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Foreword

Concepts from geometry and topology can provide a powerful interpretative key in
understanding the behavior of matter, from topological defects in ordered phases,
to the self-assembly of material and biological matter driven by the geometry of
their constituents. Conversely, these interpretative keys can be used to control and
engineer the response of materials.

The work presented in this thesis explores this interplay in the study of
propagating cracks and in the mechanical response of active metamaterials. Notably,
the work is based on three distinct experimental systems, ranging in scale from
centimeters to nanometers, as well as two classes of numerical methods. This
reflects the best traditions of soft condensed matter in which a rich variety of
classical many-body and material systems is called upon to reveal and put to the test
unifying concepts in condensed matter. The freedom from a specific experimental
platform allows soft condensed matter physicists a creative freedom to develop
simple, experimentally accessible and often elegant experiments that reveal and
isolate key aspects many-body physics.

The first part of this thesis demonstrates that geometry can control crack
propagation. Draping thin sheets of material on curved surfaces changes the way
cracks propagate within them, with their paths guided by the curvature of the
surface. The work, whose experimental platforms are divided by six orders of
magnitude in scale, presents conceptual, experimental, and numerical innovations.

From composite materials in aircraft to reconfigurable materials, biomimetic
and biological materials, stretchable electronics, and sheets that snap, buckle, or
rip on demand, this century marks the appearance of soft and composite materials
into mainstream engineering. Correspondingly, these innovations and quests for
versatility motivate us to revisit the exquisite intellectual tradition of fracture
mechanics in rigid materials. Many questions remain ripe for exploration: from the
simple failure mechanics of extremely soft materials to the question of how strongly
curved and deformed materials modify crack behavior.

Chapters 2 and 3 of this thesis probe the question of how the Gaussian
curvature of the substrate modifies the propagation of creeping cracks. Underlying
this conceptual question are two non-local effects: cracks propagate in directions
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viii Foreword

determined as much by their history as their local environment, and Gaussian
curvature leads to non-local stress distributions in materials.

To isolate the effects of substrate curvature on crack propagation required
identifying and characterizing a material whose resistance to fracture would be large
enough so that a sheet can be strongly curved, while small enough that the stresses
arising from conformation to substrate curvature are sufficient to drive and steer
crack propagation. Chapter 2 of this thesis presents a new model material for this
purpose, called “Rubber Glass” experiments based on this material adhered to 3D
printed landscapes reveal a clear interaction between the curvature and the crack
path.

To extend these observations beyond the experimental scales accessible, a
numerical scheme was developed, based on the so-called phase field models of
fracture mechanics. Fracture mechanics is a delicate business: stress fields diverge
at the crack tip, making the problem singularly challenging to address theoretically.
The physicist’s approach to fracture mechanics has sought to pose the equations of
motion for crack trajectories in a field theoretic context, with the aim of building
a self-consistent formulation. Proceeding by analogy with phase transitions, phase
field models have proven a successful numerical approach. Chapter 2 presents an
extension of this effort to incorporate substrate curvature in a phase field models that
can readily be implemented on a laptop computer to predict the motion of cracks in
flat sheets conformed to curved surfaces.

Reducing the scale by six orders of magnitude, Chap. 3 explores how these
notions of controlling failure via curved substrate topography generalize down to the
length scales of nanoparticle sheets. In this context, additional forces, such as van
der Waals forces, become important for the resulting failure energetics and crack
morphologies. The lattice structure of the material also plays an important role:
the material can not only rip, but also create dislocations in the lattice structure.
Chapter 3 shows that substrate curvature tunes nanoparticle sheets between three
regimes: gentle draping, azimuthal fracture, and radial folding. This work rational-
izes the transitions between regimes through a phenomenological model, predicts
stress patterns through spring network simulations, and explains the emergence of
plastic deformation patterns in the ultra-thin nanoparticle sheets as they irreversibly
adhere to lattices of spheres hundreds of nanometers in size.

The second half of the thesis focuses on the concept of topological order hidden
in the mechanical response of materials. The notion that topology could play a
role in the dynamics of matter has fascinated physicists since early studies of
holonomy in mechanics, and gained popularity since the breakthroughs by Berry
and later condensed matter theorists such as Thouless. In recent years, there has
been an explosion of interest in the effects of hidden topological order in electronic
systems. This has led to a re-examination of the role of topology in classical systems
pioneered by Haldane.

Chapters 4–6 show that a collection of gyroscopes coupled by springs naturally
possesses hidden topological order. Understanding the mechanical response of
materials by modeling them as a collection of masses coupled by springs has been
the mainstay of solid-state physics for decades. In this thesis, a seemingly simple
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ingredient is added: spin. This seemingly innocent twist on masses on springs brings
topological phenomena to life. A collection of what are effectively spinning tops
suspended from the ceiling show remarkable mechanical responses when poked.
Instead of waves propagating throughout the structure as well as around the edges,
a cohesive wave packet propagates around the edge of the material. What is even
more remarkable is that if a notch is placed in the way of this wave packet, the wave
packet simply avoids it! Ordinary waves in materials would scatter, being partially
reflected and transmitted. This robustness is the most visible manifestation of the
presence of underlying topological order.

What is more, this topological order, commonly associated with long-range
spatial order of the underlying structure, depends only on the very local structure of
the network. The simplicity of the approach allowed the construction of amorphous
networks in any platform and was soon followed by work in electronic areas and is
having a growing influence in the field.

The breadth and character of the work presented in this thesis as a whole
delightfully reflects the creative process of science, whose most important and
useful applications almost inevitably follow from the application of the scientific
method to the curious pursuit of ideas and their relationship to reality.

Chicago, IL, USA William Irvine
October 2019



Preface

Geometry and topology have emerged as powerful tools for understanding a wide
range of phenomena in condensed matter physics. Often, geometric and topological
constraints drive the order and dynamics of soft mechanical systems—systems in
which material behavior is energetically accessible at room temperature in tabletop
experiments. Here, we investigate the role of geometry and topology in shaping the
mechanics of quasi-two-dimensional elastic materials.

In this thesis, we first present curvature as a geometric tool for guiding the
behavior of cracks. When a flat elastic sheet conforms to a surface with Gaussian
curvature, the geometry of the surface redistributes stresses in the sheet in a tunable
fashion. Using this insight, we uncover how curvature can stimulate or suppress the
growth of cracks and steer or arrest their propagation. We examine the mechanics
of this scenario with and without pinning, in systems on both macroscopic and
nanometric scales. Potential applications of the results range from stretchable
electronics to functionalized crack patterns on the micron scale.

We then turn to discrete metamaterials for which network geometry and real-
space lattice topology interact with the structure of elastic waves. In these mechan-
ical materials, topological order in their excitation spectra translates to exotic
behaviors at the materials’ boundaries, such as chiral edge waves that are unusually
robust to disorder. We uncover such topological behavior in a simple system
composed of interacting gyroscopes and use this metamaterial to explore broken
symmetries and tune through topological phase transitions. We then peel away a
canonical ingredient for constructing topological insulators: the ordered underly-
ing lattice. We find topological physics emerging from amorphous networks of
gyroscopes and establish the basic building blocks for understanding topology in
amorphous systems more generally. The results apply to a broad class of systems,
from acoustic and mechanical structures to electronic and photonic materials. This
work forges a path towards designing materials that transmit energy, sound, or light
along their boundaries in a robust manner, even when the bulk of the material is
messy or disordered.

Santa Barbara, CA, USA Noah Mitchell
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Chapter 1
Introduction

Geometry is not only a language to explain phenomena of the natural world, but
also a tool to organize and trigger specific behaviors in material systems. As Jean le
Rond D’Alembert wrote in 1752, “Geometry, which must obey Physics only when
it meets with it, sometimes commands it” [1, 2]. In patterned liquid crystals [3–
6], DNA lattices [7, 8], colloidal crystals [9–11], and classic models of phase
transitions [12, 13], geometric constraints offer a mechanism to drive the order
and dynamics of soft matter systems, both in and out of equilibrium. When cur-
vature acts as the driving constraint on a two-dimensional material, that material’s
constituents may no longer tile their preferred local arrangement throughout curved
space (Fig. 1.1). The material may respond elastically by stretching and compressing
to accommodate its new geometry, or by forming defects such as dislocations [14]
and disclinations [5, 10]. Might we similarly use curvature to guide the material
failure of thin elastic materials conformed to corrugated surfaces?

Beyond assemblies of discrete matter in real space, it is no surprise that geometric
constraints may also constrain the wave properties of a material; for example, the
normal modes of an elastic plate must differ from those of a spherical elastic
shell [15]. More subtle, however, is the recent realization that bands of phononic
excitations themselves may also be constrained by nontrivial topology in momentum
space [16–18]. While the normal modes of a 2D material may naturally live on a
torus, a topological obstruction may exist that prevents continuously connecting the
phases of the normal modes on that torus [19] (Fig. 1.2).

While these ideas can quickly become abstract and technical, we focus our
attention here to simple, concrete realizations. This thesis presents two principal
efforts. In the first effort (Chaps. 2 and 3), we explore the mechanics of cracks and
plastic deformation in thin sheets draped onto surfaces with Gaussian curvature.
The second effort (Chaps. 4–6) aims to understand the topological aspects of elastic
waves in 2D metamaterials, using networks of gyroscopes as a model system.
Before embarking, we first illustrate the how the ideas of curvature and topology
are intertwined and how these, in turn, are linked to mechanics.

© Springer Nature Switzerland AG 2020
N. Mitchell, Geometric Control of Fracture and Topological Metamaterials,
Springer Theses, https://doi.org/10.1007/978-3-030-36361-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36361-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-36361-1_1


2 1 Introduction

Fig. 1.1 Curvature can govern mechanical behavior. (a) Curvature of a rigid substrate stretches
thin sheets, redistributing stresses. These stresses, in turn, can guide the paths of cracks. (b) The
curvature of a corrugated substrate—here formed from a lattice of spheres—dictates the failure
patterns of a nanoparticle sheet

Fig. 1.2 Bands of normal modes in a dynamical system can exhibit nontrivial topology. In this
illustration, each torus represents a band defined over the Brillouin zone of a lattice, and the color
denotes the phase of the normal mode at each Brillouin zone wavevector, or each location on
the torus. The phases of normal modes on the left can be continuously connected to the trivial
case, in which the phases do not vary (top center). In the configuration on the right, there is a
topological obstruction to a single-valued definition of the phases of normal modes in either band.
The presence of phase defects—analogous to a Dirac monopole of positive (top band) and negative
(bottom band) charge contained within each torus—presents a topological obstruction to covering
either band without stitching together two phase descriptions
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1.1 Curvature and Geometry

What does it mean for a surface to be curved? While we all have an intuitive notion
of curvature, here we will require a more precise definition. A useful formulation
is to measure the change of a surface’s normal vector while moving tangent to that
surface (Fig. 1.3a). Denoting the normal vector as n and vector tangent to the surface
as t, we may write the curvature along t as a tensor, Kαβ = −tβ · ∂αn. At a given
point on the surface, the matrix Kαβ can be diagonalized to define eigenvectors (in
this case, special tangent vectors) on the surface. The rate of change of the surface’s
normal vector along each of these directions can be described in terms of tangent
circles with radii R1 and R2. We ascribe these radii a sign, determined by the side
of the surface on which the tangent circle resides (Fig. 1.3b–d). Quite pleasantly,
the invariants of the curvature tensor result in the mean curvature, H , and Gaussian
curvature, G, as

2H = Tr(Kα
β ) = 1

R1
+ 1

R2
(1.1)

G = det(Kα
β ) = 1

R1R2
. (1.2)

Consider the difference between these two by bending this sheet of paper in this
thesis. You can easily roll this page into a cylinder without stretching or compressing
the sheet. Such a configuration has H �= 0, and therefore we learn that, in the case
of a cylinder, it requires very little energy to impart nonzero mean curvature to a thin
sheet. Try as you may, however, it will be quite difficult to stretch this page onto a
spherical surface without folding, crumpling, or ripping it apart.

Fig. 1.3 Gaussian curvature is the product of principal curvatures at a given location on a surface.
(a) A useful definition of curvature is the rate of change of the normal vector, n, along a tangent
vector of the surface, t1 or t2. (b) For a cylinder, one principal curvature vanishes, and therefore the
Gaussian curvature is zero. (c) For a sphere, both curvatures have the same sign, so the Gaussian
curvature is positive. (d) For a saddle, each curvature has opposite sign, so the Gaussian curvature
is negative
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In somewhat more general terms, we may deform a thin sheet into any devel-
opable surface—a surface with vanishing Gaussian curvature such as a plane, a
cylinder, or a portion of a cone—without stretching or compressing the sheet.
In each 3D geometry, the sheet is in some sense still flat. In this way, Gaussian
curvature is intrinsic to the surface in a way that mean curvature is not: no matter
how the sheet of paper is embedded in 3D space, it is still intrinsically ‘flat’ if it
forms a developable surface.

Gaussian curvature is also a signed quantity. In a sphere, the tangent circles with
radii R1 = R2 reside on the same side of the surface, in the interior (Fig. 1.3c).
Thus, no matter if we denote these radii as positive or negative, their product is
positive: G > 0. Similarly, any surface which curves in the same manner in all
directions has positive Gaussian curvature at that point, regardless of whether we
could call this point a peak or a valley. Negative Gaussian curvature surfaces, on
the other hand, have one tangent circle on each side of the surface. Here too, the
convention of which circle has a negative curvature is irrelevant for the sign of G <

0. Appendix A demonstrates an explicit construction of a surface of revolution with
constant negative Gaussian curvature (a ‘pseudosphere’), providing a more technical
exposition to balance the qualitative discussion of this section.

What does the sign of Gaussian curvature signal? As a starting point, consider
two airlines traveling due north from the equator, one from Quito and another from
Nairobi. If the surface of the Earth were planar, they would not grow closer together
as they fly north; their parallel paths would neither converge nor diverge. The two
planes, however, grow nearer and nearer together due to the positive Gaussian
curvature of the Earth’s surface. In this way, G �= 0 signals a deviation of initially
parallel geodesics—which are, loosely speaking, the straightest lines possible on the
surface. Denoting the distance between planes as ξ and their traveled distance s, the
sign of the Gaussian curvature determines if these geodesics converge or diverge,
according to the equation of geodesic deviation

d2ξ

ds2 = −Gξ. (1.3)

We will shortly examine how this sign is related to how a flat sheet must be stretched
or compressed to adopt this shape, but first, let us consider the relationship between
a surface’s Gaussian curvature and its topology.

1.2 From Geometry to Topology

While the geometry of a surface describes how it is curved or embedded in space,
the topology of a surface measures quantities which are invariant under continuous
deformations of the surface, such as stretching or bending. Roughly speaking, while
geometry measures, topology counts. As an example, consider the surface of a
potato and the surface of a sphere. Though the Gaussian curvature of a potato varies
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along its surface, the potato and the sphere are topologically equivalent, in the sense
that they both have the same genus: they both have no handles. Similarly, a coffee
cup and a donut both have a genus of g = 1 since each has one handle, and they can
likewise be smoothly deformed one into the other.

The geometry of a surface and the topology of that surface are not independent.
Though curvature is a geometric feature that varies as a surface is stretched and
deformed, the total integrated curvature of a surface is a topological invariant which
cannot change unless the surface is ripped or punctured. This relationship is encoded
in the celebrated Gauss-Bonnet Theorem

∫
M

G d2x +
∫

∂M

kg ds +
∑

i

θi = 2π [2(1 − g) − h] . (1.4)

Here, G is the Gaussian curvature, kg is the geodesic curvature along the boundaries
∂M of the manifold M (if there are any boundaries), the sum of θ ’s sums the external
angles of any discontinuous turns in the boundaries, g is the genus of the surface
counting the number of handles, and h is the number of boundaries or ‘holes’ of
M . Any change to the curvature distribution of a smooth surface must satisfy the
constraint of Eq. 1.4.

While Eq. 1.4 has been cast to describe smooth surfaces, a similar notion
connects geometry to topology for discrete networks, such as the nanoparticle
monolayers that we will discuss in Chap. 3. For a given surface, the Euler charac-
teristic can be computed by sprinkling nodes on the surface and connecting nearby
nodes via a triangulation (or some other polygonal tiling for which line segments
connecting nearby nodes do not cross). Counting the number of vertices V , edges
E, and faces F , one can then compute the Euler characteristic via

V − E + F = χ, (1.5)

where χ = 2(1 − g) − h is an integer topological invariant called the Euler
characteristic. Just as Eq. 1.4 globally constrains changes in curvature or in the
embedding of a smooth surface, so too Eq. 1.5 constrains changes in the local
connectivity of nodes living on a surface.

The principles laid out above become physically manifest in a wide variety
of contexts. Anyone who has taken a long flight knows how airlines’ trajectories
differ systematically from straight lines drawn on a 2D paper map. Other familiar
examples are found in the design of domes, wherein a pentagon is often used as the
capstone to allow much or all of the remaining surface to be tiled with hexagons.
Figure 1.4b shows a Google Maps image of the Climatron in my hometown of St.
Louis. In this structure, there is one disclination at the apex of the dome, surrounded
entirely by hexagons. We may denote the disclination charge as concentrated at one
location: −π/3 δ(x). Approximating the continuous portions of the boundary to be
geodesics so that kg ≈ 0, the boundary of this dome must contain discontinuous
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Fig. 1.4 Gaussian curvature constrains geodesic curves, tilings of space, and the existence of
defects. (a) Two paths emanating north from the equator converge due to the positive Gaussian
curvature of the sphere. (b) The Climatron in St. Louis, Missouri is a geodesic dome with a
single, pentagonal disclination as its capstone and five kinks along its boundary. Topologically
equivalent to a disk (χ = 1), the dome compensates for the integrated Gaussian curvature via the
disclination and the discontinuities along its boundary. Image courtesy of Google Maps (Imagery
©2018 Google, Map data ©Google) [20]. (c) The human papillomavirus (HPV) uses 12 pentagons
to form a spherical viral capsid. Qutemol image of 1L0T courtesy of Dr. J.-Y. Sgro, UW-Madison
(©2009 Jean-Yves Sgro) [21]

turns to create the remaining angular deficit necessary to balance the integrated
Gaussian curvature:

∫
S

(
G − π

3
δ(x)

)
dS +

∑
i

θi = 2πχ = 2π. (1.6)

Here χ = 1, since the surface has no holes (g = 0) and one boundary (h = 1).
Closed spheres, such as soccer balls or certain viral capsids, have no boundary
term, so that the disclination charges must cancel the integrated Gaussian curvature
(Fig. 1.4c). For this reason, there are precisely 12 pentagons on any soccer ball
that is otherwise tiled by hexagons, and 12 pentagonal elements in the human
papillomavirus (HPV) capsid. The pentagonal elements are highlighted in purple in
the capsid illustration in Fig. 1.4c, here constructed based on an atomic model [22]
with the aid of Sybyl [23] and Qutemol [24].

These everyday examples relate mathematics to geometric aspects of physical
space. However, they fall short of connecting curvature and topology to mechanics.

1.3 From Mathematics to Mechanics

Here, we begin to connect curvature and topology to the mechanics and elasticity of
particular quasi-2D materials.



1.3 From Mathematics to Mechanics 7

1.3.1 Curvature and Elasticity in Thin Sheets

Lay a thin sheet over a curved rigid substrate. If the sheet behaves inextensibly,
like paper, then it must crumple, fold, or rip in order to accommodate the change in
curvature. If the sheet is elastic, like rubber, then it can stretch and compress to adopt
to the curved geometry. How will substrate curvature affect the stress distribution
in the sheet? The answer will depend strongly on whether or not the sheet becomes
pinned to the substrate as it conforms. For example, one way to conform an elastic
sheet onto a curved surface is to glue every point on the undeformed sheet to the
point on the surface directly below it in projection. If the sheet is allowed to relax,
however, the displacements will rearrange: the azimuthal compression may relax,
for instance, at the expense of stretching somewhat in the radial direction. Whereas
the displacement in the pinned configuration depends on the details of how the sheet
is conformed, such as which sites are pinned and in what order, the relaxed state is
a unique configuration in the case without pinning.

Part I of this thesis considers how sheets draped on curved surfaces rip apart
and plastically deform. We will first consider the case where no pinning occurs,
using macroscopic rubber sheets as a model experimental system. Secondly, we
will examine a specific case of fracture and deformation with strong pinning by
draping nanoparticle membranes onto a lattice of rigid spheres. Here, we make a few
introductory remarks linking Gaussian curvature to the elasticity of a sheet without
the complications introduced by substrate pinning or material failure.

For thin sheets, the elastic free energy is dominated by stretching:

F = t

2

∫
σij εij dA. (1.7)

Here, the indices run over the two in-plane components, and t is the thickness
of the sheet. How does the curvature arise in this expression? Here, we assume
that the deflections of the sheet from its initial flat configuration are modest, so
that the Föppl-von Kármán approximation holds; in particular, the surface normals
remain approximately normal to the undeformed plane of the thin sheet. Under
these assumptions, we can incorporate the corrugated profile of the substrate by
including contributions in the height variations in the definitions of the 2D stress
and strain directly. In particular, we couple the 2D displacements to the geometry
of the substrate via σij = 2μεij + λδij εkk and εij = 1

2

[
∂iuj + ∂jui + ∂ih∂jh

]
for

out-of-plane displacement h(x, y). In this work, the effects from curvature come in
through the gradients of h and we approximate dA = dxdy

√
g ≈ dxdy, which

is justified for gentle deviations from flatness [14]. Minimization leads to the force
balance equation

∂iσij = 0, (1.8)

which is automatically satisfied by introducing the Airy stress function, χ , such that
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σij = εilεjk∂l∂kχ. (1.9)

This yields the local differential equation

1

Y
∇4χ = −G, (1.10)

where G is the Gaussian curvature.
The meaning of Eq. 1.10 is that Gaussian curvature acts as a source for stress, in

a manner analogous to charge sourcing an electrostatic field. In particular, the local
Gaussian curvature acts as a charge-like source for the trace of the stress tensor, up
to boundary terms. To see this, introduce the curvature potential (x) such that

∇2(x) = −G(x). (1.11)

(x) represents a scalar potential on the surface. Knowledge of (x) then gives
χ(x), and thus σ(x), through

1

Y
∇2χ = (x) + HR(x) = σkk

Y
(1.12)

for some harmonic function HR(x), which is used to satisfy boundary conditions.
If we lay aside boundary conditions for the moment, we see that the Gaussian
curvature of the substrate acts as the source of the isotropic component of tension
(σkk).

As we increase the geometric mismatch between the initial, flat state of our
sheet and the final, curved state, stresses that build up in the sheet may trigger
irreversible material failure. A pre-existing crack in the sheet (or one that grows
from some other microscopic imperfection) will then interact with the curvature of
the substrate through the stress distribution in the sheet. In a lattice-like material
such as a nanoparticle sheet, defects such as dislocations may proliferate from the
stresses caused by the geometric mismatch.

1.3.2 Berry Curvature, Chern Numbers, and Topological
Mechanics

Beyond the elasticity of thin sheets, geometry and topology enter into the wave
mechanics of 2D materials, creating new design principles for directing elastic
waves.

The flow of energy and information is a central theme across condensed matter
physics. The dispersion and energetics of phonons in particular has yielded numer-
ous surprises, both in lattices and amorphous solids [25–27]. A major shift in this
field came from studying not materials, but metamaterials—structures composed of
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Fig. 1.5 The building block of the metamaterials studied here is a gyroscope hanging from a plate.
The gyroscopes hanging from a plate are assembled into a 2D lattice or network and interact via
magnetic repulsion

patterned elements [28, 29]. With this additional layer of complexity comes the abil-
ity to design structures from the bottom up. The ability to design the microstructural
components has led to the fabrication of auxetics [30, 31], materials with negative
index of refraction [32–35], and passive topological metamaterials [36, 37]. In
patterning the microstructural components, degrees of freedom can be introduced or
removed in the building blocks directly. Compounding this freedom with the ability
to introduce activity in each component results in a broad palette for accessing exotic
material properties. This realization has led to the design of a variety of phononic
metamaterials, which are able to acoustically cloak inclusions [38], exhibit non-
reciprocal wave properties [39, 40], and exhibit topologically-protected chiral waves
on their boundaries [17, 41].

