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Preface

The twenty-first century belongs to photonics. Many important industries from chip
manufacturing and lighting, health care, and life sciences to astronomy and security
rely on the same fundamental mastery of light. Future technologies will push for a
steep increase in subwavelength photonic integration and energy efficiency, far
surpassing that of bulk optical components, silicon photonics, and plasmonic cir-
cuits. Such a level of integration can be attained by embedding the data processing
and waveguiding functionalities at the level of material rather than a chip, and the
only conceivable solution to address those challenges is to utilize the recently
emerged concepts of metamaterials and metadevices based on structuring of the
matter at the subwavelength scales. In practice, metamaterials have enabled
important capabilities ranging from subwavelength focusing to the ability of con-
trolling magnetic response of nonmagnetic materials. Driven by the ongoing race to
miniaturization, researchers are now able to devise ultracompact and integrated
devices using such unique artificial architectures. In this context, one of the
intriguing phenomena is the resonant scattering when synchronicity of resonant
transmission and reflection can be condensed to the interference of discrete resonant
levels with a continuum of nonresonant propagation modes. The exquisite result of
this feature is the formation of asymmetric resonant lineshapes with narrow line-
width and low mode volumes. Among them, well-engineered toroidal metastruc-
tures have revitalized the performance of modern plasmonic and photonic tools
through robust electromagnetic field confinement down to extreme subwavelength
scales. Toroidal resonant systems are well known for generating unconventional
gyrotropic-fashioned charge-current excitations’ fingerprints with drastically con-
cealed far-field radiation patterns. Toroidal moments provide physically substantial
nonzero contributions to the fundamental properties of matter and scattered radia-
tion. With their unconventional physical properties beyond classical multipoles,
toroidal resonances possess a broad range of applications including but not limited
to immunobiosensing, telecommunication, and nonlinear meta-optics.
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This book enables readers to obtain the comprehensive understanding of toroidal
metastructures and metadevices concepts. The book has six chapters in total
encompassing diverse theoretical and applied aspects of the toroidal resonances’
manifestation. The chapters were written by the experts from USA, who have
extensively contributed to the evolution of science and engineering of the toroidal
resonances in optical and terahertz metasystems. By considering the physics behind
the formation of these unique multipoles, it is shown that toroidal resonances
exhibit novel phenomena both in the linear and nonlinear response of photonic and
plasmonic metamaterials that can significantly intensify the electromagnetic field
confinement in both metallic and all-dielectric platforms, enabling the development
of next-generation all-optical and optoelectronic instruments. By introducing the
toroidal excitations in matter as an independent family of multipoles and evaluating
their properties in comparison to classical electric and magnetic multipoles, the
required theoretical framework of this phenomenon is presented. Besides, the
multipolar expansion of toroidal multipoles is comprehensively discussed. The
radiation efficiency, angular momentum loss, and recoil force of the toroidal mul-
tipoles are theoretically defined and described through the physical mechanism
behind the toroidal multipoles.

In the book, the reader can find the principles of the excitation of toroidal
resonances in both 3D metamaterials and quasi-infinite metasurfaces. It is
demonstrated that these well-engineered architectures can be tailored in such a way
to efficiently support pronounced toroidal modes at diverse frequency ranges. In
light of this, there is a particular chapter that discusses the studies of the excitation
of toroidal dipole modes in all-dielectric and plasmonic metamaterials and meta-
surfaces. Employing the defined insights in this book, one can understand the
practical applications and technical instrumentation of toroidal metaplatforms in
detail and the development of various devices based on this concept, such as
nonlinear lasers, immunosensors, and photodetectors. For the nonlinear harmonic
signal generation, taking advantage of ultratight confinement of electromagnetic
field in the toroidal meta-atoms, the generation of deep ultraviolet light is presented.
Similarly, the use of significant localization of plasmons and ultranarrow lineshapes
of toroidal resonances in the advancement of ultraprecise metasensors with
exceptionally improved limit of detection is introduced. Since, at the position of
toroidal resonance, the scattering cross section of classical multipoles suppresses
and the absorption spectra enhances. By considering these effects, the immense
potential of toroidal metasurfaces in designing high photon yield light sensing tools
is explained. Furthermore, the possibility of inducing strong coupling between the
plasmonic modes in toroidal metasurfaces and the excitonic levels from quantum
emitters is presented by explaining the mechanism behind this.

We hope that the book will be a valuable aid to comprehend the current research
of the toroidal resonance phenomena in optical and terahertz structures for scien-
tists, researchers, and graduate students working in the fields of optical engineering,
applied physics, electrical engineering, materials science, and condense matter
physics. We would like to express our appreciation to Dr. Anthony Doyle,
Executive Editor, Springer, for his initial support of the book proposal and
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collaboration with us during preparation of the book. We are thankful to Laura
Burgess, Katrin Petermann, and Boopalan Renu from the Springer Production
Department for their assistance at the book production.

Houston, TX, USA Arash Ahmadivand
Houston, TX, USA Burak Gerislioglu
Boston, MA, USA Zeinab Ramezani
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Chapter 1
Introduction and Overview

Abstract Pioneering efforts in understanding the light-matter interactions at
subwavelength scales date back to nineteenth and twentieth centurieswith the demon-
stration of electromagnetic wave propagation by breaking the diffraction limit and
enhancing near-field effects for light localization. Studies showed that judicious
interaction between light and matter leads to the emergence of resonant properties,
which encompass an immense domain of physical insights from classical to advanced
quantum electrodynamics. While light and matter are different entities, they possess
significant influence on each other through some sort of intermediary doer. This has
previously been demonstrated by Albert Einstein’s well-known equation, E = mc2,
in which both photon energy andmatter are the main indicators of the identical entity
that are related to each other by the square of the speed of light in vacuum. However,
the inherent characteristics of light and matter reveal the difference between these
entities, which make the interaction between them consequential. In this limit, the
wavelength (λ) of light and geometry of the matter have the key role in defining the
properties of these interactions.

1.1 The History of Light and Matter

Historically, light is an electromagnetic radiation within the band of the electro-
magnetic spectrum that can be perceived by the human eye. At the beginning of the
eleventh century, Hasan Ibn al-Haytham articulated that a ray of light takes the easier
and faster path while passing through a specific medium. This cornerstone notion
is known as Fermat’s principle or the principle of least time, as the link between
ray optics and wave optics. Later, at the beginning of the seventeenth century, by
applying this principle, Fermat proved that the ratio of the sines of the incident
and refracted angles is constant, which is known as Snell’s law today. During these
years, some other significant findings were also reported by Francesco Grimaldi to
understand the form of light beyond geometrical shadow boundary, which is defined
through the pseudo rectilinear motion of light-particle flux. This phenomenon was
also experienced by Robert Hooke who anticipated that light forms due to rapid
vibratory motion of the very small particles of which regular matter is composed.
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2 1 Introduction and Overview

In addition, Hooke was strongly believed to the fact that light propagates outwards
from the center of each tiny vibrating center in circular patterns, and these beam
rays were trajectories at right angles to these circular patterns. Although there had
been a major progress in comprehending the characteristics of light until the onset of
the eighteenth century, there were still considerable uncertainties about the nature of
light. At that time, some of the fundamental questions about this notionwere partially
responded by Thomas Young through conducting diffraction measurements. This set
of experiments considered that light waves possess vibratory motion along the longi-
tudinal direction. In spite of this promising progress, the polarization of light was
still unclear, and this obscurity was addressed by Augustin-Jean Fresnel. He proved
that the polarization is consistent with the wave pattern when the periodic vibration
become transverse to the propagation direction. In the meantime, Michael Faraday
was conducting a set of measurements to definemagnetic influences acting on bodies
that are not directly in contact as lines of forces. These lines of forceswere the starting
point of force fields acting on bodies through space with the absence of any physical
contact.

In the middle of nineteenth century, all these electric, magnetic, and optical
phenomenawere combined by JamesClarkMaxwell, and published in a book entitled
as A Dynamical Theory of the Electromagnetic Field. The main scope of this context
was proposing a set of equations with the assumption that light was a transverse
electromagnetic wave, where these equations and the Lorentz force law constitute
a unified classical theory of electricity, magnetism, and light. All of these achieve-
ments in the field of electromagnetism and light, as well as the brilliant discoveries in
chemistry by John Dalton and Dimitri Mendeleev together led to the establishment
of a clear distinction between light and matter. In that respect, Einstein proposed
the quantization of radiation that reconstituted some of previously defined Newto-
nian corpuscular characteristics of light. His proposal showed that energy quanta
in the form of E = hν, where ν is the frequency of light and h is the Planck’s
constant, removed the ultraviolet catastrophe from the Rayleigh-Jeans formulation
of black-body radiation.

Ultimately, in the late nineteenth and first decades of the twentieth centuries, with
the rise of quantum-mechanics principles by Max Born, Erwin Schrödinger, Werner
Heisenberg, and Paul Dirac, the periodic table of elements was explained in terms of
the inner structure of atoms. It was clearly indicated that quantum mechanics, in its
non-relativistic form, is a reliable approach for perceiving matter outside the atomic
nucleus. When combined with Dirac’s initial formulation (i.e., quantized version of
electromagnetism), the second revolution in physics was performed. Later, in 1916,
Einstein successfully generalized his theory of relativity and applied it to gravity,
which was a new geometric description of space–time for astrophysical energy and
length scales.
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1.2 The History of Light-Matter Interactions

Besides the advances in understanding of the characteristics of light and matter,
the interaction between these entities was theoretically studied at the beginning of
twentieth century. Gustav Mie was one of the first physicists who worked on the
calculation of scattering of an electromagnetic wave from a homogenous dielectric
sphere. He employed Maxwell’s electromagnetic theory and applied it to spherical
particles to theoretically understand the excitation of exceptional resonances, known
as surface plasmon resonances, in gold colloids. Technically, Mie scattering for
particles much smaller than the wavelength of the incident light proved that the
major part of light-matter interaction is centered on the metallic components, and
the excitation of coherently oscillating electrons at the interface between conductors
and dielectrics is the direct result of such an interference. At the same time with
GustavMie, Peter Debye also investigated the influence of the incident light intensity
on the interaction with small particles. Although Mie theoretically demonstrated
the excitation of resonances in metallic objects, the concept of surface plasmon
resonanceswas not defined until the beginning of the last decade of twentieth century.
Thomas Ebbesen was the pioneer scientist who experimentally validated that when
light passes through a thin gold layer with subwavelength holes, the intensity of
light can be boosted inside the holes. In addition to this advancement, in 1998, Peter
Wolf showed that the oscillating electrons at the metallic surface can create a two
dimensional sea of waves, or surface plasmons. He also proved that the excitation of
these resonances can only be occurred when the energy and momentum of incoming
photons and surface plasmons are equivalent. The results reported by Wolf verified
that for a given metallic surface, which contains semi-infinite number of holes, the
energy and momentum of plasmons can be manipulated in such a way that to interact
with the visible light photons.

As a promising counterpart ofmodern photonics, plasmonics has received copious
interest and witnessed a rapid progress in implementing next-generation all-optical
and optoelectronics technologies. While the promise of plasmonics and the subse-
quent concepts have been well-acknowledged both theoretically and experimentally,
only a small fraction of their prospective applications has reached to the commercial
phase. This is due to the internal damping (e.g., resistive heating or Ohmic losses)
and far-field radiation characteristics of metallic particles. Nevertheless, it is difficult
to overestimate the impact of plasmonics on the optical society, therefore, several
strategies have been conducted to control and reduce the lossy behavior of nanoscale
metallic objects at high-energy bands, such as amplifying near-field coupling to
diminish the far-field radiation. Indeed, the inevitable thermal heating in metallic
structures has been addressed and employed efficiently in several research areas,
such as photothermal therapy, cancer therapy, nanosurgery, and nanobubble forma-
tion. Beyond that, the discovery of optothermally controllable (e.g., phase-change
materials) and optoelectronically tunable (e.g., two dimensional monolayers) mate-
rials and the combination of them with plasmonic architectures led to substantial
advancements in the performance and functionality of photonic devices.
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The need for much more efficient, low-loss, high-performance, and miniaturized
optical instruments is accompanied with the development of breakthrough insights
by merging diverse interdisciplinary techniques and principles. One of the leading
motivations for this purpose is to use loss-less all-dielectric resonant particles and
carefully engineered structures. For instance, the use of high-refractive index all-
dielectric subwavelength structures in the implementation of modern technologies
has been offered as an alternative approach instead of the lossy and metallic optical
tools.

1.3 The Discovery and Properties of Artificial Media

Ongoing investigations in both classical and modern optical physics have led to
the intriguing findings, which revitalized the performance of developed instruments
by enabling manipulation and confinement of electromagnetic radiations down to
extreme-subwavelength scales. These features were realized with the rise of artifi-
cial materials that possess properties beyond conventional substances in nature. In
1967, based on theoretical understandings, Victor Veselago demonstrated the possi-
bility of designing a material that enables simultaneous negative values for both
electric permittivity (ε < 0) and magnetic permeability (μ < 0). Following, in 1987,
Eli Yablonovitch verified the control and manipulation of light in artificial crys-
tals. However, most of these structured photonic objects were designed to operate at
wavelengths on the order of the lattice parameter until the development of metama-
terials. By the discovery of metamaterials (after World War II), it is shown that this
concept can be characterized as artificial media composed of periodically arranged
subwavelength unit cells in order to attain the required electromagnetic function-
ality. Sir John Pendry (in 1990s) discovered that the radiation characteristics did
not stem from the molecular or chemical structure of a given material. Instead, this
property originates from the physical shape of the structures. He recognized rather
than traditionally altering a material through its chemistry, the behavior of a material
can be redefined by changing its physical properties. Negative index of refraction,
optical magnetism, asymmetric transmission, hyperbolic dispersion, epsilon near-
zero (ENZ), topological states, arbitrary control of light’s trajectories, and cloaking
are some of the prominent examples that can be realized by metamaterials across a
wide spectral range from vacuum ultraviolet (VUV) wavelengths to terahertz (THz)
frequencies. In addition, from the theoretical optical physics perspective, thesemanu-
factured systems with conventional resonant responses have been described using
multipole expansion framework, in which the electromagnetic media can be signified
by a series of dot electric and magnetic multipolar sources.

In general, the Lorentzian formula has been utilized to describe the spectral prop-
erties ofmetamaterials, where the induced lineshape can be considered as the summa-
tion of the intensities of individual resonances that contribute to the original line-
shape. Indeed, the conventional model for the resonant behavior of metamaterials
does not include the influence of interfering resonances. In 1961, this deficiency was



1.3 The Discovery and Properties of Artificial Media 5

addressed by the emergence of Fano resonances, by Ugo Fano, in quantum mechan-
ical studies, and later it has been employed to encompass and exhibit the interference
between resonances in optical systems. From the perspective of optical physics, the
interference between different energy levels of a quantum–mechanical system is a
global effect, analogous to the constructive and destructive interferences between
classical waves. In principle, such quantum interferences occur in three-level atomic
systems and lead to the excitation of sharp spectral features. Electromagnetically
induced transparency (EIT) is an appropriate example for this concept, which can
be distinguished as a sharp transmission window. This optical effect in metasurfaces
significantly changes the dispersive properties of an opaquemedium that can give rise
to ultra-slow light phenomena and enhanced nonlinear effects at single photon power
levels. Besides the classical Mie-type resonances, taking the advantage of artificial
media, modern electrodynamics have witnessed the rise of other types of resonant
modes with radiative and nonradiative properties, such as plasmonically induced
transparency (PIT), charge transfer plasmons (CTPs), toroidal multipoles, etc. All
of these advancements in photonics have underpinned important technologies from
telecommunications to information processing and spectroscopy. Analysis of such
radiations is an essential feature to investigate the properties of various substances,
in which the scattered electromagnetic fields can be utilized as a reliable source to
achieve noteworthy information for a given material. This requires for an accurate
expansion of the radiated complex electric and magnetic multipoles. In condensed-
matter, optical, atomic, nuclear, and solid-state physics studies, this phenomenon
has been studied under the multipole decomposition framework. However, when we
consider the electric and magnetic multipolar radiations, they should be investigated
considering much more complicated patterns composed of oscillating charges and
loop currents, respectively. As an alternative approach to the conventional multipole
representations, the optically driven (dynamic) toroidal multipoles were introduced
as a third and independent family of elementary electromagnetic sources. In 1957,
Y. B. Zeldovich established the toroidal topology and studied this notion in several
contexts from nuclear to molecular physics and classical electrodynamics, as well
as solid state physics. Besides, dynamic nonradiating charge-current arrangements
and nonreciprocal interactions have also been considered as other theoretical frame-
works to describe the toroidal electrodynamics in the field of electromagnetism. In
this Book, we introduce, demonstrate, and analyze the unique theoretical properties
of toroidal multipoles and their applications in practical and real-world nanophotonic
technologies.



Chapter 2
Classical Electrodynamics

Abstract Classical electrodynamics primarily deals with electromagnetic fields and
their interactions caused by macroscopic distributions of charges and currents. In a
specific mathematical process, this implies that the charge and current distributions
can be confined in infinitesimally small volumes of space. In this Chapter, we firstly
introduce the static electric and magnetic fields, and demonstrate how the conser-
vation of electric charge and its relation to electric current leads to the dynamic
connection between electricity and magnetism. Then, we discuss how these two
were judiciously combined under classical electrodynamics, described by couple of
dynamic field equations—the Maxwell equations.

2.1 Fundamental Principles of Static Electromagnetics

In this section, we briefly summarize the underlying and important principles in
classical electrodynamics. This includes Coulomb’s, Gauss’s, Ampère’s, and Biot-
Savart laws, as well as introduction to Maxwell equations.

2.1.1 Coulomb’s and Gauss’s Laws

In experimental physics, the Coulomb’s law (Plimpton and Lawton 1936; Jackson
1998; Greiner 2012; Franklin 2017) corresponds to the quantification of the amount
of force between two stationary, electrically charged particles (Fig. 2.1). The electric
force between these two charged objects is known as Coulomb force or electrostatic
force, which can be described in a vectorial format as:

F12 = Q1Q2

r2
er (2.1)

where Q1 and Q2 are the magnitudes of the charges, r is the distance between two
bodies, and er is the unit vector in the direction from Q2 to Q1. In a scalar format,
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8 2 Classical Electrodynamics

Fig. 2.1 Coulomb’s law:
charges with similar signs
possess a force that pushes
them further apart and
charges with opposite signs
possess a force that attracts
them

er must be substituted by Coulomb constant (ke ≈ 8.987 × 109 N · m2 · C−2). If the
charges hold the same sign, the Coulomb force is repulsive (F > 0), and conversely,
for the charges with opposite signs, the force is attractive (F < 0). The force on a
given charge Q defines the electric field vector, as following:

F = QE (2.2)

Therefore, Coulomb’s field law due to a source charge Q′ is:

E = Q′

r2
er (2.3)

Given that the electromagnetic field is linear, hence, the field due to a specific
number of charges can be calculated by the summation of individual fields. However,
in the presence of more than one source, the system becomes more complex and one
must deal with two overlaid coordinate systems. This comprises the expressions for
both the location of the charges and the location of the point where the field is being
observed. A simple representation of this system is plotted in Fig. 2.2, in which r′
and r locate the source point (Qi) and the field point (p), respectively. Here, r − r′
defines the distance from a particular source to a field point, and the corresponding
unit vector in this direction is er−r′ . Considering (2.3), the Coulomb’s field law for
an arbitrary array of point charges can be written in a general form as following:

Fig. 2.2 The coordinate
system for the source and
field points
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E(r) =
∑

i

Q(r′
i )

|r − r′
i |2

er−r ′
i

(2.4)

where i corresponds to the ith charge at location r′
i . To define the volumetric descrip-

tion for Fig. 2.1 based on Coulomb’s law, one needs to utilize the integration of the
electric field (E) over the surface area by considering that the charge Q is enclosed
by a Gaussian surface (S). The flux of E through this surface turns out to be equal
to 4π times the enclosed charge. Thus, Gauss’s law for E can be applied to explain
the total net charge enclosed (Qenclosed) within the surface as:

∮

S

E · da = 4π Qenclosed (2.5)

where the direction of da is that of the outward normal to S. By transforming the
integral form into a differential form for the surface with the volume of V, we have
Qenclosed = ∫V ρdv, where ρdv is the three-dimensional charge-per-volume, and by
substituting this into the following equation:

∮

S

E · da =
∫

V

∇ · E dv = 4π
∫

V

ρdv (2.6)

we have the differential expression of Gauss’s law as ∇E = 4πρ.
Then (2.4) can be written as:

E(r) =
∫

V

ρ(r′)
|r − r′|2 er−r′dv′ (2.7)

where ρ is the charge density, and the potential can be written as:

�(r) =
∫

V

ρ(r′)
|r − r′| dv′ (2.8)

2.1.2 Biot-Savart and Ampère’s Laws

The fundamental laws of magnetism are rigorously complex. In 1820, Ørsted was the
first person who qualitatively proved that currents produce magnetic fields (Oersted
1820). Later, the teamofBiot andSavart aswell asAmpère conducted the quantitative
experiments of this insight. This resulted in the rise of two basic formulations for
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Fig. 2.3 The representation
of Biot-Savart principle

steady currents, which is well-known as Biot-Savart law:

B = 1

c

∮
er × I dl

r2
(2.9)

and its integral form is known as Ampère’s law, in which the path of integration
overlaps with the physical current loop (Γ ):

∮

Γ

B · dl = 4π

c
Il (2.10)

where I l is the summation of all currents linking the Ampèrian loop and er is the
unit vector that points from the source element (Idl) to the field point (P). Figure 2.3
demonstrates a schematic for the Biot-Savart law. Since steady-state currents flow
in closed loops, there is an explicit topological difference between current loops that
link the integration loop and those that do not.

Interestingly, Biot-Savart law is the magnetic analog of Coulomb’s law, while
Ampère’s law is themagnetic analog ofGauss’s law.Although the electric description
of these laws is pretty simple, the magnetic case is much more complicated, due to
the vectorial quantity of elementary magnetic sources.

In continue, by considering Ampère’s law, the integral element can be described
in differential form through the use of Stokes’ theorem for an open surface (S) that
is bounded by the curve (Γ ):

∫

S

(∇ × B) da =
∮

Γ

B · dl (2.11)

By assuming
∫

S
Jda = I , the Ampère law can be written as:



2.1 Fundamental Principles of Static Electromagnetics 11

∫

S

(∇ × B) da = 4π

c

∫

S

J · da (2.12)

Here, the surface S is arbitrary and therefore, the differential expression of
Ampère’s law for the total current can be written as:

∇ × B = 4π

c
J (2.13)

Next, the magnetic field (B) is expressed in terms of vector potential of the elec-
tromagnetic field (A). To this end, one can make a connection between Figs. 2.1 and
2.3 through substituting r by (r − r′), and calculate the gradient of (r − r′) with
respect to the coordinates of the field point as:

∇
(

1

|r − r′|
)

= −er−r′

|r − r′|2 (2.14)

Then, the Biot-Savart law can be defined as:

B(r) = − I

c

∮

Γ ′

∇
(

1

|r − r′|
)

× dr′ (2.15)

By removing gradient from the integral, the following terms can be extracted:

{
B = ∇ × ( 1c

∮
I dl
r

)

A = 1
c

∮
I dl
r

(2.16)

Eventually, the above-mentioned equations lead to B = ∇ × A. In fact, the defi-
nition between the magnetic field and vector potential refers to a unique relation-
ship between the scalar potential and electric field. On the other hand, according to
magnetic Gauss’s law, the divergence of the curl of any vectorial function is zero,
thus ∇ · B = 0. This principle clearly indicates that there are no isolated magnetic
poles in nature, hence, magnetic field lines form closed loops which never begin or
end. Although the lines of B are bounded curves in an ideal condition, these lines
are not closed in actual situations.

So far, the obtained results were appropriate for a one-dimensional system
consisting of current along a wire. However, theB andAwould be more complicated
for a two- (current-per-width on a surface) and three-dimensional (current-per-width
in a volume) systems. In this limit, one can write:

⎧
⎪⎨

⎪⎩

B = 1
c

∫

V

J(r′)×er−r ′
|r−r′ |2 dv′

A = 1
c

∫

V

J(r′)
|r−r′ |dv′ (2.17)
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which will be utilized in the following subsections extensively. On the other hand,
the macroscopic description of Ampère’s law in a magnetic medium is an important
concept, where free currents should be distinguished from bound magnetization
currents. This notion will be applied in the subsequent sections.

2.1.3 The Lorentz Force

The magnetic force on a moving charge with the velocity of u can be:

Fm = qu
c

× B (2.18)

Now, by applying an electric force to the moving charge, the total force can be
obtained through the following equation:

Ft = q
(
E + u

c
× B
)

(2.19)

where Ft is known as Lorentz force on a moving charge and it is valid for the
steady-state and time-varying electromagnetic fields.

2.2 Equations for Static Fields

Until now, we have summarized most of the fundamental equations for static fields
in steady-state conditions. Below, one can find a list of well-defined macroscopic
field equations for a free charge and current:

∇ · D = 4πρ (Gauss’s law for electric fields) (2.20)

∇ × E = 0 (Conservative nature of electrostatic fields) (2.21)

∇ · B = 0 (Gauss’s law formagnetic fields) (2.22)

∇ × H = 4π

c
J
(
Ampère’s law

)
(2.23)

in which, D (as D = εE) and H (as H = 1
/

μB) correspond to the fundamental
fields E and B, respectively, and ρ and J are interpreted as total charge and current
density for linear, isotropic media. In addition to the static fields equations, picturing
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the force on moving charges and explanation the set of equations would be useful to
understand the Maxwell’s equations. Since all current loops must have a closed-loop
form in steady-state conditions, one can write ∇ · J = 0. Besides, due to Ohm’s law
for conductive materials, the following relation between electric field and current
density can be established: J = σE.

2.3 Fundamental Principles of Dynamic Electromagnetics

Thus far, we outlined some of the basic equations and mathematical description of
static electric and magnetic fields. However, these explanations are not reliable if the
field quantities are time-dependent, where the electric and magnetic fields cannot be
separated and discussed individually. Therefore, a generalized concept is required to
address this limitation. Asmentioned at the beginning, James ClerkMaxwell utilized
the results of Faraday’s studies to develop time-dependent electromagnetic field
equations.Obtained from these experimental studies, the proposed set of equations by
Maxwell are themathematical abstractions that describe a broad range of phenomena
and clearly represent the classical electromagnetic field. Here, in light of previously
defined laws in static electromagnetics including scalar and vector potentials of the
fields, we will briefly explain dynamic electromagnetics using Maxwell’s equations.

2.3.1 Maxwell’s Equations in Vacuum

The time-dependentMaxwell’s equations for electromagnetic fieldswith free charges
and densities are listed below:

∇ · D = 4πρ (2.24)

∇ · B = 0 (2.25)

∇ × E + 1

c

∂B
∂t

= 0 (2.26)

∇ × H − 1

c

∂D
∂t

= 4π

c
J (2.27)

The above equations can also be written in the form of total current and density
by substituting these components with total sources. Here, B = μ0H and D = ε0E
are the external sources in vacuum.
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2.3.2 Maxwell’s Equations in Macroscopic Media

Beyond time-dependent Maxwell’s equations for electromagnetic fields and sources
in vacuum, the equations for E and B can be thought as they are valid everywhere in
space. This assumption is true for definite number of sources, because the observation
of the fields is feasible. However, for macroscopic aggregates of matter, solving
these equations is quite challenging. For averaged quantities of the macroscopic
fields and sources, the macroscopic Maxwell equations have the form of the (2.20)–
(2.24) with E and B, which are the averaged E and B of the microscopic or vacuum
Maxwell equations. Conversely, D and H are no longer simple multiples of E and
B, respectively, and the macroscopic field quantities D and H possess the following
components:

Dα = ε0Eα +
⎛

⎝Pα −
∑

β

∂ Q′
αβ

∂xβ

+ · · ·
⎞

⎠ (2.28)

Hα = 1

μ0
Bα − (Mα + · · ·) (2.29)

in which P, M, and Q′
αβ represent the macroscopically averaged electric dipole,

magnetic dipole, and electric quadrupole modes, respectively. Similarly, the charge
and current densities aremacroscopic averages of the free charge and current densities
in the medium.

As mentioned above, in the macroscopic limit, the Maxwell’s equations are based
on E, B, D, and H. These homogenous equations can be solved by expressing E
and B in terms of the scalar potential (�) and vector potential (A). Nevertheless, the
inhomogeneous equations cannot be solved until derivingD andH in terms of E and
B, which is well-acknowledged as D = D[E, B] and H = H[E, B].

In general, and in most of materials, the electric and magnetic quadrupolar and
high-order terms are weak and negligible, therefore, the electric and magnetic polar-
ization, P and M, respectively, correlating with the dipolar mode are significant and
will be considered. However, this does not imply that the constitutive relations are
simple.

2.4 The Electric Dipole

Anelectric dipole can be exemplified simply by considering a static systemcomposed
of two charges of equal magnitude with opposite signs, located with the distance of
l from the origin. In Fig. 2.4, the potential at the point P (r, θ, ϕ) is given by:

�(r, θ, ϕ) = Q

(
1

R1
− 1

R2

)
(2.30)
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Fig. 2.4 An elementary system for a charge-pair dipole

Expressing the potential in terms of the magnitude of r (|r|) and θ, assuming l
� r, and using the cosine law, one can write the potential in the following format:

�(r, θ) = 2Ql
cos θ

r2
(2.31)

Importantly, because the charge-distribution is axially symmetric, the potential
must be independent of the azimuthal angle (ϕ). As can be seen from (2.31), the
potential due to a dipole decreases by a factor of 1/r2, and the potential due to a
single charge reduces by a factor of 1/r. This stems from the fact that by moving
away from the observation point P, the dipole charge distribution appears as a small
unit with zero charge.Moreover, the electric dipolemoment of a pair of equal charges
can be described by p ≡ 2Qle, in which p is the dipole moment and as shown in
Fig. 2.4, its direction is defined depending on the position of negative and positive
charges. Now, by considering er as the unit vector in the direction of the field point
and applying (2.31), the dipole potential can be expressed as:

� = p · er

r2
(2.32)

and the electric field vector of the dipole can be defined as E = −∇ · �. Then, using
the spherical components of the electric field vector as provided below, one can plot
the dipole equipotential and field lines as demonstrated in Fig. 2.5.

Er = 2p cos θ
r3

Eθ = p sin θ
r3

Eϕ = 0
(2.33)
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Fig. 2.5 Electric dipole equipotential and electric field lines

2.4.1 Multipole Expansion and Electric Multipoles

Multipole expansion is a reliable method to describe the potential due to an arbitrary
distribution of charges. Here, we initially consider the expansion of multipoles and
later apply this principle to understand the classical electric multipoles. By consid-
ering a static collection of arbitrary charges (Qα) and defining the position of changes
as r′

α(x ′
α,i ) (see Fig. 2.6), one can specify the potential at the field point due to the

source through the following relation: �α = Qα

/
Rα . However, by simplifying the

calculations and limiting ourselves to a fixed field point, the Taylor expansion with
respect to the coordinates r′

α = (x ′
α,1, x ′

α,2, x ′
α,3, x ′

α,4) can be written as:

Fig. 2.6 A diagram showing the source and field points
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f
(
r′

α

) = C +
∑

i

x ′
α,i

[
∂ f (r′

α)

∂x ′
α,i

]

r′
α=0

+ 1

2

∑

i, j

x ′
α,i x

′
α, j

[
∂2 f (r′

α)

∂x ′
α,i∂x ′

α, j

]

r′
α=0

− 1

6

∑

i, j,k

x ′
α,i x

′
α, j x

′
α,k

[
∂3 f (r′

α)

∂x ′
α,i∂x ′

α, j∂x ′
α,k

]

r′
α=0

+ · · · (2.34)

where C is the constant for the first term f (0). In continue, using f (r′
α) =

Qα

/
Rα(r′

α), the equation above can be utilized to derive the potential due to the
charge Qα as:

�α = Qα

r
+ Qα

∑

i

x ′
α,i

[
∂

∂x ′
α,i

(
1

Rα

)]

Rα=r

+1

2
Qα

∑

i, j

x ′
α,i x

′
α, j

[
∂2

∂x ′
α,i∂x ′

α, j

(
1

Rα

)]

Rα=r

− 1

6
Qα

∑

i, j,k

x ′
α,i x

′
α, j x

′
α,k

[
∂3

∂x ′
α,i∂x ′

α, j∂x ′
α,k

(
1

Rα

)]

Rα=r

+ · · · (2.35)

Consequently, the potential due to a collection of charges can be simply written
as:

� =
∑

α

�α = �(1) + �(2) + �(4) + · · · + �(2l ) (2.36)

in which each potential component can be described as follows:

�(1) ≡
∑

α

Qα

r

�(2) ≡ −
∑

α

qα

∑

i

x ′
α,i

∂

∂xi

(
1

r

)

�(4) ≡ 1

2

∑

α

qα

∑

i

x ′
α,i x

′
α, j

∂2

∂xi∂x j

(
1

r

)

...

