compressibilities as (Baughman et al. 1998)

α
(P)
L = − 1

L

(
∂L
∂p

)
T=constant

α
(P)
A = − 1

A

(
∂A
∂p

)
T=constant

α
(P)
V = − 1

V

(
∂V
∂p

)
T=constant

(12.1.1)

respectively. From there, one may recognize that

∂L
L = εL
∂A
A = εA

∂V
V = εV

(12.1.2)

refer to the linear strain, areal strain, and volumetric strain, respectively, in response
to the pressure change dp. Hence,
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α
(P)
L = −
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εL
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T=constant

α
(P)
A = −
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T=constant

α
(P)
V = −

(
εV
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(12.1.3)

For isotropic systems, the strain is uniform in all directions. Under this limited
condition, εA = 2εL and εV = 3εL , therefore

α
(P)
L = 1

2
α

(P)
A = 1

3
α

(P)
V = −

(
εL

dp

)

T=constant

(12.1.4)

Since matter—gas, liquid, and solid—typically contract and expand with
increasing and decreasing pressures, respectively, the strains and pressure change
have opposing signs. Therefore, negative signs are required in Eqs. (12.1.1), (12.1.3),
and (12.1.4) to produce compressibility with positive signs. Solids that behave in the
opposing manner, i.e., expand and contract with increasing and decreasing pres-
sures, respectively, are counter-intuitive. For such materials, the strains and pres-
sure change possess equal signs. Using the above definition of compressibility,
such solids give rise to compressibility values that are negative. These are nega-
tive compressibility (NC) materials. The occurrences of NC were first discovered
in tellurium by Bridgman (1922), and has lately been found in methanol mono-
hydrate (Fortes et al. 2011), silver (I) hexacyanocobaltate (III) (Goodwin et al.
2008), zinc dicyanoaurate (Cairns et al. 2013), wine-rack-like carbon allotropes and
related poly(phenylacetylene) systems (Degabriele et al. 2019), and silver oxalate
(Colmenero 2019), to name a few. The following sections provide examples of NC
systems from the mechanics approach.

12.2 Generalized Compressibility Analysis in 3D Cellular
Systems

This section furnishes a generalized compressibility model for 3D cellular systems
based on the works of Grima et al. (2008, 2011, 2012, 2013), Attard et al. (2016),
Dudek et al. (2016), Zhou et al. (2016, 2018), Ma et al. (2019), and Grima-Cornish
et al. (2020). For any cellular structure, a representative volume element, a unit
cell, or any repetitive unit, must be identified and geometrical quantities are then
assigned to the rib lengths and their angular inclinations. The unit cell dimensions
are indicated by (X1, X2, X3) as measured along the axes (Ox1, Ox2, Ox3), where
O is the origin of the 3D Cartesian coordinate system. Given a number of ribs with
various orientations, one may identify m number of ribs of lengths l1, l2, . . . , lm as
well as n number of rib inclinations θ1, θ2, . . . , θn that are sufficient to describe the
unit cell for analysis. The angles need not necessarily be measured from a particular
direction; in some cases, rib orientations are measured with reference to other ribs.
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Hence, the unit cell dimensions are functions of rib lengths and inclination angles

X1 = X1(l1, l2, . . . , lm, θ1, θ2, . . . , θn)

X2 = X2(l1, l2, . . . , lm, θ1, θ2, . . . , θn)

X3 = X3(l1, l2, . . . , lm, θ1, θ2, . . . , θn)

(12.2.1)

from which the application of load σ [1] in the Ox1 direction gives strains in all three
orthogonal directions parallel to the Ox1, Ox2 and Ox3 axes

ε
[1]
1 = 1
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(
∂X1
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∂l2
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∂lm
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∂θn
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)

ε
[1]
2 = 1
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)

ε
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3 = 1
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dθ [1]2 + · · · + ∂X3
∂θn

dθ [1]n

)

(12.2.2)

while the application of load σ [2] in the Ox2 direction again gives strains in these
three directions

ε
[2]
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dθ [2]2 + · · · + ∂X3
∂θn
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(12.2.3)

and in similar fashion the application of σ [3] in the Ox3 direction leads to the
following strains
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dl[3]2 + · · · + ∂X1
∂lm
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(12.2.4)

In Eqs. (12.2.2) to (12.2.4), the first m terms correspond to strain components
resulting from rib stretching, while the last n terms refer to strain components arising
from rib rotation. The stretching force F and the bending moment M that are built
up from the changes in rib length δl and angle δθ , respectively, are quantified as

F = ksδl
M = khδθ

(12.2.5)

where ks is stretching stiffness constant of the rib and kh is the rotational stiffness
constant of the hinge. From the prescribed stresses σ [1], σ [2], σ [3] and the generated
strains described in Eqs. (12.2.2) to (12.2.4), the following effective elastic constants
can be calculated for loading in the Ox1 direction
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E1 = σ [1]

ε
[1]
1

v12 = − ε
[1]
2

ε
[1]
1

v13 = − ε
[1]
3

ε
[1]
1

(12.2.6)

as well as for loading along the Ox2

E2 = σ [2]

ε
[2]
2

v21 = − ε
[2]
1

ε
[2]
2

v23 = − ε
[2]
3

ε
[2]
2

(12.2.7)

and also for Ox3 loading

E3 = σ [3]

ε
[3]
3

v31 = − ε
[3]
1

ε
[3]
3

v32 = − ε
[3]
2

ε
[3]
3

(12.2.8)

In some cases, it ismore expedient to obtain the effectiveYoung’smodulus and the
effective Poisson’s ratio under separate modes of deformation, i.e., Es

i and vs
i j under

rib stretching mode, and Eh
i and vh

i j under hinge rotation mode. The overall Young’s

modulus Es+h
i and Poisson’s ratio vs+h

i j , incorporating both modes of deformation,
can thus be obtained as

1
Es+h
i

= 1
Es
i
+ 1

Eh
i

vs+h
i j

Es+h
i

= vsi j
Es
i
+ vh

i j

Eh
i

; (i, j = 1, 2, 3) (12.2.9)

From the definition of linear compressibility and recognizing that the strain in each
orthogonal direction is a result of applied stress in all three orthogonal directions,
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1 +ε
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1 +ε
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3 = −

(
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3 +ε

[2]
3 +ε

[3]
3

dp

)
T=constant

(12.2.10)

since the applied stress in all directions is equal to the pressure change

σ [1] = σ [2] = σ [3] = dp. (12.2.11)
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Having obtained the effective Young’s modulus and effective Poisson’s ratio, the
linear compressibilities α

(P)
L along the Ox1, Ox2, and Ox3 directions are thus

α
(P)
1 = 1

E1
−

(
v21
E2
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(P)
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−
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α
(P)
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v13
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+ v23
E2

) (12.2.12)

Since the areal strain is the summation of the two principal strains in the plane of
consideration, we similarly have the areal compressibilities α

(P)
A on the Ox1 − Ox2,

the Ox2 − Ox3, and the Ox1 − Ox3 planes

α
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(P)
2
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(12.2.13)

or, in terms of mechanical properties,
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) (12.2.14)

Since the volumetric strain is the summation of all three principal strains,
we have likewise the volumetric compressibility α

(P)
V as a summation of linear

compressibilities in all three orthogonal directions

α
(P)
V = α

(P)
1 + α

(P)
2 + α

(P)
3 (12.2.15)

or in terms of mechanical properties

α
(P)
V = 1
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+ 1

E2
+ 1

E3
− 2

(
v12
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+ v23

E2
+ v31

E3

)
(12.2.16)

The conditions for linear, areal, and volumetric negative compressibilities can
then be extracted by solving for α

(P)
L < 0, α(P)

A < 0, and α
(P)
V < 0.

Simplifications to the formulation can be obtained when solving for microstruc-
tural systems that deform either by stretching only or by rotation only. An example
of the former is encountered when the angle is constrained such that Eqs. (12.2.2) to
(12.2.4) reduce to
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ε
[1]
1 = 1

X1

(
∂X1
∂l1

dl [1]1 + ∂X1
∂l2

dl [1]2 + · · · + ∂X1
∂lm

dl [1]m

)

ε
[1]
2 = 1

X2

(
∂X2
∂l1

dl [1]1 + ∂X2
∂l2

dl [1]2 + · · · + ∂X2
∂lm

dl [1]m

)

ε
[1]
3 = 1

X3

(
∂X3
∂l1

dl [1]1 + ∂X3
∂l2

dl [1]2 + · · · + ∂X3
∂lm

dl [1]m

)

ε
[2]
1 = 1

X1

(
∂X1
∂l1

dl [2]1 + ∂X1
∂l2

dl [2]2 + · · · + ∂X1
∂lm

dl [2]m

)

ε
[2]
2 = 1

X2

(
∂X2
∂l1

dl [2]1 + ∂X2
∂l2

dl [2]2 + · · · + ∂X2
∂lm

dl [2]m

)

ε
[2]
3 = 1

X3

(
∂X3
∂l1

dl [2]1 + ∂X3
∂l2

dl [2]2 + · · · + ∂X3
∂lm

dl [2]m

)

ε
[3]
1 = 1

X1

(
∂X1
∂l1

dl [3]1 + ∂X1
∂l2

dl [3]2 + · · · + ∂X1
∂lm

dl [3]m

)

ε
[3]
2 = 1

X2

(
∂X2
∂l1

dl [3]1 + ∂X2
∂l2

dl [3]2 + · · · + ∂X2
∂lm

dl [3]m

)

ε
[3]
3 = 1

X3

(
∂X3
∂l1

dl [3]1 + ∂X3
∂l2

dl [3]2 + · · · + ∂X3
∂lm

dl [3]m

)

(12.2.17)

while the latter is applied especially when dealing with rotating rigid units such that
one has
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The 3D models can be greatly simplified when reduced to 2D models. For the
latter, we have the linear compressibilities for a cellular structure defined in the
Ox1 − Ox2 plane

α
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− v21

E2
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E2
− v12
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(12.2.19)

and the areal compressibility

α
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− 2

v12
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(12.2.20)
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The following sections consider examples of NC microstructures based on rib
stretching mode of deformation (Sect. 12.3), hinge rotation mode of deformation
(Sect. 12.4), and combined stretching and rotationmodes of deformation (Sect. 12.5).

12.3 Examples of Negative Compressibility
in Microstructures with Rib Stretching Mode
of Deformation

There are two sub-categories of NC in microstructures with rib stretching mode of
deformation: (a) network of rods or ribs joined at the junctions with pin joints to
permit free rotation about the hinges without incurring bending moment and (b)
network of rods or ribs joined at connectors that permit only sliding translational
motion. The first three examples that were given by Grima et al. (2008) consider two
types of 2D NC system (Fig. 12.1) and a 3D NC system (Fig. 12.2).

In the case of the rotationally constrained system by Grima et al. (2013), the
connectors are designed to permit only translational motion of the rods in response
to fluctuating pressure, as shown in Fig. 12.3, where rods of length l and stretching
stiffness constant kls are inclined at an angle θ to the Ox1 axis, while rods of height
h and stretching stiffness constant khs are oriented parallel to the Ox2 axis. Grima
et al. (2013) obtained the linear compressibilities along the Ox1 and Ox2 axes

α
(P)
1 = cos θ

kls

(
h
l + 2 sin θ

)

α
(P)
2 = cos θ

kls

(
sin θ + 2 kls

khs
+sin2 θ

h
l +sin θ

)
(12.3.1)

which gives the area compressibility in the Ox1 − Ox2 plane

α
(P)
12 = cos θ

kls

⎛
⎝h

l
+ 3 sin θ +

2 kls
khs

+ sin2 θ

h
l + sin θ

⎞
⎠ (12.3.2)

A plot of α
(P)
2 versus θ for various h/ l ratio with kls = 10 and kls

khs
/ h
l = 0.001 is

shown in Fig. 12.4.



434 12 Negative Compressibility

Fig. 12.1 2D truss-like system with negative compressibility made from two types of materials
(top) and three types of materials (bottom) by Grima et al. (2008). Reprinted with permission from
John Wiley and Sons
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Fig. 12.2 3D truss-like system with negative compressibility made from four types of materials by
Grima et al. (2008). Reprinted with permission from John Wiley and Sons

12.4 Examples of Negative Compressibility
in Microstructures with Rotational Mode
of Deformation

As with the previous section, two sub-categories are identified in this section. These
sub-categories are: (a) deformation by rotation of rigid ribs and (b) deformation by
rotation of rigid units. The first example is taken from the works of Grima et al.
(2012), who proposed a unit cell in the form of hexagonal dodecahedron. Based on
the geometrical details furnished in Fig. 12.5 with kh being the rotational stiffness
constant at the rib junctions, Grima et al. (2012) established the compressibilities in
the three orthogonal directions as

α
(P)
1 = X2l21

4kh

(
X3
X1

sin2 θ1 − cos θ1 sin θ1

)

α
(P)
2 = X1l22

4kh

(
X3
X2

sin2 θ2 − cos θ2 sin θ2

)

α
(P)
3 = 1

4kh

{
X1X2
X3

[
l21 cos

2 θ1 + l22 cos
2 θ2

] − X2l21 sin θ1 cos θ1 − X1l22 sin θ2 cos θ2

}

(12.4.1)

where

X1 = 2l1 cos θ1

X2 = 2l2 cos θ2

X3 = 2(l3 + l1 sin θ1 + l2 sin θ2)

(12.4.2)

For the special case where l1 = l2 = l and θ1 = θ2 = θ , and hence X1 = X2 = X
the compressibilities greatly simplify to
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Fig. 12.3 An NC system with rotational constraint by Grima et al. (2013)

Fig. 12.4 A plot of α
(P)
2

versus θ for various h/ l ratio
with kls = 10 and
kls
khs

/ h
l = 0.001 for the NC

system shown in Fig. 12.3
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Fig. 12.5 Hexagonal dodecahedron model for NC analysis by Grima et al. (2012). Reprinted with
permission from the Royal Society

α
(P)
1 = α

(P)
2 = l2

4kh

{
2(l3 + 2l sin θ) sin2 θ − 2l cos2 θ sin θ

}

α
(P)
3 = l2 cos2 θ

2kh

{
4l2 cos2 θ

2(l3+2l sin θ)
− 2l sin θ

} (12.4.3)

Figure 12.6 shows the contour maps of linear and area NC for this hexagonal
dodecahedron model with l1 = l2 = 0.2 nm and l3 = 0.5 nm. From the equation of
on-axis linear compressibility

α
(P)
j = 1

E j
−

(
3∑

i=1

vi j

Ei

(
1 − δi j

)); δi j =
{
0 if i �= i
1 if i = j

(12.4.4)

linear NC is attainable when vi j > Ei/E j . For the special case where l1 = l2 = l
and θ1 = θ2 = θ , linear NC is observed along the Ox1 and Ox2 directions when

α
(P)
1 = α

(P)
2 < 0 ⇒ l cos θ

l3 + 2l sin θ
> tan θ (12.4.5)

and along the Ox3 direction when

α
(P)
3 < 0 ⇒ l cos θ

l3 + 2l sin θ
< tan θ (12.4.6)

which indicates that zero compressibility is attained in all three orthogonal directions
when

α
(P)
1 = α

(P)
2 = α

(P)
3 = 0 ⇒ l cos θ

l3 + 2l sin θ
= tan θ (12.4.7)
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Fig. 12.6 Contour maps of linear and area NC for the hexagonal dodecahedron model shown in
Fig. 12.5 with l1 = l2 = 0.2 nm and l3 = 0.5 nm by Grima et al. (2012). Reprinted with permission
from the Royal Society

Since the area compressibility in the Ox1 − Ox2 plane is obtained from α
(P)
12 =

α
(P)
1 + α

(P)
2 , it follows that area NC on this plane occurs when

α
(P)
12 < 0 ⇒ l cos θ

l3 + 2l sin θ
> tan θ (12.4.8)

For the area compressibilities on the Ox1 − Ox3 and Ox2 − Ox3 planes, the area
NC can be identified by solving for the boundary between positive and negative area
compressibilities
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α
(P)
i + α

(P)
3 = 0; (i = 1, 2) (12.4.9)

to give the roots

l cos θ
l3+2l sin θ

= tan θ
2l cos θ

l3+2l sin θ
= tan θ

(12.4.10)

while the solution for α
(P)
V < 0 does not exist (Grima et al. 2012).

Similar method on rotation mode of deformation has been taken for the NC study
of cellular hexahedron, octahedron, and dodecahedronmicrostructures by Zhou et al.
(2016) and elongated cellular octahedron microstructure by Ma et al. (2019). An
investigation on the linear NC of hexagonal honeycomb under different layouts has
been furnished by Zhou et al. (2018) by the same approach. The following examples
involve NC studies on rigid mode rotation. The first of these examples is by Dudek
et al. (2016) shown in Fig. 12.7, from which the unit cell dimensions are
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θ
2

)
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2
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)
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2
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θ
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)
, b sin

(
γ + θ

2

)])
(12.4.11)

The in-plane Poisson’s ratio and Young’s moduli are thus

v12 = 1
v21

= − X1
X2

( dX2
dθ

) · ( dX1
dθ

)−1

E1 = kh
z

X1
X2

( dX1
dθ

)−2

E2 = kh
z

X2
X1

( dX2
dθ

)−2

(12.4.12)

Fig. 12.7 NC study on rigid unit mode by Dudek et al. (2016)
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where kh is the rotational stiffness constant while z is the unit cell dimension
measured along the Ox3 axis. The linear compressibilities in the Ox1 and Ox2 direc-
tions are thus obtained by substituting Eq. (12.4.12) into Eq. (12.2.19). Figure 12.8
shows the plots of linear compressibilities for three different triangle shapes at
kh = 12 kJmol−1 rad−2. When the linear compressibilities are added α

(P)
1 + α

(P)
2

the results are non-negative, thereby indicating that the area NC is unattainable.
The NC analysis of Type I connected rectangles and Type α connected rhombi, as

illustrated in Fig. 11.10.1b, d, has been performed by Attard et al. (2016). The linear
compressibilities along the Ox1 and Ox2 axes for the Type I connected rectangles
are

Fig. 12.8 Results of linear compressibility for equilateral triangles with a = b = c = 1 nm
(top), isosceles triangles with a = 1 nm, b = c = 2 nm (middle) and scalene triangles a = 6 nm,
b = 3 nm, c = 4 nm (bottom) whereby green and purple curves denote α

(P)
1 and α

(P)
2 , respectively,

while dissimilar background shadings distinguish the different forms displayed by the system
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2 +b

) (12.4.13)

while the linear compressibilities along the Ox1 and Ox2 axes for the Type α

connected rhombi are

α
(P)
1 = a2 cos θ

4kh
cot

(
φ+θ

2

)

α
(P)
2 = a2 cos θ

4kh
tan

(
φ−θ

2

) (12.4.14)

From the on-axes compressibilities described in Eqs. (12.4.13) and (12.4.14),
Attard et al. (2016) obtained off-axes compressibilitiesα

(P)
ζ for bothType I connected

rectangles and Type α connected rhombi by transformation of axis. Maps of linear
compressibilities α

(P)
ζ for these two types of unit cells are furnished in Fig. 12.9

for demarcating the linear NC regions from the positive compressibility regions,
whereby ζ is the off-axis angle. A summary of the criterion for linear NC in Type I
connected rectangles and Type α connected rhombi is furnished in Tables 12.1 and
12.2, respectively.

As a final example for this section, we look at a 3D study on the NC properties
of rotating squares that was attempted by Grima-Cornish et al. (2020), which also
exhibits auxetic behavior (Fig. 12.10). This auxetic-generating “triangular elongation
mechanism” is illustrated in Fig. 12.11a through a triangular building block where
the base corresponds to the distance between two opposite vertices in the pore of
the “rotating squares” structure shown in Fig. 12.11b. As the system is stretched in
the Ox1 direction, the square units located in the Ox1 − Ox2 plane rotate relative to
each other from an angle θ to θ +dθ with the consequence that the distance between
opposite vertices A and A (=r) decreases. This forces the triangular units located in
the orthogonal plane to elongate, causing an increase in h and generating a negative
Poisson’s ratio. Since this model permits deformation in the Ox3 direction, as exem-
plified by the Poisson’s ratio discussion, it follows that a similar 3D deformation
entails in response to changing pressure.

Based on the geometrical descriptions indicated in Fig. 12.10, Grima-Cornish
et al. (2020) obtained the Poisson’s ratios and Young’s moduli expressions

v12 = 1
v21

=
{−1
undefined

0 < θ < π, θ �= π/2
θ = π/2

v13 = v23 = 1
v31

= 1
v32

= − sin(θ) tan( π
4 + θ

2 )

2
[
L2

l2
−cos2( θ

2 )
]

Ei = 8
X3

[
kθ + kφ

sin2( θ
2 )

L2

l2
−cos2( θ

2 )

]( dXi
dθ

)−2
(i = 1, 2)

E3 = 8X3
X1X2

[
kθ + kφ

sin2( θ
2 )

L2

l2
−cos2( θ

2 )

]( dX3
dθ

)−2

(12.4.15)

where the unit cell dimensions are
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Fig. 12.9 Contour maps of linear compressibility for Type I connected rectangles (top row), Type
α connected rhombi (middle row), wine-rack model (bottom). Reprinted with permission from John
Wiley and Sons

Table 12.1 On-axes linear NC conditions for Type I connected rectangles

a > b a < b

α
(P)
1 < 0 2 tan−1

( b
a

)
< θ < π

2
π
2 < θ < 2 tan−1

( b
a

)

α
(P)
2 < 0 π

2 < θ < 2 tan−1
( a
b

)
2 tan−1

( a
b

)
< θ < π

2

Table 12.2 On-axes linear NC conditions for Type α connected rhombi

θ < φ θ > φ

α
(P)
1 < 0 2 tan−1

[
cot

(
φ
2

)]
< θ < π

2
π
2 < θ < 2 tan−1

[
cot

(
φ
2

)]

α
(P)
2 < 0 π

2 < θ < φ φ < θ < π
2
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Fig. 12.10 System being modeled by Grima-Cornish et al. (2020), showing the a Ox1 − Ox2
projection with the unit cell highlighted, as well as unit cell projections on b Ox1 − Ox3 plane and
c Ox2 − Ox3 plane

Fig. 12.11 Auxetic-generating “triangular elongation mechanism” proposed by Grima-Cornish
et al. (2020) illustrated in a through a triangular building block where the base corresponds to the
distance between two opposite vertices in the pore of the “rotating squares” structure shown in (b)
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X1 = X2 = 2
√
2l sin

(
π
4 + θ

2

)

X3 = 2l
√

L2

l2 − cos2
(

θ
2

) (12.4.16)

while kθ and kΦ are the rotational stiffness constants corresponding to changes to
angles θ andφ, respectively. The linear compressibilities can therefore be obtained by
substituting Eq. (12.4.15) into Eq. (12.2.12), from which the linear compressibilities
are plotted in Fig. 12.12.

Fig. 12.12 Plots of linear compressibilities in Ox1 or Ox2 directions (top) and in the Ox3 direction
(bottom) by Grima-Cornish et al. (2020)
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12.5 Example of Negative Compressibilities
in Microstructures with Combined Rotational
and Stretching Modes of Deformation

A 2D analysis of a hexagonal honeycomb, and its special case of wine-rack model,
has been established by Grima et al. (2011) by incorporating both the hinge rota-
tional mode of deformation and the rib stretching mode of deformation. Based on
the geometrical descriptions furnished in Fig. 12.13, Grima et al. (2011) gave the
Poisson’s ratio and Young’s moduli as

vh
12 = 1

vh
21

= cos2 θ

( h
l +sin θ) sin θ

Eh
1 = kh

cos θ

b sin2 θ( h
l +sin θ)

Eh
2 = kh

h
l +sin θ

b cos3 θ

(12.5.1)

based on hinge rotation mode of deformation, and

vs
12 = − sin θ

h
l +sin θ

vs
21 = − sin θ( h

l +sin θ)
2 h

l +sin2 θ

Es
1 = ks

1
b cos θ( h

l +sin θ)

Es
2 = ks

h
l +sin θ

b cos θ(2 h
l +sin2 θ)

(12.5.2)

based on rib stretchingmode of deformation, where b is the thicknessmeasured along
the Ox3 direction, while kh and ks are the hinge rotational stiffness constant and rib
stretching stiffness constant, respectively. The combined Young’s moduli Es+h

i and

Fig. 12.13 Schematics of hexagonal honeycomb (a) and wine-rack model (b) undergoing
deformation due to increasing pressure, by Grima et al. (2011). Reprinted with permission of
Elsevier
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Poisson’s ratio vs+h
i j for i, j = 1, 2 under both the rotation and stretching modes of

deformation can be obtained from Eq. (12.2.9), which can then be substituted into
Eq. (12.2.19) to give the 2D on-axes linear compressibilities

α
(P)
1 = b

l

(
(h sin θ−l cos 2θ) tan θ

kh
+ (2l sin θ+h) cos θ

ks

)

α
(P)
2 = b cos θ

l sin θ+h

(
l cos 2θ−h sin θ

kh
+ 2l sin2 θ+h sin θ+2h

ks

) (12.5.3)

For the special case of wine-rack model, the substitution of h = 0 simplifies
Eq. (12.5.3) to

α
(P)
1 = b

(
− cos 2θ tan θ

kh
+ sin 2θ

ks

)

α
(P)
2 = b

tan θ

(
cos 2θ
kh

+ 2 sin2 θ
ks

) (12.5.4)

Both the on-axes compressibility results, with ks = 10kh , are shown in Fig. 12.14
for h = 3l, h = l and h = 0.

12.6 NC System Using Bimaterial Strips in Anti-tetrachiral
Arrangement

In addition to the hinge rotation and rib stretching mode, another type of NC system
was explored by Gatt and Grima (2008) using bimaterial strips that are arranged in an
anti-tetrachiral arrangement, as shown in Fig. 12.15. Both layers are isotropic, while
the square nodes are rigid. Supposematerial 1 (red) has a greater compressibility than
material 2 (blue), then an increase in pressure causesmaterial 1 to contract to a greater
extent such that it forms the concave side. By similar argument if there is a decrease
in pressure, material 1 expands to a greater extent such that it forms the convex side.
Using a = 1, b = 12, t1 = t2 = 0.05, E1 = 2.415×109 Pa, E2 = 4.14×109 Pa, and
v1 = v2 = 0.35, Gatt and Grima (2008) simulated the deformed shape of the unit
cell, as shown in Fig. 12.16 (top). With decreasing pressure, the square nodes rotate
due to bimaterial bending such that the distance between their centers get closer
to one another, as shown in Fig. 12.16 (top left). Likewise, an increasing pressure
causes the nodes to rotate the opposite direction in such a manner that increases the
distances between the node centers, as shown in Fig. 12.16 (top right). This gives
NC behavior. When the Young’s modulus of material 1 is made to vary, the NC
characteristics diminish as its Young’s modulus increases.
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Fig. 12.14 Plots of α
(P)
1 (left) and α

(P)
2 (right) versus θ where a ks � kh , b ks � kh and

c ks = 10kh . Note that systems with h = 0 correspond to wine-rack structures. Reprinted with
permission of Elsevier

12.7 2D Structures Exhibiting Negative Area
Compressibility

This section concerns area compressibility, i.e., the second of Eq. (12.1.1), in which
the presence of increasing in-plane pressure reduces the bounded conventional mate-
rial area but increases the effective unit cell area. Since conventional materials dictate
that ∂A/∂p is a negative value, a positive ∂A/∂p for the unit cell would therefore
give rise to negative area compressibility (NAC) according to the second Eq. (12.1.1),
i.e.,
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a a

b

b

b - a

b - a

Material 1: 
Higher 
compressibility

Material 2: 
Lower 
compressibility

t1 t2

Fig. 12.15 Schematics of bimaterial arranged in anti-tetrachiral arrangement to exhibit planar NC

∂A

∂p
> 0 ⇒ α

(P)
A < 0 (12.7.1)

Recall that for a polygon of n sides, the bounded area is maximized if (i) all the
vertices are circumscribed by a circle and (ii) the vertices are equally spaced. Hence,
any change to the polygon shape by relative motion of its sides via rotation about the
vertices will lead to a smaller area.

Byway of example, Fig. 12.17 illustrates two types of NAC consisting of side rods
and connecting rods, both of which are of constant lengths. The side rods define the
boundary of the conventional material (indicated by shadings). The connecting rods
link one conventional material with its adjacent neighbors, with the midpoint of the
connecting rods defining the halfway point of one polygon to another, as indicated
by the dashed lines. Suppose we begin with octahedron and hexagon, indicated by
Fig. 12.17a, b, respectively, as original shapes of the conventional material that are
denoted in dark blue.An increasingpressure reduces thematerial area (shaded area) at
constant rod lengths such that the octagonal and hexagonal materials deform toward
the shapes of square and triangle, respectively, as displayed in red color. During the
course of the side rod motion, the connecting rods get pushed out, thereby increasing
the square or rectangular areas bounded by the dashed lines. In other words, the
polygonal material area possesses positive compressibility while the linkage mech-
anism permits the manifestation of NAC. The hinges do not carry moments. These
angles are kept in place by the polygonal area such that the change of in-plane pres-
sure changes the polygonal material area, which is facilitated by the change in hinge
angles.

Unlike the case of 3D, in which pressure applied on the outer surface of the sample
is transmitted to ribs inside the sample, the exposure of both surfaces to pressure in
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Fig. 12.16 Simulated results for the NC system depicted in Fig. 12.15 with a = 1, b = 12,
t1 = t2 = 0.05, E2 = 4.14 × 109 Pa and v1 = v2 = 0.35, showing the deformed unit cell for
E1 = 2.415 × 109 Pa (top) and the effective compressibility for variable E1 (bottom)

2D systems would facilitate entrance of air pressure in the voids. As a result, pressure
is applied on the side rods that define the boundary of the material. Inferring from
the second of Eq. (12.1.1), we have the compressibilities of the bounded material

α
(P)
Am = − 1

Am

(
∂Am

∂p

)

T

(12.7.2)

and that of the effective area
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(b)(a)

(c)
(d)

Fig. 12.17 Increased in-plane pressure decreases the material (shaded) area by means of side rod
rotations at constant rod lengths, with the connecting rods being pushed out to increase the area
enclosed by dashed boundaries: a change from octagon material to square material in an NAC of
square array, and b change from hexagonal material to triangular material in an NAC of hexagonal
array. The unit cells are indicated by pink dashed lines in c for square array, and d for hexagonal
array. Green arrow symbolizes in-plane pressure

α
(P)
Ae = − 1

Ae

(
∂Ae

∂p

)

T

(12.7.3)

where Am and Ae are the material area and the effective area, respectively. The
following analyses model the polygonal material area, Am , and the effective area,
Ae, in terms of the characteristics angles θ and φ for square and hexagonal arrays,
respectively, and rods lengths (ls, lc), whereby the side length ls is defined as the
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Fig. 12.18 A portion of
square array NAC for
analysis

length of the polygonalmaterial sidewhile lc is the half-length of the rod that connects
the vertices of two neighboring polygonal materials.

Consider the square array. Let the side rods, which confine the conventional mate-
rials, be of length ls while the connecting rods be of length 2lc between two polygonal
materials; hence, the length of each connecting rod associated with each polygon is
halved to lc. A portion of the square array NAC is depicted in Fig. 12.18 for analysis.

By symmetry, hinge Amoves along the dashed diagonal line shown in Fig. 12.18
while points B move horizontally and vertically along the x and y axes, respectively.
The distance of B from O can be expressed in terms of the OA and AB distances as

OB = 1√
2
OA + AB cos θ (12.7.4)

where OA is a function of a so-called characteristic angle θ while AB = ls . Since

(
OA

)
x = (

OA
)
y = ls sin θ (12.7.5)

substituting

OA = √
2 ls sin θ (12.7.6)

and AB = ls into Eq. (12.7.4) gives

OB = ls(sin θ + cos θ) (12.7.7)

With reference to Eqs. (12.7.5) and (12.7.7), the area formed by the triangle OAB
is
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AOAB = 1

2
l2s sin θ(sin θ + cos θ) (12.7.8)

Since this triangular area is an eighth of the material polygonal area, we have

Am = 4l2s sin θ(sin θ + cos θ) = 2l2s (1 + sin 2θ − cos 2θ) (12.7.9)

Perusal to Fig. 12.18 shows that one half of the side is of the length OB + lc.
From Eq. (12.7.7), we then have the length of the effective side length

Le = 2ls(sin θ + cos θ) + 2lc (12.7.10)

which gives the effective area

Ae = 4
[
l2s (1 + sin 2θ) + 2lslc(sin θ + cos θ) + l2c

]
(12.7.11)

Equations (12.7.9) and (12.7.11) will be employed later for obtaining the
compressibility of the effective area. For the special case where the conventional
material areas are in direct contact with their nearest neighbors, i.e., lc = 0,
Eq. (12.7.11) simplifies to

Ae = 4l2s (1 + sin 2θ) (12.7.12)

The analysis of the hexagonal arrayNACadopts the same set of parameters, except
that the choice of characteristic angle, φ is made different to prevent confusion and,
instead of a quarter, a third of the polygon is used in the following analysis for obvious
reason.

Perusal to Fig. 12.19 suggests that

OB = 1

2
OA + AB cosφ (12.7.13)

where

(
OA

)
x = √

3
(
OA

)
y = ls sin φ (12.7.14)

Substituting

OA = 2√
3
ls sin φ (12.7.15)

and AB = ls into Eq. (12.7.13) leads to

OB = ls

(
1√
3
sin φ + cosφ

)
(12.7.16)



12.7 2D Structures Exhibiting Negative Area Compressibility 453

Fig. 12.19 A portion of
hexagonal array NAC for
analysis

Since the triangular area formed by OAB can be obtained using

AOAB = 1

2

(
OA

)(
OB

)
sin

π

3
(12.7.17)

and recognizing that it forms a sixth of the material polygonal area, we have

Am = 3l2s sin φ

(
1√
3
sin φ + cosφ

)
=

√
3

2
l2s

(
1 + √

3 sin 2φ − cos 2φ
)

(12.7.18)

The rectangular boundary that encompasses eachhexagonal area and its associated
connecting rods is shown in Fig. 12.20, inwhich thewidth and height of the rectangles
for analysis were determined by symmetry. Although each of these rectangles are
not the unit cell, the change in rectangle size that contains the hexagonal material is
the same as the change in rectangle size that does not contain the hexagonal material.
It follows that the percentage change in the “unit cell” area is the same as the said
percentage change in the rectangle area. Specifically, the effective boundary at the
midway between two neighboring cells containing the hexagons is determined by
symmetry.

With reference to Fig. 12.19, one half of the rectangular boundary width is
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Fig. 12.20 Rectangular
enclosures adopted for
analysis of hexagonal array
NAC

1

2
(Le)x = (

AB
)
x + (

AC
)
x + lc cos

π

6
(12.7.19)

while one half of its height is

1

2
(Le)y = (

OB
) + lc (12.7.20)

Substituting

(
AB

)
x = ls sin φ(

AC
)
x = ls cos

(
φ + π

6

) (12.7.21)

and Eq. (12.7.16) into Eqs. (12.7.19) and (12.7.20), respectively, yields

(Le)x =
√
3

2
(Le)y = ls

(
sin φ + √

3 cosφ
)

+ √
3lc (12.7.22)

so as to give the effective area

Ae = 2√
3
l2s

[
2 + √

3 sin 2φ + cos 2φ + 2
√
3
(
sin φ + √

3 cosφ
) lc
ls

+ 3
l2c
l2s

]

(12.7.23)
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Equations (12.7.18) and (12.7.23) will be used in the subsequent analysis for the
compressibility of hexagonal array NAC. For the special case of directly connected
material polygons lc = 0, Eq. (12.7.23) reduces to

Ae = 2√
3
l2s

(
2 + √

3 sin 2φ + cos 2φ
)

(12.7.24)

In developing the compressibility models, recall that the angles θ and φ have thus
far been used for establishing the effective area for the 8-sided polygonal material in
square array and 6-sided polygonal material in hexagonal array, respectively, and are
therefore termed the characteristic angle. Suppose we define a generic characteristic
angle ψ for a generic polygonal material of n sides and, taking note that the pressure
variable is not reflected in the area models of Am and Ae for both NAC arrays, we
express Eqs. (12.7.2) and (12.7.3) as

α
(P)
Am = − 1

Am

∂Am

∂ψ

∂ψ

∂p
(12.7.25)

and

α
(P)
Ae = − 1

Ae

∂Ae

∂ψ

∂ψ

∂p
(12.7.26)

respectively, so as to extract the compressibility ratio

α
(P)
Ae

α
(P)
Am

= Am
∂Ae
∂ψ

Ae
∂Am
∂ψ

(12.7.27)

where ψ = θ and ψ = φ for square and hexagonal arrays, respectively. Therefore,
substituting Eqs. (12.7.9) and (12.7.11) into Eq. (12.7.27) for square arrayNACgives

α
(P)
Ae

α
(P)
Am

= 1 + sin 2θ − cos 2θ

cos 2θ + sin 2θ

cos 2θ + (cos θ − sin θ) lcls

1 + sin 2θ + 2(sin θ + cos θ) lcls
+ l2c

l2s

(12.7.28)

while the substitution of Eqs. (12.7.18) and (12.7.23) into Eq. (12.7.27) for hexagonal
array leads to

α
(P)
Ae

α
(P)
Am

= 1 + √
3 sin 2φ − cos 2φ√

3 cos 2φ + sin 2φ

×
√
3 cos 2φ − sin 2φ + √

3
(
cosφ − √

3 sin φ
)
lc
ls

2 + √
3 sin 2φ + cos 2φ + 2

√
3
(
sin φ + √

3 cosφ
)
lc
ls

+ 3 l2c
l2s

(12.7.29)
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To express in terms of pressure, we introduce the 2D version of bulk modulus,
K 2D

m = −∂p2D/(∂Am/Am), as a material property of the polygonal material such
that (Lim 2017)

α
(P)
Ae = 1

K 2D
m

1 + sin 2θ − cos 2θ

cos 2θ + sin 2θ

cos 2θ + (cos θ − sin θ) lcls

1 + sin 2θ + 2(sin θ + cos θ) lcls
+ l2c

l2s

(12.7.30)

for square array, and

α
(P)
Ae = 1

K 2D
m

1 + √
3 sin 2φ − cos 2φ√

3 cos 2φ + sin 2φ

×
√
3 cos 2φ − sin 2φ + √

3
(
cosφ − √

3 sin φ
)
lc
ls

2 + √
3 sin 2φ + cos 2φ + 2

√
3
(
sin φ + √

3 cosφ
)
lc
ls

+ 3 l2c
l2s

(12.7.31)

for hexagonal array. Since the polygonal material is taken to be conventional, i.e.,
K 2D

m > 0, a negative value for α
(P)
Ae would indicate negative compressibility.

To pave a way for visualizing the NC properties of the proposed NAC models
herein, the effective area is plotted against thematerial area, as displayed inFig. 12.21,
in terms of dimensionless area. The dimensionless area is defined herein is the ratio of
area to the square of the side rod length. Since the application of increased pressure
decreases the material area, the NAC range is identified as the region with corre-
sponding increase in the effective area. Therefore, the NAC region, being defined as
Ae/∂Am < 0, is identified in Fig. 12.21 where the slope of Ae/ l2s is negative.

To observe the influence of characteristic angle on the occurrence of NAC, a
family of dimensionless effective area and the material polygon area curves are
plotted against the characteristics angle, as furnished in Fig. 12.22. NAC occurs
where the slopes of Ae/ l2s and Am/ l2s in Fig. 12.22 possess opposite signs. As evident
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Fig. 12.21 A family of dimensionless effective area plotted against the dimensionless material area
at various lc/ ls ratio for square array (left) and hexagonal array (right)
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Fig. 12.22 Plots of dimensionless areas versus characteristic angles at various lc/ ls ratio for square
array (left) and hexagonal array (right)

from Fig. 12.22, the NAC takes effect when the characteristic angles are within the
range 45◦ < θ < 67.5◦ and 30◦ < φ < 60◦ for the square and hexagonal arrays,
respectively.

The compressibility ratio α
(P)
Ae /α

(P)
Am allows the NAC to be inferred; since α

(P)
Am > 0

for conventional material in the polygonal area, a negative value for the compress-
ibility ratio implies α

(P)
Ae < 0. For the sake of retaining the plotted graphs in dimen-

sionless terms, the compressibility ratios are plotted in Fig. 12.23 for both square and
hexagonal arrays. Figure 12.23 suggests that regardless of the polygonal material’s
elastic property, the effective compressibility can be maintained at zero by setting
the characteristic angle at the lower NAC limit, i.e.,

lim
θ→45◦ α

(P)
Ae = lim

φ→30◦ α
(P)
Ae = 0 (12.7.32)

On the other hand, extreme positive and negative effective compressibilities are
achievable at the upper NAC limit, and can be expressed by one-sided limits. Specif-
ically, extreme positive compressibility is attained via a right-handed limit while
extreme negative compressibility is obtained through a left-handed limit

lim
θ→(67.5◦)+

α
(P)
Ae = lim

φ→(60◦)+
α

(P)
Ae = +∞

lim
θ→(67.5◦)−

α
(P)
Ae = lim

φ→(60◦)−
α

(P)
Ae = −∞ (12.7.33)

Suppose a dimensionless compressibility of the effective area is introduced as a
product of the effective compressibility and the 2D “bulk modulus” of the polygonal
materialα(P)

Ae K
2D
m and assuming that the 2D“bulkmodulus” of the polygonalmaterial

is not only a positive value but also a material constant, the value of α
(P)
Ae K

2D
m not

only indicates the compressibility magnitude, but also the sign of its compressibility.
For the special case where the polygonal material touches its nearest neighbor at the
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Fig. 12.23 Plots of compressibility ratios for square array (top row) and hexagonal array (bottom
row) at small characteristic angle (left column) and large characteristic angle (right column) for
various lc/ ls ratio

vertices, i.e., lc = 0, we have

α
(P)
Ae K

2D
m = 1

1 + tan 2θ

(
1 − cos 2θ

1 + sin 2θ

)
(12.7.34)

for square array, and

α
(P)
Ae K

2D
m =

√
3 cos 2φ − sin 2φ√
3 cos 2φ + sin 2φ

(
1 + √

3 sin 2φ − cos 2φ

2 + √
3 sin 2φ + cos 2φ

)
(12.7.35)

for hexagonal array. Graphical representations for the variation of α
(P)
Ae K

2D
m with the

characteristic angles at various lc/ ls ratio are furnished in Fig. 12.24. Regions of
α

(P)
Ae K

2D
m < 0, indicating NAC, are shown within 45◦ < θ < 67.5◦ and 30◦ < φ <

60◦ for the square and hexagonal arrays, respectively.
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Fig. 12.24 Variation of dimensionless compressibilities with respect to the characteristic angles
for different lc/ ls ratio, showing regions of negative area compressibilities. The insets expand the
scales on the vertical axes for clarity while retaining alignment of horizontal axes to those of the
main graphs

A pair of negative area compressibility systems has been proposed in this section,
each consisting of 2D conventional material in the shape of polygon with connecting
rods, in which the characteristic angles determine the negativity of the compress-
ibility. Analyses on both systems of NAC show that negative compressibility is
observed when the characteristics angles are of the range 45◦ < θ < 67.5◦ and
30◦ < φ < 60◦ for the square and hexagonal arrays, respectively (Lim 2017). In
addition to indicating the range of NAC and positive area compressibility (PAC) as
determined by the characteristic angle, results obtained suggest that (a) the magni-
tude of effective compressibility is enhanced by the use of conventional material with
large compressibility, (b) zero effective compressibility is achieved by the imple-
mentation of lower characteristic angle, and (c) infinitely large compressibility is
attained by employing the upper characteristic angle. Schematic summaries of both
NAC systems are furnished in Figs. 12.25 and 12.26 for the square and hexagonal
arrays, respectively, indicating the range of NAC as determined by the characteristic
angle.

12.8 Further Readings

Apart from the examples of NCmaterials and systems discussed in previous sections,
the reader is referred to many other NC works in the literature. The author can
only mention a few for the sake of brevity. Miller et al. (2015) showed that linear
NC in materials originate from the misalignment of polymers/fibers. Lakes and
Wojciechowski (2008) gave a detailed discussion on negative compressibility and
its relationship with negative Poisson’s ratio and stability; they also proposed a
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Fig. 12.25 Schematic summary of square array NAC, with dashed squares of equal size super-
posed to facilitate size comparison, whereby PAC and NAC refer to positive and negative area
compressibilities, respectively
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Fig. 12.26 Schematic summary of hexagonal array NAC, with dashed hexagons of equal size
superposed to aid size comparison, in which PAC and NAC correspond to positive and negative
area compressibilities, respectively

constrained microscopic model which exhibits NC. Imre (2014) showed that the
destabilization of metastable equilibrium by Nicolaou and Motter (2012) can be
found in nature (water). The occurrence of sign-switching in the coefficient of
compressibility has been applied on newly designed composites (Lim 2019, 2020)
For review on NC, the reader is referred to the works of Cairns and Goodwin (2015),
for their effort in presenting a mechanistic understanding on NC.
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Chapter 13
Negative Moisture Expansion, Negative
Hygrothermal Expansion, and Negative
Environmental Expansion

Abstract This chapter introduces negative moisture expansion (NME), which is
also known as negative hygroscopic expansion and negative swelling. A comparison
is made between NME, negative thermal expansion (NTE), and negative compress-
ibility (NC). Thereafter, the concepts of negative hygrothermal expansion (NHTE)
and negative environmental expansion (NEE) are discussed.

Keywords Negative environmental expansion · Negative hygroscopic expansion ·
Negative hygrothermal expansion · Negative moisture expansion · Negative
swelling

13.1 Introduction

Some materials expand upon absorption of moisture and, but the same argument,
contract upon dissipation of moisture. A measure of moisture expansion can be
expressed in terms of the linear coefficient of moisture expansion (CME) α(C), also
known as coefficient of hygroscopic expansion (CHE) and coefficient of swelling,
as

α(C) = 1

L

dL

dC
= εC

dC
(13.1.1)

where L and dL are the considered length and its change in response to a change in
moisture concentration dC in the material. It is obvious that εC = dL/L is the strain
induced by the change in moisture concentration in the material. To obtain dC, we
begin with the definition of moisture concentration C in a material

C = m

M
× 100 (13.1.2)

wherem is the mass of moisture in the material andM is the mass of the dry material.
It can be seen that under almost all practical circumstances,M is a constant and that
the description of C is a percentage. In response to a change in moisture mass dm,
the change in moisture concentration in the material is thus
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dC = dm

M
× 100 (13.1.3)

As such, the CME α(C) for moisture concentration change in a solid is analogous
with the CTE α(T ) for temperature change and compressibility α(P) for pressure
change. By the same reasoning, the change in moisture concentration in a material
dC forms analogies with the change in temperature dT and the negative change in
pressure (−dP). The negative sign is included for the latter because materials tend to
expand with increasing temperature and moisture concentration, but contracts with
increasing pressure. While this observation seems to show that thermal expansion
is closer to moisture expansion than compressibility, i.e., pressure expansion, it will
be shown next that moisture expansion is rather unique in comparison to the other
two types of expansions. A change of temperature in the environment dT is equal
to a change of temperature in the material dT upon thermal equilibrium. In the first
place, both the environment and material possess equal initial temperature T0, also
known as the base temperature. When the temperature of the environment changes
to T f , heat transfer takes place between the environment and the material due to a
temperature gradient until thermal equilibrium is reached, for which the material’s
temperature stabilizes at T f , and remains so until a further change in environmental
temperature occurs. In other words, not only is the temperature change the same
for the environment and the material, but their temperatures are also common upon
thermal equilibrium. Nevertheless, in calculating the CTE, only the temperature
change is influential rather than the temperature itself. For composites or systems
that consist of different materials, the change in temperature in all different phases is
common, and equal to the change in the surrounding temperature upon thermal equi-
librium. In the same manner, the calculation of compressibility requires the change
in pressure of the environment. This change in pressure is common to all phases that
are exposed to the environment. The same cannot be said so for moisture concen-
tration. The environment itself has its own concentration. Some materials, such as
metals, have no moisture content, and this remains so when the moisture concen-
tration in the environment changes. Other materials, such as wood and polymers,
possess their intrinsic moisture concentration, whereby different materials contain
different moisture concentrations, i.e., CA �= CB �= CC . . . for materials A, B, C,
etc., respectively, for an initial environmental moisture concentration Cenv. Upon a
change in environmental moisture concentration to C ′

env, the moisture concentra-
tion of materials A, B, C, etc., change with different rate but regardless of different
rates of moisture absorption or dissipation, these materials reach their final mois-
ture concentrations at hygroscopic equilibrium C ′

A �= C ′
B �= C ′

C . . ., which are
not equal in general. Apart from the rates of moisture absorption or dissipation, a
more important parameter is the moisture absorptivity, which governs the amount
of moisture absorbed upon hygroscopic equilibrium. In other words, the changes
in moisture concentrations are different for the various phases, and also different
from the environment dCenv �= dCA �= dCB �= dCC . . .. Notice that for the thermal
analogy, the temperature change would have been equal when thermal equilibrium
is attained dTenv = dTA = dTB = dTC . . ., and so a change in the environmental
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temperature can be taken as a change in the material temperature for calculation
of the CTE. Similarly, all phases are exposed to a common pressure and so an
increase of pressure in the environment dpenv is equally imposed on all phases, i.e.,
dpenv = dpA = dpB = dpC . . ..