In Part II of this thesis, we focus on materials built from spinning gyroscopes. We
couple the gyroscopes elastically via springs or magnetic interactions and pattern
them in a 2D plane. Figure 1.5a, b show the principal ingredient: the gyroscope
hanging from a rigid plate. Because the inertial response of this object is dominated
by the angular momentum along the axis of rotation, an applied force reorients its
displacement. If the gyroscope spins sufficiently rapidly that nutation is negligible,
the free tip of a gyroscope moves with a velocity proportional to the torque acting
about the pivot point, �τ . This response is captured by Newton’s second law in the
form

�τ ≈ Iω0∂t n̂ = ��f × �F, (1.13)

where ��f is the vector from the pivot point to the point acted upon by force �F , I is
the principal moment of inertia, ω0 is the spinning speed of the gyroscope, and n̂ is
the unit vector pointing from the pivot to the center of mass.
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For small displacements, we may write the displacement from the equilibrium
position in the plane as ψ = x + iy. The equation of motion for a single gyroscope
under the influence of gravity becomes

i∂tψ = mg�cm

Iω0
ψ. (1.14)

Two features of this equation stand out. First, the motion is perpendicular to
the applied force, as seen from the presence of the imaginary factor, i. Second,
the dynamics are first order in time, meaning that an applied torque results in a
gyroscope’s velocity. The similarity between Eq. 1.14 and the Schrödinger equation
for a quantum particle encourages us to explore the topological mechanics of the
phonons in gyroscopic networks.

As we will discover, networks of gyroscopes ubiquitously support topologically
nontrivial band structure. Band gaps—ranges of frequencies in which no normal
modes of the structure reside—are endowed with unidirectional chiral edge modes
in these systems. Importantly, these edge modes are protected by the topological
information encoded in the bands. Let us build up towards understanding what this
means using curvature as our starting point.

Berry curvature is the direct analog of Gaussian curvature in a more abstract
space: the space of normal modes. Just like Gaussian curvature, Berry curvature can
be expressed as the curl of a connection, and intuitions of parallel transport on a
surface embedded in three dimensions carry over to accumulating phase in the state
of a system by moving through the configuration space of the system.

As a concrete illustration, consider an collection of interacting gyroscopes which
oscillate in an eigenstate of the structure with eigenfrequency, ω. It will become
useful to denote the evolution of a single gyroscope in terms of its right and left-
circularly polarized components:

ψi = ψR
i e−iωt + ψL

i eiωt , (1.15)

where ψL
i is the complex conjugate of ψL

i . Denoting the collection of N gyroscope
displacements as a list

|ψ〉 = (ψR
1 , ..., ψR

N ,ψL
1 , ..., ψL

N), (1.16)

the evolution in time of the eigenstate indexed by its wavevector k0 is then

|ψn(k0, t)〉 = e−iωt |ψ(k0, t = 0)〉. (1.17)

Now, introduce an adiabatic force acting on the eigenstate that changes the energy
and spatial wavevector k of the oscillating state. Sufficiently slow variations will
keep the eigenstate |ψ(k0, t = 0)〉 in an instantaneous eigenstate |ψ(k(t), t)〉. The
later state is then given by
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|ψn(k, t)〉 = eiγn(t)e−i
∫ t

0 dt ′ω(k(t ′))|ψ(t = 0)〉. (1.18)

While the second exponential is simply the instantaneous eigenstate evolution, the
first exponential term is geometric, with γ being the Berry phase. If we consider a
cyclic evolution around a closed path of a state evolving according to Eq. 1.15, the
Berry phase depends only on the path taken:

γn = i

∮
C

dk〈ψ |∇k|ψ〉. (1.19)

Just as parallel transport is determined by Gaussian curvature, here the Berry phase
is determined by the Berry curvature

��n = ∇k × �An(k), (1.20)

where �An(k) ≡ i〈ψ |∇k|ψ〉 is the so-called ‘Berry connection’ at wavevector
k. Integrating the Berry curvature over a patch of momentum space and using
Stokes’ theorem shows us that the Berry phase is determined by the enclosed Berry
curvature:

γn =
∮
C

d� · An(k) =
∫
S

dS · �n(k), (1.21)

where S is a unit vector at k normal to the band.
We have seen that the Berry curvature of the normal modes determine a

phase shift in the gyroscopes’ displacement under adiabatic transformations about
momentum space. In a lattice, momentum space can be viewed as a tiling of the
Brillouin zone, just as the real space lattice configuration is a tiling of the unit
cell. This means that the Brillouin zone is, topologically, a torus, and integrating
the Berry curvature over its surface provides information about the connection of
normal modes in each band.

Figure 1.6 shows two examples of a band colored by its Berry curvature.
In Fig. 1.6a, the Berry phase accumulated around path C1 is some nonzero number,
but the phase accumulated around path C2 is zero: the curvature contributions cancel.
Likewise, the total curvature integrated over the whole band vanishes. In Fig. 1.6b,
however, the contributions add, and the Berry phase accumulated around a path
encircling the entire Brillouin zone is a nonzero multiple of 2π :

∮
C2

d� · A(k) =
∫

S2

dS · �(k) = 2π C. (1.22)

The integer C is the Chern number of the band.
It is not apparent at first how the Chern number is related to the waves of our

material, beyond describing a topological aspect of the connection between normal
modes. A powerful answer was provided by Thouless, Kohmoto, Nightingale, and
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Fig. 1.6 Analogously to parallel transport on a curved surface, the Berry curvature indicates the
phase picked up by adiabatic evolution along a path encircling some patch of a band of normal
modes. (a) The phase accumulated by traversing C1 is nonzero, while the phase accumulated via
C2 vanishes. (b) For a band with Chern number of C = 1, the integrated Berry curvature sums to
2π

de Nijs for the analogous problem of electronic Chern insulators: a nonzero Chern
number signals the existence of chiral modes that live on the boundary of a system
and are immune to back-scattering [42].

One intuitive explanation for the existence of these modes is that the bulk
supports topologically nontrivial behavior described by a nonzero Chern number,
while the absence of material beyond the boundary is equivalent to a trivial insulator.
At the interface, something discontinuous must happen to the band structure. In
the simplest scenario, the gap closes, leading to conducting surface waves on
the boundary alone, and the Chern number denotes the number of right moving
modes minus the number of left-moving chiral modes, as illustrated schematically
in Fig. 1.7. The power of these chiral waves’ topological origin becomes truly
apparent only in the presence of disorder. Disorder could take the form of random
variations in the masses or spinning speeds of gyroscopes, inclusions or voids in
the material, or jagged features like corners at the material’s boundary. Typically,
in elastic systems, propagating waves will scatter off such disorder, resulting in
interference and energy lost to reflections. Topological protection ensures that, in the
absence of available counter-propagating states, an edge wave experiences perfect
transmission, passing around inclusions or voids and readily changing direction
along jagged boundaries (Fig. 1.7).

As we discover in Chap. 6, our understanding of Chern number generalizes
beyond periodic lattices, into networks with amorphous (or ‘glassy’) spatial struc-
ture. In that exposition, our description of band topology is no longer built on
Berry curvature directly, relying instead on the algebraic properties of projection
operators.
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Fig. 1.7 The Chern number counts the number of modes occupying a band gap. In a system
with a single gap and a single boundary, the number of right-moving modes—i.e. sets of possible
eigenstates with positive group velocity—minus the number of left-moving modes is determined
by the Chern number of a band. Nonzero Chern numbers give rise to topologically protected chiral
edge modes, which are robust against back-scattering

1.4 Scope of This Book

As we have previewed, geometry and topology have emerged as powerful tools for
understanding a wide range of phenomena in condensed matter physics. Often, geo-
metric and topological constraints drive the order and dynamics of soft mechanical
systems—systems in which material behavior is energetically accessible at room
temperature in tabletop experiments. Here, we investigate the role of geometry and
topology in the mechanics of quasi-two-dimensional elastic materials.

In Part I, which is based on references [43, 44], we examine how substrate
geometry controls material failure. Chapter 2 uncovers the interaction between
cracks in thin elastic sheets and Gaussian curvature of a rigid substrate. In particular,
we study the energetics and the paths of cracks in flat elastic sheets conformed to
surfaces with Gaussian curvature in the absence of pinning. Using rubber sheets
as a model experimental system, the analysis of Chap. 2 applies generally to all
materials that are thin, isotropic, linearly elastic, and brittle. Chapter 3, on the other
hand, focuses on a particular material: nanoparticle monolayer sheets. These ultra-
thin sheets are inorganic-organic hybrid materials are known for their controllable
optical and electrical properties, mechanical flexibility, and remarkable strength.
This material adds two ingredients to our study of material failure on curved
surfaces: the discrete lattice structure of the material and the addition of van der
Waals forces pinning the sheet to the substrate. Both ingredients play a strong
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role in determining the fracture morphology and deformation in nanoparticle sheets
stamped onto curved surfaces.

In Part II, which is based on references [45–47], we examine topological
mechanics of gyroscopic networks. Chapter 4 describes the experimental system
used and introduces a mechanism to drive a topological phase transition in real
time. Chapter 5 reports the study of a variety of gyroscopic lattices, including
geometries for which the topological band structure can be tuned through bond-
length-preserving deformations. Looking beyond periodic metamaterials, Chap. 6
reports the discovery of topologically-protected chiral edge waves in amorphous
and aperiodic networks. We use a generalized notion of Chern number to explain
the topological protection and apply it to our mechanical system. Furthermore, we
demonstrate the generality of our findings and predict the existence of glassy topo-
logical insulators in electronic materials, photonic materials, acoustic resonators,
and beyond.



Part I
Gaussian Curvature as a Guide

for Material Failure



Chapter 2
Fracture in Sheets Draped on Curved
Surfaces

Conforming materials to rigid substrates with Gaussian curvature—positive for
spheres and negative for saddles—has proven a versatile tool to guide the self-
assembly of defects such as scars, pleats [2, 9, 10, 14, 48], folds, blisters [49, 50],
and liquid crystal ripples [3]. Here, we show how curvature can likewise be used
to control material failure and guide the paths of cracks. In our experiments, and
unlike in previous studies on cracked plates and shells [51–53], we constrained flat
elastic sheets to adopt fixed curvature profiles. This constraint provides a geometric
tool for controlling fracture behavior: curvature can stimulate or suppress the growth
of cracks and steer or arrest their propagation. A simple analytical model captures
crack behavior at the onset of propagation, while a two-dimensional phase-field
model with an added curvature term successfully captures the crack’s path. Because
the curvature-induced stresses are independent of material parameters for isotropic,
brittle media, our results apply across scales [54, 55]. This chapter is adapted
from [43] with permission.

2.1 Gaussian Curvature as a Tool

Geometry on curved surfaces defies intuition: ‘parallel’ lines diverge or converge
as a consequence of curvature. As a result, when a thin material conforms to
such a surface, stretching and compression are inevitable [2]. As stresses build
up, the material can then respond by forming structures such as wrinkles or
dislocations, which are themselves of geometric origin. This interplay between
curvature and structural response can result in universal behavior, independent of
material parameters [9, 10, 14, 48, 50].

A markedly different material response is to break via propagating cracks. While
the use of curvature to control the morphology of wrinkles and defects in materials
has been recently explored [9, 10, 50], here we investigate the control of cracks by
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PDMS 

lubricant
3D printed plastic

acrylic base

1 cm

Fig. 2.1 Gaussian curvature—positive for caps and negative for saddles—governs the behavior of
cracks. In the experimental setup, an initially flat PDMS sheet conforms to a curved 3D printed
surface. A small incision nucleates the crack

tuning the geometry of a rigid substrate. Can we design the underlying curvature
of a substrate to steer paths of cracks in a material draped on that surface, thereby
protecting certain regions?

To probe the effect of curvature on cracks, we conform flat PDMS sheets
(Smooth-On Rubber Glass II) to 3D-printed substrates (Fig. 2.1). A lubricant
ensures that the sheet conforms to the substrate while moving freely along the
surface. We consider various geometries having positive and negative Gaussian
curvature in both localized and distributed regions, including spherical caps,
saddles, cones and bumps. To begin, we focus on the bump as a model surface, as it
is a common geometry containing regions of both positive and negative curvature.
We seed a crack by cutting a slit in the sheet, with a position and orientation of
choice. By successive cuts, we increase the slit’s length until it exceeds a critical
length, known as the Griffith length [56, 57], and propagates freely.

2.2 Fracture Onset: Griffith Lengths and Crack Kinking

The Griffith length of a crack in a flat sheet is nearly independent of position and
orientation. On our curved geometry, we find that this is not so. On the top of the
bump, a shorter slit is necessary to produce a running crack, and on the outskirts of
the bump (where the Gaussian curvature is negative), the behavior depends strongly
on the orientation of the seed crack: fracture initiation is suppressed for radial
cracks, while the Griffith length for azimuthal cracks approaches that of the flat
sheet (Fig. 2.2b). Thus curvature can both stimulate and suppress fracture initiation,
depending on the position and orientation of the seed crack relative to the curvature
distribution.

To relate these findings to the curvature distribution, we consider the stresses
induced by curvature and their interaction with the crack tip. Stresses generated
in the bulk of a material become concentrated near a crack tip. In turn, a crack
extends when the intensity of stress concentration exceeds a material-dependent,
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Fig. 2.2 Curvature
stimulates or suppresses
fracture initiation. (a)
Gaussian curvature and
curvature potential
distributions for a bump with
height profile
h(ρ) = αx0 exp(−ρ2/2x2

0 ).
(b) While the Griffith length
for a crack in a flat sheet
(dashed line) is nearly
constant, curvature modulates
the critical length of a seed
crack. All samples shown had
a 12 cm diameter (2R), an
aspect ratio α = 1/

√
2, bump

width x0 = R/2.35, and
constant radial displacement
uρ/R = 0.012

0 (α/x0)2 0 α2/4

critical value [56, 58]. Expressed mathematically, in the coordinates of the crack tip
(r, θ ), the stress in the vicinity of the tip takes the form

σij = KI√
2πr

f I
ij (θ) + KII√

2πr
f II

ij (θ), (2.1)

where f
I,II
ij are universal angular functions [58]. The factors KI and KII measure

the intensity of tensile and shear stress concentration at the crack tip, respectively,
and are known as stress intensity factors. Thus, the Griffith length, ac, is the length
of the crack at which the intensity of stress concentration reaches the critical value,
Kc. In curved plates or sheets, the near-tip stress fields display the same singular
behavior as in Eq. 2.1 [59], but the values of the stress intensity factors are governed
by curvature.

Curving a flat sheet involves locally stretching and compressing the material
by certain amounts at each point. According to the rules of differential geometry,
the amount of stretching, controlled by the field , is determined by an equation
identical to the Poisson equation of electrostatics [60], with the Gaussian curvature,
G, playing the role of a continuous charge distribution [2, 14]:

∇2(x) = −G(x). (2.2)

As the sheet equilibrates, its elasticity tends to oppose this mechanical constraint,
giving rise to stress. The isotropic stress from curvature is then related to the
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potential via σG
kk = E, where E is Young’s modulus, and the stress components

are determined by integrals of the potential and boundary conditions. In particular,
using the definitions for the boundary contribution HR defined in Eq. 1.12 of the
introduction, the equations

σρρ(ρ) = E

ρ2

∫ ρ

0
ρ′ [(ρ′) + HR

]
dρ′ (2.3)

and force balance in polar coordinates

σφφ = σρρ + ρ∂ρσρρ (2.4)

together fully specify our system.
Our study rests on a general geometric principle: positive (negative) curvature

promotes local stretching (compression) of an elastic sheet, leading to the enhance-
ment (suppression) of crack initiation. Variations in the potential  steer the crack
path, with the form of  determined nonlocally from the curvature distribution.

For the bump, the curvature potential, , is large on the cap, where curvature
is positive, and decays to zero as the negative curvature ring screens the cap
(Fig. 2.2a). Since Y is the isotropic stress, crack growth is stimulated where the
potential is greatest—on the cap of the bump, resulting in a small Griffith length
there (Fig. 2.2b). Moving away from the cap, the potential decays, producing a
stress asymmetry. This results in longer Griffith lengths with strong orientation
dependence on the outskirts of the bump. Figure 2.2b shows the theoretical results
overlying the experimental data, with no fitting parameters. We find that this
minimal model is sufficient to capture the phenomenology of our system at the onset
of fracture and provides correct qualitative predictions for longer cracks, even in the
absence of symmetry.

2.2.1 Griffith Length for a Small Crack

For sufficiently small cracks, we may compute the Griffith length analytically
for symmetric curvature distributions analytically. Given knowledge of the stress
field of an uncracked sheet on a curved surface, we can then compute the stress
intensity factors (SIFs), denoted KI and KII , for a crack on that curved surface,
following our model. These quantities measure the intensity of tensile and shear
stress concentration at the crack tip. The SIFs for each seed crack position and
orientation follow from integrating the infinite-plane Westergaard solution over the
crack length [61]:

KI,II = 1√
πa

∫ a

−a

dξ

√
a + ξ

a − ξ
σ̃I,II (ξ, 0) (2.5)
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where σ̃I (x, y) = σ̃yy(x, y) and σ̃I I (x, y) = σ̃xy(x, y) are the tensile and
shear stresses, respectively, in the crack’s local xy coordinate system. The tilde
distinguishes σ̃ij (x, y) from σij (ρ, φ), which is a function of the material coordinate
system rather than the crack coordinate system and is therefore a different function
of its arguments, despite being the same physical quantity. The stresses, σ̃I,II ,
in Eq. 2.5 include both geometric frustration and additional boundary loading.

For cracks that are small compared to the length scale over which the stress fields
vary (a|∂xσ̃iy | � σ̃iy),

KI = √
πa

(
σρρ(ρ∗) sin2 β + σφφ(ρ∗) cos2 β

)
, (2.6)

KII = √
πa

(
σφφ(ρ∗) − σρρ(ρ∗)

)
sin β cos β, (2.7)

where the inclination angle β is the angle of the seed crack with respect to the radial
direction. The Griffith length then takes the form

ac = 4K2
c

πY 2
[
2F(θ̄, β) cos β − �F(θ̄, 2β)

]2 , (2.8)

where F(θ, β) = f I
θθ (θ) cos β + f II

θθ (θ) sin β. To include boundary effects in
the above, take (x) → (x) + HR(x). To gain intuition from Eq. 2.8, note
that the curvature potential measures the local isotropic compression: (x) =[
σ̃xx(x) + σ̃yy(x)

]
/Y . This implies that crack growth tends to be suppressed in

regions where  < 0 and stimulated where  > 0. A local stress asymmetry,
however, can play an important role in attenuating this generalization. For instance,
the orientation dependence of the Griffith length shown in Fig. 2.2b of the main
text shows the importance of stress asymmetry in the determination of the Griffith
length. Qualitatively, a curvature potential which increases with radial distance (a
potential ‘well’) preferentially stimulates the growth of cracks which are oriented
along the radial direction, so that the Griffith length of a radial crack in a potential
well is smaller than that of an azimuthal crack centered the same distance ρ∗ from
the minimum of . Conversely, potentials which decrease with distance from the
center preferentially stimulate the growth of cracks oriented along the azimuthal
direction.

2.2.2 Crack Kinking

Curvature not only governs the critical length for fracture initiation, but also the
direction of a crack’s propagation. For cracks inclined with respect to the bump,
the cracks change direction as they begin to propagate, kinking at the onset of
crack growth and curving around the bump, as shown in Fig. 2.3a. Cracks kink and
curve towards the azimuthal direction because a decaying curvature potential, (ρ),
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Fig. 2.3 Kinking and
curving of crack paths in
sheets conformed to a bump.
(a–b) Crack paths kink and
curve around a bump. (c–d)
Phase-field simulations of
cracks on a bump, colored by
the phase-modulated energy
density so that broken regions
are darkened. (e–f) The
phase-field crack path
predictions (black solid
curves) overlie the
experimental paths (colored
curves). (Inset) Introducing a
time delay that matches
experiment for the right crack
tip’s propagation eliminates
the discrepancy far from the
bump. (g) Analytical
prediction (solid black curve)
of the kink angle, θk , overlies
experimental results. (h)
Analytical crack path
predictions overlie
simulations for free (constant
stress) boundary conditions.
All experiments and
simulations have aspect ratio
α = 1/

√
2 and bump width

x0 = R/2.35, including the
free boundary condition
simulations

a

creates a local stress asymmetry: σG
φφ < σG

ρρ . As a result, the crack relieves more
elastic energy by deflecting towards the azimuthal direction. Analytical prediction
of the kink angle, θk , is made by selecting the direction of maximum hoop stress
asymptotically near the crack tip:

θk = 2 arctan

(
2η

1 +√
1 + 8η2

)
, (2.9)

where η ≡ KII /KI . Figure 2.3g shows calculations that include the finite size of
cracks, yielding good agreement with experiment.

If we again consider small cracks, we can find expressions for the kink angle
analytically. For any rotationally symmetric curvature distribution G(ρ), we can
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invoke Eq. 2.3 and Y = (σρρ + σφφ) (dropping boundary effects for now) to find
the ratio of SIFs of a small crack centered at ρ∗:

η = ( − �) sin 2β

 + ( − �) cos 2β
, (2.10)

where �(ρ∗) ≡ 2
ρ∗2

∫ ρ∗
0 ρ′(ρ′)dρ′ is the average value of the curvature potential

in the region enclosed by the circle of radius ρ∗. Thus, the quantity −� appearing
in Eq. 2.10 is the difference between the local value of the potential (ρ∗) and the
value of the potential averaged from the center to the location of the crack, and this
quantity can be readily identified as the local stress asymmetry

 − � = (
σφφ − σρρ

)
/Y. (2.11)

For the crack to propagate, the tractions along the crack faces must be positive. As a
consequence, the sign of this stress asymmetry determines whether the crack kinks
towards the radial or azimuthal direction.

For a crack in a potential ‘well’ (where  increases with radial distance), the
crack kinks toward the radial direction (with respect to the center of the well). For
a crack in a potential ‘dome’ or ‘peak’ (where  decreases with radial distance) the
crack kinks toward the azimuthal direction.

2.3 Crack Trajectories

Having captured crack behavior at the onset of propagation, we now turn to
understanding the path cracks take in sheets draped on curved surfaces. We find that
a purely analytical model is sufficient to capture the long-time behavior of the crack
if the stress is fixed at the boundary (see Fig. 2.3h). We then introduce to a more
robust phase field model approach which allows for arbitrary boundary conditions,
at the cost of increasing computational complexity (Fig. 2.3c–f).

2.3.1 Perturbation Theory Prediction of Crack Paths

The perturbation theory approach of Cotterell & Rice [62] allows for the analytic
prediction of the crack trajectory when the deflection from a straight path is small, as
depicted in Figs. 2.4 and 2.5. Here we apply this formalism to the case of a flat sheet
conformed to a curved substrate. Beginning with a straight seed crack, we compute
curved path by iteratively updating the SIFs using the initial stress distribution of
the curved sheet (see below), calculating the kink angle using Eq. 2.9 and extending
the crack in the direction specified by θk by a small increment.
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(i) (ii)

1
Y

Δ2χG = −G
1
Y

Δ2χ∗ = 0
1
Y

Δ2χ = −G

pi = −σijnj

= +

= +

Fig. 2.4 Crack energetics and paths can be predicted analytically by a linear decomposing of the
elastic situation. Linear decomposition of a frustrated, cracked linear elastic sheet into (i) a curved
sheet with no crack and stress P at the boundary, and (ii) a flat sheet with tractions, p, on the crack
faces

Fig. 2.5 Perturbation theory approach predicts crack paths for weak deviations from straight
paths. A slightly curved crack with crack tips at x = −a and x = a has normal and shear tractions
pn,s and deviation λ(x)

When contributions to the Muskehishvili potentials [63] are kept to linear order in
the deflection of a crack from a straight path, λ(x), the perturbation theory approach
results in an expression for the stress intensity factors [62]:

KI − iKII = 1√
πa

∫ a

−a

(qI − iqII)

√
a + t

a − t
dt, (2.12)

with

qI = pn − 3

2
ωps + λp′

s + 2λ′ps (2.13)

qII = ps + λp′
s + 1

2
ωpn, (2.14)

where pn(x) and ps(x) denote the normal and shear tractions, primes denote
derivatives, and ω = λ′(a) is the slope of the crack at the tip. Note that Eq. 2.12
reduces to Eq. 2.5 when the crack is straight. In the presence of curvature, we
compute the tractions from the curved sheet without a crack, as depicted in Fig. 2.4.
Extending this analysis to include higher order terms of the Williams expansion for
the stress provides an avenue for further investigation [64].
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In order to be analytically tractable, this approach assumes the interaction of
the crack with the boundary of the sample is negligible. We thus perform the
perturbation theory approach for constant stress boundary conditions, fixing the
radial stress at the boundary σρρ(ρ = R) = 0, as shown in Fig. 2.3h. These
paths closely match simulations using constant stress boundary conditions, with the
same geometry and sample size as the experiments and simulations in Fig. 2.3a–d.
Extension of this approach to constant displacement boundary conditions, such as
those done in our experiments, would in general require a numerical procedure, such
as the boundary collocation method [65], to capture the interaction of the crack with
the boundary. Nevertheless, as the sample size increases with respect to the crack
length, the resulting crack paths approach the analytic prediction, as shown for a
Gaussian bump surface in Fig. 2.6.

