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8.1.  Directivity, Power Gain, and Effective Aperture 

Radar antennas can be characterized by the directive gain , power gain
, and effective aperture . Antenna gain is a term used to describe the abil-

ity of an antenna to concentrate the transmitted energy in a certain direction.
Directive gain, or simply directivity, is more representative of the antenna radi-
ation pattern, while power gain is normally used in the radar equation. Plots of
the power gain and directivity, when normalized to unity, are called antenna
radiation pattern. The directivity of a transmitting antenna can be defined by

(8.1)

The radiation intensity is the power per unit solid angle in the direction
 and denoted by . The average radiation intensity over  radi-

ans (solid angle) is the total power divided by . Hence, Eq. (8.1) can be
written as

(8.2)

It follows that

(8.3)

As an approximation, it is customary to rewrite Eq. (8.3) as
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(8.4)

where  and  are the antenna half-power (3-dB) beamwidths in either
direction. 

The antenna power gain and its directivity are related by

(8.5)

where  is the radiation efficiency factor. In this book, the antenna power
gain will be denoted as gain. The radiation efficiency factor accounts for the
ohmic losses associated with the antenna. Therefore, the definition for the
antenna gain is also given in Eq. (8.1). The antenna effective aperture  is
related to gain by 

 (8.6)

where  is the wavelength. The relationship between the antenna’s effective
aperture  and the physical aperture  is

(8.7)

 is referred to as the aperture efficiency, and good antennas require 
(in this book  is always assumed, i.e., ). 

Using simple algebraic manipulations of Eqs. (8.4) through (8.6) (assuming
that ) yields

(8.8)

Consequently, the angular cross section of the beam is

(8.9)

Eq. (8.9) indicates that the antenna beamwidth decreases as  increases. It
follows that, in surveillance operations, the number of beam positions an
antenna will take on to cover a volume  is

(8.10)
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and when  represents the entire hemisphere, Eq. (8.10) is modified to

(8.11)

8.2. Near and Far Fields

The electric field intensity generated from the energy emitted by an antenna
is a function of the antenna physical aperture shape and the electric current
amplitude and phase distribution across the aperture. Plots of the modulus of
the electric field intensity of the emitted radiation, , are referred to as
the intensity pattern of the antenna. Alternatively, plots of  are called
the power radiation pattern (the same as ).

Based on the distance from the face of the antenna, where the radiated elec-
tric field is measured, three distinct regions are identified. They are the near
field, Fresnel, and the Fraunhofer regions. In the near field and the Fresnel
regions, rays emitted from the antenna have spherical wavefronts (equi-phase
fronts). In the Fraunhofer regions the wavefronts can be locally represented by
plane waves. The near field and the Fresnel regions are normally of little inter-
est to most radar applications. Most radar systems operate in the Fraunhofer
region, which is also known as the far field region. In the far field region, the
electric field intensity can be computed from the aperture Fourier transform. 

Construction of the far criterion can be developed with the help of Fig. 8.1.
Consider a radiating source at point O that emits spherical waves. A receiving
antenna of length  is at distance  away from the source. The phase differ-
ence between a spherical wave and a local plane wave at the receiving antenna
can be expressed in terms of the distance . The distance  is given by

(8.12)

and since in the far field , Eq. (8.12) is approximated via binomial expan-
sion by 

(8.13)

It is customary to assume far field when the distance  corresponds to less
than  of a wavelength (i.e., ). More precisely, if

 (8.14)
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then a useful expression for far field is 

(8.15)

Note that far field is a function of both the antenna size and the operating
wavelength.

8.3. General Arrays

An array is a composite antenna formed from two or more basic radiators.
Each radiator is denoted as an element. The elements forming an array could
be dipoles, dish reflectors, slots in a wave guide, or any other type of radiator.
Array antennas synthesize narrow directive beams that may be steered,
mechanically or electronically, in many directions. Electronic steering is
achieved by controlling the phase of the current feeding the array elements.
Arrays with electronic beam steering capability are called phased arrays.
Phased array antennas, when compared to other simple antennas such as dish
reflectors, are costly and complicated to design. However, the inherent flexibil-
ity of phased array antennas to steer the beam electronically and also the need
for specialized multi-function radar systems have made phased array antennas
attractive for radar applications.
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 Figure 8.1. Construction of far field criterion.
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Fig. 8.2 shows the geometrical fundamentals associated with this problem.
In general, consider the radiation source located at  with respect to a
phase reference at . The electric field measured at far field point  is 

(8.16)

where  is the complex amplitude,  is the wave number, and
is the radiation pattern.

Now, consider the case where the radiation source is an array made of many
elements, as shown in Fig. 8.3. The coordinates of each radiator with respect to
the phase reference is , and the vector from the origin to the  ele-
ment is given by

(8.17)

The far field components that constitute the total electric field are

(8.18)

where

(8.19)

Using spherical coordinates, where , , and
 yields
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 Figure 8.2 Geometry for an array antenna. 
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(8.20)

Thus, a good approximation (using binomial expansion) for Eq. (8.19) is 

(8.21)

It follows that the phase contribution at the far field point from the  radiator
with respect to the phase reference is 

(8.22)

Remember, however, that the unit vector  along the vector  is 

(8.23)

Hence, we can rewrite Eq. (8.22) as

(8.24)

Finally, by virtue of superposition, the total electric field is

(8.25)

which is known as the array factor for an array antenna where the complex cur-
rent for the  element is .
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 Figure 8.3 Geometry for an array antenna.
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In general, an array can be fully characterized by its array factor. This is true
since knowing the array factor provides the designer with knowledge of the
array’s (1) 3-dB beamwidth; (2) null-to-null beamwidth; (3) distance from the
main peak to the first sidelobe; (4) height of the first sidelobe as compared to
the main beam; (5) location of the nulls; (6) rate of decrease of the sidelobes;
and (7) grating lobes’ locations.

8.4. Linear Arrays

Fig. 8.4 shows a linear array antenna consisting of  identical elements. The
element spacing is  (normally measured in wavelength units). Let element #1
serve as a phase reference for the array. From the geometry, it is clear that an
outgoing wave at the  element leads the phase at the  element by

, where . The combined phase at the far field observation
point  is independent of  and is computed from Eq. (8.24) as

(8.26)

Thus, from Eq. (8.25), the electric field at a far field observation point with
direction-sine equal to  (assuming isotropic elements) is

(8.27)

Expanding the summation in Eq. (8.27) yields

(8.28)

The right-hand side of Eq. (8.29) is a geometric series, which can be expressed
in the form

(8.29)

Replacing  by  yields

(8.30)

The far field array intensity pattern is then given by

(8.31)
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Substituting Eq. (8.30) into Eq. (8.31) and collecting terms yield

(8.32)

and using the trigonometric identity  yields 

(8.33)

which is a periodic function of , with a period equal to . 

The maximum value of , which occurs at , is equal to . It
follows that the normalized intensity pattern is equal to

 (8.34)

The normalized two-way array pattern (radiation pattern) is given by
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Figure 8.4. Linear array of equally spaced elements. 
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(8.35)

Fig. 8.5 shows a plot of Eq. (8.35) versus  for . The radiation
pattern  has cylindrical symmetry about its axis , and is
independent of the azimuth angle. Thus, it is completely determined by its val-
ues within the interval . This plot can be reproduced using MAT-
LAB program “fig8_5.m”  given in Listing 8.1 in Section 8.8.

The main beam of an array can be steered electronically by varying the
phase of the current applied to each array element. Steering the main beam into
the direction-sine  is accomplished by making the phase difference
between any two adjacent elements equal to . In this case, the normal-
ized radiation pattern can be written as

(8.36)

If  then the main beam is perpendicular to the array axis, and the array
is said to be a broadside array. Alternatively, the array is called an endfire array
when the main beam points along the array axis. 

The radiation pattern maxima are computed using L’Hopital’s rule when
both the denominator and numerator of Eq. (8.35) are zeros. More precisely, 

(8.37)
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 Figure 8.5a. Normalized radiation pattern for a linear array; ; .N 8= d +=
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 Figure 8.5b. Polar plot for the array pattern in Fig. 8.5a.

 Figure 8.5c. Polar plot for the power pattern in Fig. 8.5a.
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Solving for  yields

(8.38)

where the subscript  is used as a maxima indicator. The first maximum
occurs at , and is denoted as the main beam (lobe). Other maxima
occurring at  are called grating lobes. Grating lobes are undesirable and
must be suppressed. The grating lobes occur at non-real angles when the abso-
lute value of the arc-sine argument in Eq. (8.38) is greater than unity; it follows
that . Under this condition, the main lobe is assumed to be at 
(broadside array). Alternatively, when electronic beam steering is considered,
the grating lobes occur at 

(8.39)

Thus, in order to prevent the grating lobes from occurring between , the
element spacing should be .

The radiation pattern attains secondary maxima (sidelobes) when the numer-
ator of Eq. (8.35) is maximum, or equivalently

 Figure 8.5d. Three-dimensional plot for the radiation pattern in Fig. 8.5a.
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(8.40)

Solving for  yields

(8.41)

where the subscript  is used as an indication of sidelobe maxima. The nulls of
the radiation pattern occur when only the numerator of Eq. (8.36) is zero. More
precisely,

(8.42)

Again solving for  yields

(8.43)

where the subscript  is used as a null indicator. Define the angle which corre-
sponds to the half power point as . It follows that the half power (3 dB)
beamwidth is . This occurs when

(8.44)

8.4.1.  Array Tapering

Fig. 8.6a shows a normalized two-way radiation pattern of a uniformly
excited linear array of size , element spacing . The first side-
lobe is about  below the main lobe, and for most radar applications
this may not be sufficient. Fig. 8.6b shows the 3-D plot for the radiation pattern
shown in Fig. 8.6.a. 

 In order to reduce the sidelobe levels, the array must be designed to radiate
more power towards the center, and much less at the edges. This can be
achieved through tapering (windowing) the current distribution over the face
of the array. There are many possible tapering sequences that can be used for
this purpose. However, as known from spectral analysis, windowing reduces
sidelobe levels at the expense of widening the main beam. Thus, for a given
radar application, the choice of the tapering sequence must be based on the
trade-off between sidelobe reduction and main beam widening. The MATLAB
signal processing toolbox provides users with a wide variety of built-in win-
dows. This list includes: “Bartlett, Barthannwin, Blackmanharris, Bohman-
win, Chebwin, Gausswin, Hamming, Hann, Kaiser, Nuttallwin, Rectwin,
Triang, and Tukeywin.”
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 Figure 8.6a. Normalized pattern for a linear array. , .N 8= d + 2'=

 Figure 8.6b. Three-dimensional plot for the radiation pattern in Fig. 8.6a.
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Table 8.1 summarizes the impact of most common windows on the array pat-
tern in terms of main beam widening and peak reduction. Note that the rectan-
gular window is used as the baseline. This is also illustrated in Fig. 8.7. 

TABLE 8.1. Common windows.

Window Null-to-null Beamwidth Peak Reduction

Rectangular 1 1

Hamming 2 0.73

Hanning 2 0.664

Blackman 6 0.577

Kaiser ( 2.76 0.683

Kaiser ( 1.75 0.882

C 6%=

C 3%=

 Figure 8.7. Most common windows. This figure can be reproduced using 
MATLAB program “fig8_7.m”  given in Listing 8.2 in Section 8.8.
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8.4.2.  Computation of the Radiation Pattern via the DFT

Fig. 8.8 shows a linear array of size , element spacing , and wavelength
. The radiators are circular dishes of diameter . Let  and ,

respectively, denote the tapering and phase shifting sequences. The normalized
electric field at a far field point in the direction-sine  is

(8.45)

where in this case the phase reference is taken as the physical center of the
array, and 

(8.46)

Expanding Eq. (8.45) and factoring the common phase term
 yield

(8.47)

By using the symmetry property of a window sequence (remember that a win-
dow must be symmetrical about its central point), we can rewrite Eq. (8.47) as

(8.48)
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 Figure 8.8. Linear array of size 5, with tapering and phase shifting hardware.
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where . 

Define . It follows that

(8.49)

The discrete Fourier transform of the sequence  is defined as

(8.50)

The set  which makes  equal to the DFT kernel is

(8.51)

Then by using Eq. (8.51) in Eq. (8.50) yields

(8.52)

The one-way array pattern is computed as the modulus of Eq. (8.52). It follows
that the one-way radiation pattern of a tapered linear array of circular dishes is

(8.53)

where  is the element pattern. 