�(2l ) ≡ (−1)l

l!
∑

α

qα

∑

i, j,...,l

x ′
α,i x

′
α, j ...x

′
α,l

∂ l

∂xi∂x j ...∂xl

(
1

r

)
(2.37)

In (2.36) and (2.37), the first term (�(1)) corresponds to the monopole potential,
and the second (�(2)) and third (�(4)) terms are related to the dipole and quadrupole
potentials, respectively.
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2.4.2 The Dipole and Quadrupole Potentials

For the dipole potential, one must consider the second term of (2.37) (�(2)) and
rewrite the equation as below, where the first term represents the dipole moment:

�(2) = −
∑

α

qαr′
α

︸ ︷︷ ︸
dipole moment

·∇
(
1

r

)
(2.38)

Therefore, the dipole potential can be simplified as �(2) = p · er
/

r2. Besides,
by taking the gradient of the dipole potential, the electric dipole field vector can be
specified as E(2) = −∇(�(2)

)
, which leads to:

E(2) = 1

r3
[
3
(
p · r∧)r∧ − p

]
(2.39)

In continue, we focus on the potential due to arbitrary distribution of charges
for the third term in (2.37). Employing transform modification based on the inertia
tensor in rigid body dynamics, one can assume that 1/r is the solution of Laplace’s
equation, except r �= 0, and therefore, for r > 0:

∑

i

∂2

∂x2
i

(
1

r

)
= 0 (2.40)

which can be written including the delta function:

∑

i, j

∂2

∂xi∂x j

(
1

r

)
δi j = 0 (2.41)

Hence, the equation for the quadrupole potential can be defined as:

�(4) = 1

6

∑

i, j

Qi j
∂2

∂xi∂x j

(
1

r

)
(2.42)

where Qij is a 3 × 3 array matrix, called quadrupole tensor, that can be stated

as: Qi j ≡∑α Qα

(
3x ′

α,i x ′
α, j − r ′2

αδi j

)
. Given that the tensor matrix is symmetric,

therefore, one can assume that Qij = Qji. To simplify the calculations, we consider

the diagonal elements of the quadrupole tensor as: Qkk =∑α Qα

(
3x ′2

α,k − r ′2
αδkk

)
.

Summing over this reduced relation leads to:
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∑

k

Qkk =
∑

α

Qα

(
3

(
∑

k

x ′2
α,k

)
− r ′2

α

(
∑

k

δkk

))
= 0 (2.43)

where
∑
k

x ′2
α,k = r ′2

α and Qkk =∑
k

δkk = 3. Thus, the sum of diagonal elements of

the matrix (i.e., trace) vanishes, and at most five components of the tensor matrix are
independent. This results in much simpler theory and reduction of the independent
elements to two. It is mathematically proved that the charge distribution possesses
an axis of symmetry. Therefore, in this condition, we only have one independent
element in the analysis. For instance, if we choose the x

′
3 axis, then Q11 = Q22,

hence, the only remaining independent element would be Q33. This quantity is often
abbreviated as Q (i.e., the quadrupolar moment). Now, by assuming that the charge
distribution is continuous rather than discrete, then we have:

Q =
∫

V

ρ
(
r′)(3x ′2

3 − r ′2
)

dx ′
1dx ′

2dx ′
3 (2.44)

where ρ(r′) is the charge density at the point defined by r′ over the volume of V
of the charge density distribution. Ultimately, the potential of a quadrupole can be
formulated as:

�(4)(r, θ) = 1

2
Q

(
3
2 cos

2 θ − 1
2

)

r3
(2.45)

where θ is the angle between the quadrupole’s axis and observation point.
It is noteworthy to mention that in some cases, because of the specific geometry

of a given charge distribution, certain multipole terms can be neglected. For instance,
the monopole term disappears if there are equal amounts of positive and negative
charge, and similarly, the dipole term vanishes whether the distribution composed
of equivalent dipoles that are oppositely oriented. In Fig. 2.7, some of the important
members of the electromagnetic multipoles family are illustrated. Here, the electric
dipole, formed by two opposite charges separated by a distance l, is the simplest part
of this configuration.

2.5 Magnetic Multipoles

In addition to the electric multipoles, magnetic multipoles constitute the remaining
part of the electromagnetic multipoles, and in continue, we briefly discuss the
multipole expansion of the magnetic effects of steady currents.

As a starting point, the vector potential can be defined as:



20 2 Classical Electrodynamics

Fig. 2.7 A sequence of electric multipoles

A(r) = 1

c

∫

v

J(r′)
|r − r′|dv (2.46)

Here, by considering
∣∣r − r′∣∣ asR, one can expand the term 1/R in the electrostatic

limit, and the first two terms of (2.37) can be rewritten as following:

A(r) = 1

cr

∫

v

J(r′) dv′ − 1

c

∫

v

J(r′)
[
r′ · ∇

(
1

R

)]
dv′ + · · · (2.47)

Similar to what we have done in the electrostatic regime, one can formulate the
monopole term as:

A(1) = 1

cr

∫

v

J(r′) dv′ (2.48)

Under steady-state conditions, the current density in a given system can be deemed
to rise from many closed filamentary current-loops. Thus, the integral above can be
represented as the sum over the line integral of the filamentary current around each
individual loop (Fig. 2.8):

∫

v

J
(
r′) dv′ =

∑

ς

∮

Γ ς

I ′
ς ds′ς (2.49)

Here, for any current-loop, I’ς is constant, hence, this component will be
independent from the integral. Now (2.49) is:

∫

v

J
(
r′)dv′ =

∑

ς

I ′
ς

∮

Γ ς

ds′ς (2.50)
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Fig. 2.8 A sample system indicating the current-loop sources

Given that the integrand is a differential, therefore, the right side of the equation
vanishes. This fundamental outcome reveals that the magnetic multipole expansion
does not contain amonopole term. Then, the second term in (2.47) can be transformed
into:

A(2) = −1

c

∑

ς

I ′
ς

∮

Γς

r′
ς · ∇
(
1

r

)
ds′ς (2.51)

Next, by assuming the above integral encompasses the projected area of the
current-loop and by taking into account the bounded surface (S) in Fig. 2.9, one
can claim that

∮

Γ

r′ × ds = 2
∮

S
da =2S, in which S is the vector that possesses the

Fig. 2.9 A representation of
the current-loop area
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magnitude and orientation of the maximum projected area defined by the contour Γ .
Mathematically, the cross-product of (r′×ds)with an arbitrary vector k can bewritten
as
(
r′ × ds

)× k = ds
(
r′ · k)− r′(ds · k), and since the integration step (ds) along

the current loop is equivalent to dr′, therefore d ′(r′(r′ · k)) = ds
(
r′ · k)+r′(ds · k).

Here, an integration over the closed-loop makes this equation is equivalent to zero,
thus, the remaining terms must be equal or opposite to each other. Using this fact
and taking into account (2.51), we have:

A(2) = −1

c

∑

ς

I ′
ς

∮

Γς

r′
ς · ∇
(
1

r

)
ds′ς = 1

2c

∑

ς

I ′
ς

[
∇
(
1

r

)
×
∫

r′ × ds′ς
]

= 1

2c

∑

ς

I ′
ς

⎡

⎢⎣∇
(
1

r

)
×
∫

Sς

da′
ς

⎤

⎥⎦ (2.52)

Ultimately:

A(2) =
[
1

c

∑

ς

I ′
ςSς

]
×
[
∇
(
1

r

)]
(2.53)

where Sς is the effective area of the ς th current-loop. To define themagnetic moment
of current I’ flowing through a plane that encloses an area S, we canwritem= (I’/c)S.
This implies that the first term in (2.53) is the sum of all of the elementary dipole
moments (mς ). Consequently, the (2.53) can be written in the form of:

A(2) =
∑

ς

mς ×
[
∇
(
1

r

)]
= mt ×

[
∇
(
1

r

)]
(2.54)

Here, mt is the magnetic dipole moment of the entire system of currents. By
expanding the gradient in the equation above, one can write:

A(2) = mt × er

r2
(2.55)

Given that there is no monopole term in the magnetic multipole expansion (A(1)

≡ 0), the lowest-order contribution to the magnetic field will be obtained by taking
the curl of the dipole term in vector potential expansion, B(2) ≡ ∇×A(2), which can
be explained as following:

B(2) = ∇ ×
(
mt × r

r3

)
(2.56)
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Fig. 2.10 a Electric and b magnetic dipoles

This equation can be expanded in the following form:

B(2) = 1

r3
∇ × (m × r) − (m × r) × ∇

(
1

r3

)
(2.57)

which leads to:

B(2) = 1

r3
[
3
(
m · r∧)r∧ − m

]
(2.58)

Here, the magnetic dipole field possesses the same form as the electric dipole
(2.39). As demonstrated in Fig. 2.10, in both cases, the internal fields are highly
strong.

2.6 Unconventional Multipoles

So far, we have studied the properties of sources and fields, and a clear picture from
the classical electric and magnetic multipoles is represented. The introduced frame-
work for the multipole expansion has extensively been employed in several fields
including but not limited to optical and condensed-matter phenomena. However,
beyond point-like multipole sources, there is a third family of multipoles indepen-
dent from the elementary electromagnetic sources, which are known as toroidal
multipoles (Papasimakis et al. 2016). In 1957, toroidal moments were introduced by
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Zel’dovich (1958) and have been applied and investigated in the context of nuclear,
atomic, and molecular physics, classical electromagnetism, and solid-state physics
(Dubovik andCheshkov 1974; Flambaum andKhriplovich 1980;Dubovik andTugu-
shev 1990; Flambaum andMurray 1997; Ceulemans and Chibotaru 1998; Afanasiev
and Dubovik 1998; Afanasiev 2001). In earlier studies, the concept of toroidal
electrodynamics was established based on static toroidal moments, and recently,
dynamic toroidal moments have emerged and explained under the classical elec-
trodynamic framework. In the following subsections, we consider both static and
dynamic toroidal multipoles by providing details on their formation mechanisms
and exquisite properties.

2.6.1 Static Toroidal Multipoles

The static toroidal dipole, also known as anapole (i.e., without poles), was introduced
for the first time in nuclear physics to explain parity-violating weak interactions. The
result of this phenomenon was a radiationless arrangement of static currents flowing
across the surface of a torus, equivalent to a ring of static magnetic dipoles aligned
head-to-tail (see Fig. 2.11a). In theory, these currents create amagnetic field localized
within the torus, thus static toroidal dipoles do not interfere directly with either elec-
tric or magnetic fields of the incidence, which is the fundamental difference between
the anapole and classical static electric and magnetic moments. Generally, two types
of static toroidal moments have been proposed in toroidal electrodynamics: electric

Fig. 2.11 a An artistic graph representing the static toroidal moment formed by a toroidal config-
uration of static currents and magnetic dipoles. b The dynamic toroidal dipole moment created
by poloidal currents oscillating on the meridians of a torus, enclosing a confined magnetic field.
Adapted from (Raybould 2017) with permission
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(axial) and magnetic (polar). The axial moments stem from the vortex-like elec-
tric field configurations, whereas the polar moments originate from current config-
urations. Nevertheless, polar toroidal moments are merely considered, because of
the absence of magnetic charge-currents in the established theoretical framework
(Afanasiev 1990; Afanasiev and Stepanovsky 1995).

The anapole concept was successfully generalized to a family of toroidal multi-
poles and applied to the explanation of condensed matter by an order parameter,
termed as toroidization or toroidal polarization, similar to the macroscopic elec-
tric polarization and magnetization in classical electromagnetism, where the electric
polarization corresponds to the electric dipole density andmagnetization corresponds
to the magnetic dipole density. Indeed, toroidization specifies the density of toroidal
dipoles and configurations of local toroidal moments with long-range orders are
responsible for the formation of macroscopic toroidization. A medium with macro-
scopic toroidization is known as a ferrotoroid, equivalent to a ferroelectric and a
ferromagnet. This was perceived for the first time during nuclear physics experi-
ments of Cesium (Cs) atoms, through the precise measurements of the amplitude of
parity-nonconserving transitions between6S and7S states ofCswith the use of a spin-
polarized atomic beam (Wood et al. 1997). It was verified that the nucleus of Cs atoms
supports a toroidal mode, comprising the currents flowing on the surface of a torus.
In this limit, an electron in the p-orbital partially overlaps with the nucleus and would
have interactions which break the p-symmetry (Haxton 1997). Particularly, such a
toroidal moment in the nucleus has a partial contribution to parity violation in light
interaction with the Cs atoms. The results for this set of experiments were consistent
with the fact that ferroelectrics break the spatial inversion symmetry and ferromagnets
break the time-reversal symmetry. Besides, ferrotoroids with magnetic toroidization
break time-reversal and inversion symmetry, concurrently. Ferrotoroids demonstrate
electric polarization in response to an externalmagnetic field, and conversely, demon-
strate magnetization to external electric fields; with effective electric toroidization
shaped by a loop of electric dipoles, invariant under time (t →−t) and space (r →
−r) inversions (Naumov et al. 2004; Van Aken et al. 2007).

Static toroidal patterns have been observed in different systems based on diverse
compounds including but not limited to metals, glasses, pyroxenes, boracites,
olivines, ferroelectric nanoparticles, and molecular magnets (Toledano et al. 2011;
Tokura 2007; Yamaguchi and Kimura 2013; Mettout et al. 2010; Hayami et al. 2014;
Tolédano et al. 2015). The existence of toroidal currents and toroidal topology in
various scales from atomic nuclei and organic molecules to extremely large astro-
nomical scales (e.g., galaxies, neutron stars, quasars, black holes, etc.) is summarized
in Fig. 2.12.

Beyond nuclear physics and condensedmatter concepts, the formalism of toroidal
electrodynamics was explained in solid state physics (Dubovik et al. 1986; Dubovik
and Tugushev 1990). Toroidal ordering in this context was first discussed on ferro-
magnetic domains of small particles by Kittel in 1946 (Kittel 1946), and it was
confirmed in real compounds known as boracites in 1974 (Zheludev et al. 1974).
Pyroxenes and olivines were also verified as other compounds that sustain toroidal
moments (Smith 1969; Hong-Jian and Fa-Min 2009).
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Fig. 2.12 Structures with different sizes from atomic to extremely large scales in physics, biology,
chemistry, and astronomy that exhibit toroidal topology

2.6.2 Dynamic Toroidal Multipoles

After the observation of static toroidal modes in diverse systems, in the last decade
of the 20th century, the discussion of dynamic toroidal multipoles has started with
a deep focus on understanding the radiation properties of time-dependent toroidal
current configurations. As explained in this Chapter, a fundamental feature in all
types of toroidal moments’ excitations is the space-time symmetry. In this limit, both
electric dipoles (−→p = ∑i Qi 	ri ) and magnetic dipoles ( 	m = ∑i Qi 	ri × d	ri/dt)
change their sign only with space inversion (r → −r) and time reversal (t → −
t), respectively. Besides, one can simply find out that the radiative toroidal dipole
moment as 	T = ∑i Qi 	ri × (	ri × d	ri/dt), which change its sign under either time
reversal or spatial inversion (Radescu and Vlad 1998; Ögüt et al. 2012).

A famous and practical example that supports a toroidal moment is a solenoid, or
similarly, a closed loop of azimuthally oriented magnetic moments. Such behavior of
toroidal solenoids unveils the coupling between electric and magnetic dipoles. This
(hybrid) nature of toroidal moments enables specific features tomanipulate magnetic
polarization by electric fields and vice versa. The theory behind the excitation of
toroidal solenoids in different orders can be utilized to mathematically describe the
radiation properties of time-dependent toroidal current arrangements as j(t, r) =
∇ ×∇ × (cT(t)δ(3)(r)) (Boardman et al. 2005). However, for simplicity, we initially
limit ourselves to the space domain and try to extract the induced current due to
toroidal moment with zeroth (0th) order (see Fig. 2.13a):

−→
J = −→n ϕ I δ(ρ − d)δ(z) (2.59)

where d is radius of the loop and −→n ϕ is a unit vector tangent to the plane of the loop.

Since ∇ · −→
J = 0, the current flowing for the zeroth mode can be imagined by an

analogous magnetization concept (
−→
M ):

−→
M = −→n z I ζ (d − ρ)δ(z) (2.60)
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Fig. 2.13 a Current distribution representation of a circular current-loop for a magnetic dipole.
b Current-carrying, firmly winded (where the helicity of the solenoid vanishes) toroidal solenoid
of 1st order. It can also be considered as a source of a toroidal dipole. The arrows demonstrate the
poloidal currents flowing on the surface of an imaginary torus (i). Here, the torus is intensively
wrapped by the magnetized rings (ii). The directed toroidization along the axis of the torus (iii).
Adapted from (Gerislioglu and Ahmadivand 2019) with permission. Copyright Multidisciplinary
Digital Publishing Institute (MDPI)

where ζ(�) is a step function and
−→
J = ∇ × −→

M . This equation can be understood
as an expression of Ampère’s theorem, in which the closed circular current is equal
to the magnetic moment normal to it (Afanasiev 2001). Here, the induced magnetic
field can be derived from (2.59) and (2.60), and the related magnetic vector potential
can be written as:

−→
B = I

c

∫
1∣∣−→r − −→r ′∣∣

−→n ϕδ
(
ρ ′ − d

)
δ
(
z′)dV ′ (2.61)

For very small radii,
−→
J is not well-described, since the unit vector tangent is no

longer valid at the origin, while
−→
M is still well-expressed. Besides, when d tends to

zero (d → 0) in (2.59), we will have a magnetic dipole moment as a result of very
small values of d.

Considering a more complex system consisting of poloidal currents flowing on
the surface of magenta-colored torus along its meridians (Fig. 2.13b), the induced
current due to the 1st order mode can be written as (Afanasiev et al. 1996; Raybould
2017; Gerislioglu and Ahmadivand 2019):
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−→
J T = −

�cδ
(

R − R̃
)−→n ψ

8π2
(

d − √
d2 − R2

)(
d + R̃ cosψ

) (2.62)

where −→n ψ is the unit vector tangent to the magenta-colored torus surface (−→n ψ =−→n z cosψ − −→n ρ sinψ) and � is the magnetic flux which penetrates to the torus.
For (2.62), the following conditions are assumed: R̃, ψ , and φ are the corresponding
Cartesian coordinates:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x =
(

d + R̃ cosψ
)
cosφ

y =
(

d + R̃ cosψ
)
sin φ

z = R̃ sinψ

(2.63)

Moreover, the surface of the magenta-colored torus can be imagined where R =
R̃. By varying ψ , φ, and for a fixed R̃, one can claim that the x, y, and z points
mentioned above can fill the surface, where (ρ − d)2 + z2 = R2 (Fig. 2.13b(i)).
Analogous to the 0th mode case, for ∇ ·−→J T = 0,

−→
J T (Fig. 2.13b) can be described

in terms of magnetization (
−→
M T ) (Fig. 2.13b(ii)), where

−→
M T is confined within the

magenta-colored torus and it has only φ component (which only changes inside the
torus) as following:

−→
M T = �c−→n φ

8π2ρ
(

d − √
d2 − R2

)ζ
(

R −
√

(ρ − d)2 + z2
)

(2.64)

Since ∇ · −→
M = 0, the resulting toroidization (

−→
T ) is:

−→
M = ∇ × −→

T , where
∇ · −→T �= 0. Figure 2.13b(iii) illustrates the ensuing toroidization pattern. In light of
the toroidization and (2.64), the poloidal current in (2.62) is equal to themagnetization
and to the toroidization, which are the extensions of Ampère’s law. Additionally, one
can deduce the following as toroidization:

	T
	nz

=
⎛

⎝ c�

8π2
(

d − √
d2 − R2

)

⎞

⎠

(
ζ
(

d −
√

R2 − z2 − ρ
)
ln

d + √
R2 − z2

d − √
R2 − z2

+ζ
(

d +
√

R2 − z2 − ρ
)
ζ
(
ρ − d +

√
R2 − z2

)
× ln

d + √
R2 − z2

ρ

)

(2.65)
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Now, considering different regions in space, 	T /	nz possesses different expressions:

⎧
⎪⎨

⎪⎩

−→
T−→n z

= c�

8π2
(

d−√
d2−R2

) ln d+√
R2−z2

d−√
R2−z2

,where 0 ≤ ρ ≤
(

d − √
R2 − z2

)

−→
T−→n z

= c�

8π2
(

d−√
d2−R2

) ln d+√
R2−z2
ρ

,where
(

d − √
R2 − z2

)
≤ ρ ≤

(
d + √

R2 − z2
)

(2.66)

Importantly, in other domains, 	T /	nz is zero. By taking account of (2.65) and
(2.66), one can conclude that extracting the toroidal dipole moment (

−→
T ) is quite

challenging. To address this concern, a volume integral can be applied:

∫ −→
T dV = cπ R2d�

−→n z

8π(d − √
d2 − R2)

(2.67)

Until now, we have elucidated the theory behind the formation of zeroth and first
order loop currents in space domain based on the toroidization principle. Similar
approach can be applied to study the second and third order of loop currents due to
toroidal excitations.However, to understand the influence of time into the explanation
of toroidal electrodynamic framework, we summarize the general distribution of
charge and current configurations using charge (ρ) and current (j) densities:

∂ρ(	r , t)

∂t
+ 	∇ · 	j(	r , t) = 0 (2.68)

Parameterizing (2.68) in terms of three major components, including electric
(Qlm(−k2, t)), magnetic (Mlm(−k2, t)), and toroidal (Tlm(−k2, t)) multipoles, allows
to express ρ and 	j as a function of space and time as:

ρ(	r , t) = 2

8π3

∑

l,m,k

(−ik)l

√
4π(2l + 1)

(2l + 1)!! × Qlm
(−k2, t

)
Flmk(	r) (2.69)

	j(	r , t) = 2

8π3

∑

l,m,k

(−ik)l−1

√
4π(2l + 1)(l + 1)√

l(2l + 1)!!

×
{

k Mlm
(−k2, t

) 	F (0)
lmk(	r)+

[
1

c
Q̇lm(0, t) + k2Tlm

(−k2, t
)]

× 	F (+)
lmk + 1

c

√
l

l + 1
Q̇lm
(−k2, t

) 	F (−)
lmk (	r)

}
(2.70)

where

∑

k

=
∫ ∞

0
k2dk; {m = −l, . . . , l ; l = 0, 1, 2, . . .} (2.71)
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In the equations above and in the upcoming relations, the sum over l starts from
l = 0 for the electric multipole and l = 1 for the magnetic and toroid multipoles.
The dot over Qlm (Q̇lm) defines derivation with respect to t. Finally, the factor of
Flmk(	r) is the system of regular solutions of the Helmholtz equation (Gumerov and
Duraiswami 2005):

(
� + k2

)
Flmk(	r) = 0 (2.72)

Flmk(	r) = jl(kr)Ylm(	n), 	n = 	r
r

(2.73)

jl(kr) = 3
√
2π i l Jl+1/2(kr)√

kr
(2.74)

where jl and jl+1/2 are the spherical and cylindrical Bessel functions, respectively, and
Ylm are the classical spherical harmonics. Thus, the normalization and completeness
conditions are:

∫
Flmk(	r)F ∗l ′m ′k ′ (	r)d3r = δll ′δmm ′

8π3

k2
δ
(
k − k ′) (2.75)

∑

l,m,k

Flmk(	r)F ∗l ′m ′k ′ (	r) = 8π3δ
(	r − 	r ′) (2.76)

∑

k

=
∞∫

0

k2dk (2.77)

Flmk(−	r) = (−1)l Flmk(	r) (2.78)

and the basis factor functions Flmk(−	r) are the solutions of vectorHelmholtz equation
as:

(
� + k2

) 	Flmk(	r) = 0 (2.79)

	F (0)
lmk(	r) = i√

l(l + 1)
	∇ × [	r Flmk(	r)

] = jl(kr) 	Yllm(	n) (2.80)

	F (+)
lmk (	r) = −1√

l(l + 1)

i

k
	∇ × 	∇ × [	r Flmk(	r)

]

= 1√
2l + 1

{√
l jl+1(kr) 	Yll+1m(	n) +√

l + 1 jl−1(kr) 	Yll−1m(	n)
}

(2.81)

	F (−)
lmk (	r) = − i

k
	∇Flmk(	r)
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= 1√
2l + 1

{√
l jl−1(kr) 	Yll−1m(	n) −√

l + 1 jl+1(kr) 	Yll+1m(	n)
}

(2.82)

More detailed information on the corresponding spherical vectors can be found
in Ref. (Radescu and Vlad 1998). Consequently, the electromagnetic and toroidal
multipolar form factors can be defined as a function of previously defined equations:

Qlm
(−k2, t

) = (2l + 1)!!
(−ik)l

√
4π(2l + 1)

∫
ρ(	r , t) j∗

l (kr)Y ∗
l (	n)d3r (2.83)

Mlm
(−k2, t

) = −i(2l + 1)!!
c(−ik)l

√
4π(2l + 1) (l+1)

l

×
∫

	j(	r , t) j∗
l (kr)Y ∗

llm(	n)d3r (2.84)

Tlm
(−k2, t

) = −(2l − 1)!!√l

c(−ik)l+1
√
4π(l + 1)

×
∫ {√

l j∗
l+1(kr)Y ∗

ll+1m(	n)
√

l + 1

+
[

j∗
l−1(kr) − 4π(−ikr)l−1

(2l − 1)!!
]

× Y ∗
ll−1m(	n)

} 	j(	r , t)d3r (2.85)

where

Flmk(	r) ∼ lim
r→0

4π(ikr)l

(2l + 1)!!Ylm(	n) (2.86)

The conjugate of the equations above can be obtained using the following
relations:

⎧
⎪⎨

⎪⎩

Q∗
lm(−k2, t) = (−1)m Ql,−m(−k2, t)

M∗
lm(−k2, t) = (−1)m Ml,−m(−k2, t)

T ∗
lm(−k2, t) = (−1)m Tl,−m(−k2, t)

(2.87)

In continue, to calculate the radiation intensity arising from the resonators at large
distances, one needs to estimate the definitions of the electric and magnetic fields
by considering their properties at large distances. To this end, we use the extracted
electric and magnetic fields emitted from a scatterer:

	E(	r , t) = 1

π3/2

∫ ∞
0

⎧
⎨

⎩
∑

l,m

(−i)l−1
(ω

c

)l+2
√
2l + 1

(2l + 1)!!
[
sin(ωt) 	N (−)

lm(ω/c)(	r) + cos(ωt) 	F(−)
lm(ω/c)(	r)

]
Qlm

(
− ω2

c2
, ω

)⎫⎬

⎭dω

− 1

2π2c

∫ ∞
0

∑

lm

(−i)l−1
(ω

c

)l+1
√
4π(2l + 1)(l + 1)√

l(2l + 1)!!
{[

sin(ωt) 	N (−)
lm(ω/c)(	r) + cos(ωt) 	F(−)

lm(ω/c)(	r)
]
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×
√

l√
l + 1

ωQlm

(
− ω2

c2
, ω

)
+ ω
[
sin(ωt) 	N (0)

lm(ω/c)(	r) + cos(ωt) 	F(0)
lm(ω/c)(	r)

]
Mlm

(
− ω2

c2
, ω

)

+
[
sin(ωt) 	N (+)

lm(ω/c)(	r) + cos(ωt) 	F(+)
lm(ω/c)(	r)

] [
ωQlm (0, ω) + ω2

c
Tlm

(
− ω2

c2
, ω

)]}
dω (2.88)

	B(	r , t) = 1

2π2
∫ ∞
0

∑

l,m

(−i)l−1
(ω

c

)l+2 ×
√
4π(2l + 1)(l + 1)√

l(2l + 1)!!
{[

− sin(ωt) 	F(+)
lm(ω/c)(	r) + cos(ωt) 	N (+)

lm(ω/c)(	r)

Mlm

(
− ω2

c2
, ω

)
+
[
− sin(ωt) 	F(0)

lm(ω/c)(	r) + cos(ωt) 	N (0)
lm(ω/c)(	r)

]

×
[

Qlm (0, ω) + ω2

c
Tlm

(
− ω2

c2
, ω

)]}
dω (2.89)

By calculating the electromagnetic fields in the order of r → ∞, we have:

	E(	r , t)
r→∞ ∼ 1

r

∑

lm

(
1

c

)l+1 √
4π(2l + 1)(l + 1)√

l(2l + 1)!! ×
{
−Q(0)(l+1)

lm

(
0, t − r

c

)

×
[ √

l√
2l + 1

	Yll+1m (	n) +
√

l + 1√
2l + 1

	Yll−1m (	n)

]
−

∞∑

n=0

1

n!c2n
M(n)(l+2n+1)

lm

(
0, t − r

c

) 	Yllm (	n)

+ 1

c

∞∑

n=0

1

n!c2n
T (n)(l+2n+2)

lm

(
0, t − r

c

)
×
[ √

l√
2l + 1

	Yll+1m (	n) +
√

l + 1√
2l + 1

	Yll−1m (	n)

]
(2.90)

	B(	r , t)
r→∞ ∼ 1

r

∑

lm

(
1

c

)√
4π(2l + 1)(l + 1)√

l(2l + 1)!!

×
{
−i Q(0)(l+1)

lm

(
0, t − r

c

) 	Yllm (	n) ×
∞∑

n=0

1

n!c2n
M(n)(l+2n+1)

lm

(
0, t − r

c

) 	Yllm (	n)

×
[ √

l√
2l + 1

	Yll+1m (	n) +
√

l + 1√
2l + 1

	Yll−1m (	n)

]
+ 1

c

∞∑

n=0

1

n!c2n
T (n)(l+2n+2)

lm

(
0, t − r

c

)}

(2.91)

Employing (2.90), one can obtain the far-field radiation pattern of an oscillating
toroidal dipole as following (Radescu and Vlad 1998; Costescu and Radescu 1987;
Arfken and Weber 2001):

E(r) = −iμ0c2k3

3
√
2πr

exp(−ikr) ×
∑

m=0,±1

T1m

[
Y1,2,m + √

2Y1,0,m

]
(2.92)

T1,±1 = 1√
2

(∓Tx + iTy
)

(2.93)

T1,0 = Tz (2.94)

T = 1

10c

∫ [
r(r · j) − 2r2j

]
d3r (2.95)
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where μ0 is the magnetic permeability of vacuum, r is the vector between the loca-
tion of the dipole moment and the detector, T is the toroidal dipole mode, and j
is the current density. The total field scattered by an emitter, consists of infinite
arrays of resonators, (Es) can be obtained by the summation of contributions from
all dipoles at the position of the observer. We assumed that all excited dipoles are
oscillating in-phase and the emitter arrays are adequately smaller than the incident
beam wavelength. Then, the complex-valued field emitted by the single emitter at rs

and detected by the detector at point rd is given by (Radescu and Vlad 1998):

A(s)
k,l,m(rd; rs) = Yl,m

(
rd − rs

|rd − rs |
)
exp(−ik|rd − rs |)

|rd − rs | (2.96)

in which k is the wave number and Y denotes the spherical harmonics (Arfken and
Weber 2001). In this limit, the total field reaching the detector at distance R will be:

A(d)
k,l,m(xd , yd , R) =

∑

n

A(s)
k,l,m(xd , yd , R; rn) (2.97)

Now, using this assumption that the array lies in the xy-plane at z = 0 and the
detector is located at z = R, we can substitute the sum over the metamolecules of the
array with following integral:

Es =
∑

r

E(r) ≈ 1

�2

∫
E(r)d2r (2.98)

where � is the area of the metamolecule. After integration, we have:

A(d)
k,l,m(xd , yd , R) ∼= πδm,0

ik�2

√
2l + 1

π
exp(−ik R) (2.99)

By considering the propagation direction of radiation and focusing on the far-field
component of the radiation for the distances much bigger than the wavelength of the
incident wave, one can claim that:

Il,m
∼=

πδm,0

(
R̂.ẑ
)l

ik

√
2l + 1

π
exp(−ik R) (2.100)

Then, by substituting (2.92) into (2.98), and utilizing (2.100), we have:

Es = μ0c2k2

4�2

√
2

⎛

⎜⎝
T1,1 − T1,−1

i
(
T1,1 − T1,−1

)

0

⎞

⎟⎠ exp(−ik R) (2.101)
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Further simplifications on the equation above leads to thefinal formof the scattered
field as (Afanasiev 2001):

Es = −μ0c2k2

2�2
T‖ exp(−ik R) (2.102)

For a particular scatterer, the projected toroidal dipole (T‖) is given by T‖ =
Tx x̂ + Ty ŷ, or in general T‖ = T − (T · R̂) R̂. To derive the far-field distribution of
other isolated multipoles, one should use the expression for the radiation emitted by
multipole sources. Owing to the large number of terms, it would be more efficient
to separate the series into different orders of l. Below, we listed the dipolar (l = 1),
quadrupolar (l = 2), and octupolar (l = 3) contributions:

E(l=1) ≈ μ0c2

3
√
2π

exp(−ik R)

r
×
∑

m=0,±1

{(
k2Q1,m − ik3T1,m + ik5T (1)

1,m

)

×
(
Y1,2,m + √

2Y1,0,m

)
+ i

√
3
(

k2M1,m − k4T (1)
1,m

)
× Y1,1,m

}
(2.103)

E(l=2) ≈ μ0c2

10
√
6π

exp(−ik R)

r
×

∑

m=0,±1,±2

{(
ik2Q(e)

2,m + k5Q(T )
2,m

)

×
(√

2Y2,3,m + √
3Y2,1,m

)
− i

√
5k3Q(m)

2,m Y2,2,m
}

(2.104)

E(l=3) ≈ − μ0c2k4

15
√
3π

exp(−ik R)

r
×

∑

m=0,±1,±2,±3

{
1

7
O(e)

3,m

(√
3Y3,4,m + 2Y3,2,m

)

+ i√
7

O(m)
3,mY3,3,m

}
(2.105)

and, the total emitted field is given by:

E = E(l=1) + E(l=2) + E(l=3) + · · · (2.106)

It should be underlined that the terms above l > 3 (e.g., hexadecapole) can be
neglected due to their weak impact on the total emitted field. Ultimately, the far-field
for the electric field propagation can be written as (Savinov et al. 2014):

Es = μ0c2

2�2

{
−ikp‖ + ikR̂ ×

[
m‖ − k2

10
m(1)

‖

]
− k2

[
T‖ − k2

10
T(1)

‖

]

+ k2
[
Q(e) · R̂

]

‖
− k2

2
R̂ ×
[
Q(m) · R̂

]

‖
− ik3

3

[
Q(T) · R̂

]

‖

− ik3
[(

O(e) · R̂
)
R̂
]

‖
− ik3

180

[(
O(m) · R̂

)
R̂
]

‖

}
× exp(−ik R) (2.107)
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Fig. 2.14 Three families of dynamic multipoles. Artistic representation of charge configurations
and far-field radiation patterns of electric,magnetic, and toroidalmultipoles. Adapted from (Savinov
et al. 2014) with permission. Copyright APS

Here, the terms that are contributed to the emitted field are electric (p), magnetic
(m), and toroidal dipoles (T), electric (Q(e)), magnetic (Q(m)), and toroidal (Q(T))
quadrupoles, electric(O(e)), magnetic(O(m)), and toroidal (O(T)) octupoles. The
mean-square radii of toroidal and magnetic dipoles are denoted as T(1) and m(1),
respectively. It is important to note that to analyze the spectral response of scat-
terers, the first part of (2.107) should be considered, due to weak far-field radiation
contribution of high-order multipoles.