A negativemoisture expansion (NME)material is defined as amaterial that shrinks
upon absorption of moisture (εC < 0 < dC) or swells with release of moisture
dC < 0 < εC , i.e., (Lim 2017a)

α(C) < 0 (13.1.4)

NME is also known as negative swelling, but the latter has a broader meaning.
Since the termmoisture, hygroscopic or water is absent, swelling includes the expan-
sion (or contraction) of materials with the absorption (or release) of non-aqueous
solutions. As such, moisture or hygroscopic expansion is a subset of swelling, and it
therefore follows that NME is a subset of negative swelling. In some practical cases,
materials and structures are exposed tofluctuating increase anddecrease of steam, i.e.,
a simultaneous increase in temperature and moisture concentration as well as simul-
taneous decrease in these conditions. Consideration of both thermal and hygroscopic
changes and the corresponding material responses forms the hygrothermal analysis.
Consequently, the combination of NTE andNMEgives rise to negative hygrothermal
expansion (NHTE) behavior. The hygrothermal analysis is important because it gives
a more complete understanding on material response when subjected to both thermal
and moisture fluctuations. Take, for example, a conventional material whereby an
increase in temperature causes existing moisture in the material to be released to
the environment. Due to a positive thermal expansivity α(T ) > 0, there is a positive
thermal strain component εT > 0 in conjunction with the increased temperature
dT > 0. Due to a positive moisture expansivity α(C) > 0, the release of moisture
dm < 0 and hence a reduction in moisture concentration dC < 0 tends to reduce the
size of the material; i.e., there is a negative moisture strain component εC < 0. If the
moisture strain has a greater magnitude than the thermal strain |εC | > εT , then the
overall strain is negative εT + εC < 0. As such if one were to analyze the problem
solely from the thermal expansion point of view, one may be misled into believing
that the material is NTE. As such combining the thermal and moisture expansions
not only provides more accurate description, but more importantly it prevents erro-
neous interpretations. Going by this line of argument, it is beneficial to incorporate
compressibility, or pressure expansion, analysis into hygrothermal expansion study.
For this reason, the phrase negative environmental expansion (NEE) is introduced to
take into account the interlacing effect of NTE, NC, and NME. The terms “moisture”
and “hygroscopic” are used interchangeably in this book.
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13.2 Example: A Non-auxetic 2D Linear and Area NHTE
System Using Reinforced Kite-Shaped Microstructure

The microstructure that is being considered consists of pin-jointed rods to facilitate
free rotations at the joints and the rods do not encounter bending. The rods are aligned
along five directions, as numbered in Fig. 13.1a, wherein rod 1 and rod 2 are mirror
images to rod 4 and rod 5, respectively; with rod 3 on the axis of symmetry. Rods 1,
2, 4, and 5, which form the shape of a kite, are rigid. Rod 3 is expansible such that it
expands with increasing temperature or with the absorption of moisture. Since rods
1, 2, 4, and 5 are rigid, i.e., only rod 3 is elastic, this system is non-auxetic (Lim
2019a). Due to symmetry, only rods 1, 2, and 3 are required for analysis.

With reference to Fig. 13.1b, rods 1, 2, 3 are assigned length of l1, l2, l3 while
their inclinations are indicated by the angles θ1, θ2, θ3 being measured anticlockwise
from the x-axis, such that θ3 = 0◦ < θ1 < 90◦ < θ2 < 180◦. Upon thermal or
moisture expansion of rod 3 by dl3 arising from environmental temperature change
of dT or environmental moisture concentration change of dC, we have its strain

ε3 = dl3
l3

= α
(T )
3 dT3 = α

(C)
3 dC3 (13.2.1)

which is equivalent to the strain along the x-axis, whereby α
(T )
3 and α

(C)
3 are the CTE

and CME, respectively, of rod 3, while dT3 and dC3 are the changes in temperature
and moisture concentration, respectively, in rod 3. It must be noted herein that the
change of temperature in rod 3 is the same as the change in environmental temperature
upon thermal equilibrium dT3 = dT but the change in moisture concentration in
rod 3 is not the same as that in the environment dC3 �= dC . This is because the
moisture concentration in rod 3 is dependent on its coefficient of absorption. Since
rods 1 and 2 have been defined as being rigid, their lengths remain constant—i.e.,

1 2 
3 

4 5 

y

x

l1 l2

l31
2

y

x

l1 l2

l3+dl31 d 1
2+d 2

(b)(a)

Fig. 13.1 aAkite-shapedmicrostructure consisting of rods aligned in four different directions with
the reinforcement rod placed at the axis of symmetry, and b a representative half-kite unit before
expansion (top) and after expansion (bottom) of rod 3 due to temperature or moisture concentration
increase in its surrounding environment
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zero strain—therefore there is no requirement for dTi and dCi (i = 1, 2). The strain
along the x-axis can alternatively be expressed in terms of rod 1 and rod 2. Perusal
to Fig. 13.1b gives the original dimension along the x-axis

x0 = l1 cos θ1 + l2 cos(π − θ2) = l1 cos θ1 − l2 cos θ2 (13.2.2)

while its change in dimension along the same direction

dx = l1 cos(θ1 − dθ1) − l1 cos θ1 + l2 cos[π − (θ2 + dθ2)] − l2 cos(π − θ2)

(13.2.3)

can be simplified for infinitesimal deformation (sin dθi ≈ dθi and cos dθi ≈ 1 for
i = 1, 2) to give

dx ≈ l1dθ1 sin θ1 + l2dθ2 sin θ2 (13.2.4)

Therefore, the strain along the x-axis is

εx = dx

x0
= l1dθ1 sin θ1 + l2dθ2 sin θ2

l1 cos θ1 − l2 cos θ2
= ε3 (13.2.5)

In the same manner, reference to Fig. 13.1b gives the original dimension along
the y-axis

y0 = l1 sin θ1 = l2 sin θ2 (13.2.6)

and its change in dimension along the y-direction

dy = l1 sin(θ1 − dθ1) − l1 sin θ1 = l2 sin[π − (θ2 + dθ2)] − l2 sin(π − θ2)

(13.2.7)

can be reduced for infinitesimal deformation to yield

dy ≈ −l1dθ1 cos θ1 = l2dθ2 cos θ2 (13.2.8)

This gives the stain in y-axis

εy = dy

y0
= − dθ1

tan θ1
= dθ2

tan θ2
(13.2.9)

The relationship between the lengths of rod 1 and rod 2 can be established from
Eq. (13.2.6) to give

l2 = l1
sin θ1

sin θ2
(13.2.10)
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while their rotation relationship can be obtained from Eq. (13.2.9) as

dθ2 = −dθ1
tan θ2

tan θ1
(13.2.11)

Substituting Eqs. (13.2.10) and (13.2.11) into Eq. (13.2.5) gives rise to

dθ1 = cos θ1 − sin θ1
tan θ2

sin θ1 − cos θ1 tan θ2
ε3 (13.2.12)

which permits the strain in the y-direction to be expressed as

εy

ε3
= − cos θ1 − sin θ1

tan θ2

sin θ1(tan θ1 − tan θ2)
(13.2.13)

Defining the area strain as εA = dA/A0 where A0 = x0y0 and

dA = A − A0 = (x0 + dx)(y0 + dy) − x0y0 = y0dx + x0dy + dxdy (13.2.14)

we have εA = εx + εy + εxεy or

εA = εx + εy (13.2.15)

for infinitesimal deformation. On the basis of εx = ε3 and Eq. (13.2.13), we have
(Lim 2019a)

εA

ε3
= 1 − cos θ1 − sin θ1

tan θ2

sin θ1(tan θ1 − tan θ2)
(13.2.16)

Since T3 = dT , the vertical strain ratio εy/ε3 can be written as α(T )
y /α

(T )
3

for environmental temperature change, while the same ratio is α(C)
y dC/α

(C)
3 dC3

in response to environmental moisture concentration change because dC3 �= dC ,
whereby α(T )

y and α(C)
y indicate the effective CTE and CME, respectively, along

the y-axis. By similar reasoning, the area strain ratio εA/ε3 can be expressed as
α

(T )
A /α

(T )
3 and α

(C)
A dC/α

(C)
3 dC3 where α

(T )
A and α

(C)
A are the effective areal CTE and

CME, respectively, on the x-y plane.
We shall now consider two special cases: (I) the kite is in the form of a “right

kite”; i.e., rod 1 and rod 2 are perpendicular to each other, and (II) the kite is in the
form of a rhombus; i.e., rod 1 and rod 2 are of equal length. For special case (I), we
have θ2 = θ1 + 90◦ such that

tan θ2 = − 1

tan θ1
(13.2.17)
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Substituting Eq. (13.2.17) into Eqs. (13.2.13) and (13.2.16) gives εy = −ε3 and
εA = 0, respectively. The latter demarcates the areal NTE or NME region from the
region of positive CTE or CME. For special case (II), we have l1 = l2 or θ1 = π −θ2.
As a result, Eqs. (13.2.13) and (13.2.16) simplify to

εy

ε3
= − 1

tan2 θ1
(13.2.18)

and

εA

ε3
= 1 − 1

tan2 θ1
(13.2.19)

respectively.
All the rods considered herein are assumed conventional; i.e., they are either rigid

or possess positive CTE and CME. That being the case, the effective CTE and CME
along the x-axis are always positive. On the other hand, the effective CTE and CME
along the y-axis for the special case of l1 = l2 are always negative for 0◦ < θ1 < 90◦,
as implied from Eq. (13.2.18), while the effective areal CTE and CME on the x-y
plane can be either positive or negative; reference to Eq. (13.2.19) for l1 = l2 shows
that areal NTE and NME are attained when θ1 < 45◦. Discussions on the effective
CTE and CME for other values of rod inclination θ1 �= 45◦ at l1 = l2 as well as when
l1 �= l2 are furnished in the following results. We consider εy instead of α(T )

y and

α(C)
y , as well as εA instead of α

(T )
A and α

(C)
A to remove repetition. Again, to reduce

the number of plotted graphs, we consider strain ratios εy/ε3 and εA/ε3 instead of
εy , εA and ε3. As the relationship between areal strain and strain along the y-axis is
εA/ε3 = 1 + εy/ε3, it suffices to plot either graphs of εA/ε3 or εy/ε3 as one can be
easily inferred from the other.

Having shown that α(T )
A = 0 and α

(C)
A = 0 when θ1 = 45◦ for the l1 = l2 special

case in the previous section, the variation of initial inclination angle θ1 under the same
special condition is plotted in Fig. 13.2 for 0◦ < θ1 < 90◦. Reference to Fig. 13.2
shows that εA/ε3 increases with θ1 in a diminishing manner. This observation is not
surprising since εA/ε3 = −∞ as θ1 → 0◦ and εA/ε3 = 1 as θ1 → 90◦ with reference
to Eq. (13.2.19). For the generic case where l1 �= l2, perusal to Eq. (13.2.16) reveals
that zero areal expansion is observed when θ2 = θ1 + 90◦. In addition,

lim
θ1→0◦

εA
ε3

= lim
θ2→180◦

εA
ε3

= −∞
lim

θ1→90◦
εA
ε3

= lim
θ2→90◦

εA
ε3

= 1
(13.2.20)

As such, positive areal CTE and CME are observed when θ2 − θ1 < 90◦, but
NTE and NME characteristics are manifested when θ2 − θ1 > 90◦. A family of of
εy/ε3 curves, as a function of θ1 ∈ (0◦, 90◦) and θ2 ∈ (90◦, 180◦), are furnished in
the contour plot of Fig. 13.3. Note that the diagonal defined by θ1 + θ2 = 180◦ in
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the dimensionless vertical strain of Fig. 13.3 corresponds to the dimensionless areal
strain plotted in Fig. 13.2.

13.3 Example: A Volumetric NME System Based on 3D
Trusses

The microstructure being considered as shown in Fig. 13.4 (left) consists of two
types of rods of equal cross-sectional dimension but possessing different lengths
and materials, with its representative volume element (RVE) indicated in Fig. 13.4
(right). The apex rods are of length a and coefficient of moisture expansion (CME)
α(C)
a , while the base rods are of length b and coefficient of moisture expansion (CME)

α
(T )
b . Such a truss structure is achievable by the use of pin-jointed rods in which the

apex and based rods are made of different materials; at microstructural level, this is
also achievable with the availability of multi-materials 3D printing technology (Lim
2018).

The change in apex and base rods’ initial lengths (a0, b0) to their final lengths(
a f , b f

)
as a result of moisture expansion is accompanied by a change of the RVE

size from its initial volume V0 to its final volume V f , i.e.,

V f = V0 + dV (13.3.1)

in which the volumetric strain is defined by

εV = dV

V0
(13.3.2)

Alternatively, the volumetric strain is related to the volumetric CME, α(C)
V as

a
a

a

b b

b

Fig. 13.4 A truss microstructure (left) and its RVE (right), where the apex and base rods are of
lengths a and b, respectively. Hidden lines on left figure have been removed for clarity
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εV = α
(C)
V dCeff (13.3.3)

where the effective change in moisture concentration in the RVE, dCeff is related to
the changes in the moisture concentration in the apex rod, dCa and base rod, dCb as

dCeff = a0dCa + b0dCb

a0 + b0
(13.3.4)

if the cross-sectional areas of the rods are equal. It must be borne in mind that as
the moisture concentration in the atmosphere changes, the changes to the mois-
ture concentration in the apex and base rods are different due to different moisture
absorption coefficients. Suppose both volumetric strains are equated, we have

dV = α
(C)
V V0dCeff (13.3.5)

which gives the final RVE volume as

V f = V0

(
1 + α

(C)
V dCeff

)
(13.3.6)

Therefore, the volumetric strain due to moisture expansion

εV = V f

V0
− 1 (13.3.7)

can be written in terms of rod lengths before and after the moisture expansion if the
initial and final volumes of the RVE are expressed as

V0 = b30
12

√

3
a20
b20

− 1 (13.3.8)

and

V f = b3f
12

√√√
√3

a2f
b2f

− 1 (13.3.9)

respectively, where

a f = a0
(
1 + α(C)

a dCa
)

b f = b0
(
1 + α

(C)
b dCb

) (13.3.10)

Substitution of Eqs. (13.3.8)–(13.3.10) into Eq. (13.3.7) leads to the RVE volu-
metric strain in terms of the rod geometry, properties, and moisture concentration
change
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εV = −1 +
(
1 + α

(C)
b dCb

)2

√√√√√
√

3 a20
b20

(
1 + α

(C)
a dCa

)2 −
(
1 + α

(C)
b dCb

)2

3 a20
b20

− 1
(13.3.11)

If we replace the moisture expansion coefficients with thermal expansion coef-

ficients for both types of rods
(
α(C)
a , α

(C)
b

)
→

(
α(T )
a , α

(T )
b

)
and assume that the

change in moisture concentration for both rods types are equal so as to permit
dCa = dCb = dT , then Eq. (13.3.11) converts to its thermal strain equivalence
described in Eq. (11.12.12). For the truss microstructure to exhibit overall and incre-
mental NME, the conditions εV < 0 and dεV < 0 must be fulfilled. It follows that
the overall and incremental CVHE of the RVE can be obtained as

α
(C)
V = εV

dCeff
(13.3.12)

and

α
(C)
V = ∂εV

∂(dCeff)
(13.3.13)

respectively. By way of example, we herein consider the special case of rigid apex
rods, i.e., apex rod being either non-expansible α(C)

a = 0 or non-absorptive dCa = 0
such that Eqs. (13.3.4) and (13.3.11) simplify to

dCeff = b0
a0 + b0

dCb (13.3.14)

and

εV = −1 +
(
1 + α

(C)
b dCb

)2

√√
√√√√

3 a20
b20

−
(
1 + α

(C)
b dCb

)2

3 a20
b20

− 1
(13.3.15)

respectively. In addition, we adopt a dimensionless form of volumetric CME by
normalizing it against the CME of the base rods, i.e., α(C)

V /α
(C)
b . The dimensionless

overall and incremental volumetric CME can be obtained as (Lim 2018)

α
(C)
V

α
(C)
b

= 1

α
(C)
b

· εV

dCeff
= 1 + a0

b0

α
(C)
b dCb

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 +
(
1 + α

(C)
b dCb

)2

√√√√√
√

3 a20
b20

−
(
1 + α

(C)
b dCb

)2

3 a20
b20

− 1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(13.3.16)
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and

α
(C)
V

α
(C)
b

= 1

α
(C)
b

· ∂εV

∂(dCeff)
= 1

α
(C)
b

· ∂εV

∂(dCb)
· ∂(dCb)

∂(dCeff)

= 2
(
1 + α

(C)
b dCb

)(
1 + a0

b0

)
√√
√√√√

3 a20
b20

−
(
1 + α

(C)
b dCb

)2

3 a20
b20

− 1

−
(
1 + α

(C)
b dCb

)3 1 + a0
b0

3 a20
b20

− 1

√√√√
√√

3 a20
b20

− 1

3 a20
b20

−
(
1 + α

(C)
b dCb

)2 (13.3.17)

respectively. For infinitesimal change in moisture concentration, both Eq. (13.3.16)
and (13.3.17) reduce to

lim
dCb→0

α
(C)
V

α
(C)
b

= 3

(
1 + a0

b0

)2 a20
b20

− 1

3 a20
b20

− 1
(13.3.18)

i.e., the dimensionless infinitesimal CVHE is purely in terms of rod length
ratio. Note that L’Hopital’s rule needs to be applied on Eq. (13.3.16) to obtain
Eq. (13.3.18). When the change in the base rod’s moisture concentration is infinites-
imal, Eq. (13.3.18) reveals that NME is attained under the following geometrical
condition

lim
dCeff→0

α
(C)
V

α
(C)
b

< 0 ⇐ a0
b0

<
1√
2

(13.3.19)

Figure 13.5 (left) displays plots of volumetric strain versus base rod moisture
strain for various initial apex-to-base rod length ratio, from which the slope taken at
its origin gives the infinitesimal dimensionless volumetric CME shown in Fig. 13.5
(right) using Eqs. (13.3.15) and (13.3.18), respectively. A family of dimension-
less overall and incremental dimensionless CME curves in Fig. 13.6 were plotted
against the moisture strain of the base rod for various initial apex-to-base rod
length ratios using Eqs. (13.3.16) and (13.3.17), respectively, indicating that the
incremental volumetric CME gives a more negative volumetric moisture expansion
than the overall volumetric CME. The condition of NME is fully attainable when
3−1/2 < a0/b0 < 2−1/2 for infinitesimal strain; the RVE volume being undefined for
a0/b0 ≤ 3−1/2. For a0/b0 > 2−1/2, the dimensionless NME is attainable for higher
values of α

(C)
b dCb.
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Fig. 13.5 Plots of volumetric strain versus base rod moisture strain for various initial apex-to-base
rod length ratio (left) and infinitesimal dimensionless volumetricCMEversus the initial apex-to-base
rod length ratio
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13.4 Example: A 3D NEE Analysis for Interconnected
Array of Rings and Sliding Rods System

The present example revisits the ring-rod assembly that was discussed in Sect. 2.5
in terms of its auxeticity and in Sect. 11.11 in terms of NTE (Lim 2017b). For this
section, the example exploresNEE, i.e., the incorporation ofNCandNME in addition
to NTE. Furthermore, this example removes two simplifying assumptions that were
adopted previously; i.e., the rods were assumed rigid, and the ring’s thickness was
neglected. These simplifying assumptions are removed in this section (Lim 2019b).
With reference to Fig. 13.7a for the ring-rod structure whereby the expansivity of
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(b)

(a)

Fig. 13.7 a A unit of ring-rod structure showing unit cell contraction due to draw-in of sliding rods
arising from ring expansion (from left to right) or unit cell expansion due to push out of rods due
ring contraction (from right to left), and b arrangement to prevent turning of rings about any axis

the ring is much greater than that of the rods, the expansion of the ring draws the
rods into the ring. The movement of the rod’s outer end toward the ring results in
contraction of the unit cell boundary, and hence, the ring expansion leads to overall
unit cell contraction. To prevent rotation of the rings about the rod axes, the rods are
arranged in a symmetrical manner shown in Fig. 13.7b.

Figure 13.8 shows a ring of inner radius r and outer radius R, with rods of half-
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Fig. 13.8 Schematic view of
a ring and two rods for
analysis. The other two rods
are not displayed for clarity

l1

l2

x

y

r
R

lengths l1 and l2—aligned along the x- and y-axes, respectively—and attached to
the ring’s inner surface but protrudes from the ring through apertures diametrically
from the fixed end. As such the horizontal length x = l1 − r and the vertical length
y = l2 −r , as measured from the origin, form a quarter of a unit cell that is sufficient
for analysis, with the ring’s inner circumference being 2πr .

Arising from a change in the environment–such as increase in temperature or
moisture, or a decrease in pressure–the horizontal and vertical rods and the ring
circumference expand as dx = dl1 − dr , dy = dl2 − dr and 2πdr , respectively, to
give the following strains

εx = l1ε1 − rεO
l1 − r

(13.4.1)

εy = l2ε2 − rεO
l2 − r

(13.4.2)

where ε1 = dl1/ l1 and ε2 = dl2/ l2 are the linear strains of the horizontal and
vertical rods, respectively, while εO = dr/r is the circumferential strain of the ring.
The strains εx and εy are in terms of r, but not R, because the rods are attached
to the ring’s inner surface, and it is further assumed that the ring remains circular
throughout expansion and contraction due to the absence of constraint. From the
original area A = xy, we have its increment dA = ydx + xdy + dxdy such that the
areal strain is obtained as

εA = dA

A
= εx + εy + εxεy ≈ εx + εy (13.4.3)
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upon neglecting the second-order term. By similar approach, the volumetric strain
can be approximated as

εV = dV

V
≈ εx + εy + εz (13.4.4)

upon neglecting the second- and third-order terms.Due to the adoption of engineering
strain definition as well as the simplifying assumptions set out in Eqs. (13.4.3) and
(13.4.4), the models developed henceforth are valid for small strains and are only
approximate for large strains. For the latter case, the true strain—also known as the
logarithmic strain—definition must be used instead, as well as the retention of higher
order terms in the corresponding areal and volumetric strains. In this section, we
assign ε(T ), ε(C) and ε(P) as the thermal, moisture and pressure strains, respectively,
while α(T ), α(C) and α(P) denote the CTE, CME, and compressibility, respectively.
Let the overall thermal strains along the rod axes be written as

ε(T )
x = α(T )

x dT
ε(T )
y = α(T )

y dT
(13.4.5)

where α(T )
x and α(T )

y are the effective CTEs along the x- and y-axes, respectively, with
dT being the change in temperature. Substituting the thermal strains of the ring and
rods

ε
(T )
O = α

(T )
O dT

ε
(T )
1 = α

(T )
1 dT

ε
(T )
2 = α

(T )
2 dT

(13.4.6)

into Eqs. (13.4.1) and (13.4.2) allows the effective CTEs to be obtained as

α(T )
x = l1α

(T )
1 − rα(T )

O

l1 − r
(13.4.7)

and

α(T )
y = l2α

(T )
2 − rα(T )

O

l2 − r
(13.4.8)

while the out-of-plane thermal strain

ε(T )
z = α

(T )
O dT (13.4.9)

is determined by CTE of the ring material. For the special case where the rod is rigid(
α

(T )
1 = α

(T )
2 = 0

)
, Eqs. (13.4.7) and (13.4.8) simplify to
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α(T )
x = −α

(T )
O

r

l1 − r
(13.4.10)

and

α(T )
y = −α

(T )
O

r

l2 − r
(13.4.11)

respectively. Since it is a geometrical requirement that li > R + r > 2r for both
rods (i = 1, 2), i.e., li > r , the effective CTEs in Eqs. (13.4.10) and (13.4.11) are
negative. Introducing the in-plane area thermal strain

ε
(T )
A = α

(T )
A dT (13.4.12)

where α
(T )
A is the area CTE, and substituting it along with Eqs. (13.4.5), (13.4.7),

and (13.4.8) into Eq. (13.4.3) gives

α
(T )
A = α(T )

x + α(T )
y = l1α

(T )
1 − rα(T )

O

l1 − r
+ l2α

(T )
2 − rα(T )

O

l2 − r
(13.4.13)

Substituting α
(T )
1 = α

(T )
2 = 0 into Eq. (13.4.13) for the special case of rigid rods

reduces the expression to

α
(T )
A = −rα(T )

O

(
1

l1 − r
+ 1

l2 − r

)
(13.4.14)

which indicates area NTE. Introducing the volumetric thermal strain

ε
(T )
V = α

(T )
V dT (13.4.15)

where α
(T )
V is the volumetric CTE, and substituting it together with Eqs. (13.4.5) and

(13.4.7)–(13.4.9) into Eq. (13.4.4) leads to

α
(T )
V = l1α

(T )
1 − rα(T )

O

l1 − r
+ l2α

(T )
2 − rα(T )

O

l2 − r
+ α

(T )
O (13.4.16)

For the special case of rigid rods, Eq. (13.4.16) simplifies to

α
(T )
V = α

(T )
O − rα(T )

O

(
1

l1 − r
+ 1

l2 − r

)
(13.4.17)

Unlike Eqs. (13.4.10) or (13.4.11) and (13.4.14), which indicate NTE for rigid
rods, Eq. (13.4.17) does not necessarily indicate NTE since its first term plays an
important role in determining the sign of α

(T )
V . Nevertheless, a volumetric NTE

requirement in the case of rigid rods can be determined by imposing α
(T )
V < 0
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on Eq. (13.4.17) to yield the following condition for meeting the volumetric NTE
requirement

1

r
<

1

l1 − r
+ 1

l2 − r
(13.4.18)

In the case of CTE analysis, it is well understood that at steady state the various
solid phases are in thermal equilibrium not only with each other but also with the
environment. With a change in environmental temperature by dT, the temperature of
the solid phases also changes during transient state such that at steady state the solid
phases possess the same temperature as that of the environment. This condition does
not apply in the case of moisture concentration in solids, which is defined as

C = m

M
× 100 (13.4.19)

where m is the mass of water in the considered material and M is the mass of the
dry material. Due to different absorptivity level, various materials absorb differing
amount of moisture from the environment. As such, a change in environmental mois-
ture concentration dC leads to changes in moisture concentration in the ring material
dCO, and in the rods (dC1, dC2). Therefore, dC �= dCO �= dC1 �= dC2 in general. In
the first instance, before a change in the environmental moisture concentration takes
place, the moisture concentration in the environment and in the constituent materials
need not necessarily be equal C �= CO �= C1 �= C2. For this reason, the models
for effective CTEs developed in the previous section cannot be directly applied by
replacing α(T ) and dT with α(C) and dC respectively, where α(C) is the coefficient of
moisture expansion (CME). Note that the moisture concentration in the environment
is typically expressed in terms of absolute, relative, and specific humidities; for the
sake of consistency, this book adopts the moisture concentration in the environment
in the form described by Eq. (13.4.19), where in this case M is the mass of dry air
that takes up the same volume as that for the mass of environmental moisture m. In
the subsequent analysis, we define the changes to the moisture concentration in the
environment, the ring and the rods as

dC = 100dm
M

dCO = 100dmO
MO

dC1 = 100dm1
M1

dC2 = 100dm2
M2

(13.4.20)

where dm, dmO, dm1 and dm2 indicate the changes in moisture mass in the environ-
mental cuboid enclosing the ring-rod structure, the ring, the horizontal rod, and the
vertical rod, respectively, while M, MO, M1, and M2 refer to the mass of dry air in
the cuboid enclosure, as well as the mass of dry ring, horizontal rod, and vertical
rod, respectively. The size of the cuboid enclosure can be taken arbitrarily as long as
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the environmental moisture is uniformly distributed. Introducing the overall mois-
ture strains along the rod axes, arising from a change in environmental moisture
concentration, as

ε(C)
x = α(C)

x dC
ε(C)
y = α(C)

y dC
(13.4.21)

where α(C)
x and α(C)

y are the effective CMEs along the x- and y-axes, respectively,
and substituting the hygroscopic strain the ring and the rods

ε
(C)
O = α

(C)
O dCO

ε
(C)
1 = α

(C)
1 dC1

ε
(C)
2 = α

(C)
2 dC2

(13.4.22)

into Eqs. (13.4.1) and (13.4.2) allows the effective CMEs along the x- and y-axes to
be obtained as

α(C)
x = l1α

(C)
1 dC1 − rα(C)

O dCO

(l1 − r)dC
(13.4.23)

and

α(C)
y = l2α

(C)
2 dC2 − rα(C)

O dCO

(l2 − r)dC
(13.4.24)

while the out-of-plane moisture strain

ε(C)
z = α

(C)
O dCO (13.4.25)

is determined by CME of the ring material. For the special case where the rods are
rigid α

(C)
1 = α

(C)
2 = 0 and/or non-absorptive dC1 = dC2 = 0, Eqs. (13.4.23) and

(13.4.24) abridge to

α(C)
x = −α

(C)
O

r

l1 − r

dCO

dC
(13.4.26)

and

α(C)
y = −α

(C)
O

r

l2 − r

dCO

dC
(13.4.27)

respectively. Since it is geometrically necessary that li > r for i = 1, 2 as previously
mentioned, the CMEs in Eqs. (13.4.26) and (13.4.27) are negative. Introducing the
in-plane area moisture strain
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ε
(C)
A = α

(C)
A dC (13.4.28)

where α
(C)
A is the area CME, and substituting it along with Eqs. (13.4.21), (13.4.23)

and (13.4.24) into Eq. (13.4.3) gives

α
(C)
A = α(C)

x + α(C)
y = l1α

(C)
1 dC1 − rα(C)

O dCO

(l1 − r)dC
+ l2α

(C)
2 dC2 − rα(C)

O dCO

(l2 − r)dC
(13.4.29)

When the rods are rigid
(
α

(C)
1 = α

(C)
2 = 0

)
and/or non-absorptive (dC1 = dC2 = 0),

Eq. (13.4.29) becomes

α
(C)
A = −rα(C)

O

dCO

dC

(
1

l1 − r
+ 1

l2 − r

)
(13.4.30)

thereby denoting an in-plane area NME. Introducing the volumetric moisture strain

ε
(C)
V = α

(C)
V dC (13.4.31)

where α
(C)
V is the volumetric CME, and substitution it together with Eqs. (13.4.21)

and (13.4.23)–(13.4.25) into Eq. (13.4.4) leads to

α
(C)
V = l1α

(C)
1 dC1 − rα(C)

O dCO

(l1 − r)dC
+ l2α

(C)
2 dC2 − rα(C)

O dCO

(l2 − r)dC
+ α

(C)
O (13.4.32)

For the special case of zero rod expansion, due to either rigid or non-absorptive
rods, Eq. (13.4.32) can be expressed as

α
(C)
V = α

(C)
O − rα(C)

O

dCO

dC

(
1

l1 − r
+ 1

l2 − r

)
(13.4.33)

As with Eq. (13.4.17), Eq. (13.4.33) does not necessarily indicate volu-
metric NME. However, volumetric NME in the case of non-expansible and/or
non-absorptive rods is attained if the following condition

1

r

dC

dCO
<

1

l1 − r
+ 1

l2 − r
(13.4.34)

is met by imposing α
(C)
V < 0 on Eq. (13.4.33). Instead of the negativity of bulk

modulus K, we herein consider the negativity of compressibility α
(P)
V . Compress-

ibility is the reciprocal of bulk modulus and is expressed as

α
(P)
V = 1

K
= − 1

V

dV

dP
(13.4.35)
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where dP indicates the change in environmental pressure, and the negative sign
caters for a positive value to α

(P)
V when an increasing pressure causes decreasing

volume. While the bulk modulus represents the resistance to change in volume, the
compressibility corresponds to the compliance to change in volume in response to
pressure change and would therefore allow a more direct comparison with α

(T )
V and

α
(C)
V . Substituting dV/V = εV into Eq. (13.4.35) allows it to be expressed as

ε
(P)
V = −α

(P)
V dP (13.4.36)

for convenient comparison with its counterpart on volumetric thermal and moisture
responses as described by Eqs. (13.4.15) and (13.4.31), respectively. For an isotropic
material under uniform pressure, the strain is non-directional for every solid phase.
Since the volumetric strain is the summation of strains in all three orthogonal direc-
tions under the given condition, it follows that 3ε(P) = −α

(P)
V dP; i.e., the linear

compressibility is

ε(P) = −1

3
α

(P)
V dP = −α(P)dP (13.4.37)

for each solid phase. Introducing the overall pressure-induced strains along the rod
axes in the same manner

ε(P)
x = −α(P)

x dP
ε(P)
y = −α(P)

y dP
(13.4.38)

where α(P)
x and α(P)

y are the effective compressibilities of the ring-rod structure along
the x- and y-axes, respectively, and substituting the pressure-induced strain on the
ring and rods

ε
(P)
O = −α

(P)
O dP

ε
(P)
1 = −α

(P)
1 dP

ε
(P)
2 = −α

(P)
2 dP

(13.4.39)

into Eqs. (13.4.1) and (13.4.2) allows the effective compressibilities along the x- and
y-axes to be calculated as

α(P)
x = l1α

(P)
1 − rα(P)

O

l1 − r
(13.4.40)

and

α(P)
y = l2α

(P)
2 − rα(P)

O

l2 − r
(13.4.41)
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while the out-of-plane pressure-induced strain

ε(P)
z = α

(P)
O dP (13.4.42)

is determined by compressibility of the ring material. Since the linear effective
compressibilities obtained in Eqs. (13.4.40) and (13.4.41) are analogous to the linear
effective CTEs furnished in Eqs. (13.4.7) and (13.4.8), respectively, it follows that
the effective areal and volumetric compressibilities are

α
(P)
A = α(P)

x + α(P)
y = l1α

(P)
1 − rα(P)

O

l1 − r
+ l2α

(P)
2 − rα(P)

O

l2 − r
(13.4.43)

and

α
(P)
V = l1α

(P)
1 − rα(P)

O

l1 − r
+ l2α

(P)
2 − rα(P)

O

l2 − r
+ α

(P)
O (13.4.44)

respectively.
It has been shown that the linear CTE in any of its principal direction is negative

when the rods are rigid. In general, the CTE negativity of this (micro)structure can
be obtained by substituting α(T )

x < 0 into Eq. (13.4.7) and α(T )
y < 0 into Eq. (13.4.8)

to give the following NTE conditions

l1α
(T )
1 < rα(T )

O (13.4.45)

and

l2α
(T )
2 − rα(T )

O (13.4.46)

respectively. To give a visual representation, a contour map to exhibit the dimen-
sionless ratio of the effective CTE α(T )

x /α
(T )
O as a function dimensionless rod CTE

α
(T )
1 /α

(T )
O and the dimensionless rod length l1/r is furnished in Fig. 13.9. These

dimensionless parameters have been normalized against the corresponding proper-
ties of the ring. The choice of range for α

(T )
1 /α

(T )
O pertains to the case of rigid rods

α
(T )
1 /α

(T )
O = 0, which was earlier shown to be NTE, and rods made from the same

material as the ring α
(T )
1 /α

(T )
O = 1, which would obviously exhibit a conventional

behavior. The boundary betweenNTE and conventional behavior, i.e., α(T )
x /α

(T )
O = 0

would therefore be formed between α
(T )
1 /α

(T )
O = 0 and α

(T )
1 /α

(T )
O = 1. Perusal to

Fig. 13.9 also indicates that the negativity of CTE is primarily influenced by the
α

(T )
1 /α

(T )
O ratio, and secondarily by the l1/r ratio.

By similar reasoning, the following NC conditions

l1α
(P)
1 < rα(P)

O (13.4.47)
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Fig. 13.9 Thermal expansion map in terms of dimensionless effective linear CTE α
(T )
x /α

(T )
O for

varying dimensionless rod CTE α
(T )
1 /α

(T )
O and rod-to-ring dimension ratio l1/r

and

l2α
(P)
2 < rα(P)

O (13.4.48)

apply along the x- and y-principal axes, respectively. Likewise, the contour plot of
Fig. 13.9 is valid for the compressibility analogy α(P)

x /α
(P)
O as a function of α(P)

1 /α
(P)
O

and l1/r , but not for the moisture expansion analogy α(C)
x /α

(C)
O unless dC = dCO =

dC1 = dC2. It has been shown that the linear CME in any of its principal direction is
negative not only when the rods are rigid, but also when the rods are non-absorptive.
The generic negativity for the ring-rod structure’s CME is obtained by substituting
α(C)
x < 0 into Eq. (13.4.23) and α(C)

y < 0 into Eq. (13.4.24) to give the following
NME conditions

l1α
(C)
1 dC1 < rα(C)

O dCO (13.4.49)

and

l2α
(C)
2 dC2 < rα(C)

O dCO (13.4.50)

respectively. To give a visual representation on the influence of changes in moisture
concentration, a contourmap of a dimensionless effectiveCMEα(C)

x /α
(C)
O for varying

dimensionless change in rod moisture concentration dC1/dCO and dimensionless
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Fig. 13.10 Moisture expansion map in terms of dimensionless CME α
(C)
x /α

(C)
O for varying mois-

ture concentrations in rod, ring and environment when the rod and ring possess equal moisture

expansivity
(
α

(C)
1 = α

(C)
O

)
at l1/r = 2.5

change in environmental moisture concentration dC/dCO is furnished in Fig. 13.10

for equal CMEs of the rods and ring
(
α

(C)
1 = α

(C)
2 = α

(C)
O

)
at l1/r = 2.5. It can be

observed that the negativity of the dimensionless CME is enhanced by decreasing
dC1/dCO ratio while the effective dimensionless CME’s magnitude increases with
decreasing dC/dCO ratio.

In the category of areal CTE and CME, the conditions for NTE and NME are
obtained by substituting α

(T )
A < 0 into Eq. (13.4.13) to give

l1
r

α
(T )
1

α
(T )
O

− 1

l1
r − 1

+
l2
r

α
(T )
2

α
(T )
O

− 1

l2
r − 1

< 0 (13.4.51)

and α
(C)
A < 0 into Eq. (13.4.29) to yield

l1
r

α
(C)
1

α
(C)
O

dC1
dCO

− 1
( l1
r − 1

)
dC
dCO

+
l2
r

α
(C)
2

α
(C)
O

dC2
dCO

− 1
( l2
r − 1

)
dC
dCO

< 0 (13.4.52)

For square array (l1 = l1 = l), Eqs. (13.4.51) and (13.4.52) greatly simplify to

α
(T )
1 + α

(T )
2

2α(T )
O

<
r

l
(13.4.53)
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and

α
(C)
1 dC1 + α

(C)
2 dC2

2α(C)
O dCO

<
r

l
(13.4.54)

respectively. Performing similarly for the category of volumetric CTE and CME,
the conditions for negativity of thermal and moisture expansions are obtained by the
substitution of α

(T )
V < 0 into Eq. (13.4.16) to result in

l1
r

α
(T )
1

α
(T )
O

− 1

l1
r − 1

+
l2
r

α
(T )
2

α
(T )
O

− 1

l2
r − 1

+ 1 < 0 (13.4.55)

and the substitution of α
(C)
V < 0 into Eq. (13.4.32) leads to

l1
r

α
(C)
1

α
(C)
O

dC1
dCO

− 1
( l1
r − 1

)
dC
dCO

+
l2
r

α
(C)
2

α
(C)
O

dC2
dCO

− 1
( l2
r − 1

)
dC
dCO

+ 1 < 0 (13.4.56)

As with the case of areal NTE and NME, the conditions for volumetric NTE and
NME in Eqs. (13.4.55) and (13.4.56) greatly reduce to

α
(T )
1 + α

(T )
2 + α

(T )
O

3α(T )
O

<
r

l
(13.4.57)

and

α
(C)
1 dC1 + α

(C)
2 dC2 + α

(C)
O dC

α
(C)
O (2dCO + dC)

<
r

l
(13.4.58)

respectively, for square array.
If, instead of 2D array, we have a 3D array of double-rings interconnected by

sliding rods in all three orthogonal directions as shown in Fig. 13.11 (detailed
schematics are furnished Fig. 11.38d), then inference from Eq. (13.4.13) gives the
volumetric CTE

α
(T )
V =

3∑

i=1

liα
(T )
i − rα(T )

O

li − r
(13.4.59)

where l3 is the half-length of the sliding rod that is orthogonal to the x-y plane andα
(T )
3

is its CTE, while inferring from Eq. (13.4.29) implies the corresponding volumetric
CME
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Fig. 13.11 Simplified schematic view of a double-ring with three orthogonal pairs of sliding rods
in a 3D array of NEE structure

α
(C)
V =

3∑

i=1

liα
(C)
i dCi − rα(C)

O dCO

(li − r)dC
(13.4.60)

where α
(C)
3 and dC3 are the CME and change in the moisture concentration, respec-

tively, for the third set of sliding rods. For cube array (l1 = l2 = l3 = l), Eqs. (13.4.59)
and (13.4.60) greatly shorten to

α
(T )
1 + α

(T )
2 + α

(T )
3

3α(T )
O

<
r

l
(13.4.61)

for NTE and

α
(C)
1 dC1 + α

(C)
2 dC2 + α

(C)
3 dC3

3α(C)
O dCO

<
r

l
(13.4.62)

for NME conditions, respectively. The corresponding descriptions for linear, areal,
and volumetric NC can be obtained by performing the following substitutions(
α(T ), dT

) → (
α(P), dP

)
on the CTE and NTE expressions, i.e., the volumetric

compressibility

α
(P)
V =

3∑

i=1

liα
(P)
i − rα(P)

O

li − r
(13.4.63)
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where α
(P)
3 is the compressibility of the rods orthogonal to the x-y plane, while the

stipulation of NC under the special case of cube array yields

α
(P)
1 + α

(P)
2 + α

(P)
3

3α(P)
O

<
r

l
(13.4.64)

Where the various environmental changes occur simultaneously, the principle of
superposition can be applied. However, there is no overall environmental coefficient
that combines the responses from thermal expansion, moisture expansion, and pres-
sure compressibilities; this can be attested from the different units for the coefficient
of thermal expansion, the coefficient of moisture expansion and the compressibility.
The principle of superposition can, nevertheless, be implemented for parameters that
possess similar units; as such the cumulative responses from variation of environ-
mental temperature, moisture concentration, and pressure can be accounted for in
terms of strains. Onemay thereforewrite the linear environmental strain as a superpo-
sition from the three separate environmental strain components εi = ε

(T )
i +ε

(C)
i +ε

(P)
i

for i = x, y.

εx = l1α
(T )
1 − rα(T )

O

l1 − r
dT + l1α

(C)
1 dC1 − rα(C)

O dCO

l1 − r
− l1α

(P)
1 − rα(P)

O

l1 − r
dP (13.4.65)

εy = l2α
(T )
2 − rα(T )

O

l2 − r
dT + l2α

(C)
2 dC2 − rα(C)

O dCO

l2 − r
− l2α

(P)
2 − rα(P)

O

l2 − r
dP

(13.4.66)

based on Eqs. (13.4.7), (13.4.8), (13.4.23), (13.4.24), (13.4.40), and (13.4.41), while
the areal environmental strain can again be expressed as a superposition εA = ε

(T )
A +

ε
(C)
A + ε

(P)
A

εA =
(
l1α

(T )
1 − rα(T )

O

l1 − r
+ l2α

(T )
2 − rα(T )

O

l2 − r

)

dT

−
(
l1α

(P)
1 − rα(P)

O

l1 − r
+ l2α

(P)
2 − rα(P)

O

l2 − r

)

dP

+
(
l1α

(C)
1 dC1 − rα(C)

O dCO

l1 − r
+ l2α

(C)
2 dC2 − rα(C)

O dCO

l2 − r

)

(13.4.67)

with reference to Eqs. (13.4.13), (13.4.29), and (13.4.43), or by adding Eqs. (13.4.65)
and (13.4.66). The volumetric strain in the case of 2D array is

εV =
(
l1α

(T )
1 − rα(T )

O

l1 − r
+ l2α

(T )
2 − rα(T )

O

l2 − r
+ α

(T )
O

)

dT
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−
(
l1α

(P)
1 − rα(P)

O

l1 − r
+ l2α

(P)
2 − rα(P)

O

l2 − r
+ α

(P)
O

)

dP

+
(
l1α

(C)
1 dC1 − rα(C)

O dCO

l1 − r
+ l2α

(C)
2 dC2 − rα(C)

O dCO

l2 − r
+ α

(C)
O dCO

)

(13.4.68)

by virtue of Eqs. (13.4.16), (13.4.32), and (13.4.44), while the volumetric strain for
3D array of double-ring and rods can be written as

εV = dT
3∑

i=1

liα
(T )
i − rα(T )

O

li − r
+

3∑

i=1

liα
(C)
i dCi − rα(C)

O dCO

li − r

− dP
3∑

i=1

liα
(P)
i − rα(P)

O

li − r
(13.4.69)

on the basis of Eqs. (13.4.59), (13.4.60), and (13.4.63). For the special case where
the rings and double-rings are arranged in square and cube arrays, respectively, while
the rods are rigid, Eqs. (13.4.65)–(13.4.67) and (13.4.69) are greatly simplified and
can be combined as

εx = εy = 1

2
εA = 1

3
εV = −

(
α

(T )
O dT + α

(C)
O dCO − α

(P)
O dP

) r

l − r
(13.4.70)

Since it is well known that ring expansion occurs with increasing temperature
(dT > 0), increasing moisture concentration (dCO > 0) and decreasing pressure
(dP < 0), therefore the linear, areal, and volumetric strains in Eq. (13.4.70) are
negative (Lim 2019b). In general, conditions for the negativity of strains listed
in Eqs. (13.4.65)–(13.4.69) can be achieved by imposing ε < 0 under the given
environmental changes.

In the analysis, the ring-rod structure can be made of three materials in general
or two materials if the rods aligned in both directions are to be of the same material.
Any combination of materials can be employed to construct the ring-rod structure.
However, the negativities are enhanced if the ring material has a much greater expan-
sivity than that of the rod material. As the various environmental effects take place
at different rate of change—e.g., the temperature and pressure change more rapidly
while equilibration of the moisture content takes a relatively greater time frame—
it follows that the thermal- and pressure-induced strain components inflict a quick
response to the system, while the hygroscopic-induced strain component responds
gradually. The separation of each effective strain expressions into three terms, such
as those described in Eqs. (13.4.65)–(13.4.70), permits the overall strain to take into
account the non-monotonically varying environmental temperature, pressure, and
moisture concentration. Nevertheless, the change of the moisture concentration in
solids may result in a change in the material properties of the components. In such a
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case, the developed models are still valid, bearing in mind that the CTEs, CMEs, and
compressibilities of the ring-rod components are no longer constants, but are instead
functions of moisture concentration.

13.5 Example: An Auxetic NHTE System Using Reinforced
Double Arrowhead Microstructure

This section illustrates a type of truss system in the microstructure that can exhibit
negative hygrothermal expansion (NHTE) behavior and, in so doing, avails the solu-
tions for zero hygrothermal expansion at the boundary of conventional and NHTE
behavior. The double arrowhead configuration is adopted due to its ease in achieving
large strain by controlling the angles. The reinforced double arrowhead structure is
shown in Fig. 13.12a where reinforcing rods–indicated as dashed lines–are inserted
so as to join the tips of the arrowheads, which consists of the longer inclined rods
and the shorter inclined rods (hereinafter known as “long rods” and “short rods”,
respectively, for brevity). The usual auxetic double arrowhead structure is recov-
ered when the reinforcing rods diminish. With the insertion of the reinforcing rods,
the microstructure consists of rods being aligned in five directions. Rod 3, which
is the reinforcing rod, forms the axis of symmetry from which rod 1’ and rod 2’
are mirror images of rod 1 and rod 2, respectively. Due to this symmetry, only
half of the arrowhead, as shaded in Fig. 13.12b, is required for analysis. As far as
hygrothermal absorption is concerned, there is no directionality within the rod itself
as we consider isotropic rods. The microstructure is sufficiently porous to permit
uniform temperature change and uniformmoisture absorption throughout the lattice.
There is, however, directionality in terms of the overall structural response due to
the anisotropic behavior arising from the lattice geometry. The schematic view in
Fig. 13.12c facilitates analysis. Let the initial lengths of the long rods, short rods,
and reinforcing rods be l1, l2 and l3, respectively, whereby the long and short rods are
subtended by angles θ1 and θ2, respectively, from the reinforcing rods. Arising from
a change in the hygroscopic concentration in the environment, dC we write the final
change in the hygroscopic concentrations in the long, short, and reinforcing rods as
dC1, dC2 and dC3, respectively, at steady state. Unlike the case of thermal expansion
whereby the temperatures of the various solid components attain the environmental
temperature at thermal equilibrium, various materials of the same shape and size
absorb different amounts of moisture mass at moisture diffusion equilibrium. Hence,
it is not possible to obtain the change in material dimension directly from the change
in environmental hygroscopic concentration.

The different changes to themoisture concentration is in recognition of the fact that
the change in material moisture concentration is lower than that in the environment,
and that for different materials that change in moisture concentration varies due to
different moisture absorptivity. The change in moisture content in a material can
be measured by comparing its weight—at equilibrium state—before and after the
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Fig. 13.12 a Overview of a double arrowhead structure as continuous lines with insertion of
reinforcing rods as dashed lines, showing all 5 directions of the rod alignments, indicated as rod 1,
rod 2, rod 3, rod 1’, and rod 2′, b definitions of x0 and y0, and c changes in the subtending angles
arising from changes in rod lengths

change in environmental moisture concentration. The hygroscopic strains in the long,
short, and reinforcing rods are thereforeα

(C)
1 dC1,α

(C)
2 dC2, andα

(C)
3 dC3, respectively,

where α
(C)
1 , α(C)

2 , and α
(C)
3 are the corresponding coefficients of moisture expansion

(CME) for the rods. Accordingly, the subtending angles for the long and short rods
change by dθ1 and dθ2, respectively. As a result from the changes in the rod lengths
and their inclination angles, the original location of the sharp edge (x0, y0) relocates
to (x0 +dx, y0 +dy), as indicated by Fig. 13.12c. In what follows, the conditions for
attaining NME as well as NTE along the y-direction are established; it is assumed
that the rods are connected by pin joints to facilitate free rotations at the vertices.