In practice, phase shifters are normally implemented as part of the Transmit/
Receive (TR) modules, using a finite number of bits. Consequently, due to the
quantization error (difference between desired phase and actual quantized
phase) the sidelobe levels are affected. 

MATLAB Function “linear_array.m”

The function “linear_array.m”  computes and plots the linear array gain pat-
tern as a function of real sine-space (sine the steering angle). It is given in List-
ing 8.3 in Section 8.8. The syntax is as follows:

[theta, patternr, patterng] = linear_array(Nr, dolr, theta0, winid, win, nbits)
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where

A MATLAB based GUI workspace called “linear_array_gui.m”1 was
developed for this function. It shown in Fig. 8.9.

 

Symbol Description Units Status

Nr number of elements in array none input

dolr element spacing in lambda units wavelengths input

theta0 steering angle degrees input

winid -1: No weighting is used

1: Use weighting defined in win

none input

win window for sidelobe control none input

nbits negative #: perfect quantization

positive #: use  quantization levels 

none input

theta real angle available for steering degrees output

patternr array pattern dB output

patterng gain pattern dB output

1. The MATLAB “Signal Processing” Toolbox is required to execute this program.

2nbits

 Figure 8.9. MATLAB GUI workspace associated with the function 
“linear_array.m”.
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 ver-

st a

© 200
Figs. 8.10 through 8. 18 respectively show plots of the array gain pattern
sus steering angle for the following cases:

[theta, patternr, patterng] = linear_array(25, 0.5, 0, -1, -1, -3);

[theta, patternr, patterng] = linear_array(25, 0.5, 0, 1, ‘Hamming’, -3);

[theta, patternr, patterng] = linear_array(25, 0.5, 5, -1, -1, 3);

[theta, patternr, patterng] = linear_array(25, 0.5, 5, 1, ‘Hamming’, 3);

[theta, patternr, patterng] = linear_array(25, 0.5, 25, 1, ‘Hamming’, 3);

[theta, patternr, patterng] = linear_array(25, 1.5, 40, -1, -1, -3);

[theta, patternr, patterng] = linear_array(25, 1.5, 40, 1, ‘Hamming’, -3);

[theta, patternr, patterng] = linear_array(25, 1.5, -40, -1, -1, 3);

[theta, patternr, patterng] = linear_array(25, 1.5, -40, 1, ‘Hamming’, 3);

Users are advised to utilize the GUI developed for this function and te
few cases of their own.

 Figure 8.10. Array gain pattern: ; 

.

Nr 25 dolr; 0.5 ! 0; 04= = =

win none nbits; 3–= =
4 by Chapman & Hall/CRC CRC Press LLC



 Figure 8.11. Array gain pattern: ; Nr 25 dolr; 0.5 ! 0; 04= = =

win Hamming nbits; 3–= =

 Figure 8.12. Array gain pattern: ; Nr 25 dolr; 0.5 ! 0; 54= = =

win none nbits; 3= =
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 Figure 8.13. Array gain pattern: ; Nr 25 dolr; 0.5 ! 0; 54= = =

win Hamming nbits; 3= =

 Figure 8.14. Array gain pattern: ; Nr 25 dolr; 0.5 ! 0; 254= = =

win Hamming nbits; 3= =
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 Figure 8.15. Array gain pattern: ; Nr 25 dolr; 1.5 ! 0; 404= = =

win none nbits; 3–= =

 Figure 8.16. Array gain pattern: ; Nr 25 dolr; 1.5 ! 0; 404= = =

win Hamming nbits; 3–= =
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 Figure 8.17. Array gain pattern: ; Nr 25 dolr; 1.5 ! 0; 40– 4= = =

win none nbits; 3= =

 Figure 8.18. Array gain pattern: ; Nr 25 dolr; 1.5 ! 0; 40– 4= = =

win Hamming nbits; 3= =
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8.5.  Planar Arrays

Planar arrays are a natural extension of linear arrays. Planar arrays can take
on many configurations, depending on the element spacing and distribution
defined by a “grid.” Examples include rectangular, rectangular with circular
boundary, hexagonal with circular boundary, circular, and concentric circular
grids, as illustrated in Fig. 8.19.

Planar arrays can be steered in elevation and azimuth ( , as illustrated
in Fig. 8.20 for a rectangular grid array. The element spacing along the x- and
y-directions are respectively denoted by  and . The total electric field at a
far field observation point for any planar array can be computed using Eqs.
(8.24) and (8.25).

! "#$ %

dx dy

(a) (b)

(c) (d)

(e)

 Figure 8.19. Planar array grids. (a) Rectangular; (b) Rectangular with circular 
boundary; (c) Circular; (d) Concentric circular; and (e) Hexagonal.
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Rectangular Grid Arrays

Consider the  rectangular grid as shown in Fig. 8.20. The dot product
, where the vector  is the vector to the  element in the array and 

is the unit vector to the far field observation point, can be broken linearly into
its x- and y-components. It follows that the electric field components due to the
elements distributed along the x- and y-directions are respectively, given by

(8.54)

(8.55)

The total electric field at the far field observation point is then given by

(8.56)

N MH
ri r06 r i ith r0

y

z

x

"

!

dy

dx

far field
 point

Figure 8.20. Rectangular array geometry.
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Eq. (8.56) can be expressed in terms of the directional cosines

(8.57a)

(8.57b)

The visible region is then defined by 

 (8.58)

It is very common to express a planar array’s ability to steer the beam in
space in terms of the  space instead of the angles . Fig. 8.21 shows
how a beam steered in a certain  direction is translated into  space. 

u ! "cossin=

v ! "sinsin=

" u
v
---0 1

2 3atan=

! u2 v2+asin=

u2 v2+ 1,

U V# ! "#
! "# U V#

!

"

V

U

 Figure 8.21. Translation from spherical coordinates into U,V space.

1
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The rectangular array one-way intensity pattern is then equal to the product
of the individual patterns. More precisely for a uniform excitation
( ),

(8.59)

The radiation pattern maxima, nulls, sidelobes, and grating lobes in both the
x- and y-axes are computed in a similar fashion to the linear array case. Addi-
tionally, the same conditions for grating lobe control are applicable. Note the
symmetry is about the angle . 

Circular Grid Arrays

The geometry of interest is shown in Fig. 8.19c. In this case,  elements are
distributed equally on the outer circle whose radius is . For this purpose con-
sider the geometry shown in Fig. 8.22. From the geometry 

(8.60)

The coordinates of the  element are

(8.61)

It follows that 

(8.62)

which can be rearranged as

(8.63)

Then by using the identity , Eq.(8.63)
collapses to

(8.64)

Finally by using Eq. (8.25), the far field electric field is then given by

(8.65)

Iym
Ixn
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where  represents the complex current distribution for the  element.
When the array main beam is directed in the , Eq. (8.65) takes on the
following form

(8.66)

MATLAB program “circular_array.m”

The MATLAB program “circular_array.m”  calculates and plots the rectan-
gular and polar array patterns for a circular array versus  and  constant
planes. It is given in Listing 8.4 in Section 8.8. The input parameters to this
program include:

Symbol Description Units

a Circular array radius

N number of elements none

theta0 main direction in degrees

phi0 main direction in degrees

Variations ‘Theta’; or ‘Phi’ none

In nth
! 0 " 0#$ %

E ! " a;#$ % In j 2&a
+

---------- ! D n "–$ %cossin ! 0 Dn " 0–$ %cossin–> ?
K L
M N
O P

exp

n 1=

N

9=

x

y

z

D1

!

"

N

N 1–

1
2

P

!

a

 Figure 8.22. Geometry for a circular array.
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Consider the case when the inputs are:

Fig.s 8.23 and 8.24 respectively show the array pattern in relative amplitude
and the power pattern versus the angle . Figs. 8.25 and 8.26 are similar to
Figs. 8.23 and 8.24 except in this case the patterns are plotted in polar coordi-
nates. 

Fig. 8.27 shows a plot of the normalized single element pattern (upper left
corner), the normalized array factor (upper right corner), and the total array
pattern (lower left corner). Fig. 8.28 shows the 3-D pattern for this example in
the  space. 

Figs. 8.29 through 8.33 are similar to those in Figs. 8.23 through 8.27,
except in this case the input parameters are given by:

phid constant  plane degrees

thetad constant  plane degrees

a 1.5

N 10 dipole antennas

theta0  

phi0

Variations ‘Theta’

phid

thetad

a 1.5

N 10 dipole antennas

theta0  

phi0

Variations ‘Phi’

phid

thetad

Symbol Description Units

"

!

! 0 454=

" 0 604=

" d 604=

! d 454=

!

! "#

! 0 454=

" 0 604=

" d 604=

! d 454=
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 Figure 8.23. Array factor pattern for a circular arra y, using the parameters 
defined in the table on top of page 346 (rectangular coordinates). 

 Figure 8.24. Same as Fig. 8.23 using dB scale. 
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 Figure 8.25. Array factor pattern for a circular array, using the parameters 
defined in the table on top of page 346 (polar coordinates).

 Figure 8.26. Same as Fig. 8.25 using dB scale.
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 Figure 8.27. Element, array factor, and total pattern for the circular array 
defined in the table on top of page 346.

 Figure 8.28. 3-D total array pattern (in  space) for the circular array 
defined in the table on top of page 346.

! "#
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 Figure 8.29. Array factor pattern for a circular array, using  the parameters 
defined in the table on bottom of page 346 (rectangular coordinates).

 Figure 8.30. Same as Fig. 8.29 using dB scale.
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 Figure 8.31. Array factor pattern for a circular array, using  the parameters 
defined in the table on bottom of page 346 (polar coordinates).

 Figure 8.32. Same as Fig. 8.31 using dB scale.
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Concentric Grid Circular Arrays

The geometry of interest is shown in Fig. 8.19d and Fig. 8.34. In this case,
 elements are distributed equally on the outer circle whose radius is ,

while other  elements are linearly distributed on the inner circle whose
radius is . The element located on the center of both circles is used as the
phase reference. In this configuration, there are  total elements in
the array.

The array pattern is derived in two steps. First, the array pattern correspond-
ing to the linearly distributed concentric circular arrays with  and  ele-
ments and the center element are computed separately. Second, the overall
array pattern corresponding to the two concentric arrays and the center element
are added. The element pattern of the identical antenna elements are consid-
ered in the first step. Thus, the total pattern becomes,

(8.67)

Fig. 8.35 shows a 3-D plot for concentric circular array in the  space for
the following parameters:

 Figure 8.33. Element, array factor, and total pattern for the circular array 
defined in the table on bottom of page 346.

N2 a2
N1

a1
N1 N2 1+ +

N1 N2

E ! "#$ % E0 ! "#$ % E1 ! " a1;#$ % E2 ! " a2;#$ %+ +=

! "#
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1 8 (  dipoles) 2 8 (  dipoles)

a1 N1 a2 N2

+ + 2' + + 2'

x

y

N2

1

2

N2-1

N2-2

a1

a2

 Figure 8.34. Concentric circular array geometry.

N1-1
N1-2

 Figure 8.35. 3-D array pattern for a concentric circular array;  

and 

! 454=
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Rectangular Grid with Circular Boundary Arrays

The far field electric field associated with this configuration can be easily
obtained from that corresponding to a rectangular grid. In order to accomplish
this task follow these steps: First, select the desired maximum number of ele-
ments along the diameter of the circle and denote it by . Also select the
associated element spacings . Define a rectangular array of size

. Draw a circle centered at  with radius  where

(8.68)

and . Finally, modify the weighting function across the rectangular
array by multiplying it with the two-dimensional sequence , where

(8.69)

where distance, , is measured from the center of the circle. This is illus-
trated in Fig. 8.36.