Inducing a dynamic toroidal dipole possesses the creation of a closed-loop config-
uration of themagnetic fields and currents rotating on the surface of a torus (Fig. 2.14).
This graph demonstrates the charge and current configurations for classical electro-
magnetic and toroidal multipoles, where the far-field radiation pattern of both clas-
sical and toroidal multipoles is indistinguishable. Since the electromagnetic manifes-
tations of the toroidal dipole dramatically masks by stronger conventional charge and
magneticmultipoles, the observation of toroidal response extremely challenging, and
required multipole expansion analysis that will be discussed in the future Chapters.

2.6.3 Dynamic Anapoles

In Sect. 2.6.2, optically driven (dynamic) toroidal dipole is introduced as an inde-
pendent term in the family of electrodynamic multipole expansion. It is also shown
that static toroidal dipoles, known as static anapoles described the context of parity
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Fig. 2.15 Principle of a dynamic anapole.Anapole is a superposition of electric and toroidal dipoles.
Anapolemode ariseswhen the fields radiated by the electric and toroidal dipoles destructively cancel
each other. Adapted from (Savinov et al. 2019) with permission. Copyright Springer Nature

violation in nuclear physics, have been observed in magnetism and could be the only
possible electromagnetic form factor for dark matter candidate particles (Zel’Dovich
1958; Spaldin et al. 2008; Ho and Scherrer 2013; Gao et al. 2014; Latimer 2017;
Alves et al. 2018). In contrast to static anapole, dynamic anapoles have been proposed
under the toroidal framework, where an electric dipole (a pair of oscillating charges)
together with a toroidal dipole (oscillating poloidal current on a torus) form a non-
radiating charge-current configuration (Afanasiev and Stepanovsky 1995; Raybould
et al. 2017; Baryshnikova et al. 2019; Savinov et al. 2019). In principle, the dynamic
anapole state appears at a particular wavelength of oscillations when the fields radi-
ated by the co-located electric and toroidal dipoles destructively cancel each other
(Fig. 2.15). The electric and magnetic fields radiated by superposition of these two
dipoles are (Basharin et al. 2017; Savinov 2018):

E A = E p + ET = exp(−ikr + iωt)

r{
r · ( p − ikT )O(ω, r)

c2r2
r − G(ω, r)

c2
( p − ikT )

}
(2.108)

HA = Hp + HT = −exp(−ikr + iωt)

r
{r × ( p − ikT )} ik D(ω, r)

cr
(2.109)

where O(ω, r), G(ω, r), and D(ω, r) are the vector potentials corresponding to the
induced currents (Afanasiev and Stepanovsky 1995).

The far-field emission of an anapole mode is zero, due to the identical radiation
pattern of electric and toroidal dipoles, and the detection of a perfect anapole through
far-field radiation analysis is not possible, since these nonradiative spectral features
do not absorb light. In fact, anapole states can be detected if they weakly couple to
the electromagnetic fields from free space. Another alternative technique has been
developed based on the slightly off-balance anapole excitations. In this limit, if
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the anapole states are not perfectly balanced, i.e., the electric dipole emission does
not precisely cancel out the toroidal dipole radiation, this results in the creation of
a narrow peak in the scattering cross-section. Based on this fact, electromagnetic
anapoles were initially detected as narrow transmission peaks in the spectra of a
microwave metamaterial (Fedotov et al. 2013). After that, the excitation of dynamic
anapoles in artificial media was discussed by developing diverse all-dielectric and
metallic architectures at subwavelength scales (Gongora et al. 2017; Yang et al. 2018;
Wu et al. 2018; Baryshnikova et al. 2019).
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Chapter 3
Expansion of Electromagnetic Multipoles

Abstract This Chapter presents a complete electromagnetic multipole expansion,
effective for all point sources in space, including the presence of toroidal moments.
To that end, in light of the provided information in Chap. 2, we utilized the solution
of inhomogeneous Helmholtz equations to evaluate the electromagnetic field due
to alternating poloidal currents in a toroidal solenoid. This solution was obtained
through the use of Green’s functions and Debye potentials for point sources and
fields. The achieved results enabled us to show the physical meaning of uncon-
ventional toroidal moments, in comparison to the classical electric and magnetic
moments. Besides, the analysis in the long wavelength limit clearly demonstrates
that the toroidal moments were neglected previously in the multipole expansion.

3.1 Debye Potentials

By recalling the Maxwell’s equations from previous section and rephrasing them as
a set of linear equations for harmonic time variations (e−iωt ) with frequency ω, we
have:

∇ · �E = 4πρ

∇ × �E = iω

c
�B

∇ · �B = 0

∇ × �B = 4π

c
�J − iω

c
�E (3.1)

where ω/c is the wavenumber (k). The equations above can be decoupled by taking
the curl of second and fourth relations and using the remaining equations, one can
obtain the corresponding inhomogeneous Helmholtz equations for the electric and
magnetic fields as following:

(∇2 + k2
) �E(�r) = 4π∇ρ − 4π iω

c2
�J (�r) (3.2)
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(∇2 + k2
) �B(�r) = −4π

c
∇ × �J (�r) (3.3)

Here, (3.2) exhibits that the electric field intensity can be defined by the gradient
of the charge density and both longitudinal and transverse components of the current
density. Conversely, (3.3) shows that the magnetic induction field can be determined
by the transverse component of the current density. The solutions of (3.2) and (3.3)
can be configured through the use of Green’s function for the Helmholtz equation:

(∇2 + k2
)
℘+

(
�r; �r ′) = −4πδ

(
�r − �r ′)

(3.4)

Then, the outgoing wave Green’s function and its multipole expansion can be
defined by using (Gray 1978):

℘+
(
�r; �r ′) = e

ik
∣∣
∣�r−�r ′ ∣∣

∣

∣∣�r − �r ′ ∣∣ = 4π ik
∞∑

l=0

jl(kr<)h(1)
l (kr>)

∞∑

l=0

(−)mN 2
lm P

m
l

(
cos θ

′)
Pm
l (cos θ)(2 − δm0) cosm

(
ϕ − ϕ′) (3.5)

The solutions of (3.2) and (3.3) involve the integrations of the respective sources
and the Green’s function:

�E(�r) = −∫ dυ ′∇′ρ
(
�r ′)

℘+
(
�r; �r ′) + iω

c2
∫ dυ ′ �J

(
�r ′)

℘+
(
�r; �r ′)

(3.6)

�B(�r) = ∫ dυ ′∇′ × �J
(
�r ′)

℘+
(
�r; �r ′)

(3.7)

Applying multipole expansion of the Green’s function
(
℘+

(�r; �r ′))
in (3.5)–(3.7)

gives rise to the general and exact expansion of the electromagnetic field. This will
also be applied to the toroidal solenoid analysis in the following subsections.

TheDebye potentials (Gray 1978; Góngora and Ley-Koo 2006) are useful compo-
nents for exhibiting the decomposition of the source and force fields into their longi-
tudinal and transverse (toroidal and poloidal) components, including the connection
between them. Importantly, gradient of the charge density is a longitudinal field,
since its curl is zero. Therefore, the current density is:

�J
(
�r ′) = ∇i L

(
�r ′) + ∇ ×

(
�ri T

(
�r ′))

+ ∇ ×
[
∇ ×

(
�r × i P

(
�r ′))]

=∇i T
(
�r ′) − i�li T

(
�r ′) − i∇ × i�li P

(
�r ′)

(3.8)

In the equation above, the corresponding poloidal and toroidal Debye potentials
are represented as −i∇2i P(�r) and i T (�r), respectively, and the final response of the
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equation above motivates the angular momentum operator �l = −i�r × ∇, and the
source density can be utilized to fulfill the continuity equation:

∇. �J (�r) = iωρ(�r) (3.9)

It should be noted that this equation contains only the longitudinal component
of the current density. In terms of the corresponding Debye potential, (3.9) can be
written as:

∇2i L = iωρ (3.10)

This simplified equation demonstrates that the potential
(
i L(�r)) and charge density

are related through Poisson’s equation. On the other hand, curl of the current
density can be attained using triple product and orthogonality of the divergence and
angular momentum operators, along with the commutability of Laplace and angular
momentum operators:

∇ × �J (�r) = −i∇ × �li T (�r) − i∇ ×
[(

∇ × �l
)
i P(�r)

]

= − i∇ × �li T (�r) − i�l[−∇2i P(�r)] (3.11)

Considering both (3.8) and (3.11) with the symmetric nature of Green’s function
and hermiticity of gradient and angular momentum operators lead us to rewrite (3.6)
and (3.7), and unveil the longitudinal and transverse components of the associated
force fields as:

�E(�r) = −∇
∫

dυ ′
[
ρ
(
�r ′) − iω

c2
i L

(
�r ′)

]
℘+

(
�r; �r ′)

− i�l
∫

dυ ′
[
− iω

c2
i T

(
�r ′)

]
℘+

(
�r; �r ′)

− i∇ × �l
∫

dυ ′
[
− iω

c2
i P

(
�r ′)

]
℘+

(
�r; �r ′)

(3.12)

�B(�r) = −i�l ∫ dυ ′
[
−∇′2i P

(
�r ′)]

℘+
(
�r; �r ′)

− i∇ × �l ∫ dυ ′
[
i T

(
�r ′)]

℘+
(
�r; �r ′)

(3.13)

Furthermore, the corresponding Debye potentials can be defined from these
equations as:

eL(�r) = ∫ dυ ′
[
ρ
(
�r ′) − iω

c2
i L

(
�r ′)

]
℘+

(
�r; �r ′)

(3.14)
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eT (�r) = ∫ dυ ′
[
− iω

c2
i T

(
�r ′)

]
℘+

(
�r; �r ′)

(3.15)

eP(�r) = ∫ dυ ′
[
− iω

c2
i P

(
�r ′)

]
℘+

(
�r; �r ′)

(3.16)

bL(�r) = 0 (3.17)

bT
(
�r ′) = ∫ dυ ′

[
−∇′2i P

(
�r ′)]

℘+
(
�r; �r ′)

(3.18)

bP
(
�r ′) = ∫ dυ ′

[
i T

(
�r ′)]

℘+
(
�r; �r ′)

(3.19)

Here, (3.15) and (3.19) indicate that toroidal currents generate toroidal electric
and poloidal magnetic fields, while (3.16) and (3.18) exhibit that poloidal currents
produce poloidal electric and toroidal magnetic fields. In addition, (3.14) shows
that the charge density and longitudinal currents are the sources of the longitudinal
electric field.

3.2 Electromagnetic Radiations of Toroidal Solenoids

The unique properties of toroidal excitations were described in the previous Chapter.
In this section, we utilize the well-known example of toroidal solenoids to define
toroids, with a circular ring cross-section in each meridian plane, and alternating
poloidal currents. The curl of the current density is evaluated in (3.7), with the
multipole expansion of the Green’s function (3.5), to attain the multipole decom-
position of the magnetic field. In this framework, the electric field intensity can be
assessed by integrating (3.6), where the toroidal nature of the magnetic field and the
poloidal feature of the electric field are explicitly exhibited, resulting in themultipole
expansions of the related Debye potentials.

3.2.1 The Multipole Decomposition

The toroidal topology with a circular ring cross-section can be accurately defined by
its:

1. Inner spherical ring (r = a, θ2 < θ < θ1, ϕ),
2. Upper conical ring (a < r < b, ϑ = θ1, ϕ),
3. Outer spherical ring (r = b, ϑ1 < θ1 < ϑ2, ϕ),
4. And lower conical ring (b > r > a, θ1 = ϑ2, ϕ).
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The alternating poloidal current (I e−iωt ) in the toroidal solenoid with N turns has
the density of:

�J (�r , t) = N Ie−iωt

2πr sin θ

{
r̂

r
[δ(θ − θ1) − δ(θ − θ2)][�(r − a) − �(r − b)]

+ θ̂[δ(r − b) − δ(r − a)][�(θ − θ1) − �(θ − θ2)]
}

(3.20)

Here, the Dirac delta functions indicate the coil elements, where the current fluxes
and Heaviside step functions resemble the extent of these elements. Consequently,
the curl of the current density is toroidal (in the azimuthal direction) and invariant
under rotations around the axis of the moment:

∇ × �J (�r) = N I ϕ̂

2πr

{
d

dr
[δ(r − b) − δ(r − a)]

�(θ − θ1) − �(θ − θ2)

sin θ

− 1

r2
d

dθ

[
δ(θ − θ1) − δ(θ − θ2)

sin θ

]
[�(θ − a) − �(θ − b)]

}
(3.21)

Judicious combination of (3.5), (3.7), and (3.21) leads to the complete multipole
expansion of the magnetic field:

�B(�r) = N I

2πr

∞∫

0

π∫

0

2π∫

0

r
′2dr ′ sin θ

′
dϑ ′dϕ′

ϕ̂′

r ′

{
d

dr ′
[
δ
(
r ′ − b

) − δ
(
r ′ − a

)] �
(
θ ′ − θ1

) − �
(
θ ′ − θ2

)

sin θ
′

− 1

r ′2
d

dθ ′

[
δ
(
θ ′ − θ1

) − δ
(
θ ′ − θ2

)

sin θ
′

]
[
�

(
θ ′ − a

) − �
(
θ ′ − b

)]
}

{4π ik
∞∑

l=0

jl(kr<)h(1)
l (kr>) ×

∞∑

l=0

(−)mN 2
lm P

m
l

(
cos θ

′)

Pm
l (cos θ)(2 − δm0) cosm

(
ϕ′ − ϕ

)}
(3.22)

where the azimuthal angle integration can be performed through the following
relation:

ϕ̂′ = ϕ̂ cos
(
ϕ′ − ϕ

) − R̂ sin
(
ϕ′ − ϕ

)
(3.23)

as well as the orthogonality of the cosine and sine functions:

2π∫

0

ϕ̂
′
cosm

(
ϕ′ − ϕ

)
dϕ′ = ϕ̂πδm1 (3.24)
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This implies that the magnetic field is also azimuthal and invariant under axial
rotations, similar to the toroidal field.

According to the selection rule of (3.24), the polar angle integrations are limited
to the terms withm = 1 in the sum of (3.22). Thus, the first integral can be expressed
as:

θ2∫
θ1

dθ ′P1
l

(
cos θ

′) = Pl(cos θ1) − Pl(cos θ2) (3.25)

Following from the relation between the associated and ordinary Legendre
polynomials, we have:

P1
l (cosϑ) = sin θ

d

d(cos θ)
Pl(cos θ) (3.26)

and the second integral of (3.22), containing the Dirac delta functions, can be solved
as below:

θ2∫

θ1

dθ ′ d

dθ ′
[
sin θ

′
P1
l

(
cos θ

′)]
sin θ

′
P1
l

(
cosϑ

′)

= − 1

sin θ
′
d

dθ ′
[
sin θ

′
P1
l

(
cos θ

′)]∣∣θ ′ = θ1

+ 1

sin θ
′
d

dθ ′
[
sin θ

′
P1
l

(
cos θ

′)]∣∣θ ′ = θ2

= −l(l + 1)[Pl(cos θ1) − Pl(cos θ2)]

(3.27)

Combining (3.26) with the differential equation for the ordinary Legendre
polynomials leads to:

1

sin θ

d

dθ
sin ϑ

d

dθ
Pl(cos θ) = −l(l + 1)Pl(cos θ) (3.28)

Although in (3.22), the integrations over the radial coordinate are direct, the
location difference between the field points must be considered. In light of this, the
first integral over the Dirac delta functions can be partially solved as:

∞∫

0

r ′dr ′ d

dr ′
[
δ
(
r ′ − b

) − δ
(
r ′ − a

)]
jl(kr<)h(1)

l (kr>)
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=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
− d

dr ′

[
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l

(
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a

)
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l

(
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(
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(1)
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(
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[
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(
kr ′)]b

a

)
h(1)
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(3.29)

In the equations above, the second term can be rewritten as:

b∫

a

d

dr ′ jl(kr<)h(1)
l (kr>)

=

⎧
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l
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l

(
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b∫

a
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(
kr ′)h(1)
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(3.30)

The substitution of the integrals of (3.24)–(3.29) in (3.22) results in:

�B(�r) = 4π ikN I

c
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l=0

(−)N 2
l1P

1
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×
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{
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[
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(
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(
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b
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b∫
a

d
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(
kr ′)

}
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(3.31)

It should be noted that the standard multipole expansion of the electromagnetic
field is limited to the region outside the sources, corresponding to r > b in (3.29)–
(3.31). In the following subsections, we demonstrated the field in the inner region r <
a, where there are no point sources, and in the intermediate region a < r < b, where the
sources are located. This can be accomplishedwithin one and the same calculation by
simply differentiating between the different locations of the field point. In addition,
the solutions in the source free regions (r < a and r > b) are the superposition
of the solutions of homogeneous Helmholtz equations, while the solutions in the
intermediate region are the nonlinear combinations of the spherical Bessel functions
and their derivatives or integrals.
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Considering the Debye potentials and using the azimuthal unit vector and
associated Legendre polynomials, one can write:

ϕ̂P1
l (cos θ) = 2

(
π

2l + 1

) 1
2 (

−i�l
)
Yl0(θ, ϕ) (3.32)

Thus, (3.31) can be stated in a toroidal framework as below:

�B(r, θ, ϕ) = (−il)
∞∑

l=1

8π ikN I

c
(−)

√
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2l + 1
N 2
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×
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(
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l (kr)
)

+ k2
b∫
r
dr ′r ′h(1)

l

(
kr ′)

]
jl(kr)

}
, a < r < b

k2
b∫
a
dr ′r ′ jl

(
kr ′)h(1)

l (kr) , r > b

(3.33)

Moreover, (3.33) can be considered as the multipole expansion of the Debye
potential bT , which can be easily perceived through a simple comparison between
(3.13) and (3.18). It should be underlined that owing to hermiticity, the Laplacian
in (3.18) can also be performed on the Green’s function. According to Helmholtz
Eq. (3.4), this gives−k2 times theGreen’s function plus the point source density term.
This can be observed in the radial factors of (3.33). In the set of equations above,
the electric field intensity, the current density and the magnetic induction can be
defined using (3.1) (fourth term), (3.21), and (3.33), respectively. Here, the electric
field intensity is poloidal because of the use of the curl in the toroidal magnetic
induction and the poloidal nature of the current density. Besides, the current density
can be described in its multipole expansion picture through the use of corresponding
representations of the Dirac delta and Heaviside step functions in polar angles, in
(3.20).

3.2.2 The Dynamic Toroidal Multipoles

In continue, we consider the electric and magnetic fields where r > b, in the form
that enables the characterization of the multipole expansions of the electromagnetic
field of toroidal solenoids. Hence, the definitions for the electric and magnetic fields
are:
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�E(r > b, θ, ϕ) =
∞∑

l=1

ψl0
i

k
∇ × �lh(1)

l (kr)Yl0(θ, ϕ) (3.34)

�B(r > b, θ, ϕ) =
∞∑
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ψl0�lh(1)
l (kr)Yl0(θ, ϕ) (3.35)

where

ψl0 = −2πk3N I

c

√
2l + 1

π

1

l(l + 1)
[Pl(cos θ1) − Pl(cos θ2)]

b∫
a
dr ′r ′ jl

(
kr ′) (3.36)

For the purpose of evaluation of electric and magnetic fields, we write down the
general form of multipole expansion of electromagnetic field as following (Gray
1978):

�E(�r) =
∑

l

∑

m

{
ψ E
lm

(
i

k

)
∇ × �lh(1)

l (kr)Ylm(θ, ϕ) + ψM
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�lh(1)
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}

(3.37)

�B(�r) =
∑

l

∑

m
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ψ E
lm

�lh(1)
l (kr)Ylm(θ, ϕ) + ψM

lm

(−i)

k
∇ × �lh(1)

l (kr)Ylm(θ, ϕ)

}

(3.38)

Here, the dynamic multipole moments can be described as (Jackson 2007):

ψ E
lm = − 4π ik2

cl(l + 1)

[∫ dυ ′ jl
(
kr ′)Y ∗

lm

(
θ ′, ϕ′)]

{
ik�r ′

. �J
(
�r ′) − c

(
2 + �r ′

.∇
)
ρ
(
�r ′)}

(3.39)

ψM
lm = 4π ik2

cl(l + 1)
∫ dυ ′ jl

(
kr ′)Y ∗

lm

(
θ ′, ϕ′)�r ′

.∇′ × �J
(
�r ′)

(3.40)

whereψ E
lm andψM

lm represent the dynamic electric and magnetic multipole moments,
respectively. In theory, (3.34)–(3.36) and (3.37)–(3.40) can be compared straight-
forwardly. Since ψM

lm disappears at the source level due to poloidal character of the
alternating current (from (3.20)), the poloidal component of the magnetic field is
missing in (3.35) and the toroidal component of the electric intensity field is missing
in (3.37). In addition, the disappearance of the integrand in (3.40) follows from
orthogonality of the radial vector and curl of the current density (3.21). On the other
hand, the dynamic electric multipole moments in (3.39) are defined by the radial
components of the current density and of the gradient of the charge density. Eventu-
ally, the expansions of (3.34)–(3.36) correspond to the dynamic transverse electric
multipole moments associated with the radial component of the poloidal current
density in (3.40) with ρ = 0.
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To finalize the characterization of the multipole expansion of the electromag-
netic field of the toroidal solenoid, one can add the superscript E in (3.36)–(3.38).
However, this leads to the disappearance of the toroidal moments. Adding the
correct superscripts in (3.36)–(3.38) and following a similar approach mentioned
in Ref. (Dubovik and Cheshkov 1975), (3.40) gives an exact relationship between
the dynamic multipole moments of electric, toroidal, and charge types:

ψ E
lm(k) = ψT

lm(k) + ψ
Q
lm(k) (3.41)

The differences and similarities between these types of dynamic multipole
moments can be understood through separating the source terms of inhomogeneous
Helmholtz equations (see (3.2) and (3.3)). In (3.39) and (3.40), it is easy to see that
the source components are the radial factors of the respective sources.

We initially consider the unambiguous case of the magnetic moments, in which
the corresponding source factor in the integrand of (3.40) can be expressed in terms
of the decomposition of the current density provided in (3.8):

�r ′
.
[
∇′ × �J

(
�r ′)]

=
[
�r ′ × ∇′

]
. �J

(
�r ′) = �l2i T (3.42)

where the dot and cross are exchanged in the triple scalar product, and later, the
orthogonality of the operators is applied. (3.42) demonstrates that the dynamic
magnetic multipole moments only depend on the toroidal component of the current.
Besides, for the electric multipole moments, this comprises both longitudinal and
poloidal components of the source:

�r ′
.

[
−∇′ρ

(
�r ′) + ik

c
�J
(
�r ′)

]
= −�r ′

.∇′
[
ρ
(
�r ′) − ik

c
i L

(
�r ′)

]
+ i�l2i P

(
�r ′)

(3.43)

Bearing in mind that the fundamental parts of the multipole expansions are the
eigenfunctions of ∇2 and �l2 operators, it is obvious that (3.40) is related to (3.19)
and (3.41) is correlated with both (3.14) and (3.18).

3.2.3 The Long Wavelength Regime

Assuming that the sources are confined in an area with a radial range smaller than
the wavelength of incidence, one can approximate the spherical Bessel functions
in (3.32)–(3.40) through the dominant terms of their power series expansions near
the origin. In addition, the weight functions in (3.39) and (3.40) are associated with
the static multipole moments defined by the powers of the radial coordinates as
following:
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ψ E
lm(k → 0) = − 4π ikl+2
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ψM
lm(k → 0) = 4π ikl+2

cl(l + 1)(2l + 1)!!∫
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′lY ∗
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(
θ ′, ϕ′)�r ′

.∇′ × �J
(
�r ′)

= 4π ikl+2

l(2l + 1)!!Mlm (3.45)

The part associated with the radial component of the current density in (3.44) can
be neglected in the long wavelength approximation. Now, the dynamic multipole
moments in (3.39)–(3.41) can be normalized to have the time dependent form factors:

Mlm
(−k2, t

) = l(2l + 1)!!
4π ikl+2

ψM
lm(k)e−iωt → Mlme

−iωt (3.46)

Elm
(−k2, t

) = cl(2l + 1)!!
4πkl+1

ψ E
lm(k)e−iωt (3.47)

Qlm
(−k2, t

) = − l(2l + 1)!!
4π ikl+2

ψ
Q
lm(k)e−iωt → Qlme

−iωt (3.48)

Tlm
(−k2, t

) = l(2l + 1)!!
4πkl+3

ψT
lm(k)e−iωt (3.49)

Based on these facts, Eq. 3.41 can be written as:

Elm
(−k2, t

) = k2Tlm
(−k2, t

) + Q̇lm
(−k2, t

)
(3.50)

In general, standard systems consisting of electromagnetic sources and fields can
be defined in terms of magnetic form factors (see (3.46)), transverse electric form
factors (see (3.47)), and charge form factors (see (3.48)). Beyond that, based on the
long wavelength approximation, (3.50) can be simplified as:

Elm
(−k2, t

) = Q̇lm
(−k2, t

)
(3.51)

Importantly, for the systems with poloidal currents (e.g., toroidal solenoid), (3.51)
is not valid. Instead of the transverse electric components, it is more convenient
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to consider the toroidal components from (3.49), which are independent from the
magnetic and charge elements.

3.2.4 The Magnetostatic Regime

The limit of stationary currents with frequency ω → 0 in toroidal solenoids is asso-
ciated with the magnetostatic regime. Thus, the fourth equation in (3.1) becomes
Ampère’s law, and (3.3) and (3.4) becomePoisson’s equation. In addition, theGreen’s
function of (3.5) converts to the Coulomb potential, and finally, the spherical Bessel
functions are substituted by their power approximations.

By taking up the problem at the level of magnetic field in (3.31), one can write:

jl(kr<)h(1)
l |k→0 − ir l<

k(2l + 1)rl+1
<

(3.52)

where i is a complex number. For the regions without source (r < a and r > b),
the radial integrals are finite, but they can be multiplied by the factor of k2, which
disappears in the static limit. In the notation of long wavelength limit, the toroidal
components are finite, but the toroidal moments vanish in the inner and outer regions
that bounds the toroid. To this end, the magnetic induction becomes ineffective in
both regions, and for the region where the sources are located, the radial factor is:

(
d

dr

(
rl+1

)) 1

rl+1
−

(
d

dr

(
1

rl

))
rl = 2l + 1

r
(3.53)

The coefficient in the numerator of (3.53) will cancel the factor in the denominator
of (3.52). Then, (3.31) can be expressed as:

�B(a < r < b, θ, ϕ) = 4πN I

cr
ϕ̂

∞∑

l=1

(−)
2l + 1

4π
P1
l (cos θ)[Pl(cos θ1) − Pl(cos θ2)]

= 2N I

cr sin θ
(�(θ − θ1) − �(θ − θ2)) (3.54)

In the equation above, the explicit value of the normalization constant was substi-
tuted, and finally, the sum is defined with the difference of the Heaviside step func-
tions in the polar angle, which follows from the completeness of the orthonormal
Legendre basis:

∞∑

l=0

2l + 1

2
Pl(cos θ)Pl(cos θi ) = δ(cos θ − cos θi ) = −δ(θ − θi )

sin θ
(3.55)

and
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Θ(θ − θi ) = θ∫
0
dθ ′δ(θ − θi ) = −

∞∑

l=0

2l + 1

2

θ∫
0
dθ ′ sin θ

′
Pl

(
cos θ

′)
Pl(cos θi )

= −
∞∑

l=1

2l + 1

2l(l + 1)
sin θ P1

l (cos θ)Pl(cos θi ) (3.56)

Here, the magnetic induction is azimuthal and vanishes outside the solenoid, and
inversely proportional to the radial distance from the axis in the interior. In addition,
noticeably, the toroidal moments between two spheres are not equal to zero, and the
summation of all multipole components of the field was carried out in (3.54).

3.2.5 The Point Source Regime

(3.34) and (3.35) for the electromagnetic field of toroidal solenoids correspond to the
transverse electric fields of (3.37) and (3.38), respectively. This accompanies with the
identification of ψE = ψT, following from (3.41), since the charge moments disap-
pear in this limit. Owing to the identical radiation characteristics of the transverse
electric multipole fields, the polarization and angular distribution of the radiation of
each multipole components of the field is the same (Gray 1978; Jackson 2007). The
difference here is in the amplitudes given by (3.36), which is in contrast with the
conventional case dominated by the charge moments in (3.44).

For the solenoid configuration with small dimensions compared to the wavelength
of the incidence (i.e., kb 	 1), ψl0 in (3.36) becomes:

ψT
l0(kb << 1) = −2N I

c

√
π(2l + 1)

l(l + 1)

[Pl(cos θ1) − Pl(cos θ2)]
k
[
(kb)l+2 − (ka)l+2

]

l + 2
(3.57)

Since the ratio of the moments of two consecutive multipoles follows kb 	 1, the
element with the lowest multipolarity is the dominant term. In this case, the most
dominant moment is the toroidal dipole with l = 1.

On the other hand, if one compares (3.52)with the corresponding chargemultipole
moment in (3.44), an extra factor of k for the toroidal moments can be obtained. This
can be translated into an additional factor of ω2 in the radiated power from a toroidal
multipole relative to that of the corresponding electric multipole. Consequently, the
radiated power from a toroidal solenoid (i.e., toroidal dipole) drives as ω6, which is
in contrast with the well-known ω4 dependence of classical electric and magnetic
dipoles. In fact, the toroidal and electric multipoles of a particular order possess the
identical angular momentum and parity properties, hence, the concurrent presence
of both types of multipoles yields a frequency dependence of the radiated power that
is more complex than the corresponding dependence for each individual type.
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To conclude, the completemultipole expansion of the electromagnetic field arising
from alternating poloidal currents in toroidal solenoids was constructed. This was
performed by assuming that the field exhibits the existence of toroidal multipole
moments and termed at all points in space. It is shown that, while poloidal currents in
toroidal solenoids hold vanishing magnetic and charge multipole moments, toroidal
moments resulting from the poloidal currents, just as magnetic (poloidal) moments
resulting from the moments of toroidal currents.
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Chapter 4
Physical Mechanism Behind the Toroidal
Multipoles

Abstract In this chapter,we presented a set of calculations for the radiation intensity,
angular momentum loss, and recoil force of the most general type of source, in terms
of electric, magnetic, and toroidal multipole moments. In these calculations, we
considered a set of studies based on radii of any multipolarity and an arbitrary time
dependence. The results are articulated in terms of time derivatives of the multipole
moments and mean radii of the associated distributions. To that end, we recalled
the equations for the description of electromagnetic multipoles as well as dynamic
toroidal moments fromChap. 2. Besides, we employed the classical electrodynamics
framework to obtain the rate of angular momentum loss of a time-dependent toroidal
dipole, which was derived by Radescu and Vlad (Phys Rev E 57(5):6030, 1998);
Radescu and Vaman (Phys Rev E 65:046609, 2002), in connection with a forced
precession of the toroidal dipole around a particular axis.

4.1 Defining the Problem

Considering the classical electric andmagneticmultipolemoments and their distribu-
tions, the problemof the absence of toroidal contributions from the radiation intensity,
angular momentum, and angular momentum loss, within classical electrodynamics
framework, can be solved for any multipole order l. Using the multipole analysis
from Chap. 3, including the corresponding notations from Chap. 2, and employing
the proposed approach by Dubovik and Tugushev (1990), we provided the calcu-
lation of radiation intensity, angular momentum loss, and recoil force of the most
general source. This includes all types of electric, magnetic, and toroidal moments,
as well as distributions of any multipolarity order and an arbitrary time dependence.
The results are described in terms of time derivatives of the mean-square radii of any
order n, in which n = 0 order implies the corresponding multipole moment itself.