2.3.2 Phase-Field Model on Curved Surfaces

For modest sample sizes with constant displacement boundary loading, a numerical
approach is required because of the interaction between the crack and the boundary.
To predict the curved fracture trajectories, we adapt the KKL phase-field model [66,
67] to include curvature by incorporating the height profile of the substrate into
the two-dimensional strain field [68]. This numerical model treats local material
damage as a scalar field that evolves if there is both sufficient elastic energy density
and a local gradient in the field. As depicted in Fig. 2.3c and d, these conditions are
met at the tip of a propagating crack. This model captures the full crack paths, as
shown by the black curves overlying experimental results in Fig. 2.3e, f.

By modulating the usual linear elastic strain energy density by a function of the
phase, we begin with the strain energy density

Es = g(φ)

(
1

2
σij εij

)
, (2.15)

where g(φ) describes the softening from material to vacuum. We choose the form
of g(φ) to be g(φ) = 4φ3 − 3φ4, a choice consistent with [66, 69]. Note that the
strain energy density recovers its usual form in intact (φ = 1) regions and vanishes
in broken (φ = 0) regions. Given the total energy,

∫ EdA, the Euler-Lagrange
equations provide the governing force-balance equations for the displacements,
u(x, y) [70]:

0 = ∂α

[
g(φ)σαβ

]
, (2.16)

where

σαβ = Eν

1 − ν2 εγ γ δαβ + E

1 + ν
εαβ (2.17)
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Fig. 2.6 As the size of a sheet increases with respect to the crack length, the resulting crack paths
approach the analytic prediction. Contant displacement simulations performed here all have the
boundary displacement chosen to induce an initial boundary stress of σρρ(ρ = R) = 0.02Y before
the initial slit is introduced. The dashed black circles in the center of each sample denotes the width
x0 of the bump. Samples have diameters of 144ξ , 96ξ , and 48ξ (14.1x0, 9.4x0, 4.7x0) for panels
(a), (b), and (c), respectively, where ξ = √

κ/2ec is the length scale associated with the process
zone

is the local stress tensor for plane stress conditions. As for the evolution of the phase,
φ(x, y), we use the form [70]

Eφ = κ

2
(∇φ)2 + g(φ)

(
eφ − ec

)
, (2.18)

yielding the evolution equation

χ−1 ∂φ

∂t
= min

(
κ∇2φ − g′(φ)(eφ − ec), 0

)
. (2.19)
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The Laplacian term penalizes gradients in the phase associated with the crack
faces, while the remaining terms favor successive damage in regions of high energy
density. Here, ec is a critical energy density at which it becomes favorable for φ

to decrease. Our definition of eφ in Eq. 2.19 breaks the symmetry of the standard
Ginzburg-Landau form used in [66] and elsewhere in two ways. First, as in [71],
we ensure that ∂tφ ≤ 0, such that the damage of the material cannot be healed over
time. Second, as in [69], we tune the energy density, eφ , such that the material does
not break as the result of compression. For our plane stress conditions, this takes
the form

eφ = a
E

4(1 − ν)
ε2
γ γ + E

2(1 + ν)

(
εαβ − δαβ

2
εγ γ

)2

(2.20)

where a = 1 in regions where εγ γ ≥ 0 and a ≤ 0 in regions where εγ γ < 0.
Constant displacement boundary conditions (ux , uy = fixed) hold for all time. An
initial φ(x, y) field is prescribed.

For a fixed curved surface defined by z = h(x, y), the strain tensor of a flat
material elastically confined to the surface encodes how infinitesimal distances
change in the deformed body with respect to the resting state of the solid (flat,
unstrained), and reads [72]

εαβ = 1

2

(
∂αuβ + ∂βuα + ∂αh∂βh

)
. (2.21)

We then use Eq. 2.21 in Eqs. 2.16 and 2.19, approximating the metric as being flat,
gαβ = δαβ .

We found that solving Eqs. 2.16 and 2.19 iteratively gave identical results to those
of a nonlinear mixed finite element approach for sufficiently small time steps. For
our iterative approach, we first write Eqs. 2.16 and 2.19 in finite difference form:

0 = ∇ · (g(φk)σk+1) (2.22)

(φk+1 − φk) = dt χ
[
κ∇2φk+1 − g′(φk)

(
(eφ)k+1 − ec

)]
. (2.23)

Choosing ∇2φk+1 on the right hand side of Eq. 2.23 corresponds to an implicit Euler
method. We write one step of this scheme in variational form and solve it using the
finite element method in FEniCS [73].

While the first results from these simulations give good agreement with exper-
iments, a systematic deviation in the extensions of the crack tips further from the
bump is evident in Fig. 2.3e. In the experiments, the tip closer to the bump begins
its advance first, and the dynamics of the tip are not purely quasistatic. In the
phase-field simulation, simply suppressing the tip further from the bump for a short
time until the near tip has reached a distance matching experiment eliminates this
deviation, as shown in the inset of Fig.2.3e.
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Fig. 2.7 Curvature arrests a
center crack. (a) As the
aspect ratio of the bump
increases while the initial
stress at the boundary
(σρρ(R) = 0.068 Y ) remains
fixed, the final crack length
decreases. (b) Simulations
reveal that as the aspect ratio
of the bump increases, the
intensity of stress
concentration falls below the
critical value at progressively
shorter crack lengths. Inset:
Final crack lengths from
spring-lattice (squares) and
phase-field simulations
(triangles) mimic the arrest
behavior seen in experiment
(colored circles with error
bars marking one standard
deviation). The solid line is a
guide to the eye

2.4 Crack Arrest

Having seen how curvature affects the initiation and propagation of cracks, we now
turn our attention to the ability of curvature to arrest cracks. As seen previously
in Fig. 2.3, curved cracks can terminate before reaching the sample boundary. We
find, moreover, that curvature can arrest cracks even for cases in which the path is
undeflected, as shown in Fig. 2.7. In flat sheets, center cracks propagate all the way
to the boundary, but if we introduce a bump while holding the initial stress at the
boundary fixed, the final crack length decreases.

From the decaying isotropic stress profile, we can infer that curvature generates
azimuthal compression, halting the crack’s advance. Using our phase-field model,
we indeed find that increasing the aspect ratio of the bump lowers the intensity of
stress concentration for larger crack lengths (Fig. 2.7b). A fully 3D spring network
simulation using finite element methods provides additional confirmation (open
squares in Fig. 2.7b). Thus, curvature decreases the final crack length, despite
promoting crack initiation on top of the bump.

2.5 Controlling Cracks with More Complex Surfaces

Curvature’s influence on the propagation of cracks that we have investigated on
the bump is not peculiar to that surface. As shown in Fig. 2.8, we demonstrate
this generality by testing a number of additional surfaces, including spherical caps
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Fig. 2.8 Tuning crack paths with the curvature landscape. (a) Inverting the sign of the curvature
(red for positive, blue for negative) inverts the behavior of the crack, as shown by the contrasting
crack paths on a L = 12 cm spherical cap (top, G = 1/L2) and on a L =15 cm pseudospherical
saddle (bottom, G = −1/L2). Seed crack locations are marked in green. (b) On spherical
caps, cones, and bumps, the positive integrated curvature from the center to the crack’s position
directs cracks towards the azimuthal direction, while the negative curvature saddle inverts this
behavior. (c–d) Further phase-field simulations demonstrate that curvature can protect a region of
a material conformed to a bump ((c) here under 3% biaxial displacement) or induce desired crack
paths ((d) here shown under 1.5% uniaxial displacement). Final crack paths (black) for various
initial slits (green) are overlaid to demonstrate that the bumps’ central regions are protected. The
results demonstrate that merely the addition of simple bumps offer a wide range of control, in
experimentally realizable conformations

(uniform G > 0), cones (G = G0 δ(x)), and pseudospherical saddles (uniform
G < 0). A region of positive curvature, such as the tip of a cone, locally stimulates
crack growth near the region, but also guides cracks around that region. Conversely,
negative curvature of a saddle suppresses crack growth and orients cracks away
from the center (see Fig. 2.8). Thus an opposite curvature source induces an opposite
response, allowing the behavior of cracks to be tuned by engineering the curvature
landscape.

In Fig. 2.8c, d, we demonstrate the robustness of curvature’s effects by consid-
ering samples without azimuthal symmetry using the phase-field model. Here, we
use a bump to protect a central region from incoming cracks of various orientations,
to produce oscillating cracks, and to focus and diverge possible crack paths. For the
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geometries of Fig. 2.8d, a somewhat reduced critical stress intensity factor compared
to our experimental material prevents crack arrest. Though the stress is highest on
top of a bump, these regions are protected from approaching cracks.

2.6 Conclusion

The use of substrate curvature to control fracture morphology differs from using
existing cracks or inclusions in that our method requires no introduction of pre-
existing structure into the fracturing sheets [64, 74]. For brittle sheets with isotropic
elasticity, curvature-induced stresses are independent of material parameters and
only dependent on geometry. Therefore, our results represent the effects of substrate
curvature on fracture morphology for a wide range of materials, with potential
implications for thin films, monolayers [54, 75], geological strata such as near salt
diapirs [55, 76], and stretchable electronics [77]. Since the results are based on the
modulations of the material’s metric, they should also apply beyond conformed
sheets, with metrics engineered by other methods, such as, temperature gradients
[78] or differential swelling [79].



Chapter 3
Conforming Nanoparticle Sheets
to Surfaces with Gaussian Curvature

Nanoparticle monolayer sheets are ultrathin inorganic-organic hybrid materials
that combine highly controllable optical and electrical properties with mechanical
flexibility and remarkable strength. Like other thin sheets, their low bending rigidity
allows them to easily roll into or conform to cylindrical geometries. Nanoparticle
monolayers not only can bend, but also cope with strain through local particle
rearrangement and plastic deformation. This means that, unlike thin sheets such
as paper or graphene, nanoparticle sheets can much more easily conform to
surfaces with complex topography characterized by non-zero Gaussian curvature,
like spherical caps or saddles. Here, we investigate the limits of nanoparticle
monolayers’ ability to conform to substrates with Gaussian curvature by stamping
nanoparticle sheets onto lattices of larger polystyrene spheres. Tuning the local
Gaussian curvature by increasing the size of the substrate spheres, we find that
the stamped sheet morphology evolves through three characteristic stages: from
full substrate coverage, where the sheet extends over the interstices in the lattice,
to coverage in the form of caps that conform tightly to the top portion of each
sphere and fracture at larger polar angles, to caps that exhibit radial folds. Through
analysis of the nanoparticle positions, obtained from scanning electron micrographs,
we extract the local strain tensor and track the onset of strain-induced dislocations
in the particle arrangement. By considering the interplay of energies for elastic
and plastic deformations and adhesion, we construct arguments that capture the
observed changes in sheet morphology as Gaussian curvature is tuned over two
orders of magnitude. This chapter is adapted from [44] with permission from The
Royal Society of Chemistry.
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3.1 Gaussian Curvature and Nanoparticle Sheets

While any flat thin sheet can easily be rolled into a cylinder, common experience
suggests that conforming the same sheet to a sphere is considerably more difficult.
In order to accommodate the curvature of the sphere, one must fold, cut, or
stretch the sheet. On surfaces with Gaussian curvature—that is, curvature in two
independent directions, such as on a sphere or saddle—triangles no longer have
interior angles which sum to 180◦. Conforming a flat sheet tightly to such a surface
thus necessarily introduces stresses from stretching or compression. If the stresses
build up, the material may respond by delaminating or forming cracks, dislocations,
or folds [14, 43, 50]. For applications where initially flat sheets are to conform to
arbitrary surface topographies, the ability to cope with Gaussian curvature therefore
translates into the ability to bend and deform locally in-plane.

Relatively stiff materials such as paper or graphene have difficulty coping with
these stresses, and therefore rip or fold instead of conforming to surfaces with
Gaussian curvature. Studies of softer elastic sheets, on the other hand, have led to the
understanding of curvature as a tool for patterning defects [9, 10, 14], cracks [43],
folds [80, 81], wrinkles [81, 82], blisters [50], and even controlling phase transitions
to and from the solid state [12, 13]. In this article, we extend these efforts by
focusing on a particular material: close-packed nanoparticle monolayers. These
hybrid organic-inorganic materials combine remarkably high Young’s modulus
(several GPa) with the ability to deform and rearrange locally in a plastic manner.
Furthermore, their versatility has given rise to prospective applications in filters [83],
solar cells [84], sensors [85–87], batteries [88], and beyond due to their optical [89],
electrical [90, 91], and chemical properties [92].

In nanoparticle monolayers, individual metallic or semiconducting particle cores
are embedded in a matrix of interpenetrating ligand molecules that are bound to
each core [93, 94], with the organic matrix largely determining the sheet’s bulk
mechanical properties. While these properties have been studied for sheets in
planar geometries [95–97] and for cylindrical, scroll-like structures [98], the ability
of flat sheets to conform to surfaces with Gaussian curvature has received little
attention [54]. Here, we investigate this by stamping monolayers of dodecanethiol-
ligated gold nanoparticles onto surfaces formed by lattices of larger polystyrene
(PS) spheres.

The situation we address begins with pre-assembled flat sheets that deform as
they are stamped against a highly curved surface, as illustrated in Fig. 3.1. For
nanometer-thin sheets, van der Waals forces generate adhesion that effectively
immobilizes the nanoparticles as they come into contact with the substrate. Further-
more, in contrast to continuum elastic sheets, the discrete nanoparticle lattice allows
for the formation and proliferation of defects in addition to straining, folding, and
fracturing during the conformation process.

The effect of strong pinning to the substrate results in strikingly different
behavior from that of equilibrium arrangements of interacting Brownian particles on
spheres [10, 13], frustrated equilibrium conformations of macroscopic, continuum
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Fig. 3.1 Nanoparticle sheets conform to highly curved surfaces. In the situation under study, a
preformed nanoparticle monolayer is pressed against a substrate comprised of a lattice of larger
spheres. As the sheet is stamped, the nanoparticles become pinned to the substrate spheres. The
three snapshots (top) are from a simulation of an elastic network. As the thin sheet conforms to the
substrate while experiencing pinning forces, stresses result in broken bonds between nanoparticles

increasing sphere size

D = 100 nm D = 210 nm D = 560 nm D = 1.9 m

200 nm 200 nm 200 nm 2.0 m

a b c d

Fig. 3.2 Sphere size controls the morphology of stamped nanoparticle sheets. (a) At small sphere
diameter D, the monolayer sheet is able to cover the polystyrene sphere array completely, but does
not fully conform to each sphere. (b–c) As D increases, the sheets tightly conform to the upper
portions of the spheres. However, they no longer bridge the crevices between spheres and instead
form azimuthal cracks. (d) At even larger D, sheets buckle out of plane, creating radial folds

elastic sheets [43, 50], or non-equilibrium growth of colloidal crystals on spherical
interfaces [12]. Because the pinned sheet cannot relax to minimize free energy, the
effects of geometric frustration build up according to history-dependent, sequential
rules. This sequential adhesion gives rise to qualitatively different stress fields in the
sheet and suppresses wrinkling before the appearance of sharp folds.

Depending on the Gaussian curvature, G, of the corrugated substrate, which we
control by the PS sphere diameter D via G = 4/D2, we find three characteristic
stamped-sheet morphologies. As seen in Fig. 3.2, increasing D leads from sheets
that entirely cover the corrugated substrate to sheets that have fractured into caps
closely conforming to the top portions of the PS spheres. Finally, the largest PS
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spheres yield caps exhibiting radial folds similar to those seen in macroscopic,
continuum sheets [82]. We show that these curvature-dependent morphologies
emerge from the interplay between strong pinning to the substrate, elastic energies,
and costs for defect formation. This allows us to generate predictions for the
conditions required to obtain full coverage and for the limits to which nanoparticle
sheets can conform tightly to arbitrarily curved surfaces.

In what follows, we first describe the experiments and resulting sheet morpholo-
gies. We then provide energy scaling arguments that rationalize the crossovers
between stamped sheet morphologies as a function of D or G. In subsequent
sections, we examine each regime in turn and find that detailed measurements
corroborate the overall scaling picture. We directly measure the local strain within
the stamped sheets and compare them to simulations of two-dimensional spring
networks made to conform to sphere lattices. From these measurements and
simulations, we determine the onset of finite size effects due to the discrete nature of
the nanoparticles. This analysis provides a correction to the overall scaling picture
for small PS sphere sizes and allows us to predict the maximum polar angle up
to which the sheet can tightly conform to individual PS spheres without material
failure.

3.2 Experimental Procedure

Dodecanethiol-ligated gold nanoparticles were synthesized via a digestive ripening
method followed by extensive washing with ethanol and finally dissolution in
toluene [99]. This process yielded nanoparticles with diameter 5.2 ± 0.3 nm and
ligand lengths 1.7 ± 0.3 nm. Nanoparticle monolayers were self-assembled at the
surface of a water droplet. After depositing a drop (∼150µL) of deionized water
onto the hydrophobic surface of a piece of polytetrafluoroethylene (PTFE), 5–7µL
of the nanoparticle-toluene solution were pipetted around the drop perimeter. The
solution climbed to the top of the droplet almost immediately, and, as the toluene
evaporated, the nanoparticles self-assembled into a close-packed monolayer with a
lattice spacing of 7.2±0.8 nm (Fig. 3.3a–d). Waiting several hours allowed some of
the water to evaporate as well. Given the strong pinning of the drop’s contact line to
the substrate, this evaporation changed the droplet shape from a spherical cap to a
flattened dome (not shown in Fig. 3.3b).

At this stage, a silicon chip coated with a lattice of polystyrene (PS) spheres
was gently pressed against the assembled monolayer and peeled away (Fig. 3.3e, f).
These PS sphere lattices were created by diluting solutions of PS spheres (Bangs
Laboratories) by a factor of 100 using deionized water, then depositing 5–7µL
of the diluted solution onto 25 mm2 silicon chips and allowing them to dry. Our
experiments used sphere diameters ranging from 100 nm to 1.9µm. Variations in
PS sphere sizes increased with their diameters, ranging from a standard deviation of
2% for 100 nm spheres to 12% for 800 nm spheres, while the 1.9µm spheres had a
standard deviation of 20%. Because the nanoparticle monolayers readily adhere to
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Fig. 3.3 Schematic of the
experimental procedure for
conforming self-assembled
gold nanoparticle monolayer
sheets to a lattice of
polystyrene spheres. (a–b)
Drying-mediated assembly of
a nanoparticle monolayer at
the surface of a water droplet.
(c–d) Close-up illustrating
the self-assembly of the
monolayer at the water-air
interface. (e–f) Stamping a
lattice of larger polystyrene
(PS) spheres onto the
nanoparticle monolayer and
peeling it away from the
water droplet

the PS spheres, the layers delaminate from the water and transfer to the PS spheres,
as when inking a stamp. These ‘stamped’ monolayers were then imaged using a Carl
Zeiss Merlin scanning electron microscope (SEM).

3.3 Monolayer Morphology: Coverage, Cracks, and Folds

SEM imaging revealed that the nanoparticle sheets reproducibly retain their mono-
layer structure as they are transferred onto the substrate of PS spheres. The sheet
morphology, however, varies with the size of the PS spheres used. For PS diameters
D ≈ 100 nm, monolayers typically cover the substrate without cracks or folds
(Fig. 3.2a). For these small D, the monolayers do not enter deeply into the crevices
between spheres, instead getting pinned at the apex of each PS sphere and bridging
the crevices as freestanding membranes.

Once D becomes larger, the stamped sheets are able to follow the substrate
surface topography more closely, creating snugly fitting caps. Remarkably, the
sheets conform tightly to the PS spheres up to polar angles of 20–30◦ (measured
from the apex of each sphere) without buckling, wrinkling, or creating folds. This
already indicates behavior quite distinct from that of other thin sheets, such as paper,
mylar, polystyrene, or graphene, which invariably generate folds or rip [50, 80, 100–
102].
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At larger polar angles, azimuthally oriented cracks appear, which hint at large
radial stress as the sheets conform to the PS spheres during the stamping process.
These cracks prevent the sheets from bridging the gap between neighboring spheres
(Fig. 3.2b, c). For sphere diameters larger than roughly 1 μm, not only do the
sheets tear azimuthally to form caps on each sphere, but also they form localized
radial folds to accommodate the mismatch between flat and spherical metrics
(Fig. 3.2d).

The azimuthal cracks in Fig. 3.2b, c and the radial folding lines in Fig. 3.2d
form during the stamping process, in which the monolayers are deformed under
vertical pressure to conform against the non-Gaussian topography, as sketched
in Fig. 3.1. Once the nanoparticles are in contact with the polystyrene surface, the
adhesion immobilizes these local deformations. For D around 200 nm, portions
of the monolayer that did not adhere to PS spheres tend to tear in the interstices
between polystyrene spheres. For larger D, the azimuthal fractures become more
pronounced, allowing the interstitial portions of the sheet to recede further down
(Fig. 3.2c). For the largest sphere sizes (D ≥ 690 nm), the non-adhering portions
may be swept away as the water dewets the chip while it is being pulled off the
droplet at the end of the stamping process (Fig. 3.2d).

3.4 Energy Scaling

In this section, we provide a self-consistent rationalization for the observed changes
from incomplete adhesion to plastic deformation to folding, using scaling arguments
for continuum sheets. In subsequent sections, we examine each regime in turn and
find that detailed measurements corroborate the overall scaling picture presented
here, while also providing corrections due to the discrete lattice structure of our
sheets.

A simple geometric insight underpins the trend in behavior seen in Fig. 3.2. On
a flat sheet, the circumference of a circle grows in proportion to its radius, r . On
a sphere, however, the circumference of a circle at the same distance r from the
sphere’s apex grows more slowly due to the Gaussian curvature. In other words,
when a flat disc of given r is made to conform to the surface of a sphere, it must
deform to compensate for the deficit in circumference. The sheet must therefore
not only bend, but also strain elastically in the form of radial expansion, azimuthal
compression, or some combination of the two.

If the sheets furthermore become pinned to the PS spheres during the stamping
process, the nanoparticles attach sequentially one annulus at a time, starting from
each sphere’s apex (Fig. 3.4a). As successive annuli conform to the substrate, the
cost of elastic energy may exceed the energetic costs associated with delaminating,
forming defects, ripping apart, or folding. To understand the competing energy
scales, consider an annulus of nanoparticle sheet with radial width δr that has
been conformed onto a PS sphere of diameter D to sit at polar angle θ . Such
an annulus has an area πDδr sin θ (to zeroth order in strain). Conforming this
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Fig. 3.4 Energy scaling captures changes in sheet morphology. The interplay of different energy
costs provides crossovers from fully covered PS lattices (incomplete adhesion, green region), to
plastic deformation (red region), to the formation of localized folds (blue region). Each energy is
for a nanoparticle annulus of radial width δr—with stiffness Y and bending modulus B—and a
PS sphere of diameter D. The energy cost of not adhering to the PS substrate, Eγ , grows with the
area of the annulus, πD sin θδr , and depends on the adhesion energy, γ . Similarly, the stretching
energy, Es , and the energy of plastically deforming the annulus by dislocation proliferation, Ed ,
likewise grow with the area of the annulus. The stretching energy also depends strongly on the
polar angle, θ , through the strain εij = εij (θ) as Es ∼ YDδrθ4 sin θ , depicted by the offset
between colored dashed blue, gray, and orange lines. The plastic deformation energy, Ed , has
a minimum set by the energy of unbinding a pair of dislocations, Edisloc, and the factor � is a
phenomenological constant characterizing the work necessary to plastically deform a unit area of
the sheet. The energy of creating a localized fold, Ef , is set by the energy to crease the sheet. The
fold energy per unit length of the fold, ef , depends on the fold angle and microscopic details of
the lattice

annulus to the sphere requires energies due to bending and stretching, and these
conformational energy costs compete with alternative behaviors, such as remain-
ing free-standing instead of conforming, plastically deforming and fracturing, or
folding.
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3.4.1 Energy Costs to Conform: Bending and Stretching

First, conformation of the annulus requires areal bending energy density Eb ∼
B/D2, where B is the sheet’s 2D bending modulus. The total bending energy
in the annulus then becomes Eb ∼ (B/D)δr sin θ . Here we are neglecting
small corrections to this approximation of order O(θ2). Thus, the cost of bending
decreases as D grows, as shown by the downward dashed line in the left portion
of Fig. 3.4b.