Hexagonal Grid Arrays

The analysis provided in this section is limited to hexagonal arrays with cir-
cular boundaries. The horizontal element spacing is denoted as  and the ver-
tical element spacing is

(8.70)

Nd
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1 if dis to m n#$ %th element rd=,
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=
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 Figure 8.36. Elements with solid dots have ; other elements 
have . 

a m n#$ % 1=
a m n#$ % 0=

dis rd.

dis rd=

dx

dy
3

2
------- dx=

© 2004 by Chapman & Hall/CRC CRC Press LLC



The array is assumed to have the maximum number of identical elements along
the x-axis ( ). This number is denoted by , where  is an odd num-
ber in order to obtain a symmetric array, where an element is present at

. The number of rows in the array is denoted by . The hori-
zontal rows are indexed by  which varies from  to .
The number of elements in the  row is denoted by  and is defined by

(8.71)

The electric field at a far field observation point is computed using Eq.
(8.24) and (8.25). The phase associated with  location is 

 (8.72)

MATLAB Function “rect_array.m”

The function “rect_array.m” computes and plots the rectangular antenna
gain pattern in the visible U,V space. This function is given in Listing 8.5 in
Section 8.8. The syntax is as follows:

[pattern] = rect_array(Nxr, Nyr, dolxr, dolyr, theta0, phi0, winid, win, nbits)

where

Symbol Description Units Status

Nxr number of elements along x none input

Nyr number of elements along y none input

dolxr element spacing in lambda units along x wavelengths input

dolyr element spacing in lambda units along y wavelengths input

theta0  elevation steering angle degrees input

phi0 azimuth steering angle degrees input

winid -1: No weighting is used

1: Use weighting defined in win

none input

win window for sidelobe control none input

nbits negative #: perfect quantization

positive #: use  quantization levels 

none input

pattern gain pattern dB output

y 0= Nx Nx

x y#$ % 0 0#$ %= M
m Nx 1–$ %– 2' Nx 1–$ %2'

mth Nr

Nr Nx m–=

m n#$ %th

: m n#

2&dx

+
------------ ! m n

2
---+0 1

2 3 "cos n 3
2

------- "sin+sin=

2nbits
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A MATLAB based GUI workspace called “array.m” was developed for this
function. It shown in Fig. 8.37. The user is advised to use this MATLAB GUI1

workspace to generate array gain patterns that match this requirement.

Fig.s 8.38 through 8.43 respectively show plots of the array gain pattern in
the U-V space, for the following cases:

[pattern] = rect_array(15, 15, 0.5, 0.5, 0, 0, -1, -1, -3) (8.73)

[pattern] = rect_array(15, 15, 0.5, 0.5, 20, 30, -1, -1, -3) (8.74)

[pattern] = rect_array(15, 15, 0.5, 0.5, 30, 30, 1, ‘Hamming’, -3)(8.75)

[pattern] = rect_array(15, 15, 0.5, 0.5, 30, 30, -1, -1, 3) (8.76)

[pattern] = rect_array(15, 15, 1, 0.5, 10, 30, -1, -1, -3) (8.77)

[pattern] = rect_array(15, 15, 1, 1, 0, 0, -1, -1, -3) (8.78)

1. This GUI was developed by Mr. David J. Hall, Consultant to Decibel Research, Inc., 
Huntsville, Alabama.

 Figure 8.37. MATLAB GUI workspace “array.m.”
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 Figure 8.38a. 3-D gain pattern corresponding to Eq. (8.73).

 Figure 8.38b. Contour plot corresponding to Eq. (8.73).
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 Figure 8.38c. Three-dimensional plot (  space) corresponding to Eq. (8.73).! "#

 Figure 8.39a. 3-D gain pattern corresponding to Eq. (8.74).
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 Figure 8.39b. Contour plot corresponding to Eq. (8.74).

 Figure 8.39c. 3-D plot (  space) corresponding to Eq. (8.74).! "#
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 Figure 8.40a. 3-D gain pattern corresponding to Eq. (8.75).

 Figure 8.40b. Contour plot corresponding to Eq. (8.75).
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 Figure 8.41a. 3-D gain pattern corresponding to Eq. (8.76).

 Figure 8.41b. Contour plot corresponding to Eq. (8.76).
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 Figure 8.41c. 3-D plot (  space) corresponding to Eq. (8.76).! "#

 Figure 8.42a. 3-D gain pattern corresponding to Eq. (8.77).
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 Figure 8.42b. Contour plot corresponding to Eq. (8.77).

 Figure 8.42c. 3-D plot (  space) corresponding to Eq. (8.77).! "#
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 Figure 8.43a. 3-D gain pattern corresponding to Eq. (8.78).

 Figure 8.43b. Contour plot corresponding to Eq. (8.78).
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MATLAB Function “circ_array.m”

The function “circ_array.m”  computes and plots the rectangular grid with a
circular array boundary antenna gain pattern in the visible U,V space. This
function is given in Listing 8.6 in Section 8.8. The syntax is as follows:

[pattern, amn] = circ_array(N, dolxr, dolyr, theta0, phi0, winid, win, nbits);

where

Symbol Description Units Status

N number of elements along diameter none input

dolxr element spacing in lambda units along x wavelengths input

dolyr element spacing in lambda units along y wavelengths input

theta0  elevation steering angle degrees input

phi0 azimuth steering angle degrees input

winid -1: No weighting is used

1: Use weighting defined in win

none input

 Figure 8.43c. 3-D plot (  space) corresponding to Eq. (8.78).! "#
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Figs. 8.44 through 8.49 respectively show plots of the array gain pattern ver-
sus steering for the following cases:

[pattern, amn] = circ_array(15, 0.5, 0.5, 0, 0, -1, -1, -3) (8.79)

[pattern, amn] = circ_array(15, 0.5, 0.5, 20, 30, -1, -1, -3) (8.80)

[pattern, amn] = circ_array(15, 0.5, 0.5, 30, 30, 1, ‘Hamming’, -3)(8.81)

[pattern, amn] = circ_array(15, 0.5, 0.5, 30, 30, -1, -1, 3) (8.82)

[pattern, amn] = circ_array(15, 1, 0.5, 10, 30, -1, -1, -3) (8.83)

[pattern, amn] = circ_array(15, 1, 1, 0, 0, -1, -1, -3) (8.84)

Note the function “circ_array.m”  uses the function “rec_to_circ.m”, which
computes the array . It is given in Listing 8.7 in Section 8.8. 

The MATLAB GUI workspace defined in “array.m” can be used to execute
this function. 

win window for sidelobe control none input

nbits negative #: perfect quantization

positive #: use  quantization levels 

none input

patterng gain pattern dB output

amn a(m,n) sequence defined in Eq. (8.68) none output

Symbol Description Units Status

2nbits

a m n#$ %
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 Figure 8.44a. 3-D gain pattern corresponding to Eq. (8.79).

 Figure 8.44b. Contour plot corresponding to Eq. (8.79).
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 Figure 8.44c. 3-D plot (  space) corresponding to Eq. (8.79).! "#

 Figure 8.45a. 3-D gain pattern corresponding to Eq. (8.80).
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 Figure 8.45b. Contour plot corresponding to Eq. (8.80).

 Figure 8.45c. 3-D plot (  space) corresponding to Eq. (8.80).! "#
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 Figure 8.46a. 3-D gain pattern corresponding to Eq. (8.81).

 Figure 8.46b. Contour plot corresponding to Eq. (8.81).
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 Figure 8.47a. 3-D gain pattern corresponding to Eq. (8.82).

 Figure 8.47b. Contour plot corresponding to Eq. (8.82).
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 Figure 8.47c. 3-D plot (  space) corresponding to Eq. (8.82).! "#

 Figure 8.48a. 3-D gain pattern corresponding to Eq. (8.83).
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 Figure 8.48b. Contour plot corresponding to Eq. (8.83).

 Figure 8.48c. 3-D plot (  space) corresponding to Eq. (8.83).! "#
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 Figure 8.49a. 3-D gain pattern corresponding to Eq. (8.84).

 Figure 8.49b. Contour plot corresponding to Eq. (8.84).
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The program “array.m”  also plots the array’s element spacing pattern. Figs.
8.50a and 8.50b show two examples. The “x’s”  indicate the location of actual
active array elements, while the “o’s”  indicate the location of dummy or virtual
elements created merely for computational purposes. More precisely, Fig.
8.50a shows a rectangular grid with circular boundary as defined in Eqs. (8.67)
and (8.68) with  and . Fig. 8.50b shows a similar
configuration except that an element spacing  and .

8.6. Array Scan Loss

Phased arrays experience gain loss when the beam is steered away from the
array boresight, or zenith (normal to the face of the array). This loss is due to
the fact that the array effective aperture becomes smaller and consequently the
array beamwidth is broadened, as illustrated in Fig. 8.51. This loss in antenna
gain is called scan loss, , where

(8.85)

  is effective aperture area at scan angle , and  is effective array gain at
the same angle.

 Figure 8.49c. 3-D plot (  space) corresponding to Eq. (8.84).! "#

dx dy 0.5+= = a 0.35+=
dx 1.5+= dy 0.5+=

Lscan

Lscan
A
A!
------0 1

2 32 G
G!
------0 1

2 32
= =

A! ! G!
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 Figure 8.50a. A 15 element circular array made from a rectangular 
array with circular boun dary. Element spacing .dx 0.5+ dy= =

 Figure 8.50b. A 15 element circular array made from a rectangular array 
with circular boundary. Element spacing  and .dy 0.5+= dx 1.5+=
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 The beamwidth at scan angle  is

(8.86)

due to the increased scan loss at large scanning angles. In order to limit the
scan loss to under some acceptable practical values, most arrays do not scan
electronically beyond about . Such arrays are called Full Field Of
View (FFOV). FFOV arrays employ element spacing of  or less to avoid
grating lobes. FFOV array scan loss is approximated by

 (8.87)

 Arrays that limit electronic scanning to under  are referred to as
Limited Field of View (LFOV) arrays. In this case the scan loss is

(8.88)

Fig. 8.52 shows a plot for scan loss versus scan angle. This figure can be repro-
duced using MATLAB program “fig8_52.m” given in Listing 8.8. 

maximum effective aperture

array boresight

effective aperture is reduced

effective
aperture

effective
aperture

 Figure 8.51. Reduction in array effective aperture due to electronic 
scanning.
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8.7. “MyRadar” Design Case Study - Visit 8

8.7.1. Problem Statement

Modify the “MyRadar” design case study such that we employ a phased
array antenna. For this purpose, modify the design requirements such that the
search volume is now defined by  and . Assume X-band, if
possible. Design an electronically steered radar (ESR). Non-coherent integra-
tion of a few pulses may be used, if necessary. Size the radar so that it can ful-
fill this mission. Calculate the antenna gain, aperture size, missile and aircraft
detection range, number of elements in the array, etc. All other design require-
ments are as defined in the previous chapters.

8.7.2. A Design

The search volume is

(8.89)

 Figure 8.52. Scan loss versus scan angle, based on Eq. (8.87).

Qe 104= Qa 454,

R 104 454H

57.296$ %2
----------------------- 0.1371 steradian= =
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For an X-band radar, choose , then

(8.90)

Assume an aperture size ; thus

(8.91)

 Assume square aperture. It follows that the aperture 3-dB beamwidth is cal-
culated from

 (8.92)

The number of beams required to fill the search volume is

(8.93)

Note that the packing factor  is used to allow for beam overlap in order to
avoid gaps in the beam coverage. The search scan rate is 2 seconds. Thus, the
minimum PRF should correspond to 200 beams per second (i.e., ).
This PRF will allow the radar to visit each beam position only once during a
complete scan. 

It was determined in Chapter 2 that 4-pulse non-coherent integration along
with a cumulative detection scheme are required to achieve the desired proba-
bility of detection. It was also determined that the single pulse energy for the
missile and aircraft cases are respectively given by (see page 118)

(8.94)

 (8.95)

However, these values were derived using  and . The
new wavelength is  and the new gain is . Thus,
the missile and aircraft single pulse energy, assuming the same single pulse
SNR as derived in Chapter 2 (i.e., ) are

(8.96)

fo 9GHz=

+ 3 108H

9 109H
----------------- 0.0333m= =

Ae 2.25m2=

G
4&Ae

+2
------------ 4 & 2.25HH

0.0333$ %2
----------------------------- 25451.991 GB 44dB= = = =

G 4&

! 3db
2

----------=
0 1
I J
2 3

! 3dBB 4 & 1802HH

25451.991 &2H
------------------------------------- 1.34= =

nb kp
R

1.3 57.296'$ %2
-----------------------------------

kp 1.5=

nbB 399.5 choose nbB 400= = =

kp

fr 200Hz=

Em 0.1147Joules=

Ea 0.1029Joules=

+ 0.1m= G 2827.4=
+ 0.0333m= G 25451.99=

SNR 4dB=

Em 0.1147 0.12 2827.42H

0.03332 254522H
------------------------------------------H 0.012765Joules= =
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(8.97)

The single pulse peak power that will satisfy detection for both target types
is 

(8.98)

where  is used. 