To start with, we recall the charge (2.69) and current (2.70) densities, as well as
the set of solutions (2.79)–(2.82) to the basis vector function �F (λ)

lmk(�r). Likewise, by
considering the electromagnetic and toroidal multipolar form factors (2.83)–2.85),
we rephrase them in the limit of k2 → 0. In this regime, using the electric form factor
Qlm(−k2, t), the electric multipole moments Qlm(t) can be written as:
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Qlm(t) = Qlm(0, t) = 2
√

π√
2l + 1

∫
rlY ∗

lm(�n)ρ(�r , t)d3r (4.1)

Rewriting the form factor Qlm(−k2, t) in Taylor series, one can obtain the mean
2n-order radii of the 2 l-pole charge distribution as:

Qlm(−k2, t) =
∞∑
n=0

(−k2)n

n! Q[n]
lm (t) (4.2)

where

Q[n]
lm (t) = dn

d(−k2)n
Qlm(−k2, t)|k2=0

r̄2nlm (t) = 2n(2l + 2n + 1)!!
(2l + 1)!! Q[n]

lm (t)

= 2
√

π√
2l + 1

∫
rl+2nY ∗

lm(�n)ρ(�r , t)d3r (4.3)

To extract the proper description related to the high-order derivatives of the form
factors, one may use:

dn

d(−k2)n

[
j∗l (kr)

kl

]
= (ir)n

2n
j∗l+n(kr)

kl+n
(4.4)

As mentioned above, radii of zero order (n = 0), i.e., the first term in (4.2), are
just the multipole moments themselves. This can be mathematically expressed as:
r̄0lm(t) = Qlm(k2 = 0, t) = Q[0]

lm (t) = Qlm(t). Similar approach can also be applied
to the magnetic and toroidal multipole form factors:

Mlm(−k2, t) =
∞∑
n=0

(−k2)n

n! M [n]
lm (t)

M [n]
lm (t) = dn

d(−k2)n
Mlm(−k2, t)|k2=0 (4.5)

Tlm(−k2, t) =
∞∑
n=0

(−k2)n

n! T [n]
lm (t)

T [n]
lm (t) = dn

d(−k2)n
Tlm(−k2, t)|k2=0 (4.6)

Now, the multipole magnetic and toroidal moments can be written as:

Mlm(t) = M [0]
lm (t) = Mlm(0, t) = 2

√
π

c(l + 1)
√
2l + 1

∫
rl
[
�r × �j(�r , t)

]
· �∇Y ∗

lm(�n)d3r
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= − i

c

2
√

πl

c(l + 1)
√
2l + 1

∫
rlY ∗

llm(�n) · �j(�r , t)d3r

(4.7)

Tlm(t) = T [0]
lm (t) = Tlm(0, t) = −

√
πl

c(2l + 1)

∫
rl+1

{ �Y ∗
ll−1m (�n)

+ 2
√
l/(l + 1)

2l + 3
�Y ∗
ll+1m

}
· �j(�r , t)d3r (4.8)

The radii of various 2n order are related to the derivatives of the corresponding
form factors of the magnetic case by the following equation:

ρ̄2n
lm(t) = 2n(2l + 2n + 1)!!

(2l + 1)!! M [n]
lm (t)

= − i

c

2
√

πl√
(l + 1)(2l + 1)

∫
r2n+l �Y ∗

llm(�n) · �j(�r , t)d3r (4.9)

ρ̄0
lm = Mlm(k2 = 0, t) = M [0]

lm (t) = Mlm(t) (4.10)

On the other hand, for the toroidal case, the form factor above can be rephrased
as:

R̄2n
lm(t) = 2n(2l + 2n + 1)!!

(2l + 1)!! T [n]
lm (t)

= − 1

c(2l + 1)

2
√

πl√
(l + 1)

∫
rl+2n+l

{ √
l

(2l + 2n + 3)
�Y ∗
ll+1m(�n)

+
√
l + 1

2(n + 1)
�Y ∗
ll−1m(�n)

}
�j(�r , t)d3r (4.11)

R̄0
lm = Tlm(k2 = 0, t) = T [0]

lm (t) = Tlm(t) (4.12)

The following form factors for electrical, magnetic, and toroidal moments are
functions with two variables:Qlm(−k2, t), Mlm(−k2, t), and Tlm(−k2, t). Instead,
it would be convenient to describe this information in terms of the electromagnetic
framework of the considered system regarding themean-square radii of various types
of electric (r̄2nlm (t)), magnetic (ρ̄2n

lm(t)), and toroidal (R̄2n
lm(t)) form factors, multipo-

larity (l), and orders (2n). All these radii are still functions of time and their deriva-
tives of diverse orders. Since up to numerical factors, all these radii are themselves
derivatives of the form factors Qlm(−k2, t), Mlm(−k2, t), and Tlm(−k2, t) of various
orders (n) with respect to (−k2) at k2 = 0, we will consider the double-superscript
quantities, Q(n)(υ)

lm (0, t), M (n)(υ)
lm (0, t), and T (n)(υ)

lm (0, t):
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Q(n)(υ)
lm (0, t) = dυ

dtυ

[
dn

d(−k2)n
Qlm(−k2, t)

∣∣
k2=0

]
(4.13)

M (n)(υ)
lm (0, t) = dυ

dtυ

[
dn

d(−k2)n
Mlm(−k2, t)

∣∣
k2=0

]
(4.14)

T (n)(υ)
lm (0, t) = dυ

dtυ

[
dn

d(−k2)n
Tlm(−k2, t)

∣∣
k2=0

]
(4.15)

in which the first superscript (n) indicates the order of derivation with respect to
(−k2) at k2 = 0, while the second (υ) represents the order of derivation with respect
to time (t) of the corresponding form factor. The correlations between these double-
superscript quantities and the derivatives (on the order of υ) with respect to time of
the (order of n) mean-square radii of electric, magnetic, and toroidal types are:

Q(n)(υ)
lm (0, t) = (2l + 1)!!

2n(2l + 2n + 1)!!
dυ

dtυ
r̄2nlm (t) (4.16)

M (n)(υ)
lm (0, t) = (2l + 1)!!

2n(2l + 2n + 1)!!
dυ

dtυ
ρ̄2n
lm(t) (4.17)

T (n)(υ)
lm (0, t) = (2l + 1)!!

2n(2l + 2n + 1)!!
dυ

dtυ
R̄2n
lm(t) (4.18)

The quantities above (4.16)–(4.18) yield the necessary information about the
multipole content of the source and it will be in terms of these form factors. Next,
these components will be employed for expressing the radiation intensity, angular
momentum loss, and recoil force.

4.1.1 Potentials and Fields of a General Source

In this section, we briefly represent and explain the potentials and fields of a particular
source to utilize in analyzing the radiation intensity, angular momentum loss, and
recoil force. To obtain the fields created by a general distribution of charges and
currents, one should recall the continuity relation from (2.68), which consists of
current and charge densities. Using this assumption, the retarded scalar ϕ(�r , t) and
vector �A(�r , t) potentials can be written as:

ϕ(�r , t) =
∫ ρ

(
�r ′, t − |�r−�r ′|

c

)

|�r − �r ′| d3�r ′ (4.19)

�A(�r , t) =
∫ �j

(
�r ′, t − |�r−�r ′|

c

)

|�r − �r ′| d3�r ′ (4.20)
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to calculate the fields through the following famous equations:

�E(�r , t) = −1

c

∂ �A
∂t

− �∇ϕ(�r , t) (4.21)

�B(�r , t) = �∇ × �A(�r , t) (4.22)

By having the charge (2.69) and current (2.70) densities in time domain, to obtain
the electric, magnetic, and toroidal form factors of sources, one needs to define the
Fourier transforms of charge density:

ρ(�r , ω) =
∞∫

0

sin(ωt)ρ(�r , t)dt

ρ(�r , t) = 2

π

∞∫

0

sin(ωt)ρ(�r , ω)dω

ρ(�r , ω) = 1

4π3

∑
l,m,k

(−ik)l
√

π(2l + 1)

(2l + 1)!!
[
Qlm(−k2, ω)Flmk(�r)

]
(4.23)

with

Qlm(−k2, ω) =
∞∫

0

sin(ωt)Qlm(−k2, t)dt

Qlm(−k2, t) = 2

π

∞∫

0

sin(ωt)Qlm(−k2, ω)dω (4.24)

and current density:

�j(�r , ω) =
∞∫

0

cos(ωt) �j(�r , t)dt

�j(�r , t) = 2

π

∞∫

0

cos(ωt) �j(�r , ω)dω

�j(�r , ω) = 1

4π3

∑
l,m,k

(−ik)l−1

√
π(2l + 1)(l + 1)√

l(2l + 1)!!
{[

ckMlm(−k2, ω)F (0)
lmk(�r)

]

+[Q̇lm(0, ω) + ck2Tlm(−k2, ω)
]
F (+)
lmk (�r)
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+
√

l

l + 1
Q̇lm(−k2, ω) F (−)

lmk (�r)
}

(4.25)

with

Mlm(−k2, ω) =
∞∫

0

cos(ωt)Mlm(−k2, t)dt

Mlm(−k2, t) = 2

π

∞∫

0

cos(ωt)Mlm(−k2, ω)dω (4.26)

Tlm(−k2, ω) =
∞∫

0

cos(ωt)Tlm(−k2, t)dt

Tlm(−k2, t) = 2

π

∞∫

0

cos(ωt)Tlm(−k2, ω)dω (4.27)

Here, Q̇lm(0, ω) and Q̇lm(−k2, ω) stand for:

Q̇lm(0, ω) ≡
∞∫

0

cos(ωt)Q̇lm(0, t)dt

Q̇lm(−k2, ω) ≡
∞∫

0

cos(ωt)Q̇lm(−k2, t)dt

Q̇lm(0, t) = 2

π

∞∫

0

cos(ωt)Q̇lm(0, ω)dω

Q̇lm(−k2, t) = 2

π

∞∫

0

cos(ωt)Q̇lm(−k2, ω)dω

Q̇lm(0, ω) ≡ ωQlm(0, ω)

Q̇lm(−ω2

c2
, ω) ≡ ωQlm(−ω2

c2
, ω) (4.28)

Now, the continuity relation (2.68) can be rewritten as:

�∇ · �j(�r , ω) + ωρ(�r , ω) = 0 (4.29)

Considering these Fourier transforms, one must evaluate the scalar potential:
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ϕ(�r , t) = ϕ(1)(�r , t) + ϕ(2)(�r , t) (4.30)

where

ϕ(1)(�r , t) =
⎛
⎝ 2

π

∞∫

0

sin(ωt)dω

⎞
⎠
(∫

cos
(

ω
c

∣∣�r − �r ′∣∣)
|�r − �r ′| ρ(�r ′, t)d3�r ′

)
(4.31)

ϕ(2)(�r , t) =
⎛
⎝− 2

π

∞∫

0

cos(ωt)dω

⎞
⎠
(∫

sin
(

ω
c

∣∣�r − �r ′∣∣)
|�r − �r ′| ρ(�r ′, ω)d3�r ′

)
(4.32)

In addition, the vector potential can be written as:

�A(�r , t) = �A(1)(�r , t) + �A(2)(�r , t) (4.33)

where

�A(1)(�r , t) =
⎛
⎝ 2

πc

∞∫

0

sin(ωt)dω

⎞
⎠
(∫

sin
(

ω
c

∣∣�r − �r ′∣∣)
|�r − �r ′| �j(�r ′, t)d3�r ′

)
(4.34)

�A(2)(�r , t) =
⎛
⎝ 2

πc

∞∫

0

cos(ωt)dω

⎞
⎠
(∫

cos
(

ω
c

∣∣�r − �r ′∣∣)
|�r − �r ′| �j(�r ′, ω)d3�r ′

)
(4.35)

On the other hand, for the scalar potential case:

ei(ω/ c)|�r−�r ′|
|�r − �r ′| = ω

4πc

∑
l,m

F∗
lm(ω/ c)(�r ′)Hlm(ω/ c)(�r), r > r ′ (4.36)

cos
(

ω
c

∣∣�r − �r ′∣∣)
|�r − �r ′| = − ω

4πc

∑
l,m

F∗
lm(ω/ c)(�r ′)Nlm(ω/ c)(�r), r > r ′ (4.37)

sin
(

ω
c

∣∣�r − �r ′∣∣)
|�r − �r ′| = ω

4πc

∑
l,m

F∗
lm(ω/ c)(�r ′)Flm(ω/ c)(�r), r > r ′ (4.38)

where Flm(ω/ c) was already defined in (2.73), and Hlm(ω/ c)(�r) and Nlm(ω/ c)(�r) are
defined similar to Flm(ω/ c), but with the spherical Bessel function of the first kind jl
replaced with the spherical Hankel function h(+)

l and the spherical Bessel function
of the second species nl, respectively (Radescu and Vaman 2002), as following:

Hlm(ω/ c)(�r) = h(+)
l

(ω

c
r
)
Ylm(�n) (4.39)
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Nlm(ω/ c)(�r) = nl
(ω

c
r
)
Ylm(�n) (4.40)

In the equations above, Hlmk and Nlmk satisfy the same normalization, complete-
ness, and parity conditions as those satisfied by Flmk in (2.75), (2.76), and
(2.78):

∫
Hlmk(�r)H∗

l ′m ′k ′(�r)d3r =
∫

Nlmk(�r)N ∗
l ′m ′k ′(�r)d3r

=
∫

Flmk(�r)F∗
l ′m ′k ′(�r)d3r

= δll ′δmm ′
(2π)3

k2
δ(k − k ′) (4.41)

∑
lmk

Hlmk(�r)H∗
l ′m ′k ′(�r ′) =

∑
lmk

Nlmk(�r)N ∗
l ′m ′k ′(�r ′)

=
∑
lmk

Nlmk(�r)N ∗
l ′m ′k ′(�r ′)

= (2π)3δ(�r − �r ′),
∑
k

=
∞∫

0

k2dk (4.42)

Hlmk(−�r) = (−1)l Hlmk(�r), Nlmk(−�r) = (−1)l Nlmk(�r) (4.43)

Besides that, for �F (λ)
lmk , one should have:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�∇ × �N (−)
lmk (�r) = 0, �∇ × �H (−)

lmk (�r) = 0

�∇ · �N (−)
lmk (�r) = ikNlmk(�r), �∇ · �H (−)

lmk (�r) = ikHlmk(�r)
�∇ · �N (+)

lmk (�r) = �∇ · �N (0)
lmk(�r) = 0

�∇ · �H (+)
lmk (�r) = �∇ · �H (0)

lmk(�r) = 0

(4.44)

For the vector potential, it would be helpful to have the representations for the
Green’s functions in terms of the basis vector functions for the vector Helmholtz
equation:

ei(ω/ c)|�r−�r ′|
|�r − �r ′| = ω

4πc

∑
l,m

�F (λ)∗
lm(ω/ c)(�r ′) · �H (λ)

lm(ω/ c)(�r), r > r ′ (4.45)

which results from the slightly more general expansion:

1

3
δik

ei(ω/ c)|�r−�r ′|
|�r − �r ′| = ω

4πc

∑
l,m,λ

[ �F (λ)∗
lm(ω/ c)(�r ′)

]
i
·
[ �H (λ)

lm(ω/ c)(�r)
]
k
, r > r ′ (4.46)
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cos
(

ω
c

∣∣�r − �r ′∣∣)
|�r − �r ′| = − ω

4πc

∑
l,m

[ �F (+)∗
lm(ω/ c)(�r ′) · �N (+)

lm(ω/ c)(�r)

+ �F (−)∗
lm(ω/ c)(�r ′) · �N (−)

lm(ω/ c)(�r) + �F (0)∗
lm(ω/ c)(�r ′) · �N (0)

lm(ω/ c)(�r)
]
, r > r ′

(4.47)

sin
(

ω
c

∣∣�r − �r ′∣∣)
|�r − �r ′| = ω

4πc

∑
l,m

[ �F (+)∗
lm(ω/ c)(�r ′) · �F (+)

lm(ω/ c)(�r)

�F (−)∗
lm(ω/ c)(�r ′) · �F (−)

lm(ω/ c)(�r) + �F (0)∗
lm(ω/ c)(�r ′) · �F (0)

lm(ω/ c)(�r)
]
, r > r ′

(4.48)

where �H (λ)
lmk and �N (λ)

lmk (λ = 0, ±) are defined similar to �F (λ=0,±)
lmk , but with h(+)

l and
nl instead of jl:

( �H (0)
lmk(�r)

�N (0)
lmk(�r)

)
= i√

l(l + 1)
�∇ ×

( �r �Hlmk(�r)
�r �Nlmk(�r)

)
=
(
h(+)
l (kr)

nl(kr)

)
�Yllm(�n) (4.49)

( �H (+)
lmk (�r)

�N (+)
lmk (�r)

)
= − 1√

l(l + 1)

i

k
�∇ × �∇ ×

( �r �Hlmk(�r)
�r �Nlmk(�r)

)
(4.50)

( �H (−)
lmk (�r)

�N (−)
lmk (�r)

)
= − i

k
�∇
( �r �Hlmk(�r)

�r �Nlmk(�r)

)
(4.51)

and
∫

�H (λ)∗
lmk (�r) �H (λ′)

l ′m ′k ′(�r)d3�r =
∫

�N (λ)∗
lmk (�r) �N (λ′)

l ′m ′k ′(�r)d3�r

=
∫

�F (λ)∗
lmk (�r) �F (λ′)

l ′m ′k ′(�r)d3�r

= δll ′δmm ′δλλ′
(2π)3

k2
δ(k − k ′) (4.52)

∑
l,m,k,λ

[ �H (λ)
lmk(�r)

]∗
i

[ �H (λ)
lmk(�r ′)

]
j
=

∑
l,m,k,λ

[ �N (λ)
lmk(�r)

]∗
i

[ �N (λ)
lmk(�r ′)

]
j

= (2π)3δi jδ(�r − �r ′) (4.53)

�H (λ)
lmk(−�r) = (−1)l+λ �H (λ)

lmk(�r) (4.54)

�N (λ)
lmk(−�r) = (−1)l+λ �N (λ)

lmk(�r), λ= 0,± (4.55)
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Here, (4.47) and (4.48) can be derived straightforwardly through separating the
real and imaginary parts in (4.46).

Utilizing the form factors presented above for the Green’s functions, the scalar
potential can be obtained from (4.30) to (4.32) in the following form:

ϕ(�r , t) = ϕ(1)(�r , t) + ϕ(2)(�r , t)

ϕ(1)(�r , t) = − 1

π3/2

∞∫

0

ω sin(ωt)dω

(∑
l,m

(−iω

c

)l √
2l + 1

(2l + 1)!!

)

× Qlm

(
−ω2

c2
, ω

)
Nlm(ω/ c)(�r)

ϕ(2)(�r , t) = − 1

π3/2

∞∫

0

ω cos(ωt)dω

(∑
l,m

(−iω

c

)l √
2l + 1

(2l + 1)!!

)

× Qlm

(
−ω2

c2
, ω

)
Flm(ω/ c)(�r) (4.56)

Indeed, the equation above can be rewritten in much simpler and compact format:

ϕ(�r , t) = − 1

π3/2

∞∫

0

ωdω

(∑
lm

(−iω

c

)l √
2l + 1

(2l + 1)!!
[
sin(ωt)Nlm(ω/ c)(�r)

+cos(ωt)Flm(ω/ c)(�r)
]
Qlm

(
−ω2

c2
, ω

)
(4.57)

Similar approach can also be conducted for the vector potential equations in
(4.33)–(4.35):

�A(�r , t) = �A(1)(�r , t) + �A(2)(�r , t)

�A(1)(�r , t) = − 1

2π2c2

∞∫

0

ω cos(ωt)dω

(∑
l,m

(−iω

c

)l−1√
4π(2l + 1)(l + 1)√

l(2l + 1)!!

)

×
{
ωMlm

(
−ω2

c2
, ω

)
�N (0)
lm(ω/c)(�r)+ [ωQlm(0, ω)

+ ω2

c
Tlm

(
−ω2

c2
, ω

)]
�N (+)

lm(ω/c)(�r)

+
√
l√

l + 1
ωQlm

(
−ω2

c2
, ω

)
�N (−)

lm(ω/c)(�r)
}
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�A(2)(�r , t) = 1

2π2c2

∞∫

0

ω sin(ωt)dω

(∑
l,m

(−iω

c

)l−1√
4π(2l + 1)(l + 1)√

l(2l + 1)!!

)

×
{
ωMlm

(
−ω2

c2
, ω

)
�F (0)
lm(ω/ c)(�r)+ [ωQlm(0, ω)

+ ω2

c
Tlm

(
−ω2

c2
, ω

)]
�F (+)

lm(ω/ c)(�r)+
√
l√

l + 1
ωQlm

(
−ω2

c2
, ω

)
�F (−)

lm(ω/ c)(�r)
}

(4.58)

Thus, with (4.21), (4.56), and (4.58):

�∇Flm(ω/c)(�r) = i
ω

c
F (−)

lm(ω/c)(�r)
�∇Nlm(ω/c)(�r) = i

ω

c
�N (−)

lm(ω/c)(�r) (4.59)

The findings above lead us to the expression for the electric field �E(�r , t) emitted
by the most general type of source described by the electric, magnetic, and toroidal
multipole form factors, as previously discussed in (2.88). The analogous description
for the magnetic field was presented in (2.89), which is obtained through taking the
curls of �N (λ)

lm(ω/c)(�r) and �F (λ)

lm(ω/c)(�r) using the following:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�∇ × �N (−)
lmk (�r) = �∇ × �F (−)

lmk (�r) = 0

�∇ × �F (0)
lmk(�r) = −ω

c
�F (+)
lmk (�r), �∇ × �F (+)

lmk (�r) = −ω

c
�F (0)
lmk(�r)

�∇ × �N (0)
lmk(�r) = −ω

c
�N (+)
lmk (�r), �∇ × �N (+)

lmk (�r) = −ω

c
�N (0)
lmk(�r)

(4.60)

The equations for the electric (2.88) and magnetic (2.89) fields express that the
multipole content of the source reflects itself in the fields that are created based on
electric, magnetic, and toroidal multipole form factors. The descriptions for both
�E(�r , t) and �B(�r , t) were obtained from the retarded scalar and vector potentials
ϕ(�r , t) and �A(�r , t), respectively, and expressed in terms of the electric, magnetic,
and toroidal multipole components as in (4.56). Although the equations are clear
enough, some remarks on these equations may still be required in connection with
gauge invariance. Besides, the elucidated potentials ϕ(�r , t) and �A(�r , t) satisfy the
Lorenz condition as:

�∇ · �A(�r , t) + 1

c

∂ϕ(�r , t)
∂t

= 0 (4.61)

To check this condition, the following procedure can be applied:
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⎧⎪⎪⎨
⎪⎪⎩

�∇ · �N (0)
lmk(�r) = 0

�∇ · �N (+)
lmk (�r) = 0

�∇ · �N (−)
lmk (�r) = ikNlmk(�r)

(4.62)

where k = ω/c. Then:

�∇ · �A(1)(�r , t) = 1

2π2c2

∞∫

0

ω2 cos(ωt)dω

(∑
l,m

(−iω

c

)l √4π(2l + 1)

(2l + 1)!!

)

× Qlm

(
−ω2

c2
, ω

)
Nlm(ω/ c)(�r)

�∇ · �A(2)(�r , t) = − 1

2π2c2

∞∫

0

ω2 sin(ωt)dω

(∑
l,m

(−iω

c

)l √4π(2l + 1)

(2l + 1)!!

)

× Qlm

(
−ω2

c2
, ω

)
Flm(ω/ c)(�r) (4.63)

and

1

c

∂ϕ(1)(�r , t)
∂t

= − 1

π3/2c2

∞∫

0

ω2 cos(ωt)dω

(∑
l,m

(−iω

c

)l √
(2l + 1)

(2l + 1)!!

)

× Qlm

(
−ω2

c2
, ω

)
Nlm(ω/ c)(�r)

1

c

∂ϕ(2)(�r , t)
∂t

= 1

π3/2c2

∞∫

0

ω2 sin(ωt)dω

(∑
l,m

(−iω

c

)l √
(2l + 1)

(2l + 1)!!

)

× Qlm

(
−ω2

c2
, ω

)
Flm(ω/ c)(�r) (4.64)

Therefore, it is possible to consider these components separately as:

�∇ · �A(1)(�r , t) + 1

c

∂ϕ(1)(�r , t)
∂t

= 0 (4.65)

�∇ · �A(2)(�r , t) + 1

c

∂ϕ(2)(�r , t)
∂t

= 0 (4.66)

and the Lorenz condition in (4.61) for �A(�r , t) = �A(1)(�r , t)+ �A(2)(�r , t) and ϕ(�r , t) =
ϕ(1)(�r , t) + ϕ(2)(�r , t) is verified.

Here, Lorenz gaugewas utilized to express �A andϕ. To demonstrate that the gauge
invariance still valid after satisfying the Lorenz condition, a more general form of
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the potentials is required:

ϕ′(�r , t) = ϕ′(1)(�r , t) + ϕ′(2)(�r , t)

ϕ′(1)(�r , t) = − C1

π3/2c

∞∫

0

ω sin(ωt)dω

(∑
l,m

(−iω

c

)l √
2l + 1

(2l + 1)!!

)

× Qlm

(
−ω2

c2
, ω

)
Nlm(ω/c)(�r)

ϕ(2)(�r , t) = − C2

π3/2c

∞∫

0

ω cos(ωt)dω

(∑
l,m

(−iω

c

)l √
2l + 1

(2l + 1)!!

)

× Qlm

(
−ω2

c2
, ω

)
Flm(ω/c)(�r) (4.67)

�A′(�r , t) = �A′(1)(�r , t) + �A′(2)(�r , t)

�A′(1)(�r , t) = − 1

2π2c2

∞∫

0

ω cos(ωt)dω

(∑
l,m

(−iω

c

)l−1√
4π(2l + 1)(l + 1)√

l(2l + 1)!!

)

×
{
ωMlm

(
−ω2

c2
, ω

)
�N (0)
lm(ω/c)(�r)+ [ωQlm(0, ω)

+ ω2

c
Tlm

(
−ω2

c2
, ω

)]
�N (+)

lm(ω/c)(�r)

+ C1

√
l√

l + 1
ωQlm

(
−ω2

c2
, ω

)
�N (−)

lm(ω/c)(�r)
}

�A(2)(�r , t) = 1

2π2c2

∞∫

0

ω sin(ωt)dω

(∑
l,m

(−iω

c

)l−1√
4π(2l + 1)(l + 1)√

l(2l + 1)!!

)

×
{
ωMlm

(
−ω2

c2
, ω

)
�F (0)
lm(ω/ c)(�r)+ [ωQlm(0, ω)

+ ω2

c
Tlm

(
−ω2

c2
, ω

)]
�F (+)

lm(ω/ c)(�r)+
C2

√
l√

l + 1
ωQlm

(
−ω2

c2
, ω

)
�F (−)

lm(ω/ c)(�r)
}

(4.68)

The new potentialsϕ′(�r , t) and �A′(�r , t) in (4.67) and (4.68), respectively, and their
two components, separately specified by the superscripts (1) and (2): ϕ(1),(2)(�r , t)
and �A(1),(2)(�r , t), are related to the previous ones through the following gauge
transformation:
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ϕ′(1)(�r , t) = ϕ(1)(�r , t) − 1

c

∂Λ(1)(�r , t)
∂t

�A′(1)(�r , t) = �A(1)(�r , t) + �∇Λ(1)(�r , t) (4.69)

ϕ′(2)(�r , t) = ϕ(2)(�r , t) − 1

c

∂Λ(2)(�r , t)
∂t

�A′(2)(�r , t) = �A(2)(�r , t) + �∇Λ(2)(�r , t) (4.70)

ϕ′(�r , t) = ϕ(�r , t) − 1

c

∂Λ(�r , t)
∂t

, �A′(�r , t) = �A(�r , t) + �∇Λ(�r , t) (4.71)

where

Λ(�r , t) = Λ(1)(�r , t) + Λ(2)(�r , t) (4.72)

Λ(1)(�r , t) ≡ 1

2π2c2

∞∫

0

ω cos(ωt)dω

(∑
l,m

(−iω

c

)l−1 √
4π(2l + 1)

(2l + 1)!!

)

×
{
ωQlm

(
−ω2

c2
, ω

)
ic

ω
(C1 − 1)Nlm(ω/c)(�r)

}
(4.73)

Λ(2)(�r , t) ≡ 1

2π2c2

∞∫

0

ω cos(ωt)dω

(∑
l,m

(−iω

c

)l−1 √
4π(2l + 1)

(2l + 1)!!

)

×
{
ωQlm

(
−ω2

c2
, ω

)
ic

ω
(C2 − 1)Flm(ω/c)(�r)

}
(4.74)

Now, (4.69)–(4.72) could be assessed by noting that:

�N (−)

lm(ω/c)(�r) = − ic

ω
�∇Nlm(ω/c)(�r) (4.75)

�F (−)

lm(ω/c)(�r) = − ic

ω
�∇Flm(ω/c)(�r) (4.76)

Since

(
� + k2

)
Nlm(ω/c)(�r) = 0,

(
� + k2

)
Flm(ω/c)(�r) = 0 (4.77)

the gauge functions �(1), �(2), and � = �(1) + �(2) satisfy the wave equation:

(
� − 1

c2
∂2

∂t2

)
Λ(1)(�r , t) = 0 (4.78)
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(
� − 1

c2
∂2

∂t2

)
Λ(2)(�r , t) = 0 (4.79)

(
� − 1

c2
∂2

∂t2

)
Λ(�r , t) = 0 (4.80)

In fact, the new potentials �A′(�r , t) and ϕ′(�r , t) from (4.67) to (4.68) still satisfy
the Lorenz condition:

�∇ · �A′(1)(�r , t) + 1

c

∂ϕ′(1)(�r , t)
∂t

= 0 (4.81)

�∇ · �A′(2)(�r , t) + 1

c

∂ϕ′(2)(�r , t)
∂t

= 0 (4.82)

�∇ · �A′(�r , t) + 1

c

∂ϕ′(�r , t)
∂t

= 0 (4.83)

Overall, the new potentials ϕ′(�r , t) and �A′(�r , t) in (4.67) and (4.68), respectively,
are more general than the previous versions in (4.56) and (4.58) and are gauge equiv-
alent to them. Although both forms of the potentials satisfy the Lorenz condition, in
the new ones, the remaining gauge invariance is illustrated through the two remaining
real arbitrary constants C1 and C2. Here, the previous potentials can be obtained as
particular cases from the new ones when:

C1 = C2 = C = 1 (4.84)

The condition above fixes the gauge in (4.56) and (4.58). Another convenient
gauge that one can use is Coulomb gauge, by defining:

C1 = C2 = C = 0 (4.85)

when the potentials ϕ′′ and �A′′ satisfy the following conditions:

ϕ′′(�r , t) ≡ 0, ∇ �A′′(�r , t) ≡ 0 (4.86)

Because of their gauge uniformity that was argued before, all these forms of the
potentials give rise to the identical fields �E(�r , t) and �B(�r , t), and since these fields
are considered here, all the results are gauge invariant.
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4.1.2 Fields at Far Distances

Obtaining the expressions for the electric (2.88) and magnetic (2.89) fields at far
distances allows to derive the radiation intensity, angular momentum loss, and recoil
force. To this end, we will consider the behavior of the fields �E(�r , t) and �B(�r , t) to
the order O(1/r) (representing large distances), and the asymptotical behavior of the
spherical Bessel functions jl(ωr/c) and nl(ωr/c), for r → ∞:

jl
(ω

c
r
)

∼ 4π i l
sin
((

ω
c r
)− l π

2

)
(

ω
c r
) (4.87)

nl
(ω

c
r
)

∼ −4π i l
cos
((

ω
c r
)− l π

2

)
(

ω
c r
) (4.88)

jl+1

(ω

c
r
)

∼ −4π i l+1 cos
((

ω
c r
)− l π

2

)
(

ω
c r
) (4.89)

nl+1

(ω

c
r
)

∼ −4π i l+1 sin
((

ω
c r
)− l π

2

)
(

ω
c r
) (4.90)

jl−1

(ω

c
r
)

∼ 4π i l−1 cos
((

ω
c r
)− l π

2

)
(

ω
c r
) (4.91)

nl−1

(ω

c
r
)

∼ 4π i l−1 sin
((

ω
c r
)− l π

2

)
(

ω
c r
) (4.92)

To obtain theO(1/r) definition of the vector functions �F (λ)

lm(ω/c)(�r) and �N (λ)

lm(ω/c)(�r),
one should consider the followings:

�F (0)
lm(ω/c)(�r)

O(1/r)∼ 4π i l√
2l + 1

sin
((

ω
c r
)− l π

2

)
(

ω
c r
) �Yllm(�n) (4.93)

�F (+)

lm(ω/c)(�r)
O(1/r)∼ 4π i l−1

√
2l + 1

cos
((

ω
c r
)− l π

2

)
(

ω
c r
) [√

l �Yll+1m(�n) + √
l + 1 �Yll−1m(�n)

]

(4.94)

�F (−)

lm(ω/c)(�r)
O(1/r)∼ 4π i l−1

√
2l + 1

cos
((

ω
c r
)− l π

2

)
(

ω
c r
) [√

l �Yll−1m(�n) − √
l + 1 �Yll+1m(�n)

]

(4.95)

�N (0)
lm(ω/c)(�r)

O(1/r)∼ − 4π i l√
2l + 1

cos
((

ω
c r
)− l π

2

)
(

ω
c r
) �Yllm(�n) (4.96)
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�N (+)

lm(ω/c)(�r)
O(1/r)∼ 4π i l−1

√
2l + 1

sin
((

ω
c r
)− l π

2

)
(

ω
c r
) [√

l �Yll+1m(�n) + √
l + 1 �Yll−1m(�n)

]

(4.97)

�N (−)

lm(ω/c)(�r)
O(1/r)∼ 4π i l−1

√
2l + 1

sin
((

ω
c r
)− l π

2

)
(

ω
c r
) [√

l �Yll−1m(�n) − √
l + 1 �Yll+1m(�n)

]

(4.98)

where �n = �r/r . Therefore, �E(�r , t) and �B(�r , t) can bewritten in terms of themultipole
form factorsMlm(−ω2/c2,ω) andTlm(−ω2/c2,ω), and the electricmultipolemoments
Qlm(0, ω):

�E(�r , t) O(1/r)∼ − 2

πcr

∞∫

0

dω
∑
l,m

ωl+1

cl

√
4π(2l + 1)(l + 1)√

l(2l + 1)!!
{
−iMlm

(
−ω2

c2
, ω

)

× sin
(
ωt − ω

c
r + l

π

2

) �Yllm(�n) +
[
Qlm(0, ω) + ω

c
Tlm

(
−ω2

c2
, ω

)]

× cos
(
ωt − ω

c
r + l

π

2

)

×
[ √

l√
2l + 1

�Yll+1m(�n) +
√
l + 1√
2l + 1

�Yll−1m(�n)

]}
(4.99)

�B(�r , t) O(1/r)∼ − 2

πr

∞∫

0

dω
∑
l,m

ωl+1

cl+1

√
4π(2l + 1)(l + 1)√

l(2l + 1)!!
{
iMlm

(
−ω2

c2
, ω

)

× sin
(
ωt − ω

c
r + l

π

2

)[ √
l√

2l + 1
�Yll+1m(�n) +

√
l + 1√
2l + 1

�Yll−1m(�n)

]

+
[
Qlm(0, ω) + ω

c
Tlm

(
−ω2

c2
, ω

)]

× cos
(
ωt − ω

c
r + l

π

2

) �Yllm(�n)
}

(4.100)

The obtained electric and magnetic fields in (4.99) and (4.100), respectively,
confirm the transversality condition in the wave zone:

�r
r

× �E(�r , t) = �B(�r , t) (4.101)

Introducing double-superscript quantities to (4.13)–(4.18) allows us to simplify
the equations by removing the integral over ω. These double-superscripts are indeed
time derivatives of the multipole mean-square radii of any type (electric, magnetic,
toroid) and order (marked by the first superscript). Here, the magnetic field �B(�r , t)
in (4.99) will be treated based on separate contributions from the terms with l = even
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and l = odd to the sum over l. In the l = even regime, l = 2 k (where k is an integer),
with the Fourier transformations of (4.24), (4.26), and (4.27), one can write:

ωl+1Mlm

(
−ω2

c2
, ω

)
= (−1)l/2+1

∞∫

0

dt ′M (l+1)
ml

(
−ω2

c2
, t ′
)
sin(ωt ′) (4.102)

ωl+1Qlm(0, ω) = (−1)l/2
∞∫

0

dt ′Q(l+1)
ml

(
0, t ′

)
cos(ωt ′) (4.103)

ωl+2Tlm

(
−ω2

c2
, ω

)
= (−1)l/2+1

∞∫

0

dt ′T (l+2)
ml

(
−ω2

c2
, t ′
)
cos(ωt ′) (4.104)

where the (single) superscript expresses the order of derivation related to the second
(time) argument of the form factors. Utilizing:

sin
(
ωt − ωr

c
+ l

π

2

)
= (−1)l/2 sin

(
ωt − ωr

c

)
(4.105)

cos
(
ωt − ωr

c
+ l

π

2

)
= (−1)l/2 cos

(
ωt − ωr

c

)
(4.106)

in (4.100) and subsequently in (4.102), one canobtain the contribution to themagnetic
field from the terms involving:

∞∫

0

dωωl+1Mlm

(
−ω2

c2
, ω

)
sin
(
ωt − ωr

c

)

= (−1)l/ 2+1

2

∞∫

0

dω

∞∫

0

dt ′M (l+1)
lm

(
−ω2

c2
, t ′
)
cos
(
ωt ′ − ωt + ωr

c

)

(4.107)

Next, forming the (l + 1) derivative of the magnetic form factor under the integrals
in terms of the magnetic radii leads to:

M (l+1)
lm

(
−ω2

c2
, t ′
)

=
∞∑
n=0

(
−ω2

c2

)n
n! M (n)(l+1)

lm (0, t ′) (4.108)

By introducing double-superscript quantitiesM (n)(l+1)
lm (0, t ′) in (4.14), (4.108) can

be described in terms of Taylor series:
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∞∫

0

dωωl+1Mlm

(
−ω2

c2
, ω

)
sin
(
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(
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c

))

= (−1)l/ 2+1

2

π

2
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1

n!c2n M
(n)(2n+l+1)
lm

(
0, t − r

c

)
(4.109)

In a similar fashion, one can extract the followings for the electric and toroidal
form factors:

∞∫

0

dωωl+1Qlm(0, ω) cos
(
ω
(
t − r

c

))

= π(−1)l/ 2

2
Q(0)(l+1)

lm (0, ω)
(
0, t − r

c

)
(4.110)

∞∫

0

dωωl+2Tlm
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−ω2

c2
, ω

)
cos
(
ω
(
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= (−1)l/ 2+1

2

π

2

∞∑
n=0

1

n!c2n T
(n)(2n+l+2)
lm

(
0, t − r

c

)
(4.111)

These set of equations complete the calculation of the l = even part of �B(�r , t) in
O(1/r).