Second, the sheet must also stretch to conform to a sphere. The total stretching
energy, Es , stored in the annulus is proportional to its surface area and the stretching
energy density. This stretching energy density, Es , is a quartic function of polar angle
on the sphere, Es ∼ Yθ4, as shown in Appendix B. Here, Y is the stiffness of the
sheet. Therefore, the cost of stretching increases linearly with D, but the magnitude
depends sensitively on the polar angle: Es ∼ YDδr θ4 sin θ . While Fig. 3.4b omits
linear and sublinear dependence on θ for clarity, this strong dependence of Es on
polar angle is shown by the rising dashed lines. The changing colors (blue, gray,
orange) denotes that, for a given sphere size D, the stretching energy in an annulus
grows rapidly with polar angle.

We emphasize that the stretching energy scaling in our sheets strongly contrasts
from the well-studied case of equilibrated sheets conformed to a sphere, in which
the energy density decreases quadratically with polar angle, θ , for small θ . This
difference highlights the distinct character of sequential adhesion to a substrate seen
in our system.

3.4.2 Alternatives to Elastic Conformation: Avoiding Adhesion,
Plastic Deformation, and Folding

These elastic energies compete with the possibility of adopting alternative behav-
iors. Instead of elastically bending and stretching to conform, the sheet may only
partially conform to the sphere, or it may plastically deform, rip apart, or form folds.

While stretching and bending cost energy, the adhesion process can relieve
energy as well, since it replaces two interfaces (nanoparticle-air and air-PS) with
a single one (nanoparticle-PS). This replacement relieves energy in proportion to
the area of adhered material, so there is a fixed areal energy density Eγ relieved by
adhering to the PS sphere. For the annulus, this translates into a total cost of not
adhering to the substrate, Eγ ∼ γDδr sin θ , that increases linearly with D. Here, γ

is the areal surface energy density relieved by adhering a nanoparticle sheet to the
PS substrate.

While the stretching energy scales as Es ∼ D sin θδr θ4, the energy cost Ed

of relieving stress through plastic deformation of the annulus scales similarly with
sphere diameter, but has a far weaker scaling in θ : Ed ∼ max(Edisloc, �Dδr sin θ),
where Edisloc is the energy of unbinding a single pair of dislocations and � is a



3.4 Energy Scaling 39

phenomenological factor capturing the work required to damage a unit area of the
material. The minimum possible energy to create the first defect pair, Edisloc, sets
the lower cutoff that freezes out defect proliferation at small D. Edisloc is determined
by the core energy of a dislocation and the elastic cost of deforming the portion of
sheet surrounding the dislocations, which depends on microscopic features of the
lattice. Finally, the energy cost for creating a fold in the sheet, Ef , increases only
with the fold length (Ef ∼ ef δr , where ef is the fold energy per unit length) and
thus is independent of D.

3.4.3 Three Regimes Arise from Energy Scaling

Figure 3.4b represents these energy scaling relations schematically. Throughout this
figure, linear and sub-linear dependences on the polar angle θ are suppressed for
clarity. In particular, the adhesion and bending energies grow as sin θ , and we
omit this dependence. Conversely, we do include the strong θ dependence of the
stretching energy, and illustrate this strong dependence by the colored dashed lines.

From this scaling we infer that for sufficiently small sphere sizes (or, equiva-
lently, large Gaussian curvature), the lowest cost will be incurred by incomplete
adhesion, as this causes the least distortion in the flat sheet. The green region
in Fig. 3.4b represents this regime, which corresponds to the experimental results
in Fig. 3.2a.

For larger sphere sizes, bending becomes energetically cheaper than not adher-
ing. However, in order to conform tightly to the sphere, the monolayer needs to
not only bend, but also stretch or compress. For annuli at small polar angles θ ,
this elastic energy cost can be negligible, but as θ grows for a given D, the cost
will eventually exceed the penalty for creating defects. As a result, beyond some
critical polar angle θc, plastic deformation in the sheet will cause a proliferation of
dislocations. We expect that the formation of cracks follows as a result of this defect
formation, along with the tension that remains while defects are formed. Since the
in-plane stretching is tensile along the radial direction, as we will see, cracks open up
along the azimuth, perpendicular to the radial tension. This regime is represented by
the red region in Fig. 3.4b and corresponds to the experimental results in Fig. 3.2b, c.

For the largest PS sphere sizes, yet another crossover occurs due to the difference
in scaling between the costs for either elastic stretching or plastic deformation,
which increase linearly in D, and the costs of forming localized folds, which is
independent of D. This is the regime shown in blue in Fig. 3.4b, corresponding
to Fig. 3.2d. Because the energy cost for fold formation lies below that of plastic
deformation in the blue regime, the first response as strains build up will be to form
folds rather than the proliferation of dislocations.

This energy scaling captures all three regimes of stamped nanoparticle sheet
morphology seen in Fig. 3.2. We note that this framework operates in the continuum
limit. Additionally, our picture assumes that chemical properties of the polystyrene
do not vary with PS sphere size, an effect that could alter the adhesion energy
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in Fig. 3.4b. Nevertheless, the essential features are supported by quantitative
comparisons with experiments and simulations given in the following sections.

In the remaining sections, we discuss in more detail each of the mechanical
responses of the flat sheets to the enforced geometric mismatch: bending, stretching,
dislocation proliferation, crack formation, and folding.

3.5 Bending and Adhesion

The crossover from incomplete adhesion to full adhesion with plastic deformation
occurs in our experiments for PS spheres with diameters D ≈ 200 nm. This
crossover enables an estimate of the bending rigidity in nanoparticle membranes.

The two-dimensional bending energy density of a thin plate in plane stress is [72]

EB = B

2
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∂x2

∂2h

∂y2

}]
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where h(x, y) is the out-of-plane displacement of the plate and B is the bending
modulus. Since we are interested in the behavior near the apex of a sphere, we
Taylor expand around θ = 0 to obtain

EB = B

R2

[
(ν + 1) + 2(ν + 1)θ2 + O

(
θ4
) ]

(3.2)

≈ 4B(ν + 1)

D2 , (3.3)

where in the second line we dropped corrections to the bending energy that scale
quadratically with the polar angle, θ . We take the Poisson ratio to be ν = 1/3,
the value for a triangular lattice of spring-coupled nodes, in accordance with the
measured value for nanoparticle sheets [103]. We take an average radius of curvature
of D/2 ≈ 100 nm for the crossover.

At the small-sphere crossover between incomplete adhesion and plastic behavior,
we should expect the bending energy to match the adhesion of the nanoparticle sheet
with polystyrene. Using the result of Ref. [104], we estimate the adhesion energy
from the surface tensions of dodecane (21 mN/m) and water (72 mN/m), the surface
energy of solid polystyrene (∼42 mN/m) [105], and the molar volumes of each. The
result is an adhesion energy of γPS +γdodecane −γPS,dodecane ≈ 60 mN/m. We expect
that the bending energy, EB , matches this value at the crossover. This gives a bending
modulus for the nanoparticle sheets of B ≈ 4.5 × 10−16 Nm.

From this we may deduce a lower bound on the effective thickness teff of the
sheet, which can deviate from the physical thickness due to the non-continuum
nature of the material [98]. The bending modulus is related to teff via B =
Y t2

eff/12(1 − ν2). Here the 2D stiffness Y = Et is the product of Young’s modulus
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E and physical thickness t . If we assume E ∼ 3 GPa, as is appropriate for fully
dried monolayers [95, 106], we obtain teff ≈ 14 nm, about 60% larger than the
physical thickness of t ≈ (dAu NP + 2 × �ligand) nm = 8.2 nm. However, we expect
that during the stamping process there is residual water embedded in the ligand
matrix. The presence of water molecules in the matrix has been shown to drastically
affect the elastic properties, reducing elastic moduli by potentially several orders of
magnitude [107, 108]. Such decrease in E then implies an increase in teff, possibly
up to around 10t as observed for dried monolayers [98].

The crossover from incomplete adhesion on small spheres to tightly conforming
to larger spheres is reminiscent of the crossover in a thin sheet’s ‘bendability’, which
is the ratio of tensile to bending forces, T W 2/B, where T is the tension at the edge
of a sheet of width W due to in-plane stretching or interfacial forces [82]. If we
consider the case where W ∼ D, so that the sheet covers the same proportion of the
sphere for different sphere sizes, then as the PS sphere size increases, so too does the
bendability of the sheet. Our system differs from these recent studies of comparably
stiff sheets, however, because of the strong pinning of the nanoparticle sheet to the
substrate. The apparent force imbalance in the stretching of the sheet measured
in simulations shows that adhesion enables a disproportionate increase in radial
tension, at a rate faster than long-range elasticity would allow. Specifically, adhesion
supplies a tension which offsets the imbalance of in-plane stresses, ∂r(rσrr ) − σφφ .
While this quantity would vanish without pinning, here the stress imbalance grows
as θ2 for small to moderate polar angles.

3.6 Strain Analysis

During the stamping process, the first contact between the nanoparticle sheet and
a PS sphere occurs at the sphere’s apex, θ = 0, where the sheet will be pinned.
Subsequent annuli of the sheet will need to strain or undergo plastic deformation in
order to conform tightly to the surface of the PS sphere, but once this has occurred,
these annuli also will become pinned to the polystyrene. This means that we can
obtain information about the local strain by using the individual nanoparticles as
markers and extracting differences in their average spacing along a sphere’s surface.
Given the random disorder inherent already in the flat sheets, this procedure requires
ensemble averages over several different imaged PS spheres for statistically relevant
results.

3.6.1 Image Analysis

To study the strains and defect densities of nanoparticle sheets, we use a custom
image analysis routine on each SEM image to identify the nanoparticle locations
and to identify the nearest-neighbor connectivity of the nanoparticle lattice [109].
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Fig. 3.5 Identification of defects and extraction of the local strain tensor. (a) Nanoparticles are
identified in the original SEM image. (b) Using a Voronoi tessellation, we enumerate the neighbors
of each nanoparticle. For each nanoparticle with six neighbors, comparing the Voronoi cell to a
regular hexagon lying on the tangent plane of the sphere yields the strain tensor. To restrict the
analysis to elastic deformations, we omit particles whose Voronoi cell is deformed well beyond
the elastic limit of the material, keeping only hexagons whose perimeter to surface area ratio,
s ≡ P/

√
A, satisfies s < scutoff = 3.8. (c–d) The radial strain in the sheet, εrr , increases with

distance from the apex, while azimuthal strain, εφφ , does not

We bandpass each image in two steps: first convolving it with a Gaussian (whose
parameters include nanoparticle characteristics such as lattice spacing) and then
convolving the result with a boxcar function. Subtracting the two gives a high-pass-
filtered image from which we extract particle positions.

A Delaunay triangulation provides the lattice topology and the nearest neighbors
for each particle. Defects in the lattice are particles with fewer than six or greater
than six neighbors (disclinations), and pairs of oppositely signed disclinations form
dislocations (for example, a 5–7 disclination pair). Figure 3.5b shows an example
Voronoi tesselation of a triangulated nanoparticle sheet draped on a 690 nm diameter
PS sphere. The Delaunay triangulation also enables a direct measurement of the
local strain tensor, εij . For particles with exactly six neighbors, we measure the
displacements of its neighbors from a regular hexagon with bonds of unit length.
In this step, we account for the non-planar geometry of the substrate by computing
displacements only in the tangent plane to the underlying PS sphere. By comparing
each triad of the central particle and two adjacent neighbors to an undeformed
reference triangle, we obtain a strain tensor for that triad of nanoparticles. For
each particle that is not a defect, the average strain field of its six shared triangles
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Fig. 3.6 Strain analysis
shows qualitative agreement
between experiments and
simulations. Data from
nanoparticle sheets on 62
imaged PS spheres of
different diameters reveals
that the radial strain, εrr

increases with polar angle,
while the azimuthal strain,
εφφ , is compressive and
comparatively small. The
incompressible solution does
not fit as well to the data,
showing that nanoparticle
sheets behave elastically

θ

εφφ
εrr

represents a measure of local strain. This strain measurement is well-defined only
for particles that have six nearest neighbors—that is, those particles which do not
form topological defects in the lattice.

Identifying the center of the PS substrate spheres by fitting their profile to a
circle, we rotate the strain field εij into polar coordinates (εrr , εrφ, εφφ) and average
annular bins (i.e., bins of φi < φ < φi+1) to obtain curves for εrr (θ) and εφφ(θ)

as a function of polar angle on a sphere. Typical results are shown in Fig. 3.5c, d.
Figure 3.6 shows strain curves averaged over several spheres and images for each
sphere size. To further reduce noise from voids and defects, we also omit particles
whose Voronoi cells are deformed well beyond the elastic limit of the material.
Specifically, we enforce a cutoff in the shape parameter s, defined as the ratio of the
perimeter of the hexagon to the square root of its surface area, s ≡ P/

√
A. Here,

we use the cutoff s < scutoff = 3.8, which removes outliers subject to more than
17% pure shear.
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Figure 3.6 shows the average strain tensor components as a function of polar
angle for different sphere sizes. The analysis indicates that the sheet’s radial tension
grows substantially, while the strain along the azimuth of the PS sphere is weakly
compressive. The shear strain averages to zero, as predicted by the symmetry of
the spherical geometry, with variations in the measured mean shear of <1%. As
mentioned above, the nanoparticle sheets’ inherent disorder creates a distribution
of strain component values for each binned annulus. These distributions have a
standard deviation of ∼10% strain—significantly larger than the strains themselves
for all but the largest values of θ considered. By averaging the strains in annular bins
on each PS sphere and by performing ensemble averages over different spheres, the
disorder on the scale of individual nanoparticles is largely averaged out. As Fig. 3.6
shows, these ensemble-averaged data can show quantitative differences as the PS
sphere diameter D is varied. This likely is due to slight, unavoidable variations
in the sample preparation conditions. However, within this variability we find no
clearly discernible trends as a function of D. Considered in aggregate, these data
can therefore be used for qualitative comparison with models, as we discuss next.

3.6.2 Spring Network Simulations

To gain insight into the elastic behavior during the stamping process, we model
the nanoparticle sheet as a flat, triangular spring network. Simulations of such
networks pinned to a lattice of spheres reproduce the trends in strain observed in
the experiments (Fig. 3.6).

The simulations proceed by minimizing the free energy of a triangular spring
network at each time step using a conjugate gradient method as we deposit the
network onto a lattice of spheres. Whenever a node of the spring network makes
contact with a substrate sphere, we irreversibly pin that node to the point of contact
for the remainder of the simulation. Increasing the radii of the substrate spheres
with respect to the bond length by a factor of two (and, proportionately, scaling
the number of nanoparticles by a factor of four) gave virtually identical results
for the strain plots given in Figs. 3.6 and 3.7, indicating that the simulations are
representative of the continuum limit. Study of the finite size scaling shows that the
strain curves deviate significantly from the continuum limit only for substrate sphere
sizes below D � 10a, where a is the lattice spacing.

In the simulations, a sheet began at a distance R = D/2 above the plane
containing the centers of the substrate spheres, each of diameter D. The network
was then lowered in small increments (0.001D) and the free energy was minimized
for that configuration, subject to the constraint that all particles (nodes of the spring
network) must lie in the common membrane plane or on a sphere, whichever is
higher in the z dimension. For each step, a sequence of random kicks were applied
to each node to escape local minima in the energy landscape. At the end of the
relaxation process, nodes in contact with a substrate sphere—that is, within a small



Fig. 3.7 Simulations of spring networks with bond breaking reproduce behavior seen in experi-
ment. Spring networks were made to conform to a lattice of spheres, as in Fig. 3.1. Bonds with
≥3% strain are removed at each time step, mimicking bond breakage. (a–c) As a flat, triangular
spring network is pressed against an array of spheres, each node is immobilized upon contact with
a substrate sphere. As the network conforms, strains build up, leading to bond breaking for polar
angles larger than θ ∼ 23◦. Particles with severed bonds are colored white at their centers in the
strain images. (d–f) Layers of bonds continue to adhere to the substrate with many radial bonds
broken. (g) Though the actual strains in the network’s springs do not exceed 3%, the apparent strain
inferred from the placement of nanoparticles continues to increase in the damaged annuli
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threshold of 10−5a, where a is the rest bond length (lattice spacing)—are marked
as immobilized for the remainder of the simulation.

As shown by the blue curves in Fig. 3.6, these simulations of perfectly elastic
triangular networks show similar behavior in both εrr and εφφ as a function of
polar angle on the underlying sphere. As the membrane begins to conform to the
sphere lattice, pinning ensures that the apex of the sphere experiences negligible
strain, as expected. The radial stress increases quadratically, while a compressive
azimuthal stress builds up more slowly. The deviation of εφφ between experiment
and simulation at large θ is due in part to the material failure and plastic deformation
of the actual sheets, which is suppressed in the simulations we show in Fig. 3.6.

We note that in experiment, the nanoparticle membrane may not be perfectly flat
in the interstices of the PS spheres, as the pressure of the water during stamping may
push the sheet into the interstices. Modifying the simulation geometry to enforce an
indentation of the sheet into the interstices of the PS lattice has only a weak effect
leading to somewhat elevated strains in the final, pinned state without changing the
qualitative strain behavior.

3.6.3 Comparison with Incompressible Solution

Considering the limit in which the nanoparticle sheet is incompressible allows for
a useful point of reference against which we can compare the iterative adhesion of
nanoparticle annuli. The strains required to conform to the substrate in this limit are
indicated by the green dashed line in Fig. 3.6. Namely,

εrr =
√

R2

(R2 − r2)
− 1, (3.4)

where R = D/2 is the radius of the PS sphere, while εφφ = 0 due to
incompressibility. All data, whether experimental or simulation-based, lie below this
solution for εrr . This clearly indicates compressible behavior of our nanoparticle
sheets.

3.6.4 Azimuthal Cracks in Simulations

The material cannot stretch elastically without bound: sufficiently large strains will
plastically deform the sheet, severing bonds between nanoparticles to form cracks
or dislocations. Indeed, the radial strains seen in Fig. 3.6 greatly exceed the critical
strain for failure in flat nanoparticle membranes [99]. While we will consider plastic
deformation in the next section, we note that introducing failure into the spring
network simulations generates qualitatively similar morphologies to those seen in
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experiment. Figure 3.7 demonstrates that introducing a nominal breaking strain of
3% leads to the formation of partially intact annuli separated by azimuthal cracks.
In Fig. 3.7g, we show both the strains of particles with all original bonds intact
(closed markers) as well as the ‘apparent’ strain (open markers) resulting from
triangulating the point pattern and including all particles with six nearest neighbors,
regardless of whether the bonds connecting them have severed. This gives strains
that remain qualitatively similar to those seen in experiment, with increased scatter
in the apparent strains frozen into the broken regions pinned to the substrate.

3.7 Plastic Deformation

Given that a flat nanoparticle lattice forms a close-packed array of hexagons, any
particles that do not have six nearest neighbors are defects. We record the location
of each defective particle and its number of nearest neighbors. Figure 3.5b shows the
Voronoi tessellation of one representative lattice overlaying the original SEM image.
Each yellow site corresponds to a nanoparticle having six nearest neighbors (i.e., a
hexagon), while defects are colored white, blue, green, and black for coordination
numbers of z = 4, 5, 7, and 8, respectively.

As the sheet begins to respond with plastic deformation, dislocations proliferate
in the material. The density of dislocations correspondingly increases with polar
angle on a sphere, as can be seen in Fig. 3.5b. We observe that azimuthal cracks
form only beyond the point of dislocation proliferation, which suggests that the
material yields plastically before cracks coalesce.

3.7.1 Formation of Dislocations

The scaling arguments presented in Fig. 3.4, which operate in the continuum
limit, predict that plastic deformation should be favorable at a critical angle
independent of sphere diameter D. In our experiments, however, we observe an
increase in the polar angle at which dislocations appear for the smallest PS sphere
sizes, shown in Fig. 3.8. This observation implies that the discrete structure of
the nanoparticle monolayers can be important in determining the details of their
mechanical behavior. The continuum limit description of Fig. 3.4 does not include
microscopic details, and therefore predicts a size-independent critical angle for the
onset of plasticity. If the discrete structure of the sheet comes into play, we expect a
correction to this picture to appear at small sphere sizes, where the lattice spacing is
a non-negligible fraction of the system size.

As expected, the most prominent types of strain-induced defects in the nanopar-
ticle arrangement are dislocations—i.e., pairs of Voronoi cells with 5 and 7 sides.
Figure 3.8a shows a representative measurement of the crossover from low to
high defect density as a function of polar angle, θ . These data were obtained
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Fig. 3.8 Strain-induced defects in the nanoparticle sheets reveal non-continuum behavior. (a)
The proliferation of defects results in increasing dislocation frequency (and correspondingly, to
a decreasing frequency of hexagons) as a function of polar angle, θ . An example of the angle-
dependence of defect densities is shown for nanoparticle sheets conformed to 250 nm PS spheres.
Here, a crossover appears near θc ∼ 24◦. (b) For small sphere diameters, the characteristic angle
for defect proliferation deviates from its continuum value, with smaller PS spheres triggering the
formation of defects at larger polar angles. An idealized prediction for the energy of a single defect
provides a rough estimate for the critical angle (blue curve with blue band denoting the uncertainty
from the spread in measurements of the defect density). Data for the smallest sphere diameters
included only sheets stamped on isolated spheres, not sheets which cover close-packed PS lattices

from ensemble averages over Voronoi tessellations such as that shown in Fig. 3.5b.
For each PS sphere diameter D, we identify a characteristic angle at which the
number of defects begins to grow significantly (black dashed line in Fig. 3.8a). This
analysis leads to the black data in Fig. 3.8b, which shows the characteristic angle
as a function of D. This angle approaches a constant value consistent with scale-
invariance in the continuum limit of large PS sphere sizes, where the nanoparticle
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lattice spacing becomes irrelevant. However, we observe an increase in the angle
for the smallest PS sphere sizes. This observed variation in the onset of dislocation
proliferation suggests that the discrete nature of the lattice becomes important for
small D.

If we approximate our sheet as a locally flat, two-dimensional lattice, each
dislocation pair costs an elastic energy [110]

Edisloc ≈ μa2

2π(1 − ν)
ln

(
�

a

)
, (3.5)

where Y is the sheet stiffness, ν is the Poisson ratio, � is the final distance
between the unbound dislocations, and a is the lattice spacing. We assume the
elastic core energy to be small compared to the elastic energy in the deformed
sheet, with the understanding that Eq. 3.5 represents a lower bound. Below, we
consider � ≈ 1/3

√
ρ, as illustrated in the inset of Fig. 3.8. Here, ρ is the density of

dislocations (so that ρ−1 approximates the area of a patch whose elastic deformation
is dominated by the dislocation’s presence). Note that we expect this elastic energy
to be felt predominantly in regions of the material which are not already pinned to
the underlying substrate.

In order to find a lower bound for the critical angle at which defects may
appear, we compare the dislocation unbinding energy (Eq. 3.5) with the stretching
energy for the sheet to conform to a sphere. Using the results from spring network
simulations, we equate the stretching energy available in an annulus of width chosen
to be δr = a with the unbinding energy of Eq. 3.5. This gives the blue solid line
in Fig. 3.8 for � = (3

√
ρ)−1, with the blue band denoting the range of results

given the standard deviation of measurements for ρ across sheets on all PS spheres
included in the analysis. As seen by the width of the blue band, the prediction is
moderately sensitive to the assumed distance that the unbound dislocation travel
apart in their creation. We measured the dislocation density, ρ, from the relative
frequency of dislocations at θ = 0 in experiments. Despite the approximate nature
of the derivation, the prediction lies within our experimental uncertainty for changes
in the choice of δr by up to a factor of three, and the agreement in the shape of θc(D)

is notable.

3.7.2 Formation of Azimuthal Cracks

Another response to the buildup of strain is to form cracks in a material. This
irreversible deformation relieves elastic energy by severing bonds between nanopar-
ticles. We find that, for PS sphere sizes above 210 nm, nanoparticle sheets generally
form azimuthal cracks such as those seen in Figs. 3.2c and 3.5.

From a geometric standpoint, projecting an annular strip of inner diameter πDθ0
from a flat disk onto a sphere of diameter D involves less azimuthal compression
if the annulus is placed at a polar angle θadhere > θ0. This fact is reflected in our
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experiments and simulations, with radial strain building up with increasing polar
angle. Once the radial strains are sufficient to rip apart bonds to form azimuthal
cracks, we expect that as the next portion of the membrane drapes onto the sphere,
it is energetically favorable to adhere to a location further down, at θadhere > θrip.
The result is a portion of uncovered PS sphere between θrip and θadhere, i.e., an
azimuthal crack imprinted on the spherical substrate.