 Note that since a 4-pulse non-coherent integration is adopted, the minimum
PRF is increased to 

(8.99)

and the total number of beams is . Consequently the unambiguous
range is

 (8.100)

 (1.101)

Since the effective aperture is , then by assuming an array effi-

ciency  the actual array size is

(8.102)

It follows that the physical array sides are . Thus, by selecting
the array element spacing  an array of size  elements satis-
fies the design requirements. 

Since the field of view is less than , one can use element spacing as
large as  without introducing any grating lobes into the array FOV.
Using this option yields an array of size  elements. Hence, the
required power per element is less than .

8.8. MATLAB Program and Function Listings

This section contains listings of all MATLAB programs and functions used
in this chapter. Users are encouraged to rerun this code with different inputs in
order to enhance their understanding of the theory.

Ea 0.1029 0.12 2827.42H

0.03332 254522H
------------------------------------------H 0.01145Joules= =

Pt
0.012765

20 10 6–H
---------------------- 638.25W= =

S 20Ts=

fr 200 4H 800Hz= =

nb 1600=

Ru
3 108H
2 800H
------------------, 187.5Km=

Ae 2.25m2=

* 0.8=

A 2.25
0.8
---------- 2.8125m2= =

1.68m 1.68mH
d 0.6+= 84 84H

22.54@
d 1.5+=

34 34H 1156=
0.6W
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Listing 8.1. MATLAB Program “fig8_5.m”
% Use this code to produce figure 8.5a and 8.5b based on equation 8.34
clear all
close all
eps = 0.00001;
k = 2*pi;
theta = -pi : pi / 10791 : pi;
var = sin(theta);
nelements = 8;
d = 1;         %  d = 1;
num = sin((nelements * k * d * 0.5) .* var);

if(abs(num) <= eps)
   num = eps;
end
den = sin((k* d * 0.5) .* var);
if(abs(den) <= eps)
   den = eps;
end

pattern = abs(num ./ den);
maxval = max(pattern);
pattern = pattern ./ maxval;

figure(1)
plot(var,pattern)
xlabel('sine angle - dimensionless')
ylabel('Array pattern')
grid

figure(2)
plot(var,20*log10(pattern))
axis ([-1 1 -60 0])
xlabel('sine angle - dimensionless')
ylabel('Power pattern [dB]')
grid;

figure(3)
theta = theta +pi/2;
polar(theta,pattern)
title ('Array pattern')

figure(4)
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polardb(theta,pattern)
title ('Power pattern [dB]')

Listing 8.2. MATLAB Program “fig8_7.m”
% Use this program to reproduce Fig. 8.7 of text
clear all
close all
eps =0.00001;
N = 32;
rect(1:32) = 1;
ham = hamming(32);
han = hanning(32);
blk = blackman(32);
k3 = kaiser(32,3);
k6 = kaiser(32,6);
RECT = 20*log10(abs(fftshift(fft(rect, 512)))./32 +eps);
HAM =  20*log10(abs(fftshift(fft(ham, 512)))./32 +eps);
HAN =  20*log10(abs(fftshift(fft(han, 512)))./32+eps);
BLK = 20*log10(abs(fftshift(fft(blk, 512)))./32+eps);
K6 = 20*log10(abs(fftshift(fft(k6, 512)))./32+eps);
x = linspace(-1,1,512);
figure
subplot(2,1,1)
plot(x,RECT,'k--',x,HAM,'k',x,HAN,'k-.');
xlabel('x')
ylabel('Window')
grid
axis tight
legend('Rectangular','Hamming','Hanning')
subplot(2,1,2)
plot(x,RECT,'k--',x,BLK,'k',x,K6,'K-.')
xlabel('x')
ylabel('Window')
legend('Rectangular','Blackman','Kasier at \beta = 6')
grid
axis tight

Listing 8.3. MATLAB Function “linear_array.m”
function [theta,patternr,patterng] = 
linear_array(Nr,dolr,theta0,winid,win,nbits);
% This function computes and returns the gain radiation pattern for a linear 
array
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% It uses the FFT to compute the pattern
%%%%%%%%% ********** INPU TS *********** %%%%%%%%%%
% Nr ==> number of elements; dolr ==> element spacing (d) in lambda units 
divided by lambda
% theta0 ==> steering angle in degrees; winid ==> use winid negative for no 
window, winid positive to enter your window of size(Nr)
% win is input window, NOTE that win must be an NrX1 row vector; nbits 
==> number of bits used in the phase shifters
% negative nbits mean no quantization is used
%%%%%% *********** OUTPU TS *********** %%%%%%%%%%%%
% theta ==> real-space angle; patternr ==> array radiation pattern in dBs
% patterng ==> array directive gain pattern in dBs
%%%%%%%%%%%% ********** ****** %%%%%%%%%%%%
eps = 0.00001;
n = 0:Nr-1;
i = sqrt(-1);
%if dolr is > 0.5 then; choose dol = 0.25 and compute new N
if(dolr <=0.5)
   dol = dolr;
   N = Nr;
else
   ratio = ceil(dolr/.25);
   N = Nr * ratio;
   dol = 0.25;
end
% choose proper size fft, for minimum value choose 256
Nrx = 10 * N; 
nfft = 2^(ceil(log(Nrx)/log(2)));
if nfft < 256
    nfft = 256;
end
% convert steering angle into radians; and compute the sine of angle
theta0 = theta0 *pi /180.;
sintheta0 = sin(theta0);
% determine and compute quantized steering angle
if nbits < 0
   phase0 = exp(i*2.0*pi .* n * dolr * sintheta0);
else
    % compute and add the phase shift terms (WITH nbits quantization)
    % Use formula thetal = (2*pi*n*dol) * sin(theta0) divided into 2^nbits
    % and rounded to the nearest qunatization level
    levels = 2^nbits;
    qlevels = 2.0 * pi / levels; % compute quantization levels
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    % compute the phase level and round it to the closest quantization level at 
each array element
    angleq = round(dolr .* n * sintheta0 * levels) .* qlevels; % vector of possi-
ble angles
    phase0 = exp(i*angleq);
end
% generate array of elements with or without window
if winid < 0 
    wr(1:Nr) = 1;
else
    wr = win';
end
% add the phase shift terms
 wr =  wr .* phase0;
 % determine if interpolation is needed (i.e., N > Nr)
if N > Nr
    w(1:N) = 0;
    w(1:ratio:N) = wr(1:Nr);
else
    w = wr;
end
% compute the sine(theta) in real space that corresponds to the FFT index 
arg = [-nfft/2:(nfft/2)-1] ./ (nfft*dol);
idx = find(abs(arg) <= 1);
sinetheta = arg(idx);
theta = asin(sinetheta);
% convert angle into degrees
theta = theta .* (180.0 / pi);
% Compute fft of w (radiation pattern)
patternv = (abs(fftshift(fft(w,nfft)))).^2;
% convert radiationa pattern to dBs
patternr = 10*log10(patternv(idx) ./Nr +  eps);
% Compute directive gain pattern  
rbarr  = 0.5 *sum(patternv(idx)) ./ (nfft * dol);
patterng = 10*log10(patternv(idx) + eps) - 10*log10(rbarr + eps);
return

Listing 8.4. MATLAB Program “circular_array.m”
% Circular Array in the x-y plane 
% Element is a short dipole antenna parallel to the z axis
% 2D Radiation Patterns for fixed phi or fixed theta
% dB polar plots uses the polardb.m file
% Last modified: July 13, 2003
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%
%%%% Element expression needs to be modified if different
%%%% than a short dipole antenna along the z axis
clear all
clf
% close all
%  ====   Input Parameters  ====
a = 1.;         % radius of the circle
N = 20;           % number of Elements of the circular array
theta0 = 45;    % main beam Theta direction
phi0 = 60;      % main beam Phi direction
% Theta or Phi variations for the calculations of the far field pattern
Variations = 'Phi';  % Correct selections are  'Theta' or 'Phi' 
phid = 60;       % constant phi plane for theta variations
thetad = 45;     % constant theta plane for phi variations
%  ====   End of Input parameters section  ====
dtr = pi/180;           % conversion factors
rtd = 180/pi;
phi0r = phi0*dtr;
theta0r = theta0*dtr;
lambda = 1;   
k = 2*pi/lambda;
ka = k*a;               % Wavenumber times the radius
jka = j*ka;
I(1:N) = 1;             % Elements excitation Amplitude and Phase
alpha(1:N) =0;    
for n = 1:N             % Element positions Uniformly distributed along the circle
    phin(n) = 2*pi*n/N;
end
switch Variations
case 'Theta'
    phir = phid*dtr;    % Pattern in a constant Phi plane 
    i = 0;
    for theta = 0.001:1:181
        i = i+1;
        thetar(i) = theta*dtr;
        angled(i) = theta;  angler(i) = thetar(i);
        Arrayfactor(i) = 0;
        for n = 1:N
            Arrayfactor(i) = Arrayfactor(i) + I(n)*exp(j*alpha(n)) ...
                           * exp( jka*(sin(thetar(i))*cos(phir -phin(n))) ...
                                 -jka*(sin(theta0r  )*cos(phi0r-phin(n)))  );             
        end
        Arrayfactor(i) = abs(Arrayfactor(i));
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        Element(i) = abs(sin(thetar(i)+0*dtr));  % use the abs function to avoid 
    end
case 'Phi'
    thetar = thetad*dtr;  % Pattern in a constant Theta plane 
    i = 0;
    for phi = 0.001:1:361
        i = i+1;
        phir(i)   = phi*dtr;
        angled(i) = phi;  angler(i) = phir(i);
        Arrayfactor(i) = 0;
        for n = 1:N
            Arrayfactor(i) = Arrayfactor(i) +  I(n)*exp(j*alpha(n)) ...
                           * exp( jka*(sin(thetar )*cos(phir(i)-phin(n))) ...
                                 -jka*(sin(theta0r)*cos(phi0r  -phin(n)))  );              
        end
        Arrayfactor(i) = abs(Arrayfactor(i));
        Element(i) = abs(sin(thetar+0*dtr));  % use the abs function to avoid 
    end   
end
angler = angled*dtr;
Element = Element/max(Element);
Array = Arrayfactor/max(Arrayfactor);
ArraydB = 20*log10(Array);
EtotalR =(Element.*Arrayfactor)/max(Element.*Arrayfactor);
figure(1)
plot(angled,Array)
ylabel('Array pattern')
grid
switch Variations
case 'Theta'
  axis ([0 180 0 1 ])
%  theta = theta +pi/2;
   xlabel('Theta [Degrees]')
   title ( 'phi = 90^o plane')
case 'Phi'
axis ([0 360 0 1 ])
   xlabel('Phi [Degrees]')
    title ( 'Theta = 90^o plane')
end
figure(2)
plot(angled,ArraydB)
%axis ([-1 1 -60 0])
ylabel('Power pattern [dB]')
grid;
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switch Variations
case 'Theta'
  axis ([0 180 -60 0 ])
   xlabel('Theta [Degrees]')
      title ( 'phi = 90^o plane')
case 'Phi'
axis ([0 360 -60 0 ])
   xlabel('Phi [Degrees]')
       title ( 'Theta = 90^o plane')
end
figure(3)
polar(angler,Array)
title ('Array pattern')
figure(4)
polardb(angler,Array)
title ('Power pattern [dB]')
% the plots provided above are for the array factor based on the circular 
% array plots for other patterns such as those for the antenna element 
% (Element)or the total pattern (Etotal based on Element*Arrayfactor) can 
% also be displayed by the user as all these patterns are already computed 
% above.
figure(10)
subplot(2,2,1)  
polardb (angler,Element,'b-'); % rectangular plot of element pattern
title('Element normalized E field [dB]')
subplot(2,2,2)
polardb(angler,Array,'b-')
title(' Array Factor normalized [dB]')
subplot(2,2,3)
polardb(angler,EtotalR,'b-');  % polar plot
title('Total normalized E field [dB]')
%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%
function polardb(theta,rho,line_style)
%   POLARDB  Polar coordinate plot.
%   POLARDB(THETA, RHO) makes a plot using polar coordinates of
%   the angle THETA, in radians, versus the radius RHO in dB.
%   The maximum value of RHO should not exceed 1. It should not be
%   normalized, however (i.e., its max. value may be less than 1).
%   POLAR(THETA,RHO,S) uses the linestyle specified in string S.
%   See PLOT for a description of legal linestyles.
if nargin < 1
    error('Requires 2 or 3 input arguments.')
elseif nargin == 2 
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    if isstr(rho)
        line_style = rho;
        rho = theta;
        [mr,nr] = size(rho);
        if mr == 1
            theta = 1:nr;
        else
            th = (1:mr)';
            theta = th(:,ones(1,nr));
        end
    else
        line_style = 'auto';
    end
elseif nargin == 1
    line_style = 'auto';
    rho = theta;
    [mr,nr] = size(rho);
    if mr == 1
        theta = 1:nr;
    else
        th = (1:mr)';
        theta = th(:,ones(1,nr));
    end
end
if isstr(theta) | isstr(rho)
    error('Input arguments must be numeric.');
end
if ~isequal(size(theta),size(rho))
    error('THETA and RHO must be the same size.');
end
% get hold state
cax = newplot;
next = lower(get(cax,'NextPlot'));
hold_state = ishold;