On the other hand, in the l = odd regime (l = 2 k + 1), the analysis will be similar
to the even limit, with minor modifications, hence, the final results remain unchanged
for �B(�r , t) at O(1/r). In the wave zone, one can define the electric field using:

�E(�r , t) = −�r
r

× �B(�r , t) (4.112)

Consequently, it would be possible to obtain the following expressions for the
electric and magnetic fields at large distances in the order of O(1/r), described in
terms of the double derivatives of the form factors. Here, the first superscript shows
the order of the derivation with respect to the first argument of the form factor at
zero value, and the second superscript indicates the order of derivation with respect
to the second argument. Hence:

�E(�r , t) O(1/r)∼ 1

r
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cl+1

√
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)

×
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√
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]
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− i
∞∑
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(4.113)

�B(�r , t) O(1/r)∼ 1
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(4.114)

In the upcoming sections, for the calculation of the angular momentum loss, we
need to define the following terms: �n �E, �n �B, �n × �E, �n × �B at large distances. Since
�n �E and �n �B are zero at the order of O(1/r), these components should be evaluated
at the other of O(1/r2). This enables us to obtain the first relevant nonvanishing
contributions.

To begin with, we limit our studies to the first order O(1/r). Therefore:

�n �F (n)

lm(ω/c)(�r) = �n �N (n)

lm(ω/c)(�r) = 0 (4.115)

Although ( �Yllm)r = 0, using the (−) and (+) superscripts, one has:

[
Yll+1m(�n)

]
r = −

√
l + 1√
2l + 1

Ylm(�n)

[
Yll−1m(�n)

]
r =

√
l√

2l + 1
Ylm(�n) (4.116)

one can write:

�n �F (+)

lm(ω/c)(�r) =
√
l(l + 1)

(2l + 1)

[
− jl+1

(ω

c
r
)

+ jl−1

(ω

c
r
)]

Ylm(�n) (4.117)

�n �F (−)

lm(ω/c)(�r) = 1

(2l + 1)

[
l jl−1

(ω

c
r
)

+ (l + 1) jl+1

(ω

c
r
)]

Ylm(�n) (4.118)
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�n �N (+)

lm(ω/c)(�r) =
√
l(l + 1)

(2l + 1)

[
−nl+1

(ω

c
r
)

+ nl−1

(ω

c
r
)]

Ylm(�n) (4.119)

�n �N (−)

lm(ω/c)(�r) = 1

(2l + 1)

[
lnl−1

(ω

c
r
)

+ (l + 1)nl+1

(ω

c
r
)]

Ylm(�n) (4.120)

Now, by utilizing the asymptotical behavior of jl and n to the order of O(1/r):

�n �F (+)

lm(ω/c)(�r)
O(1/r)∼
r→∞ 0 (4.121)

�n �F (−)

lm(ω/c)(�r)
O(1/r)∼
r→∞ −4π i l+1 cos

(
ω
c r − l π

2

)
ω
c r

Ylm(�n) (4.122)

�n �N (+)

lm(ω/c)(�r)
O(1/r)∼
r→∞ 0 (4.123)

�n �N (−)

lm(ω/c)(�r)
O(1/r)∼
r→∞ −4π i l+1 sin

(
ω
c r − l π

2

)
ω
c r

Ylm(�n) (4.124)

With these assumptions, (2.88) and (2.89) at O(1/r) can be approximated as:

�r
r

�E(�r , t) O(1/r)∼
r→∞ 0 (4.125)

�r
r

�B(�r , t) O(1/r)∼
r→∞ 0 (4.126)

By considering the expressions for �E(�r , t) and �B(�r , t) to the order of O(1/r), for
determining �n× �E and �n× �B to the same order, one requires cross products between
�n = �r/r and the appearing vector spherical harmonics. Using the following unit
vectors:�er = �n = �r/r, �eθ , �eϕ , one can obtain:

�er × �Yllm(�n) = �eϕ( �Yllm)θ − �eθ × ( �Yllm)ϕ

= i

√
2l + 1√
l + 1

[
�Yll−1m − �er

√
l√

2l + 1
�Ylm
]

= i

√
2l + 1√

l

[
�Yll+1m + �er

√
l√

2l + 1
�Ylm
]

(4.127)

since

( �Yllm
)

θ
= i

√
2l + 1√
l + 1

( �Yll−1m

)
ϕ

= i

√
2l + 1√

l

( �Yll+1m

)
ϕ



76 4 Physical Mechanism Behind the Toroidal Multipoles

( �Yllm
)

ϕ
= −i

√
2l + 1√
l + 1

( �Yll−1m

)
θ

= −i

√
2l + 1√

l

( �Yll+1m

)
θ

(4.128)

The terms with �er �Yllm in (4.127) can be simply removed, therefore:

�n × �Yllm(�n) = i

√
l + 1√
2l + 1

�Yll−1m(�n) + i

√
l√

2l + 1
�Yll+1m(�n) (4.129)

Moreover,

�er × �Yll+1m(�n) = �eϕ

( �Yll+1m

)
θ
− �eθ

( �Yll+1m

)
ϕ

= i

√
l√

2l + 1
�Yllm(�n) (4.130)

because

( �Yll+1m

)
θ

= i

√
l√

2l + 1

( �Yllm
)

ϕ

( �Yll+1m

)
ϕ

= −i

√
l√

2l + 1

( �Yllm
)

θ
(4.131)

and similarly:

�er × �Yll−1m(�n) = i

√
l + 1√
2l + 1

�Yllm(�n) (4.132)

Using the cross products of (4.130)–(4.132), the following universal relations can
be obtained for �n × �F (λ)

lm(ω/c)(�r) and �n × �N (λ)

lm(ω/c)(�r) (�er = �n = �r/r, λ = 0,±):

�n × �F (0)
lm(ω/c)(�r) = jl

(ω

c
r
)[

i

√
l + 1√
2l + 1

�Yll−1m(�n) + i

√
l√

2l + 1
�Yll+1m(�n)

]
(4.133)

�n × �F (+)

lm(ω/c)(�r) = i

2l + 1

[
l jl+1

(ω

c
r
)

+ (l + 1) jl−1

(ω

c
r
)] �Yllm(�n) (4.134)

�n × �F (−)

lm(ω/c)(�r) = i
√
l(l + 1)

2l + 1

[
jl−1

(ω

c
r
)

− jl+1

(ω

c
r
)] �Yllm(�n) (4.135)

�n × �N (0)
lm(ω/c)(�r) = nl

(ω

c
r
)[

i

√
l + 1√
2l + 1

�Yll−1m(�n) + i

√
l√

2l + 1
�Yll+1m(�n)

]
(4.136)

�n × �N (+)

lm(ω/c)(�r) = i

2l + 1

[
lnl+1

(ω

c
r
)

+ (l + 1)nl−1

(ω

c
r
)] �Yllm(�n) (4.137)
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�n × �N (−)

lm(ω/c)(�r) = i
√
l(l + 1)

2l + 1

[
nl−1

(ω

c
r
)

− nl+1

(ω

c
r
)] �Yllm(�n) (4.138)

Next, using the large r feature of the spherical Bessel functions to the order 1/r,
the preferred asymptotical behavior of (4.133)–(4.138) to the order O(1/r) of the
cross products �n × �F (λ)

lm(ω/c)(�r) and �n × �N (λ)

lm(ω/c)(�r) (�n = �r/r ) will be:

�n × �F (0)
lm(ω/c)(�r)

O(1/r)∼ 4π i l+1

√
2l + 1

[√
l + 1 �Yll−1m(�n) + √

l �Yll+1m(�n)
] sin(ω

c r − l π
2

)
ω
c r

(4.139)

�n × �F (+)

lm(ω/c)(�r)
O(1/r)∼ 4π i l �Yllm(�n)

cos
(

ω
c r − l π

2

)
ω
c r

(4.140)

�n × �F (−)

lm(ω/c)(�r)
O(1/r)∼ 0 (4.141)

�n × �N (0)
lm(ω/c)(�r)

O(1/r)∼ − 4π i l+1

√
2l + 1

[√
l + 1 �Yll−1m(�n) + √

l �Yll+1m(�n)
]cos(ω

c r − l π
2

)
ω
c r
(4.142)

�n × �N (+)

lm(ω/c)(�r)
O(1/r)∼ 4π i l �Yllm(�n)

sin
(

ω
c r − l π

2

)
ω
c r

(4.143)

�n × �N (−)

lm(ω/c)(�r)
O(1/r)∼ 0 (4.144)

Taking advantage of (4.139)–(4.144), the targeted asymptotical behavior of
(�r/r)× �E(�r , t) at large distances can be described in terms of the electric, magnetic,
and toroidal form factors:

(
�r
r
) × �E(�r , t) O(1/r)∼ − 4√

π

1

r

∞∫

0

dω
∑
l,m

ωl+1

cl+1

√
l + 1√

l(2l + 1)!!

×
{√

l + 1Mlm

(
−ω2

c2
, ω

)

× sin
(
ωt − ω

c
r + l

π

2

) �Yll−1m(�n) + √
lMlm

(
−ω2

c2
, ω

)

× sin
(
ωt − ω

c
r + l

π

2

) �Yll+1m(�n) + i
√
l + 1[Qlm(0, ω)

+ω

c
Tlm

(
−ω2

c2
, ω

)]
cos
(
ωt − ω

c
r + l

π

2

) �Yllm(�n)

}
(4.145)

Analogously, the behavior of magnetic field at large distances can be attained as
following:
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(
�r
r
) × �B(�r , t) O(1/r)∼ − 4√

π

1

r

∞∫

0

dω
∑
l,m

ωl+1

cl+1

√
l + 1√

l(2l + 1)!!

×
{
i
√
2l + 1Mlm

(
−ω2

c2
, ω

)

× sin
(
ωt − ω

c
r + l

π

2

) �Yllm(�n)

−
[
Qlm(0, ω) + ω

c
Tlm

(
−ω2

c2
, ω

)]

× cos
(
ωt − ω

c
r + l

π

2

)[√
l + 1 �Yll−1m(�n) + √

l �Yll+1m(�n)
]}

(4.146)

The equations above, (1.145) and (1.146), can be employed to find the expressions
for �n× �E and �n× �B to the orderO(1/r), in terms of the double-superscript quantities
Q(n)(υ)

lm (0, t), M (n)(υ)
lm (0, t), T (n)(υ)

lm (0, t), as:

(
�r
r
) × �E(�r , t) O(1/r)∼ 2i

√
π

r

∑
l,m

1

cl+1

√
(2l + 1)(l + 1)√
l(2l + 1)!!

{
Q(0)(l+1)

lm

(
0, t − r

c

)

+
∞∑
n=0

1

n!c2n+1
T (n)(l+2n+2)
lm

(
0, t − r

c

)} �Yllm(�n) + 2
√

π

r

×
∑
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∞∑
n=0

1

n!cl+2n+1

√
(l + 1)√

l(2l + 1)!!M
(n)(l+2n+1)
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(
0, t − r

c

)

+
[√

(l + 1) �Yll−1m(�n) + √
l �Yll+1m(�n)

]
(4.147)

Analogously, the magnetic field can be found in the same way as above:

(
�r
r
) × �B(�r , t) O(1/r)∼ 2

√
π

r

1

r

∞∫

0

dω
∑
l,m

√
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l(2l + 1)!!
{
1

c
Q(0)(l+1)
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(
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c

)

−
∞∑
n=0

1

n!cl+2n+2
T (n)(l+2n+2)
lm

(
0, t − r

c

)}

×
[√

l + 1 �Yll−1m(�n) + √
l �Yll+1m(�n)

]
+2i

√
π

r

×
∑
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∞∑
n=0

√
(2l + 1)(l + 1)√
l(2l + 1)!!

1

n!cl+2n+1

× M (n)(l+2n+1)
lm

(
0, t − r

c

) �Yllm(�n) (4.148)



4.1 Defining the Problem 79

We further consider the 1/r2 order to evaluate �n · �E and �n · �B. To this end, the
first nonvanishing contributions to these quantities should be extracted. Thereby, the
terms in the asymptotical behavior of the spherical Bessel functions as compared
with (4.86)–(4.91) can be formulated as:

jl(x)
O(1/x2)∼
x→∞ 4π i l

sin
(
x − l π

2

)
x

+ 2π i l l(l + 1)
cos
(
x − l π

2

)
x2

(4.149)

nl(x)
O(1/x2)∼
x→∞ −4π i l

cos
(
x − l π

2

)
x

+ 2π i l l(l + 1)
sin
(
x − l π

2

)
x2

(4.150)

which obey the following:

jl+1/2(x) =
√

2

πx

{
sin
(
x − l

π

2

)
+

l/2∑
k=0

(−1)k(l + 2k)!
(2k)!(l − 2k)!(2x)2k

+ cos
(
x − l

π

2

) (l−1)/2∑
k=0

(−1)k(l + 2k + 1)!
(2k + 1)!(l + 2k − 1)!(2x)2k+1

}
(4.151)

and relations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

jl(x) = (2π)3/2
i l√
x
Jl+1/2(x)

nl(x) = (2π)3/2
i l√
x
Nl+1/2(x)

Nl+1/2(x) = (−1)l−1 J−(l+1/2)(x)

(4.152)

Considering (4.149) and (4.150) at the order of O(1/r2) (where �n = �r/r ):

�n. �F (+)

lm(ω/c)(�r) ∼ −4π i l+1
√
l(l + 1)

sin
(

ω
c r − l π

2

)
(

ω
c r
)2 Ylm(�r) (4.153)

�n. �F (−)

lm(ω/c)(�r) ∼
{

−4π i l+1 cos
(

ω
c r − l π

2

)
(

ω
c r
)

+2π i l+1(l2 + l + 2)
sin
(

ω
c r − l π

2

)
(

ω
c r
)2

}
Ylm(�r) (4.154)

�n. �N (+)

lm(ω/c)(�r) ∼ 4π i l+1
√
l(l + 1)

cos
(

ω
c r − l π

2

)
(

ω
c r
)2 Ylm(�r) (4.155)

�n. �N (−)

lm(ω/c)(�r) ∼
{

−4π i l+1 sin
cos
(

ω
c r − l π

2

)
(

ω
c r
)



80 4 Physical Mechanism Behind the Toroidal Multipoles

−2π i l+1(l2 + l + 2)
sin
(

ω
c r − l π

2

)
(

ω
c r
)2

}
Ylm(�r) (4.156)

Therefore, from (2.88), (2.89), and (4.156), the leading contributions to �n · �E and
�n · �B on the order of O(1/r2) can be found as:

(
�r
r
) · �E(�r , t) O(1/r2)∼ 4

r2
√

π

∞∫

0

dω
∑
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1
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√
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×
{
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c
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, ω
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(
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c
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2

) �Ylm(�n) (4.157)

and

(
�r
r
) · �B(�r , t) O(1/r2)∼ − 4
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√
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∞∫
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dω
∑
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√
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)
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(
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(4.158)

The descriptions of �n · �E and �n · �B to the order of O(1/r2) in terms of time
derivatives of radii (i.e., double-superscript quantities) can be obtained through the
use of (4.109)–(4.111) and considering the even and odd contributions to the sum
over l. Hence:

(
�r
r
) · �E(�r , t) O(1/r2)∼ 2

√
π

r2
∑
l,m

1

cl
(l + 1)

√
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(
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−
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1

n!c2n+1
T (n)(l+2n+1)
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(
0, t − r

c

)} �Ylm(�n) (4.159)

and

(
�r
r
) · �B(�r , t) O(1/r2)∼ − 2

√
π

r2
∑
l,m

1

cl
(l + 1)

√
2l + 1

(2l + 1)!!

×
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n=0

1

n!c2n M
(n)(l+2n)
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(
0, t − r

c

)} �Ylm(�n) (4.160)
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In continue, establishing the required quantities for the calculation of the angular
momentum loss, recoil force, and radiation intensity, we further explain the definition
of these features in terms of the multipole content of the most general type of source.

4.2 Radiation Intensity

To define the radiation intensity for a general distribution of charges and currents, in
terms of multipole form factors, one should consider M (n)(l+q)

lm (0, t − r/c), in which
Mlm stands for any multipole form factor (e.g.,Qlm(k2, t), Mlm(k2, t), Tlm(k2, t)),
(n) indicates the derivative with respect to (−k2) at k = 0, and (l + q) denotes the
derivative with respect to t at t − r/c. Therefore, the Poynting vector can be written
as:

�S = c

4π
( �E × �B) (4.161)

With this way, one can express the radiation intensity as the surface integral of
the radial component of �S(Sr) over a sphere of charge radius r (Landau and Lifshitz
1993):

I = r2
∫

dΩSr = cr2

4π

∫
dΩ( �E × �B)r (4.162)

Now, we can evaluate the electric and magnetic fields to the order O(1/r) using
(4.113) and (4.114). For this purpose, one needs to assess the surface integral over
the r component of the vector:

�E × �B = 4π
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∑
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[ √
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√
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1
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×
[ √

l√
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√
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×
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1

n′!c2n′ M
(n′)(l ′+2n′+1)
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[ √
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+
√
l ′ + 1√
2l ′ + 1

�Yl ′l ′−1m ′

]
− i Q(0)(l ′+1)

l ′m ′ �Yl ′l ′m ′

+ i

c

∞∑
n′=0

1

n′!c2n′ T
(n′)(l ′+2n′+2)
l ′m ′ �Yl ′l ′m ′

}
(4.163)

In the equation above, the argument of the vector spherical harmonics �Y is
�n = �r/r . The surface integration in (4.162) across the cross products of spher-
ical vector harmonics is accomplished through simplifying them to the dot products
of �Y . Therefore, using the following equations:

( �Yl ′l ′m ′ × �Yll+1m

)
r

= −i

√
l√

2l + 1
�Yl ′l ′m ′ · �Yllm (4.164)

( �Yl ′l ′+1m ′ × �Yll−1m

)
r

= i

√
l ′√

2l ′ + 1
�Yl ′l ′m ′ · �Yll−1m (4.165)

and

∫
dΩ

( �Yll+1m × �Yl ′l ′m ′
)
r

= −i(−1)m
√
l√

2l + 1
δll ′δm,m ′ (4.166)

∫
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( �Yll−1m × �Yl ′l ′m ′
)
r

= −i(−1)m
√
l + 1√
2l + 1

δll ′δm,m ′ (4.167)

one can now obtain the intensity of radiation in terms of the derivatives of electric,
magnetic, and toroidal components with respect to −k2 and t:

Irad =
∑
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∑
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(4.168)

Here, it is noteworthy to mention that (4.168) explains the radiation intensity for
a general type of source based on Qlm(k2, t), Mlm(k2, t), and Tlm(k2, t) form factors
for an arbitrary time-dependence. The first superscript implies the order of derivation
with respect to the first argument,−k2, and the second superscript indicates the order
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of derivation with respect to the second argument, t. Importantly, all terms in (4.168)
are real and equal to their complex conjugates. Thus, the radiation intensity Irad can
be written in much simpler and compact format:

Irad =
∑
l,m

1

c2l+1

(l + 1)

l(2l − 1)!!(2l + 1)!!
{∣∣∣Q(0)(l+1)

lm

(
0, t − r

c

)

−1

c

∑
n

1

n!c2n T
(n)(l+2n+2)
lm

(
0, t − r

c

)∣∣∣∣∣
2

+
∑
n

1

n!c2n M
(n)(l+2n+2)
lm

(
0, t − r

c

)∣∣∣∣∣
2
⎫⎬
⎭ (4.169)

Now, let us consider the equation above for a dipole case (l = 1, n = n′ = 0).
Thereby, the radiation intensity in the case of the electric, magnetic, and toroidal
dipole can be approximated as following:

Irad = 2

3c3
�̈d2

(4.170)

Irad = 2

3c3
�̈m2

(4.171)

and

Irad = 2

3c5
˙̈�t2 (4.172)

respectively. However, it should be noted that to the order of 1/c5, there are other
contributions too, and straightforwardly, the appropriate formula for the radiation
intensity valid to the order of 1/c5 can be derived using (4.198). This method yields
an equation in terms of the lower electric,magnetic, and toroidalmultipole quantities:

Irad = 2

3c3
�̈d2 + 2

3c3
�̈m2 − 4

3c4
�̈d · ˙̈�t + 2

3c5
˙̈�t2

+ 2

15c
�̈m · ˙̈�ρ2 + 1

5c5
˙̈Q2

αβ + 1

20c5
˙̈m2

αβ (4.173)

where �d , �m, and �t are the electric, magnetic, and toroidal dipoles, respectively. �ρ2 is
the first mean-square radius of the magnetic dipole distribution, and Qαβ and mαβ

are the electric and magnetic quadrupole moments, respectively, in which can be
extended as:

˙̈Q2
αβ ≡ ˙̈Qαβ

˙̈Qαβ = ˙̈Q2
xx + ˙̈Q2

yy + ˙̈Q2
zz + 2

( ˙̈Q2
xy + ˙̈Q2

yz + ˙̈Q2
yz

)
(4.174)
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˙̈m2
αβ ≡ ˙̈mαβ

˙̈mαβ = ˙̈m2
xx + ˙̈m2

yy + ˙̈m2
zz + 2

( ˙̈m2
xy + ˙̈m2

yz + ˙̈m2
yz

)
(4.175)

where the following relations were employed:

Qxx + Qyy + Qzz = 0, Qi j = Q ji (4.176)

mxx + myy + mzz = 0, mi j = m ji (4.177)

4.3 Angular Momentum Loss

To study the angular momentum loss in a particular system, similar to previous
analyses, we initially consider an arbitrary system of charges and currents expressed
in terms of charge and current densities that satisfy the following continuity relation:

∂ρ(�r , t)
∂t

+ div �j(�r , t) = 0 (4.178)

Using the electric and magnetic fields of the source (i.e., �E(�r , t) and �B(�r , t)) at
large distances, the angular momentum loss induced by the source per unit time can
be defined by Landau and Lifshitz (1993):

d �M
dt

= lim
r→∞

r3

4π

∫
dΩ

[
(�n · �E)(�n × �E) + (�n · �B)(�n × �B)

]
(4.179)

In (4.179), the total angular momentum loss by the system per unit time is only
the flux of angular momentum of the radiation field through a spherical surface of
large radius (r → ∞):

dMi

dt
=
∫

εi jk x jσklnldS, dS = r2dΩ, n = �r
r

(4.180)

where σ kl is the three-dimensional Maxwell stress tensor, as:

σi j = 1

4π

[
Ei E j + Bi B j − 1

2
δi j (E

2 + B2)

]
(4.181)

Although (4.179) cannot be applied to the radiation fields at large distances, the
fields can be defined to the order of 1/r. In this limit, since �n · �E = �n · �B = 0, the
integrand vanishes. On the other hand, the fields �E and �B to the order of O(1/r) can
be utilized to get the factors �n × �E and �n × �B. Here, the longitudinal components
�n · �E and �n · �B are appeared due to the contributions of the next order O(1/r2), and
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the integral in (4.179) is on the order of O(1/r3), thus, the distance r essentially
disappears from the results. Here, it is important to remind that the expressions of
�n × �E and �n × �B to the order O(1/r) and the definitions of �n · �E and �n · �B to the
order O(1/r2) were discussed in previous sections.

The contributions of the electric and magnetic fields to the angular momentum
loss can be written by considering (4.179):

d �M
dt

= d �M (el)

dt
+ d �M (mag)

dt
(4.182)

where

d �M (el)

dt
= lim

r→∞
r3

4π

∫
dΩ[(�n · �E)(�n × �E)] (4.183)

d �M (mag)

dt
= lim

r→∞
r3

4π

∫
dΩ[(�n · �B)(�n × �B)] (4.184)

To investigate the contribution of the electric field to the angular momentum
loss, one should recall (4.147) and (4.159), then the following equation should be
calculated:

d �M (el)

dt
= lim

r→∞
r3

4π

( �J− + �J+ + �J0
)

(4.185)

where

�J− = 2
√

π

r2

{∑
l,m

1

cl
(l + 1)

√
2l + 1

(2l + 1)!!
[
Q(0)(l)

lm

(
0, t − r

c

)

−
∑
n

1

n!c2n+1
T (n)(l+2n+1)
lm

(
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c

)]}2
√

π

r

×
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1
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l ′ + 1√
l ′(2l ′ + 1)!! M

(n′)(l ′+2n′+1)
l ′m ′

(
0, t − r

c

)}

×
∫

dΩYlm(�n)Yl ′l ′−1m ′(�n) (4.186)

�J+ = 2
√

π

r2

{∑
l,m

1

cl
(l + 1)

√
2l + 1

(2l + 1)!!
[
Q(0)(l)

lm

(
0, t − r

c

)

−
∑
n

1

n!c2n+1
T (n)(l+2n+1)
lm

(
0, t − r

c

)]}2
√

π

r
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×
{∑
l ′m ′n′

1

n′!cl ′+2n′+1

l ′ + 1√
l ′(2l ′ + 1)!! M

(n′)(l ′+2n′+1)
l ′m ′

(
0, t − r

c

)}

×
∫

dΩYlm(�n)Yl ′l ′+1m ′(�n) (4.187)

�J0 = 2
√

π

r2

{∑
l,m

1

cl
(l + 1)

√
2l + 1

(2l + 1)!!
[
Q(0)(l)

lm

(
0, t − r

c

)

−
∑
n

1

n!c2n+1
T (n)(l+2n+1)
lm

(
0, t − r

c

)]}2i
√

π

r

×
{∑
l ′m ′n′

1

cl ′+1

√
(2l ′ + 1)(l ′ + 1)√
l ′(2l ′ + 1)!!

[
−Q(0)(l ′+1)

l ′m ′

(
0, t − r

c

)

+
∑
n′

1

n′!c2n′+1
T (n′)(l ′+2n′+1)
lm

(
0, t − r

c

)]}∫
dΩYlm(�n)Yl ′l ′m ′(�n) (4.188)

Furthermore, the integrals across a solid angle still remains in (4.186)–(4.188),
which can be easily assessed via the Cartesian components of the spherical vectors
�Yll ′m(l ′ = l, l ′ = l ± 1) using conventional normalization:

∫
dΩYlm(�n)Y ∗

l ′m ′(�n) = δll ′δmm ′ (4.189)

∫
dΩYlm(�n)Yl ′m ′(�n) = (−1)mδll ′δm,−m ′ (4.190)

where these integrals can be expanded as:

∫
dΩYlm(�n)Yl ′m ′(�n)

= �ex
[

(−1)m

2

√
(l + m)(l − m + 1)

l(l + 1)
δll ′δm,−m ′+1

+ (−1)m

2

√
(l − m)(l + m + 1)

l(l + 1)
δll ′δm,−m ′−1

]

+ �ey
[
i(−1)m

2

√
(l + m)(l − m + 1)

l(l + 1)
δll ′δm,−m ′+1

− (−1)m

2

√
(l − m)(l + m + 1)

l(l + 1)
δll ′δm,−m ′−1

]
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+ �ez
[
(−1)m+1 m√

l(l + 1)
δll ′δm,−m ′

]
(4.191)

∫
dΩYlm(�n)Yl ′l ′−1m ′(�n)
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2
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]
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]
(4.192)

∫
dΩYlm(�n)Yl ′l ′+1m ′(�n)

= �ex
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]
(4.193)

Using this approach, the contribution of the electric field to the rate of angular
momentum loss can be determined. By separately rewriting the contributions of
�J−, �J+, �J0 to d �M (el)/dt , we have:

d �M (el)

dt
=
(
d �M (el)

dt

)( �J−)

+
(
d �M (el)

dt

)( �J+)

+
(
d �M (el)

dt

)( �J0)
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(
d �M (el)

dt

)( �Ja)
= lim

r→∞
r3

4π
�Ja, (a) = −,+, 0 (4.194)

Thus, we can write:
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(4.195)
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(4.196)
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(4.197)
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(4.198)
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(4.200)
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∑
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In the set of equations above, the magnetic multipole moments and radii of
the system contribute to d �M (el)/dt through the interferences between the electric
and toroidal components. In other words, they only contribute through �J± parts in
[(4.195)–(4.200)].