3.8 Formation of Folds at Large Sphere Sizes

For the largest PS sphere sizes, the caps formed by the adhering nanoparticle sheets
are large enough that radially oriented folds can be observed (Fig. 3.2d). Such folds
provide an alternate mechanism to map circles in the plane to circles on a sphere
while minimizing radial tension and azimuthal compression. Localizing elastic
energy into folds relieves the stretching in intervening patches. At the same time,
because of the very high curvature in one dimension at the fold (which we expect
to be comparable to the inverse lattice constant, a−1), the energetic barrier to fold
formation is larger than the bending energy by a factor ∼ D2/a2, implying that the
cost of having a fold in an annulus of fixed width, δr , does not vary with sphere
diameter D. This means that, for sufficiently large D, where the elastic cost of
stretching grows higher and higher, fold formation is no longer frozen out (Fig. 3.4).

In previous studies of folding that subjected thin sheets to uniaxial compression
or out-of-plane deformation, folds often span the whole system [49, 111, 112],
though we note this is not always the case [113]. In our system, the fold terminus
occurs at a characteristic polar angle, and the amount of material stored in each fold
grows further from the apex of the sphere in order to accommodate the curvature
of the underlying substrate (Fig. 3.2d). This type of fold also appears in skirts and
other clothing, where it is called a ‘dart’.

While we robustly observe pronounced folds on large PS spheres, we find no
evidence for smaller-scale wrinkling in the sheets. This can be predicted from the
energy scaling (Fig. 3.4): the cost to delaminate from the PS surface exceeds both
folding and stretching energies (Eγ > Ef ,Es).

3.9 Conclusion

In this article, we focused on the ability of preassembled nanoparticle monolayer
sheets to conform to a substrate composed of a lattice of larger spheres. With its local
Gaussian curvature, G, which can be tuned by varying the sphere diameter, such a
substrate serves as a model for arbitrary surface topographies. In the presence of
strong pinning to the substrate, the area mismatch between flat (G = 0) and spheri-
cal (G > 0) geometries triggers a competition between different deformation modes
of the sheet, including delamination, bending, stretching, fracture, and folding.
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Treating the sheets as homogeneous continuum material leads to a scaling picture
which is consistent with the general trends of elastic deformation in our system.
For comparison with experiments, we extracted the local strain tensor components
from images of the sheets, where the nanoparticles served as distance markers.
While this analysis was consistent with our general scaling picture, the details of
plastic deformation are only captured if the discrete nature of the sheets is taken
into account, allowing changes in the number of nearest neighbors for individual
particles. By tracking the onset of strain-induced dislocations within the sheets, we
are able to explain deviations from the continuum predictions, which are found when
the sheets are conformed to substrates with small D, corresponding to regions of
large G.

The observed morphologies for the stamped sheets highlight the remarkable
ability of nanoparticle monolayers to cope with strain through a combination of
elastic and plastic deformations. This material contrasts with other thin sheets such
as paper, mylar, or graphene, which lack a similar mechanism for generating particle
dislocations. We note that if the material properties of our sheets were tuned by
changing the gold nanoparticle size, changing the ligand length, or functionalizing
the ligands, a different sequence of morphological regimes could emerge as the
substrate sphere size varies.

There is currently much interest in creating functional materials by stacking ultra-
thin, essentially 2D layers with different electronic or optical properties [114, 115].
So far, such stacking has been limited to flat substrates, where it is relatively easy
to obtain good interfaces between successively deposited layers. In this regard, the
ability of nanoparticle sheets to comply and conform opens up new possibilities
for creating stacked layers with well-controlled interfaces also on more complex
substrate topographies.



Part II
Topological Mechanics in Gyroscopic

Metamaterials



Chapter 4
Realization of a Topological Phase
Transition in a Gyroscopic Lattice

Topological metamaterials exhibit unusual behaviors at their boundaries, such as
unidirectional chiral waves, that are protected by a topological feature of their band
structure. The ability to tune such a material through a topological phase transition
in real time could enable the use of protected waves for information storage
and readout. Here we dynamically tune through a topological phase transition by
breaking inversion symmetry in a metamaterial composed of interacting gyroscopes.
Through the transition, we track the divergence of the edge modes’ localization
length and the change in Chern number characterizing the topology of the material’s
band structure. The work reported in this chapter provides a new axis with which to
tune the response of mechanical topological metamaterials.

4.1 Topological Phase Transitions

A central challenge in physics is understanding and controlling the transport of
energy and information. Topological materials have proven an exceptional tool for
this purpose, since topological excitations pass around impurities and defects and
are immune to back-scattering at sharp corners [18, 116]. Furthermore, topological
edge modes are robust against weak disorder, such as variations in the pinning
energy of each lattice site, in contrast to typical edge waves [16, 117]. This chapter
is adapted from [45] with permission.

Mechanical topological insulators represent a rapidly-growing class of materials
with topologically-nontrivial phononic band structure [18, 36]. A signature of topo-
logical protection is the existence of finite frequency waves around the perimeter
of such a material, in a direction determined by the band topology [16, 17, 47,
118, 119]. These edge waves are immune to scattering either into the bulk or in
the reverse direction along the edge. Since the physics of topological protection is
in many cases agnostic to whether the material is built from classical or quantum
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components, classical systems in which the individual components are readily
accessible offer an appealing arena in which to explore this physics. At the same
time, harnessing topological wave behavior for applications motivates real-time
control of chiral edge waves, including the ability to tune through a topological
phase transition, as has recently been accomplished in quantum materials [120, 121].
Here we present a method for reversibly passing through a topological phase
transition in a mechanical metamaterial, which allows us to tune chiral edge modes
on and off in real time and the see effects of the transition.

4.2 Experimental Setup

Our system consists of rapidly-spinning gyroscopes hanging from a plate (Fig. 4.1).
If displaced from equilibrium, a single gyroscope will precess: its tip moves in a
circular orbit about the equilibrium position as a result of the torques from gravity

motor

magnet

coil

spring 
suspension

1 cm

Fig. 4.1 Modulating the magnetic field at each lattice site tunes a metamaterial of gyroscopes
suspended from a plate. (a) A magnet embedded in each gyro provides an interaction with nearby
gyroscopes and with a current-carrying coil. (b) A honeycomb network of interacting gyroscopes
supports topologically-protected chiral edge waves. Overlaid circles depict the gyroscopes’
displacements, colored by the phase of the displacement with respect to the equilibrium positions
(see color wheel in the bottom right of panel (b)). (c) The magnetic field from a coil placed
below modulates the precession frequency at each site, raising (the orange circles) or lowering
the frequency (the blue squares) depending on the orientation of the current through the coil. (d)
Modulating the precession frequencies in an alternating pattern breaks inversion symmetry of the
lattice
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and the spring suspension. To induce repulsive interactions between gyroscopes, we
place a magnet in each gyroscope with the dipole moments aligned.

The experimental system differs from that presented in [17, 47] in three ways.
The coil beneath each gyroscope is the most important addition, as this drives the
transition to the trivial phase by introducing a magnetic field at each site, with
alternating field orientation. Secondly, the mass of each gyroscope is increased
to ∼25 g. The additional mass serves to stabilize the gyroscope position on sites
with repulsive magnetic field orientation, as these gyroscopes would otherwise
become highly canted for modest magnetic field strength. Lastly, the gyroscopes
are driven by a pulse-width-modulated signal, where the duty cycle of the pulse
width modulation (PWM) is controlled for each gyroscope individually.

As shown in Fig. 4.2, daisy-chained LED drivers (Texas Instruments TLC5940s)
facilitate the parallel PWM control. The drivers use four serial signals to control the

DB

VLED Vgyro

OC
TLC

TLC

motor

Vcoil

- + + -

-

+
- +

Fig. 4.2 A circuit provides pulse-width-modulated signals with individually tunable duty cycle,
allowing for synchronized spinning speeds of the gyroscope motors. An Arduino (DB) provides
serial output signals (green) to daisy-chained integrated circuits (TLC5940). The TLCs translate
the serial signals into pulse-width-modulated signals sent to parallel optocouplers (OC). The
optocouplers then modulate the larger voltage drop across the gyroscope motors. A separate circuit
controls the coils beneath each gyroscope
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duty cycle of up to 16 gyroscopes each. Optocouplers isolate the drivers from the
power supply passing current to the gyroscopes. Each optocoupler passes current
to a gyroscope motor when its corresponding TLC pin accepts (sinks) current. The
coils, meanwhile, are powered in series in a separate circuit.

4.3 Broken Symmetries in the Honeycomb Lattice

A honeycomb lattice of such gyroscopes behaves as a Chern insulator, exhibiting
robust chiral edge waves that pass around corners uninhibited. The phononic
spectrum has a band gap, and shaking a boundary site at a frequency in the gap
generates a wavepacket that travels clockwise along the edge. Figure 4.1b shows
such a wavepacket as seen from below.

The origin of these chiral edge modes is broken time reversal symmetry, which
arises from a combination of lattice structure and spinning components [17]. As
in [17, 47], an effective time reversal operation both reverses time (t → −t)
and reflects one component of each gyroscope’s displacement (ψ → ψ∗, where
ψ = δx + iδy is the displacement of a gyroscope). Breaking effective time reversal
symmetry opens a gap at the Dirac points of the phononic dispersion in a way that
endows each band with a nonzero Chern number [122].

An alternative mechanism for opening a gap, however, is to make sites in the
unit cell inequivalent [120, 122]. This process breaks inversion symmetry in the
honeycomb lattice: the system is no longer invariant under exchange of the two
sites in the unit cell. A gap opened by this mechanism is topologically trivial and
does not lead to protected edge modes.

If both symmetries are broken, then their relative strength should determine
whether the system is topological or trivial, enabling us to tune the system through
a phase transition. This would be analogous to a known transition in the Haldane
model [122], in which broken inversion symmetry competes with the broken time
reversal symmetry. This mechanism for passing through such a topological transi-
tion has been used in systems of cold atoms in driven optical lattices [120, 121].
Here, we explore the analogous behavior in a topological mechanical metamaterial.

4.4 Breaking Inversion Symmetry in Experiment

A simple way to break inversion symmetry is to detune the precession frequencies
of neighboring gyroscopes, pairwise throughout the system. To do so, we apply a
local magnetic field at each site by introducing a coil beneath each gyroscope. For
small displacements, the coil’s magnetic field provides a force which is parallel
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or antiparallel to gravity, raising or lowering the its precession frequency: �p →
�

A,B
p = (1 ± �AB)�0

p (Fig. 4.1c). We then assemble a honeycomb lattice of
gyroscopes with alternating coil orientations at each site (Fig. 4.1d). To reduce noise
in the precession frequencies, we synchronize all spinning speeds by sending pulse-
width-modulated signals to the motors.

We excite a wavepacket in this system, again by shaking a site at the boundary,
and simultaneously ramp up the current through the coils. As we pass through a crit-
ical current—corresponding to a critical inversion symmetry breaking strength—the
excitation delocalizes: the coherent, topologically-protected edge mode transforms
into bulk modes, suggesting the presence of a topological phase transition (see
bottom panel in Fig. 4.3). While the gradual ramp (22 �0

p) in Fig. 4.3 allows visual
confirmation of the edge mode delocalizing, more rapid ramps likewise halt the
edge mode. We note that ramps of less than ∼ 8 �0

p cause bulk disturbance from the
impulsive magnetic torques on gyroscopes that are canted during the ramp.

Fig. 4.3 Dynamically ramping up the inversion symmetry breaking quenches a chiral wave. (Top)
For �AB = 0, exciting a mode in the gap by shaking at a frequency in the center of the band
gap yields a robust chiral edge wave. (Bottom) The same wavepacket is created in the lower panel,
but here the inversion symmetry breaking increases over the first 14 s of the experiment. As �AB

passes through the critical value, the mode delocalizes, and no coherent packet persists in the trivial
phase. The system is viewed from below through the coils (white circles). Filled colored circles
overlaying each image represent the displacement of the gyroscopes. Each colored circle’s radius
is proportional to the magnitude of the displacement, while its color represents the displacement’s
phase (see color wheel)
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4.5 Measuring the Topological Phase Transition

To study the transition in more detail, we compute the band structure of magnetic
gyroscopes with varying inversion symmetry breaking. As the precession frequency
splitting is increased, the band gap closes and reopens (Fig. 4.4a). Beyond the
critical value, no edge states connect the two bands: the system is a trivial insulator.

Fig. 4.4 Inversion symmetry breaking drives the topological transition to a trivial insulator, with
a divergence in localization length at the transition. (a) Band structure for a periodic supercell
shows the gap close and reopen; increasing the frequency splitting, �AB , eliminates the chiral
edge modes localized to the top (purple) and bottom (light green) of the supercell. (b) Experimental
measurement of the edge states near the center of the gap show the divergence of the localization
length. At large �AB , exciting the system in the trivial band gap leads to a weak, localized response.
(c) When the most localized state (connected blue dots) becomes extended such that ξ ∼ W (black
dashed line), where W is the distance from the center to the system’s boundary, the Chern number
of the lower band (orange line) changes from +1 to zero. The orange band represents uncertainty
in the transition point arising from uncertainty in experimental parameters. All states in the range
[0.9 �0

p, 1.1 �0
p] are included in the blue band, and a is the lattice spacing
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Measuring the localization length of edge states in our experiment enables a
direct comparison against our model. As the gap narrows, the localization length
of the most confined edge state broadens until it is comparable to the system size.
By shaking the system at a frequency that slowly sweeps through the gap and
tracking the gyroscopes’ displacements, we obtain the eigenstates of the system
(the eigenvectors of the Fourier transform). Figure 4.4b and c show the results of
this measurement, considering only the most localized states near the center of the
gap. As the localization length of the most localized state (blue curve in Fig. 4.4c)
grows to the scale of the system size, W , the bands touch and reopen without
chiral edge modes. This feature confirms the likely presence of a topological phase
transition.

To predict the topological phase transition theoretically, we compute the Chern
number of the system’s bands, which is encoded in the spectrum of the dynamical
matrix. To linear order, the displacement of a fast-spinning gyroscope, ψ ≡ δx+iδy,
obeys Newton’s second law as

i
dψp

dt
=�pψ + 1

2

∑
q

[ (
�+

ppψp + �+
pqψq

)

+ e2iθpq

(
�−

ppψ∗
p + �−

pqψ∗
q

) ]
,

(4.1)

where the sum is over nearby gyroscopes, �±
pq ≡ − �2

Iω0

(
∂Fp‖/∂xq‖ ± ∂Fp⊥/∂xq⊥

)
is the characteristic interaction frequency between gyroscopes p and q, �p ≡
(mg + F suspension + F coil

z )�/Iω0 = (1 + �AB)�0
p is the precession frequency in

the absence of other gyroscopes, and θpq is the angle of the bond connecting
gyroscope p to gyroscope q, taken with respect to a fixed global axis. The
interaction strengths, �±

pq , scale with the quantity �k ≡ �2km/Iω0, where km is
the effective spring constant for the magnetic interaction, ω0 is the spinning speed
of the gyroscope, and �±

pq depend nonlinearly on the lattice spacing. As Eq. 4.1
resembles the Schrödinger equation, we write the equation of motion for the entire
system as

i
dψ

dt
= Dψ . (4.2)

The precession frequency plays the role of the on-site potential, so that
the coil’s magnetic field detunes the diagonal terms of the dynamical
matrix, D.

A nonzero Chern number signals the existence of topologically-protected chiral
edge modes. Computing the Chern number of the magnetic system as

Cj dx ∧ dy = i

2π

∫
d2k Tr

(
dPj ∧ Pj dPj

)
, (4.3)

where the projector Pj ≡ |uj 〉〈uj | maps states in band j to themselves and maps
other states to zero, we see the Chern number of the lower band change from 1 to 0
when the localization length reaches the system size, ξ ∼ W (Fig. 4.4c).
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4.6 Competing Broken Symmetries

Our approach enables us to tune through a phase transition dynamically by
pitting inversion symmetry against time reversal symmetry breaking, adding a new
axis of versatility for topological mechanical metamaterials. We illustrate this by
computing a larger phase diagram for the gyroscopic system in which time reversal
symmetry breaking and inversion symmetry breaking are both varied. To explore
their interplay, we combine the transition observed here with another topological
phase transition discussed in [17], which exploits the dependence of the band
topology on the geometry of the lattice. By globally deforming the honeycomb
lattice through a brick-layer lattice, the Chern number of the lower band transitions
from 1 to 0 to −1 (Fig. 4.5). The transition occurs when bond angles in the network
are precisely multiples of π/2, at which point effective time reversal symmetry is
restored and the gap closes. Continuing the deformation into a bowtie configuration
inverts the sign of the symmetry-breaking term, reopening the gap, but each band’s
Chern number flips sign.

In Fig. 4.5, we allow inversion symmetry breaking and lattice deformation to
compete, giving rise to systems with clockwise edge modes (red), counterclockwise
edge modes (blue), and no chiral edge modes (white). When the time reversal

Fig. 4.5 Our experiment is one slice of a larger phase diagram. Tuning the lattice geometry to a
bricklayer lattice restores effective time reversal symmetry, and continuing to deform into a bowtie
inverts the sign of the symmetry-breaking term. The left panel shows the topological phase diagram
for the case of spring couplings (no restoring force in the transverse direction, to first order), with
�0

p = �+ = �−. The right panel shows the Chern number of the lower band for the case of

magnetic interactions, with �k/�0
p = 0.67, as in the experiments. The two are similar, though

the topologically nontrivial phases (red and blue) do not meet at a point in the case of magnetic
interactions
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symmetry breaking is weakened (δ → π ), the required |�AB | to drive the system
to a trivial insulator diminishes. This phase diagram highlights the similarity of the
gyroscopic system to the Haldane model [122]. This can be understood by taking the
limit in which the precession frequency is much faster than the interaction strength
(�0

p � �k): the spring-coupled gyroscope system maps to the Haldane model [17].
The phase diagram for magnetic interactions, while similar, possesses an area

of trivial insulator between the topologically nontrivial phases. Unlike spring-like
potentials, magnets exhibit an anti-restoring response to perpendicular displace-
ments (�+ �= �−). These interactions can introduce an indirect band gap that closes
before the lattice reaches a bricklayer geometry. Figure 4.6 shows the band structure
for fully periodic lattices of spring-coupled and magnet-coupled gyroscopes as the
lattice deformation angle, δ, increases. In the magnetic case, the frequency gap

Fig. 4.6 An indirect band gap closing is responsible for the difference between the spring-coupled
and magnetically-coupled phase diagrams. Representative band structures computed for a fully
periodic lattice show the approach to the topologically trivial phase as the lattice deformation
angle, δ, increases. With spring interactions, the topological phase transition occurs as the band gap
(yellow) closes at the Dirac points (top panel sequence). In contrast, with magnetic interactions,
the gap closes before the two bands touch at any single wavevector
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vanishes before the two bands touch at any single wavevector, in contrast to the
spring-coupled case. The result is a trivial insulator phase of finite extent separating
the phases with ν = +1 and ν = −1 for the lower band (right panel in Fig. 4.5). The
extent of the separation depends on the interaction strength �±/�0

p and the spacing
between gyroscopes relative to their pendulum length.

4.7 Conclusion

We have demonstrated a non-destructive mechanism for dynamically tuning a
mechanical Chern insulator through a topological phase transition. We characterized
the transition by measuring the delocalization of edge modes in gap and the
corresponding change in Chern number to zero at the transition, and we established
this 1D transition’s context within a 2D phase space for mechanical gyroscopic
Chern insulators. This design enables a mechanism for constructing topological
gates able to direct the flow of energy in chiral modes, offering potential applications
in classical information storage and readout [123].



Chapter 5
Tunable Band Topology in Gyroscopic
Lattices

As we have discussed, gyroscopic metamaterials—mechanical structures composed
of interacting spinning tops—support one-way topological edge waves. In these
structures, the time reversal symmetry breaking that enables their topological
behavior emerges directly from the lattice geometry. Here we show that variations
in the lattice geometry can therefore give rise to more complex band topology
than has been previously described. A ‘spindle’ lattice (or truncated hexagonal
tiling) of gyroscopes possesses both clockwise and counterclockwise edge modes
distributed across several band gaps. Tuning the interaction strength or twisting
the lattice structure along a Guest mode opens and closes these gaps and yields
bands with Chern numbers of |C| > 1 without introducing next-nearest-neighbor
interactions or staggered potentials. A deformable honeycomb structure provides
a simple model for understanding the role of lattice geometry in constraining the
effects of time reversal symmetry and inversion symmetry breaking. Lastly, we
find that topological band structure generically arises in gyroscopic networks, and
a simple protocol generates lattices with topological excitations. This chapter is
adapted from [46] with permission.

5.1 Gyroscopic Lattices

Materials with nontrivial band topology have captured the attention of condensed
matter scientists since their discovery in electronic systems [42]. Since then,
the concept of topological order has found its way to a plethora of physical
systems, from electronic to photonic, acoustic, and even mechanical systems [16,
17, 36, 45, 47, 117–119, 124–128]. When topologically nontrivial, all these systems
exhibit excitations confined to their surface that propagate unidirectionally without
backscattering and are robust to disorder. These features are both fundamentally
intriguing and form the basis for technological applications of topological materials.
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Here, we focus on unidirectional edge modes in structures composed of coupled
spinning objects [17, 45, 47, 119, 129, 130]. In particular, we focus we focus on the
topological properties arising from the collective motion of lattices of gyroscopes—
namely, how their phononic band structure encodes a nonzero Chern number.
When the band structure is topologically nontrivial, the gyroscopic system supports
unidirectional waves on its boundary. These edge waves are distinct from a range of
other non-reciprocal properties that emerge in angular momentum-biased systems
because of their topological origin [39, 131].

The minimal requirements for such a Chern insulator are the presence of a
band gap and broken time reversal symmetry. In the electronic case, time reversal
symmetry breaking arises from the presence of magnetic fields [122]. As we will
see, the analogous mechanism in gyroscopic lattices is the lattice geometry itself:
the mere presence of spinning components is not sufficient to generate the effects
enabling chiral edge modes.

In this chapter, we go beyond simple geometries and find the flexibility to design
lattices with desired band gaps and desired topology. In particular, we examine
tunable lattices with Chern numbers |C| > 1 as well as multiple gaps with edge
modes of opposite chirality. We examine the effects of competing time reversal
symmetry breaking with inversion symmetry breaking, and demonstrate a design
strategy to achieve band topology in lattices with seemingly arbitrary unit cells.

5.2 The Equations of Motion

A simple realization of gyroscopic metamaterials is a collection of coupled gyro-
scopes which hang from a pivot point and spin rapidly enough for their angular
momentum to lie approximately along the primary axis, as shown in Fig. 5.1a. Under
these conditions, the free tip of a gyroscope moves when a torque, �τ , acts about the
pivot point according to:

�τ ≈ Iω0∂t n̂ = ��f × �F (5.1)

where I is the principal moment of inertia, ω0 is the spinning speed, n̂ is a unit
vector pointing from the pivot point toward the center of mass, and ��f is the vector
from the pivot point to the point acted upon by force, �F .

Considering small displacements of each gyroscope allows a linearized descrip-
tion. Denoting the displacement from the equilibrium position in the plane as
ψ = x + iy, the equation of motion for a single gyroscope under the influence
of gravity becomes:

i∂tψ = mg�cm

Iω0
ψ. (5.2)

Note that throughout this chapter, without loss of generality, we choose the
angular momentum vector of a hanging gyroscope to point down, from the pivot
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Fig. 5.1 A spring-coupled gyroscopic metamaterial is composed of spinning gyroscopes that hang
from a pinned pivot point. (a) ��f is the vector from the pivot point to where a force acts. When the
only force is gravity, ��f = ��cm. (b) Gyroscopes in the metamaterial are coupled to their neighbors
in the lattice via a spring which is attached to the free end. (c) The linearized equation of motion
for our system relates the displacements via angles between bonds and the local gyroscope’s local
x-axis (indicated by dotted lines in this view from below)

point towards the center of mass. Noting the similarity between Eq. 5.2 and the
Schrödinger equation for a quantum particle, we use the same notion of time reversal
symmetry as is used in quantum mechanics, namely ψ → ψ∗ and t → −t .
While ψ → ψ∗ corresponds to a reversal of momentum for a quantum particle,
in the context of gyroscopes, ψ → ψ∗ carries out a reflection of the gyroscope’s
displacement about a horizontal axis passing through its pivot point. Performing this
operation on the equation above, we find that Eq. 5.2 is time reversal symmetric.
Thus, a spinning top precessing under the influence of gravity does not break this
notion of time reversal symmetry.