% get x-axis text color so grid is in same color
tc = get(cax,'xcolor');
ls = get(cax,'gridlinestyle');
% Hold on to current Text defaults, reset them to the
% Axes' font attributes so tick marks use them.
fAngle  = get(cax, 'DefaultTextFontAngle');
fName   = get(cax, 'DefaultTextFontName');
fSize   = get(cax, 'DefaultTextFontSize');
fWeight = get(cax, 'DefaultTextFontWeight');
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fUnits  = get(cax, 'DefaultTextUnits');
set(cax, 'DefaultTextFontAngle',  get(cax, 'FontAngle'), ...
    'DefaultTextFontName',   get(cax, 'FontName'), ...
    'DefaultTextFontSize',   get(cax, 'FontSize'), ...
    'DefaultTextFontWeight', get(cax, 'FontWeight'), ...
    'DefaultTextUnits','data')
% make a radial grid
    hold on;
    maxrho =1;
    hhh=plot([-maxrho -maxrho maxrho maxrho],[-maxrho maxrho maxrho -
maxrho]);
    set(gca,'dataaspectratio',[1 1 1],'plotboxaspectratiomode','auto')
    v = [get(cax,'xlim') get(cax,'ylim')];
    ticks = sum(get(cax,'ytick')>=0);
    delete(hhh);
% check radial limits and ticks
    rmin = 0; rmax = v(4); rticks = max(ticks-1,2);
    if rticks > 5   % see if we can reduce the number
        if rem(rticks,2) == 0
            rticks = rticks/2;
        elseif rem(rticks,3) == 0
            rticks = rticks/3;
        end
    end
% only do grids if hold is off
if ~hold_state
% define a circle
    th = 0:pi/50:2*pi;
    xunit = cos(th);
    yunit = sin(th);
% now really force points on x/y axes to lie on them exactly
    inds = 1:(length(th)-1)/4:length(th);
    xunit(inds(2:2:4)) = zeros(2,1);
    yunit(inds(1:2:5)) = zeros(3,1);
% plot background if necessary
    if ~isstr(get(cax,'color')),
       patch('xdata',xunit*rmax,'ydata',yunit*rmax, ...
             'edgecolor',tc,'facecolor',get(gca,'color'),...
             'handlevisibility','off');
    end
% draw radial circles with dB ticks
    c82 = cos(82*pi/180);
    s82 = sin(82*pi/180);
    rinc = (rmax-rmin)/rticks;
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    tickdB=-10*(rticks-1);    % the innermost tick dB value
    for i=(rmin+rinc):rinc:rmax
        hhh = plot(xunit*i,yunit*i,ls,'color',tc,'linewidth',1,...
                   'handlevisibility','off');
        text((i+rinc/20)*c82*0,-(i+rinc/20)*s82, ...
            ['  ' num2str(tickdB) ' dB'],'verticalalignment','bottom',...
            'handlevisibility','off')
        tickdB=tickdB+10;
    end
    set(hhh,'linestyle','-') % Make outer circle solid
% plot spokes
    th = (1:6)*2*pi/12;
    cst = cos(th); snt = sin(th);
    cs = [-cst; cst];
    sn = [-snt; snt];
    plot(rmax*cs,rmax*sn,ls,'color',tc,'linewidth',1,...
         'handlevisibility','off')
% annotate spokes in degrees
    rt = 1.1*rmax;
    for i = 1:length(th)
        text(rt*cst(i),rt*snt(i),int2str(i*30),...
             'horizontalalignment','center',...
             'handlevisibility','off');
        if i == length(th)
            loc = int2str(0);
        else
            loc = int2str(180+i*30);
        end
        text(-rt*cst(i),-rt*snt(i),loc,'horizontalalignment','center',...
             'handlevisibility','off')
    end
% set view to 2-D
    view(2);
% set axis limits
    axis(rmax*[-1 1 -1.15 1.15]);
end
% Reset defaults.
set(cax, 'DefaultTextFontAngle', fAngle , ...
    'DefaultTextFontName',   fName , ...
    'DefaultTextFontSize',   fSize, ...
    'DefaultTextFontWeight', fWeight, ...
    'DefaultTextUnits', fUnits );
% Transfrom data to dB scale
rmin = 0; rmax=1;
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rinc = (rmax-rmin)/rticks;
rhodb=zeros(1,length(rho));
for i=1:length(rho)
    if rho(i)==0
        rhodb(i)=0;
    else
        rhodb(i)=rmax+2*log10(rho(i))*rinc;
    end
    if rhodb(i)<=0
        rhodb(i)=0;
    end
end
% transform data to Cartesian coordinates.
xx = rhodb.*cos(theta);
yy = rhodb.*sin(theta);
% plot data on top of grid
if strcmp(line_style,'auto')
    q = plot(xx,yy);
else
    q = plot(xx,yy,line_style);
end
if nargout > 0
    hpol = q;
end
if ~hold_state
    set(gca,'dataaspectratio',[1 1 1]), axis off; set(cax,'NextPlot',next);
end
set(get(gca,'xlabel'),'visible','on')
set(get(gca,'ylabel'),'visible','on')

Listing 8.5. MATLAB Function “rect_array.m”
function [pattern] = 
rect_array(Nxr,Nyr,dolxr,dolyr,theta0,phi0,winid,win,nbits);
%%%%%%%%%% ************ ************ %%%%%%%%%%
% This function computes the 3-D directive gain patterns for a planar array
% This function uses the fft2 to compute its output
%%%%%%%% ************  INPU TS ************ %%%%%%%%%
% Nxr ==> number of along x-axis; Nyr ==> number of elements along y-
axis
% dolxr ==> element spacing in x-direction; dolyr ==> element spacing in y-
direction Both are in lambda units
% theta0 ==> elevation steering angle in degrees, phi0 ==> azimuth steering 
angle in degrees
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% winid ==> window identifier; winid negative ==> no window ; winid posi-
tive ==> use window given by win
% win ==> input window function (2-D window) MUST be of size (Nxr X Nyr)
% nbits is the number of nbits used in phase quantization; nbits negative ==> 
NO quantization
%%%%% *********** OUTPUT S ************* %%%%%%%
% pattern ==> directive gain pattern
%%%%%%% ************* *********** %%%%%%%%%%%%
eps = 0.0001;
nx = 0:Nxr-1;
ny = 0:Nyr-1;
i = sqrt(-1);
% check that window size is the same as the array size
[nw,mw] = size(win);
if winid >0
    if nw ~= Nxr
    fprintf('STOP == Window size must be the same as the array')
    return
end
if mw ~= Nyr
    fprintf('STOP == Window size must be the same as the array')
    return
end
end

%if dol is > 0.5 then; choose dol = 0.5 and compute new N
if(dolxr <=0.5)
   ratiox = 1  ;
   dolx = dolxr ;
   Nx = Nxr ;
else
   ratiox = ceil(dolxr/.5) ;
   Nx = (Nxr -1 ) * ratiox + 1 ;
   dolx = 0.5 ;
end
if(dolyr <=0.5)
   ratioy = 1  ;
   doly = dolyr ;
   Ny = Nyr ;
else
   ratioy = ceil(dolyr/.5) ;
   Ny = (Nyr -1) * ratioy + 1 ;
   doly = 0.5 ;
end
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% choose proper size fft, for minimum value choose 256X256
Nrx = 10 * Nx; 
Nry = 10 * Ny;
nfftx = 2^(ceil(log(Nrx)/log(2)));
nffty = 2^(ceil(log(Nry)/log(2)));
if nfftx < 256
   nfftx = 256;
end
if nffty < 256
   nffty = 256;
end
% generate array of elements with or without window
if winid < 0 
   array = ones(Nxr,Nyr);
else
   array = win;
end
% convert steering angles (theta0, phi0) to radians
theta0 = theta0 * pi / 180;
phi0 = phi0 * pi / 180;
% convert steering angles (theta0, phi0) to U-V sine-space
u0 = sin(theta0) * cos(phi0);
v0 = sin(theta0) * sin(phi0);
% Use formula thetal = (2*pi*n*dol) * sin(theta0) divided into 2^m levels
% and rounded to the nearest qunatization level
if nbits < 0
    phasem = exp(i*2*pi*dolx*u0 .* nx *ratiox);
    phasen = exp(i*2*pi*doly*v0 .* ny *ratioy);
else
    levels = 2^nbits;
    qlevels = 2.0*pi / levels; % compute quantization levels
    sinthetaq = round(dolx .* nx * u0 * levels * ratiox) .* qlevels; % vector of 
possible angles
    sinphiq = round(doly .* ny * v0 * levels *ratioy) .* qlevels; % vector of pos-
sible angles
    phasem = exp(i*sinthetaq);
    phasen = exp(i*sinphiq);     
end
% add the phase shift terms
array = array .* (transpose(phasem) * phasen);
% determine if interpolation is needed (i.e., N > Nr)
if (Nx > Nxr )| (Ny > Nyr)
   for xloop = 1 : Nxr
      temprow = array(xloop, :) ;
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      w( (xloop-1)*ratiox+1, 1:ratioy:Ny) =  temprow ;
   end
   array = w;
else
    w = array ;
%    w(1:Nx, :) = array(1:N,:);
end
% Compute array pattern
arrayfft = abs(fftshift(fft2(w,nfftx,nffty))).^2 ;
%compute [su,sv] matrix
U = [-nfftx/2:(nfftx/2)-1] ./(dolx*nfftx);
indexx = find(abs(U) <= 1);
U = U(indexx);
V = [-nffty/2:(nffty/2)-1] ./(doly*nffty);
indexy = find(abs(V) <= 1);
V = V(indexy);
%Normalize to generate gain patern
rbar=sum(sum(arrayfft(indexx,indexy))) / dolx/doly/4./nfftx/nffty;
arrayfft = arrayfft(indexx,indexy) ./rbar;
[SU,SV] = meshgrid(V,U);
indx = find((SU.^2 + SV.^2) >1);
arrayfft(indx) = eps/10;
pattern = 10*log10(arrayfft +eps);
figure(1)
mesh(V,U,pattern);
xlabel('V')
ylabel('U');
zlabel('Gain pattern - dB')
figure(2)
contour(V,U,pattern)
grid
axis image
xlabel('V')
ylabel('U');
axis([-1 1 -1 1])
figure(3)
x0 = (Nx+1)/2 ;
y0 = (Ny+1)/2 ;
radiusx = dolx*((Nx-1)/2) ;
radiusy = doly*((Ny-1)/2) ;
[xxx, yyy]=find(abs(array)>eps);
xxx = xxx-x0 ;
yyy = yyy-y0 ;
plot(yyy*doly, xxx*dolx,'rx')
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hold on
axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5  radiusx+0.5]);
grid
title('antenna spacing pattern');
xlabel('y - \lambda units')
ylabel('x - \lambda units')
[xxx0, yyy0]=find(abs(array)<=eps);
xxx0 = xxx0-x0 ;
yyy0 = yyy0-y0 ;
plot(yyy0*doly, xxx0*dolx,'co')
axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5  radiusx+0.5]);
hold off
return