By geometry, the horizontal displacement of the sharp edge is
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dx = l1
(
1 + α

(C)
1 dC1

)
cos(θ1 + dθ1) − l1 cos θ1 (13.5.1)

based on the long rod, and

dx = l2
(
1 + α

(C)
2 dC2

)
cos(θ2 + dθ2) − l2 cos θ2 + l3α

(C)
3 dC3 (13.5.2)

with reference to the short and reinforcing rods, while the vertical displacement is

dy = l1
(
1 + α

(C)
1 dC1

)
sin(θ1 + dθ1) − l1 sin θ1 (13.5.3)

on the basis of the long rods, while perusal to the short rod gives

dy = l2
(
1 + α

(C)
2 dC2

)
sin(θ2 + dθ2) − l2 sin θ2 (13.5.4)

The above trigonometric descriptions can be expanded followed by substitution
of sin dθ = dθ and cos dθ = 1 for infinitesimal deformation to give the infinitesimal
horizontal displacement of the sharp edge

dx = −l1dθ1 sin θ1

(
1 + α

(C)
1 dC1

)
+ l1α

(C)
1 dC1 cos θ1 (13.5.5)

via the long rod, and

dx = −l2dθ2 sin θ2

(
1 + α

(C)
2 dC2

)
+ l2α

(C)
2 dC2 cos θ2 + l3α

(C)
3 dC3 (13.5.6)

on the basis of the short and reinforcing rods, while the corresponding infinitesimal
vertical displacement

dy = l1dθ1 cos θ1

(
1 + α

(C)
1 dC1

)
+ l1α

(C)
1 dC1 sin θ1 (13.5.7)

as regards to the long rod or

dy = l2dθ2 cos θ2

(
1 + α

(C)
2 dC2

)
+ l2α

(C)
2 dC2 sin θ2 (13.5.8)

pertaining to the short rod. Recognizing that the original location of the sharp edge
(x0, y0) can be expressed by the rod lengths and inclination angles as

x0 = l1 cos θ1 = l2 cos θ2 + l3 (13.5.9)

and

y0 = l1 sin θ1 = l2 sin θ2 (13.5.10)
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one can then obtain the ratio of horizontal displacement dx to the original horizontal
position of the sharp edge as

dx

x0
= −dθ1 tan θ1

(
1 + α

(C)
1 dC1

)
+ α

(C)
1 dC1 (13.5.11)

in terms of the long rod or

dx

x0
= −dθ2

sin θ2

cos θ2 + l3
l2

(
1 + α

(C)
2 dC2

)
+ cos θ2

cos θ2 + l3
l2

α
(C)
2 dC2

+
l3
l2

cos θ2 + l3
l2

α
(C)
3 dC3 (13.5.12)

by means of the short and reinforcing rods, while the vertical strain εy = dy/y0 can
be expressed in terms of the long rod as

εy = dθ1
tan θ1

(
1 + α

(C)
1 dC1

)
+ α

(C)
1 dC1 (13.5.13)

or in terms of the short rod as

εy = dθ2
tan θ2

(
1 + α

(C)
2 dC2

)
+ α

(C)
2 dC2 (13.5.14)

It should be cautioned here that the ratio dx/x0 in Eqs. (13.5.11) and (13.5.12) are
not termed the horizontal strain because εx has to be defined by the elongation ratio
of the reinforcement rod. Nevertheless, the dx/x0 ratio is important as it allows the
angular changes dθ1 and dθ2 to be simultaneously calculated in conjunction with the
vertical strain, aswill be shown shortly. Since the dx/x0 descriptions in Eqs. (13.5.11)
and (13.5.12) are the same, they can be equated to give

dθ1 tan θ1

(
1 + α

(C)
1 dC1

)
− α

(C)
1 dC1 =

dθ2 sin θ2

(
1 + α

(C)
2 dC2

)

cos θ2 + l3
l2

− cos θ2α
(C)
2 dC2

cos θ2 + l3
l2

−
l3
l2
α

(C)
3 dC3

cos θ2 + l3
l2

(13.5.15)

or, on the basis of Eqs. (13.5.9) and (13.5.10), the inclined rod length ratio

l3
l2

= sin θ2

tan θ1
− cos θ2 (13.5.16)

is substituted into Eq. (13.5.15) to give
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dθ1 tan θ1

(
1 + α

(C)
1 dC1

)
− dθ2 tan θ1

(
1 + α

(C)
2 dC2

)

= α
(C)
1 dC1 − tan θ1

tan θ2
α

(C)
2 dC2 −

(
1 − tan θ1

tan θ2

)
α

(C)
3 dC3 (13.5.17)

Likewise, the commonality of the vertical strains allows Eqs. (13.5.13) and
(13.5.14) to be equated, thereby leading to

dθ1
tan θ1

(
1 + α

(C)
1 dC1

)
− dθ2

tan θ2

(
1 + α

(C)
2 dC2

)
= −α

(C)
1 dC1 + α

(C)
2 dC2 (13.5.18)

The angular changes of dθ1 and dθ2 can then be simultaneously solved from
Eqs. (13.5.17) and (13.5.18) to give

dθ1
(
1 + α

(C)
1 dC1

)
= −1 + tan θ1 tan θ2

tan θ2 − tan θ1
α

(C)
1 dC1 + tan θ2 + 1

tan θ2

tan θ2
tan θ1

− 1
α

(C)
2 dC2

+ α
(C)
3 dC3

tan θ2
(13.5.19)

and

dθ2
(
1 + α

(C)
2 dC2

)
= − tan θ1 + 1

tan θ1

1 − tan θ1
tan θ2

α
(C)
1 dC1 + 1 + tan θ1 tan θ2

tan θ2 − tan θ1
α

(C)
2 dC2

+ α
(C)
3 dC3

tan θ1
(13.5.20)

Although Eqs. (13.5.19) and (13.5.20) can be further simplified using trigono-
metric identities, such as

1 + tan θ1 tan θ2

tan θ2 − tan θ1
= 1

tan(θ2 − θ1)
(13.5.21)

the longer form is retained therein for the convenience of calculating the special cases
later. The substitution of Eqs. (13.5.19) or (13.5.20) into Eqs. (13.5.13) or (13.5.14),
respectively, gives a common solution for the strain in the y-direction

εy = − tan θ1 + 1
tan θ1

tan θ2 − tan θ1
α

(C)
1 dC1 + tan θ2 + 1

tan θ2

tan θ2 − tan θ1
α

(C)
2 dC2 + α

(C)
3 dC3

tan θ1 tan θ2
(13.5.22)

Since εy = αCydC , we have the CME along the y-direction
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αCy =
−

(
tan θ1 + 1

tan θ1

)
α

(C)
1 dC1 +

(
tan θ2 + 1

tan θ2

)
α

(C)
2 dC2 +

(
tan θ2−tan θ1
tan θ1 tan θ2

)
α

(C)
3 dC3

(tan θ2 − tan θ1)dC
(13.5.23)

For attaining NME in the y-direction, we impose αCy < 0 to give (Lim 2020)

(
tan θ1 + 1

tan θ1

)
α

(C)
1 dC1 −

(
tan θ2 + 1

tan θ2

)
α

(C)
2 dC2

>

(
tan θ2 − tan θ1

tan θ1 tan θ2

)
α

(C)
3 dC3 (13.5.24)

The condition for positive hygroscopic expansion in the y-direction is described
when the inequality sign in Eq. (13.5.24) is reversed. By similar reasoning, the
condition of zero hygroscopic expansion in the y-direction is characterized when the
inequality sign is replaced by the equality sign.

We herein consider three special cases to aid subsequent illustrations:

(a) Special Case I where θ1 = 30◦ and θ2 = 60◦,
(b) Special Case II where θ1 = 30◦ and θ2 = 45◦, and
(c) Special Case III where θ1 = 45◦ and θ2 = 60◦,

as depicted in Fig. 13.13.
Substituting θ1 = 30◦ and θ2 = 60◦ into Eqs. (13.5.23) and (13.5.24) for Special

Case I gives the effective CME in the y-direction

α(C)
y = −2α(C)

1 dC1 + 2α(C)
2 dC2 + α

(C)
3 dC3

dC
(13.5.25)

and the condition for attaining NME

2α(C)
1 dC1 − 2α(C)

2 dC2 > α
(C)
3 dC3 (13.5.26)

Fig. 13.13 Consideration of three special cases for illustration
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respectively. For Special Case II, prescribing θ1 = 30◦ and θ2 = 45◦ into
Eqs. (13.5.23) and (13.5.24) yields the CME

α(C)
y =

−4α(C)
1 dC1 + 2

√
3α(C)

2 dC2 + √
3
(√

3 − 1
)
α

(C)
3 dC3

(√
3 − 1

)
dC

(13.5.27)

and the corresponding NME requirement

4α(C)
1 dC1 − 2

√
3α(C)

2 dC2 >
√
3
(√

3 − 1
)
α

(C)
3 dC3 (13.5.28)

Specifying θ1 = 45◦ and θ2 = 60◦ for Special Case III leads to the CME

α(C)
y =

−2
√
3α(C)

1 dC1 + 4α(C)
2 dC2 +

(√
3 − 1

)
α

(C)
3 dC3

√
3
(√

3 − 1
)
dC

(13.5.29)

and condition for NME

2
√
3α(C)

1 dC1 − 4α(C)
2 dC2 >

(√
3 − 1

)
α

(C)
3 dC3. (13.5.30)

Recall that the moisture concentration change in the environment is different from
those in materials and that the different absorptivity of various materials leads to
different changes in moisture concentrations for different materials. Where thermal
expansion is concerned, a change in environmental temperature of dT leads to a
common change in solid temperature by the same amount upon attaining thermal
equilibrium. The governing equations for moisture expansion can be converted to
those of thermal expansion by implementing the following changes

α(C)
y → α(T )

y

α
(C)
1 → α

(T )
1

α
(C)
2 → α

(T )
2

α
(C)
3 → α

(T )
3

,

dC → dT
dC1 → dT
dC2 → dT
dC3 → dT

(13.5.31)

so as to yield the effective CTE in the y-direction

α(T )
y =

−
(
tan θ1 + 1

tan θ1

)
α

(T )
1 +

(
tan θ2 + 1

tan θ2

)
α

(T )
2 +

(
tan θ2−tan θ1
tan θ1 tan θ2

)
α

(T )
3

(tan θ2 − tan θ1)
(13.5.32)

For attaining NTE in the y-direction, we impose αT y < 0 to give (Lim 2020)
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(
tan θ1 + 1

tan θ1

)
α

(T )
1 −

(
tan θ2 + 1

tan θ2

)
α

(T )
2 >

(
tan θ2 − tan θ1

tan θ1 tan θ2

)
α

(T )
3

(13.5.33)

Accordingly, the effective CMEs along the y-direction for the three special
cases and their corresponding conditions for NHE, as described by Eqs. (13.5.25)–
(13.5.30), can be transformed into their thermal analogies by means of Eq. (13.5.31),
i.e.,

α(T )
y = −2α(T )

1 + 2α(T )
2 + α

(T )
3 (13.5.34)

for Special Case I with its NTE condition

2α(T )
1 − 2α(T )

2 > α
(T )
3 (13.5.35)

and

α(T )
y =

−4α(T )
1 + 2

√
3α(T )

2 + √
3
(√

3 − 1
)
α

(T )
3√

3 − 1
(13.5.36)

for Special Case II with its corresponding NTE condition

4α(T )
1 − 2

√
3α(T )

2 >
√
3
(√

3 − 1
)
α

(T )
3 (13.5.37)

and finally

α(T )
y =

−2
√
3α(T )

1 + 4α(T )
2 +

(√
3 − 1

)
α

(T )
3

√
3
(√

3 − 1
) (13.5.38)

for Special Case III with its NTE condition

2
√
3α(T )

1 − 4α(T )
2 >

(√
3 − 1

)
α

(T )
3 (13.5.39)

When the short and reinforcing rods are rigid, i.e., α(C)
2 = α

(C)
3 = 0 and α

(T )
2 =

α
(T )
3 = 0, the effective CMEs and CTEs along the y-direction are listed in Table 13.1,

indicating definite NME and NTE, respectively.
Finally, it can be seen that if the CMEs of the individual rods are nonnegative, then

the negativity of α(C)
y can be maximized if Rod 2 and Rod 3 are either non-swelling

α
(C)
2 = α

(C)
3 = 0 or non-absorptive dC2 = dC3 = 0. Under either of these condition,

Eq. (13.5.23) reduces to
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Table 13.1 Summary of
CMEs and CTEs along
y-direction when the short
and reinforcing rods are rigid,
indicating definite NHE and
NTE, respectively

θ1 θ2 α
(C)
y α

(T )
y

30◦ 60◦ −2α(C)
1

dC1
dC −2α(T )

1

30◦ 45◦ − 4√
3−1

α
(C)
1

dC1
dC − 4√

3−1
α

(T )
1

45◦ 60◦ − 2√
3−1

α
(C)
1

dC1
dC − 2√

3−1
α

(T )
1

α(C)
y

α
(C)
1

= tan θ1 + (1/ tan θ1)

tan θ1 − tan θ2

dC1

dC
. (13.5.40)

Bearing in mind that the moisture concentration in Rod 1 (dC1) increases and
decreases with the rise and drop of moisture concentration in the environment (dC),
the ratio dC1/dC in Eq. (13.5.40) is positive. Since 0◦ < θ1 < θ2 < 90◦, the nega-
tivity of Eq. (13.5.40) is definite. This negativity applies for its corresponding thermal
analogy, wherein

α(T )
y

α
(T )
1

= tan θ1 + (1/ tan θ1)

tan θ1 − tan θ2
(13.5.41)

bearing in mind that dT1 → dT at thermal equilibrium.
The expansion coefficients in the x-direction have so far not being established

because it is defined by the change in Rod 3 length. Hence, if one assumes that
the rods are conventional, i.e., possessing positive moisture expansion and positive
thermal expansion, then the overall moisture and thermal expansions along the x-axis
are never negative. Nevertheless, α(C)

x and α(T )
x are furnished hereafter for the sake

of completeness. Since the strain in x-direction is defined by Rod 3, one may equate
the hygroscopic strain of Rod 3, i.e., α(C)

3 dC3, with the effective hygroscopic strain
in the x-direction α(C)

x dC to give

α(C)
x = α

(C)
3

dC3

dC
(13.5.42)

Equation (13.5.42) suggests that even if the CME of Rod 3 is high, the effective
CME in the x-direction is reduced if Rod 3 has low moisture absorptivity, which
results in dC3 < dC at hygroscopic equilibrium. In terms of thermal expansion,
perusal to Eq. (13.5.31) gives

α(T )
x = α

(T )
3 (13.5.43)

This is because when thermal equilibrium is achieved, the final temperature of all
rods (including Rod 3) reaches the temperature of the environment; since the initial
temperatures are common, the changes in environmental and Rod 3 temperatures are
equal.
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Equations (13.5.26), (13.5.28), and (13.5.30) specify the conditions by which the
CME along the y-direction is negative for Special Cases I, II, and III, respectively.
In order to visualize the occurrence of NHE based on the relative values of α

(C)
1 dC1,

α
(C)
2 dC2, andα

(C)
3 dC3, contour plots are furnished in Fig. 13.14 for these three special

cases, whereby NME along y-direction is attained when α
(C)
1 dC1 occurs above the

surfaces, while positive moisture expansion is obtained when α
(C)
1 dC1 falls below

the surfaces. Needless to say, zero moisture expansion is achieved when α
(C)
1 dC1

takes place on the surfaces. Perusal to Fig. 13.14 suggests that, for the considered
geometries, α(C)

2 dC2 and α
(C)
3 dC3 play the primary and secondary roles, respectively,

in influencing the sign of α(C)
y . The effect from α

(C)
2 dC2 vis-à-vis α

(C)
3 dC3 becomes

stronger as the length of the reinforcing rod shortens with respect to the other two
rods or as the length of the short rod approaches that of the long rod.

With reference to Eq. (13.5.40) for case where Rod 2 and Rod 3 are rigid, four
contour plots of a dimensionless α(C)

y /α
(C)
1 versus θ1 (vertical axis) and θ2 (horizontal

axis) are shown in Fig. 13.15, whereby 0◦ < θ1 < θ2 < 90◦ in complying to the
double arrowhead geometry, hence resulting in triangular plots. In addition, we note
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Fig. 13.14 Contour plots as functions of α
(C)
2 dC2 and α

(C)
3 dC3 for indicating the solutions of zero

moisture expansion along y-direction when α
(C)
1 dC1 falls on the surface, while positive and negative

moisture expansion is obtained when α
(C)
1 dC1 is located below and above the surfaces, respectively.

These surface plots are also valid for the solutions of zero thermal expansion along y-direction by

substituting
(
α

(C)
1 dC1, α

(C)
2 dC2, α

(C)
3 dC3

)
→

(
α

(T )
1 dT, α

(T )
2 dT, α

(T )
3 dT

)
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Fig. 13.15 Contour plots of α(C)
y /α

(C)
1 when Rod 2 and Rod 3 possess zero CMEs α

(C)
2 = α

(C)
3 = 0

or zero absorptivity dC2 = dC3 = 0 at dC1 = dC (top left), dC1 = 0.75dC (top right), dC1 =
0.5dC (bottom left) and dC1 = 0.25dC (bottom right) for various angles of θ1 and θ2

that 0 < dC1 < dC . The lower limit of dC1 indicates the possibility of Rod 1 being
non-absorptive while the upper bound indicates that the change in moisture concen-
tration in Rod 1 is equal to the change in moisture concentration in the environment.
This need not necessarily be so even at equilibrium, and so lower values such as
dC1 = 0.75dC , dC1 = 0.5dC , and dC1 = 0.25dC are included in Fig. 13.15.

With reference to Eqs. (13.5.13) and (13.5.14), the strain along the y-direction
due to temperature change can be added by virtue of Eq. (13.5.31) to give

εy = α
(C)
1 dC1 + α

(T )
1 dT +

(
2 + α

(C)
1 dC1 + α

(T )
1 dT

) dθ1
tan θ1

(13.5.44)

and

εy = α
(C)
2 dC2 + α

(T )
2 dT +

(
2 + α

(C)
2 dC2 + α

(T )
2 dT

) dθ2
tan θ2

(13.5.45)

based on the long and shorts rods, respectively. Todesign against hygrothermal strains
in unconstrained systems or against hygrothermal stresses in constrained systems,
one needs to select materials and inclination angles such that εy = 0 based on either
Eq. (13.5.44) or Eq. (13.5.45). This is a more flexible approach in reducing the
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hygrothermal effects by allowing nonzero CTEs and CMEs such that the moisture
and thermal effects offset each other, rather than themore rigid or restrictive approach
of implementing both α(T )

y = 0 and α(C)
y = 0.

Throughout the analysis, the rods are considered thin so that the high surface-to-
volume ratio facilitates rapid moisture transport into and out from the rods as well
as to achieve uniform distribution of moisture concentration in comparison with
thick rods; in the case of the latter, moisture distribution is non-uniform, with greater
concentration at the surface than at the core. However, the use of thin rods has its
limitations as it hinders the ability for the rod to act as a rigid unit. Under such
situation, the use of rods with greater modulus and lower expansion coefficients—in
conjunction with rods of smaller modulus and higher expansion coefficients—would
enable them to approximate rigid rods.

13.6 Further Readings on Negative Moisture Expansions

Barrett et al. (2013) described the synthesis and characterization of mechanically
tough zero or negative swellingmussel-inspired surgical adhesives based on catechol-
modified amphiphilic poly(propylene oxide)-poly(ethylene oxide) block copoly-
mers. The following examples consider the design of NME, or negative swelling,
by the use of differential swelling in bimaterial layers that leads to curving. A 2D
example was furnished by Zhang et al. (2018) and shown in Fig. 13.16. The work by
Liu et al. (2016) employed square array, hexagonal array, and triangular arraymodels
with alternating orientation of the bimaterial layers, in which one of the square array
models adopted the alternating bimaterial layers that resemble Fig. 11.8, except that
the out-of-plane dimension is in the same order as the unit cell. As such the bimaterial
layers, which are plates rather than beams, undergo surface curving to form shells
of double curvatures instead of beams with single curvature. For this reason, the
“2D microstructure” in the original state due to the prismatic model undergoes 3D
deformation and would hence be properly classified as being 3D. Another 3D model
was proposed by Curatolo (2018) as shown in Fig. 13.17 (top left) which consists of
hollow cubes in cubic array and connected by rigid rods at the center of the square
outer walls. Differential swelling of the wall materials induces transformation of
the flat walls into curved walls toward the center of the hollow cubes such that the
centers of the deformedcubesmove close to one another (Fig. 13.17 top right). Further
swelling of the hollow cube materials is followed by continued surface curving of
the cube walls and the resulting convergence of the cubes (Fig. 13.17 bottom left)
until the sharp corners of the neighboring cubes come into contact (Fig. 13.17 bottom
right).
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Fig. 13.16 Design concepts of soft mechanical metamaterials with large negative swelling ratios
and tunable stress-strain curves. See Zhang et al. (2018) for details.
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Fig. 13.17 Negative swelling system by Curatolo (2018). Red “boundaries” provide visual aid on
the extent of overall contraction
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Chapter 14
Negative Stiffness

Abstract This chapter reviews a few representative examples of negative stiff-
ness structures (NS) that exhibit NS in one direction, two directions, and all three
orthogonal directions based on 2D and 3D microstructures.

Keyword Negative stiffness

14.1 Introduction

Materials and structures typically exhibit positive stiffness.When a load is applied on
a material or structure, there is an opposing force. In other words, when one applies
a pushing force on a structure it pushes back, or when one pulls a material it pulls
back. Negative stiffness implies that when a pushing force is applied, there will come
a stage when the material pulls away in the same direction as the pushing force, or
vice versa. An understanding of negative stiffness can be easily visualized from the
concept of snap-through shown in Fig. 14.1. The application of a force (indicated
by arrow) on a pre-buckled beam, as shown in Fig. 14.1 (left), would initially give
a conventional or positive stiffness as the buckled beam tends to oppose the applied
force. A state of instability is attained (Fig. 14.1 center) wherein the buckled beam
snaps through (Fig. 14.1 right). If the arrow is replaced by a spring, then the spring
is in the state of compression from Fig. 14.1 (left) to Fig. 14.1 (center), and in a state
of tension from Fig. 14.1 (center) to Fig. 14.1 (right).

In 1992, Roderic S. Lakes discovered that the compressive behavior of the
tetrakaidecahedron and octahedron cell models were not monotonic, in contrast to
the behavior of the foam as awhole. The load-deformation curve displayed a negative
slope over a range of strain; outside this range the slope was positive (Lakes 1993).
Lakes (2001a, b) and Lakes et al. (2001) discussed the extreme damping in composite
materials possessing negative stiffness phase or inclusions, while Wang and Lakes
(2001) explored the extreme thermal expansion, piezoelectricity, and other coupled
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Fig. 14.1 An illustration of negative stiffness using snap-through concept

field properties in composites with a negative stiffness phase. It was also shown
that extreme stiffness occurs in composites with negative stiffness phase (Lakes
and Drugan 2002) and in systems with negative stiffness elements (Wang and Lakes
2004a). The reader is also referred to viscoelastic studies of negative stiffness systems
and components byWang and Lakes (2004b, 2005) andWang et al. (2006), as well as
to the works of Moore et al. (2006) on negative incremental bulk modulus in foams.

14.2 Example: Negative Stiffness in 2D Microstructures

Although 3D printed, this example by Che et al. (2017) can be categorized as “2D
microstructure” due to its prismatic structure and the negative stiffness is 1D as it is
manifested in only one dimension—the direction of compressive loading. Figure 14.2
shows the dimensionless deformation for one of the unit cells versus the dimension-
less total deformation for two unit cells arranged in series. The dimensionless defor-
mation for the other unit cell is represented by the other curve. An illustration for the
progressive compression for a 7-by-5 array of unit cells—i.e., 7 columns and5 rows—
is shown in Fig. 14.3. Che et al. (2017) identified two methods to control the collapse
sequence of the microstructure: (a) by varying the thickness of the thin curved beams
and (b) by incorporating mode imperfection size that varies for different rows and
performed simulation and experimental verification using 5-by-5 array of unit cells.
By identifying these two methods of varying the geometrical parameters across, the
different rows (while keeping the geometrical parameters constant within the same
row) Che et al. (2017) gave reliable approaches for determining and controlling the
sequence of snap-through collapse in their multistable metamaterial with negative
stiffness.
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Fig. 14.2 Plots of dimensionless deformation for one unit versus the dimensionless total
deformation for both units. For superposition of strain energy contour plot, see Che et al. (2017)

The 2D microstructure by Zhang et al. (2019), illustrated in Fig. 14.4, provides
the possibility of 2D negative stiffness. These phase transforming cellular materials
(PXCMs) are a class of periodic cellular materials that exhibit solid-state energy
absorption and dissipation and are comparable to honeycombs, especially at low
plateau stresses. The shape of the elementary beam, shown in Fig. 14.4 (a), is
that of the first buckling mode of a straight prismatic beam under axial loading,
while the mechanical responses in the form of force-displacement (F-d) and energy-
displacement (U-d) responses are displayed in Fig. 14.4b. The various hierarchical
levels of the PXCMs are shown in Fig. 14.4c, d, e for levels 0, 1, and 2, respec-
tively. The compressive load-unload cycles performances for the square-type PXCM
samples loaded in the 0° or 90° directions (Fig. 14.5 top) and loaded in the 45° or
135° directions (Fig. 14.5 bottom) as well as for the triangular-type PXCM samples
loaded in the 0°, 60°, or 120° directions (Fig. 14.6 top) and loaded in the 30°, 90°,
or 150° directions (Fig. 14.6 bottom) by Zhang et al. (2019) are described in (a) for
their boundary and loading conditions, (b) for the phase transformation sequence
by finite element simulation, (c) force-displacement relations comparison between
simulated results and experimental verification, and (d) photographs of the original
states and final deformed states. Perusal to Fig. 14.5 shows that when the square-type
PXCM is loaded in the on-axes directions, the snap-through, or negative stiffness
manifestation, occurs in one direction. However, when loaded in the off-axis 45°
direction, biaxial snap-through occurs, thereby manifesting negative stiffness in 2D.
The numerical and experimental results indicate that these materials exhibit similar
solid-state energy dissipation for loads applied along the various axes of reflectional
symmetry of thematerial. Zhang et al. (2019) reported that the specific energydissipa-
tion capacity of the triangular-type is slightly greater and less sensitive to the loading
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Fig. 14.3 Sequential snap-through with gradual compression for a 7-by-5 array of unit cells. Two
methods have been identified by Che et al. (2017) for determining the sequential collapse by rows
using 5-by-5 array

direction than the square-type under most of the loading directions. Nevertheless,
both types of materials were proven to be very effective in dissipating energy.

14.3 Example: Negative Stiffness in 3D Microstructures

Two examples are shown herein for 3D microstructures that permit snap-through in
one direction (Ha et al. 2018) and in all three orthogonal directions (Ha et al. 2019). In
the first example, Ha et al. (2018) proposed a unit cell that can be assembled to form
a lattice that manifests energy absorption by means of snap-through behavior. See
Fig. 14.7 (top). The material used for both the beams and plates was identical. Using
materials with Young’s modulus E = 0.717GPa, yield strength σY = 31.6MPa,
Poisson’s ratio v = 0.24 and density ρ = 0.962g/cm3, Ha et al. (2018) plotted four
graphs–at (a) rt/2rb = 10, (b) rt/2rb = 15, (c) rt/2rb = 20 and (d) rt/2rb = 25–of
downward force versus normalized downward displacement for various inclination
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Fig. 14.4 Hierarchical construction of functionally two-dimensional PXCMs by Zhang et al.
(2019), displaying a geometry of the elementary bent beam, b schematic representation of the
force-displacement (F-d) and energy-displacement (U-d) responses of a bistable bent beam, and
c–e Levels 0–2 of the hierarchical structure of the 2D PXCMs studied in their work

angles of the inclined rods with reference to the horizontal plane, where rt is the
diagonal distance from the center of the unit cell to its corner and rb is the radius of the
inclined rods. See Fig. 14.7 (bottom). A newer structure by Ha et al. (2019) exhibits a
truly 3D cubic negative stiffness lattice structure that can achieve energy absorption
and recover its original configuration under cyclic loading in excess of a strain of
approximately 20%. See Fig. 14.8 (top) for a unit cell and Fig.14.8 (bottom) for
an assembly. Using the same material properties as Ha et al. (2018) and geometrical
details outlined in Ha et al. (2019), the loading and unloading stress–strain cycles
were obtained. In the case of loading in the same direction and in the transverse
direction for 3D array of unit cells, Ha et al. (2019) show various plots of force-
deformation curves for describing the negative stiffness characteristics indicated
by multiple snap-throughs Fig. 14.9 (top). Photographs showing the evolution of
deformation in the assembly is furnished in Fig. 14.9 (bottom). Their results also
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Fig. 14.5 Performance of square-type PXCM sample under compressive load-unload cycles at {0°,
90°} (top half) and {45°, 135°} (bottom half) by Zhang et al. (2019), showing the a samples under
uniaxial loading condition and supported by rollers at bottom, b phase transformation sequence of
the three characteristic states fromFE simulation, c force-displacement relations fromFE simulation
and experiment, and d initial state and final deformed configurations
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Fig. 14.6 Performance of triangular-type PXCM samples under compressive load-unload cycles
at {0°, 60°, 120°} (top half) and {30°, 90°, 150°} (bottom half) by Zhang et al. (2019), showing the
a samples under uniaxial loading condition and supported by rollers at bottom, b phase transforma-
tion sequence of the three characteristic states from FE simulation, c force-displacement relations
from FE simulation and experiment, and d initial state and final deformed configurations
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Fig. 14.7 An energy absorption lattice by Ha et al. (2018), showing single units and an assembly
(top), with plots of force versus displacements (bottom). Reprinted with permission from Elsevier
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Fig. 14.8 A unit of cubic negative stiffness lattice for energy absorption (top) and a 3×3×3 array
(bottom) by Ha et al. (2019). Reprinted with permission from Elsevier

clearly showed that their designed structure is capable of absorbing mechanical
energy effectively with a full recovery of geometry in three principal directions and
that the amount of energy absorbed during cyclic loading increases with its size.

14.4 Further Readings on Negative Stiffness Systems

Although similar to the 1D snap-through mechanism by Che et al. (2017) in some
aspects, the snap-through mechanism by Rafsanjani is attained by reversing the pre-
buckled beams such that snap-through occurs upon application of tensile forces.
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Fig. 14.9 Stress–strain hysteresis loops of negative stiffness lattice structures with a different
number of cells per side. a FE simulation of a single unit cell; an evolution of deformation configu-
rations at different strains is also shown. b Single unit cell in printing direction (experiment). c–d 2
× 2 × 2 and 3 × 3 × 3 lattice structures in printing direction, respectively (experiment). e–f 2 ×
2 × 2 and 3 × 3 × 3 lattice structures in transverse direction, respectively (experiment). Blue and
red curves represent responses of samples with the flat and half-sphere end conditions, respectively.
All samples were capable of self-recovery with a desired energy dissipation after the removal of
loading. g–i Photographs displaying an evolution of deformation for a 3 × 3 × 3 negative stiffness
lattice structure. Reprinted with permission from Elsevier (Ha et al. 2019)
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Bearing segment

Fig. 14.10 A unit cell of the tensile snap-through mechanism by Rafsanjani et al. (2015) consisting
of a pair of bearing and snapping segments (left) and an idealized illustration for the deformed
microstructure upon snapping with the application of tensile load (right)

This is attained by the use of a pair of bearing and snapping segments as shown in
Fig. 14.10 (left). The bearing segment is relatively rigid such that the application of
tensile force brings about the deformed microstructural shape as shown in Fig. 14.10
(right).

A novel concept of negative stiffness by means of rotation of non-spherical
particles was introduced by Dyskin and Pasternak (2012) and further discussed
by Karachevtseva et al. (2019). See Fig. 14.11 (top left). Taking moment about
the contact point on the ground “O”, as shown in Fig. 14.11 (top right), we have
Fl sin(180◦ − θ) = Nl cos(180◦ − θ) or

F sin θ = −N cos θ (14.4.1)

from which

dF sin θ + F cos θdθ = N sin θdθ (14.4.2)

From the kinematics of the rod rotation shown in Fig. 14.11 (bottom left), we
have

dθ = − du

l sin θ
(14.4.3)

Substituting Eqs. (14.4.1) and (14.4.3) into Eq. (14.4.2) gives a familiar spring
force equation

dF = −k(−)du (14.4.4)

where
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Fig. 14.11 Apparent negative stiffness produced by rotating blocks by Karachevtseva et al. (2019),
demonstrating rotation of a single square block (top left), conceptualization as an inverted pendulum
from the block corners in contact (top right), kinematic relationship (bottom left), and negative
stiffness model of the inverted pendulum (bottom right)

k(−) = N

l sin3 θ
(14.4.5)

In studying the effects of negative stiffness produced by rotation of non-spherical
particles on frictional sliding, Karachevtseva et al. (2019) demonstrated that the
concept of negative stiffness permits formulation of a simple and accurate model
of inverted pendulum and rotating non-spherical particles. In addition, they showed
that a set of randomly sized rotating non-spherical particles create fluctuations in
the friction force, which can form a mechanism of experimentally observed friction
force fluctuations.

A highly innovative work on negative (and positive) stiffness metamaterial was
reported by Dudek et al. (2018) and shown in Fig. 14.12 (left). They discussed the
concept associated with the insertion of magnets into their mechanical metamaterials
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Fig. 14.12 System discovered by Dudek et al. (2018), showing magnetic attachments (left), as well
as deformation of a single unit with magnetic attraction (top right) and magnetic repulsion (bottom
right)

in order to obtain negative stiffness. Specifically, it was shown that the investigated
system may exhibit either positive or negative stiffness, depending solely on the
orientation of magnets within the system. See Fig. 14.12 (right). Dudek et al. (2018)
pointed out that the system canmanifest negative stiffness and auxetic property at the
same time. They also discussed the system’s stability, wherein the systems consisting
of attracting and repelling magnets are unstable and stable, respectively.

In addition to the above, the reader is also referred to the works of Balch and
Lakes (2017) on the amelioration of waves and microvibrations by microbuckling in
open-celled foam and the works of Wang et al. (2019) on negative stiffness plates. A
comprehensive discourse onmetamaterialswith inclusions having auxetic or negative
stiffness has been given by Pasternak and Dyskin (2019).
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Chapter 15
Sign-Switching of Metamaterial
Properties

Abstract Sign-switching refers to materials that can exhibit both positive and nega-
tive properties in situ as a result of changing loading direction or opposing changes
in environmental conditions, without active control or the need impose changes to
the microstructural architecture. Two concepts for sign-switching are briefly intro-
duced, microstructural reshape and microstructural duality, which are elaborated in
the remaining chapters of the book.

Keywords Sign-flipping · Sign-reversible · Sign-switching · Sign toggling

15.1 Introduction

We have so far considered the usefulness of architecting the microstructural lattice
geometry of metamaterials for producing negative mechanical properties. In some
applications, it is beneficial for these properties to be positive under certain conditions
but reverse into negative properties under opposing conditions without the need to
impose further processing of the materials. For the sake of practical applications, it is
useful for the switch in material property signs to take place without active control.
For example, the sign of Poisson’s ratio can be changed in graphene by hydrogenation
(Jiang et al. 2016), by applied strain along the zigzag direction of semi-fluorinated
graphene (Qin et al. 2017), and in blue phosphorus oxide (Zeng et al. 2019). The sign
of Poisson’s ratio in composites has also been shown to be tunable via adjustment of
the temperature by Li et al. (2016), and by Jopek and Strek (2018). In addition, the
sign-switching of CTE of YFe(CN)6-based Prussian blue analog was demonstrated
by Gao et al. (2017) by the introduction of guest ions

(
K+)

and molecules (H2O). It
is within the context of smart metamaterials for their overall mechanical properties
to alter (drastically or otherwise) by sensing the change in the external stimuli. In
order to appreciate the sign-switching properties, as opposed to both the conventional
(positive) and negative properties, recall that the simplest conventional responses to
stimuli are linear ones, as shown in Fig. 15.1 (top left). The material properties
are taken from the slope and, in the case of linear plots, the properties are positive
constants, as shown in Fig. 15.1 (top right). Some examples of stimuli and their
corresponding responses and properties are listed in Table 15.1. Assuming again the
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Stimuli

Responses

Stimuli

Responses

Stimuli

Properties

Stimuli

Properties

Fig. 15.1 Generic linear responses versus stimuli plots (left) and their corresponding properties
versus stimuli plots (right) for conventional or positive systems (top) and negative systems (bottom)

Table 15.1 List of stimuli
with corresponding responses
and properties

Stimuli Responses Properties

εLoading −εTranverse v

dT ε(T ) α(T )

−dP ε(P) α(P)

dC ε(C) α(C)

simplest category of linear responses to stimuli, the corresponding responses and
properties for negative materials with reference to stimuli are shown in Fig. 15.1
(bottom). This is not the case of sign-switching metamaterials, which are briefly
introduced in Sects. 15.2 and 15.3 for two broad categories.

15.2 Microstructural Reshape

Microstructural reshape refers to the gradual transformation of the unit cell shape
such that the imposition of stimuli changes its shape, thereby resulting in altering the
overall metamaterial properties (Lim 2019a, 2019b, 2019c, 2019d, 2019e, 2020a,
2020b, 2020c). There are two sub-categories for sign-switching metamaterial by
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microstructural reshape. In the first sub-category, the original shape of the unit cell
is chosen such that it conforms to the characteristic shape that exhibits zero material
properties. Upon a positive change in the stimulus, the unit cells reshape to resemble
those that exhibit negative propertieswhile a negative change in stimulus brings about
unit cell reshape that are similar to those that show positive properties. This results
in the plots illustrated in Fig. 15.2 (top). When the response is the opposite, i.e., upon
a positive change in the stimulus the unit cells’ shape shift to conform to those that
manifest positive properties while a negative change in stimulus brings about unit
cell alteration to align with those that show negative properties. As a consequence,
we have the plots as shown in Fig. 15.2 (bottom). Since the response within each
sub-category is similar regardless of whether the change in stimulus is positive or
negative (Fig. 15.2, left), therefore, there is a change in the material property sign.
This change in material property sign takes place gradually (Fig. 15.2, right).

Stimuli

Responses

Stimuli

Properties

Stimuli

Responses

Stimuli

Properties

Fig. 15.2 Generic nonlinear responses versus stimuli plots (left) and their corresponding properties
versus stimuli plots (right) for metamaterials with gradual change in material properties
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15.3 Microstructural Duality

Unlike the sign-switching material properties by microstructural reshape, which
occurs gradually, the sign-switching bymeans ofmicrostructural duality comes about
abruptly. This is emphasized in Fig. 15.3 (left), whereby the plots of responses versus
stimuli are continuous throughout but non-differentiable at the original state

lim
Stimulus→0−

(
∂(Response)

∂(Stimulus)

)
�= lim

Stimulus→0+

(
∂(Response)

∂(Stimulus)

)
(15.3.1)

such that the material property is non-existent when there is no change in stimuli;
instead, there exists two sets of material properties (Fig. 15.3, right), one set when
the change in stimulus is positive and another set when the change in stimulus is
negative. The difference in both sets of material properties are not only in terms of
their magnitudes, but also in their signs, i.e.,

(Property)(Stimulus)<0 × (Property)(Stimulus)>0 < 0 (15.3.2)

Stimuli

Responses

Stimuli

Properties

Stimuli

Responses

Stimuli

Properties

Fig. 15.3 Generic continuous piecewise linear responses versus stimuli plots (left) and their corre-
sponding properties versus stimuli plots (right) for metamaterials with sudden change in material
properties



15.3 Microstructural Duality 527

The sudden change in property can be implemented by means of microstructural
duality (Lim 2019f, g). But how can a single microstructure exhibit duality? By
means of functional and redundant parts! In other words, the microstructure is delib-
erately overdesigned to cater for redundancies. Under a positive change in stimulus,
some parts of the microstructure are functional while other parts are non-functional.
When the change in stimuli is negative, the functional parts become redundant while
the non-functional parts perform. As a result of such microstructural functional-
redundant parts swopping, there is no gradual evolution of the microstructural shape
from a negative change to a positive change in the stimulus. Under nonlinear case,
there is gradual change in thematerial property with respect to the change in stimulus
but not so at the original state.
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Chapter 16
Sign-Switching of Poisson’s Ratio
with Stress Reversal

Abstract This chapter considers two examples of Poisson’s ratio sign-switching
upon stress reversal. In the first example, the strain that is transverse to the loading
direction is persistently negative for two types of microstructures. The microstruc-
tures were designed based on microstructural reshape with the direction of applied
strain. In addition, these microstructures reveal NTE and ZTE properties under
unconstrained and constrained boundaries when specific conditions are met. In the
second example, the strain that is transverse to the loading direction is persistently
positive for two types of microstructures. The microstructures were designed based
on microstructural duality with the direction of applied strain. Specifically, these
microstructures employ alternating lock and slide mechanism.

Keywords Poisson’s ratio · Sign-flipping · Sign-reversible · Sign-switching · Sign
toggling · Stress reversal

16.1 Sign-Switching of Poisson’s Ratio with Persistently
Negative Transverse Strain

Two types of 2D composite metamaterials—rectangular cells in triangular array
compositemicrostructure (Fig. 16.1, top row) and triangular cells in rectangular array
composite microstructure (Fig. 16.1, bottom row)—under the influence of uniaxial
loading are shown to possess both conventional and auxetic behavior, depending
on the sign of the applied stress (Lim 2019a). For brevity, the rectangular cells
in triangular array composite microstructure and the triangular cells in rectangular
array composite microstructures are hereinafter termed rectangular microstructure
and triangular microstructure, respectively. Each of these composite microstructures
consists of short rigid rods and long flexible rods connected by freely rotating hinges,
as shown in Fig. 16.1 (left column). The rectangular microstructure is geometrically
akin to the centro-symmetric honeycombwithT-shaped joints byCauchi et al. (2013),
except that the said honeycomb is made from a single material, while both the rect-
angular and triangular microstructures considered herein consist of two constituent
materials and are therefore composite structures.
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y

x

Fig. 16.1 Rectangular microstructure (top row) and triangular microstructure (bottom row) before
deformation (left), exhibiting vxy > 0 for σx > 0 (middle), and vxy < 0 for σx < 0 (right). Dashed
rectangles indicate dimension of the undeformed structure

Application of horizontal tensile stress σx > 0 (i.e., εx > 0) or horizontal
compressive stress σx < 0 (i.e., εx < 0) on these microstructures causes flexure to
the long flexible rods that leads to shorter projected length on the vertical axis, which
gives εy < 0, thereby resulting in conventional (vxy > 0) and auxetic (vxy < 0)
properties, respectively, as indicated in Fig. 16.1 (middle and right columns). In other
words, the sign of vxy switches with the reversal of σx direction.

The deformation analysis of the long flexible rods for both microstructures as
shown in Fig. 16.1 (left) can be made by considering moderately large deflection of
simply supported beam of length L, Young’s modulus E, and second moment area
I about its neutral axis under a concentrated load P at mid-span, as illustrated in
Fig. 16.2, which gives the deflection profile

Fig. 16.2 Moderately large
deflection of simply
supported beam under a
concentrated load at
mid-span

L 

L UU/2 U/2 

P 

w0

x 

y 
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w = w0

(
3
y

L
− 4

y3

L3

)
; 0 ≤ y

L
≤ 1

2
(16.1.1)

where the maximum deflection in the case of central lateral load

w0 = PL3

48E I
(16.1.2)

occurs at the mid-span, while the deflection on the other half of the beam is obtained
on the basis of mirror image at the beam mid-span. In general, the decrease in
projected length �U can be obtained from

dU

dy
= 1

2

(
dw

dy

)2

⇒ �U = 1

2

L∫
0

(
dw

dy

)2

dy (16.1.3a)

However, the validity range of the deflection description in Eq. (16.1.1) applies
for 0 ≤ y ≤ L/2 only. As such,

�U =
L/2∫
0

(
dw

dy

)2

dy = 2.4
w2

0

L
(16.1.3b)

These details are then implemented for the deformedmicrostructures of Fig. 16.1.
It can be seen that the “wavelength” of the deformed flexible rod in both

microstructures is 2L, hence, resulting in a maximum deflection of 2w0. In general,
the strains in the y- and x-directions are

εy = −�U

L
(16.1.4)

and

εx = W1

W
− 1 (16.1.5)

respectively, and the y-direction strain for both microstructures under σx loading can
be obtained by substituting Eq. (16.1.3b) into Eq. (16.1.4) to yield

εy = −2.4
(w0

L

)2
(16.1.6)

The x-direction strain for the rectangular microstructure (Fig. 16.3, top left) is
easily obtained by considering only the maximum deflections of the flexible rods
since the short rigid rods remain parallel to the x-axis. Hence, the consideration of
the maximum deflection of the long flexible rods gives
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Fig. 16.3 Representative units of rectangularmicrostructure (top row) and triangularmicrostructure
(bottom row) for analysis, showing the undeformed state (left column), as well as deformed state
under σx > 0 stress (middle column) and σx < 0 stress (right column). The middle and right
columns will also be revisited later when considering buckling under σy < 0 stress

εx = 4w0

W
(16.1.7)

where the w0 is positive or negative when deflected outward (Fig. 16.3, top middle)
or inward (Fig. 16.3, top right), respectively. These strain expressions give

vxy = −εy

εx
= 3W

5L

(w0

L

)
(16.1.8)
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for the rectangular microstructure. For the triangular microstructure under σx loading
(Fig. 16.3, bottom left), the strain in x-direction can be established by firstly
considering length constancy of the short rigid rods during rotation

√
(W1 − 2w0)

2 + (L − �U )2 =
√
W 2 + L2 (16.1.9)

as indicated by Fig. 16.3 (bottom middle). For compressive stress in x-direction
(Fig. 16.3, bottom right), w0 possesses negative value. Substituting Eq. (16.1.3b)
into Eq. (16.1.9) and solving for W1, we have

W1 = 2w0 ±
√
W 2 + 4.8w2

0 − 5.76
w4

0

L2
(16.1.10)

Selecting the lower solutionwould giveW1 < 0,which is physically inadmissible.
Hence, substituting the upper solution of Eq. (16.1.10) into Eq. (16.1.5) gives

εx = −1 + 2
w0

W
+

√
1 + 4.8

w2
0

W 2
− 5.76

w4
0

W 2L2
(16.1.11)

which, together with Eq. (16.1.6), leads to

vxy = − 2.4
(

w0
L

)2
1 − 2w0

L

(
L
W

) −
√
1 + 4.8

(
w0
L

)2( L
W

)2 − 5.76
(

w0
L

)4( L
W

)2 (16.1.12)

where in the case of triangular microstructure, the ratio L/W provides the inclination
angle of the short rigid rods, tan−1(L/W ), with reference to the x-axis.

Perusal to the rectangular microstructure Fig. 16.4 (top left) indicates that when
tensile stress is applied in the y-direction, the flexible rods elongate while the short
rigid rods remain aligned parallel to the x-axis and displace almost only parallel to
the y-axis (Fig. 16.4, top right). As such

vyx = −εx

εy
≈ 0 (16.1.13)

for the rectangularmicrostructure since εx ≈ 0.When a similar stress is applied on the
triangular microstructure (Fig. 16.4, bottom left), the elongation of the flexible rods
induces rotation of the short rigid rods such that the latter become more oriented to
the y-axis, as shown in Fig. 16.4 (bottom right). This results in shortening of the entire
structure along the x-direction, thereby implying that vyx > 0 since εx < 0 < εy .

With reference to Fig. 16.5, the Poisson’s ratio for the triangular microstructure
under σy > 0 can be made by considering again the length constancy of the rigid
rods
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Fig. 16.4 Application of σy > 0 gives vyx ≈ 0 and vyx > 0 for the rectangular (top) and triangular
(bottom) microstructures, respectively

√
W 2

1 + (L + �L)2 =
√
W 2 + L2 (16.1.14)

to give

W1 =
√
W 2 − 2L�L − (�L)2 (16.1.15)

where �L > 0 is the elongation with respect to each length L of the flexible rod.
Needless to say, the strain in y-direction is

εy = �L

L
> 0 (16.1.16)

while substituting Eq. (16.1.15) into Eq. (16.1.5) gives
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Fig. 16.5 Representative unit of the triangular microstructure (left), under σy > 0 stress (middle),
and a comparison for Poisson’s ratio analysis (right)

εx = −1 +
√
1 − 2

L

W

(
�L

W

)
−

(
�L

W

)2

(16.1.17)

Therefore, we have the Poisson’s ratio

vyx = 1 −
√
1 − 2 L

W

(
�L
W

) − (
�L
W

)2
�L
L

(16.1.18)

Since

0 <

√
1 − 2

L

W

(
�L

W

)
−

(
�L

W

)2

< 1 (16.1.19)

it follows that vyx > 0 for the triangular microstructure when σy > 0. In other words,
auxeticity is non-existent for both microstructures when tensile stress is applied
parallel to the long flexible rods.

While auxeticity is non-existent when σy > 0, auxeticity is indeterminate when
σy < 0. The application of compressive stress in y-direction on these microstructures
may lead to Poisson’s ratio of either sign. In the case of the rectangularmicrostructure
as shown in Fig. 16.6 (top row), the Poisson’s ratio can be positive or negative if the
immediate neighbor of the buckled flexible rods are anti-phase, while vyx ≈ 0 if all
the buckled flexible rods are in phase. In the case of the triangular microstructure,
the Poisson’s ratio vyx can be of extreme positive or negative, as shown in Fig. 16.6
(bottom far left and far right, respectively) if all the buckled flexible rods are in
phase. Poisson’s ratio vyx between these two extremes are observed in the presence
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Fig. 16.6 Rectangular microstructures (top row) exhibiting vyx > 0 (left), vyx ≈ 0 (center), and
vyx < 0 (right), as well as triangular microstructures (bottom row) demonstrating vyx � 0 (far
left), vyx > 0 (mid-left), vyx ≈ 0 (mid-right), and vyx < 0 (far right) upon application of σy < 0.
Dashed rectangles indicate original dimension

of in phase and anti-phase buckled flexible rods, as illustrated in Fig. 16.6 (bottom,
mid-left and mid-right).