Introducing interactions, however, allows the structure to break time reversal
symmetry. The simplest setting to see this is a network of gyroscopes coupled by
linear springs. For small displacements, the forces exerted on one gyroscope by
another are proportional to the component of the net displacement along the line
connecting them. For a given pair of gyroscopes p and q, it is convenient to extract
the component of the net displacement ψp − ψq along the bond by rotating the
system to the local x-axis of p, taking the real part of expression, and then rotating
back. The resulting force in complex form is given by:

Fpq = −k0e
iθpq Re[e−iθpq (ψp − ψq)] (5.3)

= −k0e
iθpq

2

[
e−iθpq (ψp − ψq) + eiθpq (ψ∗

p − ψ∗
q )
]
,
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where k0 is the spring constant of the bond. Using this result, the equation of motion
for two gyroscopes can then be written as:

i∂tψp = �gψp + �k

2

[(
ψp − ψq

)+ e2iθpq

(
ψ∗

p − ψ∗
q

)]
. (5.4)

where �k = k0�
2
k/(Iω0) and �g = mg�cm/(Iω0). We define the time reversal

operation as ψT R
p (t) = ψ∗

p(−t). By taking the complex conjugate of ∂tψp and
rewriting in terms of ψT R

p , we see that the equations of motion are changed only

by ei2θ → e−i2θ . Therefore, we see that time reversal symmetry is preserved under
reflections that are parallel or perpendicular to the bond [17].

The full equation of motion for a hanging gyroscope with more than one neighbor
can be similarly expressed:

i∂tψp = �gψp + �k

2

n.n.∑
q

[(
ψp − ψq

)+ e2iθpq

(
ψ∗

p − ψ∗
q

)]
. (5.5)

As before, time reversal symmetry is only preserved if all bonds are either parallel
or perpendicular to each other since in this case, a coordinate system can be chosen
so that bonds lie along the x and y axes, constraining the prefactor e2iθpq to be real
for all bonds in the network.

To date, the only ordered lattices that have been considered in this framework
are the honeycomb lattice and simple distortions thereof [17, 45]. A slightly
different manifestation of gyroscopic metamaterials considered in [119] found
that by including staggered sublattice precession frequencies and bond strengths,
time reversal symmetry could be effectively broken in lattices with square and
honeycomb symmetries.

5.3 Twisted Spindle Lattice

To demonstrate the considerable flexibility of gyroscopic metamaterials, we begin
by considering the twisted spindle lattice shown in Fig. 5.2. This structure shares
features of both the honeycomb lattice and the kagome lattice. As Fig. 5.2a shows,
shrinking the blue triangles to a single site—while increasing the strength of blue
bonds—deforms the spindle lattice into the honeycomb lattice. Conversely, taking
the length of the red bonds that connect triads of gyroscopes to zero—while
increasing their strength—deforms the spindle lattice into a kagome configuration.
As shown in Fig. 5.2b, the spindle lattice also supports a Guest mode—a global
elastic distortion that costs no energy—in which each triad of gyroscopes rotates
locally.

In the limiting case of the honeycomb lattice, which has two sites per unit cell,
we find a single gap with clockwise topologically-protected edge modes [17]. By
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Fig. 5.2 The spindle lattice shares features of both the honeycomb and kagome lattices, while
supporting a Guest mode in which each triad of gyroscopes is locally rotated. (a) Taking the size
of the red triangles in the spindle lattice to zero returns a honeycomb configuration, while taking the
length of the blue bonds connecting each red triangle of gyroscopes to zero transforms the spindle
lattice into the kagome configuration. The associated band structures are shown below each of the
three configurations. (b) Locally twisting the triangles of a spindle lattice preserves bond lengths
while globally deforming the lattice

contrast, in the kagome lattice, with three sites per unit cell, there are two gaps,
which each support a counterclockwise topological mode. In the intermediate case
of the undeformed spindle lattice, which has six sites per unit cell, we generically
find five band gaps. Most of these gaps possess chiral edge modes, and a given
configuration can host both clockwise and counterclockwise modes. As we show
below, locally twisting this structure (as in Fig. 5.2b) or varying the bond strengths,
�k , relative to the pinning strength, �g , opens and closes edge-mode-carrying gaps.

Shaking a gyroscope on the boundary of this network at a frequency in the
lowest band gap generates a clockwise wavepacket confined to the edge of the
sample which is robust to disorder in the gravitational precession frequencies or
bond strengths and does not scatter at sharp corners or defects (Fig. 5.3a). Shaking
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Fig. 5.3 The gyroscopic spindle lattice contains chiral edge modes of either chirality as well as
a band with Chern number of |C| > 1. Direct simulation of Eq. 5.5 reveal clockwise (left) and
counterclockwise (right) edge modes in the same structure when shaken at different frequencies
(� = 1.8 �g (left) and 3.62 �g (right)). The displacement of each gyroscope is represented as
a circle with a radius proportional to the displacement’s magnitude. The color of each circle
represents the phase of the displacement, as depicted in the color wheel on the bottom right.
Computing the Chern numbers for each band confirms the topological origin of the chiral edge
modes, as shown by the colored band structure in the middle panel. A single gyroscope on the edge
is shaken at a fixed frequency with an amplitude varying in time; the spectrum of the excitation is
indicated by red (left) and blue (right) curves overlaying the density of states, D(�). The density
of states, shown above each lattice, is given for the case with periodic boundary conditions. For
these simulations, the interaction strength was set to be �k = 3�g

at a frequency in the middle band gap, however, generates counterclockwise edge
waves, allowing a single lattice structure to conduct protected edge waves with a
chirality determined by frequency (Fig. 5.3b). We compute the Chern number for
each band via [132]

Cjdx ∧ dy = i

2π

∫
d2k Tr[dPj ∧ PjdPj ], (5.6)

where Pj is the projection matrix defined using a symplectic inner product between
states (See Appendix C for details), and where ∧ is the wedge product. We find
that the Chern number is equal to the number of chiral edge modes, which suggests
the same bulk-boundary correspondence for these systems as in electronic Chern
insulators [133].

The topological band structure of the gyroscopic spindle lattice offers additional
axes of tunability through varying the interaction strength (i.e. the bond stiffness
in the case of springs) and by performing bond-length-preserving deformations on
the lattice. For gyroscopic lattices with uniform interaction strengths (i.e. equal
spring constants throughout), we can tune the the ratio of interaction frequency to
gravitational precession frequency, �k/�g . This operation can close band gaps in
addition to changing the frequency range of the band structure. In the case of the
spindle lattice, this provides a tuning knob that changes the topology of the band
structure. Simply increasing the interaction strength relative to the gravitational
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(a) (b)

(d)(c)

Fig. 5.4 Phononic band structures for the spindle and twisted spindle lattices show opening and
closing of gaps with topological edge states. (a) Simply increasing the interaction strength enables
the closing and opening of band gaps, creating and annihilating protected chiral edge modes. (b)
Band gaps with chiral edge modes are highlighted in green for two different interaction strengths.
(c–d) As the structure is twisted through a bond-length-preserving deformation, three of the five
gaps close and reopen, leading to three or four gaps with chiral edge modes, depending on the
value of the twist deformation angle, α. In panels (c) and (d), we set �k = 3�g

precession frequency closes and reopens gaps and changes the Chern numbers of
bands, as shown in Fig. 5.4a. We note that this feature was absent in the gyroscopic
honeycomb lattice previously studied [17, 45], whose topology was unaffected by
changes in �k and �g . This allowed the topology to be continuously connected to
the electronic Haldane model, unlike in the spindle lattice.

Twisting the spindle lattice through a Guest mode, as shown in Fig. 5.2b, also
provides a tuning knob. Globally deforming the lattice closes and reopens the lowest
and highest band gaps, allowing for several distinct configurations of multiple gaps
supporting protected chiral edge modes, as shown in Fig. 5.4c. As the twist angle
grows, there are five values for which a pair of bands touch and reopen, flipping
the chirality of the modes in that gap or imparting chiral modes to a gap which
previously had none.

What determines the chirality of edge modes? Unlike in the topological zero-
energy modes recently found in Maxwell lattices [36], here the coordination number
alone does not play a central role in determining band topology. If Chern numbers
were determined purely by the number of nearest neighbors, we would expect, for
instance, that the spindle and honeycomb lattices would have similar edge modes:
both have a coordination number of z = 3. However, the spindle supports edge
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modes of either chirality. Furthermore, the spindle lattice’s rich band structure
depends not only on geometry, but also bond strengths (Fig. 5.3a). We conclude
that simple, local aspects of the lattice such as coordination number and mean bond
angle do not singlehandedly determine the band structure.

From a design perspective, the two simple tuning parameters of angle and inter-
action strength are sufficient to cover a broad range of topological phenomenology
without introducing staggered interaction strengths, including edge modes with
either chirality, the opening and closing of gaps, and bands with Chern number ±1
and ±2. These behaviors demonstrate the versatility of gyroscopic metamaterials.

5.4 Time Reversal Symmetry and Topological Bandgaps

All configurations shown so far break time reversal symmetry, which is a necessary
ingredient for band topology in Chern insulators [17, 119]. This is not necessarily
true for all gyroscopic lattices. For example, as illustrated in Fig. 5.5, a honeycomb
lattice can undergo a bond-length-preserving deformation to a configuration in
which all bond angles are multiples of π/2 (for δ = π ). In such a configuration,
time reversal symmetry is restored and therefore band topology disappears. Further
changing the value of δ past π causes the band topology to reappear, but with
opposite sign. In Fig. 5.5, we extend this analysis to the entire phase-space of
periodic, bond-length-preserving deformations by introducing an additional angle,
φ. This allows us to explore the question of whether time reversal symmetry
breaking is sufficient to generate band topology in gyroscopic metamaterials.

A B

BZ zone

BZ zone

(a) (b) (c)

(d)

k

k

Fig. 5.5 Band gaps and topology in the deformed honeycomb lattice. (a) The angles φ and δ

control the deformation of the honeycomb lattice. (b) The φ-δ phase diagram shows that the Chern
number of the lower band changes when straight lines of bonds appear in the lattice, which occurs
on the white diagonal lines in the left corners and on the white vertical line at δ = π . (c) The
bricklayer configuration (δ = π ) band structure is plotted along paths in the Brillouin zone. The
gap is closed at two Dirac points. (d) No band gap opens in the canted bricklayer (δ = π , φ �= π/2),
even though time reversal symmetry is broken in this configuration
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Figure 5.5b shows the topological phase diagram corresponding to general
deformations of the honeycomb lattice, characterized by angles φ and δ. Red
(blue) regions indicate to a Chern number of 1 (−1) for the lower band and,
correspondingly, clockwise (counter-clockwise) propagating modes in the gap. For
φ = π/2 and δ = π , the network is arranged in a bricklayer configuration
(Fig. 5.5c). Varying either φ or δ from this point breaks time reversal symmetry.
However, only changes in δ imbue nontrivial band topology, as illustrated by the
white line in Fig. 5.5b for δ = π [17]. The fact that changes in φ break time reversal
symmetry without opening a gap demonstrates that broken time reversal symmetry
does not inevitably lead to either band gaps or nontrivial band topology.

This behavior warrants further investigation. During the deformation of the
honeycomb into the bricklayer geometry, the band gap closes and the two Dirac
points in the spectrum touch at a point. Surprisingly, these Dirac points are preserved
even in the canted bricklayer configuration, as shown in Fig. 5.5d, despite the fact
that shearing the bricklayer configuration breaks time reversal symmetry by creating
acute and obtuse bond angles (see Eq. 5.5).

This protection of the Dirac cones arises due to a subtle pseudo-reflection
symmetry. The symmetry consists of reflecting the positions of gyroscopes about
the x axis and shearing their relative positions such that the tilt angle φ is invariant,
while leaving the gyroscopes’ displacements unchanged. This pseudo-reflection is a
symmetry of the equations of motion, and thus of the normal modes. This symmetry
leads to the existence of a special line of modes in momentum space. Along this
line, modes that are symmetric and antisymmetric under the symmetry operation
decouple and cannot hybridize at their band crossing. Thus, a pseudo-reflection
symmetry stabilizes the Dirac points against acquiring gaps, which would otherwise
be unstable to time-reversal-symmetry-breaking perturbations—analogous to the
effect other discrete symmetries in electronic systems [134]. The pseudo-reflection
symmetry also explains the vanishing Chern number for all values of φ at δ = π

seen in Fig. 5.5b, on account of the Berry curvature being odd under the action of
the symmetry. More broadly, this protection underscores of the interplay between
lattice geometry and the topological character of the band structure.

5.5 Competing Symmetries in Topological Gyroscopic
Systems

Breaking inversion symmetry is the canonical mechanism for opening gaps in
the phonon spectra of mass-and-spring lattices [135]. This is also true in other
systems, such as electronic materials. This gap opening mechanism can be made to
compete with broken time reversal symmetry to close and reopen gaps and eliminate
protected chiral edge modes. To study an analogous effect in gyroscopic lattices, we
detune the yellow and blue sublattice sites in Fig. 5.6 by modulating their on-site
gravitational precession frequencies: �gA,B = (1 ± �)�g (see also [45]).
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Fig. 5.6 Inversion and time reversal symmetries compete in a gyroscopic lattice. (a) The phase
diagram for a deformed honeycomb lattice (without shear, so that φ = π/2) with varying �g

values on sites A and B shows an interplay between inversion and time reversal symmetries. (b) In
a simulation of the honeycomb lattice with inversion symmetry breaking �AB = 0.15, driving a
gyroscope on the edge at a gap frequency results in a clockwise wavepacket. (c) When the lattice is
deformed to a bricklayer geometry, the Chern number vanishes. This configuration is gapped due
to the inversion symmetry breaking (�AB = 0.15). The gap contains modes which are localized on
the edge, but these unprotected edge waves propagate in both directions and are not robust against
disorder. (d) In the bowtie geometry, edge modes propagate counterclockwise, as predicted by the
calculations shown in (a)

Figure 5.6a shows the phase diagram that results from varying δ and lattice
pinning frequencies, �gA,B . When the unit cell’s two sites are equivalent (� = 0),
the Chern number of the system changes only when the gap closes at the bricklayer
transition. For � �= 0, however, a third, topologically trivial region appears. In this
case, the band structure is gapped, yet displays no chiral edge modes.

The behavior of excitations confirms the Chern number calculations in all three
regions, as indicated in Fig. 5.6b–d. In Fig. 5.6c, excitations propagate along the
edge in both directions. The Chern number is zero, and these edge waves are not
topologically protected: they backscatter at sharp corners or in the presence of
disorder. The result shown in Fig. 5.6a displays a strong resemblance to Haldane’s
phase diagram: sites must have similar pinning strengths for the lattice to support
topological states.

While varying precession frequencies is an effective way of breaking inversion
symmetry, it is not the only one. An alternative way is to alter the coordination
number between sites—i.e. the number of bonds that are linked to each gyroscope.
For example, unlike the lattices considered so far, the α–(ET )2I3 lattice shown in
Fig. 5.7 contains sites of coordination number z = 4 (for the A and B sites) and
z = 2 (for the C and D sites). When all gravitational precession frequencies are
equal, the lattice displays no topological excitations (top right corner of Fig. 5.7b).
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Fig. 5.7 Coordination
number and topological
phases. (a) A lattice with four
lattice sites per unit cell,
where sites A and B have two
neighbors and sites C and D
have two. (b) The topological
phase diagram for varying the
gravitational precession
frequencies on sites A and B
shows that because of the
different coordination
numbers for the lattice sites,
the band structure is trivial
when
�gA = �gB = �gC = �gD .
(c) The band structure in the
nontrivial phase for a strip
which is infinite along y and
120 unit cells wide in x
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As seen in the first term of Eq. 5.5, contributions to on-site pinning—ie. terms in
which ψ̇p depends on ψp—come not only from gravitation precession terms (�g),
but also from coupling to adjacent sites. For lattices with unequal coordination at
different sites, balancing the full ‘site pinning frequency’, �p, for each site can be
used to enhance or remedy the effects of site inequivalence:

�p ≡ z
�k

2
+ �g. (5.7)

We can test if site pinning inequivalence is the mechanism preventing the α–
(ET )2I3 lattice from having gaps. Indeed, reducing the precession frequencies of
the sites with higher coordination numbers enables a band gap with chiral edge
modes (Fig. 5.7b). This provides another example of the inextricable connection
between lattice geometry and topological order in gyroscopic lattices.

5.6 Towards Topological Design

We have seen that both time-reversal symmetry and site equivalence are tied to
lattice geometry and connectivity. Turning now toward engineering new topological
gyroscopic lattices, we can summarize the principles of the previous sections as
follows:

1. Breaking time reversal symmetry via bond angles is a necessary, but not sufficient
condition for creating a lattice with a non-trivial band topology.
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(a) (b) (c) (d)

Fig. 5.8 Examples of topological lattices created balancing coordination by varying on-site
precession frequencies. Each lattice is generated by placing triangulated points in a square unit
cell, then deleting some bonds randomly. (a) An example of a deformed kagome lattice structure
exhibits two topological gaps. (b) A mechanically stable lattice with one topological gap (upper
gap) demonstrates that gyroscopic lattices need not be undercoordinated to be Chern insulators.
The propagation of edge modes is in the same direction as the kagome lattice. (c) A 3-site-per-
unit-cell lattice structure with one topological gap (lower gap). The propagation of edge modes
is in the same direction as the honeycomb lattice. (d) An example of a 4-site-per-unit-cell lattice
structure with three topological gaps. The propagation of edge modes is in the same direction as
the kagome lattice for all three gaps

2. A competition between time reversal symmetry and site equivalence determines
whether or not a lattice can have topological modes. Lattice connectivity is
relevant for determining the effective on-site precession frequencies to achieve
equivalence.

Using these two principles, one can construct topological metamaterials beginning
with an arbitrary unit cell and subsequently balancing pinning frequencies according
to Eq. 5.7. This procedure can generate lattices with desired properties—such as
multiple bandgaps or mechanical stability. Figure 5.8 shows several examples.

One example of a mechanically stable lattice with non-vanishing Chern number
is shown in Fig. 5.8b. Although all previous lattices in this thesis have been
mechanically unstable (z̄ ≤ 4), the lattice in Fig. 5.8b shows that this is not
necessary for band topology to arise. Sublattices A (yellow) and C (red) have five
bonds each, while sublattice B (blue) has four. We expect that topological modes
will arise when the total pinning at each site are approximately equal, which would
occur for �B > �A,C . Numerics agree with this prediction.

The results demonstrated in this section show that topology is not specific to one
family of lattices in gyroscopic networks and is in fact ubiquitous. Many topological
lattices can be created using only simple principles—opening a myriad possibilities
for material design.
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5.7 Conclusion

In this chapter, we explored the interplay between lattice geometry and topological
order in gyroscopic lattices—including the effects of broken time reversal symmetry
and site equivalence. Along the way, we found examples of lattices with multiple
band gaps containing edge modes of either chirality in the same structure and Chern
numbers |C| > 1. We then identified general principles which are helpful in design-
ing lattices with desired topological band structures. Building on our observations,
we used a simple prescription that yields mechanically stable topological gyroscopic
lattices and lattices with multiple band gaps. The ubiquity of band topology in
gyroscopic metamaterials provides a broad palette with which to design topological
behaviors in elastic structures. Further study could investigate the interplay between
band topology and nonlinear excitations in gyroscopic networks or interspersing
both clockwise and counterclockwise spinning sites.



Chapter 6
Topological Insulators Constructed
from Random Point Sets

The discovery that the band structure of electronic insulators may be topologically
non-trivial has revealed distinct phases of electronic matter with novel proper-
ties [122, 136]. Recently, mechanical lattices have been found to have similarly
rich structure in their phononic excitations [36, 118], giving rise to protected uni-
directional edge modes [16, 17, 119]. In all these cases, however, as well as in other
topological metamaterials [36, 137], the underlying structure was finely tuned, be it
through periodicity, quasi-periodicity or isostaticity. Here we show that amorphous
Chern insulators can be readily constructed from arbitrary underlying structures,
including hyperuniform, jammed, quasi-crystalline, and uniformly random point
sets. While our findings apply to mechanical and electronic systems alike, we focus
on networks of interacting gyroscopes as a model system. Local decorations control
the topology of the vibrational spectrum, endowing amorphous structures with
protected edge modes—with a chirality of choice. Using a real-space generalization
of the Chern number, we investigate the topology of our structures numerically, ana-
lytically and experimentally. The robustness of our approach enables the topological
design and self-assembly of non-crystalline topological metamaterials on the micro
and macro scale. This chapter is adapted from [47] with permission.

6.1 Gyroscopic Metamaterials as a Model System

Condensed matter science has traditionally focused on systems with underlying
spatial order, as many natural systems spontaneously aggregate into crystals. The
behavior of amorphous materials, such as glasses, has remained more challeng-
ing [138]. In particular, our understanding of common concepts such as bandgaps
and topological behavior in amorphous materials is still in its infancy when
compared to crystalline counterparts. This is not only a fundamental problem;
advances in modern engineering, both of metamaterials and of quantum systems,
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has opened the door for the creation of materials with arbitrary structure, including
amorphous materials. This prompts a search for principles that can apply to a wide
range of amorphous systems, from interacting atoms to mechanical metamaterials.

In the exploration of topological insulators, conceptual advances have proven to
carry across between disparate physical realizations, from quantum systems [120],
to photonic waveguides [117], to acoustical resonators [129, 139], to hinged or
geared mechanical structures [36, 140]. One promising model system is a class of
mechanical insulators consisting of gyroscopes suspended from a plate. Appropriate
crystalline arrangements of such gyroscopes break time-reversal symmetry, opening
topological phononic band gaps and supporting robust chiral edge modes [17, 119].

Unlike trivial insulators, whose electronic states can be thought of as a sum of
independent local insulating states, topological insulators require the existence of
delocalized states in each nontrivial band and prevent a description in terms of a
basis of localized Wannier states [141–143]. It is natural, therefore, to assume that
some regularity over long distances may be key to topological behavior, even if topo-
logical properties are robust to the addition of disorder. However, the extent to which
spatial order needs to be built into the structure that gives rise to topological modes is
unclear. We report a recipe for constructing amorphous arrangements of interacting
gyroscopes—structurally more akin to a liquid than a solid—that naturally support
topological phonon spectra. By simply changing the local connectivity, we can tune
the chirality of edge modes to be either clockwise or counter-clockwise, or even
create both clockwise and counter-clockwise edge modes in a single material. This
shows that topology, a nonlocal property, can naturally arise in materials for which
the only design principle is the local connectivity. Such a design principle lends
itself to imperfect manufacturing and self-assembly. Although our construction
arises naturally in mechanical metamaterials, we show that it extends to electronic
systems in the tight binding limit.

6.2 Amorphous Voronoi Networks

Starting from an arbitrary point set, a natural way to form a network is to generate
a Voronoi tessellation, either via the Wigner–Seitz construction or by connecting
centroids of a triangulation [144]. Treating the edges of the cells as bonds and
placing gyroscopes at the vertices leads to a network reminiscent of ‘topological
disorder’ in electronic systems [145], shown in Fig. 6.1a. For these amorphous
networks, a range of frequencies arises in which all modes are tightly localized, and
this frequency region overlaps with the corresponding band gap of the honeycomb
lattice. Crucially, we find that gyroscope-and-spring networks constructed in this
way from arbitrary initial point sets invariably have such a mobility gap in a
frequency range determined by the strength of the gravitational pinning and spring
interactions.
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Fig. 6.1 Local structure gives rise to chiral edge modes. (a) Voronoization of an amorphous
structure, constructed by connecting adjacent centroids of a triangulation, preserves isotropy and
lack of long-range order, here with a hyperuniform point set. Two-point correlation functions g(x)

(below) are shown for a system of N ≈ 3000 particles. (b) Simulations reveal chiral edge modes
in topological gyroscopic networks. The localization of modes is probed by participation ratio,

p = (∑
i |ψi |2

)2
/N

∑
i |ψi |4, and the density of states is plotted as a function of normal mode

oscillation frequency, in units of the gravitational precession frequency, �g = �mg/Iω0. The
blue curve overlaying over the density of states denotes the frequency of the driving excitation
in the simulation. Here, the characteristic spring frequency, �k = k�2/Iω0 is chosen such that
�g = �k . The inset on the right shows the amplitude, |δψ |, of the displacement for the single
gyroscope which is shaken at a constant frequency. (c) Edge mode propagating in an amorphous
experimental gyroscopic network. The motor- driven gyroscopes couple via a magnetic dipole-
dipole interaction. Despite the nonlinear interaction and spinning speed disorder (∼10%), the edge
mode appears, no matter where the excitation is initialized

Our networks are reminiscent of ‘topologically disordered’ electronic sys-
tems [145]. In these systems, a central characteristic is that the local density of states
as a function of frequency is predictive of the global density of states. Specifically,
band gaps or mobility gaps are preserved [145–147]. Interestingly, we find that,
even in the presence of band topology, averaging the local density of states over
mesoscopic patches (∼10 gyroscopes) reproduces the essential features of the global
density of states as a function of frequency. Furthermore, we find that inserting



82 6 Topological Insulators Constructed from Random Point Sets

mesoscopic patches of our structures into a variety of other dissimilar networks
does not significantly disrupt the averaged local density of states of the patch.