Listing 8.6.  MATLAB Function “circ_array.m”
function [pattern,amn] = 
circ_array(N,dolxr,dolyr,theta0,phi0,winid,win,nbits);
%%%%%%%%% *********** ************* %%%%%%%%%%%
% This function computes the 3-D directive gain patterns for a circular planar 
array
% This function uses the fft2 to compute its output. It assumes that there are the 
same number of  elements along the major x- and y-axes
%%%%%%%% ************  INPU TS ************ %%%%%%%%
% N ==> number of elements along x-aixs or y-axis
% dolxr ==> element spacing in x-direction; dolyr ==> element spacing in y-
direction. Both are in lambda units
% theta0 ==> elevation steering angle in degrees, phi0 ==> azimuth steering 
angle in degrees
% This function uses the function (rec_to_circ) which computes the circular 
array from a square 
% array (of size NXN) using the notation developed by ALLEN,J.L.,"The The-
ory of Array Antennas 
% (with Emphasis on Radar Application)" MIT-LL Technical Report No. 323, 
July, 25 1965. 
% winid ==> window identifier; winid negative ==> no window ; winid posi-
tive ==> use window given by win
% win ==> input window function (2-D window) MUST be of size (Nxr X Nyr)
% nbits is the number of nbits used in phase quantization; nbits negative ==> 
NO quantization
%%%%%%% *********** OUTPUTS  ************* %%%%%%%%
% amn ==> array of ones and zeros; ones indicate true element location on 
the grid
% zeros mean no elements at that location; pattern ==> directive gain pattern
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%%%%%%%%% *************** ********* %%%%%%%%%%%%
eps = 0.0001;
nx = 0:N-1;
ny = 0:N-1;
i = sqrt(-1);
% check that window size is the same as the array size
[nw,mw] = size(win);
if winid >0
   if mw ~= N
      fprintf('STOP == Window size must be the same as the array')
       return
   end
   if nw ~= N
      fprintf('STOP == Window size must be the same as the array')
       return
   end
end
%if dol is > 0.5 then; choose dol = 0.5 and compute new N
if(dolxr <=0.5)
   ratiox = 1 ;
   dolx = dolxr ;
   Nx = N ;
else
   ratiox = ceil(dolxr/.5) ;
   Nx = (N-1) * ratiox + 1 ;
   dolx = 0.5 ;
end
if(dolyr <=0.5)
   ratioy = 1 ;
   doly = dolyr ;
   Ny = N ;
else
   ratioy = ceil(dolyr/.5); 
   Ny = (N-1)*ratioy + 1 ;
   doly = 0.5 ;
end
% choose proper size fft, for minimum value choose 256X256
Nrx = 10 * Nx; 
Nry = 10 * Ny;
nfftx = 2^(ceil(log(Nrx)/log(2)));
nffty = 2^(ceil(log(Nry)/log(2)));
if nfftx < 256
    nfftx = 256;
end
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if nffty < 256
    nffty = 256;
end
% generate array of elements with or without window
if winid < 0 
   array = ones(N,N);
else
    array = win;
end
% convert steering angles (theta0, phi0) to radians
theta0 = theta0 * pi / 180;
phi0 = phi0 * pi / 180;
% convert steering angles (theta0, phi0) to U-V sine-space
u0 = sin(theta0) * cos(phi0);
v0 = sin(theta0) * sin(phi0);
% Use formula thetal = (2*pi*n*dol) * sin(theta0) divided into 2^m levels
% and rounded to the nearest qunatization level
if nbits < 0
    phasem = exp(i*2*pi*dolx*u0 .* nx * ratiox);
    phasen = exp(i*2*pi*doly*v0 .* ny * ratioy);
else
    levels = 2^nbits;
    qlevels = 2.0*pi / levels; % compute quantization levels
    sinthetaq = round(dolx .* nx * u0 * levels * ratiox) .* qlevels; % vector of 
possible angles
    sinphiq = round(doly .* ny * v0 * levels *ratioy) .* qlevels; % vector of pos-
sible angles
    phasem = exp(i*sinthetaq);
    phasen = exp(i*sinphiq);     
end
% add the phase shift terms
array = array .* (transpose(phasem) * phasen) ;

% determine if interpolation is needed (i.e., N > Nr)
if (Nx > N )| (Ny > N)
   for xloop = 1 : N
      temprow = array(xloop, :) ;
      w( (xloop-1)*ratiox+1, 1:ratioy:Ny) =  temprow ;
   end
   array = w;
else
    w(1:Nx, :) = array(1:N,:);
end
% Convert rectangular array into circular using function rec_to_circ
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[m,n] = size(w) ;
NC = max(m,n);  % Use Allens algorithm
if Nx == Ny
    temp_array = w;
else
    midpoint = (NC-1)/2 +1 ;
    midwm = (m-1)/2 ;
    midwn = (n-1)/2 ;
    temp_array = zeros(NC,NC);
    temp_array(midpoint-midwm:midpoint+midwm, midpoint-midwn:mid-
point+midwn) = w ;
end
amn = rec_to_circ(NC);  % must be rectangular array (Nx=Ny)
amn = temp_array .* amn ;

% Compute array pattern
arrayfft = abs(fftshift(fft2(amn,nfftx,nffty))).^2 ;
%compute [su,sv] matrix
U = [-nfftx/2:(nfftx/2)-1] ./(dolx*nfftx);
indexx = find(abs(U) <= 1);
U = U(indexx);
V = [-nffty/2:(nffty/2)-1] ./(doly*nffty);
indexy = find(abs(V) <= 1);
V = V(indexy);
[SU,SV] = meshgrid(V,U);
indx = find((SU.^2 + SV.^2) >1);
arrayfft(indx) = eps/10;
%Normalize to generate gain pattern
rbar=sum(sum(arrayfft(indexx,indexy))) / dolx/doly/4./nfftx/nffty;
arrayfft = arrayfft(indexx,indexy) ./rbar;
[SU,SV] = meshgrid(V,U);
indx = find((SU.^2 + SV.^2) >1);
arrayfft(indx) = eps/10;
pattern = 10*log10(arrayfft +eps);
figure(1)
mesh(V,U,pattern);
xlabel('V')
ylabel('U');
zlabel('Gain pattern - dB')
figure(2)
contour(V,U,pattern)
axis image
grid
xlabel('V')
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ylabel('U');
axis([-1 1 -1 1])
figure(3)
x0 = (NC+1)/2 ;
y0 = (NC+1)/2 ;
radiusx = dolx*((NC-1)/2 + 0.05/dolx) ;
radiusy = doly*((NC-1)/2 + 0.05/dolx) ;
theta = 5  ;
[xxx, yyy]=find(abs(amn)>0);
xxx = xxx-x0 ;
yyy = yyy-y0 ;
plot(yyy*doly, xxx*dolx,'rx')
axis equal
hold on
axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5  radiusx+0.5]);
grid
title('antenna spacing pattern');
xlabel('y - \lambda units')
ylabel('x - \lambda units')
[x, y]= makeellip( 0, 0, radiusx, radiusy, theta) ;
plot(y, x) ;
axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5  radiusx+0.5]);
[xxx0, yyy0]=find(abs(amn)<=0);
xxx0 = xxx0-x0 ;
yyy0 = yyy0-y0 ;
plot(yyy0*doly, xxx0*dolx,'co')
axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5  radiusx+0.5]);
axis equal
hold off ;
return

Listing 8.7. MATLAB Function “rec_to_circ.m”
function amn = rec_to_circ(N)
midpoint = (N-1)/2 + 1;
amn = zeros(N);
array1(midpoint,midpoint) = N;
x0 = midpoint;
y0 = x0;
for i = 1:N
    for j = 1:N
        distance(i,j) = sqrt((x0-i)^2 + (y0-j)^2);
    end
end
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idx = find(distance < (N-1)/2 + .4);
amn (idx) = 1;
return

Listing 8.8. MATLAB Program “fig8_52.m”
%Use this program to reproduce Fig. 8.40. Based on Eq. (8.87)
clear all
close all
d = 0.6; % element spacing in lambda units
betadeg = linspace(0,22.5,1000);
beta = betadeg .*pi ./180;
den = pi*d .* sin(beta);
numarg = den;
num = sin(numarg);
lscan = (num./den).^-4;
LSCAN = 10*log10(lscan+eps);
figure (1)
plot(betadeg,LSCAN)
xlabel('scan angle in degrees')
ylabel('Scan loss in dB')
grid
title('Element spacing is d = 0.6 \lambda ')
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Single Target Tracking

Tracking radar systems are used to measure the target’s relative position in
range, azimuth angle, elevation angle, and velocity. Then, by using and keep-
ing track of these measured parameters the radar can predict their future val-
ues. Target tracking is important to military radars as well as to most civilian
radars. In military radars, tracking is responsible for fire control and missile
guidance; in fact, missile guidance is almost impossible without proper target
tracking. Commercial radar systems, such as civilian airport traffic control
radars, may utilize tracking as a means of controlling incoming and departing
airplanes.

Tracking techniques can be divided into range/velocity tracking and angle
tracking. It is also customary to distinguish between continuous single-target
tracking radars and multi-target track-while-scan (TWS) radars. Tracking
radars utilize pencil beam (very narrow) antenna patterns. It is for this reason
that a separate search radar is needed to facilitate target acquisition by the
tracker. Still, the tracking radar has to search the volume where the target’s
presence is suspected. For this purpose, tracking radars use special search pat-
terns, such as helical, T.V. raster, cluster, and spiral patterns, to name a few.

9.1.  Angle Tracking

Angle tracking is concerned with generating continuous measurements of
the target’s angular position in the azimuth and elevation coordinates. The
accuracy of early generation angle tracking radars depended heavily on the
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size of the pencil beam employed. Most modern radar systems achieve very
fine angular measurements by utilizing monopulse tracking techniques.

Tracking radars use the angular deviation from the antenna main axis of the
target within the beam to generate an error signal. This deviation is normally
measured from the antenna’s main axis. The resultant error signal describes
how much the target has deviated from the beam main axis. Then, the beam
position is continuously changed in an attempt to produce a zero error signal. If
the radar beam is normal to the target (maximum gain), then the target angular
position would be the same as that of the beam. In practice, this is rarely the
case. 

In order to be able to quickly change the beam position, the error signal
needs to be a linear function of the deviation angle. It can be shown that this
condition requires the beam’s axis to be squinted by some angle (squint angle)
off the antenna’s main axis. 

9.1.1. Sequential Lobing

Sequential lobing is one of the first tracking techniques that was utilized by
the early generation of radar systems. Sequential lobing is often referred to as
lobe switching or sequential switching. It has a tracking accuracy that is lim-
ited by the pencil beamwidth used and by the noise caused by either mechani-
cal or electronic switching mechanisms. However, it is very simple to
implement. The pencil beam used in sequential lobing must be symmetrical
(equal azimuth and elevation beamwidths). 

Tracking is achieved (in one coordinate) by continuously switching the pen-
cil beam between two pre-determined symmetrical positions around the
antenna’s Line of Sight (LOS) axis. Hence, the name sequential lobing is
adopted. The LOS is called the radar tracking axis, as illustrated in Fig. 9.1. 

As the beam is switched between the two positions, the radar measures the
returned signal levels. The difference between the two measured signal levels
is used to compute the angular error signal. For example, when the target is
tracked on the tracking axis, as the case in Fig. 9.1a, the voltage difference is
zero. However, when the target is off the tracking axis, as in Fig. 9.1b, a non-
zero error signal is produced. The sign of the voltage difference determines the
direction in which the antenna must be moved. Keep in mind, the goal here is
to make the voltage difference be equal to zero.

In order to obtain the angular error in the orthogonal coordinate, two more
switching positions are required for that coordinate. Thus, tracking in two
coordinates can be accomplished by using a cluster of four antennas (two for
each coordinate) or by a cluster of five antennas. In the latter case, the middle
antenna is used to transmit, while the other four are used to receive.

© 2004 by Chapman & Hall/CRC CRC Press LLC



9.1.2. Conical Scan

Conical scan is a logical extension of sequential lobing where, in this case,
the antenna is continuously rotated at an offset angle, or has a feed that is
rotated about the antenna’s main axis. Fig. 9.2 shows a typical conical scan
beam. The beam scan frequency, in radians per second, is denoted as . The
angle between the antenna’s LOS and the rotation axis is the squint angle .
The antenna’s beam position is continuously changed so that the target will
always be on the tracking axis.