To pave a way for evaluating the Poisson’s ratio of these microstructures under
buckling load, the displacement of the loaded tip in Fig. 16.7 (left) is considered.
The available exact coordinates, in terms of the x/ l and y/ l for the tip of the loaded
column, have been given by Timoshenko and Gere (1961), where l = L/2. The
travel path of the column tip can be expressed by performing curve-fitting on the
exact data, in which the coordinate data for buckling on the other side (i.e., x/ l < 0)
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Fig. 16.7 Profile of a column of length l under a buckling load P, with φ as the tip angle with
reference to the vertical axis (left), profiles for various φ (middle), and a semi-empirical equation
for the path of travel for the free end of the column (right). The left and middle figures are modified
from Timoshenko and Gere (1961) for clarity
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is reproduced in order to comply with the boundary condition

dy

dx

∣∣∣∣
x=0

= 0 (16.1.20)

to yield

y

l
= 1 − 3

4

( x
l

)2
(16.1.21)

which is valid for tilt angle of up to 60° with respect to y-axis. The decrease in the
projected height is then �u = l − y, or

�u

l
= 1 − y

l
= 3

4

( x
l

)2
(16.1.22)

in dimensionless form, where �u = �U/2. Therefore, substituting l = L/2, �u =
�U/2 and x = w0, where

w0 = 1

2k

φ∫
0

sin θ√
sin2

(
φ

2

) − sin2
(

θ
2

)dθ (16.1.23)

with k2 = P/(E I ) (Timoshenko and Gere 1961) into Eq. (16.1.22) gives the
dimensionless reduction in projected length

�U

L
= 3

(w0

L

)2
(16.1.24)

With reference to Fig. 16.3 (top row) for compression of the rectangular
microstructure in y-direction, substitution of Eq. (16.1.24) into Eq. (16.1.4) gives

εy = −3
(w0

L

)2
(16.1.25)

which, together with Eq. (16.1.7), gives

vyx = −εx

εy
= 4

3

L

W

(w0

L

)−1
(16.1.26)

whereby positive and negative values of w0 indicate outward and inward bulging
of the buckled flexible rods, respectively. The expression for εy in Eq. (16.1.25)
also applies to the triangular microstructure under σy < 0 loading, because it simi-
larly describes the profile of the flexible rod under buckling load. With reference to
Fig. 16.3 (bottom row) for compression of the triangularmicrostructure in y-direction,
substitution of Eq. (16.1.24) into Eq. (16.1.9) gives
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W1 = 2w0 ±
√
W 2 + 6w2

0 − 9
w4

0

L2
(16.1.27)

Again, the choice of lower solution would lead to a negative value forW1. Hence,
substituting the upper solution of Eq. (16.1.27) into Eq. (16.1.5) gives

εx = −1 + 2
w0

W
+

√
1 + 6

(w0

W

)2 − 9
w4

0

W 2L2
(16.1.28)

which, together with Eq. (16.1.25), leads to

vyx = −1 + 2w0
L

(
L
W

) +
√
1 + 6

(
w0
L

)2( L
W

)2 − 9
(

w0
L

)4( L
W

)2
3
(

w0
L

)2 (16.1.29)

Arising from an increase in temperature of dT > 0, the rectangularmicrostructure
elongates in the y-direction by a thermal strain of ε(T )

y = α(T )
r dT , i.e., a length of

L increases to L
(
1 + α(T )

r dT
)
where α(T )

r is the coefficient of thermal expansion
(CTE) of the flexible rods, while the length of the short rigid rods remains unchanged,
thereby leading to ε(T )

x = 0. As such the rectangular microstructure is said to possess
zero thermal expansion (ZTE) and positive thermal expansion (PTE) along the x-
and y-directions, respectively, as indicated in Fig. 16.8 (top left).

If this structure is constrained from expanding in y-direction, then the thermally
elongated rod of length L

(
1 + α(T )

r dT
)
is compressed to its overall original dimen-

sion such that buckling takes place, as shown in the remaining parts of Fig. 16.8.
Proportionally, the maximum deflection is expressed asw0

(
1 + α(T )

r dT
)
for a length

of L
(
1 + α(T )

r dT
)
where, as before, a positive and negative values ofw0

(
1 + α(T )

r dT
)

correspond to outward and inward deflections, respectively. Therefore, the structure
is said to exhibit ZTE along the x-direction if the buckled flexible rods are in phase as
shown in Fig. 16.8 (bottom left), due to cancelation effect from the positive and nega-
tive values on both sides. However, if the buckled flexible rods are anti-phase, then
the structure can exhibit PTE or NTE if the flexible rods buckle outward (Fig. 16.8
top right) or inward (Fig. 16.8 bottom right), respectively.

With reference to Fig. 16.9, it can be seen that the prescription of constraint in
y-direction is synonymous to the compression of thermally elongated flexible rods.
Substituting

L → L
(
1 + α(T )

r dT
)

(16.1.30)

and

w0 → w0
(
1 + α(T )

r dT
)

(16.1.31)

into Eq. (16.1.25) for prescribing zero thermal strain in y-direction gives



16.1 Sign-Switching of Poisson’s Ratio with Persistently Negative … 539

Fig. 16.8 Manifestations of
ZTE in x-direction for
unconstrained rectangular
microstructure (top left), as
well as PTE (top right), ZTE
(bottom left), and NTE
(bottom right) in x-direction
with y-direction constraint
for dT > 0

εy = −3

⎛
⎝w0

(
1 + α(T )

r dT
)

L
(
1 + α

(T )
r dT

)
⎞
⎠

2

= −3
(w0

L

)2
(16.1.32)

i.e., the same expression of εy under pure buckling. Hence, equating the magnitudes
of these two expressions for strain in y-direction, i.e., the thermal strain ε(T )

y = α(T )
r dT

when unconstrained, and the prescribed εy = −3(w0/L)2 for imposing zero strain
in y-direction when constrained, we have

w0 = ±L

√
α

(T )
r dT

3
(16.1.33)

where the upper and lower signs denote outward and inward buckling patterns,
respectively. Substituting Eq. (16.1.31) into Eq. (16.1.7) for the strain in x-direction
resulting from the applied constraint in y-direction gives
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y < 0 to induce 
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Fig. 16.9 Representative unit of rectangular microstructure in original state (left), for thermal
expansion analysis in y-direction when unconstrained (middle), and occurrence of buckling when
constraint is imposed in y-direction (right)

ε(T )
x = 4w0

(
1 + α(T )

r dT
)

W
(16.1.34)

Substituting ε(T )
x = α(T )

x dT and expressing w0 in terms of flexible rod CTE, as
described by Eq. (16.1.33), we have

α(T )
x dT = ± 4√

3

L

W

(
1 + α(T )

r dT
)√

α
(T )
r dT (16.1.35)

whereα(T )
x in Eq. (16.1.35) denotes the effectiveCTE in x-direction of the rectangular

microstructure when constrained in y-direction. The term α(T )
x dT is a dimensionless

form of α(T )
x .

Consider similarly an increase in temperature of dT > 0, the triangular
microstructure also elongates in the y-direction by a strain of ε(T )

y = α(T )
r dT , i.e., a

length of L increases to L
(
1 + α(T )

r dT
)
, while the short rigid rods rotate such that

they become more aligned to the y-axis, as illustrated in Fig. 16.10 (top left). With
reference to Fig. 16.11 (middle), substituting

�L = Lα(T )
r dT (16.1.36)

into Eq. (16.1.17) gives
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Fig. 16.10 Manifestations
of NTE in x-direction for
unconstrained triangular
microstructure (top left), as
well as PTE (top right), ZTE
(bottom left), and NTE
(bottom right) in x-direction
with y-direction constraint
for dT > 0

ε(T )
x = −1 +

√
1 − 2

(
L

W

)2

α
(T )
r dT −

(
L

W

)2(
α

(T )
r dT

)2
(16.1.37a)

or

α(T )
x = − 1

dT
+

√
1

(dT )2
− 2

α
(T )
r

dT

(
L

W

)2

−
(
α

(T )
r

)2
(
L

W

)2

(16.1.37b)

Since

0 <

√
1 − 2

(
L

W

)2

α
(T )
r dT −

(
L

W

)2(
α

(T )
r dT

)2
< 1 (16.1.38)

it follows that α(T )
x < 0. As such, the triangular cell is said to possess NTE and PTE

along the x- and y-directions, respectively, as indicated in Fig. 16.10 (top left). If
this structure is constrained from expanding in y-direction, then a thermally elon-
gated flexible rod of length L

(
1 + α(T )

r dT
)
is compressed to its overall original
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Fig. 16.11 Representative unit for the analysis of triangular microstructure in original state (left),
thermal expansion in y-direction when unconstrained (middle), and occurrence of buckling when
constraint is imposed in y-direction (right)

dimension that results in buckling (Fig. 16.11, right). As before, the maximum
deflection is w0

(
1 + α(T )

r dT
)
by proportion where positive and negative values of

w0
(
1 + α(T )

r dT
)
again correspond to outward and inward deflections, respectively.

It is easily seen that both PTE and NTE are exhibited when the buckled flexible
rods are in phase; the outward and inward buckling of the flexible rods give rise
to εx > 0 (Fig. 16.10, top right) and εx < 0 (Fig. 16.10, bottom right), respec-
tively. Equation (16.1.33) for describing the deflection of the buckled flexible rods
for prescribing y-direction constraint in rectangular microstructure also applies in
the case of triangular microstructure.

Substituting Eq. (16.1.31) into Eq. (16.1.28) gives

ε(T )
x = −1 + 2

w0
(
1 + α(T )

r dT
)

W

+

√√√√√1 + 6

⎛
⎝w0

(
1 + α

(T )
r dT

)
W

⎞
⎠

2

− 9
w4

0

(
1 + α

(T )
r dT

)4

W 2L2
(16.1.39)

followed by the substitution of ε(T )
x = α(T )

x dT and Eq. (16.1.33) into Eq. (16.1.39)
leads to

α(T )
x dT = −1 ± 2√

3

L

W

(
1 + α(T )

r dT
)√

α
(T )
r dT
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+
√
1 + 2

(
L

W

)2

α
(T )
r dT

(
1 + α

(T )
r dT

)2 −
(
L

W

)2(
α

(T )
r dT

)2(
1 + α

(T )
r dT

)4

(16.1.40)

whereα(T )
x in Eq. (16.1.40) refers to the effectiveCTEof the triangularmicrostructure

when constrained in y-direction.
Based on the developed models of Poisson’s ratio under various loading condi-

tions and the developed effective CTE under free and constrained conditions, the
following plotted results graphically show how these effective mechanical proper-
ties varywith themicrostructural shape, specifically the L/W ratio. For the triangular
microstructure, the ratio L/W = 1 indicates a 45◦ inclination of the short rigid rods
to either axis, while the ratios of L/W = √

3 and L/W = 1/
√
3 denote the short rod

inclination of 60◦ and 30◦, respectively, to the x-axis. As such, the Poisson’s ratio and
effective CTEs of the triangular microstructure are plotted using these L/W ratios.
For the sake of consistency, the same set of L/W ratios are adopted for the rectan-
gular microstructure. Note that when L/W = 1/

√
3, the rectangular microstructure

is arranged in equilateral triangular array. Plots of εy versus εx accompany those of
vxy or vyx versus w0/L . The Poisson’s ratios are plotted against w0/L as the latter
is a dimensionless measure of the maximum deflection.

A family of εy versus εx and its corresponding vxy versus w0/L curves for rect-
angular microstructures under compressive and tensile stresses in x-direction are
plotted in Fig. 16.12 (top) using Eqs. (16.1.6) to (16.1.8), while the same results
for triangular microstructures are plotted in Fig. 16.12 (bottom) using Eqs. (16.1.6),
(16.1.11), and (16.1.12). The plots of εy versus εx for rectangular microstructure
are symmetrical because the strain in x-direction is independent from the rotation of
short rigid rods, and are solely due to the deflection of the long flexible rods, which
possess equal magnitudes for both compression and tension. Although the deflection
component magnitude of the long flexible rods is the same in the case of triangular
microstructure for both compression and tension, both loading directions cause the
short rigid rods to be more aligned to the x-axis, thereby giving an additional posi-
tive strain component to εx . As a result, the magnitude of εx under tension is greater
than that under compression for equal εy , thereby contributing to the non-symmetric
distribution of strain in the case of σx loading on the triangular microstructure.

Since both microstructures do not exhibit auxeticity for tensile loading in y-
direction, consideration is made on compressive loading of these microstructures. A
family of εy versus εx and its corresponding vyx versus w0/L curves for rectangular
microstructures under compressive stress in y-direction are plotted in Fig. 16.13 (top)
using Eqs. (16.1.7), (16.1.25), and (16.1.26), while the same results for triangular
microstructures are plotted in Fig. 16.13 (bottom) using Eqs. (16.1.25), (16.1.28),
and (16.1.29). Again, the observation of symmetry and non-symmetry in the plots of
εy versus εx for the σy < 0 loading in the rectangular and triangular microstructures,
respectively, is attributed to the same reason as with the σx loading. However, the
plots of positive and negative εx in the case of rectangular microstructure are based
on Fig. 16.6 (top left and right, respectively), i.e., they represent the most positive
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Fig. 16.12 Plots of εy versus εx (left column) and vxy versus w0/L (right column) for rectangular
microstructure (top row) and triangular microstructure (bottom row) under compressive and tensile
stresses in x-direction

and negative values of εx for a given εy , whereby the neighboring buckled flexible
rods are anti-phase. For other combinations of flexible rods buckling patterns, the
values of εx under a given εy fall between these extremes; an example would be in
the case where εx = 0 for any εy if the buckled flexible rods are in phase. Similarly,
for the case of σy < 0 loading on triangular microstructure, in which the results of
Fig. 16.13 (bottom) are based on the most positive and most negative values of εx
for a given εy in Fig. 16.6 (bottom far left and far right, respectively), whereby the
buckled flexible rods are in phase. When some of the buckled flexible rods are not
in phase, the εx values are in between those extreme positive and negative plotted
results.

Plots of dimensionless effectiveCTE in x-direction,α(T )
x dT against the dimension-

less CTE of the long flexible rods α(T )
r dT with constraint in y-direction, i.e., εy = 0,

at increasing temperature dT >0 for the rectangular and triangular microstructures
are furnished in Fig. 16.14 using Eqs. (16.1.35) and (16.1.40), respectively. For
every L/W ratio in each microstructure indicated in Fig. 16.14, the two curves at
α(T )
x dT > 0 and α(T )

x dT < 0 correspond to the most positive effective CTE, α(T )
x
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for the rectangular microstructure (left) and triangular microstructure (right)
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due to total outward buckling and the most negative effective CTE, α(T )
x due to total

inward buckling of the flexible rods, respectively. The total outward buckling for
the rectangular and triangular microstructures are illustrated in Fig. 16.8 (top right)
and Fig. 16.10 (top right), respectively, while the total inward buckling for the rect-
angular and triangular microstructures are indicated in Fig. 16.8 (bottom right) and
Fig. 16.10 (bottom right), respectively. When both the outward and inward buckling
of the flexible rods are present, the effective α(T )

x falls within the plotted upper and
lower bounds. A special case exists for the rectangular cells when the number of
outwardly and inwardly buckled flexible rods are equal; under such a situation the
strain in x-direction is zero, which gives α(T )

x = 0, i.e., zero thermal expansion (ZTE)
in x-direction.

In the analysis and discussion of both microstructures under compressive σy

loading, it has been shown that the Poisson’s ratio is indeterminate and that one
can only predict the most positive and the most negative vyx , which depends on
the number of flexible rods undergoing inward and outward buckling. Likewise, the
effective CTE α(T )

x with constraint εy = 0, for increasing temperature-induced buck-
ling, is indeterminate as the effective CTE is dependent on the number of inwardly
and the number of outwardly buckled flexible rods. One possible way to control
the relative number of the inwardly and outwardly buckled flexible rods, and hence
determine the exact vyx (under σy < 0) as well as α(T )

x (with εy = 0 for dT > 0), is
by creating the propensity of the flexible rods to buckle in the desired manner. This
can be attained by attaching objects with charges to create forces of attraction and
repulsion. The forces should not be sufficient to induce flexure, but the presence of
these forces would lead the flexible rods to buckle in a predictable manner.

With reference to Fig. 16.15 (top left) for the rectangular microstructure, the loca-
tions of the charged objects are indicated as circles. When the charges are arranged
as shown in Fig. 16.15 (top right), the repulsion of like charges causes the flexible
rods to buckle outward when compressed by σy , thereby leading to the most posi-
tive vyx . If the charges on each row are arranged as shown in Fig. 16.15 (bottom
right), the attraction of opposite charges causes the flexible rods to buckle inward
when compressed by σy , thereby leading to the most negative vyx . As shown in
Fig. 16.15 (right), both arrangements of charges, which are in rectangular array, lead
the flexible rods to buckle in such a manner that the neighboring flexible rods are
anti-phase. To produce vyx = 0, the charges are arranged in triangular array as shown
in Fig. 16.15 (bottom left) to induce both forces of attraction and repulsion so that the
buckled flexible rods are in phase. Having demonstrated that the Poisson’s ratio vyx

can be determined a priori via charge attachment, a rectangular microstructure that
exhibits Poisson’s ratio sign-switching upon stress direction reversal—along both
the x- and y-directions—can therefore be achieved by ordering the charges as shown
in Fig. 16.15 (bottom right).

With reference to Fig. 16.16 (top left) for the triangular microstructure, the loca-
tions of the charged objects are indicated as circles. When the charges are arranged
as shown in Fig. 16.16 (top right), the repulsion of positive charges causes the flex-
ible rods to buckle outward when compressed by σy , thereby leading to the most
positive vyx . The same effect is achieved by replacing all the positive charges with



16.1 Sign-Switching of Poisson’s Ratio with Persistently Negative … 547

Fig. 16.15 Rectangular microstructure with the location of attached objects with charges denoted
by circles (top left) arranged in such a way to produce the most positive (top right) and the most
negative (bottom right) Poisson’s ratio vyx under compressive σy loading. The locations of the
charges are different to create zero vyx (bottom left)

negative ones. If the charges on each row are arranged as shown in Fig. 16.16 (bottom
right), the attraction of opposite charges causes the flexible rods to buckle inward
when compressed by σy , thereby leading to the most negative vyx . As shown in
Fig. 16.16 (right), both arrangements of charges lead the flexible rods to buckle in
such a manner that they are in phase. The buckled flexible rods can exhibit anti-phase
pattern from one flexible rod to its immediate neighbor if the charges are arranged in
the manner depicted in Fig. 16.16 (bottom left), which gives a lower positive value
of vyx . Since the Poisson’s ratio vyx can be established by charge attachment prior to
compression, a triangular microstructure that exhibits Poisson’s ratio sign-switching
upon stress direction reversal—along both the x- and y-directions—can hence be
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Fig. 16.16 Triangular microstructure with the location of attached objects with charges denoted by
circles (top left) arranged in such away to produce themost positive (top right) and themost negative
(bottom right) Poisson’s ratio vyx under compressive σy loading. An example of intermediate vyx
between these two extremes is also shown (bottom left)

attained by arranging the charges as shown in Fig. 16.16 (bottom right). Apart from
the use of charged objects, one may also create the likelihood for the long flexible
rods to buckle in predictable pattern by mechanical, magnetic, and other approaches.
The mechanical approach can be attained by introducing imperfections, but this will
alter the overall stiffness of the microstructure. The attachment of magnets may
possibly work in similar way as that of charged objects. However, magnets could be
geometrically cumbersome as they are dipoles rather than monopoles.

Having shown that the Poisson’s ratio vyx , as a consequent of σy compression, can
be controlled by means of charged attachment for both microstructures, it follows
that under εy = 0 and dT > 0 conditions, the ambiguity of σx for the rectangular
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and triangular microstructures under the given constraint as shown in Figs. 16.8 and
16.10, respectively, can be predetermined by means of charged attachment. This is
because under the condition of increasing temperature, the elongated flexible rods
undergo buckling when constrained in the y-direction. A summary of Poisson’s ratio
and effective CTEs—the latter under free and constrained conditions—is furnished
in Table 16.1.

16.2 Sign-Switching of Poisson’s Ratio with Persistently
Positive Transverse Strain

The basic hybrid rhombic–re-entrant metamaterial microstructure is shown
Fig. 16.17a, which consists of a pair of slot and slider to effect simultaneous jam and
slide mechanism. Each column consists of a zigzag structure with alternating slots
and sliders pointing to opposite directions, as shown in Fig. 16.17b, wherein the slots
are joined to the sliders in a neighboring zigzag structure while the sliders are joined
to the slots in another neighboring zigzag structure. The zigzag vertices are pin joints
to permit free rotations with each rod member being rigid. In the relaxed state, i.e.,
original state as indicated in Fig. 16.17b, the sliders lightly touch the open ends of
the slots while the vertices from neighboring zigzags also lightly touch one another.
Upon application of compressive stress in the x-direction, as shown in Fig. 16.17c,
the vertices are prevented from motion along the x-direction due to symmetric
constraints from neighboring vertices, and therefore negative strain in x-direction
is made possible through motion of the sliders along the slots toward the closed
ends, and a simultaneous rotation of the inclined rods. In other words, the contact
points of the vertices are effectively pin joints while the slot-slider pairs are effec-
tively non-structural. The effectivemicrostructure is hence that of rhombic geometry,
which is a special case of hexagonal honeycomb with diminished horizontal ribs.
When a tensile stress is applied in the x-direction as indicated in Fig. 16.17d, the
interlock between the sliders and the open ends of the slots retains the total dimension
of the horizontal parts such that positive strain in x-direction ismade possible through
rotation of the inclined rods. The slot-slider pairs effectively become rigid horizontal
rods and the effective microstructure is therefore that of re-entrant geometry. In other
words, the hybrid rhombic–re-entrant metamaterial exhibits microstructural duality,
and hence behavioral duality with opposing Poisson’s ratio signs for opposing stress
directions (Lim 2019b).

A unit of the hybrid kite-arrowhead metamaterial microstructure is illustrated in
Fig. 16.18a, each consisting of two slots and two sliders. The inner and outer sliders
are placed in the inner and outer slots, respectively, of the neighboring parts, as
illustrated in Fig. 16.18b. In this original state, both the sliders are in light contactwith
the closed end of the slots. The outer slot-slider pairs are locked with the application
of compressive stress in the x-direction, while the inner sliders move toward the open
ends of their corresponding slots, as denoted in Fig. 16.18c. Essentially, the outer



550 16 Sign-Switching of Poisson’s Ratio with Stress Reversal

Ta
bl
e
16
.1

Su
m
m
ar
y
of

Po
is
so
n’
s
ra
tio

an
d
ef
fe
ct
iv
e
C
T
E
of

th
e
co
ns
id
er
ed

m
ic
ro
st
ru
ct
ur
es

(L
im

20
19
a)

Ty
pe

2
of

lo
ad
in
g

R
ec
ta
ng

ul
ar

m
ic
ro
st
ru
ct
ur
e

T
ri
an
gu

la
r
m
ic
ro
st
ru
ct
ur
e

R
em

ar
ks

σ
x

v
x
y

=
3 5
W

w
0

L
2

v
x
y

=
−

2.
4( w 0 L

) 2
1−

2
w
0 W
−√ 1+

4.
8( w 0 W

) 2 −5
.7
6

w
4 0

L
2
W
2

C
on
ve
nt
io
na
lw

he
n

σ
x

>
0
du
e
to

w
0
/
L

>
0,

an
d
au
xe
tic

w
he
n

σ
x

<
0
du
e
to

w
0
/
L

<
0.

Fo
r

m
id
-s
pa
n
co
nc
en
tr
at
ed

lo
ad
,w

0
is
de
fin

ed
by

E
q.

(1
6.
1.
2)

σ
y

>
0

v
yx

=
0

v
yx

=
1−

√ 1−
2
L
�
L

W
2

−( �
L

W

) 2
�
L L

C
on
ve
nt
io
na
l

σ
y

<
0

v
yx

=
4 3

L
2

W
w
0

v
yx

=
−1

+2
w
0 W
+√ 1+

6( w 0 W

) 2 −9
w
4 0

L
2
W
2

3( w 0 L

) 2
A
ux
et
ic
ity

is
in
de
te
rm

in
at
e,
un

le
ss

th
e
pr
op

en
si
ty

to
bu
ck
le

in
pr
ed
ic
ta
bl
e
m
an
ne
r
is

cr
ea
te
d.
T
he
se

m
os
t

po
si
tiv

e
an
d
m
os
t

ne
ga
tiv

e
v
yx

ar
e
ba
se
d

on
w
0

>
0
an
d

w
0

<
0,

re
sp
ec
tiv

el
y.
Fo

r
bu
ck
lin

g
lo
ad
,w

0
is

de
fin

ed
by

E
q.
(1
6.
1.
23
)

dT
	=

0,
σ
y

=
0

α
(T

)
x

=
0,

α
(T

)
y

=
α

(T
)

r
α

(T
)

x
=

−
1 dT

+
√

1
(d
T

)2
−

2
α

(T
)

r dT

( L W

) 2 −
( α

(T
)

r
L W

) 2 ,
α

(T
)

y
=

α
(T

)
r

C
on
ve
nt
io
na
l (c

on
tin

ue
d)



16.2 Sign-Switching of Poisson’s Ratio with Persistently Positive … 551

Ta
bl
e
16
.1

(c
on
tin

ue
d)

Ty
pe

2
of

lo
ad
in
g

R
ec
ta
ng

ul
ar

m
ic
ro
st
ru
ct
ur
e

T
ri
an
gu

la
r
m
ic
ro
st
ru
ct
ur
e

R
em

ar
ks

dT
>

0,
ε
y

=
0

α
(T

)
x

=
±4

L
√ 3W

√ α
(T

)
r dT

( 1
+

α
(T

)
r

dT
)

α
(T

)
x

=
−

1 dT
±

2 √ 3

L W

( 1
+

α
(T

)
r

dT
)√ α

(T
)

r dT

+
√

1

(d
T

)2
+

2( L W

) 2
α

(T
)

r dT

( 1
+

α
(T

)
r

dT
) 2

−
( α

(T
)

r
L W

) 2 (
1

+
α

(T
)

r
dT

) 4

N
T
E
in

x-
di
re
ct
io
n
is

in
de
te
rm

in
at
e,
un

le
ss

th
e
lik

el
ih
oo

d
to

bu
ck
le

in
pr
ed
ic
ta
bl
e
m
an
ne
r
is

m
ad
e



552 16 Sign-Switching of Poisson’s Ratio with Stress Reversal

(a) (b) 

(c) (d) 
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Fig. 16.17 Hybrid rhombic–re-entrant metamaterial microstructure, showing a a slot and a slider
in a symmetrical half, b original microstructure, c conversion to rhombic microstructure under
compressive load, and d conversion to re-entrant microstructure under tensile load. The effective
parts in the middle units of c and d are indicated in gray. A dashed rectangle that encompasses the
microstructure b is transposed on c and d to aid visual comparison

slot-slider pairs form rigid rods while the inner slot-slider pairs are non-structural
so as to effectively form a network of kite microstructural geometry. When tensile
load is applied in the x-direction as shown in Fig. 16.18d, the inner slot-slider pairs
are being locked, while the outer sliders move toward the open ends of the outer
slots. The inner slot-slider pairs become rigid rods while the outer slot-slider pairs
are non-load bearing. This results in a modified double arrowhead geometry. For
this reason, it can be said that the hybrid kite-arrowhead metamaterial demonstrates
microstructural duality, and therefore behavioral dualitywith opposite Poisson’s ratio
signs being manifested under opposing stress directions (Lim 2019b).
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(c) (d) 
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Fig. 16.18 Hybrid kite-arrowhead metamaterial microstructure showing a a pair of slots and a pair
of sliders in a symmetrical half, b original microstructure, c conversion to kite microstructure under
compressive load, and d conversion to double arrowhead-like microstructure under tensile load.
The effective parts in the middle units of c and d are indicated in gray. A dashed rectangle that
encompasses the original microstructure b is transposed on c and d to aid visual comparison

In what follows, the representative units for both metamaterials’ microstructures
are isolated for the purpose of analysis,whereby the origin is denotedby “O”while the
vertices “A” and “B” are freely rotating pin-jointed vertices as indicated in Figs. 16.19
and 16.20. For the hybrid rhombic–re-entrant microstructure, “O” is located at the
mid-span of a horizontal slot-slider mechanism, whereas “C” is located midway
in the nearest horizontal slot-slider; both are not freely rotating pin joints for this
microstructure. For the hybrid kite-arrowheadmicrostructure, “O” is a freely rotating
joint while “C” is also a freely rotating joint, but forms the origin of the neigh-
boring representative unit. The original states of both microstructures are shown in
Figs. 16.19a and 16.20a. The geometries as illustrated in Figs. 16.19b and 16.20b
refer to the casewhere compressive stress is applied along the x-direction,while those
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Fig. 16.19 Representative
unit of the hybrid
rhombic–re-entrant
metamaterial for analysis:
a original state,
b compressed, and
c stretched along x-direction
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Fig. 16.20 Representative
unit of the hybrid
kite-arrowhead metamaterial
for analysis: a original state,
b compressed, and
c stretched along x-direction.
Redundant parts are
indicated in gray x 
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in Figs. 16.19c and 16.20c correspond to the case where tensile stress is applied in
the y-direction.

The analysis of compression in x-direction for the hybrid rhombic–re-entrant
metamaterial can be established by comparing Fig. 16.19b against Fig. 16.19a, in
which B is prevented from moving to the left due to a symmetrically opposing
vertex; overall contraction in x-direction is therefore made possible with the sliding
of vertices A and C in the slots toward O and B, respectively, to their new locations
A’ and C’, with the vertex B shifting upward to B’. This causes the inclined rod of
length l to rotate clockwise by an amount dθ such that the projections y0 elongates
to y while x0 shortens to x.

From the projected dimension along the y-axis

y0 = l sin θ (16.2.1)



556 16 Sign-Switching of Poisson’s Ratio with Stress Reversal

in the original state, and

y = l sin(θ + dθ) ≈ l(sin θ + dθ cos θ) (16.2.2)

in the deformed state, we have the change in projected dimension along y-direction

dy = y − y0 = ldθ cos θ (16.2.3)

so as to give the corresponding strain component

εy = dy

y0
= dθ

tan θ
(16.2.4)

Based on the projected dimension along the x-axis

x0 = l cos θ (16.2.5)

in the original state, and

x = l cos(θ + dθ) ≈ l(cos θ − dθ sin θ) (16.2.6)

in the deformed state, one obtains the change of projected dimension in x-direction

dx = x − x0 = −ldθ sin θ (16.2.7)

to yield its strain component

εx = dx

x0
= −dθ tan θ (16.2.8)

This gives the Poisson’s ratio of the hybrid rhombic–re-entrant microstructure for
σx < 0

vxy = −εy

εx
= 1

tan2 θ
(16.2.9)

which indicates conventional behavior for σx < 0.
The analysis of tension in x-direction for the hybrid rhombic–re-entrantmetamate-

rial can be obtained by comparing Fig. 16.19c vis-à-vis Fig. 16.19a. Since the sliders
are locked on the right side of the slots, extension in x-direction is made possible
by clockwise rotation of the inclined rod by an angle dθ such that BC undergoes
curvilinear motion to B’C’, i.e., B’C’ remains horizontal and retains the same length
as that for BC. Considering the original state, the projected length on y-axis is given
by Eq. (16.2.1), and for a clockwise rotation of dθ the projected length at the same
axis is the same as that in Eq. (16.2.2), thereby leading to the incremental change
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of dimension in y-direction and its strain as furnished in Eqs. (16.2.3) and (16.2.4),
respectively. Likewise, the projected dimension along the x-axis in the original state
is that given in Eq. (16.2.5). Upon rotation of the inclined rod by dθ , the projected
dimension along the x-direction increases, and can be obtained from Fig. 16.19c as

x = 2x0 − l cos(θ + dθ) ≈ l(cos θ + dθ sin θ) (16.2.10)

so as to give

dx = x − x0 = ldθ sin θ (16.2.11)

and its corresponding strain

εx = dx

x0
= dθ tan θ (16.2.12)

thereby leading to

vxy = −εy

εx
= − 1

tan2 θ
(16.2.13)

which indicates auxetic behavior for σx > 0.
The analysis of compression in x-direction for the hybrid kite-arrowhead meta-

material can be established by contrasting Fig. 16.20b with reference to Fig. 16.20a,
whereby the length l3 remains constant as A and C displace to A’ and C’, respec-
tively. During this time, OA rotates anticlockwise to OA’ by an angle dθ1 while AC
rotates clockwise to A’C’ by dθ3. Therefore, the compression analysis considers the
movement of linkage OAC while the linkange ABC is redundant.

Perusal to Fig. 16.20a for the projection on y-axis

y0 = l1 sin θ1 = l3 sin θ3 (16.2.14)

at the original state, and consideration of y = l1 sin(θ1 + dθ1) = l3 sin(θ3 + dθ3)
from Fig. 16.20b for similar projection gives

y = l1(sin θ1 + dθ1 cos θ1) = l3(sin θ3 + dθ3 cos θ3) (16.2.15)

based on infinitesimal deformation. This gives the incremental change in dimension
measured along the y-axis

dy = y − y0 = l1dθ1 cos θ1 = l3dθ3 cos θ3 (16.2.16)

and its corresponding strain
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εy = dy

y0
= dθ1

tan θ1
= dθ3

tan θ3
(16.2.17)

To pave a way for obtaining the strain in x-direction, it is useful at this stage to
write

l3
l1

= sin θ1

sin θ3
(16.2.18)

based on Eq. (16.2.14), and

sin θ1 + dθ1 cos θ1 = l3
l1

(sin θ3 + dθ3 cos θ3) (16.2.19)

from Eq. (16.2.15). Substituting Eq. (16.2.18) into Eq. (16.2.19) gives

dθ3
dθ1

= tan θ3

tan θ1
(16.2.20)

Reference to Fig. 16.20a gives the projection along the x-axis through OAC as
x0 = l1 cos θ1 + l3 cos θ3 or, using Eq. (16.2.18),

x0 = l1

(
cos θ1 + sin θ1

tan θ3

)
(16.2.21)

for the original state, while perusal to Fig. 16.20b yields a similar projection through
OA’C’ as x = l1 cos(θ1 + dθ1) + l3 cos(θ3 + dθ3), or

x = l1(cos θ1 − dθ1 sin θ1) + l3(cos θ3 − dθ3 sin θ3) (16.2.22)

on the basis of infinitesimal rod rotation. Substituting Eqs. (16.2.18) and (16.2.20)
into Eq. (16.2.22) eliminates l3 and dθ3 to yield

x = l1

(
cos θ1 − dθ1 sin θ1 + sin θ1

tan θ3
− cos θ1 tan θ3dθ1

)
(16.2.23)

Therefore, we have the incremental change in dimension along the x-direction

dx = x − x0 = −l1dθ1(sin θ1 + cos θ1 tan θ3) (16.2.24)

and strain in the same direction

εx = dx

x0
= −dθ1 tan θ3 (16.2.25)

This gives the Poisson’s ratio
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vxy = −εy

εx
= 1

tan θ1 tan θ3
(16.2.26)

which denotes conventional behavior for σx < 0. For the special case, where l1 = l3
(or θ1 = θ3), Eq. (16.2.26) simplifies to

vxy = 1

tan2 θ1
(16.2.27)

which is analogous to Eq. (16.2.9) for the compression of the hybrid rhombic–re-
entrant microstructure in the x-direction.

The analysis of tensile load application in x-direction on the hybrid kite-arrowhead
metamaterial is carried out by comparing Fig. 16.20c with respect to Fig. 16.20a,
whereby the length l2 remains constant as A, B, and C displace to A’, B’, and C’,
respectively. During this time, OA and AB rotate anticlockwise to OA’ and A’B’ by
dθ1 and dθ2, respectively, while BC moves to B’C’ by translation along the x-axis.
In other words, the tensile analysis accounts for the motion of linkage OABC, with
the link AC being redundant. Perusal to Fig. 16.20a for the projection on y-axis at
the original state

y0 = l1 sin θ1 = l2 sin θ2 (16.2.28)

and consideration of y = l1 sin(θ1 + dθ1) = l2 sin(θ2 + dθ2) from Fig. 16.20c for
similar projection gives rise to

y = l1(sin θ1 + dθ1 cos θ1) = l2(sin θ2 + dθ2 cos θ2) (16.2.29)

on the assumption of infinitesimal deformation. This gives the incremental change
in dimension measured along the y-axis

dy = y − y0 = l1dθ1 cos θ1 = l2dθ2 cos θ2 (16.2.30)

and its strain

εy = dy

y0
= dθ1

tan θ1
= dθ2

tan θ2
(16.2.31)

As before, it is beneficial to express

l2
l1

= sin θ1

sin θ2
(16.2.32)

based on Eq. (16.2.28) and

sin θ1 + dθ1 cos θ1 = l2
l1

(sin θ2 + dθ2 cos θ2) (16.2.33)
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from Eq. (16.2.29). Substituting Eq. (16.2.32) into Eq. (16.2.33) gives

dθ2
dθ1

= tan θ2

tan θ1
(16.2.34)

In addition,

l4 = l2 cos θ2 + l3 cos θ3 (16.2.35)

Reference to Fig. 16.20a gives the projection along the x-axis through OABC as
x0 = l1 cos θ1 − l2 cos θ2 + l4 or, using Eq. (16.2.32),

x0 = l1

(
cos θ1 − sin θ1

tan θ2

)
+ l4 (16.2.36)

for the original state, while perusal to Fig. 16.20c yields a similar projection through
OA’B’C’ as x = l1 cos(θ1 + dθ1) − l2 cos(θ2 + dθ2) + l4, or

x = l1(cos θ1 − dθ1 sin θ1) − l2(cos θ2 − dθ2 sin θ2) + l4 (16.2.37)

based on infinitesimal rod rotation. Substituting Eqs. (16.2.32) and (16.2.34) into
Eq. (16.2.37) eliminates l2 and dθ2 to yield

x = l1

(
cos θ1 − dθ1 sin θ1 − sin θ1

tan θ2
+ cos θ1 tan θ2dθ1

)
+ l4 (16.2.38)

Therefore, we have the incremental change in dimension along the x-direction

dx = x − x0 = l1dθ1(− sin θ1 + cos θ1 tan θ2) (16.2.39)

and strain in the corresponding direction

εx = dx

x0
=

dθ1 tan θ2

(
1

tan θ1
− 1

tan θ2

)
1

tan θ1
− 1

tan θ2
+ l4

l1 sin θ1

(16.2.40)

Substituting Eq. (16.2.35) into Eq. (16.2.40) gives

εx = dθ1 tan θ3
tan θ2 − tan θ1

tan θ3 + tan θ1
(16.2.41)

thereby leading to the Poisson’s ratio

vxy = −εy

εx
= 1

tan θ1 tan θ3

(
tan θ1 + tan θ3

tan θ1 − tan θ2

)
(16.2.42)
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which indicates auxetic behavior for σx > 0 because tan θ1 < tan θ2. Although
AC is redundant in the case of tensile σx , the angle θ3 comes into play arising
from the need to include the length l4 for evaluating x, i.e., OC’, as shown in
Fig. 16.20c. Equation (16.2.42) is comparable to Eq. (16.2.26) except for the terms
in the parenthesis.

Perusal to Eqs. (16.2.9) and (16.2.13) for the Poisson’s ratio vxy of the hybrid
rhombic–re-entrant metamaterial, as a result from σx loading, indicates that the
magnitudes of vxy is gigantic if the inclined rod is highly aligned to the x-axis,
i.e.,

lim
θ→0◦ vxy =

{+∞ ⇔ σx < 0
−∞ ⇔ σx > 0

(16.2.43)

but diminishes when the inclined rod becomes oriented toward the y-axis

lim
θ→90◦ vxy = 0 (16.2.44)

The variation of Poisson’s ratio for other values of θ is plotted in Fig. 16.21 to aid
visual observation.

With reference to Eqs. (16.2.26) and (16.2.42) for the Poisson’s ratio vxy of the
hybrid kite-arrowhead metamaterial arising from σx loading, we observe that

lim
θ1→0◦ vxy =

{+∞ ⇔ σx < 0
−∞ ⇔ σx > 0

(16.2.45)

and

Fig. 16.21 Switching of
Poisson’s ratio vxy sign for
the hybrid
rhombic–re-entrant
metamaterial due to σx
direction reversal
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Fig. 16.22 Positive Poisson’s ratio vxy for the hybrid kite-arrowhead metamaterial under
compressive σx

lim
θ1→90◦ vxy = 0 ⇔ σx < 0 (16.2.46)

which resemble the hybrid rhombic–re-entrant metamaterial characteristic. Unlike
the hybrid rhombic–re-entrant metamaterial, perusal to Eq. (16.2.42) for the hybrid
kite-arrowhead metamaterial under tensile load further indicates that

lim
θ1→θ2

vxy = −∞ ⇔ σx > 0 (16.2.47)

In addition to these extremes, thePoisson’s ratio for other values of θ1 are furnished
in Figs. 16.22 and 16.23 to facilitate visual observation under compressive and tensile
σx , respectively.

For Special Case I where the joints ABC in Fig. 16.20a form the corners of an
isosceles triangle such that l3 = l2 (or θ3 = θ2) as the original condition, Eq. (16.2.42)
reduces to

vxy = 1

tan θ1 − tan θ2

(
1

tan θ1
+ 1

tan θ2

)
(16.2.48)

To facilitate comparison with Eq. (16.2.48), one may express Eq. (16.2.26) as

vxy = 1

tan θ1 + tan θ3

(
1

tan θ1
+ 1

tan θ3

)
(16.2.49)
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Fig. 16.23 Negative Poisson’s ratio vxy for the hybrid kite-arrowhead metamaterial under tensile
σx , with variation of θ2 at fixed θ3 (left) and variation of θ3 at fixed θ2 (right)

For Special Case II, where the angle BAC in Fig. 16.20a forms a right angle, we
have θ2 + θ3 = 90◦ such that applying the relation tan θ2 tan θ3 = 1 on Eq. (16.2.42)
gives vxy = − tan(θ1 + θ3)/ tan θ1 or

vxy = 1

tan θ1

1

tan(θ1 − θ2)
(16.2.50)

which is comparable to Eq. (16.2.26). The Poisson’s ratio plots of these two special
cases are shown in Fig. 16.24.

A note on application would be useful at this juncture. For the purposes of wrap-
ping a flat sheet onto a curved surface, a positive, a zero or a negative Poisson’s ratio

Fig. 16.24 Negative Poisson’s ratio vxy for the hybrid kite-arrowhead metamaterial under tensile
σx , under a Special Case I (θ3 = θ2) and b Special Case II (θ2 + θ3 = 90◦)



564 16 Sign-Switching of Poisson’s Ratio with Stress Reversal

material is advised if the surface takes the form of an anti-clastic shape, a cylindrical
shape or a synclastic shape in order to reduce bending stress in the sheet material.
This line of reasoning implies that the choice of Poisson’s ratio sign is dependent on
the application. Likewise, the choice of auxetic fiber is useful to resist fiber pull-out
from the matrix material due to the self-locking mechanism in the form of radial
expansion during axial pulling; however, auxetic fibers are easily pushed out from
matrix material due to radial contraction. In fact, it is the conventional fibers that
resist push-out due to radial expansion, although it is also known that conventional
fibers are easily pulled out due to the resulting radial contraction. If the fiber behaves
as auxetic material during fiber pull-out (σz > 0 ⇒ vzr < 0) but becomes conven-
tional material during fiber push-out (σz < 0 ⇒ vzr > 0), then such a fiber resists
both pull-out and push-out as a result of its duality.

16.3 Conclusions

It can be concluded from Sect. 16.1 that the Poisson’s ratio vxy sign-switching—
triggered by the reversal of σx direction—is attained by designing microstructures
that stand in between two microstructures that give conventional and auxetic prop-
erties, such that σx loading in opposite directions change the original microstructure
to those associated with Poisson’s ratio of opposite signs (Lim 2019a). While both
microstructures are non-auxetic under σy tension, the Poisson’s ratio vyx is inde-
terminate in the case of σy compression and can range from positive to negative.
This ambiguity can be removed by incorporation of charged attachments so as to
create the propensity of the flexible rods in buckle in predictable manner, thereby
clearing the way for the Poisson’s ratio vyx to be determinable. By alternating the
charge signs along x-direction for both microstructures, the Poisson’s ratio vyx also
exhibits sign-switching upon reversal of σy direction. In addition to auxeticity, these
microstructures reveal NTE and ZTE properties under unconstrained and constrained
boundaries when specific conditions are met.

Unlike Sect. 16.1, two metamaterial microstructures—the hybrid rhombic–re-
entrant metamaterial and the hybrid kite-arrowhead metamaterial—have been intro-
duced inSect. 16.2 to produce sign toggling of Poisson’s ratio upon reversal of applied
stress direction. Specifically, these metamaterials exhibit the following opposing
Poisson’s ratio properties

σx < 0 ⇒ vxy > 0

σx > 0 ⇒ vxy < 0

or collectively as vxyσx < 0 (Lim 2019b). While the approach of attaining Poisson’s
ratio sign-switching upon stress reversal in Sect. 16.1 can be achieved by catering
for lateral contraction upon axial loading to give vxyσx > 0, the opposing sense of
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Poisson’s ratio toggling elucidated in Sect. 16.2 is made possible by means of simul-
taneous jam and slide mechanism in both metamaterials. The capability of materials
to switch their Poisson’s ratio signs by mere stress direction reversal permits them to
act in ways that can only be partially fulfilled by auxetic and conventional materials.
While this chapter discussed the change in Poisson’s ratio signs with the reversal of
applied stress direction, it will be shown in the next chapter by way of examples how
metamaterias can be designed such that their expansion coefficients toggle between
positive and negative signs upon reversal of (hygro)thermal changes such that the
(hygro)thermal strains in the direction(s) of interest are either persistently negative
(Lim 2019c) or persistently positive (Lim 2019d).
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Chapter 17
Sign-Switching of Environmental
Expansion Coefficients
with Environmental Change Reversals

Abstract This chapter considers two examples of expansion coefficient sign-
switching upon environmental change reversal. For the first example, the thermal
and moisture strains in one direction are persistently negative. In the first instance, it
is shown that these microstructures exhibit Poisson’s ratio sign-toggling with stress
direction reversal in the same manner as that discussed in Sect. 16.1. In the second
example, the in-plane thermal strain is shown to be persistently positive, based on
the principle of microstructural duality.

Keywords Moisture expansion · Poisson’s ratio · Thermal expansion ·
Sign-flipping · Sign-reversible · Sign-switching · Sign-toggling · Stress reversal

17.1 Sign-Switching of Expansion Coefficients
with Persistently Negative Hygrothermal Strain
in One Direction

With reference to the microstructure shown in Fig. 17.1a, the application of tensile
load and compressive load in the horizontal direction, i.e., parallel to the x-axis, gives
contraction in the vertical direction, i.e., parallel to the y-axis, as shown in Fig. 17.1b,
c. In other words, this microstructure exhibits conventional and auxetic properties
depending on the sign of applied load σx . Specifically, vxy > 0 for σx > 0 but
vxy < 0 when σx < 0. The quantitative description can be obtained using l1 and l2
as the lengths of the inclined rod (or rod 1) and vertical rod (or rod 2), respectively,
such that rod 1 is inclined at an angle of θ1 from the horizontal axis, while rod 2 is
perpendicular to this axis, as shown in Fig. 17.1d. The application of loads along
the x-axis brings about rotation of rod 1 and rod 2 by an amount dθ1 and dθ2. It
can be seen from Fig. 17.1e, f that both tensile and compressive loads along the x-
direction would rotate rod 1 in the same direction, with decrease to the θ1 angle by an
amount dθ1, hence the final angle being θ1 − dθ1. On the other hand, the application
of tensile and compressive load would rotate rod 2 by an amount dθ2 in opposing
directions, thereby leading to the final angles of θ2 + dθ2 and θ2 − dθ2, respectively.
Since θ2 = 90◦, it is sufficient to indicate only dθ2 in Fig. 17.1e, f. The following
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Fig. 17.1 a A microstructure that gives dual properties under direct axial load along horizontal
direction, i.e., b conventional property under tensile load, and c auxetic property under compressive
load; d a representative unit for analysis, e representative unit under tensile load, and f representative
unit under compressive load. The gray shade in (d), which is enclosed by rod 1, rod 2 and the x-axis,
is replicated in (e) and (f) to facilitate comparison

analysis in this section assumes that rod 1 and rod 2 are rigid and permitted to rotate
at the pin joints (Lim 2019a).

The strain along the x-direction can be arrived at by considering the change in
the horizontal length l3 by the amount dl3, which is also dx . With reference to
Fig. 17.1d–f, the horizontal dimension of

x0 = l1 cos θ1 (17.1.1)

encounters a change in dimension by an amount

dx = l1 cos(θ1 − dθ1) ± l2 sin dθ2 − l1 cos θ1 (17.1.2)
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where the upper and lower signs correspond to the application of horizontal tensile
and compressive loads, respectively. Dividing Eq. (17.1.3) by Eq. (17.1.1) gives the
horizontal strain

εx = cos dθ1 − 1 + tan θ1(sin dθ1 ± sin dθ2) (17.1.3)

Perusal to Fig. 17.1d–f again shows that the horizontal dimension

y0 = l1 sin θ1 = l2 (17.1.4)

experiences a change in dimension of

dy = l1 sin(θ1 − dθ1) − l1 sin θ1 = l2(cos dθ2 − 1) (17.1.5)

Dividing Eq. (17.1.5) with Eq. (17.1.4) gives the vertical strain

εy = cos dθ1 − sin dθ1
tan θ1

− 1 (17.1.6)

based on rod 1, or

εy = cos dθ2 − 1 (17.1.7)

on the basis of rod 2. Since both descriptions of vertical strains are common, they
are equated to express the rotation of rod 2 in terms of rod 1 angle and its rotation

dθ2 = cos−1

(
cos dθ1 − sin dθ1

tan θ1

)
(17.1.8)

such that substitution of Eq. (17.1.8) into Eq. (17.1.3 ) gives

εx = cos dθ1 − 1 + tan θ1

{
sin dθ1 ± sin

[
cos−1

(
cos dθ1 − sin dθ1

tan θ1

)]}
(17.1.9)

where, as before, the upper and lower signs refer to the application of tensile
and compressive loads, respectively. For the special case of θ1 = 45◦, the strain
descriptions reduce to

εx = cos dθ1 − 1 + sin dθ1 ± sin
[
cos−1(cos dθ1 − sin dθ1)

]
(17.1.10)

and

εy = cos dθ1 − sin dθ1 − 1 (17.1.11)
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Fig. 17.2 Curves of εy
versus εx for
θ1 = 30◦, 45◦, 60◦
manifesting auxetic and
conventional behavior
initiated by the prescription
of εx < 0 and εx > 0,
respectively
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The values of dθ1 and dθ2 are positive due to theway they are denoted in Fig. 17.1e,
f.