Crucially, we find that our structures show hallmarks of non-trivial topology.
When the system is cut to a finite size, modes confined to the edge populate the
mobility gap, mixed in with localized states. As shown in the direct simulations
of Fig. 6.1, shaking a gyroscope on the boundary results in chiral waves that bear
all the hallmarks of protected edge states (robustness to disorder and absence of
back-scattering).

An experimental realization can be readily constructed from gyroscopes interact-
ing magnetically, as seen from below in Fig. 6.1c. Like in [17], these gyroscopes are
constructed from 3D-printed units encasing DC motors which interact via magnetic
repulsion. Probing the edge of this system immediately generates a chiral wave
packet localized to the boundary, confirming that this class of topological material
is physically realizable and robust (Fig. 6.1c).

This behavior begs for a topological characterization, even though it might be
surprising that topology can emerge from such a local construction. The existence
of chiral edge states in an energy gap is guaranteed if an invariant known as
the Chern number is nonzero, and the direction of the chiral waves is given
by its sign. Although the Chern number was originally defined in momentum
space, several generalizations have been constructed in coordinate space in order
to accommodate disorder in crystalline electronic materials [148–150]. In these
methods, information about the system’s vibrations above a cutoff frequency, ωc,
is carried by the projection operator, P . Each element Pij measures the response
of gyroscope j to excitations of gyroscope i within a prescribed range (band) of
frequencies.

According to one such method, proposed in [148], a subset of the system is
divided into three parts and labeled in a counterclockwise fashion (red, green, and
blue regions in Fig. 6.2). These regions are then used to index components of an
antisymmetric product of projection operators:

ν(P ) = 12πi
∑
j∈A

∑
k∈B

∑
l∈C

(
PjkPklPlj − PjlPlkPkj

)
. (6.1)

The sum of such elements converges to the Chern number of the band above
a chosen cutoff frequency, ωc, when the summation region has enclosed many
gyroscopes, while still being small enough to not include material close to the
boundary (with respect to the localization length).

6.3 Interpretation of the Real-Space Chern Number

Equation 6.1 can be understood as a form of charge polarization in the response of an
electronic material to a locally applied magnetic field. Applying a magnetic field to a
small region of a material induces an electromotive force winding around the site of
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Fig. 6.2 Chern number calculations confirm topological mobility gaps. (a) The Chern number is
computed for the band of frequencies above a cutoff frequency, ωc, using a real-space method.
Once all modes in a band that carry Hall conductance are included, the Chern number converges to
an integer value. On the left is an overlaid density of states D(ω) histogram for ten realizations of
Voronoized hyperuniform point sets (∼2000 particles), with each mode colored by its localization
length, λ. The topological mobility gaps remain in place and populated by highly localized states
for all realizations. (b–c) The computed Chern number converges once ∼20–40 gyroscopes are
included in the summation region (red, green, blue regions panel (b)), and remains at an integer
value until the summation region begins to enclose the sample boundary. All networks have their
precession and spring frequencies set to be equal (�g = �k)

application. If the material is a trivial insulator, any changes in charge density there
arise from local charge re-arrangements, which result in no accumulation of charge.
By contrast, a topological electronic system has a Hall conductivity determined
by the Chern number. As a result, a net current will flow perpendicular to the
electromotive force, inducing a net-nonzero charge concentrated at the magnetic
field site, compensated by charge on the boundary. We show in Appendix D that the
amount of local charging is proportional to the applied field, and the proportionality
constant is the Chern number of Eq. 6.1.

Figure 6.2a shows the results of Eq. 6.1 computed for the Voronoized networks.
As the cutoff frequency for the projector is varied (here it is lowered from 4�g), the
computed Chern number converges to ν = −1 when all extended states in the top
band lie above the cutoff frequency, confirming that the modes observed in Fig. 6.1b,
c are topological in origin and predicting their direction. The Chern number remains
at its value of ν = −1 for a broad range of frequencies in which any existing states
are localized, and thus do not contribute to the Chern number. The Chern number
returns to zero once more conductance-carrying extended states are included in the
calculation.
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6.4 Local Geometry Controls Band Topology

Having established this connection, we now discuss how the Chern number can be
controlled. In particular, we show that by considering alternative decorations of the
same initial point set, it is possible to flip the chirality of the edge modes or even
provide multiple gaps with differing chirality. One possible construction arises natu-
rally from joining neighboring points in the original point set, leading to a Delaunay
triangulation. Such networks show no gaps and no topology, suggesting that the
local geometry dictated by Voronoization is responsible for its emergent topology.
A clue can be found by noting that the Voronoized networks are locally akin to a
honeycomb lattice. The honeycomb is the simplest lattice with more than one site
per unit cell, a necessary condition for supporting a band gap in a lattice. Moreover,
this lattice was previously found to be topological with the same Chern number [17].

Building on this insight, we introduce a second decoration, which we dub
‘kagomization,’ shown in Fig. 6.3a. If applied to a triangular point set, Voronoization
produces a honeycomb lattice and kagomization produces a kagome lattice, the
simplest lattice with three sites per unit cell, which we have found to produce
ν = +1 gyroscopic metamaterials. Proceeding as with the Voronoized network case
(Fig. 6.3b, c), we find the presence of topologically protected modes with opposite
direction and the corresponding opposite Chern number in the band structure. Other
local constructions, such as the ‘spindle’ networks in Fig. 6.3d, e provide multiple
mobility gaps, each with a different edge mode chirality, offering a transmission
direction tuned by frequency.

One might think there could be a mapping from the geometry of each vertex
to the chirality of the edge modes. However, taken together, our Voronoized,
kagomized, and spindle networks demonstrate that simply counting nearest neigh-
bors is not sufficient to determine the topology: a somewhat longer range description
is necessary. On the other hand, we are able to change the Chern number of
a structure via local decorations. To uncover the extent to which a network’s
topology is stored locally, consider the projection operator, P . The projector value
Pij measures the vibrational correlation between gyroscope j and gyroscope i

when considering all modes above a cutoff frequency. By explicitly computing its
magnitude in our networks, we find that the magnitude of Pij falls off exponentially
with distance, as shown in Fig. 6.4. Remarkably, explicitly cutting out a section of
the network and embedding it in a network with a different spectrum results in only
a slight change to the local projector values (<2%). Since the Chern number is
built from these projector elements, it then follows that the local structure of the
gyroscope network, combined with some homogeneity of this local structure across
the lattice, is all that is needed to determine the Chern number.

This situation is reminiscent of electronic glasses in which the local binding
structure gives rise to a local ‘gap.’ Under weak assumptions of homogeneity, this
gap can be shown to extend to the whole system [145, 146]. The case with topology
is similar: the next-nearest neighbor angles in a network’s cell open a local ‘gap’ by
breaking time reversal symmetry.
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Fig. 6.3 Alternative local decorations allow control of the edge mode chirality. (a–c), Kagomiza-
tion of an arbitrary point set yields edge modes in gyroscopic networks with the opposite chirality
as Voronoized networks. (d–e), Another local decoration of the initial point set allows for multiple
gaps with either chirality. The amorphous ‘spindle’ network has two gaps with chiral edge modes:
blue and red curves overlaying the density of states, D(ω), mark the excitation amplitude as a
function of frequency for the two cases. In panels (b) and (c), the spring frequency �k = k�2/Iω0
is set equal to the gravitational precession frequency, �g , while in (e), we chose �k = 7�g to
broaden the lower (clockwise) mobility gap

6.5 Spectral Flow Through Adiabatic Pumping

For amorphous networks, we make the correspondence between the bulk topological
invariant and the edge states on the boundaries by considering a gyroscopic sample
shaped into an annulus (c.f. [133, 151, 152]). Adiabatically tuning the interactions
between pairs of gyroscopes along a radial cut (by adding a fixture to one gyro from
each pair) pumps each edge mode into a neighboring mode. If we consider all states
below a gap cutoff frequency, the process—which mimics the effect of threading a
magnetic field through an electronic annulus’ center—trades one state localized on
the outer boundary for an extra state on the inner boundary of the annulus. Below,
we connect this phenomenon to the real-space Chern number (Eq. 6.1).
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Fig. 6.4 The projection
operator is local. The
projector has elements Pij

connecting site i to site j that
fall off exponentially.
Different colors represent
different underlying point sets
and decorations, labeled
above. All networks, whether
amorphous or lattice-based,
follow the same trend
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Fig. 6.5 Connecting adiabatic charge pumping to the Kitaev measure. In the bulk, the insertion
of magnetic flux leads to an accumulation of charge on the inner boundary (balanced by missing
charge far away). If the sample is an annulus, the flux insertion creates an extra state on the inner
boundary (and removes a state on the outer boundary)

Looking ahead, we wish to establish a bulk-boundary correspondence—namely,
that the number of chiral branches connecting two bands is equal to the real-space
generalization of Chern number given by Eq. 6.1. We accomplish this by adiabatic
pumping the spectrum of the gyroscopic networks such that an additional state is
transferred to the interior boundary of an annulus. The accumulation of charge at
the site of magnetic flux insertion is very similar to the occupation of an additional
state localized to the inner boundary of an annulus. As shown in Fig. 6.5, threading
magnetic flux in the bulk differs from threading flux through an annulus only by the
absence of material in the immediate vicinity of the flux insertion site. As magnetic
flux is inserted in the center of an annulus, the sample’s spectrum will deform. If the
Fermi level lies in a gap such that the Chern number of the lower band(s) is ν = +1,
threading a quantum of magnetic flux leads to one additional occupied state on the
inner boundary (and one state lost on the outer boundary). This is analogous to an
accumulation of charge at the insertion site (balanced by missing charge far away).

For amorphous networks, we know that the Chern sum is equal to the charge
accumulated when a quantum of magnetic flux is inserted, as shown in the proof
of the previous section. By introducing a hole at the site of insertion, we will now
see that the real-space Chern number is also equal to the number of edge states that
accumulate on the inner boundary. This argument shows the connection between the
bulk topological invariant and the edge states on the boundaries by pumping edge
states across the gap as an effective magnetic flux is introduced in the system [133,
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151, 152]. The effective magnetic flux is supplied by a tunable alteration in the
connection between a small subset of gyroscopes in the system, which introduces a
phase shift in the interactions. We study the spectrum as we tune this effective phase
shift.

In the electronic case, adiabatically threading a magnetic field through the center
of an annulus of Chern insulator will alter the number of chiral states on the inner
and outer boundaries if the Fermi level lies in the gap. Formally, this is accomplished
by introducing a phase shift in the hoppings for any path enclosing the annulus’
center arising from the vector potential from the threaded flux. The process will
deform the system’s energy spectrum such that gap states confined to one edge will
rise in energy, while states confined to the opposite edge lower in energy. Once a full
flux quantum is threaded, the spectrum returns to its original form, but in the process,
ν chiral edge states localized to one boundary are lost to the top band while ν states
are gained from the bottom band. Meanwhile, on the opposing boundary, ν chiral
edge states are gained from the top and ν are lost to the bottom band (see Fig. 6.6c).
This implies that on each edge, there are ν chiral channels connecting the two bands,
along which states are pumped, establishing a connection between a measure of the
boundary and one of the bulk [153]. There are ν states (charges) pumped to the
inner boundary; we will see that this is equal to the real-space Chern number (given
by Eq. 6.1) by the proof given in Appendix D.

Below, we construct an analogous argument for our amorphous systems. This is
possible since the argument does not require a periodic lattice in the radial direction
of the annular sample, provided the Chern number can be measured for the bulk
without periodicity. By computing the spectral flow of our amorphous systems, we
establish a connection between existence of our edge states and the bulk Chern
number.

Consider an annular sample, such as that shown in Fig. 6.6a. The phase shift
discussed above corresponds to an alteration in the interactions, such that the force
of one gyro on its neighbor is altered by a rotation

F ∼ ψi − ψj → ψi − ψje
iθtwist . (6.2)

To give a concrete picture of how this could be built in an experiment, we
envision attaching an extensible ring to a small number of gyroscopes, as illustrated
in Fig. 6.6b. Since we are mimicking the effects of a gauge field, we are free to
concentrate the modifications to the spring attachments along a radial cut of the
annulus, shown as a blue dashed line in Fig. 6.6a, effectively supplying a ‘twisted’
boundary condition to the system along the cut of the annulus.

This equation of motion is then modified as follows: if the few gyroscopes just
above the cut are denoted as a set, A, and their neighbors just below the cut are
denoted as B, we have

iψ̇i = −�gψi − �k

2

⎡
⎣ ∑

j∈NN(i)

(χi − φj ) + e2iθij (χ̄i − φ̄j )

⎤
⎦ , (6.3)
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Fig. 6.6 Adiabatic pumping in an amorphous gyroscopic metamaterial. (a) An annulus of
gyroscopes is cut along a radial line (blue dashed line). The severed connections are rejoined,
but attached to an extensible ring on the gyroscopes immediately above the cut (built out of rigid
rods using a Hoberman ring). The center of the ring is fixed to be directly below the gyroscope. (b)
The point at which the new attachment connects to the gyroscopes immediately above the cut is
given by the gyroscope’s current displacement rotated by θtwist. (c) The gap states in the spectrum
localized to the inner boundary of the annulus rise in frequency as θtwist increases, while the states
on the outer edge decrease. Once the attachment point ‘leads’ the gyro’s displacement by 2π , the
spectrum has returned to its original form, but each edge state has been pumped into an adjacent
state

where

φj =
{

ψje
iθtwist j ∈ A and i ∈ B

ψj j �∈ A or i �∈ B,
(6.4)

χi =
{

ψie
iθtwist i ∈ A and j ∈ B

ψi i �∈ A or j �∈ B,
(6.5)

and �g and �k are the gravitational precession and spring frequencies, respectively.
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As the angle swept out by the attachment point is increased slowly from zero to
2π , the eigenfrequencies of the system evolve. Figure 6.6c shows the trajectories
that they follow. The frequencies of states localized to the outer boundary decrease
in frequency (green curves in Fig. 6.6c), while states localized to the inner boundary
increasing in frequency (violet curves in Fig. 6.6c). Once the attachment point has
extended a full 2π radians, the system is identical having no ring at all. Yet, if we
had initialized the system in a state localized to the inner (outer) boundary, the final
state would be oscillating in a normal mode with a higher (lower) frequency than the
initial state. As shown in Fig. 6.6c, the nth edge state on the inner boundary evolves
to the (n + 1)th edge state.

If we consider all states below a gap cutoff frequency, these states gain an extra
state on the inner boundary and lose one state on the outer boundary. The difference
between the number of final and initial states on the outer boundary, (n − 1) − n =
−1, is precisely the Chern number of the sample’s top band, since it counts the sets
of states that connect the lower to the upper band.

Like the insertion of flux in the bulk, the twisted boundary condition creates
the mechanical analogue of an electromotive force, directing energy in the radial
direction due to the transverse (Hall) conductance, σxy . Since σxy is proportional to
the Chern number, the two descriptions are equivalent. The result of the calculation
is that ν states are transported to the site of flux insertion. Here, we transport ν states
to the inner boundary, and the two descriptions are equal in the limit that the inner
boundary is small (see Fig. 6.5).

6.6 Broken Time Reversal Symmetry

As in the lattice case, a mobility gap becomes topological due to time reversal sym-
metry breaking: bond angles in these networks are not multiples of π/2 (c.f. [17]).
We can probe this mechanism by eliminating a gap’s topology. Alternating the
gravitational precession frequency, �g , of neighboring gyroscopes in a network
mimics the breaking of inversion symmetry on a local scale, an effect which
competes against the time reversal gap opening mechanism. When the precession
frequency difference between sites is large enough, this competing mechanism
eliminates edge modes, triggering a transition to a ν = 0 mobility gap, shown
in Fig. 6.7a.

Equipped with these insights, we can easily engineer networks which are
heterogeneous mixtures of multiple local configurations. Figure 6.7b–d highlight
some results of combining Voronoized and kagomized networks or encapsulating
one within another. Because the Voronoized and kagomized networks share a
mobility gap, excitations are localized to their interface, offering a method of
creating robust unidirectional waveguides, such as the sinuous waveguide shown
in Fig. 6.7b. Figure 6.7c demonstrates that additional topological mobility gaps at
higher frequency in the kagomized network allow bulk excitations to be confined
to an encapsulated Voronoized region. Random mixtures of the two decorations,
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Fig. 6.7 Transition of a topological amorphous network to the trivial phase, and binary mixtures
of Voronoized and kagomized networks. (a) Locally breaking inversion symmetry by increasing
and decreasing the precession frequencies of alternating gyroscopes competes with broken time
reversal symmetry, triggering a transition to the trivial phase, with no edge modes. The precession
frequency splitting, �, is tuned so that �A

g = �k(1 + �) and �B
g = �k(1 − �). (b) Edge modes

are localized at the interfaces between kagomized and Voronoized networks, permitting sinuous
channels for the propagation of unidirectional phonons. (c) Excitations of a Voronoized region
nested inside a kagomized network remain confined when the excitation frequency is in a mobility
gap unique to the kagomized network. (d) When kagomized elements are randomly mixed into a
Voronoized network, the sign of the local, spatially-resolved Chern calculation is determined by
the local geometry, with excitations in a mobility gap biased toward the interface of the two clusters

shown in Fig. 6.7d, demonstrate heterogeneous local Chern number measurements,
with mobility-gap excitations biased toward the interfaces between red and blue
regions.

As our networks are structurally akin to liquids, they support topological modes
in the absence of long range spatial order. The details of the underlying point set are
not essential, and neither are the details of the local Voronoization or kagomization
procedures. We verified this by replacing the centroidal construction [144] with a
Wigner–Seitz construction. Beyond mechanical materials, we find similar results in
electronic tight binding models of amorphous networks, underscoring the generality
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of the finding. In particular, we find similar behavior in an amorphous electronic
tight binding model using the model Hamiltonian

H = −t1
∑
〈ij 〉

c
†
i cj − t2

∑
〈〈ij 〉〉

e−iφij c
†
i cj , (6.6)

where 〈ij 〉 denotes nearest neighbors ij and 〈〈ij 〉〉 denotes pairs of next-nearest
neighbors (NNN). The parameter t2 tunes the strength of all NNN hoppings, and φij

controls the degree to which the hopping i → j breaks time reversal symmetry (by
tuning the imaginary term). We find that topological edge modes arise in amorphous
tight binding networks, as shown in Fig. 6.8. The main result is indifferent to the
choice of NNN hopping dependence on geometry, so long as it breaks time reversal
symmetry.

Fig. 6.8 Edge modes in an
amorphous electronic Chern
insulator. Topological edge
modes arise for an electronic
tight binding model of the
form given by Eq. 6.6. (a)
Topological edge modes arise
in amorphous networks in
which φij = ±π/2 for all
clockwise (counterclockwise)
hoppings. Similar behavior
results from choosing φij to
depend on the geometry of
the network: in panel (b)
φ = 2θnml , where θnml is the
bond angle at vertex m

connecting site n to its NNN
l. Panels (c) and (d) show
nearly identical
spatially-resolved Chern
number measurements that
confirm the edge modes’
topological origin
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6.7 Conclusion

This study demonstrates that local interactions and local geometric arrangements
are sufficient to generate chiral edge modes, promising new avenues for engineer-
ing topological mechanical metamaterials generated via imperfect self-assembly
processes. Such self-assembled materials could be constructed, for instance, with
micron-scale spinning magnetic particles. Since our methods bear substantial
resemblance to tight-binding models, our results also find direct application not only
to electronic materials, as we have demonstrated, but also to photonic topological
insulators [117], acoustic resonators [129, 139], and coupled circuits [125].



Chapter 7
Conclusions and Outlook

In this work, we have demonstrated two ways in which geometry governs the
mechanics of materials. Here we offer avenues for further investigation and ask
questions beyond the scope of this thesis.

In Part I, we found that substrate curvature guides material failure, both in
macroscopic sheets draped on curved surfaces and in nanoparticle sheets stamped
to lattices of spheres. Several extensions of the work in Chap. 2 remain:

• Our perturbation theory treatment of crack paths in sheets draped on curved
surfaces could be improved by including higher order terms of the Williams
expansion for the stress. This could enable a more accurate perturbation theory
approach, at the cost of increased computational complexity.

• The phase field model we used extended the KKL model—perhaps the simplest
phase field model for fracture—to curved surfaces. Extending our phase field
model to include thermodynamic consistency and modeling the process in its
fully three dimensional form would increase the accuracy of the simulations,
perhaps also leading to interesting physics [154].

• In ongoing work, we have begun to explore oscillatory crack instabilities in thin
elastic sheets triggered by curvature.

• We also have begun exploring the ways in which curved surfaces alter crack-
crack interactions.

• Our treatment throughout Chap. 2 was entirely quasistatic: the stress field is
allowed to rearrange and relax at each increment of crack extension. How-
ever, under extreme circumstances, cracks in elastomers can travel at speeds
comparable to the shear and longitudinal wave speeds, requiring a dynamic
description [155, 156]. Are there general principles to be learned by studying
the dynamics of fracture on curved surfaces?

• While we have studied the effect of given Gaussian curvature distributions on
crack paths, a holistic approach to engineering cracks should also include a study
of how to design curved surfaces in order to trigger desired crack behaviors.

© Springer Nature Switzerland AG 2020
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Inverting the problem to design fracture patterns—using evolutionary algorithms,
for instance—remains an open challenge.

Chapter 3 presented experimental and theoretical results on stamping nanopar-
ticle sheets to lattices of spheres. Changing the radius of curvature of the spheres
enabled us to tune through two orders of magnitude in the corrugated substrate’s
Gaussian curvature, dialing through three regimes of resulting nanoparticle mor-
phology. Several open questions and future goals arise for this work:

• What are the dynamics of the nanoparticle sheet’s rigidity during the stamping
process? As water vaporizes, leaving the dodecane-thiol matrix, how does the
sheet’s elastic modulus evolve, and how does its strengthening correlate with
stamping progress and material failure? Does the material create dislocations
while water is still present in the matrix, which would lower the energetic barrier
for dislocation mobility?

• Ongoing and future work here will establish a self-consistent analytical formula-
tion of the elastic problem with strong pinning forces adhering the elastic sheet
as it stamps onto a substrate.

• A long term vision for this avenue of research would establish the strengths and
weaknesses of using substrate curvature with adhesion as a tool for guiding and
patterning both elastic deformation and material failure.

In Part II, we found that simple networks of interacting gyroscopes readily
give rise to topological phononic band structures. In Chap. 4, we studied a real-
time topological phase transition experimentally. Chapter 5 extended this analysis
to many lattices, including lattices whose band structures can be tuned through
phase transitions, either through bond-length-preserving deformations of the lattice
or through variations of the bond strengths or pinning strengths. Beyond periodic
systems, we discovered in Chap. 6 that amorphous networks—structurally akin to
liquids or glasses—support topologically nontrivial band structure. These systems’
band topology is measured through a real-space generalization to the Chern number.
The studies of Chaps. 4, 5, and 6 prompt as many questions as they answer.

• Ongoing work hints that the universality class of the topological Anderson
insulator transition is consistent with that expected for electronic insulators in
symmetry class A. Are there qualitative differences in the renormalization group
flow between the gyroscopic case from the two band tight-binding model?

• Additional ongoing work shows that solitons and dark solitons are possible in
these systems. Can these be realized experimentally? What distinguishes solitons
in a gyroscopic system from solitons of the nonlinear Schrödinger equation?

• What sets the position band gaps? In the absence of translational symmetry, how
can one know a priori if a mobility gap will be present?

• Can Z2 topological insulators be built from gyroscopic components?
• Can floquet topological insulators, with time taking the place of one or more of

the spatial dimensions, be constructed from gyroscopes?
• If we stack degrees of freedom, such as by building double gyroscopic pendula,

what interesting behaviors can arise?
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• If we link gyroscopes in 3D using stacks of coupled lattice planes, can we build
Weyl semimetals?