The calculation of the magnetic field contribution to the angular momentum loss
in (4.184) is similar to the electric field derivation. However, it should be noted that
this detailed expression can be employed in a slightly different way as we did before,
where various types of interferences must be considered during the calculations.
Consequently, one has:

d �M (mag)

dt
=
(
d �M (mag)

dt

)

M,M

+
(
d �M (mag)

dt

)

M,Q+T

(4.204)

where M, M indicates the interferences between the induced magnetic multipole
radii, and M, Q + T specifies the interferences between the magnetic and electric +
toroidal type radii:
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(4.205)
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M (n′)(l+2n′+1)

l,−m

(
0, t − r

c

)
(4.207)

(
d �M (mag)

x

dt

)

M,Q+T

= 1

2

∑
l,m,n

(−1)m

(2l − 1)!!(2l + 1)!!
1

n!cl+2n
M (n)(l+2n)

lm

(
0, t − r

c

)

×
{

(l + 2)
√

(l − m + 1)(l − m + 2)

(2l + 1)(2l + 3)

×
[
Q(0)(l+2n)

l+1,1−m

(
0, t − r

c

)
cl+2

−
∞∑

n′=0

T (n′)(l+2n′+3)
l+1,1−m

(
0, t − r

c

)
n!cl+2n′+3

]

− (l + 2)
√

(l + m + 1)(l + m + 2)

(2l + 1)(2l + 3)

×
[
Q(0)(l+2n)

l+1,1−m

(
0, t − r

c

)
cl+2

−
∞∑

n′=0

T (n′)(l+2n′+3)
l+1,−1−m

(
0, t − r

c

)
n′!cl+2n′+3

]

+ (l + 1)
√

(l + m − 1)(l + m)

×
[
Q(0)(l+2n)

l−1,−1−m

(
0, t − r

c

)
cl

−
∞∑

n′=0

T (n′)(l+2n′+1)
l−1,1−m

(
0, t − r

c

)
n′!cl+2n′+1

]

− (l + 1)
√

(l − m − 1)(l − m)

×
[
Q(0)(l)

l−1,−1−m

(
0, t − r

c

)
cl

−
∞∑

n′=0

T (n′)(l+2n′+1)
l−1,−1−m

(
0, t − r

c

)
n′!cl+2n′+1

]}

(4.208)
(
d �M (mag)

y

dt

)

M,Q+T

= i

2

∑
l,m,n

(−1)m

(2l − 1)!!(2l + 1)!!
1

n!cl+2n
M (n)(l+2n)

lm

(
0, t − r

c

)

×
{

(l + 2)
√

(l − m + 1)(l − m + 2)

(2l + 1)(2l + 3)

×
[
Q(0)(l+2n)

l+1,1−m

(
0, t − r

c

)
cl+2

−
∞∑

n′=0

T (n′)(l+2n′+3)
l+1,1−m

(
0, t − r

c

)
n!cl+2n′+3

]

− (l + 2)
√

(l + m + 1)(l + m + 2)

(2l + 1)(2l + 3)
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×
[
Q(0)(l+2n)

l+1,−1−m

(
0, t − r

c

)
cl+2

−
∞∑

n′=0

T (n′)(l+2n′+3)
l+1,−1−m

(
0, t − r

c

)
n′!cl+2n′+3

]

+ (l + 1)
√

(l + m − 1)(l + m)

×
[
Q(0)(l+2n)

l−1,1−m

(
0, t − r

c

)
cl

−
∞∑

n′=0

T (n′)(l+2n′+1)
l−1,1−m

(
0, t − r

c

)
n′!cl+2n′+1

]

+ (l + 1)
√

(l − m − 1)(l − m)

×
[
Q(0)(l)

l−1,−1−m

(
0, t − r

c

)
cl

−
∞∑

n′=0

T (n′)(l+2n′+1)
l−1,−1−m

(
0, t − r

c

)
n′!cl+2n′+1

]}

(4.209)
(
d �M (mag)

z

dt

)

M,Q+T

=
∑
l,m,n

(−1)m

(2l − 1)!!(2l + 1)!!
1

n!cl+2n
M (n)(l+2n)

lm

(
0, t − r

c

)

×
{
− (l + 2)

√
(l + m + 1)(l − m + 1)

(2l + 1)(2l + 3)

×
[
Q(0)(l+2n)

l+1,−m

(
0, t − r

c

)
cl+2

−
∞∑

n′=0

T (n′)(l+2n′+3)
l+1,−m

(
0, t − r

c

)
n!cl+2n′+3

]

+ (l + 1)
√

(l − m)(l + m)

×
[
Q(0)(l+2n)

l−1,1−m

(
0, t − r

c

)
cl

−
∞∑

n′=0

T (n′)(l+2n′+1)
l−1,−m

(
0, t − r

c

)
n′!cl+2n′+1

]}

(4.210)

By far, the calculation of angular momentum loss per unit time is presented.
The electric field contribution in (4.182) is specified in (4.195)–(4.203), while the
contribution of the magnetic field in (4.182) is stated in (4.205)–(4.210). The results
abovewere explained byproviding formulas for theCartesian components ofd �M/dt .
However, these results can be arranged and presented in a much more compact
form (known as Clebsch-Gordan coefficients) through rewriting them in terms of
spherical components (μ = −1,0,1) of vector d �M/dt . Accordingly, one can define
the expression of angular momentum loss per unit volume as:

dMμ

dt
= (−1)m

(2l − 1)!!(2l + 1)!!
1

c2l

[
l + 2

2l + 1

√
l + 1√
2l + 3

Cl+1,1,l
m+μ,−μ,m A

+(l + 1)
√
l(2l − 1)Cl−1,1,l

m+μ,−μ,m B + i

c
(l + 1)

√
l + 1√
l

Cl,1,l
m+μ,−μ,mC

]

(4.211)

where A, B, and C are:
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A =
∑
n′

1

c2(n′+1)n′!
[
Q(0)(l)

lm M (n′)(l+2n′+2)
l+1,−μ−m − M (n′)(l+2n′)

lm Q(0)(l+2)
l+1,−μ−m

]

+
∑
n,n′

1

c2n′+2+3n!n′!
[
M (n′)(l+2n′)

lm T (n)(l+2n+3)
l+1,−μ−m − T (n)(l+2n+1)

lm M (n′)(l+2n′+2)
l+1,−μ−m

]

(4.212)

B =
∑
n′

1

c2n′n′!
[
Q(0)(l)

lm M (n′)(l+2n′)
l−1,−μ−m − M (n′)(l+2n′)

lm Q(0)(l)
l−1,−μ−m

]

+
∑
n,n′

1

c2n′+2+1n!n′!
[
M (n′)(l+2n′)

lm T (n)(l+2n+1)
l−1,−μ−m − T (n)(l+2n+1)

lm M (n′)(l+2n′)
l−1,−μ−m

]

(4.213)

C = −Q(0)(l)
lm Q(0)(l+1)

l,−μ−m +
∑
n

1

c2n+1n!
[
Q(0)(l)

lm T (n)(l+2n+2)
l,−μ−m − T (n)(l+2n+1)

lm Q(0)(l+1)
l,−μ−m

]

−
∑
n,n′

1

c2(n′+1)n!n′!
[
M (n)(l+2n′)

lm M (n′)(l+2n′+1)
l,−μ−m + 1

c2
T (n)(l+2n+1)
lm M (n′)(l+2n′+2)

l,−μ−m

]

(4.214)

Besides, the connection with the Cartesian components can be defined as:

dM+
dt

= − 1√
2

(
dMx

dt
+ i

dMy

dt

)

dM−
dt

= − 1√
2

(
dMx

dt
− i

dMy

dt

)

dM(0)

dt
= dMz

dt
(4.215)

Considering previously used double superscript quantities with the argument of t-
r/c (Q(n)(v)

lm ,M (n)(v)
lm , T (n)(v)

lm ), now, one can recall the definitions of double-superscript
quantities in terms of the corresponding multipole electric, magnetic, and toroidal
form factors in (4.13)–(4.15). Also, by utilizing their relation with the multipole
electric (r̄2nlm (t)),magnetic (ρ̄2n

lm(t)), and toroidal (R̄2n
lm(t))mean-square radii of various

orders, one has:

Q(n)(υ)
lm (0, t) = (2l + 1)!!

2n(2l + 2n + 1)!!
dυ

dtυ
r̄2nlm (t) (4.216)

M (n)(υ)
lm (0, t) = (2l + 1)!!

2n(2l + 2n + 1)!!
dυ

dtυ
ρ̄2n
lm(t) (4.217)

T (n)(υ)
lm (0, t) = (2l + 1)!!

2n(2l + 2n + 1)!!
dυ

dtυ
R̄2n
lm(t) (4.218)
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The radii above describe the multipole content of the most general type of source.
Here, one should consider the time dependence in the formulas obtained for the
angular momentum loss per unit time. This point, indeed, raises an issue: the evalua-
tion of the limits r → ∞ in (4.179) might rise some tricky problems. This is because
the electric and magnetic fields in the integral are solutions of theMaxwell equations
that are zero at infinity. However, one may calculate the angular momentum loss of
a system using a sphere of radius r in (4.179).

Since it is challenging to perform the described process abovewithin the proximity
of the source, one could perform calculations for large r, but not in the limit of r
→ ∞. This method allows for having non-negligible terms of order 1/r3 from the
integral to compensate the r3. Therefore, one needs to consider d �M(r, t)/dt as a
function of r. It is important to note that the argument of the radii in the obtained
result for d �M/dt is t-r/c. This implies that when an observer at a distance r1 from
the source measures the angular momentum, another observer located at a distance
r2, where r2 > r1, will obtain similar results as the first observer within the same
time interval T. This explicitly describes why d �M/dt and the recoil force depend on
r through the retarded time t-r/c in the argument of the radii.

Now, (4.211)–(4.214) can be transcribed correctly by rephrasing the description
of the angular momentum loss in terms of 1/c5. Using both Cartesian components
and the associated spherical components of the first multipole moments and radii,
one can write:

dMα

dt
= C(QQ) + C(MM) + C(QM) + C(QT ) + C(MT ) + C(T T ) (4.219)

where the diagonal and interference contributions of the electric, magnetic, and
toroidal components are:

C(QQ) = − 2

3c3
εαi j ḋi d̈ j − 2

5c5
εαi j Q̈βi

˙̈Qβ j (4.220)

C(MM) = − 2

3c3
εαi j ṁi m̈ j − 1

5c5

(
−1

3
εαi j m̈i

˙̄̈ρ2
j + 1

3
εαi j ṁi

¨̄̈ρ2
j

+1

2
εαi j m̈βi ˙̈mβ j

)
(4.221)

C(MQ) = − 1

5c4

( ˙̈mαi ḋi + m̈αi d̈i − 2 ˙̈Qαi ṁi − 2Q̈αi m̈i

)
(4.222)

C(QT ) = 2

3c4
εαi j

(
ḋi ˙̈t j + ẗi d̈ j

)
(4.223)

C(MT ) = − 1

15c5

(
2 ¨̈tαi ṁi + 2 ˙̈tαi m̈i − 3 ˙̈mαi ẗi − 3m̈αi

˙̈ti
)

(4.224)
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C(T T ) = − 2

3c5
εαi j ẗi ˙̈t j (4.225)

In the equations above, dots mean time derivatives, di is the electric dipole
moment, Qij is the electric quadrupole moment, mi is the magnetic dipole moment,
ρ̄2
i is the first mean-square radius of the magnetic dipole distribution, mij is the

magnetic quadrupole moment, ti is the toroidal dipole moment, and tij is the toroidal
quadrupole moment. It should be noted that the argument of the multipole quantities
is t-r/c. Considering the above equations to the power of 1/c, one can obtain:

dMα

dt
= − 2

3c3
εαβγ

(
ḋβ d̈γ + ṁβm̈γ

)+ 1

c4

[
1

5

(− ˙̈mαβ ḋβ − m̈αβ d̈β

+2 ˙̈Qαβṁβ + 2Q̈αβm̈β

)
+ 2

3
εαβγ

(
ḋβ

˙̈tγ + ẗβ d̈γ

)]− 1

5c5

×
[
1

3

(
−2 ¨̈tαβṁβ + 2 ˙̈tαβm̈β − 3 ˙̈mαβ ẗβ − 3m̈αβ

˙̈tβ
)

+ εαβγ

×
(
2Q̈δβ

˙̈Qδγ + 10

3
ẗβ ˙̈tγ + 1

3
ṁβ

¨̄̈ρ2
γ − 1

3
m̈β

˙̄̈ρ2
γ + 1

2
m̈δβ

˙̈mδγ

)]

+ [C] (4.226)

where C indicates the terms that are higher in order than 1/c5.

4.4 Recoil Force

Principally, the recoil force is themomentum loss by the system per unit time, i.e., the
fluxofmomentumgoingout from the system through the radiation of electromagnetic
waves (Gray 1978):

Fi =
∫

σi j n j dS, dS = r2dΩ, �n = �r
r

(4.227)

where σ ij is the three-dimensional Maxwell stress tensor, mentioned in (4.181), and
the integration must be performed across a sphere of radius r.

The recoil force of a system can be expressed as:

�F = lim
r→∞

⎧⎨
⎩− r2

4π

∫
dΩ

⎡
⎣ �E( �E · �n) + �B( �B · �n) − �n +

( �E2 + �B2
)

2

⎤
⎦
⎫⎬
⎭ (4.228)

In this regime, one needs the electric and magnetic fields to the order ofO(1/r). At
this order, the fields are transversal (i.e., �E · �n = 0 and �B · �n = 0) and the following
integrals have to be calculated to define the electric and magnetic fields:
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�F = − r

8π

∫
dΩ�r

( �E2 + �B2
)

(4.229)

in which each component can be defined as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�Fx = − r

8π

∫
dΩx

( �E2 + �B2
)

�Fy = − r

8π

∫
dΩy

( �E2 + �B2
)

�Fz = − r

8π

∫
dωz

( �E2 + �B2
)

(4.230)

In the set of integrals above, for r → ∞with �E and �B ~O(1/r), r can be excluded
from the calculations.

To evaluate the recoil force in terms of multipole content of the source, any
multipolarity order and an arbitrary time dependence of the quantities should be
considered. This implies that the recoil force can be specified based on the time
derivatives of the system’s various multipole radii. In light of (4.227)–(4.230), one
requires only the O(1/r) multipole content of electric and magnetic fields. This can
be performed through the use of different steps, as shown below.

First, since the electric and magnetic fields on the order of O(1/r) satisfy:

�r
r

× �E(�r , t) O(1/r)= �B(�r , t) (4.231)

we can write:

�E2(�r , t) = �B2(�r , t) (4.232)

Therefore,

Fx = −r2
√
2

4
√
3π

∫
dΩ

[
Y1−1(�n) − Y11(�n)

] �B2(�r , t) (4.233)

Fy = −ir2
√
2

4
√
3π

∫
dΩ

[
Y11(�n) − Y1−1(�n)

] �B2(�r , t) (4.234)

Fz = −r2
1

2
√
3π

∫
dΩY10(�n) �B2(�r , t) (4.235)

Now, we need to calculate the following surface integrals:

I1 =
∫

dΩY11(�n) �B2(�r , t) (4.236)
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I−1 =
∫

dΩY1−1(�n) �B2(�r , t) (4.237)

I0 =
∫

dΩY10(�n) �B2(�r , t) (4.238)

Based on this information, in the Cartesian basis, the recoil force will be:

Fx = −r2
√
2

4
√
3π

(I−1 − I1) (4.239)

Fy = −r2
√
2

4
√
3π

(i I−1 + i I1) (4.240)

Fz = −r2
√
2

2
√
3π

I0 (4.241)

and in spherical basis:

F+1 = − 1√
2
(Fx + i Fy) = − r2

2
√
3π

I1 (4.242)

F−1 = − 1√
2
(Fx − i Fy) = − r2

2
√
3π

I−1 (4.243)

F0 = Fz = − r2

2
√
3π

I0 (4.244)

In the second stage, the integral in (4.236) should be solved. To this end, we have
to evaluate this integral with �B(�r , t) by considering (4.114):

I1 = 1

r2

∫
d�Y11(�n)

{∑
l,m

1

cl+1

√
4π(2l + 1)(l + 1)√

l(2l + 1)!!

×
[ ∞∑
n=0

1

n!c2n M (n)(l+2n+1)
lm

(
0, t − r

c

)

×
( √

l√
2l + 1

�Yll+1m(�n) +
√
l + 1√
2l + 1

�Yll−1m(�n)

)

− i Q(0)(l+1)
lm

(
0, t − r

c

) �Yllm(�n) + i

c

×
∞∑
n=0

1

n!c2n T
(n)(l+2n+2)
lm

(
0, t − r

c

) �Yllm(�n)

]}
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×
{∑

l ′m ′

1

cl ′+1

√
4π(2l ′ + 1)(l ′ + 1)√

l ′(2l ′ + 1)!!

×
[

1

n′!c2n′ M
(n′)(l ′+2n′+1)
l ′m ′

(
0, t − r

c

)

×
( √

l ′√
2l ′ + 1

�Yl ′l ′+1m ′(�n) +
√
l ′ + 1√
2l ′ + 1

�Yl ′l ′−1m ′(�n)

)

− Q(0)(l ′+1)
l ′m ′

(
0, t − r

c

) �Yl ′l ′m ′(�n)

+ i

c

∞∑
n′=0

1

n′!c2n T
(n′)(l ′+2n′+2)
l ′m ′

(
0, t − r

c

) �Yl ′l ′m ′(�n)

]}
(4.245)

Here, to calculate I1, the integral should be split into different pieces and analyzed
accordingly:

I1 = I MM
1 + I QQ

1 + I T T1 + I QM
1 + I T M

1 + I QT
1 (4.246)

Since all pieces possess obvious corresponding forms, hence, we only provide the
definition of I MM

1 below:

I MM
1 =

∑
l,m,l ′,m ′

∑
n,n′

1

cl+l ′+2n+2n′+2

4π
√

(l + 1)(l ′ + 1)

n!n′!√ll ′(2l + 1)!!(2l ′ + 1)!!M
(n)(l+2n+1)
lm

× M (n′)(l ′+2n′+1)
l ′m ′ ×

[√
ll ′
∫

dΩY11 �Yll+1m · �Yl ′l ′+1m ′ + 2
√
l(l ′ + 1)

×
∫

dΩY11 �Yll+1m · �Yl ′l ′+1m ′ +√
(l + 1)(l ′ + 1)

∫
dΩY11 �Yll+1m · �Yl ′l ′+1m ′

]

(4.247)

After this step, we may drop the arguments (0, t-r/c) and �n from the spherical
vector functions.

In the third step of the recoil force calculations, the number of surface integrals
should be calculated over the products of three spherical harmonics, which can be
performed in terms of 3j Wigner coefficients (Edmonds 1958), as:

∫
dΩYl1m1(�n)Yl2m2(�n)Yl3m3(�n) =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

2
√

π

×
(
l1
0

l2
0

l3
0

)(
l1
m1

l2
m2

l3
m3

)
(4.248)

Using the following well-known relation:
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(
l1
m1

l2
m2

l3
m3

)
= (−1)l1−l2−m3

1√
2l3 + 1

Cl1,l2,l3
m1,m2,−m3

(4.249)

and expressing the Cartesian components of �Yll ′m(�n) in terms of spherical harmonics
Ylm(�n) through 3j symbols, we can write:

I MM
1 = 1

r2
∑
l,n,n′

1

c2l+2n+2n′+1

8l(l + 1)
√
3πl

n!n′!(2l + 1)!!(2l − 1)!!√(2l − 1)(2l + 1)

×
∑
m

M (n)(l+2n+1)
lm M (n′)(l+2n′)

l−1,−1−m

(
l
m

l − 1
−1 − m

1
1

)
+ 1

r2

×
∑
l,m

(−1)l+1

c2l+2n+2n′+3

4(l + 2)(2l2 + 4l + 1)
√
3π

n!n′!(2l + 1)!!(2l + 3)!!√(l + 1)(2l + 1)(2l + 3)

×
∑
m

M (n)(l+2n+1)
lm M (n′)(l+2n′+2)

l+1,−1−m

(
l
m

l + 1
−1 − m

1
1

)
(4.250)

I QQ
1 = 1

r2
∑
l,m

(−1)l

c2l+1

2
√
3π(l + 1)

(2l − 1)!!(2l − 3)!!√l(2l − 1)(2l + 1)

×
∑
m

Q(0)(l+1)
lm Q(0)(l)

l−1,−1−m

(
l
m

l − 1
−1 − m

1
1

)
+ 1

r2

×
∑
l,m

(−1)l−1

c2l+3

2
√
3π(l + 2)

(2l − 1)!!(2l + 1)!!√(l + 1)(2l + 1)(2l + 3)

×
∑
m

Q(0)(l+1)
lm Q(n′)(l+2)

l+1,−1−m

(
l
m

l + 1
−1 − m

1
1

)
(4.251)

I T T1 = 1

r2
∑
l,n,n′

(−1)l

n!n′!c2l+2n+2n′+2

2
√
3π(l + 1)

(2l − 1)!!(2l − 3)!!√l(2l − 1)(2l + 1)

×
∑
m

T (n)(l+2n+2)
lm T (n′)(l+2n′+1)

l−1,−1−m

(
l
m

l − 1
−1 − m

1
1

)
+ 1

r2

×
∑
l,n,n′

(−1)l−1

n!n′!c2l+2n+2n′+4

2
√
3π(l + 2)

(2l − 1)!!(2l + 1)!!√(l + 1)(2l + 1)(2l + 3)

×
∑
m

T (n)(l+2n+2)
lm T (n′)(l+2n′+3)

l+1,−1−m

(
l
m

l + 1
−1 − m

1
1

)
(4.252)

I QM
1 = 4i

r2
∑
l,n

(−1)l−1

n!c2l+2n+2

√
3π(l + 1)(2l + 1)

l
√
l(2l + 1)!!(2l − 1)!!



100 4 Physical Mechanism Behind the Toroidal Multipoles

×
∑
m

Q(n)(l+1)
l,−1−m M (n)(l+2n+1)

l,m

(
l

−1 − m
l
m

1
1

)
(4.253)

I T M
1 = 4i

r2
∑
l,n,n′

(−1)l

n!n′!c2n+2l+2n′+3

√
3π(l + 1)(2l + 1)

l
√
l(2l + 1)!!(2l − 1)!!

×
∑
m

T (n′)(l+2n′+2)
l,−1−m M (n)(l+2n+1)

l,m

(
l

−1 − m
l
m

1
1

)
(4.254)

I QT
1 = 4

r2
∑
l,n′

(−1)l+1

n′!c2l+2n′+2

√
3π(l + 1)

(2l − 1)!!(2l − 3)!!√l(2l + 1)(2l − 1)

×
∑
m

Q(0)(l+1)
lm T (n′)(l+2n′+1)

l−1,−1−m

(
l
m

l − 1
−1 − m

1
1

)
+ 4

r2

×
∑
l,n′

(−1)l

n′!c2l+2n′+4

√
3π(l + 2)

(2l − 1)!!(2l + 1)!!√(l + 1)(2l + 1)(2l + 3)

×
∑
m

Q(0)(l+1)
lm T (n′)(l+2n′+3)

l+1,−1−m

(
l
m

l + 1
−1 − m

1
1

)
(4.255)

So far, the calculation of the integral I1 in (4.236) is presented.
Next, as the fourth step, we focus on the calculation of the integral I -1 in (4.237)

through the use of the results that are obtained from (4.250) to (4.255), since:

I−1 = −I ∗
1 (4.256)

Now, using the properties under complex conjugation of the double-superscript
quantities Q(n)(υ)

lm and M (n)(υ)
lm :

M (n)(υ)∗
lm = (−1)mM (n)(υ)

l−m (4.257)

following from the same properties of the entire electric, magnetic, and toroidal form
factors: Qlm(−k2,t), Mlm(−k2,t), and Tlm(−k2,t). Changing m to −m and following
a similar strategy as we employed for I1, we can consider the following relation
(Edmonds 1958):

(
j1
m1

j2
m2

j3
m3

)
= (−1) j1+ j2+ j3

(
j1

−m1

j2
−m2

j3
−m3

)
(4.258)

In continue, as the fifth step, we define I0 similar to I1:

I0 = I MM
0 + I QQ

0 + I T T0 + I QM
0 + I T M

0 + I QT
0 (4.259)

where each component can be described as:
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I MM
0 = 1

r2
∑

l,m,n,n′

1

n!n′!c2l+2n+2n′+1

8l(l + 1)
√
3πl

(2l − 1)!!(2l + 1)!!√(2l − 1)(2l + 1)

× M (n)(l+2n+1)
lm M (n′)(l+2n′)

l−1,−m

(
l
m

l − 1
−m

1
0

)
+ 1

r2
∑
l,m

(−1)l+1

n!n′!c2l+2n+2n′+3

× 4
√
3π(l + 2)(2l2 + 4l + 1)

(2l + 1)!!(2l + 3)!!√(l + 1)(2l + 1)(2l + 3)

× M (n)(l+2n+1)
lm M (n′)(l+2n′+2)

l+1,−m

(
l
m

l + 1
−m

1
1

)
(4.260)

I QQ
0 = 1

r2
∑
l,m

(−1)l

c2l+1

2
√
3π(l + 1)

(2l − 1)!!(2l − 3)!!√l(2l − 1)(2l + 1)

× Q(0)(l+1)
lm Q(0)(l)

l−1,−m

(
l
m

l − 1
−m

1
0

)
+ 1

r2
∑
l,m

(−1)l−1

c2l+3

× 2
√
3π(l + 2)

(2l − 1)!!(2l + 1)!!√(l + 1)(2l + 1)(2l + 3)

× Q(0)(l+1)
lm M (0)(l+2)

l+1,−m

(
l
m

l + 1
−m

1
0

)
(4.261)

I T T0 = 1

r2
∑

l,m,n,n′

(−1)l

n!n′!c2l+2n+2n′+2

2
√
3π(l + 1)

(2l − 1)!!(2l − 3)!!√l(2l − 1)(2l + 1)

× T (n)(l+2n+2)
lm T (n′)(l+2n′+1)

l−1,−m

(
l
m

l − 1
−m

1
0

)
+ 1

r2
∑
l,m

(−1)l−1

n!n′!c2l+2n+2n′+4

× 2
√
3π(l + 2)

(2l − 1)!!(2l + 1)!!√(l + 1)(2l + 1)(2l + 3)

× T (n)(l+2n+2)
lm M (n′)(l+2n′+3)

l+1,−m

(
l
m

l + 1
−m

1
1

)
(4.262)

I QM
0 = 4i

r2
∑
l,m,n

(−1)l+1

n!c2l+2n+2

√
3π(l + 1)(2l + 1)

(2l − 1)!!(2l + 1)!!l√l
Q(0)(l+1)

l,−m M (n)(l+2n+1)
lm

×
(

l
−m

l
m

1
0

)
(4.263)

I T M
0 = 4i

r2
∑

l,m,n,n′

(−1)l

n!n′!c2l+2n+2n′+3

√
3π(l + 1)(2l + 1)

(2l − 1)!!(2l + 1)!!l√l
T (n′)(l+2n′+2)
l,−m M (n)(l+2n+1)

lm

×
(

l
−m

l
m

1
0

)
(4.264)
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I QT
0 = 1

r2
∑
l,m,n′

(−1)l+1

n′!c2l+2n′+2

4
√
3π(l + 1)2

(2l − 1)!!(2l − 3)!!l√l(2l − 1)(2l + 1)

× Q(0)(l+1)
lm T (n′)(l+2n′+1)

l−1,−m

(
l
m

l − 1
−m

1
0

)
+ 1

r2
∑
l,m,n′

(−1)l

n′!c2l+2n′+4

× 4
√
3π(l + 2)2

(2l − 1)!!(2l + 1)!!l√(l + 1)(2l + 1)(2l + 3)

× Q(0)(l+1)
lm T (n′)(l+2n′+3)

l+1,−m

(
l
m

l + 1
−m

1
0

)
(4.265)

Now, as a final step, we conclude the description of the recoil force for the general
configuration of charges and currents. Using the spherical basis (μ = −1,0,1) with
the help of 3j-symbols, the results can be expressed in terms of the derivatives of asso-
ciated electric, magnetic, and toroidal form factors. Here, the order of the derivation
with respect to momentum transfer (−k2) is defined by the first superscript, whereas
the order of time derivative is stated by the second superscript:

Fμ = [Q, Q] + [M, M] + [T, T ] + [Q, M] + [Q, T ] + [M, T ] (4.266)

[Q, Q] =
∑
l

(−1)l+1

c2l+1

(l + 1)

(2l − 1)!!(2l − 3)!!√l(2l − 1)(2l + 1)

×
∑
m

(
l
m

l − 1
−μ − m

1
μ

)
Q(0)(l+1)

lm Q(0)(l+1)
l−1,−μ−m

+
∑
l

(−1)l

c2l+3

(l + 2)

(2l − 1)!!(2l + 1)!!√(l + 1)(2l + 1)(2l + 3)

×
∑
m

(
l
m

l + 1
−μ − m

1
μ

)
Q(0)(l+1)

lm Q(0)(l+2)
l+1,−μ−m (4.267)

[M, M] =
∑
l,n,n′

(−1)l+1

n!n′!c2l+2n+2n′+1

4l(l + 1)
√
l

(2l − 1)!!(2l + 1)!!√(2l − 1)(2l + 1)

×
∑
m

(
l
m

l − 1
−μ − m

1
μ

)
M (n)(l+2n+1)

lm M (n′)(l+2n′)
l−1,−μ−m

+
∑
l,n,n′

(−1)l

n!n′!c2l+2n+2n′+3

2(l + 2)(2l2 + 4l + 1)

(2l + 1)!!(2l + 3)!!√(l + 1)(2l + 1)(2l + 3)

×
∑
m

(
l
m

l + 1
−μ − m

1
μ

)
M (n)(l+2n+1)

lm M (n′)(l+2n′+2)
l+1,−μ−m (4.268)
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[T, T ] =
∑
l,n,n′

(−1)l+1

n!n′!c2l+2n+2n′+2

(l + 1)

(2l − 1)!!(2l − 3)!!√l(2l − 1)(2l + 1)

×
∑
m

(
l
m

l − 1
−μ − m

1
μ

)
T (n)(l+2n+2)
lm T (n′)(l+2n′+1)

l−1,−μ−m

+
∑
l,n,n′

(−1)l

n!n′!c2l+2n+2n′+4

(l + 2)

(2l − 1)!!(2l + 1)!!√(l + 1)(2l + 1)(2l + 3)

×
∑
m

(
l
m

l + 1
−μ − m

1
μ

)
T (n)(l+2n+2)
lm T (n′)(l+2n′+3)

l+1,−μ−m (4.269)

[Q, M] = −2i
∑
l,n

(−1)l

n!c2l+2n+2

√
(l + 1)(2l + 1)

(2l − 1)!!(2l − 3)!!l√l

×
∑
m

(
l

−μ − m
l
m

1
μ

)
Q(0)(l+1)

l,−μ−mM
(n)(l+2n+1)
lm (4.270)

[Q, T ] = 2
∑
l,n′

(−1)l

n′!c2l+2n′+2

(l + 1)

(2l − 1)!!(2l − 3)!!l√l(2l − 1)(2l + 1)

×
∑
m

(
l
m

l − 1
−μ − m

1
μ

)
Q(0)(l+1)

lm T (n′)(l+2n′+1)
l−1,−μ−m

+ 2
∑
l,n′

(−1)l+1

n′!c2l+2n+2n′+4

(l + 2)

(2l − 1)!!(2l + 1)!!√(l + 1)(2l + 1)(2l + 3)

×
∑
m

(
l
m

l + 1
−μ − m

1
μ

)
Q(0)(l+1)

lm T (n′)(l+2n′+3)
l+1,−μ−m (4.271)

[M, T ] = −2i
∑
l,n

(−1)l+1

n!n′!c2l+2n+2n′+3

√
(l + 1)(2l + 1)

(2l − 1)!!(2l + 1)!!l√l

×
∑
m

(
l

−μ − m
l
m

1
μ

)
T (n′)(l+2n′+2)
l,−μ−m M (n)(l+2n+1)

lm (4.272)

In the set of equations that have been employed in this Chapter, the following
summations were utilized:m= −l, …, + l; l= 1,2,…; n, n= 0,1,2,…. In addition, the
emerging 3jWigner coefficients are associatedwith theClebsch-Gordan coefficients,
given by Edmonds (1958):

(
j1
m1

j2
m2

j3
m3

)
= (−1) j1− j2−m3

√
2 j3 + 1

C j1, j2, j3
m1,m2,−m3

(4.273)

Moreover, the Cartesian components of the recoil force Fx, Fy, Fz are correlated
with Fµ(μ = −1,0,1):
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F+1 = − 1√
2

(
Fx + i Fy

)
(4.274)

F−1 = 1√
2

(
Fx − i Fy

)
(4.275)

F0 = Fz (4.276)

Ultimately, one could find the expression of the recoil force up to 1/c5 order from
the general description of Fμ(μ = −1,0,1):

Fα = − 2

3c4
εαβγ d̈βm̈γ − 1

5c5
m̈αβm̈β − 2

5c5
˙̈Qαβ d̈β − 2

3c5
εαβγ m̈β

˙̈tγ (4.277)

As can be seen in the equation above, besides the contributions from the classical
electric and magnetic multipoles, the recoil force, started from the 1/c5 order, also
possesses contributions from the toroidal dipole moment:

�Fmagnetic,toroidal = − 2

3c5
�̈m × ˙̈�t (4.278)

4.5 The Connection Between Cartesian and Spherical
Components of the First Multipoles

In this section, we summarize the connections between the spherical and Cartesian
components of the first multipoles. First, we present the electric ( �d), magnetic ( �m),
and toroidal dipole (�t) moments, and electric (Qαβ) and magnetic (mαβ) quadrupole
moments below.

For the electric multipole moment, we employed:

Qlm(t) =
√

4π

2l + 1

∫
d3rrlY ∗

lm

( �r
r

)
ρ(�r , t) (4.279)

Here, with �d = ∫
ρ(�r , t)�rd3r , one can write:Q10 = dz , Q11 = 1

/√
2(−dx +

idy), and Q1−1 = 1
/√

2(dx + idy).

For the magnetic multipole moment, we considered:

Mlm(t) = − i

c

√
4πl√

(2l + 1)(l + 1)

∫
d3rrl �Y ∗

llm

( �r
r

)
�j(�r , t) (4.280)
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Here, with �m = 1
/
2c
∫ [�r × �j(�r , t)]d3r , one can obtain:M10 = −mz , M11 =

1
/√

2(mx − imy), and M1−1 = −1
/√

2(mx + imy).

For the toroidal multipole moment, we used:

Tlm(t) = −
√

πl

c(2l + 1)

∫
d3rrl+1

[
Y ∗
ll−1m

( �r
r

)
+ 2

(2l + 3)

×
√
l√

l + 1
Y ∗
ll+1m

( �r
r

)]
�j(�r , t) (4.281)

Here, with �t = 1
/
10c

∫ [�r(�r · �j) − 2�r2 �j]d3r , one can write:T10 = tz , T11 =
−1
/√

2(tx − i ty), and T1−1 = 1
/√

2(tx + i ty).