Plots of vertical strain versus horizontal strain are furnished in Fig. 17.2, whereby
auxeticity is demonstrated during compressionwhile conventional behavior is shown
during tension. A discrimination between tensile and compressive loads is not made
through the sign of�θ1 since this angular change is defined as being positive for both
tensile and compressive loads. The discrimination between tensile and compressive
loads is effected by the choice of upper and lower signs in Eq. (17.1.9). Reference to
Fig. 17.2 also suggests that the condition of zero Poisson’s ratio (ZPR) is achieved
when the deformation is infinitesimal.

The deformation pattern shown in Fig. 17.1 can be achieved by means of thermal
or moisture expansions if the microstructure is modified through the insertion of
a reinforcing rod aligned parallel to the x-axis, as shown in Fig. 17.3a. Let this
reinforced rod be called rod 3, the length l3 now represents the original length of
rod 3 and dl3 denotes the change in the length of this rod. Suppose rod 1 and rod
2 are again rigid, then a change in temperature dT or moisture concentration dC
in the surrounding environment leads to a change in temperature dT or moisture
concentration dC3 in rod 3 at steady state. Let the coefficient of thermal expansion
(CTE) and the coefficient of moisture expansion (CME) of rod 3 be α

(T )
3 and α

(C)
3 ,

respectively, then

dl3 = l3α
(T )
3 dT (17.1.12)

due to thermal expansion, or

dl3 = l3α
(C)
3 dC3 (17.1.13)
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Fig. 17.3 aModified microstructure from Fig. 17.1a by incorporation of horizontally aligned rods
so as to produce overall vertical contraction with b expansion of rod 3 and c contraction of rod 3;
the representative units of (b) and (c) are displayed in (d) and (e), respectively, with the shaded
region representing the area enclosed by rod 1, rod 2, and rod 3 before hygrothermal strain

due to moisture expansion. Since rod 3 is aligned along the x-axis, it follows that
its strain is representative of the horizontal strain for the microstructure. Writing in
terms of strain

εx = ε3 = dl3
l3

(17.1.14)

wehave the overallCTEandCMEof themicrostructure along the horizontal direction

α(T )
x = ε(T )

x

dT
= α

(T )
3 (17.1.15)

and

α(C)
x = ε(C)

x

dC
, α

(C)
3 = ε

(C)
3

dC3
(17.1.16)

respectively.
It is obvious that the effective CTE and the CME of this modified microstructure

along the x-axis have to be positive if one assumes that the CTE or CME of rod 3 to be
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positive. However, a negative CTE or negative CME can be found for this modified
microstructure along the y-axis. The deformation patterns shown in Fig. 17.1b, c due
to mechanical loading along the x-axis correspond to those furnished in Fig. 17.3b,
c, respectively, arising from the change in temperature or moisture concentration.
Since the rotations of rod 1 and rod 2 in Figs. 17.3d and 17.4e are similar to those in
Fig. 17.1e, f, respectively, the strain expressions from the previous section applies to
the case where rod 3 is expansible with rod 1 and rod 2 remaining rigid. Substituting

ε(T )
y = α(T )

y dT
ε(C)
y = α(C)

y dC
(17.1.17)

into Eq. (17.1.6) gives the overall CTE and CME along the y-axis as

α(T )
y = 1

dT

(
cos dθ1 − sin dθ1

tan θ1
− 1

)
(17.1.18)

and

Fig. 17.4 a The same modified microstructure can be made to exhibit overall vertical contraction
due to b expansion of rod 1 and c contraction of rod 1; the representative units for (b) and (c) are
furnished in (d) and (e), respectively
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α(C)
y = 1

dC

(
cos dθ1 − sin dθ1

tan θ1
− 1

)
(17.1.19)

respectively. For this reason, Fig. 17.2 applies for the modified microstructure of
Fig. 17.3a, whereby the vertical and horizontal axes in Fig. 17.2 can be replaced by
α(T )
y and α(T )

x , respectively, for thermal fluctuation. In the case of moisture concen-
tration changes, the vertical and horizontal axes of Fig. 17.2 can be replaced by α(C)

y

and α(C)
x , respectively, for the modified microstructure of Fig. 17.3a.

Reference toFig. 17.4 indicates that negative expansion can also be observed along
the y-direction without strain along the x-axis, i.e., it exhibits zero thermal expansion
(ZTE) and zeromoisture expansion (ZME) in the x-direction. The negative expansion
along the y-direction is made possible by the expansion or contraction of rod 1 with
rod 2 and rod 3 being rigid. Starting from Fig. 17.4a, the expansion and contraction
of the inclined rods lead to the deformed microstructure indicated by Fig. 17.4b, c,
respectively. Since the angles θ1 − dθ1 and θ2 − dθ2 in Fig. 17.4d arising from the
expanded length l1 + dl1 of rod 1 conversely correspond to angles of θ1 + dθ1 and
θ2 + dθ2 in Fig. 17.4e arising from the contracted length l1 − dl1 of rod 1, it suffices
to consider only one of them in analysis. By the length constancy of rod 3 as shown
in Fig. 17.4d,

l3 = (l1 + dl1) cos(θ1 − dθ1) − l2 sin dθ2 = l1 cos θ1 (17.1.20)

Dividing Eq. (17.1.20) by Eq. (17.1.1) and recognizing that dl1/ l1 = ε1 and
l2/ l1 = sin θ1, the angular change of rod 2 inclination is obtained as

dθ2 = sin−1

[
− 1

tan θ1
+ (1 + ε1)

(
sin dθ1 + cos dθ1

tan θ1

)]
(17.1.21)

The change in vertical dimension

dy = (l1 + dl1) sin(θ1 − dθ1) − l1 sin θ1 = l2(cos dθ2 − 1) (17.1.22)

leads to the vertical strain by dividing it with Eq. (17.1.4), i.e.,

εy = (1 + ε1)

(
cos dθ1 − sin dθ1

tan θ1

)
− 1 (17.1.23)

based on rod 1, and

εy = cos dθ2 − 1 (17.1.24a)

on the basis of rod 2. The latter can be expressed in terms of θ1 by virtue of
Eq. (17.1.21), i.e.,
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εy = cos

{
sin−1

[
− 1

tan θ1
+ (1 + ε1)

(
sin dθ1 + cos dθ1

tan θ1

)]}
− 1 (17.1.24b)

It is obvious that the strain of rod 1 is related to its angular rotations of rod 1 and
rod 2. To establish a relationship of ε1 with dθ1 and dθ2, we apply the sine rule on
Fig. 17.4d, i.e.,

l1 + dl1
sin(90◦ + dθ2)

= l2
sin(θ1 − dθ1)

(17.1.25)

to give

ε1 = cos dθ2
cos dθ1 − sin dθ1

tan θ1

− 1 (17.1.26)

Calculations for the vertical strain can be made by providing a starting solution
for dθ2 in Eq. (17.1.21) with ε1 = 0 in the first instance. The obtained dθ2 is then
substituted into Eq. (17.1.26) to obtain a better estimate of ε1, which is then used for
extracting a more accurate dθ2 which, in turn, facilitates a refined ε1. This iteration
process continues until no appreciable change in either dθ2 or ε1 is observed. The
final value of ε1 is then substituted into Eq. (17.1.24b) to obtain εy . For the special
case of θ1 = 45◦, the general expressions are greatly simplified to

dθ2 = sin−1[−1 + (1 + ε1)(sin dθ1 + cos dθ1)] (17.1.27)

ε1 = cos dθ2
cos dθ1 − sin dθ1

− 1 (17.1.28)

εy = cos
{
sin−1[−1 + (1 + ε1)(sin dθ1 + cos dθ1)]

} − 1 (17.1.29)

Figure 17.5 (left) shows the iterative process in the case of θ1 = 45◦, i.e., a starting
value of dθ2 (with ε1 = 0) is put forth in the first instance using Eq. (17.1.27), whose
result is then used in Eq. (17.1.28) for calculating the starting or first value of ε1
in Fig. 17.5 (right). As shown in Fig. 17.5, the results quickly converge by the first
iteration; however, computation is continued until the fifth iteration for the sake of
accuracy in subsequent calculation of the vertical strain described in Eq. (17.1.29).
The profiles of εy versus dθ1 at θ1 = 30◦, 45◦, 60◦ are plotted in Fig. 17.6. On the
basis of Eq. (17.1.17), the vertical strain as induced by changes to the thermal and
moisture concentration can be expressed in terms of CTE and CME as

α(T )
y = 1

dT

{
cos

{
sin−1

[
− 1

tan θ1
+ (1 + ε1)

(
sin dθ1 + cos dθ1

tan θ1

)]}
− 1

}

(17.1.30)

and
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Fig. 17.5 Iterative plots of dθ2 (left) and ε1 (right) with reference to dθ1, demonstrating rapid
convergence

Fig. 17.6 Curves of εy
against dθ1 for
θ1 = 30◦, 45◦, 60◦ based on
the microstructure of
Fig. 17.4, which caters to
expansion and contraction of
rod 1, with rod 2 and rod 3
being rigid
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(17.1.31)

respectively. One can then see that the condition of ε1 > 0 (which implies dT > 0
and/or dC > 0) suggests that α(T )

y < 0 and/or α(C)
y < 0, respectively, due to

εy < 0; on the other hand, the condition of ε1 < 0 (which implies dT < 0 and/or
dC < 0) suggests that α(T )

y > 0 and/or α(C)
y > 0, respectively, due to εy < 0. More

importantly, perusal to Fig. 17.6 for infinitesimal dT and/or dC suggests thatα(T )
y ≈ 0

and/or α(C)
y ≈ 0, which is an important characteristic to arrest the occurrence of stain
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in structures that are exposed to unpredictable environmental fluctuation of small
magnitude.

It has earlier been shown in the Poisson’s ratio analysis that the application of
horizontal loads with σx > 0 and σx < 0 lead to conventional (vxy > 0) and auxetic
(vxy < 0) behaviors, respectively. Suppose one were to apply vertical load, it can
be seen that when the load is tensile σy > 0, rod 2 elongates by dl2 such that rod 1
realigns toward the vertical direction by an angular change of dθ1 while the horizontal
distance changes by an amount dl3, as shown in Fig. 17.7a, whereby dl3 is negative.
The Poisson’s ratio vyx arising from a tensile load σy > 0 can be established by
considering the length constancy of rod 1, i.e.,

Fig. 17.7 Application of load along the y-direction on the microstructure given in Fig. 17.1a,
showing a before (top) and during (bottom) tensile load; examples of microstructural changes with
compressive vertical load are shown in (b) and (c), as well as in Fig. 17.1b, c
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Table 17.1 Summary of microstructure properties given in Fig. 17.1

x-direction loading y-direction loading

Positive normal stress σx > 0 ⇒ vxy > 0 (non-auxetic) σy > 0 ⇒ vyx > 0 (non-auxetic)

Negative normal stress σx < 0 ⇒ vxy < 0 (auxetic) σy < 0 ⇒ vyx = ±
(indeterminate)

√
l22 + l23 =

√
(l2 + dl2)

2 + (l3 + dl3)
2 (17.1.32)

Expanding the RHS terms and neglecting the highest order gives

l2(dl2) + l3(dl3) = 0 (17.1.33)

Dividing by l2 and recognizing that l2/ l3 = tan θ1, dl2/ l2 = εy and dl3/ l3 = εx ,
we have

vyx = tan2 θ1 (17.1.34)

which is conventional. Note that this εx is negative because dl3 < 0 for σy > 0.
On the other hand, the application of compressive load σy < 0 causes buckling

collapse, which can take on a number of possible Poisson’s ratio. Two possible
extremes for which buckling collapse take place are furnished in Fig. 17.1b, c, which
are conventional (vyx > 0) and auxetic (vyx < 0), respectively. Under these two
extremes, the Poisson’s ratio can be written as vyx = −εx/εy , where εy and εx are
defined byEqs. (17.1.6) and (17.1.9), respectively, such that the upper and lower signs
for Eq. (17.1.9) correspond to the deformation shown in Fig. 17.1b, c, respectively.
In addition to these two extremes, the buckling collapse can also take on any hybrid
deformation pattern that combines the two extremes; two such examples are shown in
Fig. 17.7b, c. Table 17.1 summarizes the mixed auxetic-conventional characteristics
of the proposedmicrostructure arising from the applicationof tensile and compressive
loads along the x-direction as well as in the y-direction.

So far, in the analysis of hygrothermal expansion, it has been shown that the sole
extension of rod 3 or rod 1 leads to contraction in the y-direction. This is not so in
the case of sole extension of rod 2, as illustrated in Fig. 17.8. From its original state
of Fig. 17.8a with rod 1 and rod 3 being rigid, expansion, and contraction of rod 2
leads to the microstructural geometries of Fig. 17.8b, c, respectively. An increase in
temperature and/or moisture concentration causes an expansion of rod 2, as shown
in Fig. 17.8d, such that both rod 1 and rod 2 rotate anti-clockwise. At the same
time, the increase in the vertical dimension implies positive CTE and/or CME. By
similar reasoning, a decrease in temperature and/or moisture concentration brings
about contraction of rod 2, as denoted in Fig. 17.8e, so that both rod 1 and rod 2 rotate
clockwise with a decrease in the vertical dimension. Again, this indicates positive
CTE and/or CME.
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Fig. 17.8 a Modified microstructure that exhibits b overall vertical expansion with expansion of
rod 2 and c overall vertical contraction with contraction of rod 2; the representative units for (b) and
(c) are given in (d) and (e), respectively

An analytical quantification can be made as follows. Upon expansion of rod 2, the
subtending angles of rod 1 and rod 2 increase to θ1 + dθ1 and θ2 + dθ2, respectively,
while the contraction of rod 2 decreases the subtending angles of rod 1 and rod 2
to θ1 − dθ1 and θ2 − dθ2 respectively. The choice of nomenclature in Fig. 17.8d, e
indicates that dθ1 and dθ2 take on positive values. The change in dimension along
the y-direction is

dy = l1 sin(θ1 ± dθ1) − l1 sin θ1 = (l2 ± dl2) cos dθ2 − l2 (17.1.35)

where the upper and lower signs correspond to the expansion and contraction of rod
2, respectively. Dividing Eq. (17.1.35) with Eq. (17.1.4) gives the vertical strain
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εy = cos dθ1 ± sin dθ1
tan θ1

− 1 (17.1.36)

Substituting cos dθ1 ≈ 1 and sin dθ1 ≈ dθ1 into Eq. (17.1.36) for small angular
change yields

εy = ± dθ1
tan θ1

(17.1.37)

which gives εy > 0with the expansion of rod 2 due to increases in temperature and/or
moisture concentration, and εy < 0 with the contraction of rod 2 due to decreases
in temperature and/or moisture concentration. Either way, we have α(T )

y > 0 and/or
α(C)
y > 0, i.e., neither NTE nor NME is observed when rod 2 expands or contracts in

the presence of rigid rod 1 and rod 3. Table 17.2 summarizes the mixed hygrothermal
properties of the modified microstructure with emphasis on the sign reversal of their
mechanical property with the sign reversal of dT or dC (Lim 2019a).

17.2 Sign-Switching of CTE with Persistently Positive
Thermal Strain

From the Greek work αÜξησις (auxesis), a noun meaning “increase,” comes the
word αÙξητικóς (auxetikos), which means “that which tends to increase”; the latter
leads to the term “auxetics,” which has been coined for referring to materials and
structures that exhibit negative Poisson’s ratio. Section 17.1 has shown that the CTE
sign can be switched between positive and negative values in situ, in response to
thermal fluctuation, specifically the effective CTE in y-direction is positive upon
cooling, but the effective CTE sign in the same direction flips to negative upon
heating, thereby always giving negative thermal strain regardless of whether the
temperature increases or decreases, which is not auxetikos. A graphical description
that shows how the present auxetikos system relates with positive thermal expansion
(PTE) and negative thermal expansion (NTE) systems is illustrated in Fig. 17.9. Note
that the thermal strain for auxetikos system is always positive to indicate it having
the tendency to increase in dimension. This translates into two distinct slopes of the
plot of thermal strain versus temperature, and the corresponding abrupt change in
CTE at the original state (Lim 2019b).

This example shows the development of a 2D auxetikos material system that
tends to increase in dimension under both heating and cooling effect, i.e., α(T )

eff > 0
when dT > 0, but the effective CTE sign changes to α

(T )
eff < 0 when dT < 0.

The implementation of alternating CTE sign with thermal fluctuation is attained
herein by incorporating a set of rotating rods that are redundant during heating but
functional during cooling. These are indicated as inclined linkages that are parallel
to the shuriken sides in the original state illustrated in Fig. 17.10 (top), while each
shuriken (together with its rotating rods) is connected to its four closest neighbors
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dT

t

t dT dT

t dT dT

t dT dT

(a)

(b)

(c)

(d)

Fig. 17.9 For a given a temperature variation with time, the responses for thermal strain with
reference to time (left column), thermal strain with temperature (middle column), and CTE with
temperature (right column) are illustrated for b PTE, c NTE and d auxetikos systems

by the horizontally and vertically aligned connecting rods. Upon cooling, all rods
contract such that the hinges at the corners move away from the shuriken to a greater
extent than the shortening of the connecting rods (Fig. 17.10, left), thereby creating an
overall distancing between the shurikens. This translates to effective NTE behavior
during cooling. Upon heating, only the connecting rods elongate (Fig. 17.10, right);
the rotating rods encounter build-up of compressive thermal stress as the hinges are
locked at the shuriken corners. For this reason, the analysis consists of two parts for
catering to two different overall expansion mechanisms.

We consider a network of interconnected shuriken whereby every shuriken
possesses four axes of symmetry, i.e., two axes of symmetry with each axis passing
through the opposing sharp edges, and two axes of symmetry with each axis of
symmetry passing through the opposing corners. Figure 17.11 (top) shows a unit cell
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Fig. 17.10 Schematics of 3-by-3 interconnected shuriken network upon cooling (left) and heating
(right), with rod strain magnitudes of 0% (top), 5% (middle) and 10% (bottom). Green squares
indicate original size of 3-by-3 unit cells for comparison
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Fig. 17.11 A unit of the
shuriken network in original
state indicated by purple rods
and extension of connecting
rods by dlc indicated in red
upon heating (top), and
contraction of all rods upon
cooling indicated in blue,
where dlr and dlc take on
negative values (bottom)

y

x

y

x
+d

lc+dlc

lr+dlr
ls

ls

lc

lr ls

x0

y0

x

y
ls

dlc

of the interconnected shuriken network, where the rotating rods and connecting rods
in the original state are indicated by purple color, forming an angle of θ between
them. The rotating rod is of length lr while the entire connecting rod is of length 2lc
for connecting two shurikens. The half-length of each connecting rod lc is therefore
assigned to each connecting rod within the boundary of the unit cell. The hori-
zontal and vertical distances between neighboring hinges on the sharp edges of each
shuriken are 2ls, so that its half-length
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ls = lr sin θ (17.2.1)

can be expressed by the rotating rod length and its angle formed with the connecting
rod. Upon an increase in temperature of dT , the half-length of each connecting rod
increases by

dlc = lcα
(T )
c dT (17.2.2)

where α(T )
c is the CTE of the connecting rod. However, there is no increase in the

length of the rotating rods, as they are locked in place by the corners, thereby resulting
in a build-up of compressive thermal stress. Suppose the origin of the coordinate
system is placed at the center of the shuriken, the half-lengths of the unit cells as
measured along the x-axis in the original state is

x0 = ls − lr cos θ + lc (17.2.3)

while the same half-length upon heating is

x = ls − lr cos θ + lc
(
1 + α(T )

c dT
)

(17.2.4)

upon consideringEq. (17.2.2). If, in addition to the four axes of symmetry imposed on
the shuriken,we let y0 = x0 to give square array, then the in-plane strain is equibiaxial.
Substituting Eq. (17.2.1) into Eqs. (17.2.3) and (17.2.4) gives the thermal strain in
x-direction ε(T )

x = (x − x0)/x0 as

ε(T )
x = α(T )

c dT
lc
lr

sin θ − cos θ + lc
lr

(17.2.5)

upon heating.
Upon a decrease in temperature, the half-length of the connecting rod changes

by the amount indicated in Eq. (17.2.2), but this value is negative because dT < 0.
Likewise, the change in the length of the rotating rod

dlr = lrα
(T )
r dT (17.2.6)

whereα(T )
r is theCTEof the rotating rod takes on a negative value for the same reason.

Due to the contraction of the rotating rod, its angle formed with the connecting rod
increases to θ +dθ as shown in Fig. 17.11 (bottom). For these changes in rod lengths
and angles, we have the updated half-length of the unit cell in x-direction

x = ls − lr
(
1 + α(T )

r dT
)
cos(θ + dθ) + lc

(
1 + α(T )

c dT
)

(17.2.7)

Substituting cos dθ = 1 and sin dθ = dθ as dθ → 0 for infinitesimal deformation,
we have
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x = ls − lr
(
1 + α(T )

r dT
)
[cos θ − dθ sin θ ] + lc

(
1 + α(T )

c dT
)

(17.2.8)

The angular change can be eliminated by equating the vertical components of the
rotating rod before and after cooling

lr sin θ = lr
(
1 + α(T )

r dT
)
sin(θ + dθ) (17.2.9)

to give

1

1 + α
(T )
r dT

= cos dθ + sin dθ

tan θ
(17.2.10)

Considering infinitesimal deformation again, we have

dθ =
(

1

1 + α
(T )
r dT

− 1

)
tan θ (17.2.11)

which upon substitution into Eq. (17.2.8) gives rise to

x = ls − lr
(
1 + α(T )

r dT
)[
cos θ − sin θ tan θ

(
1

1 + α
(T )
r dT

− 1

)]
+ lc

(
1 + α(T )

c dT
)

(17.2.12)

Using Eq. (17.2.1) and recalling the original dimension described by Eq. (17.2.3),
one obtains the thermal strain

ε(T )
x = −α(T )

r dT
sin θ tan θ + cos θ − lc

lr
α

(T )
c

α
(T )
r

sin θ − cos θ + lc
lr

(17.2.13)

upon cooling.
Based on the definition of CTE, one can obtain the effective CTE of the intercon-

nected shuriken network from Eqs. (17.2.5) and (17.2.13) for heating and cooling,
respectively. When normalized against the CTE of the rotating rods, we have the
dimensionless effective CTE

α(T )
x

α
(T )
r

=
lc
lr

α
(T )
c

α
(T )
r

sin θ − cos θ + lc
lr

; dT > 0 (17.2.14)

for heating, and

α(T )
x

α
(T )
r

= −
sin θ tan θ + cos θ − lc

lr
α

(T )
c

α
(T )
r

sin θ − cos θ + lc
lr

; dT < 0 (17.2.15)
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for cooling.
Effects from the various geometrical and mechanical properties of the inter-

connected shuriken network are investigated for rotating rod CTE of α(T )
r =

20× 10−6 K−1, connecting-to-rotating rod length ratio of lc/ lr = 1 and the angle of
θ = 60◦ between these two rods. The effective thermal strains in x-direction ε(T )

x are
plotted in Fig. 17.12 (left column)while the corresponding effectiveCTEs in the same
direction are furnished in Fig. 17.12 (right column) with reference to the change in
temperature dT . Here, effects of the connecting rod CTE α(T )

c are shown in Fig. 17.12
(top row) using rod CTE ratio of α(T )

c /α(T )
r = 0, 0.25, 0.5, 0.75, 1. Influence from

the connecting-to-rotating rod subtending angle is furnished in Fig. 17.12 (middle
row) for θ = 50◦, 55◦, 60◦, 65◦, 70◦ while the effect from these rods’ length ratio
are plotted in Fig. 17.12 (bottom row) for lc/ lr = 0.5, 0.75, 1, 1.25, 1.5.

The continuous effect of α(T )
c /α(T )

r , θ and lc/ lr on the dimensionless effective
CTE is displayed in Fig. 17.13. It shows that the negativity of the effective CTE
upon cooling can be intensified (or the positivity of the effective CTE upon heating
can be reduced) by decreasing α(T )

c /α(T )
r or lc/ lr, or by increasing θ . It is of interest to

note that while the material system fulfills the auxetikos criterion—as evident from
the increasing thermal strain regardless of whether dT is positive or negative, and
hence this system exhibits PTEunder heating but reverses toNTEunder cooling—the
negativity of the CTE is of a greater extent in comparison to its positive counterpart.
The existence of two curves, one each for heating and cooling, suggests that the
effective CTE for the investigated material system herein is undefined when there is
no change in temperature, for the CTE and its sign come into play only when one
specifies the condition of temperature change—whether increasing or decreasing.

17.3 Conclusions

From Sect. 17.1, it can be concluded that a microstructure consisting of pin-jointed
rods that exhibits conventional behavior upon tensile loading has been shown tomani-
fest auxetic behavior upon reversal of loadingdirection, similar to the behavior of both
metamaterials discussed in Sect. 6.1. By a slight modification to this microstructure
through incorporation of an additional set of reinforcing rods, unique hygrothermal
properties can be observed. A decrease in temperature or moisture concentration
leads to dimensional contraction, or positive hygrothermal coefficients, as one would
expect in conventional solids; under certain special cases, however, an increase in
temperature or moisture concentration also brings about dimensional contraction, or
negative hygrothermal coefficients. These reversals of properties as activated by the
reversal of mechanical and hygrothermal loads is being made possible through the
design of the microstructure that stands at the boundary of auxetic and conventional
behavior (Lim 2019a). At the point where the reversal of property sign takes place,
the hygrothermomechanical properties are zero for infinitesimal deformation. This
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Fig. 17.12 Plots of thermal strain (left) and effective CTE (right) against thermal change for
various connecting-to-rotating rod CTE ratio (top), rotating-to-connecting rod angles (middle), and
connecting-to-rotating rod length ratio (bottom)
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Fig. 17.13 Variation of dimensionless effective CTE with reference to the connecting-to-rotating
rod CTE ratio (left), rotating-to-connecting rod angles (center), and connecting-to-rotating rod
length ratio (right) under heating and cooling

is useful for reducing lateral strains and hygrothermal strains in unconstrained struc-
tures, as well as reducing lateral stresses and hygrothermal stresses in constrained
ones.

An auxetikosmaterial, i.e., one that tends to increase, has beendefined inSect. 17.2
as a material system that exhibits positive strain whether the stimulus is of positive or
negative value. By adopting the interconnected shuriken network, it has been shown
that the material system expands based on the magnitude of the thermal change. This
has been made possible by the presence of two sets of effective microstructure. One
set ofmicrostructure, whereby the rotating rod is redundant, takes effect upon heating
wherein only the connecting rods expand. The other set of microstructure, in which
the rotating and connecting rods are permitted to contract simultaneously, takes effect
upon cooling. The capability of demonstrating two effective microstructures from
just a single microstructure has been made possible through the implementation of a
jamming or locking mechanism to render the rotating rods redundant under heating
but functional under cooling (Lim 2019b). Results reveal that the effective CTE can
bemademore negative (under cooling) or less positive (under heating). The capability
for materials to exhibit consistent response under opposing conditions—due to their
ability to manifest opposing properties under opposing conditions—paves a way for
engineers to design materials that are able to change their behavior to suit the envi-
ronment. So far we have considered the sign-switching of Poisson’s ratio with stress
reversal in Chapter 16 (Lim 2019c, d) while this chapter deals with sign-switching in
the coefficient of (hygro)thermal expansions with (hygro)thermal fluctuation. In the
next chapter we shall explore metamaterials that, in addition to changes to CTEs in
response to temperature variation, can exhibit sign-switching of Poisson’s ratio not
by stress direction reversal but by thermal undulation (Lim 2019e, f).
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Chapter 18
Sign-Switching of Poisson’s Ratio
with Temperature Change Reversals

Abstract This chapter considers two examples of Poisson’s ratio sign-switching
upon temperature change reversal using bimaterial strips with alternating orientation.
In the first example, alternating signs of temperature change switches the microstruc-
ture between hexagonal-like cells and re-entrant-like cells. The former and latter are
known for exhibiting positive and negative Poisson’s ratios, respectively. In addition
to the CTE analysis, Poisson’s ratio analysis is included. In the second example,
the cell walls are also made from alternating bimaterial strips, and are arranged in
rectangular array with interconnecting rigid rods that are joined at the centers of
the bimaterial strips. Fluctuating temperature flips the microstructure shape between
octagon-like and star-like cells. Although only the CTE analysis is furnished for
the second example, it is known that the interconnected star array manifests auxetic
property. In spite of only thermal analysis, the effective CTE models developed can
be converted to effective compressibility and effective CME models.

Keywords Poisson’s ratio · Thermal expansion · Sign-flipping · Sign-reversible ·
Sign-switching · Sign toggling

18.1 Thermally Activated Toggle Between Hexagonal
and Re-entrant Microstructural Reshape

This section explores the use of alternating bimaterial strips to form rectangular cells
in triangular array, so as to control the signs of both the CTE and Poisson’s ratio
based on the sign of temperature change. Specifically, this example primarily aims
to design a class of metamaterial that can perform in the following ways:

• vxy > 0 for dT > 0 but vxy < 0 for dT < 0 (O-Type)
• vxy < 0 for dT > 0 but vxy > 0 for dT < 0 (X-Type)

for the first two types of this metamaterial class. For completeness’ sake, another
two types (CC-Type and SS-Type) are discussed thereafter. The use of alternating
bimaterial strips was established by Ha et al. (2015) for developing controllable
thermal expansion of large magnitude in chiral arrangement. With reference to
Fig. 18.1, the rigid crossbeams are aligned horizontally and indicated in black while
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Fig. 18.1 Rectangular-shaped cells arranged in triangular arrayusing rigid crossbeams (black color)
and bimaterial strips made from metals of higher CTE (red color) and lower CTE (blue color). The
“more active” material, which has a higher CTE as indicated by red color, can be arranged in a loop
to form the O-Type (top) and in a criss-cross to form the X-Type (bottom)



18.1 Thermally-Activated Toggle Between Hexagonal and Re-entrant … 593

the bimaterials are vertically oriented and indicated in red and blue for higher and
lower CTEs, respectively. While straight bimaterials encounter transformation into a
C-shaped curve upon change in temperature, the alternating arrangement ofmaterials
in each bimaterial would transform it into an S-shaped curve. Perusal to Fig. 18.1
shows two types of such metamaterial with five unit cells each. Unlike the model by
Li et al. (2016) whereby the ends of the crossbeams are joined to the surfaces of the
bimaterial, in the current model, the ends of the bimaterials are joined to the surfaces
of the crossbeams instead. When the material strip with higher CTE is arranged in
a loop, we call this the O-Type as indicated in Fig. 18.1 (top). If the material with
higher CTE is arranged in a criss-cross manner furnished in Fig. 18.1 (bottom), we
call this the X-Type.

The negativity of thermal expansion and Poisson’s ratio can be qualitatively visu-
alized for the O-Type in Fig. 18.2 (top row) and for the X-Type in Fig. 18.2 (bottom
row), wherein the original states before temperature change is placed at Fig. 18.2
(left column). Under the influence of decreasing temperature, the materials of higher
and lower CTE form the concave and convex parts, respectively, but reverse for
increasing temperature dT > 0. For this reason, the O-Type and X-Type metama-
terials deform into hourglass- and barrel-shaped cells, respectively, with dT < 0
as illustrated in Fig. 18.2 (middle column), but the shapes reverse for dT > 0, as
indicated in Fig. 18.2 (right column). It is easily seen that the dimensional decrease
in y-direction for dT �= 0 for Fig. 18.2 (middle and right columns) implies PTE
along the y-direction for both metamaterials when dT < 0, but reverse to NTE when
dT > 0. The contraction (due to dT < 0) and expansion (resulting from dT > 0)
along the x-direction for the O-Type metamaterial suggest that it exhibits PTE in the
x-direction; on the other hand, the expansion (as a result of dT < 0) and contraction
(arising from dT > 0) along the x-direction for the X-Typemetamaterial suggest that
it exhibits NTE in the x-direction. In regard to the Poisson’s ratio, it is worth noticing
that the hourglass and barrel shapes approximate the re-entrant and hexagonal shapes,
respectively, thereby indicating that the hourglass- and barrel-shapedmicrostructures
manifest negative and positive Poisson’s ratios, respectively. A summary of the qual-
itative descriptions of CTE and, more importantly, the Poisson’s ratio sign-switching
bymeans of change in temperature sign is furnished in Fig. 18.3 (Lim 2019a). Having
discussed in a qualitative manner, the following analysis develops the quantitative
descriptions for the CTE and Poisson’s ratio under temperature change.

Figure 18.4 (top) illustrates a straight bimaterial cantilever of length lh and total
thickness h = h1 + h2 transforming into a bent cantilever with radius of curvature r
upon a temperature change of dT ; the curvature 1/r has been given by Timoshenko
(1925) as

1

r
=

(
α

(T )
1 − α

(T )
2

)
dT

h
2 + 2

h (E1 I1 + E2 I2)
(

1
E1h1

+ 1
E2h2

) (18.1.1)
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Fig. 18.2 A unit of O-Type (top row) and X-Type (bottom row) metamaterials before temperature
change (left column), as well as after temperature decrease (middle column) and increase (right
column)

where α(T )
n , En , In . and hn are the CTEs, Young’s moduli, second moment areas, and

thicknesses, respectively, for layers n = 1, 2 of the bimaterial strip with

In = h3n
12

(18.1.2)
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Fig. 18.3 A summary of the qualitative descriptions of CTEs and Poisson’s ratio for the O-Type
and X-Type metamaterials

It must be pointed out that this Timoshenko bimaterial strip model applies to
Euler–Bernoulli beams only, which confines its validity to slender beams.

If both layers of the bimaterial share equal Young’s moduli and equal thicknesses,
then Eq. (18.1.1) greatly simplifies to

1

r
= 3

2

α
(T )
1 − α

(T )
2

h
dT (18.1.3a)

Suppose only the bimaterial strips are of equal thicknesses so as to permit different
Young’s moduli ratio, Eq. (18.1.1) becomes

1

r
=

24
(
α

(T )
1 − α

(T )
2

)
dT

h
(
14 + E1

E2
+ E2

E1

) (18.1.3b)
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Fig. 18.4 Thermal deflection of a cantilever bimaterial strip of half-length lh (top), and a unit cell
with geometrical parameters (bottom)
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Arising from the curving of the bimaterial, a sectional angle θ is formed at the
center of the curvature, as illustrated in Fig. 18.4 (top). This gives a decrease in
the projected height of the cantilever bimaterial as lh − r sin θ while the horizontal
deflection of the cantilever tip is r(1 − cos θ). The subtending angle relation θ = lh/r
assumes that the arc length after thermal change remains the same as the original
length, and is therefore not exact, i.e., this relation is true only at small angles.
Nevertheless, this assumption is valid insofar as the present scope of analysis is
concerned. See Appendix A.1. In the following analysis, we consider the rectangular
unit cell represented in Fig. 18.4 (bottom) where h1 = h2 = h/2, while the width
of the rectangle is W such that the overall width of the unit cell is 2W . The height
of the cantilever beam shown in Fig. 18.4 (top) is the half-length, lh , such that the
full-length of the deformable rib, l f , is 2lh . Taking into account the thickness t of
the rigid crossbeams, we have the height of the unit cell being 2

(
l f + t

)
. By virtue

of symmetry, only one quarter of the unit cell needs to be considered for analysis.
From this quarter unit cell, we have its original width measured along the x-axis

x0 = W (18.1.4)

and its original height measured along the y-axis

y0 = l f + t (18.1.5)

Writing the magnitudes of changes in the width

|dx | = 2r

[
1 − cos

(
lh
r

)]
(18.1.6)

and height

|dy| = 2

[
lh − r sin

(
lh
r

)]
(18.1.7)

we have the thermal strains

ε(T )
x = ±|dx |

x0
= ±2r

W

[
1 − cos

(
lh
r

)]
(18.1.8)

in the x-direction, and

ε(T )
y = −|dy|

y0
= − 2

2lh + t

[
lh − r sin

(
lh
r

)]
(18.1.9)

in the y-direction. The upper and lower signs in Eq. (18.1.8) correspond to theO-Type
and X-Type, respectively, for dT > 0, in complying to width expansion in Fig. 18.2
(top right) and width contraction in Fig. 18.2 (bottom right), while the negative sign
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in Eq. (18.1.9) indicates height reduction for both types of metamaterials. A separate
analysis for dT < 0 is unnecessary as this can be effected by implementing negative
values to dT . From the definition of the CTE, we obtain

α(T )
x = ε(T )

x

dT
= ± 2r

WdT

[
1 − cos

(
lh
r

)]
(18.1.10)

and

α(T )
y = ε(T )

y

dT
= − 2

(2lh + t)dT

[
lh − r sin

(
lh
r

)]
(18.1.11)

For Special Case I where E1/E2 = h1/h2 = 1, substitution of Eq. (18.1.3a) into
Eq. (18.1.10) gives

α(T )
x = ± l f

W

1 − cos
(
3lh
2h

(
α

(T )
1 − α

(T )
2

)
dT

)

3lh
2h

(
α

(T )
1 − α

(T )
2

)
(dT )2

(18.1.12)

while the substitution of Eq. (18.1.3a) into Eq. (18.1.11) leads to

α(T )
y = − 1(

1 + 1
2

t
lh

)
dT

⎡
⎣1 −

sin
(
3lh
2h

(
α

(T )
1 − α

(T )
2

)
dT

)

3lh
2h

(
α

(T )
1 − α

(T )
2

)
dT

⎤
⎦ (18.1.13)

For Special Case II where only h1/h2 = 1, substitution of Eq. (18.1.3b) into
Eq. (18.1.10) gives

α(T )
x = ± l f

W

1 − cos

(
3lh
2h

16
(
α

(T )
1 −α

(T )
2

)
dT

14+ E1
E2

+ E2
E1

)

3lh
2h

16
(
α

(T )
1 −α

(T )
2

)
(dT )2

14+ E1
E2

+ E2
E1

(18.1.14)

while the substitution of Eq. (18.1.3b) into Eq. (18.1.11) leads to

α(T )
y = − 1(

1 + 1
2

t
lh

)
dT

⎡
⎢⎢⎢⎣1 −

sin

(
3lh
2h

16
(
α

(T )
1 −α

(T )
2

)
dT

14+ E1
E2

+ E2
E1

)

3lh
2h

16
(
α

(T )
1 −α

(T )
2

)
dT

14+ E1
E2

+ E2
E1

⎤
⎥⎥⎥⎦ (18.1.15)

The ambiguity of the radius of curvature, r, in Eqs. (18.1.10) and (18.1.11) is
removed by substitution from Eqs. (18.1.3a) and (18.1.3b). To find the Poisson’s
ratio after the temperature-activated change in microstructure, we restore the ther-
mally deformed shapes back to their original shapes. As a result, the thermally
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deformed shapes illustrated in Fig. 18.2 (right column) are the updated shapes,
in which mechanical load is applied along the x-axis to return the shape to those
indicated in Fig. 18.2 (left column). For this reason, we have the updated width

x ′
0 = W ± |dx | (18.1.16)

where the upper and lower signs provide updates to the width of Fig. 18.2 (top right)
and Fig. 18.2 (bottom right), respectively, while the updated height

y′
0 = (

l f + t
) − |dy| (18.1.17)

is common for bothO-Type andX-Type. Therefore, the prescribedmechanical strains

εx = ∓|dx |
x ′
0

= ∓|dx |
W ± |dx | (18.1.18)

and

εy = |dy|
y′
0

≈ |dy|
l f − |dy| (18.1.19)

give rise to the Poisson’s ratio

vxy = −εy

εx
= − |dy|

2lh − |dy|
W ± |dx |

∓|dx | (18.1.20)

Substituting Eqs. (18.1.6) and (18.1.7) into Eq. (18.1.20), we have the Poisson’s
ratio in terms of the dimensionless curvature lh/r and array aspect ratio of W/ l f
(Lim 2019a)

vxy = ±
[

lh
r

sin
( lh
r

) − 1

][ W
l f

lh
r

1 − cos
( lh
r

) ± 1

]
(18.1.21)

Substituting Eq. (18.1.3a) into Eq. (18.1.21) for Special Case I gives

vxy = ±
⎡
⎣

3lh
2h

(
α

(T )
1 − α

(T )
2

)
dT

sin
(
3lh
2h

(
α

(T )
1 − α

(T )
2

)
dT

) − 1

⎤
⎦

⎡
⎣

W
l f

3lh
2h

(
α

(T )
1 − α

(T )
2

)
dT

1 − cos
(
3lh
2h

(
α

(T )
1 − α

(T )
2

)
dT

) ± 1

⎤
⎦

(18.1.22)

while using Eq. (18.1.3b) for Special Case II leads to
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vxy = ±

⎡
⎢⎢⎢⎣

3lh
2h

16
(
α

(T )
1 −α

(T )
2

)
dT

14+ E1
E2

+ E2
E1

sin

(
3lh
2h

16
(
α

(T )
1 −α

(T )
2

)
dT

14+ E1
E2

+ E2
E1

) − 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

W
l f

(
3lh
2h

16
(
α

(T )
1 −α

(T )
2

)
dT

14+ E1
E2

+ E2
E1

)

1 − cos

(
3lh
2h

16
(
α

(T )
1 −α

(T )
2

)
dT

14+ E1
E2

+ E2
E1

) ± 1

⎤
⎥⎥⎥⎦

(18.1.23)

In order to select realistic material properties of the bimaterials, consideration is
made onmetallic materials due to their ease of joining in comparison to ceramics and
their larger range of working temperature in comparison to polymers. In the case of
metals, the choice of α

(T )
1 = 25×10−6 K−1 would put it among a group of metals of

high CTEs such as lead
(
29 × 10−6 K−1

)
, magnesium

(
26 × 10−6 K−1

)
, and brass(

19 × 10−6 K−1
)
, while α

(T )
2 is selected to be of values 0, 1/3 and 2/3 of α

(T )
1 for

Special Cases I and II. In the following illustrations using Special Case I, the array
aspect ratio of W/ l f = √

3 is adopted to represent equilateral triangular array, with
a typical bimaterial aspect ratio order of lh/h = 100.

Figure 18.5 (left) shows curves of exact α(T )
x versus dT for the abovementioned

α
(T )
2 /α

(T )
1 ratios using Eq. (18.1.12) with α

(T )
1 = 25 × 10−6 K−1, W/ l f = √

3 and
lh/h = 100. The plotted curves not only confirm the manifestation of PTE and NTE
in the x-direction for the O-Type and X-Type metamaterials, respectively, but also
seem to suggest that the CTEs are constants that are independent from the change in
temperature. This observation can be validated byperformingTaylor series expansion
on the cosine function

cos

(
lh
r

)
= 1 − 1

2!
(
lh
r

)2

+ · · · (18.1.24)
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Fig. 18.5 Plots of CTE in x-direction for the O-Type and X-Type metamaterials at E1 = E2,
h1 = h2, α

(T )
1 = 25 × 10−6 K−1, W/ l f = √

3 and lh/h = 100, showing insignificant effect of

dT (left), and that the magnitude of the approximated α
(T )
x slightly overestimates the actual value

(right)
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and retaining only the first two terms for substitution into Eq. (18.1.12) in Special
Case I, whereby E1 = E2 and h1 = h2, to give

α(T )
x ≈ ±3

4

l f
W

lh
h

(
α

(T )
1 − α

(T )
2

)
(18.1.25)

i.e., the approximated α(T )
x , plotted as discrete points in Fig. 18.5, is dependent on

the array aspect ratio W/ l f , aspect ratio of the bimaterial lh/h, and the difference

of the CTEs of the bimaterial strips
(
α

(T )
1 − α

(T )
2

)
, but independent from the change

in temperature dT . Nevertheless, the magnitude of the exact CTE in x-direction
decreases with the magnitude of temperature change, as evident in Fig. 18.5 (right),
thereby indicating that themagnitude of the approximatedα(T )

x slightly overestimates
the actual magnitude.

For the y-direction, curves of exact α(T )
y are plotted in Fig. 18.6 (left) using

Eq. (18.1.13) based on t/ lh = 1/100 and other conditions similar for calculatingα(T )
x

in Fig. 18.5. Both the O-Type and X-Type metamaterials exhibit NTE and PTE in
the y-direction for increasing and decreasing temperatures, respectively, in an almost
linear manner. This observation is not surprising, as the substitution of the following
Taylor series expansion for the sine function

sin

(
lh
r

)
=

(
lh
r

)
− 1

3!
(
lh
r

)3

+ · · · (18.1.26)

into Eq. (18.1.13) for Special Case I where at E1 = E2 and h1 = h2, and further
assuming that t/ lh → 0 for simplicity, leads to

Fig. 18.6 Plots of CTE in y-direction for the O-Type and X-Type metamaterials at E1 = E2,
h1 = h2, α

(T )
1 = 25 × 10−6 K−1, W/ l f = √

3, lh/h = 100 and t/ lh = 1/100 (left) and the
thermal strains in the same direction (right)
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α(T )
y ≈ −3

8

(
lh
r

)2(
α

(T )
1 − α

(T )
2

)2
dT (18.1.27)

i.e., the approximated α(T )
y , plotted in Fig. 18.6 (left) as discrete points, varies linearly

with dT . In addition to showing that the sign of α(T )
y opposes the sign of dT , this

distribution provides an almost exact and exactly quadratic variations of exact and
approximate thermal strains, respectively, in the y-direction, as furnished in Fig. 18.6
(right). Suppose only the first term of Eq. (18.1.26) is retained for substitution into
Eq. (18.1.13), we have α(T )

y = 0, which is indicated in Fig. 18.6 as zero thermal
expansion (ZTE) for infinitesimal thermal deformation.

Considering again Special Case I where E1 = E2 and h1 = h2, and substituting
α

(T )
1 = 25×10−6 K−1 into Eq. (18.1.22), families of exact Poisson’s ratio vxy versus

change in temperature dT curves for various array aspect ratio W/ l f , bimaterial
aspect ratio lh/h, and CTE ratio α

(T )
2 /α

(T )
1 are plotted in Figs. 18.7 and 18.8 for

the O-Type and X-Type metamaterials, respectively. Plotted results for the O-Type
metamaterial indicate that the slope dvxy/dT > 0 such that it increases with the
dimensionless cell width W/ l f and the dimensionless height of the bimaterial lh/h,
but decreases with the CTE ratio α

(T )
2 /α

(T )
1 . The trend reverses for the X-Type meta-

material, i.e., the slope dvxy/dT > 0 whereby
∣∣dvxy/dT

∣∣ increases with W/ l f and

lh/h, but decreases with α
(T )
2 /α

(T )
1 . Perusal to Figs. 18.7 and 18.8 suggests that the

vxy versus dT curves are approximately linear. This can be shown for Special Case I
by substituting the first two terms of Eqs. (18.1.24) and (18.1.26) into Eq. (18.1.22)
and thereafter neglecting higher orders to yield

vxy = ±
W

(
α

(T )
1 − α

(T )
2

)
dT

4h
(18.1.28a)

The Poisson’s ratio given in Eq. (18.1.28a), while sufficiently abridged, makes no
indication on the array aspect ratioW/ l f and bimaterial aspect ratio lh/h; to express
in terms of these geometrical parameters, we write

vxy = ±1

2

W

l f

lh
h

(
α

(T )
1 − α

(T )
2

)
dT (18.1.28b)

Likewise, for Special Case II, the substitution of the first two terms of
Eqs. (18.1.24) and (18.1.26) into Eq. (18.1.23), followed by neglecting higher orders
leads to

vxy = ±4

W
h

(
α

(T )
1 − α

(T )
2

)
dT

14 + E1
E2

+ E2
E1

(18.1.29a)

or, for more geometrical insights,
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Fig. 18.7 Families of exact vxy versus dT curves for theO-Typemetamaterial at E1 = E2, h1 = h2
and α

(T )
1 = 25 × 10−6 K−1

vxy = ±8
W

l f

lh
h

(
α

(T )
1 − α

(T )
2

)
dT

14 + E1
E2

+ E2
E1

(18.1.29b)

The validity of the approximate, or linearized, Poisson’s ratio model is attested
in Fig. 18.9 for both the O-Type and X-Type metamaterials with E1 = E2, h1 = h2,
α

(T )
1 = 25 × 10−6 K−1, W/ l f = √

3 and lh/h = 100.
To visualize the pure effect of E1/E2, Special Case II with α

(T )
2 /α

(T )
1 = 0 is

employed using the same set of geometrical parameters. Reference to the numerator
of either Eqs. (18.1.3a) or (18.1.3b) indicates that for Special Case I, the difference

between the CTEs of the bimaterial strip layers
(
α

(T )
1 − α

(T )
2

)
plays a significant role
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Fig. 18.8 Families of exact vxy versus dT curves for theX-Typemetamaterial at E1 = E2, h1 = h2
and α

(T )
1 = 25 × 10−6 K−1

in influencing the magnitudes of the effective CTEs and Poisson’s ratio. On the other
hand, perusal to the denominator of Eq. (18.1.3b) for Special Case II reveals that the
Young’s modulus ratio of the bimaterial layers E1/E2 also plays an important role in
controlling the effective CTEs and Poisson’s ratio. Specifically, the Young’s moduli
ratio influences these effective properties in the form of E1/E2 + E2/E1. For this
reason, the various effective property plots at any particular E1/E2 value is similar
to those of E2/E1 with the same value.