Fig. 9.3 shows a simplified conical scan radar system. The envelope detector
is used to extract the return signal amplitude and the Automatic Gain Control
(AGC) tries to hold the receiver output to a constant value. Since the AGC
operates on large time constants, it can hold the average signal level constant
and still preserve the signal rapid scan variation. It follows that the tracking
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Figure 9.1. Sequential lobing. (a) Target is located on track axis.
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error signals (azimuth and elevation) are functions of the target’s RCS; they are
functions of its angular position off the main beam axis.

 In order to illustrate how conical scan tracking is achieved, we will first con-
sider the case shown in Fig. 9.4. In this case, as the antenna rotates around the
tracking axis all target returns have the same amplitude (zero error signal).
Thus, no further action is required.
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Figure 9.2. Conical scan beam.
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Figure 9.3. Simplified conical scan radar system.
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Next, consider the case depicted by Fig. 9.5. Here, when the beam is at posi-
tion B, returns from the target will have maximum amplitude, and when the
antenna is at position A, returns from the target have minimum amplitude.
Between those two positions, the amplitude of the target returns will vary
between the maximum value at position B, and the minimum value at position
A. In other words, Amplitude Modulation (AM) exists on top of the returned
signal. This AM envelope corresponds to the relative position of the target
within the beam. Thus, the extracted AM envelope can be used to derive a
servo-control system in order to position the target on the tracking axis. 

Now, let us derive the error signal expression that is used to drive the servo-
control system. Consider the top view of the beam axis location shown in Fig.
9.6. Assume that  is the starting beam position. The locations for maxi-
mum and minimum target returns are also identified. The quantity  defines
the distance between the target location and the antenna’s tracking axis. It fol-
lows that the azimuth and elevation errors are, respectively, given by

(9.1)

(9.2)

These are the error signals that the radar uses to align the tracking axis on the
target.
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The AM signal  can then be written as

(9.3)

where  is a constant called the error slope,  is the scan frequency in radi-
ans per seconds, and  is the angle already defined. The scan reference is the
signal that the radar generates to keep track of the antenna’s position around a
complete path (scan). The elevation error signal is obtained by mixing the sig-
nal  with  (the reference signal) followed by low pass filtering.
More precisely,

(9.4)

and after low pass filtering we get

(9.5)

Negative elevation error drives the antenna beam downward, while positive
elevation error drives the antenna beam upward. Similarly, the azimuth error
signal is obtained by multiplying  by  followed by low pass filter-
ing. It follows that

(9.6)

The antenna scan rate is limited by the scanning mechanism (mechanical or
electronic), where electronic scanning is much faster and more accurate than
mechanical scan. In either case, the radar needs at least four target returns to be
able to determine the target azimuth and elevation coordinates (two returns per
coordinate). Therefore, the maximum conical scan rate is equal to one fourth of
the PRF. Rates as high as 30 scans per seconds are commonly used.

The conical scan squint angle needs to be large enough so that a good error
signal can be measured. However, due to the squint angle, the antenna gain in
the direction of the tracking axis is less than maximum. Thus, when the target
is in track (located on the tracking axis), the SNR suffers a loss equal to the
drop in the antenna gain. This loss is known as the squint or crossover loss.
The squint angle is normally chosen such that the two-way (transmit and
receive) crossover loss is less than a few decibels.   

9.2.  Amplitude Comparison Monopulse

Amplitude comparison monopulse tracking is similar to lobing in the sense
that four squinted beams are required to measure the target’s angular position.
The difference is that the four beams are generated simultaneously rather than
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sequentially. For this purpose, a special antenna feed is utilized such that the
four beams are produced using a single pulse, hence the name “monopulse.”
Additionally, monopulse tracking is more accurate and is not susceptible to
lobing anomalies, such as AM jamming and gain inversion ECM. Finally, in
sequential and conical lobing, variations in the radar echoes degrade the track-
ing accuracy; however, this is not a problem for monopulse techniques since a
single pulse is used to produce the error signals. Monopulse tracking radars can
employ both antenna reflectors as well as phased array antennas. 

Fig. 9.7 show a typical monopulse antenna pattern. The four beams A, B, C,
and D represent the four conical scan beam positions. Four feeds, mainly
horns, are used to produce the monopulse antenna pattern. Amplitude
monopulse processing requires that the four signals have the same phase and
different amplitudes.

A good way to explain the concept of amplitude monopulse technique is to
represent the target echo signal by a circle centered at the antenna’s tracking
axis, as illustrated by Fig. 9.8a, where the four quadrants represent the four
beams. In this case, the four horns receive an equal amount of energy, which
indicates that the target is located on the antenna’s tracking axis. However,
when the target is off the tracking axis (Figs. 9.8b-d), an imbalance of energy
occurs in the different beams. This imbalance of energy is used to generate an
error signal that drives the servo-control system. Monopulse processing con-
sists of computing a sum  and two difference  (azimuth and elevation)
antenna patterns. Then by dividing a  channel voltage by the  channel volt-
age, the angle of the signal can be determined.

The radar continuously compares the amplitudes and phases of all beam
returns to sense the amount of target displacement off the tracking axis. It is
critical that the phases of the four signals be constant in both transmit and
receive modes. For this purpose, either digital networks or microwave compar-
ator circuitry are utilized. Fig. 9.9 shows a block diagram for a typical micro-
wave comparator, where the three receiver channels are declared as the sum
channel, elevation angle difference channel, and azimuth angle difference
channel.
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Figure 9.7. Monopulse antenna pattern.
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To generate the elevation difference beam, one can use the beam difference
(A-D) or (B-C). However, by first forming the sum patterns (A+B) and (D+C)
and then computing the difference (A+B)-(D+C), we achieve a stronger eleva-
tion difference signal, . Similarly, by first forming the sum patterns (A+D)
and (B+C) and then computing the difference (A+D)-(B+C), a stronger azi-
muth difference signal, , is produced.

A simplified monopulse radar block diagram is shown in Fig. 9.10. The sum
channel is used for both transmit and receive. In the receive mode the sum
channel provides the phase reference for the other two difference channels.
Range measurements can also be obtained from the sum channel. In order to
illustrate how the sum and difference antenna patterns are formed, we will
assume a  single element antenna pattern and squint angle . The
sum signal in one coordinate (azimuth or elevation) is then given by

(9.7)
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 Figure 9.8. Illustration of monopulse concept. (a) Target is on the 

tracking axis.  (b) - (d) Target is off the tracking axis.
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and a difference signal in the same coordinate is

(9.8)

MATLAB Function “mono_pulse.m”

The function “mono_pulse.m” implements Eqs. (9.7) and (9.8). Its output
includes plots of the sum and difference antenna patterns as well as the differ-
ence-to-sum ratio. It is given in Listing 9.1 in  Section 9.11. The syntax is as
follows:

mono_pulse (phi0)

where phi0 is the squint angle in radians. 

Fig. 9.11 (a-c) shows the corresponding plots for the sum and difference pat-
terns for  radians. Fig. 9.12 (a-c) is similar to Fig. 9.11, except in
this case  radians. Clearly, the sum and difference patterns depend
heavily on the squint angle. Using a relatively small squint angle produces a
better sum pattern than that resulting from a larger angle. Additionally, the dif-
ference pattern slope is steeper for the small squint angle.
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 Figure 9.11b. Sum pattern corresponding to Fig. 9.11a.
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 Figure 9.11c. Difference pattern corresponding to Fig. 9.11a.
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 Figure 9.12a. Two squinted patterns. Squint angle is  radians." 0 0.75=
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 Figure 9.12b. Sum pattern corresponding to Fig. 9.12a.
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The difference channels give us an indication of whether the target is on or
off the tracking axis. However, this signal amplitude depends not only on the
target angular position, but also on the target’s range and RCS. For this reason
the ratio  (delta over sum) can be used to accurately estimate the error
angle that only depends on the target’s angular position.

Let us now address how the error signals are computed. First, consider the
azimuth error signal. Define the signals  and  as

(9.9)

(9.10)

The sum signal is , and the azimuth difference signal is
. If , then both channels have the same phase  (since

the sum channel is used for phase reference). Alternatively, if , then the
two channels are  out of phase. Similar analysis can be done for the ele-
vation channel, where in this case  and . Thus, the
error signal output is

(9.11)

where  is the phase angle between the sum and difference channels and it is
equal to  or . More precisely, if , then the target is on the track-

 Figure 9.12c. Difference pattern corresponding to Fig. 9.12a.
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ing axis; otherwise it is off the tracking axis. Fig. 9.13 (a,b) shows a plot for the
ratio  for the monopulse radar whose sum and difference patterns are in
Figs. 9.11 and 9.12.
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 Figure 9.13a. Difference-to-sum ratio corresponding to Fig. 9.11a.
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 Figure 9.13b. Difference-to-sum ratio corresponding to Fig. 9.12a.
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9.3.  Phase Comparison Monopulse

Phase comparison monopulse is similar to amplitude comparison monopulse
in the sense that the target angular coordinates are extracted from one sum and
two difference channels. The main difference is that the four signals produced
in amplitude comparison monopulse will have similar phases but different
amplitudes; however, in phase comparison monopulse the signals have the
same amplitude and different phases. Phase comparison monopulse tracking
radars use a minimum of a two-element array antenna for each coordinate (azi-
muth and elevation), as illustrated in Fig. 9.14. A phase error signal (for each
coordinate) is computed from the phase difference between the signals gener-
ated in the antenna elements. 

 

Consider Fig. 9.14; since the angle  is equal to , it follows that

(9.12)

and since  we can use the binomial series expansion to get

(9.13)
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Similarly, 

(9.14)

The phase difference between the two elements is then given by

(9.15)

where  is the wavelength. The phase difference  is used to determine the
angular target location. Note that if , then the target would be on the
antenna’s main axis. The problem with this phase comparison monopulse tech-
nique is that it is quite difficult to maintain a stable measurement of the off
boresight angle , which causes serious performance degradation. This prob-
lem can be overcome by implementing a phase comparison monopulse system
as illustrated in Fig. 9.15. 

The (single coordinate) sum and difference signals are, respectively, given
by

(9.16)

(9.17)

where the  and  are the signals in the two elements. Now, since  and
 have similar amplitude and are different in phase by , we can write

(9.18)

It follows that

(9.19)
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Figure 9.15. Single coordinate phase monopulse antenna,
        with sum and difference channels.
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(9.20)

The phase error signal is computed from the ratio . More precisely,

(9.21)

which is purely imaginary. The modulus of the error signal is then given by

(9.22)

This kind of phase comparison monopulse tracker is often called the half-angle
tracker.

9.4. Range Tracking

Target range is measured by estimating the round-trip delay of the transmit-
ted pulses. The process of continuously estimating the range of a moving target
is known as range tracking. Since the range to a moving target is changing with
time, the range tracker must be constantly adjusted to keep the target locked in
range. This can be accomplished using a split gate system, where two range
gates (early and late) are utilized. The concept of split gate tracking is illus-
trated in Fig. 9.16, where a sketch of a typical pulsed radar echo is shown in the
figure. The early gate opens at the anticipated starting time of the radar echo
and lasts for half its duration. The late gate opens at the center and closes at the
end of the echo signal. For this purpose, good estimates of the echo duration
and the pulse center time must be reported to the range tracker so that the early
and late gates can be placed properly at the start and center times of the
expected echo. This reporting process is widely known as the “designation pro-
cess.”

The early gate produces positive voltage output while the late gate produces
negative voltage output. The outputs of the early and late gates are subtracted,
and the difference signal is fed into an integrator to generate an error signal. If
both gates are placed properly in time, the integrator output will be equal to
zero. Alternatively, when the gates are not timed properly, the integrator output
is not zero, which gives an indication that the gates must be moved in time, left
or right depending on the sign of the integrator output.
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Figure 9.16. Illustration of split-range gate. 
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Multiple Target Tracking

Track-while-scan radar systems sample each target once per scan interval,
and use sophisticated smoothing and prediction filters to estimate the target
parameters between scans. To this end, the Kalman filter and the Alpha-Beta-
Gamma ( ) filter are commonly used. Once a particular target is detected,
the radar may transmit up to a few pulses to verify the target parameters, before
it establishes a track file for that target. Target position, velocity, and accelera-
tion comprise the major components of the data maintained by a track file.