For the electric quadrupole moment with l = 2, we employed:

Q2m(t) =
√
4π

5

∫
d3rr2Y ∗

2m

( �r
r

)
ρ(�r , t) (4.282)

Here, with Qi j = 1
/
2
∫

ρ(�r , t)[rir j − 1
/
3δi j �r ]d3r , one can attain:Q20 = 3Qzz ,

Q22 = √
6
/
2(Qxx −2i Qxy −Qyy), Q2−2 = √

6
/
2(Qxx +2i Qxy −Qyy), Q2−1 =√

6(Qxz + i Qyz), and Q2−2 = √
6(−Qxz + i Qyz).

For the magnetic quadrupole moment with l = 2, we considered:

M2m(t) = − i

c

√
8π√
15

∫
d3rr2 �Y ∗

22m

( �r
r

)
�j(�r , t) (4.283)

Here, with �mi j = 1
/
3c
∫ [(�r × �j)i r j + (�r × �j) j ri ]d3r , one can obtain: M20 =

−3
/
2mzz , M21 =

√
3
/
2(mxz − imyz), M2−1 = −

√
3
/
2(mxz + imyz), M22 =

−√
6
/
4(mxx − 2imxy − myy), and M2−2 = −√

6
/
4(mxx + 2imxy − myy).

For the toroidal quadrupole moment with l = 2, we took into account:

T2m(t) = −
√
2π

5c

∫
d3rr3

[
Y ∗
21m

( �r
r

)
+ ×2

√
2

7
√
3
Y ∗
23m

( �r
r

)]
�j(�r , t) (4.284)

Here, with �tik = 1
/
28c

∫
d3r [4rirk(�r · �j) − 5r2(ri jk + rk ji ) + 2r2(�r · �j)δik],

one can write:T20 = tzz , T21 = −√
2
/√

3(txz − i tyz), T2−1 = √
2
/√

3(txz + i tyz),

T22 = 1
/√

6(txx − 2i txy − tyy), and T2−1 = 1
/√

6(txx + 2i txy − tyy).

For the electric octupole moment with l = 3, we considered:
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Q3m(t) =
√
4π

7

∫
d3rr3Y ∗

3m

( �r
r

)
ρ(�r , t) (4.285)

Here, with Qi jk = 1
/
6
∫

ρ(�r , t)[rirkr j − 1
/
5r2(riδkl + rkδil + rlδik)]d3r , one

can attain:Q30 = 15Qzzz ,Q31 = −15
√
3
/
2(Qzzx + i Qyyy + i Qxxy),Q32 =

−3
√
15
/
2(Qzzz + 2Qyyz + 2i Qxyz), Q32 = −3

√
5
/
2(Qxxx − 3Qyyx + i Qxyz −

3i Qxxy), and Q3,−m = (−1)mQ∗
3m .

For the magnetic octupole moment with l = 3, we employed:

M3m(t) = − i

c

√
3π

7

∫
d3rr2 �Y ∗

33m

( �r
r

)
�j(�r , t) (4.286)

Here, with �mi jk = 15
/
2c
∫
d3r [rir j (�r × �j)k + rirk(�r × �j) j+r jrk(�r × �j)i +

δi j

/
5(�r × �r × �r × �j)k +δik

/
5(�r × �r × �r × �j) j , one can obtain: M30 =

−1
/
22mzzz , M31 = 1

/
8
√
3(mzzx + imyyy + imxxy), M32 = √

2
/
8
√
15(mzzz +

2myyz + 2imxyz), M33 = 1
/
24

√
5(mxxx − 3myyx + imyyy − 3imxxy), and M3−m =

(−1)mM∗
3m .

Moreover, the first mean-square radius of the electric for l = 0 is:

m = 0, r̄200(t) =
∫

d3rr2ρ(�r , t) (4.287)

Here, with the Cartesian definition of r̄ (2)
q (t) = ∫

d3rr2ρ(�r , t), one can write
r̄ (2)
q (t) = r̄200(t). The same component of the electric dipole for l = 1 is:

r̄21m(t) =
√
4π

3

∫
d3rr3ρ(�r , t)Y ∗

1m

( �r
r

)
(4.288)

Similarly, with the Cartesian definition of �̄r (2)
d (t) = ∫

d3r�rr2ρ(�r , t), one can

acquire r̄210 = (r̄2d )z, r̄
2
1−1 = 1

/√
2[(r̄2d )x + i(r̄2d )y].

On the other hand, the first mean-square radius of the magnetic dipole distribution
for l = 1 is:

ρ̄2
1m = 1

ic

√
2π

3

∫
d3rr3 �j(�r , t)Y ∗

1m

( �r
r

)
(4.289)

Here, with the Cartesian definition of �̄ρ2 = 1
/
2c
∫
d3rr2(�r × �j), one can obtain

ρ̄2
10 = −ρ̄2

z , ρ̄
2
11 = 1

/√
2(ρ̄2

x − i ρ̄2
y), and ρ̄2

1−1 = 1
/√

2(−ρ̄2
x − i ρ̄2

y).
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Finally, the first mean-square radius of the toroidal dipole for l = 1 can be defined
as:

R̄2
1m(t) = −

√
2π

3c

∫
d3rr4 �j(�r , t)

[
1

7
Y ∗
12m

( �r
r

)
+ 1

2
√
2
Y ∗
10m

( �r
r

)]
(4.290)

and in the Cartesian basis, this results in the first mean-square radius of the toroidal

dipole distribution as �̄R2
(t) = 1

/
28c

∫
d3rr2{3r2 �j(�r , t) − 2�r [�r · �j(�r , t)]}, where

one canwrite R̄2
z = −R̄2

10, R̄
2
x = 1

/√
2(R̄2

11− R̄2
1−1), and R̄

2
y = i

/√
2(R̄2

11− R̄2
1−1).

References

V.M. Dubovik, A.A. Cheshkov, Multipole expansion in classic and quantum field theory and
radiation. Sov. J. Particles. Nucl. 5, 318–337 (1974)

V.M. Dubovik, V.V. Tugushev, Toroid moments in electrodynamics and solid-state physics. Phys.
Rep. 187, 145–202 (1990)

A. Edmonds, Deformations of Atomic Nuclei (Publishing House for Foreign Literature, Moscow,
1958)

C.G. Gray, Multipole expansions of electromagnetic fields using Debye potentials. Am. J. Phys.
46(2), 169–179 (1978)

L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, vol. 2 (Pergamon Press, New York,
1993)

E.E.Radescu,G.Vaman, Exact calculation of the angularmomentum loss, recoil force, and radiation
intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles. Phys. Rev.
E 65, 046609 (2002)



Chapter 5
Toroidal Excitations in Metamaterials

Abstract Thus far,we showed that toroidal excitations exist in free space as spatially
and temporally confined electromagnetic pulses propagating at the velocity of light
and interacting with matter. In this Chapter, we presented an exhaustive study on
the theoretical and experimental observation of toroidal excitations in both bulk
and quasi-infinite artificially structured media, also known as metamaterials. Using
the established framework to analyze the toroidal electrodynamics, we discussed
the strategies that have been utilized to efficiently excite toroidal modes in well-
engineered subwavelength architectures. We initially argued the formation of the
toroidal resonances in 3D metamaterials, and later, we revealed that how the flatland
metaphotonics successfully addressed the fabrication, simulation, and inherent losses
in bulk metastructures.

5.1 Toroidal Excitations in 3D Artificial Media

Metamaterials are artificially engineered periodic arrays of nano- and microscale
building blocks that offer intriguing properties beyond natural materials. Applica-
tions of them, including but not limited to semiconductor and high-temperature super-
conductor characterization, asymmetric transmission, optical magnetism, hyper-
bolic dispersion, epsilon near-zero (ENZ), topological states, arbitrary control of
light’s trajectories, transformation optics, novel quantum information, tomographic
imaging, label-free genetic analysis, cellular level imaging and chemical and biolog-
ical sensing, have thrust metamaterials research from a relative obscurity into
the limelight (Pendry et al. 2006; Boltasseva and Atwater 2011; Kildishev et al.
2013; Zheludev and Kivshar 2012; Soukoulis and Wegener 2011; Gerislioglu and
Ahmadivand 2020; Gerislioglu et al. 2020).

In particular, to date, several types ofmetastructures have been designed and intro-
duced in the field of plasmonics and photonics, to affectively manipulate light-matter
interactions and support pronounced resonant states. Among them, electromagnet-
ically induced transparency (EIT)- and Fano-resonant metamaterials have received
copious interest in the first two-decades of the present Century, because of their
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narrow spectral linewidth and the ability of controlling the direction of the trans-
mitted/reflected light (e.g., beam steering) (Luk’yanchuk et al. 2010; Galarreta et al.
2018; Papasimakis et al. 2008; Gerislioglu et al. 2017). Metamaterials have proven
their promise towards developing effective tunable optics-based instruments, but the
need for attaining the most efficient and reliable design have urged the researchers
to explore novel alternatives.

On the other hand, the topic of toroidal excitations with unparalleled proper-
ties was transferred from atomic, nuclear, molecular, and condensed matter physics
studies to the classical optics through the use of metamaterials (Marinov et al. 2007).
As mentioned in Chap. 2, toroidal multipoles are unconventional electromagnetic
excitations, which are different from the ones related to traditional electric and
magnetic multipoles. Theoretically, toroidal moments are missing from the standard
multipole expansion (Silenko 1999; Dubovik and Tugushev 1990), and specifically,
the dynamic toroidal dipole (i.e., the hidden counterpart of electric and magnetic
dipoles) is originated from the poloidal currents flowing on the surface of a torus
along its meridians, or it is equivalently considered as a head-to-tail loop of magnetic
dipoles (Silenko1999;Kaelberer et al. 2010). Toroidal dipole is the dominantmember
of the toroidal multipoles family and recognized for revealing the spatial feature of
toroidal dipole mode as gyrotropic-fashioned charge-current excitations, in which
their far-field radiation patterns are considerably concealed (Papasimakis et al. 2009;
Ahmadivand et al. 2017; Fedotov et al. 2013).

In 2010, the initial experimental verification of the dynamic toroidal dipole mode
is reported in a 3D metamaterial in the range of microwave frequencies (Kaelberer
et al. 2010). The corresponding 3D design is illustrated in Fig. 5.1a, where a set of
four rectangular, electrically isolated metallic wire loops are embedded within a low-
loss dielectric layer. Here, to suppress the induced electric and magnetic moments
and to enhance the toroidal dipolar response, this particular metamolecule layout
is tailored. The corresponding geometric parameters of the metamolecule are a =
1.8 mm, h = 1.5 mm, r = 2.44 mm, w = 0.15 mm, d = 8 mm, s = 7.5 mm,
and g = 0.15 mm. The assembled metamaterial slab was fabricated through high-
resolution printed board technology with the overall dimension of 8 mm × 176 mm
× 165 mm (Fig. 5.1b). The rows of the array were constructed from metalized
microwave laminate strips and judiciously stacked at a regular interval with the axes
of the metamolecules aligned along the plane of the metamolecules array. It is impor-
tant to underline that before conducting the measurements, the green solder resist
was removed from the samples. As depicted in Fig. 5.1a, the front and rear pairs
of the metallic loops interact with the magnetic component of the incident light,
which creates circular currents based on Faraday’s law of induction. Indeed, the
incoming wave travels through the front and rear metallic loops with a phase delay,
and this can be understood from in-phase (parallel) and out-of-phase (antiparallel)
components of the magnetic field at the loops. The unique result of this process is
the formation of toroidal and magnetic resonances in the transmission (and reflec-
tion) spectra, which are labeled as ‘II’ and ‘I’, respectively (see Figs. 5.1c, d). At
‘I’, the metamolecule interacts with the in-phase part of the magnetic field and the
individually-formed magnetic moments (m) indicate the same direction along the
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Fig. 5.1 Design and spectral response of the 3D toroidal metamolecule. a Schematic of the unit cell
of themetamaterial, consisting of four split wire loops with respect to the incident wave. bAn image
of the assembled metamaterial slab. Experimentally measured (red line) and numerically calculated
(black line) c transmission and d reflection spectra of the metamaterial. e and f Optically-driven
magnetic moments (m) of wire loops during in-phase and out-of-phase interactions, respectively.
gMultipolar decomposition spectra of the radiated power from different multipoles. Adapted from
(Kaelberer et al. 2010) with permission. Copyright AAAS

y-axis, which contribute to magnetic dipole mode parallel to the incident magnetic
field (Fig. 5.1e). Conversely, at ‘II’, themetamolecule interacts with the out-of-phase
part of the magnetic field and the individually-induced magnetic moments (m) form
the head-to-tail loop configuration (Fig. 5.1f), which induce the toroidal dipole mode
along the z-axis (T z).

As discussed in Chap. 3, these qualitative claims and the nature of the induced
resonances can be quantitatively assessed through the multipole decomposition anal-
ysis (Fig. 5 g). As can be seen from the scattered power plot, at ‘II’ (~15.4 GHz), the
resonance scattering is dominated by Tz. Obviously, the magnetic dipole and elec-
tric quadrupole excitations of the metamolecule are not resonant at the frequency
of toroidal dipole. Therefore, one can claim that the typical multipole excitations
cannot be responsible for the resonance feature at 15.4 GHz. This indicates that
the resonance can be originated from a toroidal dipole, which scatters substantially
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compared to any of the conventional multipoles by almost two orders of magnitude.
On the other hand, at ‘I’ (~16.1 GHz), while the other classical and unconventional
multipoles are suppressed, the magnetic dipole (My) is the dominant component.

Primary investigations on the toroidal dipole rapidly captured attention that led
to the development of diverse types of resonant architectures along a broad range of
frequencies. Among them, in the 3Dmetamolecules limit, several toroidal micro and
nanostructures have been designed to operate from the microwave frequencies to the
near-infrared (NIR) wavelengths (Papasimakis et al. 2009; Ahmadivand et al. 2017;
Fedotov et al. 2013; Fan et al. 2013; Liu et al. 2017; Yang et al. 2017). Figure 5.2
presents a 3D toroidal metamaterial based on an assembly of dumbbell-shaped aper-
ture on a metallic surface, with fourfold and eightfold symmetries. A photograph
of the assembled unit cell with eightfold symmetry is demonstrated in Fig. 5.2a.
Figure 5.2b represents a metal screen with a dumbbell-shaped aperture, which is the
fundamental element of toroidal metamaterial. This graph indicates the polarization
of the incident beam and the axis of the unit cell’s mirror symmetry.

In such a complex structure, the incident electromagnetic wave induces high-
order multipoles, most notably magnetic quadrupole moment, which stems from the
creation of a pair of counterrotating surface current densities. Figures 5.2c, d exhibit
how the scattering contribution from this multipolar mode can be suppressed in the
unit cell of fourfold or eightfold symmetries . This was shown analytically through

Fig. 5.2 Design and spectral response of the 3D toroidal metamolecule. a Photograph of one of
the array’s column with eightfold symmetry. b Metallic screen with a dumbbell-shaped surface.
Metamaterial’s unit cell with c fourfold and d eightfold symmetry. Dispersions of multipolar radi-
ation rates calculated for 4 strongest multipoles induced in e fourfold and d eightfold symmetric
metamolecules. Arrows indicate locations of the corresponding transparency resonances. Adapted
from (Fedotov et al. 2013) with permission. Copyright NPG
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modeling the interaction of the metamolecules configured in 2D arrays based on
slabs of toroidal metamaterials with normally incident linearly polarized light. The
computed densities of the induced currents can be employed to estimate the radi-
ated power of the multipoles corresponding to each unit cell in the metamaterial. For
instance, in the metamaterial with fourfold symmetric unit cells, calculations showed
that except the electric dipole, the scattering of all other classical multipoles is negli-
gible (Fig. 5.2e). In this set of analyses, the toroidal dipole is the dominant contrib-
utor at the resonance frequency. The same trend was also observed for the emitted
power from multipoles of much more complex eightfold symmetric metamolecule
(Fig. 5.2f).

Until now, we summarized some of the important achievements in the past decade
for the development of toroidal metamaterials at the microwave frequencies. Recent
advancements in both numerical analysis and fabrication of complex subwavelength
structures have led to the emergence of novel 3D toroidal metamaterials at shorter
wavelengths or higher frequencies. One of the recent examples is the toroidal meta-
material composed of two conductively joint gold split ring resonators on the edge
of a square self-supporting gold membrane (Fig. 5.3a). Figure 5.3b demonstrates the
scanning electron microscope (SEM) image of the fabricated toroidal metamaterial.
This structure is tailored in such a way that to sustain double toroidal moments in the
mid-infrared wavelengths. To motivate the design, a y-polarized beam was used to
induce the plasmon resonances at the metal-air interface. The transmission spectra
for both simulations and measurements in Figs. 5.3c, d, respectively, show the exci-
tation of three pronounced minima correlating with two toroidal modes at ωT1 = 73
THz and ωT2 = 83.5 THz, and an electric dipole mode at ωD = 98 THz.

To quantitatively investigate the resonant properties of the plasmonic metama-
terial, the radiated power of multipole moments was calculated from the induced
volume current density in the metamaterial, displayed in Fig. 5.3e. Obviously, the
electric/magnetic dipole, electric/magnetic quadrupole, and toroidal dipole are the
major and dominant contributors to themetamaterial’s response. Although both elec-
tric andmagnetic quadrupolemoments are resonant at the two resonance frequencies,
the intensity of the toroidal component (Tz) at ωT1 and ωT2 is much stronger than
that of classical multipoles. Importantly, one should note that the dominant toroidal
component does not contribute directly to the far-field radiation of the transmission
spectra at normal incidence, however, indirectly contributes through the mediation
of the surface plasmon mode of the split resonators. Plotting the magnetic field and
current distribution at the resonance frequencies allows to understand the generation
mechanismof the resonantmodes (Figs. 5.3f, h). For example, atωT1, one can observe
the formation of a strong and tight magnetic vortex in the x-plane. Figures 5.3g, i
demonstrate the configuration of the surface current distribution within the unit cell,
which imply that the loop currents and accordingly the magnetic dipoles in the left
part of the metamolecule and right part of the proximal one are opposite to each
other. Such a head-to-tail configuration of the magnetic dipoles leads to a substan-
tial coupling between the adjacent resonators, where the circulating magnetic field
creates toroidal dipolar excitation oriented along the z-axis. On the other hand, at
ωT2, the calculated magnetic field was generated magnetic vortices that are firmly
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Fig. 5.3 Design and spectral response of the 3D toroidal metamolecule. a Schematic illustration of
the 3D toroidal metamolecule with the following geometries: ax = ay = 2 µm, l = 1.98 µm, w =
400 nm, and δ = 500 nm; periodicity is 3 µm and thickness of the gold film is t = 150 nm. b SEM
image of the fabricated 3D toroidal metamaterial. c The simulated and d measured transmission
spectra of the plasmonic metamaterial for a y-polarized beam illumination. eDispersion of scattered
power for several multipolemoments induced in themetamaterial. f and hThe numerically obtained
magnetic field distribution of four unit cells of the toroidalmetamaterial atωT1 andωT2, respectively.
g and i Surface current distribution andmagnetic dipole orientation on a unit cell of themetamaterial
at ωT1 and ωT2, respectively. Adapted from (Yang et al. 2017) with permission. Copyright ACS

confined within the unit cell. The induced currents also form circulating surface
currents along each split ring resonator, result in a magnetic dipole which points in
forward or backward direction perpendicular to the joint double split ring resonators’
plane. In this limit, opposite circular currents in the left and right side of each split ring
resonators generate a circular magnetic moment distribution that is perpendicular to
the structure’s surface, possesses a strong toroidal moment towards the z-direction.

In recent years, several types of all-dielectric and plasmonic 3D metaplatforms
have been devised and fabricated to support pronounced toroidal dipoles across a
broad range of frequencies. However, limited access to the stored energy, volumetric
losses, challenging lithography procedures, complex numerical and theoretical anal-
ysis requirements, and incompatible integrationwith planar devices have encouraged
researchers to develop toroidal metastructures based on flatland metaphotonics.
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5.2 Toroidal Multipoles in Planar Artificial Media

In the flatland optics regime, quasi-infinite metasurfaces, made of periodic arrays
of subwavelength scatterers or optical thin films, surmount the need for propagation
effect by enforcing abrupt and controllable changes of the optical properties. Straight-
forward and cost-effective fabrication steps, simple modeling and quick numerical
computations, compatibility with planar devices in photonic/plasmonic circuits, as
well as reduced radiative losses have inspired researchers to develop artificial media
based on flatland optics. Besides conventional resonances, toroidal excitations have
also been successfully realized using planar metamaterials. The excitation mecha-
nism of a toroidal dipole in quasi-infinite structures can be understood by considering
the behavior of the excited classical modes in the system. Generally, a magnetic
dipole weakly couples to the free space relative to the electric dipole (Jing et al.
2018; Zhang et al. 2019). The formation of a toroidal dipole is the direct result
of putting these magnetic dipoles into head-to-tail configurations. This reduces the
coupling efficiency of the metasurface to the free space, which narrows the linewidth
of the induced resonances and subsequently reduces the radiative losses of the entire
system. Following parts argues the adopted schemes to excite toroidal dipole mode
in plasmonic and all-dielectric metasurfaces, which encompasses both long and short
wavelengths.

In continue, we consider two types of planar structures in symmetric and anti-
symmetric orientations. To begin with, we consider a planar toroidal metasurface
consisting of periodic arrays of antisymmetric plasmonic meta-atoms (Figs. 5.4a, b)
(Ahmadivand and Gerislioglu 2018). Modelling of the unit cell was performed by
employing the empirically defined aluminum permittivities by assuming the pres-
ence of a thin (∼2 nm) alumina (Al2O3) layer as a coverage coating of the resonators.
Similar to the 3D metamaterials, multipole expansion analysis is required to extract
the spectral response of planar metastructures. Figure 5.4c evaluates the contribu-
tion of the strongest multipoles to far field, indicating the dominant behavior of the
toroidal dipole mode at 975 and 1450 nm, where all other classical multipoles are
suppressed. Plotting the transmission and reflection spectra explicitly verifies the
excitation of pronounced toroidal dipole resonances at the mentioned wavelengths
(Fig. 5.4d). Figures 5.4e, f illustrate the electric-field (E-field) maps for the excitation
of toroidal dipoles in a logarithmic scale. The ultratight confinement of the excited
fields at the capacitive openings between the central and proximal resonators is an
explicit result of the excitation of toroidal dipoles. Interestingly, at 975 nm, the field
confinement is at the central part of the unit cell, and conversely, at 1450 nm, the
fields are localized at the tips of the outermost of the unit cell. Figure 5.4g illustrates
the artistic illustrations for the rotation of poloidal currents and the direction of the
toroidal field, squeezed between the neighboring and middle resonators.

To further analyze the excitation principle of the toroidal modes, one needs to
calculate the surface current density of the unit cell. The vectorial surface current
densitymaps at the toroidal resonancewavelengths are depicted in Fig. 5.4h, showing
a destructive mismatch between the induced magnetic moments in each resonator
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Fig. 5.4 Design and spectral response of the directional planar toroidal meta-atom. a Schematic
representation of the planar plasmonic meta-atom. b Judiciously defined geometrical sizes of the
meta-atom. c Multipole radiation intensity of the strongest moments. d Normalized transmission
and reflection spectra emitted from the metasurface. e and f E-field maps of the toroidal dipole
resonances in the meta-atom in logarithmic scale. g Representations of the formation of charge-
current arrangements and poloidal currents within the structure. h Vectorial surface current density
maps for the directional toroidal modes. iCross-sectional (xz-plane) vectorial H-field maps to verify
the formation of a head-to-tail configuration at the corresponding toroidal resonance wavelengths.
Adapted from (Ahmadivand et al. 2018) with permission. Copyright ACS

required for the formation of toroidal modes. This effect uncovers the formation of
oppositely pointed toroidal dipoles at different wavelengths, which can be verified
by plotting the cross-sectional magnetic field (H-field) maps (Fig. 5.4i).

The excitation of pronounced and strong toroidal dipoles is also possible in unit
cells with in-plane symmetry. Plasmonic oligomer nanocavities (Ögüt et al. 2012)
and multipixel resonators (Gerislioglu et al. 2018; Ahmadivand et al. 2018) are
some of the noteworthy examples of this principle. In Fig. 5.5, the spectral prop-
erties of a symmetric planar toroidal metamolecule is presented, consisting of two
metallic pixels to support a strong toroidal dipole at the THz frequencies. An artistic
rendering of the unit cell and its important geometrical parameters (Ri/W /L/D/g =
60/15/105/15/5 µm) are indicated in Fig. 5.5a. The SEM image of the metasurface
is depicted in Fig. 5.5b. The top-view E-field map of the plasmonic unit cell at the
toroidal dipole frequency is shown in Fig. 5.5c, exhibiting the strong E-field intensity
and localization at the capacitive openings of the unit cell. Formation of the required
oppositely aligned magnetic moments within the adjacent resonators of the meta-
molecule is displayed in Fig. 5.5d. This panel clearly shows the antiparallel current
distribution due to incident THz beam, which has undeniable role in inducing strong
toroidal dipole. Figure 5.5e illustrates the cross-sectional vectorial H-field intensity
profile, which confirms the closed-loop magnetic field around the central arms of the
unit cell. Lastly, numerically predicted and experimentally measured transmission
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Fig. 5.5 Design and spectral properties of a plasmonic THz metasurface. a Top-view image and
geometrical parameters of the unit cell.bSEMimage of themetasurface: scale bar is 100µm. cLocal
near-fieldmap of the E-field enhancement at the gaps.d Surface current plot across themetastructure
and formation of oppositely rotating magnetic fields. e yz-plane of the resonators, showing the
formation of a head-to-tail magnetic field. f Numerically obtained and experimentally measured
normalized transmission amplitude for the toroidal metasurface. Adapted from (Ahmadivand et al.
2018) with permission. Copyright OSA

spectra are plotted in Fig. 5.5f, showing the excitation of a profoundly sharp toroidal
dipole around ω ~ 6 cm−1.

While metallic structures at subwavelength dimensions have always been a
promising choice for the development of metamaterials and metasurfaces, in recent
years, all-dielectricmetastructures have been acknowledged as alternative candidates
to tailor efficient and cost-effective platforms. Such an interest stems from the low-
loss characteristics of high-index resonators, where in an electric metal, the real part
of the dielectric permittivity at optical frequencies is negative (ε′ < 0). Similarly,
in a magnetic metal, the real component of the magnetic permeability is negative
(μ′ < 0). As can be seen, metallic structures are crucial components for obtaining
either negative permeability or permittivity media. However, the internal damping
and high-energy dissipation have led researchers to address these drawbacks through
the use of all-dielectric subwavelength structures based on high-indexmaterials (e.g.,
silicon, germanium, tellurium, and titanium dioxide). In principle, the interaction of
light with frequency below or near the bandgap of the high-index material results in
the excitation of both electric and magnetic resonances in the system. Recent studies
have successfully reported the excitation of strong toroidal moments in high-index
all-dielectric architectures (Basharin et al. 2015; Tuz et al. 2018; Sayanskiy et al.
2018; Xu et al. 2019).

Utilizing the exquisite properties of all-dielectric nanodisks, it is shown that a
four-member quadrumer cluster can be utilized to sustain toroidal dipolar mode at
the NIR wavelengths (Tuz et al. 2018). Figure 5.6a demonstrates a schematic of the
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Fig. 5.6 Design and spectral response of the all-dielectric toroidal metasurface. a Schematic of
the proposed metasurface. The geometries are: d = 1250 nm, dr = 540 nm, hd = 120 nm, a =
240 nm, and a1 = a2 = a− �. bTransmission spectra of the all-dielectricmetastructure for different
degree of asymmetry (�). c Cross-cut profiles of displacement currents (black arrows), electric (red
arrows), and magnetic (blue arrows) fields for the asymmetric cluster when � = 10 nm. Adapted
from (Tuz et al. 2018) with permission. Copyright ACS

all-dielectric metasurface consisting of periodically arranged asymmetric clusters of
twopairs of dielectric nanodiskswith different radiia1 anda2, inwhich this difference
is specified as ‘degree of asymmetry’ � = |a1 − a2|. Under x-polarized light illumi-
nation, from the set of transmission spectra presented in Fig. 5.6b, one can conclude
that as the degree of asymmetry increases, all three pronounced resonances are still
exist. Since the geometry of the asymmetric assembly is essentially anisotropic, both
electric quadrupole (EQ) and toroidal dipole (TD) resonances appear only for the x-
polarized excitation. Here, it should be noted that the toroidal response is technically
related to the presence of trapped (dark) mode that emerges due to the symmetry
breaking in the cluster. In practice, the trapped modes occur in the scattering and
radiation analyses, and they exhibit free oscillations with a finite energy. Theoreti-
cally, the trapped mode is associated with an eigenvalue implanted in the continuous
spectrum of the corresponding component (Evans et al. 1993). This combination
of the continuous and discrete spectra leads to the rise of resonant properties with
unique profiles (i.e., Fano, EIT, and PIT resonances). To investigate the behavior
of the excited modes in the transmission spectra, one should calculate the induced
current and field distribution maps for each mode. Figure 5.6c illustrates the numeri-
cally defined cross-cut patterns of displacement currents (black arrows), electric (red
arrows), and magnetic (blue arrows) fields within the metamolecule at the corre-
sponding resonant wavelengths. Obviously, when the metamolecule is symmetric (�
= 0), one can perceive a collective response of four longitudinal magnetic dipoles
(MDs), where the displacement currents demonstrate a spinning behavior twisting
around the center of each disk. By breaking the symmetry of the system (� �= 0),
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besides theMD, two extra resonances emerge in the transmission spectra of themeta-
surface (Fig. 5.6b). As can be seen in the displacement current distribution and the
E- and H-field maps inside the all-dielectric assembly, the additional lineshapes are
correlated with the EQ and TDmodes. The latter can be recognized from a particular
closed-loop arrangement of the displacement currents that penetrates all nanodisks
in the cluster and surrounds the E-field lines circulating on a torus.

The need for the generation of substantially narrow resonant lineshapes has led
researchers to develop novel concepts and use innovative methods (Sayanskiy et al.
2018; Kim et al. 2015; Tasolamprou et al. 2016; He et al. 2018). Among them, estab-
lishing a connection between the toroidal dipole resonance and the bound states in the
continuum (BIC) in the context of all-dielectric metasurfaces enabled the excitation
of high quality-factor (Q-factor) toroidal modes. In principle, the concept of toroidal
dipole BIC is developed considering two eigenmodes of the all-dielectric metasur-
face that demonstrate an intrinsic toroidal dipole feature and an infinite lifetime. Such
modes can be categorized as transverse and longitudinal toroidal dipole modes, in
which in the context of BIC, such modes are associated with symmetry unprotected
and protected BIC, respectively. The toroidal BIC supported by the symmetric meta-
surface has a potential to be turned into a toroidal dipole mode with ultranarrow
spectral linewidth. This principle, indeed, confirms that such a sharp mode will be
originated from toroidal dipole leaky resonances (Hsu et al. 2016). Figure 5.7a illus-
trates an example schematic rendering of the all-dielectric toroidal BIC metasurface.
The quasi-infinite metastructure consists of a periodic array of silicon two-member

Fig. 5.7 The design and spectral response of a toroidal dipole BIC-resonant all-dielectric metasur-
face. a Schematic of the all-dielectric metasurface consisting of periodic arrays of silicon nanodisks.
b A detailed rendering of the geometrical parameters of the all-dielectric unit cell. c and d Two
toroidal dipole BIC eigenmodes of the photonic metasurface with their toroidal dipole moments
along the y- and z-axes, respectively. e The dependence of transmissions on (i) r2 and (ii) D. (iii)
and (iv) The quantified Q-factors for the resonances around 1120 and 1213 nm, respectively. (v)
and (vi) The E-field and H-field enhancements of both modes at a location 2 nm away from the
surface of silicon dimer, where r1 = r2 = 160 nm, P = 730 nm, and H = 220 nm. Adapted from
(He et al. 2018) with permission. Copyright APS
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nanodisk dimers configured in a square lattice. Figure 5.7b displays the dimer struc-
ture with the corresponding geometrical parameters. The vectorial maps of E- and
H-fields in Figs. 5.7c, d demonstrate a distinct toroidal feature within the unit cell of
the metasurface, expressing themselves as poloidal currents and circular closed-loop
magnetic fields. When the dimer is symmetric, the photonic metasurface efficiently
supports toroidal dipole BIC moments. By breaking the symmetry of the metaplat-
form, the excited dipole turns into leaky resonances. For instance, by changing r2,
one can excite two resonances in the wavelength range of 900–1250 nm for an E-
field in the x-direction (Ex) (Fig. 5.7e(i)). When r1 = r2, the linewidth of the toroidal
dipole BIC resonance (around 1120 nm) becomes narrower and itsQ-factor diverges,
as shown Fig. 5.7e(iii). This behavior strongly verifies the formation of the toroidal
dipole BIC. On the other hand, the other mode can be turned into a symmetry unpro-
tected toroidal dipole BIC through modifying the distance D between the proximal
nanodisks (Figs. 5.7e(ii) and (iv)). Importantly, the quantified Q-factors from the
eigenmode analyses of the asymmetric metasurface confirm that two toroidal dipole
BIC states can be turned into toroidal dipole leaky resonances when the symmetry
of the nanodisks is broken. In addition, the excitation of such high Q-factor toroidal
dipole BICs is associated with the robust near-field enhancements (Figs. 5.7e(v)
and (vi)). The maximum E- and H-field enhancements indicate the potential of this
approach for having strong light-matter interaction.
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Chapter 6
Toroidal Metadevices

Abstract Toroidal excitations in well-engineered media have recently considered
as a promising way that feature futuristic optical technologies through controlling
radiative losses in both plasmonic and photonic systems. As mentioned in previous
Chapters, within the past decade, there has been extensive research over the excitation
principles of toroidal multipoles, specifically toroidal dipole, in flatland and 3D
metasystems. In this Chapter, we focus on revolutionary devices that have been put
in practice based on this notion, including infrared photodetectors, deep ultraviolet
(DUV) beam sources, and immunobiosensors. Besides, we argue the vacuum Rabi
oscillations through strong plexciton dynamics in this context.