The effective CTE in the x-direction is plotted in Fig. 18.10 (top left) for various
E1/E2 ratio, instead of α

(T )
2 /α

(T )
1 ratio in Fig. 18.5, to show the influence of the

Young’s moduli ratio using Eq. (18.1.14) for at h1 = h2, α
(T )
1 = 25 × 10−6 K−1,
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Fig. 18.9 Comparison
between the exact (curves)
and linearized (discrete
points) Poisson’s ratio for
both O-Type and X-Type
metamaterials with
E1 = E2, h1 = h2,
α

(T )
1 = 25 × 10−6 K−1,

W/ l f = √
3 and lh/h = 100
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Fig. 18.10 Plots of CTE in x-direction for the O-Type and X-Type metamaterials at h1 = h2,
α

(T )
1 = 25 × 10−6 K−1, α(T )

2 /α
(T )
1 = 0, W/ l f = √

3 and lh/h = 100 for variation with dT (top),
and variation with E1/E2 (bottom)
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α
(T )
2 /α

(T )
1 = 0, W/ l f = √

3 and lh/h = 100. Similar to the various α
(T )
2 /α

(T )
1

curves in Fig. 18.5, the various E1/E2 curves in Fig. 18.10 (top left) indicate almost
constant effective α(T )

x values with respect to the change in temperature, and that the
trend of its insignificant change indicates maximum and minimum α(T )

x at dT = 0
for the O-Type and X-Type metamaterials, respectively (Fig. 18.10, top right). If
the effective α(T )

x is plotted against E1/E2 at dT = 0, the optimal condition takes
place when E1 = E2, as evident from Fig. 18.10 (bottom left). In other words, the
magnitude of the effective α(T )

x diminishes as the E1/E2 ratio deviates from 1. The
observed symmetrical distribution of α(T )

x about E1/E2 = 1when the horizontal axis
is logarithmic (Fig. 18.10, bottom right) is not surprising due to the presence of the
terms E1/E2 + E2/E1 at the denominator of Eq. (18.1.3b). Plots of effective α(T )

y
with respect to the temperature change were made using Eq. (18.1.15) at h1 = h2,
α

(T )
1 = 25 × 10−6 K−1, α

(T )
2 /α

(T )
1 = 0, W/ l f = √

3, lh/h = 100 and t/ lh =
1/100, and are furnished in Fig. 18.11 for various E1/E2 ratio, unlike Fig. 18.6 for
various α

(T )
2 /α

(T )
1 ratio. Again, the plots of α(T )

y versus dT is almost linear with a
negative slope. The magnitude of α(T )

y /dT slope begins with zero at E1/E2 = 0,
which increases to its maximum at E1/E2 = 1, and thereafter decreases to zero as
E1/E2 → ∞. For this reason, there exists loci of theoretically inadmissible regions,
which are indicated as gray in Fig. 18.11.

Adopting again the same set of geometrical parameters for plotting the Poisson’s
ratio laid out in Eq. (18.1.23) for Special Case II to illustrate the effect of E1/E2

ratio, one may broadly observe a total of six regions in Fig. 18.12. There are the two

Fig. 18.11 Plots of CTE in
y-direction for the O-Type
and X-Type metamaterials at
h1 = h2,
α

(T )
1 = 25 × 10−6 K−1,

α
(T )
2 /α

(T )
1 = 0, W/ l f = √

3,
lh/h = 100 and
t/ lh = 1/100; the shaded
parts indicate theoretically
inadmissible region
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Fig. 18.12 Poisson’s ratio
for metamaterials of O-Type
(blue regions) and X-Type
(pink regions) at h1 = h2,
α

(T )
1 = 25 × 10−6 K−1,

α
(T )
2 /α

(T )
1 = 0, W/ l f = √

3
and lh/h = 100, with the
theoretically inadmissible
region indicated in gray
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regions for the O-Type metamaterial indicated in blue, two regions for the X-Type
metamaterial indicated in pink, and two theoretically inadmissible regions shown in
gray. The magnitudes of the vxy/dT slopes decrease as the E1/E2 deviates from 1
such that the Poisson’s ratio for both the O-Type and X-Type metamaterials merge as
E1/E2 → 0 and as E1/E2 → ∞. On the other hand, the magnitudes of the vxy/dT
slopes increase as E1/E2 → 1 but do not merge, such that the resulting gap defines
the theoretically impossible region.

Insofar as the previous illustrations have been made on the basis of Special Cases
I and II, no actual material properties has been employed. The reason for doing so
is to establish fundamental plots that illustrate to the fullest extent the variation of
effective CTEs and Poisson’s ratios arising from the change in geometrical parame-
ters and from the change in material properties α

(T )
2 /α

(T )
1 at E1/E2 = 1 and E1/E2

at α(T )
2 /α

(T )
1 = 0, as well as their accompanying theoretically inadmissible regions.

This having been established, we now turn our attention to the seemingly mundane
but equally important task of estimating what effective CTEs and Poisson’s ratios
that can be practically achieved using pairs of common materials. Three pairs of
bimaterial strips are considered herein, namely the brass–titanium, the copper–steel,
and the tungsten–silicon carbide bimaterials. The CTE and Young’s modulus data
for these materials are summarized in Table 18.1. For illustration purpose, we select
the mid-point values in cases where the material properties are given as a range in
avaiable data.

Curves of effective CTEs in the x-direction for the O-Type and X-Type metamate-
rials based on brass–titanium, copper–steel, and tungsten–silicon carbide bimaterials
at h1 = h2, W/ l f = √

3 and lh/h = 100 are separately plotted in Fig. 18.13a for
−50K ≤ dT ≤ 50K, and are consolidated in Fig. 18.13b showing that the effective
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Table 18.1 Material
properties for the
brass–titanium (BT),
copper–steel (C-S), and
tungsten–silicon carbide
(T-SC) bimaterial pairs

Material CTE (× 10−6

K−1)
Young’s
modulus
(GPa)

Remarks

Brass α
(T )
1 = 19 E1 = 112.5 Material 1 in

B-T bimaterial

Titanium α
(T )
2 = 8.6 E2 = 110.3 Material 2 in

B-T bimaterial

Copper α
(T )
1 = 17 E1 = 117 Material 1 in

C-S bimaterial

Steel α
(T )
2 = 12 E2 = 200 Material 2 in

C-S bimaterial

Tungsten α
(T )
1 = 4.5 E1 = 405 Material 1 in

T-SC bimaterial

Silicon
carbide

α
(T )
2 = 2.77 E2 = 450 Material 2 in

T-SC bimaterial

α(T )
x using the brass–titanium, copper–steel, and the tungsten–silicon carbide bima-

terials are±450×10−6 K−1,±213×10−6 K−1 and±74.9×10−6 K−1, respectively.
These effective CTE values are at least an order greater than those of the individual
material CTEs. While the choice of the O-Type and X-Type arrangements determine
the sign of the effective α(T )

x , their magnitudes are enhanced by the choice of greater

CTE difference
(
α

(T )
1 − α

(T )
2

)
and its E1/E2 ratio (or its reciprocal) being closer to

1. Although the selection of O-Type and X-Type arrangements does not influence
the sign of the effective α(T )

y , which is negative, the choice of higher CTE difference(
α

(T )
1 − α

(T )
2

)
and its E1/E2 ratio (or its reciprocal) being closer to 1 leads to greater

the magnitude of the α(T )
y /dT slope, as indicated in Fig. 18.14.

Plots of Poisson’s ratio for metamaterials of O-Type and X-Type arrangements
using brass–titanium, copper–steel, and tungsten–silicon carbide bimaterial strips
with h1 = h2, W/ l f = √

3 and lh/h = 100 are given in Fig. 18.15. The exact vxy
values have been plotted using Eq. (18.1.23) and are shown as continuous curves,
while the approximated vxy values have been plotted using Eq. (18.1.29b) and are
denoted as discrete data points. The validity of the simplified approximated Poisson’s
ratio is attested by its correlationwith the exact results, therebyproviding a convenient
Poisson’s ratio design equation.

Finally, it is of interest to explore the remaining types of metamaterials that can
be formed by applying different arrangements to the alternating bimaterials. A group
of five unit cells each are furnished in Fig. 18.16 (top) for the CC-Type metamaterial
and in Fig. 18.16 (bottom) for the SS-Type metamaterial. As shown in the unit cells
located in the middle, the CC-Type is so named because the material with higher
CTE forms a double C within each rectangular cell, while the SS-Type is named as
such due to the material with higher CTE forming a double S in each rectangular cell.
The deformation patterns arising from the decrease and increase in temperature are
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Fig. 18.13 Plots of CTE in x-direction for the: a O-Type arrangement (left column) and X-Type
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Fig. 18.14 Plots of CTE in
y-direction for the O-Type
and X-Type metamaterials
based on brass–titanium,
copper–steel, and
tungsten–silicon carbide
bimaterials at h1 = h2,
W/ l f = √

3, lh/h = 100
and t/ lh = 1/100
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Fig. 18.15 Poisson’s ratio
for metamaterials of O-Type
(blue curves) and X-Type
(red curves) arrangements
using brass–titanium (BT),
copper–steel (CS), and
tungsten–silicon
carbide (T-SC) bimaterial
strips with h1 = h2,
W/ l f = √

3 and
lh/h = 100. Simplified
approximate values are
indicated as circles
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Fig. 18.16 Five unit cells each for the CC-Type (top) and the SS-Type (bottom), whereby the
material with higher CTE is shown to form double C and double S, respectively, in each unit cell
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shown in Fig. 18.17, wherein the top and bottom rows refer to the CC-Type and SS-
Type metamaterials, respectively. From the original state indicated in Fig. 18.17 (left
column), the change in temperature brings about curvature to the alternating bimate-
rial strips, whereby the thermally deformed shapes are shown in Fig. 18.17 (middle
column) and in Fig. 18.17 (right column) for decrease and increase in temperature,
respectively. Specifically, the CC-Type metamaterial undergoes thermally activated

CC-Type

dT = 0

CC-Type

dT < 0

CC-Type

dT > 0

SS-Type

dT = 0

SS-Type

dT < 0

SS-Type

dT > 0

Fig. 18.17 A unit of CC-Type (top row) and SS-Type (bottom row) metamaterials before tempera-
ture change (left column), as well as after temperature decrease (middle column) and increase (right
column)
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deformation to form parallel curves, while the SS-Type metamaterial undergoes
curving with overall shearing; the latter resembling thermal shearing (Lim 2005).
Similar to the O-Type and X-Type metamaterials, the CC-Type and SS-Type meta-
materials exhibit negative thermal strain ε(T )

y < 0 in the y-direction for any change in
temperature, regardless ofwhether the temperature decreases or increases. Therefore,
the CC-Type and SS-Type metamaterials exhibit PTE α(T )

y > 0 and NTE α(T )
y < 0

in the y-direction corresponding to decreasing and increasing temperature, respec-
tively, just like the O-Type and X-Type metamaterials. The CTE in the y-direction is
therefore generally written as Eq. (18.1.11) and is described by Eqs. (18.1.13) and
(18.1.15) for Special Cases I and II, respectively. Unlike the O-Type and X-Type
metamaterials, the CC-Type and SS-Type metamaterials show zero thermal strain
ε(T )
x = 0, and therefore ZTE α(T )

x = 0, in the x-direction. The Poisson’s ratio of the
CC-Type and SS-Type metamaterials can be evaluated by returning the thermally
deformed shapes shown in Fig. 18.17 (middle and right columns), by application of
σy > 0, to their original conditions furnished in Fig. 18.17 (left column). Since the
thermally induced strain in the x-direction is zero, it follows that vyx = 0. In fact, the
thermally deformed CC-Type metamaterial is analogous to the type honeycomb that
combines hexagonal and re-entrant walls within each unit cell by Grima et al. (2010)
and Attard and Grima (2011), which has been proven to exhibit zero Poisson’s ratio.

18.2 Thermally Activated Toggle Between
Connected-Octagonal and Connected-Star
Microstructural Reshape

Two possible arrangements for rectangular cells in rectangular array are furnished in
Fig. 18.18 whereby the bimaterial layers of higher and lower coefficients of thermal
expansion (CTE) are colored in red and blue, respectively, while the rigid rods are
indicated in black. Based on these opposing arrangements of bimaterial strips, the
unit cells denoted by Fig. 18.18 (top) exhibit positive thermal expansion (PTE) while
Fig. 18.18 (bottom)manifests negative thermal expansion (NTE); for this reason, they
are herein termed the P-Type and N-Type metamaterials, respectively. Under the
influence of increasing temperature, the P-Type and N-Type deform into the shapes
shown in Fig. 18.19 (top) and (bottom), respectively (Lim 2019b). These shapes swap
places for decreasing temperature. It can be seen that the deformed shape illustrated
in Fig. 18.19 (bottom) resembles the interconnected stars network, which has been
proven to exhibit auxetic behavior. By the same reasoning, an interconnected star
network is obtained from the P-Type metamaterial upon cooling. In other words,

dT > 0 ⇒ vP-Type > 0

dT < 0 ⇒ vP-Type < 0

dT > 0 ⇒ vN-Type < 0

dT < 0 ⇒ vN-Type > 0 (18.2.1)
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Fig. 18.18 Two possible
arrangements of alternating
bimaterials in the currently
considered class of
metamaterials with biaxial
PTE (top) and NTE (bottom)

or

vP-TypedT > 0

vN-TypedT < 0 (18.2.2)
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Fig. 18.19 Illustrations of 2-by-2 unit cells of P-Type (top) and N-Type (bottom) metamaterials
upon increased temperature
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Therefore, the P-Type and N-Type metamaterials in this section are analogous to
the O-Type and X-Type metamaterials, respectively, in Sect. 18.1. For brevity, the
following analyses explore only the effective CTEs.

Again, we consider an alternating bimaterial strip where lh indicates its half-
length; hence lhx and lhy furnished in Fig. 18.20 (top) refer to the half-lengths of the
bimaterials aligned parallel to the x- and y-axes, respectively. Likewise, lcx and lcy
denote the half-lengths of the connecting rods that connect each rectangular cell with
its nearest neighbor along the x- and y-axes, respectively; these connecting rods are
rigid and are of thickness t. Square nodes, of sides h, are also rigid and are placed at
the corners of the rectangular cells for joining the ends of the bimaterial rods that are
at right angles to each other. With reference to Fig. 18.20 (top), the bimaterial is also
of thickness h, where h1 and h2 are the thicknesses of both layers in the bimaterial
strips. Upon a change in temperature, each alternating bimaterial strip transforms
into an S-shaped curve such that its center is an inflexion point and each half of the
alternating bimaterial strip curves according to Eq. (18.1.1). See Fig. 18.20 (middle)
for the N-Type and Fig. 18.20 (bottom) for the P-Type metamaterials in the case of
increasing temperature, with the subtending angles being θx = lhx/r and θy = lhy/r ;
these are the rotations at the mid-points of the alternating bimaterials.

Starting from the original dimensions of the quarter unit cell measured along the
x- and y-axes

x0 = 2lhx + lcx + t

2

y0 = 2lhy + lcy + t

2
(18.2.3)

a change in temperature alters the dimensions to

x = 2r sin θx ± 2r
(
1 − cos θy

) + lcx + t

2

y = 2r sin θy ± 2r(1 − cos θx ) + lcy + t

2
(18.2.4)

where the upper and lower signs correspond to the P-Type andN-Typemetamaterials,
respectively,whendT > 0 (the signs swopwhendT < 0).As a result of the thermally
induced change in dimension, we have the thermal strains

ε(T )
x = r sin θx ± r

(
1 − cos θy

) − lhx

lhx + lcx
2 + t

4

ε(T )
y = r sin θy ± r(1 − cos θx ) − lhy

lhy + lcy
2 + t

4

(18.2.5)

and their corresponding CTEs (Lim 2019b)
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Fig. 18.20 A quarter of unit cell at original state (top), as well as after temperature increase in the
N-Type (middle) and P-Type (bottom) metamaterials for analysis
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α(T )
x = r sin θx ± r

(
1 − cos θy

) − lhx(
lhx + lcx

2 + t
4

)
dT

α(T )
y = r sin θy ± r(1 − cos θx ) − lhy(

lhy + lcy
2 + t

4

)
dT

(18.2.6)

where the radius of curvature for the thermally bent bimaterials, r, is described in
Eq. (18.1.1). As theCTE in the y-direction can be obtained from that in the x-direction
by swopping the x- and y-subscripts, it is sufficient for the following analysis to
consider only the CTE in the x-direction. Since θx = lhx/r and θy = lhy/r , the firsts
of Eqs. (18.2.5) and (18.2.6) can also be expressed as

ε(T )
x = ±1 ∓ cos lhy

r + sin lhx
r − lhx

r
lhx
r + 1

2
lcx
lhx

lhx
r + 1

4
t
lhx

lhx
r

(18.2.7)

and

α(T )
x = ε(T )

x

dT
= ±1 ∓ cos lhy

r + sin lhx
r − lhx

r(
1 + 1

2
lcx
lhx

+ 1
4

t
lhx

)
lhx
r dT

(18.2.8)

respectively. For the case where both phases of the alternating bimaterial strips are of
equalmoduli and of equal thicknesses, Eq. (18.1.1) greatly simplifies toEq. (18.1.3a).
Substituting this into Eq. (18.2.8) gives

α(T )
x = ε(T )

x

dT
=

±1 ∓ cos

(
3lhy
2h

(
α

(T )
1 − α

(T )
2

)
dT

)
+ sin

(
3lhx
2h

(
α

(T )
1 − α

(T )
2

)
dT

)

−
(
3lhx
2h

(
α

(T )
1 − α

(T )
2

)
dT

)

(
1 + 1

2
lcx
lhx

+ 1
4

t
lhx

)(
3lhx
2h

(
α

(T )
1 − α

(T )
2

)
dT

)
dT

(18.2.9)

For square array, we have

2lhy + lcy + t
2

2lhx + lcx + t
2

= 1 (18.2.10)

while square cells are denoted as lhx = lhy = lh . Hence, the condition for square
array, in addition to square cells, is lcx = lcy = lc such that Eq. (18.2.9) reduces to
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α(T )
x = α(T )

y =

±1 ∓ cos

(
3lh
2h

(
α

(T )
1 − α

(T )
2

)
dT

)
+ sin

(
3lh
2h

(
α

(T )
1 − α

(T )
2

)
dT

)

−
(
3lh
2h

(
α

(T )
1 − α

(T )
2

)
dT

)

(
1 + 1

2
lc
lh

+ 1
4

t
lh

)(
3lh
2h

(
α

(T )
1 − α

(T )
2

)
dT

)
dT

(18.2.11)

To visualize the effective in-plane CTEs of the currently consideredmetamaterial,
results were plotted to show the effect of rod thickness, bimaterial CTE ratio, bima-
terial aspect ratio, cell aspect ratio, and array aspect ratio on the in-plane thermal
strain and in-plane CTE with and without variation in temperature. The effect of cell
aspect ratio was investigated at square array while the effect of array aspect ratio
was investigated for square cells. The effect of rod thickness, bimaterial CTE ratio,
and bimaterial aspect ratiowas generated for square cells in square array.We consider
the case of equal bimaterial moduli E1 = E2 and thicknesses h1 = h2 = h/2 so that
Eq. (18.2.9) applies for rectangular cells in rectangular array; in the case of square
cells in square array, Eq. (18.2.11) holds. In the subsequent plotted results, we adopt
α

(T )
1 = 25× 10−6 K−1 as this value is typical to materials with high CTEs, while the

range of temperature change is selected as −50K ≤ dT ≤ 50K because a range of
100 K is sufficiently realistic.

The effects of bimaterial and geometrical properties are evaluated as follows.
Based on Eq. (18.2.11), the use of dimensionless terms such as lh/h, α

(T )
2 /α

(T )
1 , lc/ lh

and t/ lh are useful to reduce the number of required plots. Figure 18.21 (left) shows
the effect of the relative rod thickness, t/ lh , on the in-plane CTE with the change in
temperature at fixed lh/h = 60, α(T )

2 /α
(T )
1 = 1/2 and lc/ lh = 2. The almost constant

CTEswith respect to the change in temperature are obviously due to the almost linear
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Fig. 18.21 Effect of connecting rod thickness on the effective in-plane CTE (left) with zoomed-in
view for the P-Type (top right) and N-Type (bottom right) metamaterials with change in temperature
for square cells in square array at lh/h = 60, α(T )

2 /α
(T )
1 = 1/2 and lc/ lh = 2
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Fig. 18.22 Effect of bimaterial CTE ratio α
(T )
2 /α

(T )
1 at lh/h = 60 (left) and bimaterial aspect ratio

lh/h at α
(T )
2 /α

(T )
1 = 1/2 (right) on the effective in-plane CTE for the P-Type (blue) and N-Type

(red) metamaterials with change in temperature for square cells in square array at lc/ lh = 2 and
t/ lh = 1/100

thermal strain with reference to the temperature change. More importantly, the plots
reveal that the assumption of t = 0 is valid. In order to discriminate the effects from
the relative rod thickness, zoomed-in views of the effective CTEs, α(T )

x are shown in
Fig. 18.21 (top right) for P-Type and in Fig. 18.21 (bottom right) for N-Type. The
plots of CTE magnitude for t = 0 theoretically demarcates a locus by which any
effective CTE beyond the boundary is practically impossible.

Adopting Eq. (18.2.11) again, the influence from the bimaterial’s thermal and
geometrical properties is plotted in Fig. 18.22. Specifically, the plots of effective
CTE magnitudes show the influence of bimaterial CTE ratio α

(T )
2 /α

(T )
1 at a fixed

bimaterial aspect ratio of lh/h = 60 in Fig. 18.22 (left) as well as bimaterial shape
in terms of its aspect ratio lh/h at a fixed bimaterial CTE ratio of α

(T )
2 /α

(T )
1 = 1/2

in Fig. 18.22 (right) for relative connecting rod length and thickness of lc/ lh = 2
and t/ lh = 1/100, respectively. In addition to exhibiting that the magnitude of the
effective in-plane thermal strain can be enhanced by contrasting the CTEs of the
bimaterials and making the bimaterial strip slenderer, plotted results also reveal that
the effect of cooling is slightly greater for P-Type while the effect of heating is
slightly greater for N-Type in regard to their effective CTE magnitudes for the same
magnitude of temperature change. A list of the effective in-plane CTE for square
array at dT = 0 is furnished in Table 18.2.

To generate the plots of thermal strain and CTE for various cell shapes, in the
form of cell aspect ratio lhy/ lhx , there is a need to simultaneously vary the ratios
lcy/ lcx and lcx/ lhx in order to maintain a fixed array. To maintain square array,
Eq. (18.2.10) is used for obtaining appropriate values of lcy/ lcx and lcx/ lhx . For
generating results of thermal strain and CTE with various array aspect ratio, there is
a requirement to concurrently alter other geometrical ratios. In the case of retaining



18.2 Thermally-Activated Toggle Between Connected-Octagonal … 621

Table 18.2 In-plane CTE for
square cells in square array at

α
(T )
1 = 25 × 10−6 K−1 and

dT = 0K

t/ lh α
(T )
2 /α

(T )
1 lh/h ±α

(T )
x

(×10−6 K−1
)

0.00 1/2 60 281.26

0.01 1/2 60 280.91

0.02 1/2 60 280.56

0.05 1/2 60 279.51

0.10 1/2 60 277.78

0.01 0 60 561.79

0.01 1/4 60 421.36

0.01 1/2 60 280.91

0.01 3/4 60 140.45

0.01 1 60 000.00

0.01 1/2 100 468.17

0.01 1/2 80 374.53

0.01 1/2 60 280.91

0.01 1/2 40 187.25

0.01 1/2 20 93.59

the cell shape as squares lhx = lhy = lh , the change in aspect ratio was implemented
by assigning numerical values to

(
2lh + lcy + t/2

)
/(2lh + lcx + t/2) followed by

extracting ratios of lcy/ lcx and lcx/ lhx . The geometries for prescribing change in one
type of aspect ratio while maintaining the other type of aspect ratio fixed are summa-
rized in Table 18.3. Substituting these geometrical parameters into Eq. (18.2.9), plots
of effective thermal strains and CTEs, as measured in the x-direction, are furnished
in Fig. 18.23. Results also show that the CTE magnitudes in the x-direction can be

Table 18.3 In-plane CTE for rectangular cells in rectangular array at t/ lhx = 0.01, α(T )
2 /α

(T )
1 =

1/2, lhx/h = 60, α(T )
1 = 25 × 10−6 K−1 and dT = 0K

lhy/ lhx lcy/ lcx lcx/ lhx
2lhy+lcy
2lhx+lcx

2lhy+lcy+t/2
2lhx+lcx+t/2 ±α

(T )
x

(×10−6 K−1
)

25/9 = 2.77778 5/21 14/3 1 1 1301.09

25/16 = 1.5625 5/8 3 1 1 548.78

1 1 2 1 1 280.91

16/25 = 0.64 8/5 6/5 1 1 143.80

9/25 = 0.36 21/5 2/5 1 1 60.65

1 35/3 2/5 25/9 = 2.77778 2.77408 467.79

1 5/2 6/5 25/16 = 1.5625 1.56162 351.02

1 1 2 1 1 280.91

1 2/5 3 16/25 = 0.64 0.64036 224.78

1 3/35 14/3 9/25 = 0.36 0.36048 168.63
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Fig. 18.23 Effect of cell aspect ratio at square array (left) and array aspect ratio with square cells
(right) on the in-plane thermal strain (top) and in-plane CTE magnitude (bottom) for bimaterial
properties of α

(T )
2 /α

(T )
1 = 1/2, lhx/h = 60 and t/ lhx = 1/100

heightened by increasing lhy and decreasing lcx , as indicated in Fig. 18.23 (bottom
left) and Fig. 18.23 (bottom right), respectively. The former observation is attributed
to the fact that the transverse deflection of the bimaterials has a greater magnitude
than the axial displacement of its ends, while the latter observation is attributed
simply to the denominator effect.

So far the generated effective thermal strains andCTEswere plottedwith respect to
the change in temperature for a few values of bimaterial strip slenderness, contrasting
CTEs of the bimaterial layers and the connecting rod thickness. Figure 18.24 shows
the continuous variation of the effective CTEs with respect to the bimaterial strip
slenderness, contrasting CTEs of the bimaterial layers and the connecting rod thick-
ness in terms of their dimensionless ratios lh/h, α

(T )
2 /α

(T )
1 and t/ lh , respectively.



18.2 Thermally-Activated Toggle Between Connected-Octagonal … 623

0

0.0001

0.0002

0.0003

0.0004

0.0005

0 20 40 60 80 100

Bimaterial aspect ratio effect

lh /h

t /lh = 1/100

(K-1)

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0 0.2 0.4 0.6 0.8 1

Bimaterial CTE ratio effect

t /lh = 1/100
lh /h = 60

(K-1)

0.000277

0.000278

0.000279

0.00028

0.000281

0.000282

0 0.02 0.04 0.06 0.08 0.1

Connecting rod thickness effect

t /lh

lh /h = 60

(K-1)

Fig. 18.24 Effect of bimaterial aspect ratio (left), bimaterial CTE ratio (middle), and connecting
rod thickness (right) on the CTE magnitudes for square cells in square array

The almost linear variation of the CTEwith lh/h and α
(T )
2 /α

(T )
1 can be made obvious

by substituting

sin

(
3lh
2h

(
α

(T )
1 − α

(T )
2

)
dT

)
≈ 3lh

2h

(
α

(T )
1 − α

(T )
2

)
dT

cos

(
3lh
2h

(
α

(T )
1 − α

(T )
2

)
dT

)
≈ 1 − 1

2!
(
3lh
2h

(
α

(T )
1 − α

(T )
2

)
dT

)2

(18.2.12)

into Eq. (18.2.11) to give

α(T )
x = α(T )

y ≈ ±
3 lh
h α

(T )
1

(
1 − α

(T )
2

α
(T )
1

)

4 + 2 lc
lh

+ t
lh

(18.2.13)

Applying Maclaurin expansion on Eq. (18.2.13) gives

α(T )
x = α(T )

y ≈ ±
3 lh
h α

(T )
1

(
1 − α

(T )
2

α
(T )
1

)

4 + 2 lc
lh[

1 −
t
lh

4 + 2 lc
lh

+ · · ·
]
;

∣∣∣∣∣
t
lh

4 + 2 lc
lh

∣∣∣∣∣ < 1 (18.2.14)

thereby accounting for the approximately linear trend of CTE with variation in t/ lh .
Substituting lh/h = 60, α(T )

1 = 25 × 10−6 K−1, lc/ lh = 2 and t/ lh = 0 into either
Eqs. (18.2.13) or (18.2.14) gives α(T )

x = α(T )
y ≈ ±281.25 × 10−6 K−1, which is a

good estimation to the effective CTE plots of Fig. 18.21 (right) as dT → 0.
Since the choice of cell aspect ratio lhy/ lhx at square array contains reciprocal

values, one may infer the thermal strains and CTEs along the y-direction based on
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those along the x-direction

{
ε(T )
y

α(T )
y

}

lhx/ lhy

=
{

ε(T )
x

α(T )
x

}

lhy/ lhx

(18.2.15)

for square array. By similar reasoning on the reciprocals of array aspect ratio with
square cells, the thermal strains and CTEs parallel to the y-axis can be obtained from
those parallel to the x-axis

{
ε(T )
y

α(T )
y

}

2lh+lcx+t/2
2lh+lcy+t/2

=
{

ε(T )
x

α(T )
x

}
2lh+lcy+t/2
2lh+lcx+t/2

(18.2.16)

for square cells. Figure 18.25 furnishes the calculated α(T )
x alongside the inferred

α(T )
y by means of the abovementioned correspondence of indices. Specifically, the

CTE plots for variation in cell shape at square array and for variation in cell array
with square cells are furnished in Fig. 18.25 (top left) and Fig. 18.25 (bottom left),
respectively. Since α(T )

x and α(T )
y are swopped when the axes are rotated by 90°

with respect to the microstructural geometry, it follows that the curves of α(T )
x and

α(T )
y become mirror images of each other about the axis of unity aspect ratio, and

hence preserving symmetry, when the aspect ratios are plotted in any logarithmic
scale. Figure 18.25 (right) shows examples of CTE curves plotted against both aspect
ratios in natural logarithmic scale.

We shall now consider a different arrangement of bimaterial strips—the S-Type
metamaterial as furnished in Fig. 18.26 (top)—such that it is neither biaxial PTE
nor biaxial NTE upon temperature change, but instead, it exhibits thermal shearing
as shown in Fig. 18.26 (bottom), thereby manifesting both PTE and NTE in the
diagonal directions. The sheared shapes reversewhen temperature decreases. Finally,
we consider yet another assembly—not by rearranging the bimaterial strips within
each unit cell—but by alternating the P-Type and N-Type cells in 2D array, to give a
P&N-Type. An example is illustrated in Fig. 18.27 using a 2-by-2 unit cells whereby
the P-Type takes the top left and bottom right positions while the N-Type takes the
top right and bottom left positions; the P-Type and N-Type cells expand and contract,
respectively, upon heating. Upon cooling, the P-Type and N-Type cells shrink and
expand, respectively.

It is of interest to note that the P-Type and N-Type metamaterials deform into
shapes that approximate interconnected stars upon decreasing and increasing temper-
atures, respectively; the interconnected star networks have been shown to exhibit
auxetic behavior. On the other hand, the S-Type metamaterial exhibits thermal
shearing, thereby giving positive and negative thermal expansion behaviors along
its diagonals. Finally, the combination of P-Type and N-Type cells in alternating
pattern, i.e., the P&N-Type, gives rise to NTE property for increasing tempera-
ture, but PTE with decreasing temperature. Although the expansion in P-Type cells
appears to be offset by contraction of N-Type cells, there is an overall decrease in
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Fig. 18.25 Effects of cell aspect ratio at square array (top row) and array aspect ratio for square
cells (bottom row) on the CTE magnitudes with t/ lhx = 1/100 and α

(T )
2 /α

(T )
1 = 1/2, plotted

against the linear scale (left column) and natural logarithmic scale (right column)

size regardless of whether temperature increases or decreases due to the curving
of all cell walls. This is due to the curving of the bimaterial strips that shorten the
distance between the cell corners. Therefore, the P&N-Type metamaterial manifests
sign-switching ofCTEwith persistently negative thermal strain regardless ofwhether
temperature increases or decreases. Suppose the rigid cross bars of the P&N-Type
metamaterial diminish such that the bimaterial walls of neighboring cells merge,
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Fig. 18.26 A single unit of S-Type metamaterial showing the bimaterial arrangement of higher
(red) and lower (blue) CTE layers (top), and an illustration of 2-by-2 units undergoing thermal
shearing upon increased temperature (bottom)
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Fig. 18.27 Illustration of NTE in a 2-by-2 unit cells of a P&N-Type metamaterial upon increased
temperature

then the thermally-deformed metamaterial resembles the type of environmentally-
deformed metamaterial discussed in Sect. 20.2 (Lim 2020a) and approximates
the hygrothermally-deformed metamaterial analyzed in Sect. 20.3 (Lim 2020b).

Regardless of the type of bimaterial arrangements—be they P-Type, N-Type, S-
Type or P&N-Type—the Poisson’s ratio of the structures at original state, when
infinitesimally stretched along either axes, are near zero due to the retention of the
rectangular cell shape. For large stretching, however, the bimaterials that are perpen-
dicular to the force direction will curve outwards such that the projected length
becomes shorter. As a consequence of bending, the accompanying rotations at the
cell corners induce bending at the ends of the bimaterial strips that are parallel to
the force direction, thereby causing them to bend inwards. This brings about inward
bending of the bimaterials that are parallel to the force, which in turn leads to inward
displacements of the connecting rods that are at right angles to the loading direction.
In other words, the microstructure at original state exhibits positive Poisson’s ratio
when it undergoes large stretching along either axes. See Fig. 18.28.
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1. Original shape of the 
bimaterial cell wall 
(before stretching) 
regardless of the P-
Type, N-Type, S-Type 
and P&N-Type 
configurations. 

2. Application 
of stretching 
load that leads 
to large 
deformation. 

3. Outward 
bending of 
bimaterial strips 
perpendicular to 
applied load. 

4. Rotation of 
cell corners.

5. Combined 
bending and 
stretching of 
bimaterial strips 
parallel to load.

6. Inward displacements of 
connecting rods 
perpendicular to load.

Fig. 18.28 Qualitative illustration of positive Poisson’s ratio arising large stretching along one of
the axes. The dashed green square aids comparison

18.3 Conclusions

Recall from Sect. 18.1 that by judicious arrangements of the alternating bimaterial
strips, themetamaterials can bemade to exhibit (a) fixed positive or negative values of
some properties regardless of the sign of dT and, more interestingly, (b) alternating
positive or negative values of other properties depending of the sign of dT . Specifi-
cally, the originally rectangular cells of the O-Type and X-Type metamaterials alter-
nate between barrel- and hourglass-shaped cells for alternating dT signs, thereby
alternating their Poisson’s ratio signs in situ as a consequence. For completeness’
sake, theCC-Type andSS-Typemetamaterialswere also discussed; these exhibit zero
thermal expansion (ZTE) in the x-direction and zero Poisson’s ratio (ZPR) for loading
in the y-direction, and therefore are good candidates for application where dimen-
sional stability is required. A summarized overview with emphasis on the Poisson’s
ratio and CTE sign-switchability by means of thermal-toggling for the proposed
class of metamaterial is furnished in Table 18.4. In this analysis, the crossbeams
have been assumed rigid. Since the ends of the crossbeams are partially built-in, i.e.,
clamped at the top and bottom with the remaining two sides being free surfaces,
the use of an exact deflection solution with strong boundary conditions (Lim 2021)
for the clamped portion of the crossbeams is recommended for future analysis that
involves bending of the crossbeams.
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Table 18.4 Sign-switchability of CTE and Poisson’s ratio by means of temperature change

Metamaterial type T ↓ T ↑ Remarks on thermal fluctuation effect

O-Type α
(T )
x = + α

(T )
x = + PTE (non-switchable)

α
(T )
y = + α

(T )
y = − Sign switchable

vxy = − vxy = + Sign switchable

X-Type α
(T )
x = − α

(T )
x = − NTE (non-switchable)

α
(T )
y = + α

(T )
y = − Sign switchable

vxy = + vxy = − Sign switchable

CC- and SS-Types α
(T )
x = 0 α

(T )
x = 0 ZTE (non-switchable)

α
(T )
y = + α

(T )
y = − Sign switchable

vyx = 0 vyx = 0 ZPR (non-switchable)

The various thermal expansion and Poisson’s ratio signs for the class of metama-
terials discussed in Sect. 18.2 are summarized in Table 18.5. It can thus be concluded
that due to the consistent CTE signs for the P-Type and N-Type metamaterials and
the in situ sign-flipping of the Poisson’s ratio due to temperature fluctuation, this
class of metamaterial offers to the composite material engineer not only the choice
for assigning materials with fixed positive or negative values of CTEs but also the
choice of enabling the Poisson’s ratio sign to toggle in adaptation to environmental

Table 18.5 Summary of thermally deformed shapes and resulting properties of the P-Type,N-Type,
S-Type, and combined P and N-Type metamaterials based on originally square cells

Metamaterial (initial cell
shape)

Decreasing temperature Increasing temperature

P-Type • Contracts into interconnected
stars network

• Positive thermal expansion
(PTE)

• Auxetic

• Expands into interconnected
octagons network

• Positive thermal expansion
(PTE)

• Non-auxetic

N-Type • Expands into interconnected
octagons network

• Negative thermal expansion
(NTE)

• Non-auxetic

• Contracts into interconnected
stars network

• Negative thermal expansion
(NTE)

• Auxetic

S-Type • Negative shearing
• NTE and PTE in 45° and −
45° directions, respectively

• Positive shearing
• PTE and NTE in 45° and −
45° directions, respectively

P&N-Type • P-Type and N-Type cells
contract and expand,
respectively. Overall
contraction

• PTE

• P-Type and N-Type cells
expand and contract,
respectively. Overall
contraction

• NTE
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changes.While themetamaterials in this chapter includes discussion on sign-toggling
of Poisson’s ratio in response to thermal changes, the next chapter explores the sign-
toggling of thermal and other environmental expansion coefficients in metamaterials
that imply persistently negative Poisson’s ratio (Lim 2019c, 2020c).
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Chapter 19
Sign-Switching of Expansion Coefficients
with Auxetic Behavior

Abstract This chapter considers two examples of microstructures with sign-
switching coefficients of expansion bymicrostructural reshape. However, the general
shape of the environmentally deformed microstructure bears certain similarities
regardless of whether the environmental (thermal, pressure, moisture concentration)
changes are positive or negative. The first example is based on pin-jointed truss
system that exhibits in-plane isotropy, while the second example is based on hybrid
bimaterial strip and pin-jointed truss system that gives in-plane anisotropy. In both
examples, the in-plane environmental strain is negative regardless of increasing or
decreasing environmental parameters. Some auxetic aspects are observed for both
microstructures. In the first example, the driven or secondary cells are analogous to
the rotating squares while the driving or primary cells are analogous to the empty
spaces between the squares. In the second example, the environmentally deformed
microstructure bear resemblance with the rotating squares model, anti-tetrachiral
model, and the instability-induced auxeticity of square grids.

Keywords Compressibility · Poisson’s ratio · Moisture expansion · Thermal
expansion · Sign-flipping · Sign-reversible · Sign-switching · Sign-toggling

19.1 A Metamaterial with Sign-Switching Expansion
Coefficient, In-Plane Isotropy, and Apparent Rotating
Squares

This section demonstrates a lightweightmaterial such that bymaking judiciousmodi-
fications to its 2D truss microstructural system with pin-jointed rods, sign-switching
occurs in its CTE, CME, and compressibility by means of microstructural reshape,
i.e.,

• α(T )
x = α(T )

y < 0 for dT > 0 but α(T )
x = α(T )

y > 0 for dT < 0
• α(C)

x = α(C)
y < 0 for dC > 0 but α(C)

x = α(C)
y > 0 for dC < 0

• α(P)
x = α(P)

y > 0 for dP > 0 but α(P)
x = α(P)

y < 0 for dP < 0

A pin-jointed 2D truss microstructure that can achieve such sign-switchable
expansion coefficient is furnished in Fig. 19.1 (center), which consists of side rods
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Elongation 
of central 
rods 

Shortening 
of central 
rods 

Further elongation 
of central rods

Further shortening 
of central rods

Fig. 19.1 Microstructural evolution in terms of elongation and shortening of central rods as a
result of environmental changes, with fixed side rod length, leading to overall contraction of the
microstructure. Dashed squares aid visual comparison of final size to the original size
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(indicated in blue) and central rods (denoted as red) that are arranged into primary
and secondary square cells. Each primary cell consists of 4 side rods that form a
square with a central rod attached diagonally to the square, while the secondary cell
has no central rod. Suppose the side rods are rigid while the central rods are free
to elongate or shorten, then under the influence of environmental fluctuations the
primary squares transform into rhombic cells while the secondary cells retain their
size and shape. Specifically, elongation and shortening of the central rods cause them
to form the major and minor axes, respectively, of the rhombic cells, as indicated
in Fig. 19.1 (top and bottom). Either way, the area contraction of the primary cells
reduces the overall area of the 2D truss system, thereby leading to negative in-plane
isotropic strain. The assumption of rigid side rods is a special case rather than a
generic one. The negativity of the area strain diminishes if the side rods are expand-
able. Under the more generic condition non-rigid side rods, the effective in-plane
strain, and hence the effective expansion coefficient(s), are ascertained by analysis.
The following analysis considers moisture expansion in the first instance before
simplifying to thermal expansion and compressibility considerations. The reason for
this is that the change in the rods’ moisture concentration is not equal to the change
in the environmental moisture concentration, and that the differing moisture absorp-
tivity leads to different moisture concentrations for dissimilar materials, whereas
the temperature of dissimilar rod materials tends to the environmental temperature
at equilibrium while the pressure experienced by the dissimilar rods materials are
inherently that of the environmental pressure.

We begin the analysis with the assertion that both the central and side rods possess
positive moisture expansion, i.e., these rods elongate and shorten with the absorption
and dissipation of moisture, respectively. Let the original half-length of the central
rod lc0 be l0 and the original length of the side rod ls0 be

√
2l0, as shown in Fig. 19.2.

Recall that the moisture concentration in solids is defined as C = 100 m/M where
m = moisture mass in the solid whileM = mass of the dry solid. Hence, a change in
moisture concentration in the solid is dC = 100 dm/M . Extending the definitions
of C and dC for the moisture concentration and its change in the environment, it
follows that m/M refers to the ratio of moisture mass to the dry air mass for the
same control volume while dm/M indicates the corresponding change in moisture
mass to dry air mass ratio.

Arising from a change of moisture concentration dCenv in the environment, which
results in changes of moisture concentration in the central rods dCc and in the side
rods dCs, we have the incremental moisture strains in the central rods

dε(C)
c = dlc

lc
= α(C)

c dCc (19.1.1)

and in the side rods

dε(C)
s = dls

ls
= α(C)

s dCs (19.1.2)
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Fig. 19.2 Isolation of two
units of primary cells for
analyzing the distance
between their centroids
before (top) and after
(bottom) the central and side
rods experience moisture
strains

x0 = 2 l0lc0=l0

ls0 = 2 l0

x

y

x

y

x1 x2

xf

lcf

lsf
y2

√

where dCc and dCs are the incremental changes of Cc and Cs, respectively, while
α(C)
c and α(C)

s denote the coefficients of moisture expansion for the central and side
rods, respectively. Taking integral to obtain finite strains for considerable changes of
moisture concentrations in the rods gives the following moisture strains

ε(C)
c = ln

dlcf
lc0

= α(C)
c �Cc (19.1.3)

and

ε(C)
s = ln

dlsf
ls0

= α(C)
s �Cs (19.1.4)

where lcf = final half-length of the central rod, while lsf = final length of the side
rod. The final lengths are thus

lcf = lc0e
α

(C)
c �Cc = x1 (19.1.5)

and
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lsf = ls0e
α

(C)
s �Cs (19.1.6)

By symmetry consideration y2 = x2,

x2 =
√
l2s0e

2α(C)
s �Cs − l2c0e

2α(C)
c �Cc (19.1.7)

so that

xf = lc0e
α

(C)
c �Cc +

√
l2s0e

2α(C)
s �Cs − l2c0e

2α(C)
c �Cc (19.1.8)

We note that the in-plane strain is isotropic εx = εy , and hence it is sufficient to
employ only one direction to represent the effective strain

ε
(C)
eff = ln

x f

x0
= ln

lc0eα
(C)
c �Cc +

√
l2s0e

2α(C)
s �Cs − l2c0e

2α(C)
c �Cc

2l0
(19.1.9)

Substitution of lc0 = l0 and ls0 = √
2l0 leads to

ε
(C)
eff = ln

{
1

2
eα

(C)
c �Cc + 1

2

√
2e2α

(C)
s �Cs − e2α

(C)
c �Cc

}
(19.1.10)

While Eq. (19.1.10) expresses the effective moisture strain in terms of moisture
strains of the central rods α(C)

c �Cc and of the side rods α(C)
s �Cs it is desirable to

also express it as an effective coefficient of moisture expansion α
(C)
eff by the relation

ε
(C)
eff = α

(C)
eff �Cenv

α
(C)
eff = 1

�Cenv
ln

{
1

2
eα

(C)
c �Cc + 1

2

√
2e2α

(C)
s �Cs − e2α

(C)
c �Cc

}
(19.1.11)

To preserve dimensionless form, it is useful—and physically meaningful—to take
Eq. (19.1.11) as a ratio of the central rod’s coefficient of moisture expansion. This
permits the non-dimensionalized effective coefficient of moisture expansion (Lim
2019a)

α
(C)
eff

α
(C)
c

= 1

α
(C)
c �Cc

(
�Cc

�Cenv

)
ln

{
1

2
eα

(C)
c �Cc + 1

2

√
2e2α

(C)
s �Cs − e2α

(C)
c �Cc

}
(19.1.12)

to be expressed in dimensionless groups, specifically, the ratio of moisture concen-
tration change in the central rods to that in the environment �Cc/�Cenv, as well
as the moisture strains in the central rods α(C)

c �Cc and in the side rods α(C)
s �Cs.

Although it has been earlier stated that the rods’ coefficients of moisture expansions
α(C)
c and α(C)

s are non-negative, the corresponding strains can be both positive and
negative as a consequent of increasing and decreasing moisture concentrations.



636 19 Sign-switching of Expansion Coefficients with Auxetic Behavior

It is beneficial at this juncture to consider some special cases for the purpose of
better clarity on the influence from each parameter. For Special Case I where the side
rods are rigid either due to it being non-expandable

(
α(C)
s = 0

)
and/or non-absorptive

(�Cs = 0), Eqs. (19.1.10) and (19.1.12) reduce to

ε
(C)
eff = ln

{
1

2
eα

(C)
c �Cc + 1

2

√
2 − e2α

(C)
c �Cc

}
(19.1.13)

and

α
(C)
eff

α
(C)
c

= 1

α
(C)
c �Cc

(
�Cc

�Cenv

)
ln

{
1

2
eα

(C)
c �Cc + 1

2

√
2 − e2α

(C)
c �Cc

}
(19.1.14)

respectively. For Special Case II where both the central and side rods encounter
common change inmoisture concentration�Cc = �Cs, Eqs. (19.1.10) and (19.1.12)
simplify to

ε
(C)
eff = ln

{
1

2
eα

(C)
c �Cc + 1

2

√
2e

2α(C)
c �Cc

(
α

(C)
s /α

(C)
c

)
− e2α

(C)
c �Cc

}
(19.1.15)

and

α
(C)
eff

α
(C)
c

= 1

α
(C)
c �Cc

(
�Cc

�Cenv

)
ln

{
1

2
eα

(C)
c �Cc + 1

2

√
2e

2α(C)
c �Cc

(
α

(C)
s /α

(C)
c

)
− e2α

(C)
c �Cc

}

(19.1.16)

respectively, so as to facilitate observation on the effects from central rod’s moisture
strain α(C)

c �Cc and the side-to-central rod CME ratio α(C)
s /α(C)

c . These special cases
are useful for visualizing the effects from the various dimensionless groups.