• The dynamical laws of gyroscopic networks have symplectic structure. Looking
beyond topological behavior, what consequences does this structure have for our
metamaterials?



Appendix A
Creation of Surfaces of Revolution
with Prescribed Gaussian Curvature

In Chap. 2, we built surfaces of prescribed Gaussian curvature. In this Appendix,
we demonstrate our approach to building a surface and construct a pseudospherical
patch as an example.

A.1 Governing Equations

Choosing a semi-geodesic parametrization of the surface’s metric

g =
(

1 0
0 φ2

)
, (A.1)

we emanate geodesics u from a line v, as illustrated in Fig. A.1. With this choice of
metric form, if we walk along a geodesic of constant v, our path length s varies with
the parametrization of the curve t . For convenience, we set

(
ds

dt

)2

= Eu̇2 = E = 1 (A.2)

where we have chosen u̇ ≡ du
dt

= 1 and ds/dt = 1, and where E ≡ xu · xu. The
lines of curvature of a surface of revolution are its meridians and parallels (Fig. A.1).
For our specific surface, we can choose the function φ appearing in the metric
(Eq. A.1) to be independent of the parallel, v, so that φ = φ(u). An expression
for the Gaussian curvature on the surface gives

G = −φuu

φ
(A.3)
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Fig. A.1 A surface of
revolution with prescribed
Gaussian curvature is
parametrized by geodesic
length u and v along the
meridian and parallel
intersecting P . Here, (u)

gives the radial distance along
the axis of the surface of
revolution, while �(u)

determines how quickly a
path marches in the ẑ

direction with respect to its
path length

and the compatibility relations (Codazzi’s equation) for the second fundamental
form, b, are

∇abβγ = ∇βbαγ . (A.4)

Below, we solve for this surface using only Eq. A.3 and conditions on the curve v.

A.2 Equations for the Surface of a Pseudosphere

As an example, we build a surface of revolution with constant negative Gaussian
curvature, known as a pseudosphere. For any semi-geodesic parametrization, we can
express the curvature as Eq. A.3. Setting G = −1 to build a pseudosphere yields

φuu = −φG = φ (A.5)

with the solution

φ = Aeu + Be−u. (A.6)

For our choice of parametrization of this surface, φu(u = 0) = 0. That is, we choose
u = 0 to correspond to the minimal radius from the axis of rotation to the surface,
which mandates

φ = Aeu + A−u. (A.7)

At u = 0, ds ≡ dθ sets the scale of θ :

φ(u = 0) = 1 (A.8)
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ds2 = φ2dθ2
∣∣
u=0 (A.9)

which results in φ = cosh(u).

For our surface, we have a real-space surface vector (Fig. A.1)

r = ρ̂(θ) + �ẑ (A.10)

ru = d

du
ρ̂(θ) + d�

du
ẑ (A.11)

rv ≡ rθ = θ̂ (A.12)

where we are setting  ≡ φ(u) and noting that θ̂ = dρ̂/dv. In terms of the real
space functions, our metric reads

g =
(

d�
du

2 + d
du

2
0

0 2

)
. (A.13)

In light of Eq. A.1, set d�/du =
√

1 − (dφ/du)2 and  = φ so that we recover
the same form for the metric in u, v coordinates:

g =
(

1 0
0 φ2

)
. (A.14)

In real space coordinates, then, we find

r = cosh(u)r̂(v) + �(u)ẑ, (A.15)

�(u) =
∫ u

0

√
1 − sinh2(u)du′ (A.16)

where, for instance, r̂(v) = (cos(v), sin(v), 0). Note that this embedding must have
a cusp somewhere, and in fact it has two. These points are where φu = 1. The
second fundamental form is no longer physical there, and one radius of curvature
diverges while the other is zero.

A.3 Obtaining Geodesic Circles

Now that we have a surface, we construct a geodesic circle around the point P ,
as shown in Fig. A.2. A geodesic circle is a curve for which the distance along a
geodesic from some point (the ‘center’) to any point on the curve is equal. This
defines a natural boundary for a circular elastic disk stretched onto a curved surface
in Chap. 2, and so we use geodesic circles as our boundaries. Here, we show our
method for constructing a geodesic circle.
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Fig. A.2 Coordinate system
for the surface is obtained in
polar coordinates (t, η) about
point P . Due to the isotropic
nature of the surface, the
metric does not depend on η

For a new coordinate system, we think intuitively of a polar coordinate system
with a ‘radial’ coordinate t and an angular variable η. We seek a metric of the form
of Eq. A.1 again in this new coordinate system, and we reuse the variable φ in this
new context. Since φ(u) is a measurement of the ‘circumference’ of a geodesic
circle, we see intuitively that locally near our point, we have a vanishing radius, so
the geodesic circle must have the property that as t → 0,

φ(t → 0) = 0. (A.17)

We also have a smoothness criterion: as u increases, the circumference of the
geodesic circle must grow as the circumference of a planar circle grows. In other
words, the surface is locally flat, so for u → 0,

φt (t = 0) = 1. (A.18)

Combining Eqs. A.17 and A.18 with Eq. A.5 (whose solution is Eq. A.6), we obtain

φ(t) = sinh t. (A.19)

The previous calculation of the new metric form in terms of t, η gives the metric
in polar coordinates around point P . We want to find geodesics on the surface
emanating ‘radially’ (η = const) from P in terms of the coordinates u, v of our
surface. To obtain an ODE giving the geodesic circle in terms of u(t), v(t) for
each η, we use an expression for the geodesic curvature which we derive below,
along with our surface metric φ(u(t)), and set it to zero along geodesics emanating
from the point we have chosen. We also choose the parametrization ‘speed’ of the
emanations ds

dt
= 1, so

(
ds

dt

)2

= u̇2 + φ2(u)v̇2 = 1 (A.20)
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Rewriting, we can express v̇ in terms of u to look for an ODE for u,

v̇ =
√

1 − u̇2φ−1. (A.21)

We additionally note that the Christoffel symbols, which we will need, are

�1 =
(

0 0
0 −φφu

)
�2 =

(
0 −φu

φ−φu

φ
0

)
(A.22)

The definition of geodesic curvature is [157]

κg =
[
�2

11∂tu
3 + (2�2

12−�1
11)u̇

2v̇ + (�2
22−2�1

12)u̇v̇2−�1
22v̇

3 + u̇v̈−üv̇
]√

EG̃−F 2

(A.23)

where F = xu · xv and G̃ = xv · xv . The tilde distinguishes the fundamental form
G̃ from the Gaussian curvature, G. Here, we will build geodesics emanating from a
point to parametrize our surface. By definition, the geodesic curvature κg vanishes
along these geodesics. This allows us to set the factor in brackets in Eq. A.23 to
zero. Additionally, the symmetry �i

12 = �i
21 allows us to write

κg ∝ üv̇ − u̇v̈ + v̇( u̇ v̇ )�1
(

u̇

v̇

)
− u̇( u̇ v̇ )�2

(
u̇

v̇

)
. (A.24)

Now we use Eq. A.24 to find the ODE of the geodesic circle. Since factors of v̇v̈ are
more convenient than factors of v̈ alone, we multiply Eq. A.24 by v̇ and set this to
zero

0 = v̇κg = üv̇2 − v̇v̈u̇ − v̇4φφu + 2
φu

φ
v̇2u̇. (A.25)

This gives the result

0 = ü + φu

φ

(
−4u̇4 + 5u̇2 − 1

)
. (A.26)

Since we want to emanate the geodesics at angles η, the initial conditions are

u̇|t=0 = cos(η) (A.27)

v̇|t=0 = sin(η) (A.28)

for each η, and we choose point P as u(t = 0) = 0, v(t = 0) = 0, as
shown in Fig. A.2. These equations are sufficient to generate patches of a surface
of revolution with prescribed Gaussian curvature, bounded by geodesic circles.



Appendix B
Stretching Energy in Stamped Sheets
on Spherical Surfaces

Here we address the energy scaling in a sheet stamped to the cap of a sphere. With
reference to Chap. 3, we examine the particular case where the sheet is strongly
pinned to the sphere as it makes contact, and we discuss how this situation differs
from the analogous situation without pinning.

The integrated Gaussian curvature over a spherical cap scales as

2π

∫ Rθa

0
Gr dr ∼ R2θ2

a /R2 = R0θ2
a , (B.1)

where θa is the maximum polar angle included in the cap, R is the radius of the
sphere, and G = 1/R2 is the Gaussian curvature. A sheet conformed to such a
surface experiences geometric frustration: it cannot fully relax due to the presence
of the curved substrate. The geometric frustration on the spherical cap is also the
source of elastic energy in an annulus of the sheet that has not yet conformed to
the sphere. In particular, let us consider the portion of the sheet near θa which is
just about to adhere to the sphere, about to become pinned in its current state of
strain. The strain at θa scales with the integrated Gaussian curvature of the spherical
cap [14, 43]:

ε ∼
∫ Rθa

0
Gr dr ∼ R0θ2

a . (B.2)

As a result, after many annuli have adhered, each corresponding to a ever-larger
θa , we expect ε ∼ θ2. Linear elasticity dictates that the stress scales similarly as
well—σ ∼ Yε ∼ Yθ2, where Y is the stiffness—and thus the stretching energy
density Es = 1

2σε ∼ Yθ4. The total stretching energy contained in a region of

nanoparticle sheet up to θa would then scale as Es = 2π
∫ Rθa

0 Esrdr ∼ YR2θ6
a .

Sequential pinning of the nanoparticle sheet ensures that this is true irrespective of
the maximum angle subtended by the sheet.
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This analysis contrasts with the expectation for an equilibrated elastic sheet
without pinning. Without pinning, the energy density rearranges in such a way as to
be non-monotonic in the polar angle θ on the sphere, with some sensitivity to the
boundary conditions. The stress is greatest on the apex of a sphere without pinning,
in stark contrast to the case with sequential pinning, for which the stress vanishes
at the cap. Solving for the unpinned situation exactly results in an integrated energy
density which is roughly quadratic in polar angle: E = 2π

∫ r

0 E r dr ∼ YR2θ2,
with corrections of order O(R2θ4). This difference highlights the distinct character
of sequential adhesion to a substrate seen in the nanoparticle system.



Appendix C
Symplectic Structure of Gyroscopic
Motion

A symplectic structure underlies the equations of motion for coupled gyroscopes
suspended from fixed pivot points. When the spinning speed is large, the variations
in kinetic energy become negligible as the amplitudes of nutation vanish. Therefore,
the energy can be entirely captured by the potential energy stored in the interactions
(springs, for example) between gyroscopes. Consider a gyroscope with hanging
orientation vectors �n̂ = (x, y) subjected to forces acting at �n̂. Its motion is
governed by

Iω0ẋ/� = −�Fy = �
∂U

∂yi

(C.1)

Iω0ẏ/� = �Fx = −�
∂U

∂xi

, (C.2)

where I is the principal moment of inertia, ω0 is the spinning speed of the
gyroscope, U is the potential energy stored in the springs connecting the gyroscope
to its neighbors, �F = −�∇U is the net force. Now we define

q = √
Iωix/� (C.3)

p = √
Iωiy/�, (C.4)

so that Eqs. C.1 and C.2 are the same as Hamilton’s equations:

q̇ = ∂U

∂p
ṗ = −∂U

∂q
. (C.5)

Here we show that this structure has consequences for computing band topology
in gyroscopic lattices, which is encoded in the Chern number. To calculate the
Chern number for gyroscopes on a lattice, we first find the band-structure using
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the linearized equation of motion. For each site in a unit cell, we assume a solution
which is composed of clockwise and counter-clockwise propagating modes:

ψp = ψR
p ei(�k·�x−ωt) + ψ̄L

p e−i(�k·�x−ωt), (C.6)

where p indexes the n sites in a unit cell. The resulting equations can be expressed
as the 2n × 2n dynamical matrix which is a function of the wave vector, �k. This
dynamical matrix resembles hopping model matrices seen for lattice calculations in
quantum mechanics.

Diagonalizing the dynamical matrix yields 2n frequencies of the dispersion
bands at each value of �k. The eigenvalues come in positive/negative pairs, but each
pair represents the same oscillation in real space. Because of this redundancy, we
discuss only the positive eigenvalues for each system. At each value of �k, each mode
has a corresponding eigenvector,

|uj (�k)〉 =
(
ψR

1 , ..., ψR
N ,ψL

1 , ..., ψL
N

)
(C.7)

characterizing the amplitudes and phases of the N gyroscopes’ collective motion.
The symplectic symmetry of the dynamical matrix enables the eigenstates to be
orthogonalized such that

〈ui |uj 〉 =
∑
α

ψR
i,α ψR

j,α − ψL
i,α ψL

j,α (C.8)

= δij sign(ωj ) (C.9)

where α runs over each gyroscope and ωj is the oscillation frequency of |uj 〉.
The Chern number of each band is given by an integral of the Berry curvature,

F(�k):

Cj = 1

2π

∫
d2k Fj (�k)

= i

2π

∮
Aj(�k) · dk,

(C.10)

where Aj(k) = i〈uj |∇kuj 〉. In this work, Chern numbers are calculated numerically
using the phase-invariant formula [132]

Cjdx ∧ dy = i

2π

∫
d2k Tr[dPj ∧ PjdPj ], (C.11)

where Cj is the Chern number of the j th band, ∧ is the wedge product, and Pj is
the projection matrix defined for our system as

Pj = |ψα〉〈ψα|Q sign(ωj ), (C.12)
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where

Q =
(
In 0
0 −In

)
. (C.13)

The factors of Q sign(ωj ) arise from the symplectic structure of our equations
of motion. Note that in previous studies of gyroscopic lattices, the projector
was defined using a simple outer product of bands which were not orthonormal.
Although this does not affect any of the computed Chern numbers of the bands, it
leads to a non-physical distribution of Berry curvature in those bands. By using
the symplectic formulation, the correct Berry curvature distributions are readily
obtained.



Appendix D
Interpretation of Real-Space Chern
Number

The Chern number formula of Eq. 6.1 can be intuitively understood by mapping our
gyroscopic metamaterial to a model of electrons tunneling between sites in a 2D
material [17]. In this interpretation, probing the Chern number by summing over all
states below a selected frequency corresponds to measuring the Chern number of an
electronic system with all electronic states filled below the selected energy. In the
electronic system, the Chern number is proportional to the Hall conductivity, and
the projection operator element, Pij , is

Pij =
∑

n∈band

ψn(xi )ψ
∗
n (xj ), (D.1)

where ψn is the wavefunction with energy En and the sum is over all the states with
energies below the Fermi level. |Pij |2 is then the correlation in electron density at
the two points xi and xj when all the states with energies below the Fermi energy
are occupied.

Two salient aspects to the integer quantum Hall effect are the current induced as
a response to an electric field,

J = ν
e2

h
z × E, (D.2)

and, secondly, the response to a magnetic field applied at a point in the sample. The
latter takes the form of charge accumulation at the site of application according to

ρ = ρ0 + ν
e2

h
Bz. (D.3)

In the above equations, z is the normal vector to the plane, Bz is the magnetic field
in that direction, ρ0 is the charge density before the magnetic field is applied, and ν

is an integer. If the system is periodic, ν is the Chern number of the occupied bands.
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It can be seen that Eqs. D.2 and D.3 are consistent by noting that the continuity
equation follows from Faraday’s law.

Equation D.3 can be understood intuitively as follows. Turning on a field Bz in
a small region induces an electromotive force that pulls charge towards the region
according to the Hall effect. A local field applied to an insulator cannot cause charge
to build up in a given area of the material. This can be understood by appealing
to perturbation theory: a local field merely mixes the initial state with other states
that have the same number of particles, and thus cannot change the charge density.
However, our point-like magnetic field is not a local field since the vector potential
of this field decays to infinity slowly, as 1/r . Therefore, turning on a magnetic field
in a small region can excite dipole pairs all the way out to infinity, creating a net
charge in the small region where the magnetic field is nonzero. If the sample is of
finite size, the compensating, opposite charge is confined to the boundary of the
sample.

In this section, we first show how the projection operator responds to a general
perturbation of the Hamiltonian. We then show that the Chern number as expressed
in Eq. 6.1 is exactly the proportionality constant between the amount of charge
that accumulates at the site of a point-like magnetic field and the strength of that
magnetic field.

Start first with a generic perturbation, V (r), which could take the form of an
induced potential energy or the contribution to the Hamiltonian due to a magnetic
field. If the unperturbed wavefunctions are ψn(r), then the perturbed wavefunctions,
χn(r), are given by

χn(r) ≈ ψn(r) +
∑
m

〈m|V |n〉
En − Em + iη

ψm(r), (D.4)

where |n〉 = ψn(r) is the state with energy En and η is an infinitesimal real number.
Consider now a network of sites xi on which electrons may hop, so that we

replace r by the label of a site i or j . The projection onto a band of energies is then

Pij ≡
∑

n∈band

χn(i)χ
∗
n (j), (D.5)

so the change in the projection is

�Pij =
∑

all m,
n∈band

〈m|V |n〉
En − Em + iη

ψm(i)ψ∗
n (j) + c.c., (D.6)

where c.c. signifies the complex conjugate. A singularity in the denominator from
terms for which Em = En would lead to a long-range sensitivity in this system.
However, the terms in which Em is in the occupied band cancel out among one
another so there is no longer a singularity:
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�Pij =
∑

m/∈band,
n∈band

〈m|V |n〉
En − Em

ψm(i)ψ∗
n (j) + c.c. (D.7)

We have dropped the iη term by assuming that our Fermi level is in a band gap:
the two nearest energies (maximum m in a band, and minimum n above it) are
sufficiently far apart. The cancellation of terms in which m is in the occupied band
can be seen to result from the Pauli exclusion principle: a perturbation cannot cause
transitions into a state that is occupied already, so there are only contributions from
terms in which Em is in the empty bands.

Now let us see that there are only short-range effects of a perturbation when there
is no singularity. At first, Eq. D.7 may appear to have long-range contributions, at
least in an ordered system, because then the wavefunctions are delocalized (they
extend to infinity). However, summing over all the energies in the band, Eq. D.7
becomes a Fourier transform of a product of wavefunctions, and the Fourier
transform of a smooth function decays exponentially with distance.

We are interested in how the density of the system changes. The charge at site
i is simply the elementary charge, e, times the sum of the probabilities for all the
occupied states to be at that site, which is just ePii .

Specializing Eq. D.7 to the case where the system is described by a hopping
model lets us write Hij = −tij , which is the amplitude for hopping from one site to
another. This case is particularly similar to our discrete gyroscopic metamaterials.
A magnetic field is described by adding phase factors, H ′

ij = −tij e
iφij , where the

phases are chosen so that for a triangle made up of three sites, the magnetic flux
through the triangle is the sum of the three phases (up to a fixed proportionality
constant). If the phases are small, the magnetic field perturbation’s matrix elements
are Vij ≈ −itij φij . Substituting this into the expression for �Pii gives an
expression for the charge density. We would like to see that this expression is
quantized. Somehow, the dependence on t and E must cancel out and give an integer.
In fact, the t matrix can be written in terms of the energies by inserting a complete
set of states:

tij = −〈i|H |j 〉 = −
∑

Enψn(i)ψ
∗
n (j), (D.8)

where here |i〉 denotes the wavefunction at site i. Denoting the number of charges
at site i as n(i) = Pii , this leads to

e�n(i) = 2e Im

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
j,k,

e/∈band,
e1 /∈band,
b∈band

φjkEe1ψ
k∗
e1

ψ
j
e1ψ

j∗
e ψi

eψ
i∗
b ψk

b

Ee − Eb
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+
∑
j,k,

e/∈band,
b∈band,
b1∈band

φjkEb1ψ
k∗
b1

ψ
j
e1ψ

j∗
e ψi

eψ
i∗
b ψk

b

Ee − Eb

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (D.9)

where the b’s are summed over states in the band of energies, and the e’s are summed
over the “excited" states outside the band. In the above expression, we have denoted
ψj (i) as ψi

j to streamline the notation.
Let us define θijk = φij+φjk+φki which is the magnetic flux through the triangle

ijk, times e/h̄. In the above sum, we can write φjk = θijk − φij − φki . Then, using
the fact that φij = −φji , all the terms depending on φ’s cancel out. Physically,
this must be so because the charge response should depend only on the physical
magnetic field and not the vector potential. Proper substitution and cancellations
result in an expression which is the same as Eq. D.9 but with φjk → θijk . The
change in charge at site i decays if the magnetic field is concentrated far from i:
the only triangles passing through i that enclose the magnetic field would have long
sides, with corresponding projector components which are exponentially small.

Now, the response cannot depend on the dispersion of the states, only on which
states are included in the band and which are not. A change in the dispersion of the
bands causes a local effect (unlike the non-local effect of a magnetic field due to
its vector potential), so the net charge cannot change. This observation allows us to
assume that Eb = −1 for every state in the band and Ee = 1 for every state that is
not in the band. For this particular dispersion, we get a simple response in terms of
the projection operators:

e�n(i) = 2eIm
∑
jk

PijPjkPkiθijk. (D.10)

Equation D.10 highlights the locality of the response because the amplitude of the
projectors decay exponentially with distance.

The portion of Eq. D.10 which is of interest is the ratio of the net charge, Q =
e�n, to the net magnetic flux. Consider now the special case where the magnetic
field is all passing through one point, so that θijk = ±B(e/h̄) if the triangle ijk

encloses the magnetic flux and zero otherwise. The sign depends on whether the
triangle is clockwise or counterclockwise. With a point-like magnetic field, the ratio
of the net charge to the magnetic flux is

Q

B

= 8πe2

h
Im

∑
triangles ijk

PijPjkPki, (D.11)

where the sum is over only the triangles that surround the flux line in a counter-
clockwise way. (Since the clockwise paths are composed of the same points in the
opposite order, the clockwise and counterclockwise contributions are equal.)
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Fig. D.1 Contributions to the real-space Chern number which differ in geometry between Eqs. 6.1
and D.11. (a) Equation 6.1 includes terms which do not enclose the vertex shown on the left,
while Eq. D.11 includes terms in which two of the vertices i, j, k lie in the same region. We find
that these terms balance, so that the expressions are equivalent. (b) Adding terms corresponding to
two additional configurations aids in showing that Eqs. 6.1 and D.11 are equivalent. In these terms,
two vertices lie a single region and the triangle does not enclose the vertex

Finally, we can see that Eq. D.11 is equivalent to Eq. 6.1 after appropriate
combinatorics. Note that

∑
i∈A,j∈B,k∈C

(
PijPjkPkl − PlkPkjPji

) = 1

3

∑
i,j,k from

distinct regions

PijPjkPkl(−1)a,

(D.12)

with a = 0 for triangles such that the vertices i, j, k are in A,B,C or a cyclic
permutation, and a = 1 for triangles such that i, j, k are in B,A,C or a cyclic
permutation. We then see that Eqs D.11 and 6.1 differ only by certain terms shown
in Fig. D.1a. These are terms in which the triangle ijk does not enclose the flux line
and triangles in which two of the points i, j , and k are in the same region.

In all cases of these differing terms, one of the sides of the triangle ijk must cross
two boundaries. Grouping terms in which this particular side is the same, we find
the difference between expressions is a sum of terms PijPjkPki − PijPjkPki for
triangles shown in Fig. D.1a, plus cyclic permutations of regions A, B, and C and
arbitrary permutations of i, j, k. If we add terms corresponding to configurations
in Fig. D.1b, the sum of all configurations shown in Fig. D.1 is zero since

12πi
∑
j

PijPjkPki + c.c. = 12πiPikPki + c.c. = 0, (D.13)
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using the fact that P 2 = P and that PikPki = |Pik|2 is real. The added terms
themselves sum to zero, implying that Eqs. 6.1 and D.11 are equivalent. The added
terms vanish because these triangles each have two sides crossing through region B.
When summed over all three variables i, j, k, their contribution can be written as

12πi

⎛
⎜⎜⎜⎜⎜⎝

∑
i,j∈A,k∈C,

s.t. jk and ik
cross B

PijPjkPki +
∑

i∈A,j,k∈C,

s.t. ij and ik
cross B

PijPjkPki

⎞
⎟⎟⎟⎟⎟⎠

+ c.c. + permutations of A,B,C. (D.14)

Since i, j can be exchanged in the first sum and j, k can be exchanged in the second
sum, both are purely real, and the additional contribution vanishes. Thus, Eqs. 6.1
and D.11 are equivalent. In conclusion, we have shown the Chern number expression
of Eq. 6.1 characterizes the accumulated charge at the location of an applied point-
like magnetic field.
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