6.1 Photodetection: Enhancing the Responsivity
Performance

Plasmon excitations in subwavelength metallic structures can decay in the form
of dynamic electron-hole pairs (EHPs) in a few nano- or microseconds, which are
useful for photocurrent generation. This approach has extensively been exploited
to develop next-generation nanoplasmonic light-sensing devices, with substantial
quantum efficiency and responsivity, in various strategic areas; including but not
limited to missile warning, target recognition, time-gated distance measurements,
light harvesting, modern biotechnology, and low-power wavelength division multi-
plexing for short-distance optical communication (Chen et al. 2011; Chalabi et al.
2014; Brongersma et al. 2015; Dong et al. 2016; Gerislioglu and Ahmadivand 2019).
Such an interest in plasmonic photodetectionmechanisms (e.g., hot-electron- and free
carrier absorption (FCA)-based) is due to the extreme light confinement capability
of resonant metallic nanostructures (Li and Valentine 2017). In the active regime,
the generation and sweeping of electrons and holes (through applying forward and
reverse bias, respectively) provide significant photocurrent and high-photon yield
towards high-responsivity and high-efficiency photodetection systems across a wide
spectral range (Martyniuk et al. 2014; Chen et al. 2016; Kim et al. 2018; Moskovits
2015).
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From the optical physics perspective, the interaction of incident electromagnetic
wave with the metallic constituents at the subwavelength limit gives rise to the
coherent oscillations of electrons at the d-band of noble metals, or plasmons (Barnes
et al. 2003; Gerislioglu and Ahmadivand 2019; Green and Pillai 2012). The ever-
increasing demand for reaching faster operation and higher responsivity manipulate
the focus of researches ondevelopingplasmon-enhancedoptoelectronic devices (e.g.,
photodetectors and phototransistors), where plasmonics has promisingly modified
the electrical and spectral characteristics of photodetection systems from UV to THz
frequencies (Deng and Li 2014; Chen et al. 2015; Gerislioglu et al. 2019). So far, in
particular, several approaches havebeen implemented to boost the quantumefficiency
and performance of plasmonic photodetectors even further, such as quantum-dots or
2D materials (e.g., graphene and MoS2)-mediated metallic platforms (Wang et al.
2015, 2017; Lee et al. 2009; Koppens et al. 2014; Chang et al. 2010; Tang et al. 2017)
and combination of hot carrier generation and FCA concepts (Tanzid et al. 2018).

Beyond that, to maximize the performance, one can consider to induce dark (also
known as “nonradiating”) resonances using carefully structured platforms (Stockman
2010; Wu et al. 2011; Bullock et al. 2016). In the excited nonradiating resonance
limit, the scattering cross-section is suppressed while the absorption cross-section
is enhanced. In spite of generating large amount of hot carriers (for instance, at
the metal-dielectric interface), this approach is still insufficient, in terms of field
confinement towards high photon-yields and photocurrents, to be able to develop low-
dimensional integrable plasmonic and photonic systems. Recently, to address these
impediments, the utilization of ghost (or nonradiative) spectral features, as a new
class of dark resonant moments (Ahmadivand and Gerislioglu 2018; Ahmadivand
et al. 2018), has been introduced (Ahmadivand et al. 2019). The strong localization
of electromagnetic field, enhanced absorption cross-section, and low emission rate
are the features enabled by dynamic toroidal dipole that have been utilized for the
formation of active hot electrons (through nonradiative decay) and photocurrent
enhancement.

Figure 6.1 shows the implementation example of the narrowband IR toroidal
photodetection mechanism. As indicated in Fig. 6.1a, the device consists of asym-
metric gold standalone pixels (to enable the robust charge-current configuration), in
which the capacitive gaps between the central and peripheral resonators are 25 nm,
and the height of the resonators are set to 40 nm. Since doped silicon (Si) remarkably
absorbs near-IR illumination (Spitzer and Fan 1957; Kane 1956; Gomez et al. 2013),
the periodic arrays of the plasmonic meta-atoms are located on top of a doped Si
substrate to further increase the photodetection performance of the proposed plat-
form. Figure 6.1b verifies (both numerically and experimentally) the excitation of
distinct toroidal dipole at 2850 nm under transverse electric (TE) polarized light.
In addition to the toroidal mode, a magnetic dipole is induced at 2150 nm. In the
inset of Fig. 6.1b, scanning electron microscopy (SEM) images of the fabricated
array are presented. As it was expectable, in Fig. 6.1c, the normalized absorption
cross-section reaches its maximum value around 2850 nm, both for p- and n-type
Si substrates (in both doping regimes, the carrier concentration is set to 2 × 1019

cm−3). Here, the projected toroidal metastructure with p-type Si substrate shows
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Fig. 6.1 Design and spectral response of the toroidal meta-device. a An artistic illustration of the
asymmetric standalone structure, placed along the polarization of the impinging light. b Numerical
(red) and experimental (blue) transmission spectra of the ordered unit-cells, indicating both toroidal
and magnetic dipole modes at 2850 and 2150 nm, respectively. Insets: Zoom-out and zoom-in
SEM images of the fabricated nanodevice, scale bars: 500 and 100 nm, respectively. c Normalized
absorption cross-section of the toroidal meta-atom for both p- and n-type doped Si substrates.
Adapted from (Ahmadivand et al. 2019) with permission. Copyright RSC

much higher absorption at the nonradiative resonance regime, owing to longer life-
time of the photoinduced carriers, excessive number of electrons at the Schottky
interface (Chalabi et al. 2014; Gerislioglu et al. 2019), and increased carrier mobility
of the Si substrate, leading to augmented photocurrent.

The formation of the toroidal dipole moment (as oblique charge-current arrange-
ment) is visually illustrated in Fig. 6.2. As mentioned in Chap. 2, the mismatch
between the flux directions of charges in the peripheral curve-shaped nanoantennas
creates the head-to-tail spinning configuration of magnetic dipoles. Here, this claim
is further corroborated with: (i) the induced surface current density across the meta-
atom (Fig. 6.2a), (ii) the contribution of the induced toroidal dipole mode to the radi-
ated power from plasmonic scatterer (Fig. 6.2b), and (iii) cross-sectional, vectorial
charge-current map along the entire unit cell (Fig. 6.2c). Following, in light of these

Fig. 6.2 Numerical verification of the induced toroidal dipole mode properties. a The vectorial
displacement surface current density “J” across the unit cell under y-polarized beam. Inset: A
schematic for the spinning charge-current configuration and the rotation direction of both J and
induced toroidal feature ( �T ). b Radiated power of each individual EM multipoles generated with
the meta-atom as a result of incidence. c Cross-sectional vectorial magnetic (H) field distribution
to indicate the head-to-tail charge-current configuration. Adapted from (Ahmadivand et al. 2019)
with permission. Copyright RSC
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characteristics, the hot electron generation process within the considered toroidal
plasmonic metadevice under near-IR illumination and applied bias is demonstrated.
Theoretically, at the toroidal dipole position (λ~2850 nm), the inducedfield squeezes
into a tiny spot and enhances the field localization effect. Based on the hot electron
generation principle (Chalabi et al. 2014; Brongersma et al. 2015), this provides a
substantial augmentation in the photogenerated current. Indeed, when the energy
(hν) of the photoinduced plasmons becomes sufficiently large, the decayed electrons
will have enough energy to ascend over the innately formed Schottky barrier and
transmitted into the doped Si layer where they get collected through the applied bias
(0–500 mV).

In Fig. 6.3, the impact of the induced toroidal mode on the carrier generation
was validated both numerically and experimentally. Specifically, the stimulation of
intense and confined plasmons along the metallic nanostructures gives rise to the
generation of the hot electrons and subsequently photocurrent enhancement. With
the help of reduced electron-electron scattering within the metadevice, the number
of hot electrons transferred to the doped Si is incremented and expedited before they
recombined (Wu et al. 2015; Baker-Finch et al. 2014). On top of that, due to higher
carrier mobility in p-type Si (mainly because of FCA) and longer lifetime of carriers

Fig. 6.3 Performance of the toroidal plasmonic photodetector. a Numerical and b experimental
magnetoelectric currents at the electrodes for both n- and p-type Si substrates. Here, the drain-source
voltage is fixed to ±5 mV. c Photoresponsivity and d IQE characteristics of the metadevice as a
function of incidence for both substrates. Adapted from (Ahmadivand et al. 2019) with permission.
Copyright RSC
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(~100 μs), the proposed device produces much larger photocurrent in the boron-
doped Si regime (see Figs. 6.3a, b). Moreover, in Fig. 6.3c, numerically obtained
photoresponsivity of the toroidal system is demonstrated for both doping conditions.
As expected, remarkable photoresponsivity values are quantified as ~14.5 mA W−1

and ~29 mA W−1 for the n- and p-type devices, respectively. Lastly, as one of the
most important photodetection parameters, the internal quantum efficiency (IQE) of
the metasystem is calculated using the following equation (Gerislioglu et al. 2019):
I QE = (

Ip/q
)
/(Sabs/hυ), where Sabs is the absorbed optical power which leads to

the induced photocurrent, h is the Planck’s constant, υ is the frequency of the incident
electromagnetic wave, and q is the elementary charge. Basically, IQE can be defined
as the ratio between the total number of charge carriers contributing to the photocur-
rent (Ip) and the total number of photons absorbed by the platform. The results
showed that an IQE of 38.5% is achieved for the p-type toroidal metadevice, while
this value is lessened to ~30% for the n-type photodetector (see Fig. 6.3d). Neverthe-
less, one can further increase the value of IQE of the proposed toroidal metadevice
using atomically-thin monolayers (e.g., MXenes and graphene) (Echtermeyer et al.
2016; Chen et al. 2017; Velusamy et al. 2019).

The demonstrated toroidal photodetector was the first example of its kind. The
numerical and experimental results explicitly demonstrated how the implemented
technology can substantially boost the photocurrent generation and photon yield in
a metasystem. All of these features make the devised instrument as a promising
competitor for ever-growing plasmonic and nanophotonic IR beam sensing world.

6.2 Nonlinear Lasing: Deep Ultraviolet Source

The harmonic signal generation is one of the major application areas in nonlinear
optics, which has received lots of attention recently (Smirnova and Kivshar 2016;
Hooper et al. 2019;Carletti et al. 2019). This phenomenamainly basedon light-matter
interaction (e.g., extreme confinement of the incident electromagnetic field) to effec-
tively convert multiple low-energy photons into a single high-energy photon (Boyd
2003). Researchers have shown that the nonlinear optical effects can be amplified
through designing nanoplasmonic and nanophotonic building blocks (Kauranen and
Zayats 2012; Koshelev et al. 2020), towards a wide range of applications, including
but not limited to lasing (Melentiev et al. 2013; Paarmann et al. 2015), beam shaping
(Keren-Zur et al. 2018; Ren et al. 2020), and enhanced nano(bio) imaging (Rodrigues
et al. 2014; Fang et al. 2017). When the size of structures becomes less than the inci-
dent light, phase-matching between the input and output fields is no longer achievable
to produce short wavelength beam, which is also valid for conventional nonlinear
crystals where they reach their limits in terms of transparency. Thus, new concepts
need to be developed to overcome this bottleneck, especially for intense second and
third harmonic nonlinear signal generation at the nanoscale.

Among different techniques, electromagnetic radiationwithwavelengths between
100–190 nm and 190–280 nm, known as vacuum UV (VUV) and DUV, is one of the
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research topics to revolutionize optics (Jahani and Jacob 2016; Arbabi et al. 2015;
Sivis et al. 2013; Pfullmann et al. 2013). To date,many important scientific and indus-
trial applications for radiation in these regimes have been demonstrated, including
photodissociation, photochemistry, lithographic patterning, and spectroscopy (Leach
et al. 2005; Wang and Liu 1998; Wu and Kumar 2007; Milazzo and Cecchetti 1969).
Current high-gain, coherent high-energy UV beam sources can be listed as excimer
lasers, prism-coupled devices, free-electron lasers, and synchrotrons (Ederer et al.
1975; Gortler and Strowitzki 2005; Chang et al. 2018). Additionally, supercontinuum
generation, novel nonlinear crystals, and high harmonic generation in gases and solids
are the other possible UV beam source candidates (Ermolov et al. 2015; Halasya-
mani and Zhang 2017; Ozawa et al. 2015). It is noteworthy to state that the practical
use of the mentioned methods requires complex, large, and laboratory-scale equip-
ment and expensive fabrication process, while they yield the generation of intense
and coherent VUV and DUV beams. As discussed above, optical metasurfaces (or
building blocks) can be considered as one of the promising solutions to address these
shortcomings. For this purpose, several plasmonic and all-dielectric metasurfaces
have been proposed and formed to realize UV light generation based on second and
third harmonic signals (Melentiev et al. 2016;Makarov et al. 2016;Ahmadivand et al.
2019; Shibanuma et al. 2017). Pioneering studies showed that plasmonic or photonic
UV light sources possess their own advantages and disadvantages on producing such
short wavelengths. For instance, all-dielectric metasurfaces enable more efficient
nonlinear signal generation due to their inherent loss-less optical response and low
heating to the incident highpower illumination; however they suffer from the intensity
of the induced UV signal due to the thickness of the metasurface. On the other hand,
plasmonic metasurfaces can provide extreme electromagnetic field confinement at
subwavelength dimensions, nevertheless the efficiency of the nonlinear process is
critically affected by intrinsically lossy nature of metals.

Lately, it has beendemonstrated that novelmechanismsbasedon anapole, toroidal,
and Fano resonances with unique advantages can be utilized to improve nonlinear
signal generation capabilities of plasmonic metasurfaces, by confining the incident
electromagnetic field in a tiny spot. Among them, toroidal meta-atoms have been
proposed to produceDUV signal, nominally five times stronger than that of a conven-
tional plasmonic dimer nanosystem (Ahmadivand et al. 2019). The proposed gold
metasurface was fabricated on an indium tin oxide (ITO)/glass substrate, where
the corresponding geometric parameters and cross-sectional schematic of the whole
structure are given in Figs. 6.4a, b, respectively. Here, the underlying ITO layer is
utilized because of possessing high third order susceptibility χ(3) value, while the
gold nanoresonators provide the required field enhancement for the harmonic signal
generation. In Fig. 6.4c, the perspective view of the metasurface design is presented,

with the direction of the induced toroidal dipole moment
(−→
T

)
and the formation of

the charge-current configurations between the neighboring nanoresonators.
As indicated in Fig. 6.5a, the fundamental wavelength of the toroidal device is

close to 785 nm, and both numerical and experimental transmission spectra show a
close consistency. Next, to capture the physical origin of the induced resonance, a
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Fig. 6.4 Plasmonic toroidal metasurface for harmonic signal generation. a Top-view schematic
of the meta-atom including geometric parameters. b Cross-sectional profile of the platform. c
Perspective view of the metasurface showing the direction of the induced toroidal dipole mode
( �T ) and the formed charge-current configuration between the proximal resonators. Adapted from
(Ahmadivand et al. 2019) with permission. Copyright ACS

Fig. 6.5 Numerical simulation and device characterization. a Experimental (solid) and simulated
(dotted) transmission spectrum of the toroidal metasurface. b Scattering cross-sections of different
multipoles existed under illumination: toroidal dipole (TD), electric dipole (ED), magnetic dipole
(MD), and electric quadrupole (EQ). c Cross-sectional, normalized magnetic field distribution at
the fundamental (|Hpump(λ)|) and THG (|HTHG(λ)|) wavelengths. Adapted from (Ahmadivand et al.
2019) with permission. Copyright ACS

multipole decomposition analysis has been conducted (see Fig. 6.5b), in which the
total scattering cross-section of the metasurface has contributions from a toroidal
dipole (TD), an electric dipole (ED), a magnetic dipole (MD), and an electric
quadrupole (EQ). Indeed, here, the dominant mode near the fundamental frequency
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can be ascribed as TD.Asmentioned inChap. 5, the discrepancy between the induced
magnetic moments is necessary to create the desired charge-current loop configu-
ration within the unit-cell. Clearly, the loop current induces a localized spinning
magnetic field that penetrates into the ITO layer at both the fundamental (top) and
third harmonic (bottom) wavelengths, demonstrated in Fig. 6.5c.

Next, the generation of the third harmonic signal at 262 nm was explored both
numerically and experimentally, and the obtained results are presented in Figs. 6.6a,
b, respectively. To provide a more realistic view for the third-order signal generation
performance of the toroidal topology, it is compared with a conventional plasmonic
system, which is a disk-dimer array. As anticipated, the obtained third harmonic
signal generation from the dimer array is much weaker around a similar resonance
position, in spite of exerting much higher average pump power. Consequently, the
provided intensities in Fig. 6.6a were scaled according to the quantified effective
third-order susceptibility values. These values were calculated from the experimental
data using the following equation (Reintjes 1984; Ponomarenko 2012):

χ
(3)
e f f =

(
ε0cλnωw2

0

6l Pω

)
(
nωn3ωP3ω

Pω

)1/2 (6.1)

where ε0 is the vacuum permittivity, c is the speed of light, λ is the fundamental
wavelength, nω and n3ω are the refractive indices at the fundamental (λ = 785 nm)
and third harmonic (λT HG = 262 nm) resonances,w0 is the beamwaist radius, Pω and
P3ω are the peak powers at the fundamental and third harmonic, respectively, and l is
the interaction length. Overall, the calculation showed that the effective third-order
susceptibility of the toroidal metasurface (χ(3)

e f f (toroid)) is 1.2× 10−21 m2 ·V−2, which
is 2.2- and 3.1-times greater than that of the disk-dimer array and the unpatterned
ITO sublayer, respectively.

This particular study clearly verified the potential of the novel toroidal metallodi-
electric media towards leading nonlinear signal generation within the high energy

Fig. 6.6 Nonlinear characterization of the device. a Experimental and b simulated third harmonic
spectrum of the toroidal metasurface (red) and dimer array (green). c Power dependence of the
THG of the toroidal metasurface (red) and dimer array (green) with respect to the pump power
in a log-log plot. Here, the lines are representing a third order power dependence. Adapted from
(Ahmadivand et al. 2019) with permission. Copyright ACS
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regions of the electromagnetic spectrum. Despite the nonradiative modes (e.g., Fano
and anapole resonances) provide strong nonlinear enhancements, exciting them at
much shorter wavelengths is quite challenging. However, the toroidal dipole, with
its charge-current configuration feature, can be excited within the visible regime and
induce robust electromagnetic field localization for harmonic signal generation in
DUV region.

6.3 Immunosensors: Beyond Conventional Detection Limits

Plasmonic and photonic metachips have provided cost-effective, sensitive, and reli-
able label-free biomarker detection modalities by enabling robust confinement of
electromagnetic field (Li et al. 2019; Cai et al. 2019; Leitis et al. 2019; Gerislioglu
et al. 2020; Liu et al. 2010). These characteristics have facilitated the identifica-
tion of a broad range of biomolecules (e.g., antibiotics, lipids, envelope proteins,
viruses, DNA, enzymes) at ultralow densities with high precision. Although various
types of metasensors (e.g., Fano resonant, electromagnetically-induced transparency
(EIT) resonant etc.) have been developed to detect low-weight biological targets at
reasonably low concentrations (Ruan et al. 2017; Ahmadivand 2019; Liu et al. 2010),
these devices still do not meet the requirements for the identification of ultralow-
weight proteins and viruses (e.g., MS2, PRD1, Zika, tau protein, beta-amyloid) at
the early-stage of diseases, because of their weak limit of detection (LOD).

Recently, as an alternative to the conventional platforms, a new class of label-
free, onsite, selective, and extremely sensitive biosensing technology is introduced
based on toroidal electrodynamics (Ahmadivand et al. 2017, 2018, 2020; Gupta et al.
2017). From the theoretical physics perspective, due to its ultranarrow lineshape,
pronounced quality factor (Q-factor), and strongly squeezed local field enhancement,
the toroidal dipole provides much higher sensitivity to the perturbations in the dielec-
tric permittivity of the surrounding medium, which have led to the rise of advanced
biochemical and immunosensors with remarkable LOD and figure of merit (FOM).
This can be better understood by considering the radiated electric field from conven-

tional
{
Ep = n2k20

(
r̂ × r̂ × �p

r

)}
and toroidal

{
ET = n3k30

(
r̂ × r̂ × �T

r

)}
scatterers,

where r̂ is the vector linking the location of the dipolar moment with the observer and
n is the refractive index of the media. As indicated in equations above, slight varia-
tions in the dielectric permittivity of the media have a huge impact on the toroidal
dipole limit, which allows the quantitative fingerprinting of extreme subwavelength
multimolecular aggregates, and ultralow-weight biomolecules, biomarker proteins
and antibodies (Ahmadivand et al. 2017, 2018, 2019, 2020; Gupta et al. 2017).

Among recently reported toroidal metasensors (Ahmadivand et al. 2017, 2018,
2019; Gupta et al. 2017), in this section, we highlight a promising study about
the implementation of a plasmonic toroidal metasensor in the mid-infrared (MIR)
regime. In this study (Ahmadivand et al. 2019), the researchers presented aprecise and
rapid way of detecting ultralow-weight Kantrex biomolecules antibiotic molecules
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(~0.6KDa) at attomolar densities, with the help of robustly squeezed electromagnetic
fields within the designated toroidal plasmonic meta-atoms. MIR spectrum perfectly
covers the vibrations of most of the biological substances, including but not limited
to envelope proteins, organisms, enzymes, DNA, and lipids (Yu et al. 2006). Even if
the vibrational signals of these biomolecules are inherently weak, MIR spectroscopy
facilitates reaching their fingerprints as a non-invasive, non-poisonous, and non-
destructive label-free method (Yu et al. 2006; Zhu et al. 2018).

In Fig. 6.7a, a 3D schematic of the toroidal unit cell in the presence of
Kantrex biomolecules is depicted and the inset represents the molecular structure of
kanamycin sulfate. The SEM image of the fabricated arrays is presented in Fig. 6.7b.
The transmission spectra for both experimental measurements and numerical calcu-
lations under y-polarized beam illumination are demonstrated in Fig. 6.7c, proving
the excitation of a toroidal dipole at λ ~ 5250 nm (ω ~ 1904.7 cm−1). Conversely,
for the x-polarized beam excitation, the toroidal feature disappears owing to weak
discrepancy between the circulating magnetic fields and surface current densities
in adjacent resonators. Next, as a proof of principle, the toroidal metasensor is
covered with the Kantrex antibiotic molecules at different concentrations to assess
the sensing capability of the biosensor. For this purpose, the detection of the antibi-
otic molecules around the toroidal meta-atoms is conducted using the transmission
difference between two different regimes (namely, in the absence and presence of
biomolecules) as:

Fig. 6.7 Toroidal plasmonic MIR biosensor. a An artistic schematic of the toroidal meta-atom in
the presence of kanamycin sulfate molecules. Here, the inset displays the molecular structure of the
targeted molecules. b SEM image of the fabricated metasurface. The scale bar is 2μm. cNumerical
(blue) and experimental (orange) transmission spectra under y- (solid line) and x-polarized (dashed
line) light. d The SEM image of an area of the fabricated structure in the presence of antibiotic
molecules. Adapted from (Ahmadivand et al. 2019) with permission. Copyright APS



6.3 Immunosensors: Beyond Conventional Detection Limits 133
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∣
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∣
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where tyy is the tensor correlating the incident and transmitted electric fields through
the metamaterial under y-polarized illumination. By introducing 10 μL of antibiotic
solution to the plasmonic metamaterial specimens (see Fig. 6.7d), it is validated that
the accumulation of Kantrex molecules at the capacitive gap regions dramatically
changes the measured spectra.

More precisely, considering water as a reference, a prominent red-shift (in the
range of 5400 nm < λt < 6000 nm (or 1515.1 cm−1 < ωt < 1851.8 cm−1)) is observed
in the spectral position of toroidal dipole, while the concentration of the targeted
Kantrex molecules continuously increases from 0.1 to 10 fmol (Fig. 6.8a). Besides,
in Fig. 6.8b, the displacement in the toroidal dipole position as a function of the
concentration of Kantrex molecules is plotted, in which the slope of the red-shift of

Fig. 6.8 Sensing characteristics of themetasensor. aExperimentallymeasured transmission spectra
for different concentrations of the targeted molecules. b The induced toroidal dipole position and
c the lifetime of the toroidal dipole as a function of the antibiotic concentration. Adapted from
(Ahmadivand et al. 2019) with permission. Copyright APS
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the asymmetric lineshape follows a relatively sharp inclination from 0.1 to 10 fmol
(highlighted with green hue). This trend clearly verifies the LOD of the metasensor
(~0.85 fmol (850 amol)). A moderate slope (shaded with red hue) was obtained for
much denser concentrations of the molecules, because of their destructive impact
on the formation of toroidal mode. Indeed, to explore the origin of the observed
resonance shift, one can combine the permittivity variations and near-field coupling
as (Joannopoulos 2008):

�λT

λT
= −1

2

(
∫t
0 ET(r)

(
ε̂ − 1

)
ET(r)dr

∫∞
0 |ET(r)|2dr

)

(6.3)

where t is the thickness of the dropped liquid layer on the surface of the metachip,
ε̂ is the permittivity, and |ET(r)| is the near-field at the gaps. To model the Kantrex
molecules around the system, the experimentally measured refractive index value (n
= 1.67) was employed, and the approximate thickness (~5.8 nm) of the dispersed
layer of molecules was defined based on the ellipsometric data. Besides, the extrap-
olated permittivity includes a nondispersive term (n2), giving rise to an absorption
peak (or transmission dip) along the MIR spectra. In Fig. 6.8c, the experimental
results for before and after binding conditions are illustrated, where the alterations
in the transmissivity ratios (�T /T ) of the toroidal moment are explicitly shown.

This work and other recent studies based on the use of toroidal metaplatforms for
biosensing and immunosensing clearly demonstrate that how extremely localized
field confinement in the unit cells leads to highly precise detection of low-weight
molecules at extremely low-level of concentrations.

6.4 Plexciton Dynamics: Intensifying Ultrastrong Coupling

Strong coupling between plasmonic modes and excitonic states in subwavelength
optical structures have received a growing interest towards the realization of
pronounced plexciton dynamics. To understand the origin of this light-matter interac-
tion, several approaches have been proposed, such as Fano interference (Artuso and
Brytant 2008; Li et al. 2018), plasmon-enhanced emission and absorption (Acher-
mann 2010; Antosiewicz et al. 2014), and hybridized platforms (Tanaka et al. 2010;
Sugawara et al. 2006). Particularly, the tight confinement of incident light and the
density of the conventional electromagnetic modes at subwavelength scales give rise
to robust destructive and constructive interferences, which enables the formation of
new spectral features (e.g., Fano resonance and vacuum Rabi oscillations) owing to
the plexcitonic coupling (Bellessa et al. 2004;Gerislioglu andAhmadivand2020;Yan
et al. 2017; Zhang et al. 2006; Zhao et al. 2016). Essentially, the vacuum Rabi oscil-
lation is the most significant phenomenon that has been observed in such systems, in
which the plasmonic systems are functionalized with multilevel excitonic materials,
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such as J- and H-aggregates (Wurtz et al. 2007; Spano 2015), dye molecules (Pock-
rand et al. 1982), quantum dots (QDs) (Akimov et al. 2007; Ahmadivand et al. 2019),
and transition metal dichalcogenide monolayers (TMDCs) (Cuadra et al. 2018; Xue
et al. 2016). Although there have been extensive research on understanding the funda-
mentals of plexciton dynamics and Rabi oscillations for integrated and low-threshold
lasing tools, nonlinear harmonic signal generation, and quantum chemistry, finding
much stronger coupling and the excitation of more prominent Rabi splitting is in a
high demand, especially for multipoles with weaker far-field radiation patterns (e.g.,
anapole and toroidal multipoles).

To bridge this gap, as a pioneer work (Ahmadivand et al. 2019), researchers have
introduced a NIR toroidal meta-atom (see Fig. 6.9a) to augment the plexcitonic
coupling between the quantum emitters and the plasmons towards distinct Rabi
splitting of the toroidal moment at room temperature. Here, lead (II) sulfide (PbS)
QD aggregates with a bulk band gap of 0.41 eV and large exciton Bohr radius are
utilized. As indicated by both experimental and numerical transmission spectra in
Fig. 6.9b, the p-polarized plane wave illuminated platform (at normal incidence)
shows a pronounced toroidal mode around ~0.95 eV, in which the SEM image of the
fabricated unit cell is demonstrated in Fig. 6.9c.

Next, to explore the spectral response of themetasurface in the presence of organic
QDs, the sensitivity of the toroidal moment to the coupling strength and localization
intensity within the capacitive gaps is studied. Technically, to operate in the strong
coupling regime, the coupling strength should exceed both the cavity loss rates and
emitter scattering (Kleemann et al. 2017), which can be resolved by employing high
Q-factor resonators. Besides, the coupling strength is proportional to the inverse-
square of the mode volume (V−1/2), thus, an extremely small cavity is necessary
to localize the excitons emerging from organic molecules or 2D sheets (Zhao et al.
2010). In Fig. 6.9d, a rendering for the metasystem in the presence of commercially

Fig. 6.9 Concept and the spectral response of the toroidal meta-atom. a A 3D schematic of the
proposed meta-atom with the geometric parameters (not to scale). b Numerically calculated and
experimentally obtained transmission spectra of the nanoplasmonic structure as a function of photon
energy (in the absence of PbS QDs). c The SEM image of the fabricated toroidal unit-cell. The scale
bar: 100 nm. d An artistic schematic of the proposed toroidal metasurface in the existence of PbS
QDs. Adapted from (Ahmadivand et al. 2019) with permission. Copyright Wiley
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available PbS QDs (with remarkable luminescence extreme in the NIR (Gates et al.
2005; Bakueva et al. 2004)) is presented.

By taking advantage of the strong absorption of nearly nonradiating toroidal
moment, the Rabi splitting of the toroidal dipole feature (as a results of robust plexci-
tonic coupling) was investigated using both experimental and numerical techniques.
As demonstrated in Fig. 6.10, the transmission spectra in the absence (i.e., vacuum
(red solid line: experimental, red spheres: numerical)) and presence of QDs (i.e., PbS
QDs (green solid line: experimental, green spheres: numerical)) indicate a substan-
tial splitting (è	 ~ 150 meV) of the toroidal moment, due to existence of QDs and
increased coupling rate between the plasmonic and excitonic states. It is noteworthy
tomention that the above splitting value is calculated based on the following equation
(Chikkaraddy et al. 2016):

�Ω =
√

(4g2 − [(
γp − γe

)
/2]2) (6.4)

where γp and γe are the dissipation rates of the uncoupled plasmons and excitons,
respectively, and g is the coupling strength, defined as (Klem et al. 2005) g =
μm

√
4π�Nc/λeεε0V , where μm = 17.5D is the transition dipole moment of PbS

QDs (Hertzog et al. 2019), and N, λe, c, ε, V are the number of excitons, wavelength
of excitons, velocity of light in vacuum, dielectric permittivity, and mode volume,
respectively. In addition, the mode volume can be defined as V = (λ/10n)3 (Han
et al. 2018), where n is the refractive index of the media.

Furthermore, following the theoretical approach provided for the plasmonic effect
on quantum coherence in QDs-mediated systems under dipole-dipole interaction
(Shopova et al. 2011), the energy variations as a function detuning (�) are plotted in
Fig. 6.10b. Based on the obtained dispersion profile, one can say that the plasmonic
and excitonic extremes forms an anticrossing arc across the minimum detuning for

Fig. 6.10 Characteristics of the plexcitonic coupling in the toroidal meta-atom. a Calculated and
measured transmission spectra of the toroidal metasurface in the absence and presence of QDs
(with the average diameter of 6.4 nm). b Dispersion of plexciton with low and high energy bands
as a function of detuning (�). Here, the dashed lines indicate the energy of the exciton resonance
(Ee) of the QDs and plasmonic meta-atom (Ep). The gray arrow represents the Rabi splitting energy
(~150meV) of the hybrid toroidal platform. c Experimental and numerical photoluminescence (PL)
spectra of the toroidal metasystem in the presence of QDs. Adapted from (Ahmadivand et al. 2019)
with permission. Copyright Wiley
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both high energy (E+) and low energy (E-) parts, validating the è	 ~ 150 meV
splitting of the toroidal dipole for the QDs with the average diameter of 6.4 nm.
This trend can be elucidated by employing the robust plexcitonic coupling in the
QDs-mediated plasmonic metadevice, in which the detuning of the toroidal dipole
moment from the center of the exciton emission line provides a strong Purcell factor
enhancement.

Beyond that the photoluminescence (PL) spectra of the toroidal metasystem in
the existence of QDs with the average diameter of 6.4 nm was obtained through
the probability of electron occupation in a given state using the estimated photonic
density of states (PDOS). This probability calculation can be implemented by corre-
lating transition matrix elements (Wang et al. 2019). In theory, the emission decay
rate related to the PDOS of the photonic structure, which enables tailoring the
internal dynamics of a quantum object-mediated system through photonic media
that is resonant with radiative transition of the source. Based on this configura-
tion, here, the toroidal metasurface creates an environment with a high Q-factor and
the induced mode is confined within a small volume that boosts the corresponding
PDOS, leading to the Purcell factor enhancement of luminescence as (Hechster
and Sarusi 2017):Fp = 3/4π2(λ/n)3Q/V , where λ is the wavelength, n is the
refractive index of the surrounding environment, and V is the volume of the excited
mode. As indicated in Fig. 6.10c, the experimental and numerical PL spectra for the
QDs-functionalized toroidal plasmonic metasystem show a good agreement, which
directly verifies the Purcell effect, plasmon-exciton interaction, and the quantified
PDOS.
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