The developed effective moisture strain and dimensionless coefficient of mois-
ture expansion laid out in Eqs. (19.1.10) and (19.1.12), respectively, can be converted
for use under the influence of changing temperature as well as pressure. It should
be noted that the moisture concentration in a solid is not equal to that in the envi-
ronment; for multiconstituent truss microstructure considered herein, the moisture
concentrations and their changes in the central and side rods are, in general, not equal.
More importantly, the changes in moisture concentration in the environment and in
the rods of different materials are distinct in general. This is not so in the case when
considering thermal strain, whereby temperature change in the environment is the
same as that in the solids at thermal equilibrium. As such, performing the following
substitutions on Eqs. (19.1.10) and (19.1.12)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α
(C)
eff

α(C)
c

α(C)
s

�Cenv

�Cc

�Cs

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

�→

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α
(T )
eff

α(T )
c

α(T )
s

�T
�T
�T

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(19.1.17)

whereα
(T )
eff ,α

(T )
c , andα(T )

s are the coefficients of thermal expansion for themicrostruc-
ture, the central rods, and the side rods, respectively, and recognizing that �T is the
common temperature change in the environment and in all rods, we have the effective
thermal strain on the microstructure

ε
(T )
eff = ln

{
1

2
eα

(T )
c �T + 1

2

√
2e2α

(T )
s �T − e2α

(T )
c �T

}
(19.1.18)

and the corresponding dimensionless effective coefficient of thermal expansion

α
(T )
eff

α
(T )
c

= 1

α
(T )
c �T

ln

{
1

2
eα

(T )
c �T + 1

2

√
2e2α

(T )
s �T − e2α

(T )
c �T

}
(19.1.19)

respectively.
A similar analogy can be made for the case of compressibility. Recall that the

pressure-induced volumetric strain is ε
(P)
V = −α

(P)
V �P where α

(P)
V is the compress-

ibility while �P , the environmental pressure change, is the common pressure
change experienced by both the central and side rods. Unlike responses to mois-
ture and temperature, increasing pressure �P > 0 induces volumetric contraction
ε

(P)
V < 0, and so a negative sign is required to preserve positive α

(P)
V in conven-

tional sense. Since the volumetric strain is three times the linear strain ε
(P)
V = 3ε(P)

L
for isotropic solids under pressure change, we have the pressure-induced strain
ε

(P)
L = −α

(P)
V �P/3. However, the considered metamaterial is 2D and so α

(P)
V is

undefined for the present analysis. As such, a linear compressibility α
(P)
L is intro-

duced such that the pressure-induced strain is ε
(P)
L = −α

(P)
L �P , so as to permit the

following substitutions

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α
(C)
eff

α(C)
c

α(C)
s

�Cenv

�Cc

�Cs

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

→

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α
(P)
eff

α(P)
c

α(P)
s

−�P
−�P
−�P

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(19.1.20)

on Eqs. (19.1.10) and (19.1.12) to yield the pressure-induced effective strain on the
microstructure
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ε
(P)
eff = ln

{
1

2
e−α

(P)
c �P + 1

2

√
2e−2α(P)

s �P − e−2α(P)
c �P

}
(19.1.21)

and the corresponding dimensionless effective compressibility

α
(P)
eff

α
(P)
c

= 1

−α
(P)
c �P

ln

{
1

2
e−α

(P)
c �P + 1

2

√
2e−2α(P)

s �P − e−2α(P)
c �P

}
(19.1.22)

respectively.
Since the changes in the environment’s moisture concentration, temperature, and

pressure take place non-monotonically, the overall effect from these environmental
fluctuations can be accounted for by taking superposition of the effective strains
arising from each environmental change εeff = ε

(C)
eff + ε

(T )
eff + ε

(P)
eff , i.e.,

εeff = ln

⎧
⎨
⎩

⎛
⎝eα

(C)
c �Cc

2
+

√
e2α

(C)
s �Cs

2
− e2α

(C)
c �Cc

4

⎞
⎠

⎛
⎝eα

(T )
c �T

2
+

√
e2α

(T )
s �T

2
− e2α

(T )
c �T

4

⎞
⎠
⎛
⎝e−α

(P)
c �P

2
+

√
e−2α(P)

s �P

2
− e−2α(P)

c �P

4

⎞
⎠
⎫
⎬
⎭

(19.1.23)

which is simplified to

εeff = ln

⎧
⎨
⎩

⎛
⎝eα

(C)
c �Cc

2
+

√
1

2
− e2α

(C)
c �Cc

4

⎞
⎠
⎛
⎝eα

(T )
c �T

2
+

√
1

2
− e2α

(T )
c �T

4

⎞
⎠

⎛
⎝e−α

(P)
c �P

2
+

√
1

2
− e−2α(P)

c �P

4

⎞
⎠
⎫
⎬
⎭ (19.1.24)

for rigid and/or non-absorptive side rods.
So far the analysis has adopted straight lines to represent the distance between

the hinges. In a practical sense, the sizes of the rods and their locations along the
thickness direction must be defined. The rods are laid in such a manner that the
central rods are placed at the middle layer; all sides’ rods that are aligned in one
direction are placed above the central rods while those oriented in another direction
are positioned below the central rods, as shown in Fig. 19.3 (top). The sizes of
the rods can be as small as that which can be achieved by the latest technology,
and hence we herein discuss the length ratios as it would be more meaningful in
understanding the limitations of deformation. As with beams or rods, the hinge-to-
hinge lengths of ls0 for the side rods or

√
2l0 can be made about an order higher

than the width of the side rod w0, as shown in Fig. 19.3 on the basis of Special
Case I. Since the microstructure decreases in size regardless of whether the central
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Increasing temperature and 
moisture concentration or 

decreasing pressure 

Decreasing temperature and 
moisture concentration or 

increasing pressure 

Upper limit of 
central rod 

strain 

Lower limit of 
central rod 

strain 

Original state 

Fig. 19.3 Strains limits illustrated for Special Case I considering two units of the primary cells

rod expands and contracts, there is only one theoretical limit, which is the lower
bound. The “upper bound” is formed by the original state. However, there exist two
limits for the central rods. The theoretical upper limit and the theoretical lower limit
or the central rods are attained under the influence of environmental change when
the opposing side rods come into contact, as shown in Fig. 19.3 (bottom left) and
Fig. 19.3 (bottom right), respectively. Taking the width of the side rods into account
for limiting the deformation mechanism, the theoretical upper limit of the central rod
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strain is obtained from l20
(
1 + ε

upp
c

)2 = 2l20 − w2
0/4 while the theoretical lower limit

is obtained from l0
(
1 + εlowc

) = w0/2 to give the theoretical bounds of the central
rod strain for rigid side rods

1

2

w0

l0
< 1 + εc <

√
2 − 1

4

(
w0

l0

)2

(19.1.25)

If w0 � l0, the range is expressed in terms of constants

−1 < εc <
(
−1 + √

2
)

≈ 0.4142 (19.1.26)

At either limits of the central rods, there exist two rhombi of equal size and
shape, but each aligned at right angles to one another. Hence, the original horizontal
dimension of

L0 = 4l0 (19.1.27)

changes to a summation of the major and minor diameters of the fully closed rhombi

L f = 2

√
2l20 − 1

4
w2

0 + w0 (19.1.28)

to give the theoretical limiting strain

εlim = 1

2

√
2 − 1

4

(
w0

l0

)2

+ 1

4

w0

l0
− 1 (19.1.29)

thereby establishing the limiting strain as a function of side rod aspect ratio w0/ l0.
Neglecting the side rod width for w0 � l0 simplifies Eq. (19.1.29) to a negative
constant

εlim ≈ 1√
2

− 1 = −0.2929 (19.1.30)

Plotted results can bemade by considering the variation of the developed effective
moisture strain as well as the coefficient of moisture expansion—as representations
of the generic environmental strain and expansion coefficient, respectively. To clearly
observe the effects from the moisture strain of the central rods, the effective moisture
strain is plotted in Fig. 19.4 (left) under Special Case I, i.e., using Eq. (19.1.13),
wherein the side rods’ lengths are preserved either due to the their intrinsically non-
expansion arising from α(C)

s = 0, or due to the absence of moisture concentration
change �Cs = 0 as a consequence of non-absorbance of environmental moisture
and non-dissipation of the side rods’ moisture content. The combined influence
from the moisture strain of the central rods and the ratio of change in the moisture
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Fig. 19.4 Plots of effective moisture strain (left) and dimensionless coefficients of moisture expan-
sion (right) as a function of central rod moisture strain for various �Cc/�Cenv ratio at fixed side
rod length

concentration of the central rod to that of the surrounding environment �Cc/�Cenv

on the dimensionless effective coefficient of moisture expansion α
(C)
eff /α(C)

c is plotted
in Fig. 19.4 (right) under the same special case using Eq. (19.1.14).

Based on the substitutions described by Eqs. (19.1.17) and (19.1.20), Fig. 19.4
can be converted to its analogy for representing thermal and pressure fluctuations, as
shown in Fig. 19.5. Specifically, the sole curve in Fig. 19.4 (left) applies for the effec-
tive thermal strain versus α(T )

c �T and the effective pressure strain versus α(P)
c �P ,

while only the curve indicated as �Cc/�Cenv = 1 in the plots of dimensionless
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Fig. 19.5 Plots of effective thermal or pressure strains (left) and dimensionless coefficient of
thermal expansion or dimensionless compressibility (right) versus central rods’ thermal or pressure
strains at constant side rod length
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coefficient of moisture Fig. 19.4 (right) can be extended to plots of α
(T )
eff /α(T )

c and
α

(P)
eff /α(P)

c versus α(T )
c �T and α(P)

c �P , respectively, since the environmental and
rod temperature changes are common at equilibrium, and that the pressure change
subjected to the rods is none other than the change in environmental pressure.

Observation on the interlacing effects from the central rods’ moisture strain and
the ratio of the side rod to the central rod coefficients ofmoisture expansion α(C)

s /α(C)
c

can be made on the basis of Special Case II, i.e., using Eq. (19.1.15) wherein it is
assumed that the change in moisture concentration in the central rods is that same
as that in the side rods �Cc = �Cs. This is shown in Fig. 19.6 (left) whereby
the quadrants α(C)

c �Cc < 0 ∩ ε
(C)
eff < 0 and α(C)

c �Cc > 0 ∩ ε
(C)
eff > 0 indicate

conventional, or positivemoisture expansion, regions, while the quadrantα(C)
c �Cc >

0 ∩ ε
(C)
eff < 0 denotes a region of negative moisture expansion. For completeness’

sake, the region α(C)
c �Cc < 0 ∩ ε

(C)
e f f > 0 is identified as being negative moisture

expansion although no curves pass through that quadrant. Within the same special
case, plots of dimensionless coefficient of moisture expansion against the central
rods’ moisture strain for various α(C)

s /α(C)
c ratio is shown in Fig. 19.6 (right) using

Eq. (19.1.16) with an additional simplification of �Cc/�Cenv = 1 since this ratio
has been varied in Fig. 19.4 (right).

Again, by the substitutions of Eqs. (19.1.17) and (19.1.20), the various α(C)
s /α(C)

c
ratios for moisture fluctuation are valid for α(T )

s /α(T )
c and α(P)

s /α(P)
c ratios under

environmental thermal and pressure changes, respectively. Since the plots of ε
(P)
eff

and α
(P)
eff /α(P)

c versus α(P)
c �P are symmetrical to those of thermal ε(T )

eff and α
(T )
eff /α(T )

c
versus α(T )

c �T , respectively, about α(P)
c �P = α(T )

c �T = 0 in Fig. 19.5, the plots
in Fig. 19.6 for various α(T )

s /α(T )
c and α(P)

s /α(P)
c ratios can be coincided by using
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Fig. 19.6 Plots of effective environmental strains (left) and their dimensionless expansion coeffi-
cients for various α

(n)
s /α

(n)
c ratios (right) as a function of central rods’ environmental strains, where

n = moisture concentration (C), temperature (T ), or pressure (P). For n = C , the condition of
�Cc = �Cenv is imposed to correspond with n = T, P
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−α(P)
c �P instead of α(P)

c �P as the abscissa in addition to α(T )
c �T . Perusal to

Fig. 19.6 also shows that

∂ε
(n)
eff

∂ε
(n)
c

∣∣∣∣∣
ε

(n)
c =0

= 0 ⇐ α(n)
s = 0 (19.1.31)

for n = C, T, P , thereby suggesting that the effective environmental strain is negli-
gible, and hence the environmental stress under constrained system is small, for
moderate change in environmental condition if the side rods are rigid.

Having shown that the sign-switchable effective coefficient of moisture expan-
sion can be converted into effective coefficient of thermal expansion and effective
compressibility, the considered microstructure also exhibits negative Poisson’s ratio.
Recall that the microstructure consists of primary and secondary cells. In the absence
of environmental changes, the presence of central rods preserves the size and shape
of the primary cells while the secondary cells are subjected to changes in shape and
area due to the absence of central rods. Therefore, in the absence of environmental
changes the primary cells behave as rigid squares whose rotation gives rise to auxetic,
or negative Poisson’s ratio, behavior with isotropic in-plane Poisson’s ratio of −1
(Grima and Evans 2000). In the presence of environmental changes, the primary
cells become rhombi so as to give Type α rotating rhombi (Grima et al. 2015). In
the absence of mechanical loading, the change in environmental condition alters the
primary cells into rhombi while the secondary cells rotate but retain their square
shapes, such that the secondary and primary cells are analogous to the rigid rotating
squares and their adjacent empty spaces, respectively.

19.2 A Metamaterial with Sign-Switching Expansion
Coefficient, In-Plane Anisotropy, and Analogous
to Various Auxetic Systems

This section deals with ametamaterial that exhibits positive thermal expansion (PTE)
upon coolingbutNTEuponheating, aswith the previous section.However, regardless
ofwhether the temperature increases or decreases, the negativity of Poisson’s ratio vxy
increases with the magnitude of the temperature change. In particular, the currently
proposed metamaterial exhibits the following: (a) α(T )

x = α(T )
y = 0 and vxy ≈ − 1

3

under buckling load for dT ≈ 0, (b) α(T )
x , α(T )

y < 0 for dT > 0 but α(T )
x , α(T )

y > 0
for dT < 0, and (c) vxy < 0 for dT 	= 0.

Although discussed in terms of thermal change and CTE, the developed model
herein can be extended to pressure change and compressibility, as well as moisture
concentration change and CME. It suffices to discuss in terms of thermal change and
CTE, as conversion to the other two environmental changes can be implemented as
discussed in the previous section.
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The considered metamaterial displays biaxial CTE sign-switching with in-plane
anisotropy. Such a metamaterial is illustrated in Fig. 19.7 (top) in its original state
for 3 by 4 unit cells, consisting of rigid rods (shown in black) oriented parallel to
the x-axis while the bimaterials are aligned in the y-direction. The rigid rods are
connected by freely rotating pin joints while the ends of each bimaterials are built-
in, or fixed joints, into the mid-span of the rigid rods. Suppose the phases with the
higher and lower CTEs in Fig. 19.7 are indicated in red and blue, respectively, then
a decrease and increase in temperature result in the microstructural shapes shown
in Fig. 19.7 (bottom left) and Fig. 19.7 (bottom right), respectively. Therefore, the
original rectangle ABCD, indicated by the yellow line in Fig. 19.7 (top), shrinks
to A′B′C′D′, denoted by dashed green lines in Fig. 19.7 (bottom). This A′B′C′D′
rectangle is also reproduced in Fig. 19.7 (top) for convenient comparison with the
original ABCD before thermal fluctuation.

Since the metamaterial reduces in size with thermal fluctuation, it exhibits PTE
during cooling but reverses to NTE upon heating, i.e., sign-switching of its CTEwith
thermal fluctuation (Lim 2020). In addition, perusal to Fig. 19.7 (bottom) suggests
that the application of tensile stress in the x-direction re-orientates the zigzag rigid
rods back to their horizontal alignment. The resulting bending moment on the bima-
terial strips causes them to be straightened, thereby producing positive strain in the y-
direction, which leads to negative Poisson’s ratio. The subsequent analysis consists of
CTE analysis upon temperature change, followed by Poisson’s ratio analysis arising
from the thermally deformed microstructure.

Perusal to Fig. 19.8 (top left) shows a unit cell of the metamaterial in its original,
or rectangular, shape made from rigid rods of effective length W measured from
hinge-to-hinge, and bimaterial strips of full length l f and total thickness h each, with
its ends built into the mid-span of the rigid rods. Since the hinge-to-hinge distance
isW before deformation, the width of the unit cell, as measured from the mid-plane
of a bimaterial to the mid-plane of its nearest bimaterial, is

x0 = W (19.2.1)

As the ends of each bimaterial are built into the mid-span of the rigid rods of
thickness t, the effective height of each unit cell is

y0 = 2lh + t (19.2.2)

where lh = l f /2 is the half-length of the bimaterial, as indicated in Fig. 19.8 (bottom
left)

Arising from a change in temperature dT, a straight bimaterial cantilever of length
lh and total thickness h = h1 + h2 undergo thermal deformation to form a curve of
curvature 1/r . Due to the recurrence of lh/r in this example, it is expedient to adopt
a dimensionless form of the curvature
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dT = 0 

dT < 0 eff  > 0 , vxy < 0
i.e. PTE and Auxetic

dT > 0 eff  < 0 , vxy < 0
i.e. NTE and Auxetic 

B

D C

A
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D’C’

B’A’

D’C’

B’A’

C’D’

y

x

⇒ α ⇒ α

Fig. 19.7 Consideredmetamaterial in its original state (top) and after temperature decrease (bottom
left) and increase (bottom right)
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Fig. 19.8 A rectangular unit cell of the metamaterial (top left), as well as its detailed dimensions
at original state (bottom left) and after thermal deformation (bottom right) for analysis

lh
r

= lh(α1 − α2)dT
h
2 + 2

h (E1 I1 + E2 I2)
(

1
E1h1

+ 1
E2h2

) (19.2.3)

where αn , En , and hn are the CTEs, Young’s moduli, and thicknesses, respectively,
for material n = 1, 2 of the bimaterial with the second moment areas

In = h3n
12

(19.2.4)

With the curving of the bimaterials shown in Fig. 19.8 (bottom right), the width
and height dimensions upon thermal deformation become

x = W cos θ (19.2.5)

and

y = 2r sin θ + t cos θ (19.2.6)
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respectively, where the half-angle is defined as

θ = lh/r (19.2.7)

The changes in dimensions, defined as (dx, dy) = (x − x0, y − y0), are therefore

dx = −W

[
1 − cos

(
lh
r

)]
(19.2.8)

and

dy = −2

[
lh − r sin

(
lh
r

)]
− t

[
1 − cos

(
lh
r

)]
(19.2.9)

The thermal strains along the axes,
(
ε(T )
x , ε(T )

y

) = (dx/x0, dy/y0), can be
expressed as

ε(T )
x = −1 + cos

(
lh
r

)
(19.2.10)

and

ε(T )
y = −1 + 2 sin

( lh
r

) + t
r cos

( lh
r

)

2 lh
r + t

r

(19.2.11)

which gives their corresponding effective CTEs

α(T )
x = − 1

dT
+ 1

dT
cos

(
lh
r

)
(19.2.12)

and

α(T )
y = − 1

dT
+ 2 sin

( lh
r

) + t
r cos

( lh
r

)
(
2 lh

r + t
r

)
dT

(19.2.13)

respectively.
Upon thermal deformation, Poisson’s ratio can be obtained by the application

of σx > 0, such that the zigzag conformation of the rigid rods is returned to their
original horizontal alignment. As a consequence, the thermally curved bimaterials
are straightened. With thermal deformation but before the application of σx , we
have the updated “original” dimensions

(
x ′
0, y

′
0

) = (x, y); on prescription of σx , the
dimensions of the mechanically deformed unit cell are thus returned to

(
x ′, y′) =

(x0, y0) to give the change in dimension
(
dx ′, dy′) = −(dx, dy). Therefore,
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dx ′ = W

[
1 − cos

(
lh
r

)]
(19.2.14)

and

dy′ = 2

[
lh − r sin

(
lh
r

)]
+ t

[
1 − cos

(
lh
r

)]
(19.2.15)

which gives the mechanical strains
(
εx , εy

) = (
dx ′/x ′

0, dy
′/y′

0

)
or

εx = −1 + 1

cos
( lh
r

) (19.2.16)

and

εy = −1 + 2 lh
r + t

r

2 sin
( lh
r

) + t
r cos

( lh
r

) (19.2.17)

respectively. The resulting Poisson’s ratio, vxy = −εy/εx is therefore

vxy = −2
[ lh
r − sin

( lh
r

)] + t
r

[
1 − cos

( lh
r

)]
[
2 tan

( lh
r

) + t
r

][
1 − cos

( lh
r

)] (19.2.18)

Simplifications can be found under two special cases. For Special Case I where
the thickness of the rigid rod is negligible t � r , Eqs. (19.2.11), (19.2.13), and
(19.2.18) reduce to

ε(T )
y = −1 + sin

( lh
r

)
lh
r

(19.2.19)

α(T )
y = − 1

dT
+ sin

( lh
r

)

dT
( lh
r

) (19.2.20)

vxy = −
( lh
r

) − sin
( lh
r

)

tan
( lh
r

)[
1 − cos

( lh
r

)] (19.2.21)

Special Case II is obtained when both layers of the bimaterial share equal Young’s
moduli and equal thicknesses (E1/E2 = h1/h2 = 1), such that Eq. (19.2.3) greatly
simplifies to

lh
r

= 3

2

lh
h

(α1 − α2)dT (19.2.22)
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For the purpose of illustration, we adopt Special Case II in the subsequent results
section.

Hence, substitutingEq. (19.2.22) intoEqs. (19.2.10)–(19.2.13) and (19.2.18) gives

ε(T )
x = −1 + cos

(
3

2

lh
h

(α1 − α2)dT

)
(19.2.23)

ε(T )
y = −1 + 2 sin

(
3
2
lh
h (α1 − α2)dT

) + t
r cos

(
3
2
lh
h (α1 − α2)dT

)

2
(
3
2
lh
h (α1 − α2)dT

) + t
r

(19.2.24)

α(T )
x = − 1

dT
+ 1

dT
cos

(
3

2

lh
h

(α1 − α2)dT

)
(19.2.25)

α(T )
y = − 1

dT
+ 2 sin

(
3
2
lh
h (α1 − α2)dT

) + t
r cos

(
3
2
lh
h (α1 − α2)dT

)
(
3 lh
h (α1 − α2)dT + t

r

)
dT

(19.2.26)

vxy

= −2
[(

3
2
lh
h (α1 − α2)dT

) − sin
(
3
2
lh
h (α1 − α2)dT

)] + t
r

[
1 − cos

(
3
2
lh
h (α1 − α2)dT

)]
[
2 tan

(
3
2
lh
h (α1 − α2)dT

) + t
r

][
1 − cos

(
3
2
lh
h (α1 − α2)dT

)]
(19.2.27)

where

t

r
= t

lh

(
3

2

lh
h

(α1 − α2)dT

)
(19.2.28)

To combine both Special Cases I and II, we let t = 0 in Eqs. (19.2.24), (19.2.26),
and (19.2.27) to yield

ε(T )
y = −1 + sin

(
3
2
lh
h (α1 − α2)dT

)
(
3
2
lh
h (α1 − α2)dT

) (19.2.29)

α(T )
y = − 1

dT
+ sin

(
3
2
lh
h (α1 − α2)dT

)

dT
(
3
2
lh
h (α1 − α2)dT

) (19.2.30)

vxy = −
(
3
2
lh
h (α1 − α2)dT

) − sin
(
3
2
lh
h (α1 − α2)dT

)

tan
(
3
2
lh
h (α1 − α2)dT

)[
1 − cos

(
3
2
lh
h (α1 − α2)dT

)] (19.2.31)

To evaluate the CTEs and Poisson’s ratio of the currently proposed metamate-
rial, we use lh/h = 100, which is a common aspect ratio for bimaterials, as well
as α

(T )
1 = 25 × 10−6 K−1 for the bimaterial phase of higher CTE. This value is

typical of metallic materials of higher CTEs, such as lead
(
α

(T )
Pb = 29 × 10−6 K−1

)
,

magnesium
(
α

(T )
Mg = 26 × 10−6 K−1

)
, and brass

(
α

(T )
Brass = 19 × 10−6 K−1

)
. A total
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Fig. 19.9 Plots of thermal strains (left) and effective CTEs (right) versus temperature change for
various bimaterial CTE phase ratio α

(T )
2 /α

(T )
1 (top) and rigid rod thickness ratio t/ lh (bottom) at

α
(T )
1 = 25 × 10−6K−1

temperature difference of 100 K was considered; specifically, the temperature differ-
ence range of−50 K ≤ dT ≤ 50 Kwas computed. Figure 19.9 (top) shows the plots
of thermal strains and effective CTEs along the x- and y-axes, using Eqs. (19.2.23)–
(19.2.26), for various α

(T )
2 /α

(T )
1 ratios at t/ lh = 1/100. Regardless of whether

dT < 0 or dT > 0, the thermal strains are negative (ε(T )
x , ε(T )

y < 0) as plotted
in Fig. 19.9 (top left), thereby indicating that the metamaterial exhibits positive
thermal expansion (PTE) upon cooling and negative thermal expansion (NTE) upon
heating, as shown in Fig. 19.9 (top right). In other words, the sign of in-plane CTE
is always opposite to the sign of dT. To evaluate the effect of the rigid rod thickness
on the thermal properties, and hence the validity of t = 0 simplifying assumption in
Eqs. (19.2.29) and (19.2.30), Fig. 19.9 (bottom) shows the plots of ε(T )

y andα(T )
y using

Eqs. (19.2.24) and (19.2.26) for various t/ lh ratios at α
(T )
2 /α

(T )
1 = 0. When t = 0,

Eqs. (19.2.24) and (19.2.26) reduce to Eqs. (19.2.29) and (19.2.30), respectively.
Plotted curves indicate that the thickness of the rigid rod gives more negative ε(T )

y
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Fig. 19.10 Plots of Poisson’s ratio vxy versus temperature change for various bimaterial CTE ratio

α
(T )
2 /α

(T )
1 (left) and rigid rod thickness ratio t/ lh (right) at α(T )

1 = 25 × 10−6K−1

and greater magnitude of α(T )
y , implying that the simplifying assumption gives under-

estimated magnitudes of ε(T )
y and α(T )

y . Nevertheless, perusal to Fig. 19.9 (bottom)
supports the validity of the t = 0 assumption when t/ lh ≤ 1/100.

It is also worthy to mention that although the CTE relation with reference to dT is
nonlinear, the plotted results in Fig. 19.9 (right) show an almost linear function. This
is because the curvatures are negligible. In the case of α

(T )
2 /α

(T )
1 = 0 for example,

the curvatures of α(T )
x and α(T )

y are of the orders 10−9 and 10−10, respectively, for the
given range of temperature change. These curvatures are insignificant in comparison
to the CTE values themselves. The orders of the curvatures are even lower for greater
values of α

(T )
2 /α

(T )
1 .

Figure 19.10 (left) furnishes the curves of vxy , using Eq. (19.2.27), for various
α

(T )
2 /α

(T )
1 ratios at t/ lh = 1/100. Regardless of whether dT < 0 or dT > 0, this

metamaterial exhibits decreasing auxeticity with the magnitude of thermal change.
For assessing the influence of the rigid rod thickness on the elastic properties, and
hence the validity of t = 0 assumption in Eq. (19.2.31), Fig. 19.10 (right) shows the
results of Poisson’s ratio using Eq. (19.2.27) for various t/ lh ratios at α

(T )
2 /α

(T )
1 = 0.

At t = 0, Eq. (19.2.27) abridges to Eq. (19.2.31). Calculated results reveal that
the negativity of vxy is increased by the thickness of the rigid rod. Due to the low
curvature of the vxy versus dT plots in comparison with the sensitivity toward the
t/ lh ratio, the assumption of t = 0 is not valid for vxy except when t/ lh ≈ 0.

When the rigid rod’s thickness is insignificant, the plotted thermal strain ratio
ε(T )
y /ε(T )

x and CTE ratio α(T )
y /α(T )

x are observed to be approximately 1/3. This can
be proven by performing series expansion on the trigonometric terms—listed in
Appendix A.2—on Eqs. (19.2.23), (19.2.25), (19.2.29), and (19.2.30), followed by
neglecting higher-order terms to give

{
ε(T )
x

ε(T )
y

}
≈ −1

6

(
3

2

lh
h

(α1 − α2

)2

(dT )2
{
3
1

}
(19.2.32)
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and

{
α(T )
x

α(T )
y

}
≈ −1

6

(
3

2

lh
h

(α1 − α2

)2

dT

{
3
1

}
(19.2.33)

Performing similarly for Eq. (19.2.31) for an approximated value of the Poisson’s
ratio leads to a constant value of vxy = −1/3. This approximation agrees with the
plots of vxy in Fig. 19.10 when t/ lh ≤ 1/100.

The establishment of analogies across auxetic models from different geometrical
groups has been made by identifying their microstructural counterparts followed
by comparison of their deformation mechanisms (Lim 2017). Using this approach,
analogies can be established between the rotating square model (Grima and Evans
2000) and the discussed metamaterial, as furnished in Fig. 19.11a (top), whereby
two opposing corners of a rotating square coincide with the pin joints of the rigid
rods, while the remaining two corners of the rotating square correspond with the
mid-spans of the bimaterial strips. Alderson et al. (2010) investigated a number of
chiral and anti-chiral structures, one of them being the anti-tetrachiral honeycomb.
Upon in-plane compression, the anti-tetrachiral honeycomb is comparable to the
currently proposedmetamaterial due to thermal deformation, as shown in Fig. 19.11a
(bottom). In particular, the regions inwhich the bimaterial strips are built into the rigid

(a) (b)

Fig. 19.11 Analogies between the current metamaterial with a the rotating square model by Grima
and Evans (2000) (top) and the deformed anti-tetrachiral model by Alderson et al. (2010) (bottom),
and b the analogy with the buckling study by Haghpanah et al. (2014)
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rods for the metamaterial coincide with the cylindrical nodes of the anti-tetrachiral
structure. Another analogy can be observed to exist between one of the buckling
modes of a square grid by Haghpanah et al. (2014). Prescription of heat on the
original states of the current metamaterial in Fig. 19.11b (top left) and application
of buckling load on the square grid in Fig. 19.11b (bottom left) lead to the contorted
microstructures shown in Fig. 19.11b (right). Specifically, the imposition of heat and
buckling load convert the square cavities into cavities that resemble the shapes of
“8” and “∞” in alternating sequence. However, the application of tensile load in the
on-axes directions when the metamaterial is in its original state, i.e. rectangular grid,
will obviously not show sign of auxeticity.

19.3 Conclusions

The metamaterial considered in Sect. 19.1 can be designed in such a manner that
it always contracts regardless of how the environmental condition changes, if the
following conditions

α(C)
s �Cs < 0.5 ln

[
2 − eα

(C)
c �Cc

(
2 − eα

(C)
c �Cc

)]

α(T )
s �T < 0.5 ln

[
2 − eα

(T )
c �T

(
2 − eα

(T )
c �T

)]

−α(P)
s �P < 0.5 ln

[
2 − e−α

(P)
c �P

(
2 − e−α

(P)
c �P

)] (19.3.1)

are met (Lim 2019a). Where the advantages of negative materials over conven-
tional ones under specific conditions become disadvantageous under opposing condi-
tions, the availability of sign-switching of expansion coefficients permits materials to
perform in an advantageous manner regardless of how the environmental condition
changes.

Recall that the analysis and design of auxetic plates have been investigated for
load-bearing applications (Gorodtsov et al. 2018), wave transmission applications
(Lim 2019b, c, d), and medical applications (Mehmood et al. 2015). However, not
all situations require fixed auxetic properties. Hence, the capability of adjusting
auxeticity by temperature change, as demonstrated in Fig. 19.10 for the metama-
terial discussed in Sect. 19.2, permits the 2D structure’s behavior to be optimized
for the abovementioned applications. As for load-bearing applications, it has previ-
ously been shown that themaximumbendingmoment—and hence the corresponding
maximum bending stress—in a uniformly loaded simply supported circular plate is
minimized when v = −1/3 due to its optimum distribution of the bending moment
(Lim 2013). Likewise, the bending moment in one of the directions for a uniformly
loaded simply supported equilateral triangular plate is minimized when v = −1/3
(Lim2016).Hence, the use of the discussedmetamaterial in Sect. 19.2,which exhibits
this value of Poisson’s ratio, is useful for lowering the maximum bending stress via
more uniform spreading of the bending moment throughout the entire plate. It can
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therefore be concluded that arising from the thermally induced curving of the bima-
terial strips and resulting rotation of the rigid rods, the ever-decreasing in-plane
area with the magnitude of temperature change produces sign-switching of the in-
plane CTE (Lim 2020). However, regardless of whether the temperature increases
or decreases, the metamaterial is consistently auxetic, i.e., its Poisson’s ratio is not
sign-switchable.
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Chapter 20
Metamaterials and Islamic Geometric
Patterns

Abstract This chapter introduces the science and art of metamaterials, particularly
in the design of negative materials. Proceeding from auxetic metamaterials inspired
from Islamic motifs, the rest of the chapter deals with sign-switching of expansion
coefficients inmetamaterialswhosemicrostructural geometries do not readily exhibit
Islamic geometric patterns in their original state, but bloom into an Islamic motif as a
consequence of environmental changes. Both sign-switching metamaterials deform
to form 2D arrays of 8-pointed stars; one of them employs bimaterial strips while
the other adopts linkage mechanism.

Keywords Auxetic microstructures · Hygrothermal properties · Compressibility ·
Islamic design · Sign-flipping · Sign-switching · Sign-toggling

20.1 Introduction: Auxetic Metamaterials with Islamic
Motifs

Before proceeding with the scope of this chapter, it is beneficial to reflect that there
are occasions when progress in science is made based upon inspiration from nature.
Apart from inspiration from biology, one may also derive innovation from the arts
and social sciences. Of late, new designs of metamaterial microstructures have been
inspired by ancient art forms with religious significance. For example, Rafsanjani
and Pasini (2016a) discovered that auxetic microstructures can be developed based
on certain ancient Islamic motifs. Figure 20.1 shows brick decorations based in the
Kharraqan twin tomb towers in Western Iran, which inspired the building blocks
and the corresponding unit cells in the undeformed and deformed states of bistable
auxetics with square and triangular rotating units for circular and parallel cut motifs
by Rafsanjani and Pasini (2016b). The experimental and finite element plots of force
andPoisson’s ratio versus displacement for the square and triangular bistable auxetics
under tensile and compressive loads are shown in Fig. 20.2.

A family of stress, Poisson’s ratio, and strain energy density curves for both the
square and triangular unit cells plotted against strain is furnished by Rafsanjani and
Pasini (2016b) in Fig. 20.3. The unit cells are subjected to uniaxial extension until
they are fully expanded. Upon load removal, the unit cells return to stable states
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Fig. 20.1 Bistable auxetics by Rafsanjani and Pasini (2016b): Brick decorations based on a square
and b triangular motifs in the Kharraqan twin tomb towers in Western Iran. The building block and
the corresponding unit cell in its undeformed and deformed state comprises c square and d triangular
rotating units with tilted cut motifs, which can maintain the stable deformation pattern after the load
release. e–hUndeformed and deformed states of bistable auxeticswith square and triangular rotating
units for circular and parallel cut motifs. Reprinted with permission from Elsevier

(whose unit cells are shown in the insets) of local minimum energy (markers) where
Poisson’s ratio equals to −1. In the next two sections, inspiration is drawn from
another ancient Islamic geometric pattern, in the form of 2D array of 8-pointed
stars, to design a metamaterial that exhibits sign-toggling of thermal, moisture, and
compressibility properties.

20.2 Bimaterial-Based Sign-Switching Metamaterial
with Islamic Motifs

In this section and in the next section, we draw inspiration from an ancient Islamic
geometric pattern, in the form of 2D array of 8-pointed stars, to design a metama-
terial that exhibits sign-toggling of environmental properties. The 8-pointed stars
and lozenges containing squares is one of the earliest geometrical forms in Islamic
art. These date from the year 836 in the Great Mosque of Kairouan, Tunisia. The 8-
pointed stars, alongside the 6-pointed stars, are also found in the Ibn Tulun Mosque,
Cairo, built in year 879, as well as in the Towers of Kharraqan at Qazvin, Persia (built
in 1067) and the Al-JuyushiMosque, Egypt (1085), and thereafter spread throughout
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Fig. 20.2 Mechanical response of bistable auxetics to uniaxial loading by Rafsanjani and Pasini
(2016b). a–c Experimental (solid line) and FE (dashed lines, shifted vertically for readability)
force-displacement curves during loading (tension) and unloading (compression) and experimen-
tally characterized Poisson’s ratio (symbols) of square bistable auxetics (a/ l = 1/2, t/ l = 0.05)
respectively for tilted (blue), circular (red) and parallel (green) square cut motifs. d–e Similar results
as above for triangular bistable auxetics. Note that the numerical curves are shifted vertically for
better readability. g–i Comparison of experimental and FE deformed shape of a triangular design
specimen with parallel cut motifs at selected displacements shown in diagram (f). Reprinted with
permission from Elsevier

the entire Islamicworld (Abdullahi and Embi 2013). A sample of later 8-pointed stars
in architecture and interior designs are shown in Fig. 20.4 (top row), as well as in
tiles from thirteenth-century Iran, especially from Kashgar (Fig. 20.4, middle row).
The array of interconnected 8-pointed stars can be designed as overlapping ribbons
(e.g., Fig. 20.4 bottom left).

In this section, a class of square grids made from bimaterial strips that transforms
into arrays of 8-pointed stars is introduced, of which a simplified design is illus-
trated in Fig. 20.4 (bottom right). The motivation of choosing this design, therefore,
is not only confined to the potential for creating metamaterials with physical prop-
erties that switch between positive and negative values by environmental changes
and without any active control, but also to pay homage to an ancient art that is
associated with a great religion. This geometry is also chosen because the art forms
are hidden at the reference environmental condition and are only manifested in full
splendor when the environmental condition changes, thereby creating a dynamic
microlattice structure with esthetic feature. As illustrated in Fig. 20.5, this example
explores a 2D metamaterial in which the increase in temperature dT > 0 and/or
moisture concentration dC > 0 as well as decrease in pressure dP < 0 lead to
material contraction, thereby exhibiting negative expansivity. However, the decrease
in temperature dT < 0 and/or moisture concentration dC < 0 as well as increase
in pressure dP > 0 also leads to material contraction, thereby exhibiting positive
expansivity instead (Lim 2020a).
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Fig. 20.3 Mechanical response of unit cells obtained by FE simulations by Rafsanjani and Pasini
(2016b). Stress, strain energy density and Poisson’s versus strain respectively for a square and
b triangular unit cells (a/ l = 1/2, t/ l = 0.025) with tilted (blue), circular (red) and parallel
(green) cut motifs calculated by FE simulations under periodic boundary conditions. Reprinted
with permission from Elsevier

Two configurations of bimaterial strips within the square grids are identified and
illustrated in Figs. 20.6 and 20.7 to demonstrate the manner in which the bending
of the straight bimaterial strips in response to changing environmental condition
can transform the square grids into arrays that approximate 8-pointed stars found in
Islamic art. Specifically, we term the configurations furnished in Figs. 20.6 (top) and
20.7 (top) as the Type A and Type B, respectively. The bimaterial strips in both types
consist of two materials, with material 1 (indicated by yellow) possessing a higher
expansion coefficient than material 2 (indicated by green), such that different extent
of expansion leads to materials 1 and 2 being convex and concave, respectively, as
shown in Figs. 20.6 (bottom right) and 20.7 (bottom right). Conversely, under an
opposing change in environmental condition, the differential contraction leads to
materials 1 and 2 being concave and convex, respectively, as furnished in Figs. 20.6
(bottom left) and 20.7 (bottom left). In both Type A and Type B metamaterials, one
end of each bimaterial strip is built into rigid squares (shown in red) and each square
is attached to four bimaterial strips. Unlike Type B, the configuration in Type A
permits free rotation at the other end of each bimaterial strip, which is attached to a
pillow block bearing (indicated in blue) such that the curved outer surface of each
pillow block bearing is in contact to another pillow block bearing via connectors
(indicated in black) passing through the holes of the pillow block bearings. Unlike
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Fig. 20.4 Examples of the Islamic 8-pointed connected star: a a single star in sixteenth century
Humayun’s tomb, India,bhorizontally andvertically aligned stars in an interior part of the fourteenth
century Al-AttarineMadrasa, Egypt, c tiled arch at theMadrasa Balasar, Iran, d ceiling of the Sultan
Ashraf Qaytbay Mosque, Egypt, e stars arranged diagonally in tiles from thirteenth-century Iran,
f an overlapping ribbon type, and g a simplified schematic



660 20 Metamaterials and Islamic Geometric Patterns

dT > 0

dP < 0

dC > 0

dT < 0

dP > 0

dC < 0

Fig. 20.5 Transformation of a square grid (top) to an 8-pointed star array under a change of environ-
mental condition (bottom left) and its conjugate form under an opposing change of environmental
condition (bottom right)

Type A, each bimaterial strip in Type B consists of three segments with length ratio
1:2:1 whereby materials 1 and 2 alternate from one segment to the next.

The bimaterials are permitted to curve based on three types of environmental
changes—temperature, pressure, and moisture concentration—through contrasting
(1) coefficient of thermal expansion (CTE), (2) compressibility, or coefficient of
pressure expansion (CPE), and (3) coefficient of moisture expansion (CME). The
volumetric CTE for anymatter—be it in the form of solid, liquid or gas—is ameasure
of the volumetric change in response to temperature change at constant pressure and
is expressed as
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dT > 0

dP < 0

dC > 0

dT < 0

dP > 0

dC < 0

Fig. 20.6 Type A square grid in its original state (top) and its deformation approximating the
8-pointed star under opposing conditions that lead to opposing curvatures in the bimaterial strips
(bottom), where the material 1 (yellow) has greater expansion coefficients than material 2 (green)

α
(T )
V = 1

V

(
∂V

∂T

)
P

(20.2.1)

Due to anisotropy, which is common in solids, it is more meaningful to write
separate CTEs in each orthogonal direction. Hence, we have the linear CTE

α(T ) = 1

L

dL

dT
= ε(T )

dT
(20.2.2)

where ε(T ) is thermal strain. In thermofluid mechanics, the coefficient of compress-
ibility, or more conveniently the “compressibility,” quantifies the volumetric change
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dT > 0

dP < 0

dC > 0

dT < 0

dP > 0

dC < 0

Fig. 20.7 Type B square grid in its original state (top) and its deformation approximating the
8-pointed star under opposing conditions that lead to opposing curvatures in the bimaterial strips
(bottom), where the material 1 (yellow) has greater expansion coefficients than material 2 (green)

in response to pressure change. When these changes take place at constant
temperature, we have the isothermal compressibility

α
(P)
V = − 1

V

(
∂V

∂P

)
T

(20.2.3)

The negative sign indicates a decrease in size with an increase in pressure. For the
purpose of consistency with the linear CTE, we herein introduce its linear version as
the CPE



20.2 Bimaterial-Based Sign-Switching Metamaterial with Islamic Motifs 663

α(P) = − 1

L

dL

dP
= ε(P)

(−dP)
(20.2.4)

where ε(P) is the strain due to pressure change. To obtain an analogous coefficient
due to moisture absorption into or moisture dissipation from a solid, we recall the
definition of moisture concentration in solids

C = m

M
× 100 (20.2.5)

where m is the mass of moisture in the solid and M is the mass of the dry material;
hence, the change in moisture concentration is

dC = dm

M
× 100 (20.2.6)

where dm is the change in moisture mass in the solid. This also applies for the
environmental moisture concentration wherein dm is the change in moisture mass
per unit volume of the environment whileM refers to the mass of dry air in the same
volume. Therefore the CME due to the change in moisture concentration in the solid
is

α(C) = 1

L

dL

dC
= ε(C)

dC
(20.2.7)

where ε(C) is the strain arising from the change in moisture concentration. Due to
different absorptivity level, various materials absorb differing amount of moisture
from the environment. As such, a change in environmental moisture concentration
dC leads to changes in moisture concentration in materials 1 and 2 (dC1, dC2) in a
two-phase composite wherein dC �= dC1 �= dC2 at moisture transfer equilibrium.
This is unlike temperature change where dT = dT1 = dT2 is attained at thermal
equilibrium (Lim 2019a). Analogies can be formed with the various coefficients of
expansion and their corresponding strains and environmental changes, as listed in
Table 20.1.

Recall that for a straight bimaterial strip with materials 1 and 2 possessing CTEs
of α

(T )
1 and α

(T )
2 , respectively, the radius of curvature r (T ) that is formed under a

temperature change of dT is

Table 20.1 Analogies
between specific coefficients
of environmental expansions
and related parameters

Thermal Pressure Moisture
concentration

Environmental
change

dT −dP dC

Strain response ε(P) ε(P) ε(C)

Expansion
coefficient

α(T ) α(P) α(C)
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1

r (T )
=

(
α

(T )
1 − α

(T )
2

)
dT

h
2 + 2

h (E1 I1 + E2 I2)
(

1
E1h1

+ 1
E2h2

) (20.2.8)

where

h = h1 + h2 (20.2.9)

and

I1 = h31
12

, I2 = h32
12

(20.2.10)

with h1 and h2 being the thicknesses of materials 1 and 2, respectively. By similar
reasoning on the differential expansions of the bonded strips due to pressure change
dP, the resulting curvature r (P) is

1

r (P)
=

(
α

(P)
1 − α

(P)
2

)
(−dP)

h
2 + 2

h (E1 I1 + E2 I2)
(

1
E1h1

+ 1
E2h2

) (20.2.11)

where α
(P)
1 and α

(P)
2 are the CPEs of materials 1 and 2, respectively, of the bima-

terial strip. As mentioned earlier, the negative sign in Eq. (20.2.4) implies the
decrease in dimension with increase in pressure; this results in the negative sign in
Eq. (20.2.11), which indicates that the bimaterial strip curves in the opposite direc-
tion with increasing pressure when compared to the case of increasing temperature.
While the temperature change in bimaterial strip is equal to that in the environment
at thermal equilibrium dT1 = dT2 = dT , and that the pressure change experi-
enced by the bimaterial strips are common to the pressure change in the environment
dP1 = dP2 = dP , the same cannot be said so for the case of moisture change. Due
to different levels of moisture concentration change between the environment and
materials even at hygroscopic equilibrium, as well as the different extent of mois-
ture retention in each material, the changes in moisture concentration at hygroscopic
equilibrium for the environment and in both materials in the bimaterial strip are

different. As a result of the different coefficients of moisture expansion
(
α

(C)
1 , α

(C)
2

)
and different extent of moisture concentration change at hygroscopic equilibrium
(dC1, dC2) in materials 1 and 2, we write the resulting bimaterial curvature r (C) due
to a change in the environmental moisture concentration dC as

1

r (C)
= α

(C)
1 dC1 − α

(C)
2 dC2

h
2 + 2

h (E1 I1 + E2 I2)
(

1
E1h1

+ 1
E2h2

) (20.2.12a)

or
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1

r (C)
=
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( dC1
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) − α
(C)
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( dC2
dC

)]
dC

h
2 + 2

h (E1 I1 + E2 I2)
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1
E1h1

+ 1
E2h2

) (20.2.12b)

where (dC1/dC) and (dC2/dC) in Eq. (20.2.12b) quantify the ratio of mois-
ture concentration changes in materials 1 and 2 vis-à-vis the moisture concentra-
tion change in the surrounding environment. Suppose dC1/dC = dC2/dC = 1,
Eq. (20.2.12) reduces to the form similar to Eq. (20.2.8). In order to focus on the
effects of the individual material’s expansion coefficient, we consider the bimate-
rial strips to possess equal thicknesses (h1 = h2 = h/2) and equal Young’s moduli
(E1 = E2), such that Eqs. (20.2.8), (20.2.11), and (20.2.12) simplify to

l
r (T ) = 3

2
l
h

(
α

(T )
1 − α

(T )
2

)
dT

l
r (P) = 3

2
l
h

(
α

(P)
1 − α

(P)
2

)
(−dP)

l
r (C) = 3

2
l
h

(
α

(C)
1 dC1 − α

(C)
2 dC2

) (20.2.13)

In modeling any effective coefficient of expansion, consideration is made to the
strain induced by the environmental change. As such, reference points are to be
identified for tracking relative displacements. These reference points are the center
of the rigid square and the center of its nearest neighbor, as furnished in Fig. 20.8.

Due to the different radii of curvatures encountered by the bimaterial strip imposed
by the different types of environmental changes, the following analyses begin with
modeling for the effective CME, followed by reduction to the effective CTE and
effective CPE for both grids. Arising from the large deflection and the corresponding
finite relative displacement between the rigid squares, the usual definition of strain
for infinitesimal deformation is written as an increment strain

dε = dL

L
(20.2.14)

so as to pave a way for describing the total strain as

ε =
∫

dε = ln
L f

L i
(20.2.15)

where L i and L f are the initial and final distances between reference points,
respectively. This gives the moisture strain

εC = ln
2
(
r (C) sin θ + f cos θ + R

) + h

2(l + f + R) + h
(20.2.16)

for Type A (Fig. 20.8, top), and
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Fig. 20.8 Elements between
two rigid blocks for the Type
A grid (top) and Type B grid
(bottom) in their original
state (left) and deformed
state (right). Reference
points for relative
displacements are the centers
of rigid squares indicated in
red. The thicknesses have
been exaggerated for clarity
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εC = ln
4r (C) sin θ + h

4l + h
(20.2.17)

for Type B (Fig. 20.8, bottom). The length of a bimaterial strip is typically 2 or 3
orders higher than its thickness, which means that r ∼ l � h ≈ f ≈ R such that
both Eqs. (20.2.16) and (20.2.17) abridge to
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εC = ln

{
r (C) sin θ

l

}
(20.2.18)

Substituting θ = l/r and Eq. (20.2.13) into Eq. (20.2.18) gives

εC = ln

⎧⎨
⎩
sin

[
3
2
l
h

(
α

(C)
1 dC1 − α

(C)
2 dC2

)]
[
3
2
l
h

(
α

(C)
1 dC1 − α

(C)
2 dC2

)]
⎫⎬
⎭ (20.2.19)

With reference to Eq. (20.2.7), we have the effective CME

α(C) = 1

dC
ln

⎧⎨
⎩
sin

[
3
2
l
h

(
α

(C)
1 dC1 − α

(C)
2 dC2

)]
[
3
2
l
h

(
α

(C)
1 dC1 − α

(C)
2 dC2

)]
⎫⎬
⎭ (20.2.20)

By comparing Eq. (20.2.7) against Eqs. (20.2.2) and (20.2.4)—or by comparing
Eq. (20.2.12a) against Eqs. (20.2.8) and (20.2.11)—one may infer the effective CTE
and the effective compressibility as

α(T ) = 1

dT
ln

⎧⎨
⎩
sin

[
3
2
l
h

(
α

(T )
1 − α

(T )
2

)
dT

]
[
3
2
l
h

(
α

(T )
1 − α

(T )
2

)
dT

]
⎫⎬
⎭ (20.2.21)

and

α(P) = 1

(−dP)
ln

⎧⎨
⎩
sin

[
3
2
l
h

(
α

(P)
1 − α

(P)
2

)
(−dP)

]
[
3
2
l
h

(
α

(P)
1 − α

(P)
2

)
(−dP)

]
⎫⎬
⎭ (20.2.22a)

respectively, whereby (−dP) indicates that for a conventional or positive value of
compressibility, an increase in pressure results in decrease in size.As the sine function
is odd, i.e., sin(−z) = −sin(z), Eq. (20.2.22a) can also be written as

α(P) = − 1

dP
ln

⎧⎨
⎩
sin

[
3
2
l
h

(
α

(P)
1 − α

(P)
2

)
dP

]
[
3
2
l
h

(
α

(P)
1 − α

(P)
2

)
dP

]
⎫⎬
⎭ (20.2.22b)

Since |sin z| < |z| except when z = 0, it follows that ln{· · · } < 0 in
Eqs. (20.2.20)–(20.2.22). Therefore the signs of α(C) and α(T ) are always opposite
to the signs of dC and dT, while the sign of α(P) is always the same as that for dP,
in consistency with the overall deformation conceptualized in Figs. 20.6 and 20.7.
Having obtained models of expansion coefficients which switch signs for opposing
change of environmental condition such that the Type A and Type B metamaterials
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always exhibit in-plane isotropic contraction based on the magnitude of the envi-
ronmental change, an attempt in now made to specify the condition by which the
deformed grid fits into the 8-pointed star. If the bimaterial deflection is insufficient,
the pointed corners of the star along the diagonals are further from the center than
those aligned along the vertical and horizontal axes. Beyond a certain value of bima-
terial deflection, the diagonal pointed corners are nearer to the center than those
lying on the axes. To fit the deformed metamaterial grid onto the 8-pointed star, the
distance of the diagonal pointed corners from the center must be equal to those on
the axes. This is shown from the superposition of an 8-pointed star (Fig. 20.9, top)
onto each unit of the metamaterial (Fig. 20.9, middle).

Geometrical parameters a and b in Fig. 20.9 (bottom) facilitate the determination
of conditions for fitting the deformed metamaterial onto the 8-pointed star. The
parameter a is half of the distance between the centers of two nearest rigid squares
(indicated in red). Therefore, with reference to the vertical distance between the
centers of the rigid squares in Fig. 20.8 (right),

a = r sin θ + f cos θ + R + h

2
(20.2.23)

for Type A, and

a = 2r sin θ + h

2
(20.2.24)

for Type B. The parameter b in Fig. 20.9 (bottom left) corresponds to the horizontal
distance component between the center of a rigid square and the outermost surface
of the pillow block bearing in Fig. 20.8 (top right), i.e.,

b = r(1 − cos θ) + f sin θ + R (20.2.25)

for Type A, while the same parameter in Fig. 20.9 (bottom right) refers to the hori-
zontal distance component between the center of a rigid square and the maximum
deflection at the mid-point of the bimaterial strip in Fig. 20.8 (bottom right), i.e.,

b = 2r(1 − cos θ) (20.2.26)

for Type B. These give the distances from the center of each deformed grid to the
grid rib intersecting the vertical and horizontal axes as

a + b = r(1 + sin θ − cos θ) + f (sin θ + cos θ) + 2R + h

2
(20.2.27)

and

a + b = 2r(1 + sin θ − cos θ) + h

2
(20.2.28)
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Fig. 20.9 Superposition of an 8-pointed star (top) onto a unit of the deformed metamaterials
(middle), with parameters assigned for analysis (bottom)

for Type A and Type B, respectively. Perusal to Fig. 20.9 (bottom) implies that the
diagonal distances between the center of the deformed grid and the center of each
rigid square are the hypotenuse, i.e.,
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√
2a = √

2(r sin θ + f cos θ + R) + h√
2

(20.2.29)

and

√
2a = 2

√
2r sin θ + h√

2
(20.2.30)

for metamaterials of Types A and B, respectively. Hence to implement equidistance
for all the eight points of the star from the deformed grid center, we let a+b = √

2a
such that

r(1 + sin θ − cos θ) + f (sin θ + cos θ) + 2R + h

2

= √
2(r sin θ + f cos θ + R) + h√

2
(20.2.31)

for Type A, and

2r(1 + sin θ − cos θ) + h

2
= 2

√
2r sin θ + h√

2
(20.2.32)

for Type B. Recall that the length of a bimaterial strip is typically 2 or 3 orders higher
than its thickness, thereby implying r ∼ l � h ∼ f ∼ R, such that Eqs. (20.2.31)
and (20.2.32) simplify to a common expression

1 − cos θ =
(√

2 − 1
)
sin θ (20.2.33)

This relation is satisfied if sin θ = cos θ = 1/
√
2, i.e., the deformedmetamaterials

fit the 8-pointed star array geometry shown in Fig. 20.4 if θ = π/4. With reference
to Eq. (20.2.18) and l/r = θ , one may elegantly express the various environmental
strains as

ε = ln

{
sin θ

l/r

}
= ln

{
sin θ

θ

}
(20.2.34)

such that substitutionof θ = π/4 suggests that the effective strain ε = ln
{
2
√
2/π

}
=

−0.10501 must be achieved to attain the desired 8-pointed star array. Furthermore,
matching Eq. (20.2.34) against Eqs. (20.2.20) to (20.2.22) implies

θ = 3

2

l

h

(
α

(C)
1 dC1 − α

(C)
2 dC2

)
= 3

2

l

h

(
α

(T )
1 − α

(T )
2

)
dT = 3

2

l

h

(
α

(P)
1 − α

(P)
2

)
dP

(20.2.35)

which reduces to
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α
(C)
1 dC1 − α

(C)
2 dC2 =

(
α

(T )
1 − α

(T )
2

)
dT =

(
α

(P)
1 − α

(P)
2

)
dP = π

6

(
h

l

)

(20.2.36)

when θ = π/4. In other words, if properties of materials 1 and 2 of the bimaterial
strip are known, then the array of 8-pointed stars can be achieved from the originally
square grids of Type A and Type B metamaterial by controlling the environmental
change.

In order to ascertain that the assumption f = R = h = 0 is valid, we return to
Eqs. (20.2.16) and (20.2.17) to divide all terms at the numerator and denominator
with r (C) to obtain

εC = ln
2
(
sin θ + f

l

(
l

r (C)

)
cos θ + R

l

(
l

r (C)

)) + h
l

(
l

r (C)

)
2
(

l
r (C) + f

l

(
l

r (C)

) + R
l

(
l

r (C)

)) + h
l

(
l

r (C)

) (20.2.37)

for Type A, and

εC = ln
4 sin θ + h

l

(
l

r (C)

)
4 l
r (C) + h

l

(
l

r (C)

) (20.2.38)

for Type B, such that the substitution of l/r (C) = θ = π/4 into Eqs. (20.2.37) and
(20.2.38) leads to

εC = ln
2
√
2

π
+ 1√

2
f
l + R

l + 1
2
h
l

1 + f
l + R

l + 1
2
h
l

(20.2.39)

and

εC = ln
2
√
2

π
+ 1

4
h
l

1 + 1
4
h
l

(20.2.40)

respectively. Since the typical bimaterial strip aspect ratio is such that l is about
2 or 3 orders higher than h, and perusal to Fig. 20.8 indicates that R = h/2, we
substitute h/ l = 2R/ l = 0.01 into Eq. (20.2.39) to observe the effect of f/ l
for Type A moisture strain when the 8-pointed star array is attained. Figure 20.10
(left) shows that, under the considered typical parameter values, the percentage error
hovers around 1%. Since Type B is independent from f and R, evaluation is made
on the effect of h/ l ratio on the moisture strain. Figure 20.10 (right) shows that the
percentage error for the typical h/ l ratio falls within 0.2644%. Even if the bimaterial
aspect ratio is increased to the unrealistically high value of h/ l = 0.1, the percentage
error for assuming h = 0 is only 2.637%. These observations validate the assumption
of f = R = h = 0 for the typical bimaterial aspect ratio.
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Fig. 20.10 Plots of moisture strain versus for f/ l at h/ l = 2R/ l = 0.01 for Type A (left) and
versus h/ l for TypeB (right) for comparison against the simplifying assumptions of f = R = h = 0

Having demonstrated the applicability of the developed models when the typical
bimaterial aspect ratio is adopted, we shall now turn our attention to the various
facets of bimaterial curving in order to attain the array of 8-pointed stars under
varying moisture concentration, temperature, and pressure. Typically, the coefficient
of moisture expansion in polymers ranges between α

(C)
1 = 2 × 10−3 and α

(C)
1 =

5 × 10−3. For the case of moisture expansion, we consider the abovementioned
polymers as material 1 while material 2 is of the same polymeric material but with
waterproof coating so that dC2 = 0. The choice of same material ensures E1 =
E2 so that the simplification of Eq. (20.2.12) to the third of Eq. (20.2.13) applies.
Although α

(C)
1 = α

(C)
2 , expansion of material 2 is inhibited due to waterproofing so

that α(C)
2 dC2 = 0. Adopting these values for Eq. (20.2.36) gives

dC1 = 1

α
(C)
1

π

6

(
h

l

)
(20.2.41)

This is plotted in Fig. 20.11 for 2 × 10−3 ≤ α
(C)
1 ≤ 5 × 10−3 within 0 ≤ h/ l ≤

0.01.
For the case of thermal expansion, we consider the brass–titanium (B-T), copper–

steel (C-S) and tungsten–silicon carbide (T-SC) bimaterial pairs. The motivation
for pairing of these materials can be seen from their almost equal Young’s modulus
E1 ≈ E2 but with sufficient contrast of their individual CTEs so that, instead of using
Eq. (20.2.8), one is justified to use the first of Eq. (20.2.13), which is the simplified
form. Their thermomechanical properties are listed in Table 20.2 and, using these
properties, the required temperature change in order for both metamaterials Type A
and B to attain the 8-pointed star array by using pairs of tungsten—silicon carbide,
copper—steel and brass—titanium bimaterial strips are plotted in Fig. 20.12 using
Eq. (20.2.36).

For the case of compressibility, we consider the magnesium–silicon (M-S), zinc–
niobium (Z-N), and manganese–nickel (M-N) bimaterial pairs. The motivation for
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Fig. 20.11 Plots of required moisture absorbed into, or dissipated from, material 1 made from
polymers while material 2 is of same material with waterproof coating (dC2 = 0) in order for both
metamaterials Type A and Type B to attain the 8-pointed star array

Table 20.2 Material properties for the brass–titanium (B-T), copper–steel (C-S), and tungsten–
silicon carbide (T-SC) bimaterial pairs

Material pairs CTE Young’s modulus

1 = Brass
2 = Titanium

α
(T )
1 = 19 × 10−6K−1

α
(T )
2 = 8.6 × 10−6K−1

E1 = 112.5GPa

E2 = 110.3GPa

1 = Copper
2 = Steel

α
(T )
1 = 17 × 10−6K−1

α
(T )
2 = 12 × 10−6K−1

E1 = 117GPa

E2 = 200GPa

1 = Tungsten
2 = Silicon carbide

α
(T )
1 = 4.50 × 10−6K−1

α
(T )
2 = 2.77 × 10−6K−1

E1 = 405GPa

E2 = 450GPa

selecting these pairs of materials can be seen from their almost equal Young’s moduli
E1 ≈ E2 butwith ample disparity of their individual compressibilities so that, instead
of employing Eq. (20.2.11), one is justified to adopt the reduced form given in the
second of Eq. (20.2.13). Due to the lack of CPE data, these were converted from
their bulk modulus data as follows. From the definition of bulk modulus,

K = −V
dP

dV
(20.2.42)

which is a reciprocal of Eq. (20.2.3)whereby V = L3 and dV = 3L2dL , substituting
dV/V = 3dL/L = 3εP into Eq. (20.2.42) gives
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Fig. 20.12 Plots of required
temperature change in order
for both metamaterials Type
A and B to attain the
8-pointed star array by using
pairs of tungsten–silicon
carbide, copper–steel and
brass–titanium bimaterial
strips of various aspect ratio
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3εP
(20.2.43)

which, upon comparison with Eq. (20.2.4), gives

α(P) = 1

3K
(20.2.44)

Their properties are listed in Table 20.3. The required pressure change in order
for both metamaterials Type A and Type B to attain the 8-pointed star array by using
pairs of magnesium–silicon, zinc–niobium, and manganese–nickel strips is plotted
in Fig. 20.13 using Eq. (20.2.36).

An explanation on Figs. 20.12 and 20.13 can now be made in the light of meta-
materials concept. As metamaterials are known to demonstrate properties from their
artificially designed microarchitecture, the choice of bimaterial strip arrangements

Table 20.3 Material properties for the magnesium–silicon (M-S), zinc–niobium (Z-N), and
manganese–nickel (M-N) bimaterial pairs

Material pairs Young’s modulus Bulk modulus Compressibility

1 = Magnesium
2 = Silicon

E1 = 45GPa

E2 = 47GPa

K1 = 45GPa

K2 = 100GPa
α

(P)
1 = 7.407 × 10−3GPa−1

α
(P)
2 = 3.333 × 10−3GPa−1

1 = Zinc
2 = Niobium

E1 = 108GPa

E2 = 105GPa

K1 = 70GPa

K2 = 170GPa
α

(P)
1 = 4.762 × 10−3GPa−1

α
(P)
2 = 1.961 × 10−3GPa−1

1 = Manganese
2 = Nickel

E1 = 198GPa

E2 = 200GPa

K1 = 120GPa

K2 = 180GPa
α

(P)
1 = 2.778 × 10−3GPa−1

α
(P)
2 = 1.852 × 10−3GPa−1
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Fig. 20.13 Plots of required
pressure change in order for
both metamaterials Type A
and Type B to attain the
8-pointed star array by using
pairs of magnesium–silicon,
zinc–niobium, and
manganese–nickel bimaterial
strips of various aspect ratio
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shown in Figs. 20.6 (top) and 20.7 (top) not only permits bending of the straight
strips into curves that approximate the Islamic design, but the exact 8-pointed star
arrays—displayed Figs. 20.4 and 20.9—are attained when the base properties of the
bimaterial strips, environmental changes, and bimaterial aspect ratio h/ l fulfill the
condition set out in Eq. (20.2.36). To obtain the 2D array of 8-pointed stars featured
in Fig. 20.9 in response to temperature change, one will need to refer to a relevant
plot in Fig. 20.12 pertaining to one of the bimaterial pairs, for example. If the root
mean square of the environment’s temperature fluctuation is known, then the required
bimaterial aspect ratio h/ l can be read from the horizontal axis of Fig. 20.12. Like-
wise, to obtain the 8-pointed star arrays of Fig. 20.9 due to pressure variation, one
can peruse to a related plot in Fig. 20.13 corresponding to one of the bimaterial pairs,
for instance. Suppose the root mean square of the environment’s pressure undulation
is known, then the h/ l ratio of the bimaterial strip can be taken from the abscissa of
Fig. 20.13. In other words, for a given environmental variation and bimaterial pairs
with known properties, the discussed Islamic motif can be achieved by choosing the
slenderness of the bimaterial strip. This geometrical control of the microstructures
is associated with metamaterials design concept.

Finally, a summary can be made on the responses of both the Type A and Type B
units for each variable, and these are categorized into three groups:

1. the geometrical parameters, such as the Type A and Type B arrangements, the
bimaterial thickness h and a segment of its length l, and in the case of Type A
the geometrical parameters of the connecting parts f and R

2. the material parameters, such as the linear coefficients of moisture expansion
α

(C)
1 and α

(C)
2 , linear coefficients of thermal expansion α

(T )
1 and α

(T )
2 , and linear

compressibilities α
(P)
1 and α

(P)
2 of the bimaterial phases 1 and 2; and

3. the environmental parameters, such as the changes of moisture concentration
dC1 and dC2, temperature dT, and pressure dP on bimaterial phases 1 and 2.
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The radius of curvature r formed is not included as it is a function of the parameters
listed in (1)–(3).

With reference to Fig. 20.14 for the morphing of the Type A and Type B cell
shapes in response to the parameters, the extent of deformation is facilitated by the
following groups of parameters:

1. increase in the bimaterial aspect ratio for each segment l/h (purely geometrical
parameters)

2. increase in the differences between expansion coefficients
∣∣∣α(T )

1 − α
(T )
2

∣∣∣ and∣∣∣α(P)
1 − α

(P)
2

∣∣∣ (purely material parameters)

3. increase the environmental variations |dT | and |dP| (purely environmental
parameters) and

4. increase in the moisture strain difference between the bimaterial phases∣∣∣α(C)
1 dC1 − α

(C)
2 dC2

∣∣∣ (combined material and environmental parameters).

Type A

Type B

Original state

Increasing ℎ ra o, 

1( ) 1 2( ) 2 , 

1( ) 2( ) , | |, 
1( ) − 2( )  and | |.

Fig. 20.14 Responses of Type A and Type B units with variation of geometrical, material and
environmental parameters
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The parameters are described in their magnitudes in order to include negative
values. With reference to the diagonal array of 8-pointed stars with alternating cross-
shaped cells–such as those shown in Figs. 20.5 (bottom), 20.6 (bottom) or Fig. 20.7
(bottom)—it is the adjacent neighbors that form the 8-pointed stars when the signs
are negative. Effects from the geometrical parameters of the connecting parts f and
R are negligible for the practical range of h/ l with l � h ∼ f ∼ R, and as a
consequence the effects of selecting either Type A or Type B is also insignificant.

20.3 Linkage-Based Sign-Switching Metamaterial
with Islamic Motifs

Unlike the previous section whereby the Islamic motifs are achieved by the use of
bimaterial strips, which inherently give curved lines, the metamaterial discussed in
this section adopts the linkage mechanism. Consequently, the metamaterial–from its
original state to the final state–exhibits straight lines, and is therefore closer to the
original art form.

A possible unit cell in its original state is shown in Fig. 20.15 (extreme left),
which is made from two types of materials: (1) a cross rod, indicated in blue, that
is made from materials with higher CTE α(T )

r and higher CME α(C)
r , as well as

(2) frame linkage, indicated in black (including the red blocks), that is made from
materials with negligible CTE α

(T )
f and negligible CME α

(C)
f . The condition set in

(2) implies that each segment of the frame linkage is assumed rigid and therefore
can neither expand nor contract, but the frame linkage as a whole can deform via
rotation at the hinges. Upon heating and/or moistening the cross rods extend such
that the frame linkage deforms into an 8-pointed star illustrated in Fig. 20.15 (top
most). Upon cooling and/or drying from its original state, the rods contract such
that the frame linkage does not form an 8-pointed star (Fig. 20.15, bottom most).
However, if the unit cells are arranged in alternate pattern such that the four nearest
neighbors of each unit cell are empty squares, then the deformed shape permits the
empty neighboring spaces to form the 8-pointed stars. Figure 20.16 (top) shows the
2D array of metamaterials whereby the unit cells are arranged in alternating pattern
by connecting at the rigid block corners in diagonal, then the 8-pointed-star Islamic
motifs are obtained regardless of whether the rods expand or contract (Lim 2020c).
Under such an arrangement, the effective strain is always negative if the frame linkage
possesses zero expansion coefficients. This is because regardless of whether the cross
rods lengthen or shorten, the corner blocks always move toward the center of the unit
cell (Fig. 20.16, bottom). For this reason, the metamaterial exhibits sign-toggling of
hygrothermal expansivity. Specifically, if α

(T )
f = α

(C)
f = 0, then

• α
(T )
eff < 0 for dT > 0 but reverses to α

(T )
eff > 0 for dT < 0

• α
(C)
eff < 0 for dC > 0 but reverses to α

(C)
eff > 0 for dC < 0

• α
(T )
eff ∝ −dT and α

(C)
eff ∝ −dC
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Moistening 
and/or 
hea ng

Drying and/or 
cooling

Original 
state

Drying 
and/or 
cooling

Fig. 20.15 Deformation of the square grid due to increasing and decreasingmoisture concentration
and temperature. Pin joints are indicated as circles

In addition, it will later be shown that if α
(T )
f = α

(C)
f = 0, then the 2D array

of 8-pointed stars can be achieved if the rod strain is either εr = −1/2 + 1/
√
2

or εr = −1/2, which are indicated in Fig. 20.16 (bottom right) and (bottom left),
respectively. Under both conditions, the effective strains are common, with the value

εeff = −1/2 + 1/
(
2
√
2
)
.
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Moistening 
and/or heating

Drying and/or 
cooling

Fig. 20.16 Overall contraction of the square grid (top) into two possible 2D arrays of 8-pointed
stars (bottom) with environmental changes. Pin joints are not shown for clarity

To pave a way for the analysis, we consider a unit cell as shown in Fig. 20.17 (top).
The x and y axes are placed on this grid such that the origin is located at the center
of the cell and therefore at the junction of the centrally joined rods, with the axes
being parallel to the sides of the frame linkage. Due to symmetry, only 1/8 of this
unit cell is adopted for analysis. We assign points A, B, and C as shown in Fig. 20.17
(top), whereby each rigid square block is of side l while the frame side is 4l, thereby
giving a quarter of the frame side as 2l. During an increase in temperature and/or
moisture absorption of the rod, it lengthens such that pointAmoves to pointA′. Due to
symmetry, point C moves to point C′ along the diagonal and point B simultaneously
moves to point B′ in parallel. The overall contraction, as specified by the motion of C
toC′ during an increase in temperature and/ormoisture absorption, indicates negative
thermal and/or moisture expansion coefficient(s). During a decrease in temperature
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Fig. 20.17 A unit cell
showing the locations O, A,
B and C in one quadrant for
tracking (top) and a detailed
schematic showing the
displaced locations with
hygrothermal strains for
analysis (bottom)

and/or moisture dissipation of the rod, it shortens such that point A moves to point
A′′. By virtue of symmetry, BC undergoes translational motion to B′C′. This overall
contraction during a decrease in temperature and/or moisture dissipation denotes
positive thermal and/or moisture expansion coefficient(s).

The rod and frame linkage strains (εr, εf) during hygrothermal variation—i.e.,
temperature change dT as well as moisture concentration changes in the rod dCr and
frame dCf—consist of two components: the thermal strain and the moisture strain

εr = α(T )
r dT + α(C)

r dCr

εf = α
(T )
f dT + α

(C)
f dCf (20.3.1)
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where α(T )
r and α(C)

r are the coefficient of thermal expansion (CTE) and coefficient
of moisture expansion (CME), respectively, of the rod, while α

(T )
f and α

(C)
f are the

CTE and CME for the frame, respectively. The moisture concentration change in the
rod dCr and frame linkage dCf can be obtained based on the general definition of
moisture concentration in a solid

Ci = mi

Mi
× 100; (i = r, f ) (20.3.2)

where mi is the moisture mass and Mi is the mass of the dry solid corresponding
to the cross rods (i = r) and frame (i = f ). Hence, a change in moisture mass dmi

in each solid phase gives the corresponding change in moisture concentration in the
solid phase as

dCi = dmi

Mi
× 100; (i = r, f ). (20.3.3)

For brevity, the subsequent analysis adopts the rod and frame strains (εr, εf)—
without referring to the thermal and moisture strains in each part. In addition, the
analysis also considers the effective strain εeff as defined from the motion of point C.
As such, it is possible to express the effective strain as a function of rod and frame
strains

εeff = f (εr, εf) (20.3.4)

or, inversely, express the rod strain in terms of the frame and effective strains

εr = f −1(εf, εeff). (20.3.5)

Perusal to Fig. 20.17 (bottom) shows that for each prescribed εr there is only
one solution for εeff, but for every prescribed εeff there are two solutions for εr. To
contrast the two solutions, we employ the upper solution εr = ε

upp
r corresponding to

heating dT > 0 and/or moistening dC > 0 as well as the lower solution εr = εlowr
for cooling dT < 0 and/or drying dC < 0 with reference to the original state. This
permits the elongated rod length to be expressed as

OA′ = 2l
(
1 + εuppr

)
(20.3.6)

during heating and/or moistening, as well as the shortened rod length

OA′′ = 2l
(
1 + εlowr

)
(20.3.7)

under cooling and/or drying, whereby

εlowr < 0 < εuppr (20.3.8)



682 20 Metamaterials and Islamic Geometric Patterns

For both cases, the rigid squares move toward the origin such that the resolved
distance of OC ′, as projected onto the y-axis is

(
OC ′)

y - axis = 2l(1 + εeff) (20.3.9)

When projected against the x-axis, we have

(
OC ′)

x - axis = l(1 + εf)(1 + cos θ) (20.3.10)

Since C′ rests on the y = x line, i.e.,
(
OC ′)

x - axis = (
OC ′)

y - axis, we obtain

cos θ = 2
1 + εeff

1 + εf
− 1 (20.3.11)

The projected length OC ′ on the y-axis can also be made through the OA′B′ and
OA′′B′ linkages as

(
OC ′)OA′B ′

y - axis = 2l
(
1 + εuppr

) + l(1 + εf) sin(−θ)

(
OC ′)OA′′B ′

y - axis = 2l
(
1 + εlowr

) + l(1 + εf) sin(+θ) (20.3.12)

Equation (20.3.12) can be compared with Eq. (20.3.9) to yield

εuppr = εeff + 1

2
(1 + εf) sin θ

εlowr = εeff − 1

2
(1 + εf) sin θ (20.3.13)

The angular rotation of link AB to A′B via −θ or to A′′B through +θ can be
written in terms of εeff by substituting Eq. (20.3.11) into Eq. (20.3.13) to give

εuppr = εeff + 1

2
(1 + εf) sin

[
cos−1

(
2
1 + εeff

1 + εf
− 1

)]

εlowr = εeff − 1

2
(1 + εf) sin

[
cos−1

(
2
1 + εeff

1 + εf
− 1

)]
(20.3.14)

The upper and lower strains can alternatively be expressed without the trigono-
metric functions. Based on Eq. (20.3.11), we deduce from a right-angled triangle
that

sin θ = 2

1 + εf

√
(1 + εeff)(εf − εeff) (20.3.15)

in order to recast Eq. (20.3.12) as
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(
OC ′)OA′B ′

y - axis = 2l
(
1 + εuppr

) − 2l
√

(1 + εeff)(εf − εeff)(
OC ′)OA′′B ′

y - axis = 2l
(
1 + εlowr

) + 2l
√

(1 + εeff)(εf − εeff) (20.3.16)

When Eq. (20.3.16) is matched against Eq. (20.3.9), we obtain

εuppr = εeff + √
(1 + εeff)(εf − εeff)

εlowr = εeff − √
(1 + εeff)(εf − εeff) (20.3.17)

Having obtained the rod strain in terms of εeff, it can also be shown that εeff can
be expressed as a function of εr. From Eq. (20.3.17), we write

εuppr − εeff = +√
(1 + εeff)(εf − εeff)

εlowr − εeff = −√
(1 + εeff)(εf − εeff) (20.3.18)

so that squaring both sides give a common solution

(
εuppr

)2 − 2εuppr εeff + (εeff)
2

(
εlowr

)2 − 2εlowr εeff + (εeff)
2

}
= (1 + εeff)(εf − εeff) (20.3.19)

thereby implying ε
upp
r = εlowr . As such, we employ a common εr in Eq. (20.3.19) to

solve for εeff

εeff = 2εr + εf − 1

4
± 1

4

√
1 − 4εr(1 + εr) + εf(4εr + εf + 6) (20.3.20)

Recognizing that the ± sign in Eq. (20.3.20) is a consequence of squaring
Eq. (20.3.18), and therefore bears no physical meaning, one of the signs is to be
discardedonphysically inadmissible basis.As a test, consider the original state before
any deformation takes place wherein εr = εf = εeff = 0. Substituting εr = εf = 0
into Eq. (20.3.20) gives two solutions, the upper solution εeff = 0 and the lower
solution εeff = −1/2. Since the latter is not applicable at the original state, the lower
solution of Eq. (20.3.20) is therefore discarded to give

εeff = 2εr + εf − 1

4
+ 1

4

√
1 − 4εr(1 + εr) + εf(4εr + εf + 6) (20.3.21)

We shall now consider three special cases: Special Case I where the frame consists
of rigid links such that only rotation at the pin joints is permitted, i.e., the links neither
expand nor contract, followed by Special Case II where the Islamicmotif is achieved,
and finally Special Case III where both the rod and frame linkage are made from the
same material. Substituting εf = 0 into Eqs. (20.3.15), (20.3.17) and (20.3.21) for
Special Case I greatly simplify them to
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sin θ = 2
√

−εe f f
(
1 + εe f f

)
(20.3.22)

εuppr = εeff + √−εeff(1 + εeff)

εlowr = εeff − √−εeff(1 + εeff) (20.3.23)

εeff = εr

2
− 1

4
+ 1

4

√
1 − 4εr(1 + εr) (20.3.24)

In order to achieve the desired Islamic motif, it is required for the link AB to
rotate by 45°. With reference to Fig. 20.17 (bottom), selecting anti-clockwise and
clockwise rotations for link AB would give the patterns shown in Fig. 20.16 (bottom
left) and (bottom right), respectively. Equating Eqs. (20.3.10) with (20.3.12) and
substituting θ = π/4 for Special Case II, therefore, leads to

εf = 1−√
2+2εr

1+√
2

, εr > 0

εf = 1 + 2εr, εr < 0
. (20.3.25)

Finally, we consider Special Case III whereby both the rod and frame are made
from the same material, i.e., α(T )

r = α
(T )
f and α(C)

r = α
(C)
f , such that both encounter

the same hygrothermal strains. Substituting εf = εr into Eq. (20.3.21) gives εeff = εr.
In plotting graphs for visually relating the rod and effective strains, limit is placed

on what is physically attainable. This is performed in the first instance for Special
Case Iwhereby εf = 0 before proceedingwith themore generic cases.With reference
to Fig. 20.17 (bottom), the displacement of the rigid square such that its inner corner
touches the origin implies that B′ touches the y-axis at a distance l from the origin,
while A′′ also touches the origin. This gives the minimum εeff as −1/2, while the
minimum εlowr is −1. The maximum εeff is obviously 0 because the rigid squares are
at the outermost location in the original state. The maximum ε

upp
r can be obtained

from the first of Eq. (20.3.23) by imposing dε
upp
r /dεeff = 0 to give

1 + 2εeff = 2
√

−εeff − (εeff)
2 (20.3.26)

which can be solved to give two solutions εeff =
(
−2 ± √

2
)
/4. Two solutions

are obtained due to the squaring of Eq. (20.3.26) to solve for εeff, as such one of
the solutions is to be discarded for being non-physical. Since the lower solution

εeff =
(
−2 − √

2
)
/4 falls outside the physically attainable range

−1

2
< εeff ≤ 0 (20.3.27)

we select the upper solution by substituting
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εeff = −2 + √
2

4
(20.3.28)

into the first of Eq. (20.3.23) to give the maximum solution of ε
upp
r as

εuppr = −1 + √
2

2
(20.3.29)

The corresponding value for εlowr is obtained by substituting Eq. (20.3.28) into
the second of Eq. (20.3.23) to yield

εlowr = −1

2
(20.3.30)

bearing inmind that this value of εlowr is not the lowest value, but one that corresponds
with Eq. (20.3.29). Hence in addition to Eq. (20.3.27), we have another range

−1 < εr ≤
√
2 − 1

2
≈ 0.207 (20.3.31)

which determines the range of the plotted graphs in Fig. 20.18 (left column).
Figure 20.18 (top left) shows the plots of εuppr and εlowr versus εeff using Eq. (20.3.23),
while Fig. 20.18 (bottom left) furnishes the curve of εeff with respect to εr using
Eq. (20.3.24). To facilitate comparison, the curve in Fig. 20.18 (bottom left) is
prescribed two colors to correspond with Fig. 20.18 (top left). Zoomed-in views
are shown in Fig. 20.18 (right column) to indicate the locations of maximum ε

upp
r

and its corresponding εeff and εlowr values. To facilitate visual description of the
deformed metamaterial, a unit of the driving cell is shown at various locations in
Fig. 20.18 (right column).

Perusal to Fig. 20.18 also shows that the maximum point in Fig. 20.18 (top) is the
end point of Fig. 20.18 (bottom). The absence of the region defined by

− 1
2 ≤ εeff < −2+√

2
4

0 ≤ εr < −1+√
2

2

(20.3.32)

can be elucidated as follows. With reference to Fig. 20.19 (top) as the rod elongates
due to increasing temperature and/or moisture concentration point A goes up along
the y-axis as indicated by the white arrow until it reaches its maximum point where
θ = 45◦ while link BCmoves diagonally as shown by the white arrow until reaching
B′C′. This path is represented by the ε

upp
r curve in Fig. 20.18 (top left) from (A, B, C)

to themaximumpoint (A′,B′,C′). At this stage, further increase in temperature and/or
moisture concentration can no longer push point A′ further as it would require point
C′ to detach from the 45◦ dash line in preserving symmetry and material continuity
about the 45◦ dashed line. Now if the temperature and/or moisture concentration
were to decrease, there are two possible pathways. Although point A′ reverses to its
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Fig. 20.18 Plots of ε
upp
r and εlowr versus εeff (top) and εeff with respect to εr (bottom)

original position A, the link B′C′ can either return to its original position BC along
the same path or continue until reaching B′′′C′′′, as shown in Fig. 20.19 (top). These
two pathways are indicated as (A′, B′, C′) to (A, B, C) as well as (A′, B′, C′) to (A,
A′′′, C′′′), again along the ε

upp
r curve, in Fig. 20.18 (top left). On the other hand, the

cooling and/or drying process from its original state is more straightforward and is
illustrated in Fig. 20.19 (bottom) where A moves to A′′ along the y-axis while BC
moves by translational motion to B′′C′′. This pathway is reflected by the mapping of
(A, B, C) to (A′′, B′′, C′′) in Fig. 20.18 (top left) along the εlowr curve.

The appearance of two possible pathways along the ε
upp
r curve comes about due to

the prescription of εeff to calculate εr. However, since the metamaterial deformation
is driven by the change in the rod length, a more physically meaningful approach
would be the calculation of εeff for a prescribed εr. The latter has been done for Special
Case I wherein the frame links are assumed rigid such that it can only deform by
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Fig. 20.19 Visualization of
the linkage motion during
heating and/moistening from
original state until attainment
of maximum expansion
denoted by white arrows
followed by the two possible
pathways for subsequent
cooling and/or drying
indicated by black arrows
(top), and linkage motion
during cooling and/or drying
from original state (bottom)
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rotation about the pin joints while each segment of the linkage can neither expand
nor contract. On the other hand if the rod and frame are made of the same material as
specified in Special Case III, then εeff = εr = εf. What if 0 < εf < εr? This is plotted
in Fig. 20.20 based on Eq. (20.3.21) for various εf to εr ratio, whereby the occurrence
of incremental negative hygrothermal expansion is defined by dεeff/dεr < 0 and are
indicated by red curves. The graphs are plotted using the same range (�εeff,�εr) =
(0.16, 0.4) in order to clearly show that the negative hygrothermal expansion region
is wider for lower εf/εr ratio.

The four separate plots from Fig. 20.20 can be combined in order to show the
locations at which the negative hygrothermal expansion regions occur in the εeff
− εr plane. Figure 20.21 (left) shows that as εf increases, the location of negative
hygrothermal expansion occurs further from the origin. The analytical solution for
εr at which the negativity of hygrothermal expansion begins can be obtained as
follows. Since the rod strain which demarcates the region of positive hygrothermal
expansion from the region of incremental negative hygrothermal expansion is defined
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Fig. 20.20 Effective strain εeff curves plotted against the rod strain εr for various frame strain
εf where the maximum points occur. The negative hygrothermal expansion part of each curve is
indicated in red

Fig. 20.21 Locations of negative hygrothermal expansion in the εeff − εr plane for various εf (left)
and the limit of negative hygrothermal expansion occurrence (right)
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by dεeff/dεr = 0, imposition of this first derivative value on Eq. (20.3.21) yields

2 − 3ϕ + (
4 − 4ϕ − ϕ2

)
εr

2 + ϕ
=

√
1 + (6ϕ − 4)εr + (

ϕ2 + 4ϕ − 4
)
ε2r (20.3.33)

where ϕ = εf/εr. Squaring both sides of Eq. (20.3.33) permits εr to be solved as

εr = 3ϕ − 2 ± (1 − ϕ)(2 + ϕ)

4 − 4ϕ − ϕ2
(20.3.34)

Since the lower solution εr = −1 is non-physical, it is discarded in favor of the
upper solution

εr = 2ϕ − ϕ2

4 − 4ϕ − ϕ2
(20.3.35)

In addition, the limit at which the negativity of hygrothermal expansion occurs can
be obtained from the denominator of Eq. (20.3.35). Let 4− 4ϕ − ϕ2 = 0, we obtain
ϕ = −2± 2

√
2. Since the lower solution ϕ = −2− 2

√
2 is a negative value, which

is inconsistent with the requirement that εf/εr ≥ 0, we choose the upper solution
εf/εr = −2 + 2

√
2. In other words, the negativity of hygrothermal expansion in the

currently investigated metamaterial exists within the range

0 ≤ εf <
(
−2 + 2

√
2
)
εr (20.3.36)

A list of εr strainswhich separate the incremental negative hygrothermal expansion
regions from the conventional ones are furnished inTable 20.4,while a full continuous
description of εr that forms the boundary between positive and negative hygrothermal
expansion region is plotted in Fig. 20.21 (right).

As mentioned, the desired Islamic pattern can be achieved through the metama-
terial deformation shown in Fig. 20.16 (bottom) such that the frame’s link strain that
is required for each rod strain as per Special Case II is expressed in Eq. (20.3.25).
Here, four sub-special cases can be identified: (a) εf = 0 with (i) rod expansion, and

Table 20.4 List of rod and frame strain conditions that determine the positivity or negativity of
hygrothermal expansion

Frame strain to rod strain ratio Condition for
incremental positive
hygrothermal expansion

Condition for
incremental negative
hygrothermal expansion

εf = 0 εr < 0 εr > 0

εf = 1
4 εr εr < 7

47 εr > 7
47

εf = 1
2 εr εr < 3

7 εr > 3
7

εf = 3
4 εr εr < 15

7 εr > 15
7
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Fig. 20.22 Plots of frame linkage strain versus rod strain for maintaining the 2D array of Islamic
8-pointed star pattern, with the original lengths in purple while the elongated and shortened ones
are in red and blue, respectively

(ii) rod contraction, as well as (b) εr = 0 with (i) frame linkage expansion, and (ii)
frame linkage contraction. The sub-special cases (a) (i) and (ii) are subsets of Special
Case I wherein substitution of εf = 0 into Eq. (20.3.25) gives εr = −1/2 + 1/

√
2

and εr = −1/2, while sub-special cases (b) (i) and (ii) are also obtained from

Eq. (20.3.25), but with substitution of εr = 0 to give εf =
(
1 − √

2
)
/
(
1 + √

2
)

and εf = 1. Plots of Eq. (20.3.25) are furnished in Fig. 20.22 whereby the two lines
pertain to the opposing rotational directions of link AB, which incorporate the four
sub-special cases with their corresponding schematics.

Finally, we consider the possibility of attaining the 2D array of 8-pointed stars
each for varying temperature andmoisture concentration. Since the units for CTE and
CME are different, in which the unit for CTE is K−1 while CME is dimensionless,
it is not possible to establish a single coeficient of hygrothermal expansion; only the
hygrothermal strain can be defined via the summation of thermal andmoisture strains.
As such the effective CTE and CME must be evaluated separately. In the absence of
moisture concentration change, the substititon of Eq. (20.3.1) with dCr = dCf = 0
and εeff = α

(T )
eff dT into Eq. (20.3.21) gives
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α
(T )
eff = 2α(T )

r dT + α
(T )
f dT − 1

4dT

+ 1

4dT

√
1 − 4α(T )

r dT
(
1 + α

(T )
r dT

)
+ α

(T )
f dT

(
4α(T )

r dT + α
(T )
f dT + 6

)
(20.3.37)

while in the absence of temperature change the substitution of Eq. (20.3.1) with
dT = 0 and εeff = α

(C)
eff dCenv into Eq. (20.3.21) leads to

α
(C)
eff = 2α(C)

r dCr + α
(C)
f dCf − 1

4dCenv

+ 1

4dCenv

√
1 − 4α(C)

r dCr

(
1 + α

(C)
r dCr

)
+ α

(C)
f dCf

(
4α(C)

r dCr + α
(C)
f dCf + 6

)
(20.3.38)

If the frame linkage material is made from metals or alloys, there is no absorption
of moisture. Therefore, substituting dCf = 0 into Eq. (20.3.38) for mettalic frame
linkages reduces it to

α
(C)
eff = 2α(C)

r dCr − 1

4dCenv
+ 1

4dCenv

√
1 − 4α(C)

r dCr

(
1 + α

(C)
r dCr

)
(20.3.39)

Using Eqs. (20.3.37) and (20.3.39), plots of the effective CTE and CME for
the metamaterial are shown in Fig. 20.23 with the regions of positive and nega-
tive hygrothermal expansions indicated in blue and red, respectively. Specifically,
the effective CTE has been plotted in Fig. 20.23 (top) for frame linkages made
from silicon α

(T )
f = 2.56 × 10−6 K−1, Invar α

(T )
f = 1.2 × 10−6 K−1, fused quartz

α
(T )
f = 0.59 × 10−6 K−1, Sitall α

(T )
f = (0 ± 0.15) × 10−6 K−1 and Zerodur

α
(T )
f = (0 ± 0.007) × 10−6 K−1, with the rod being made of polypropylene

α(T )
r = 150×10−6 K−1. TheCMEsof polymers range fromα(C)

r = 2×10−3 toα(C)
r =

5× 10−3, but mostly at around the former. Plots of the effective CMEs are furnished
in Fig. 20.23 (bottom left) for rods of various CMEs at fixedmoisture absorption, and
in Fig. 20.23 (bottom right) for rods of various moisture absorption at fixed CME.

It can be seen that when the CTE of the frame linkage material is zero or almost
zero, such as when the frame linkage is made from Sitall and especially Zerodur
shown in Fig. 20.23 (top right), sign-toggling of the effective CTE takes place when
there is a switch between cooling and heating

α(T )
r � α

(T )
f ≈ 0 ⇒

{
dT > 0 ⇒ α

(T )
eff < 0

dT < 0 ⇒ α
(T )
eff > 0

(20.3.40)
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Fig. 20.23 Plots of effective CTE (top) and effective CMEs (bottom) for various combinations of
materials and, in the case of CMEs, various moisture absorption

i.e., the sign-flipping of the effective CTE takes place at the original temperature
(dT = 0) such that the metamaterial always contracts with temperature fluctuation.
When the frame linkage is made from other materials, the sign-switching of the
effective CTE occurs at higher temperature. With reference to Eq. (20.3.39), the
sign-switching effective CTE condition described in Eq. (20.3.40) applies for sign-
switching effective CME, i.e.,

α(C)
r � α

(C)
f ≈ 0 ⇒

{
dCenv > 0 ⇒ α

(C)
eff < 0

dCenv < 0 ⇒ α
(C)
eff > 0

(20.3.41)

In addition, the magnitude of the effective CTE is accentuated with the use of rods
with higherCME, enhancedmoisture absortivity andgreater change in environmental
moisture concentration, as implied from Fig. 20.23 (bottom).
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20.4 Conclusions

Neither positive nor negative expansion coefficients are fully advantageous across
a wide range of structural applications that are exposed to environmental fluctua-
tions. In some cases, it is advantageous for materials to possess duality in material
properties so as to take advantage of negative behavior under a change in environ-
mental condition aswell as conventional behaviorwhen the condition reverses. These
have been made achievable by the use of bimaterial strips (Sect. 20.2) and linkages
(Sect. 20.3) that are arranged in a certain manner.

Unlike other works on sign-switching materials properties, which are only inter-
esting from technological viewpoint (Lim 2019b, c, d, e, f, g, h, 2020b), the sign-
switchable 2D metamaterials in this chapter are pleasingly esthetic (Lim 2020a, c).
Originally in the form of square grids, these metamaterials deform into arrays of
8-pointed stars, which has a unique place in the long and glorious history of Islamic
civilization.
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Appendix

A.1 Arc Length Analysis of Bimaterial Strip

In addition to bending of the bimaterial strip due to the differential elongation of
the individual layers when unbonded, the arc length of the bent bimaterial strip is
longer and shorter than its original length with increased and decreased temperature,
respectively. This is because the arc length of the bent bimaterial is bounded by
the thermally elongated or shortened lengths of the individual layers when they are
unbonded, as shown in Fig. A.1. Upon a temperature change of dT, the original

lengths lh change to l1 = lh
(
1 + α

(T )
1 dT

)
and l2 = lh

(
1 + α

(T )
2 dT

)
for layer 1

and layer 2, respectively, in the absence of bonding, thereby generating a length

difference of lh
(
α

(T )
1 − α

(T )
2

)
dT . In the presence of perfect bonding between both

layers, this gap is bridged by prescribing internal forces of opposing directions.
Arising from the moment imbalance due to the prescribed axial load through the
cross-sectional centroids of each layer, equilibrium of moment is maintained by
prescribing internal moments to both layers. The result of this approach gives rise
the curvature described by Timoshenko (1925). This treatment, however, does not

↓

↓

exact < lh /r exact > lh /r

lh l1>l2>lhl1<l2<lh

larc>lh

larc<lh

Original 
length of 
bimaterial

T T 

r rlh lh
l2

l1
larclarc

l2
l1 larclarc

θθ θ
θ

Fig. A.1 Schematics of the change in arc length
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take into account the change in the length of the biomaterial strip. The arc length larc
is typically taken to be equal to that of the original length.

Unlike the analysis of bending whereby the equilibrium of forces and moments
are applied, in the arc length analysis only the equilibrium of forces is required.
As before, the absence of external force requires the axial forces acting on layer 1
and layer 2 to be of opposing direction but equal in magnitude σ1h1 = σ2h2 with
σ1 = E1ε1 and σ2 = E2ε2 where ε1 = dl1/ l1 and ε2 = dl2/ l2. For equal layer
thicknesses h1 = h2, the force equilibrium becomes

E1dl1

lh
(
1 + α

(T )
1 dT

) = E2dl2

lh
(
1 + α

(T )
2 dT

) (A1.1)

The length gap of lh
(
α

(T )
1 − α

(T )
2

)
dT is bridged via the shortening of layer 1 and

lengthening of layer 2 by dl1 and dl2, respectively, i.e.,

dl1 + dl2 = lh
(
α

(T )
1 − α

(T )
2

)
dT (A1.2)

Equations (A1.1) and (A1.2) are solved simultaneously to give

dl1 =
lh

(
α

(T )
1 − α

(T )
2

)
dT

1 + E1
E2

1+α
(T )
2 dT

1+α
(T )
1 dT

(A1.3a)

dl2 =
lh

(
α

(T )
1 − α

(T )
2

)
dT

1 + E2
E1

1+α
(T )
1 dT

1+α
(T )
2 dT

(A1.3b)

from which one can calculate the arch length as either

larc = lh
(
1 + α

(T )
1 dT

)
− dl1 (A1.4a)

or

larc = lh
(
1 + α

(T )
2 dT

)
+ dl2. (A1.4b)

We can now consider actual bimaterials considered herein with a temperature
change of dT = 100K. In the case of the brass–titanium (BT) bimaterial, the substi-

tution of
(
α

(T )
1 , α

(T )
2

)
= (19.0, 8.6)×10−6 K−1 and (E1, E2) = (112.5, 110.3)GPa

gives larc/ lh = 1.001385; for the copper–steel bimaterial, the substitution of(
α

(T )
1 , α

(T )
2

)
= (17, 12)× 10−6 K−1 and (E1, E2) = (117, 200)GPa gives larc/ lh =

1.001384; and for the tungsten–silicon carbide (T-SC) bimaterial, the substitution
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of
(
α

(T )
1 , α

(T )
2

)
=

(
4.50

(
α

(T )
1 , α

(T )
2

)
= (4.50, 2.77) × 10−6 K−1, 2.77

)
×10−6 K−1

and (E1, E2) = (405, 450)GPa gives larc/ lh = 1.000359. Since θexact = larc/r and
θ = lh/r , it follows that the percentage error from the use of θ instead of θexact is the
same as the adoption of lh in place of larc, which is defined as

% error = lh − larc
larc

× 100% (A1.5)

i.e., the percentage errors are only−0.13829%,−0.13826% and−0.03588% for the
B-T, C-S and T-SC bimaterials, respectively. For the case where E1 = E2 in addition
to h1 = h2, Eq. (A1.3) becomes

dl1 = lh
(
α

(T )
1 −α

(T )
2

)
dT

1+ 1+α
(T )
2 dT

1+α
(T )
1 dT

dl2 = lh
(
α

(T )
1 −α

(T )
2

)
dT

1+ 1+α
(T )
1 dT

1+α
(T )
2 dT

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

≈
lh

(
α

(T )
1 − α

(T )
2

)
dT

2
(A1.6)

which, upon substitution into Eq. (A1.4), leads to

larc = lh

(
1 + α

(T )
1 + α

(T )
2

2
dT

)
(A1.7)

Equation (A1.7) can also be obtained directly. Since E1 = E2 and h1 = h2,

it follows that the arc length must be a simple average of l1 = lh
(
1 + α

(T )
1 dT

)

and l2 = lh
(
1 + α

(T )
2 dT

)
to give larc = (l1 + l2)/2, which is none other than Eq.

(A1.7). In the case of B-T bimaterial, whereby E1 ≈ E2, the use of Eq. (A1.7) gives
larc/ lh = 1.001380, leading to its percentage error of merely −0.13781%. This arc
length–and hence subtending angle–analysis shows that while the assumption of
θ = lh/r is not exact, it is sufficiently accurate for practical applications.

A.2 Some Series Expansion of Trigonometric Functions

The following series are useful for obtaining simplifications from trigonometric
functions.

sin z =
∞∑
n=0

(−1)nz2n+1

(2n + 1)! = z − z3

3! + z5

5! − · · · (A2.1)
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cos z =
∞∑
n=0

(−1)nz2n

(2n)! = 1 − z2

2! + z4

4! − · · · (A2.2)

tan z =
∞∑
n=1

(−1)n−122n
(
22n − 1

)
B2nz2n−1

(2n)! =
∞∑
n=1

(−4)n(1 − 4n)B2nz2n−1

(2n)!

= z + z3

3
+ 2z5

15
+ 17z7

315
+ · · · for |z| <

π

2
(A2.3)

where Bk is the kth Bernoulli number.
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