The principles of recursive tracking and prediction filters are presented in
this part. First, an overview of state representation for Linear Time Invariant
(LTI) systems is discussed. Then, second and third order one-dimensional
fixed gain polynomial filter trackers are developed. These filters are, respec-
tively, known as the  and  filters (also known as the g-h and g-h-k fil-
ters). Finally, the equations for an n-dimensional multi-state Kalman filter are
introduced and analyzed. As a matter of notation, small case letters, with an
underbar, are used.

9.5. Track-While-Scan (TWS)

Modern radar systems are designed to perform multi-function operations,
such as detection, tracking, and discrimination. With the aid of sophisticated
computer systems, multi-function radars are capable of simultaneously track-
ing many targets. In this case, each target is sampled once (mainly range and
angular position) during a dwell interval (scan). Then, by using smoothing and
prediction techniques future samples can be estimated. Radar systems that can
perform multi-tasking and multi-target tracking are known as Track-While-
Scan (TWS) radars.

Once a TWS radar detects a new target it initiates a separate track file for
that detection; this ensures that sequential detections from that target are pro-
cessed together to estimate the target’s future parameters. Position, velocity,
and acceleration comprise the main components of the track file. Typically, at
least one other confirmation detection (verify detection) is required before the
track file is established. 

Unlike single target tracking systems, TWS radars must decide whether each
detection (observation) belongs to a new target or belongs to a target that has
been detected in earlier scans. And in order to accomplish this task, TWS radar
systems utilize correlation and association algorithms. In the correlation pro-
cess each new detection is correlated with all previous detections in order to
avoid establishing redundant tracks. If a certain detection correlates with more
than one track, then a pre-determined set of association rules is exercised so

-67
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that the detection is assigned to the proper track. A simplified TWS data pro-
cessing block diagram is shown in Fig. 9.17. 

Choosing a suitable tracking coordinate system is the first problem a TWS
radar has to confront. It is desirable that a fixed reference of an inertial coordi-
nate system be adopted. The radar measurements consist of target range, veloc-
ity, azimuth angle, and elevation angle. The TWS system places a gate around
the target position and attempts to track the signal within this gate. The gate
dimensions are normally azimuth, elevation, and range. Because of the uncer-
tainty associated with the exact target position during the initial detections, a
gate has to be large enough so that targets do not move appreciably from scan
to scan; more precisely, targets must stay within the gate boundary during suc-
cessive scans. After the target has been observed for several scans the size of
the gate is reduced considerably.

Gating is used to decide whether an observation is assigned to an existing
track file, or to a new track file (new detection). Gating algorithms are nor-
mally based on computing a statistical error distance between a measured and
an estimated radar observation. For each track file, an upper bound for this
error distance is normally set. If the computed difference for a certain radar
observation is less than the maximum error distance of a given track file, then
the observation is assigned to that track.

All observations that have an error distance less than the maximum distance
of a given track are said to correlate with that track. For each observation that
does not correlate with any existing tracks, a new track file is established
accordingly. Since new detections (measurements) are compared to all existing
track files, a track file may then correlate with no observations or with one or
more observations. The correlation between observations and all existing track
files is identified using a correlation matrix. Rows of the correlation matrix

establish time
and radar

coordinates

radar
measurements

pre-processing
     gating

correlation /
association

smoothing
& prediction

establish
track files

deleting files
of lost targets

Figure. 9.17. Simplified block diagram of TWS data processing. 
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represent radar observations, while columns represent track files. In cases
where several observations correlate with more than one track file, a set of pre-
determined association rules can be utilized so that a single observation is
assigned to a single track file. 

9.6.  State Variable Representation of an LTI System 

A linear time invariant system (continuous or discrete) can be described
mathematically using three variables. They are the input, output, and the state
variables. In this representation, any LTI system has observable or measurable
objects (abstracts). For example, in the case of a radar system, range may be an
object measured or observed by the radar tracking filter. States can be derived
in many different ways. For the scope of this book, states of an object or an
abstract are the components of the vector that contains the object and its time
derivatives. For example, a third-order one-dimensional (in this case range)
state vector representing range can be given by 

(9.23)

where , , and  are, respectively, the range measurement, range rate
(velocity), and acceleration. The state vector defined in Eq. (9.23) can be rep-
resentative of continuous or discrete states. In this book, the emphasis is on
discrete time representation, since most radar signal processing is executed
using digital computers. For this purpose, an n-dimensional state vector has the
following form:

(9.24)

where the superscript indicates the transpose operation. 

The LTI system of interest can be represented using the following state equa-
tions:

(9.25)

(9.26)

where:  is the value of the  state vector;  is the value of the  out-
put vector;  is the value of the  input vector;  is an  matrix; 
is an  matrix;  is  matrix; and  is an  matrix. The
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homogeneous solution (i.e., ) to this linear system, assuming known
initial condition  at time , has the form

 (9.27)

The matrix  is known as the state transition matrix, or fundamental matrix,
and is equal to

(9.28)

Eq. (9.28) can be expressed in series format as

(9.29)

Example:

Compute the state transition matrix for an LTI system when

 

Solution:

The state transition matrix can be computed using Eq. (9.29). For this pur-
pose, compute  and . It follows

 

Therefore,

 

The state transition matrix has the following properties (the proof is left as
an exercise):
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(9.30)

2. Identity property

(9.31)

3. Initial value property

(9.32)

4. Transition property

(9.33)

5. Inverse property

(9.34)

6. Separation property

(9.35)

The general solution to the system defined in Eq. (9.25) can be written as

(9.36)

The first term of the right-hand side of Eq. (9.36) represents the contribution
from the system response to the initial condition. The second term is the contri-
bution due to the driving force . By combining Eqs. (9.26) and (9.36) an
expression for the output is computed as

(9.37)

Note that the system impulse response is equal to . 

The difference equations describing a discrete time system, equivalent to
Eqs. (9.25) and (9.26), are 

(9.38)

(9.39)
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where  defines the discrete time  and  is the sampling interval. All other
vectors and matrices were defined earlier. The homogeneous solution to the
system defined in Eq. (9.38), with initial condition , is

 (9.40)

In this case the state transition matrix is an  matrix given by

 (9.41)

The following is the list of properties associated with the discrete transition
matrix

(9.42)

(9.43)

(9.44)

(9.45)

(9.46)

(9.47)

The solution to the general case (i.e., non-homogeneous system) is given by

(9.48)

It follows that the output is given by

(9.49)

where the system impulse response is given by

(9.50)

Taking the Z-transform for Eqs. (9.38) and (9.39) yields
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(9.51)

 (9.52)

Manipulating Eqs. (9.51) and (9.52) yields

(9.53)

(9.54)

It follows that the state transition matrix is 

(9.55)

and the system impulse response in the z-domain is

(9.56)

9.7.  The LTI System of Interest 

For the purpose of establishing the framework necessary for the Kalman fil-
ter development, consider the LTI system shown in Fig. 9.18. This system
(which is a special case of the system described in the previous section) can be
described by the following first order differential vector equations

(9.57)

(9.58)

where  is the observable part of the system (i.e., output),  is a driving force,
and  is the measurement noise. The matrices  and  vary depending on the
system. The noise observation  is assumed to be uncorrelated. If the initial
condition vector is , then from Eq. (9.36) we get

(9.59)

The object (abstract) is observed only at discrete times determined by the
system. These observation times are declared by discrete time  where  is
the sampling interval. Using the same notation adopted in the previous section,
the discrete time representations of Eqs. (9.57) and (9.58) are

(9.60)
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(9.61)

The homogeneous solution to this system is given in Eq. (9.27) for continuous
time, and in Eq. (9.40) for discrete time. 

The state transition matrix corresponding to this system can be obtained
using Taylor series expansion of the vector . More precisely,

(9.62)

It follows that the elements of the state transition matrix are defined by

(9.63)

Using matrix notation, the state transition matrix is then given by 

(9.64)

The matrix given in Eq. (9.64) is often called the Newtonian matrix.
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 Figure 9.18. An LTI system.
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9.8.  Fixed-Gain Tracking Filters 

This class of filters (or estimators) is also known as “Fixed-Coefficient” fil-
ters. The most common examples of this class of filters are the  and 
filters and their variations. The  and  trackers are one-dimensional sec-
ond and third order filters, respectively. They are equivalent to special cases of
the one-dimensional Kalman filter. The general structure of this class of esti-
mators is similar to that of the Kalman filter.

The standard  filter provides smoothed and predicted data for target
position, velocity (Doppler), and acceleration. It is a polynomial predictor/cor-
rector linear recursive filter. This filter can reconstruct position, velocity, and
constant acceleration based on position measurements. The  filter can also
provide a smoothed (corrected) estimate of the present position which can be
used in guidance and fire control operations. 

Notation: 

For the purpose of the discussion presented in the remainder of this chapter,
the following notation is adopted:  represents the estimate during the

 sampling interval, using all data up to and including the  sampling
interval;  is the  measured value; and  is the  residual (error).

The fixed-gain filter equation is given by 

 (9.65)

Since the transition matrix assists in predicting the next state, 

(9.66)

Substituting Eq. (9.66) into Eq. (9.65) yields

(9.67)

The term enclosed within the brackets on the right hand side of Eq. (9.67) is
often called the residual (error) which is the difference between the measured
input and predicted output. Eq. (9.67) means that the estimate of  is the
sum of the prediction and the weighted residual. The term  repre-
sents the prediction state. In the case of the  estimator,  is the row vector
given by

(9.68)

and the gain matrix  is given by 
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(9.69)

One of the main objectives of a tracking filter is to decrease the effect of the
noise observation on the measurement. For this purpose the noise covariance
matrix is calculated. More precisely, the noise covariance matrix is 

(9.70)

where  indicates the expected value operator. Noise is assumed to be a zero
mean random process with variance equal to . Additionally, noise measure-
ments are also assumed to be uncorrelated,

(9.71)

Eq. (9.65) can be written as 

(9.72)

where 

(9.73)

Substituting Eqs. (9.72) and (9.73) into Eq. (9.70) yields

(9.74)

Expanding the right hand side of Eq. (9.74) and using Eq. (9.71) give

(9.75)

Under the steady state condition, Eq. (9.75) collapses to

(9.76)

where  is the steady state noise covariance matrix. In the steady state, 

(9.77)

Several criteria can be used to establish the performance of the fixed-gain
tracking filter. The most commonly used technique is to compute the Variance
Reduction Ratio (VRR). The VRR is defined only when the input to the tracker
is noise measurements. It follows that in the steady state case, the VRR is the
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steady state ratio of the output variance (auto-covariance) to the input measure-
ment variance. 

In order to determine the stability of the tracker under consideration, con-
sider the Z-transform for Eq. (9.72),

 (9.78)

Rearranging Eq. (9.78) yields the following system transfer functions:

(9.79)

where  is called the characteristic matrix. Note that the system trans-
fer functions can exist only when the characteristic matrix is a non-singular
matrix. Additionally, the system is stable if and only if the roots of the charac-
teristic equation are within the unit circle in the z-plane,

(9.80)

The filter’s steady state errors can be determined with the help of Fig. 9.19.
The error transfer function is 

(9.81)

and by using Abel’s theorem, the steady state error is

(9.82)

Substituting Eq. (9.82) into (9.81) yields

(9.83)
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 Figure 9.19. Steady state error computation.
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9.8.1. The  Filter

The  tracker produces, on the  observation, smoothed estimates for
position and velocity, and a predicted position for the  observation.
Fig. 9.20 shows an implementation of this filter. Note that the subscripts “p”
and “s” are used to indicate, respectively, the predicated and smoothed values.
The  tracker can follow an input ramp (constant velocity) with no steady
state errors. However, a steady state error will accumulate when constant
acceleration is present in the input. Smoothing is done to reduce errors in the
predicted position through adding a weighted difference between the measured
and predicted values to the predicted position, as follows:

(9.84)

(9.85)

 is the position input samples. The predicted position is given by

(9.86)

The initialization process is defined by

 

 

 

A general form for the covariance matrix was developed in the previous sec-
tion, and is given in Eq. (9.75). In general, a second order one-dimensional
covariance matrix (in the context of the  filter) can be written as

(9.87)

where, in general,  is

(9.88)

By inspection, the  filter has

(9.89)
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(9.90)

(9.91)

(9.92)

Finally, using Eqs. (9.89) through (9.92) in Eq. (9.72) yields the steady state
noise covariance matrix,

(9.93)

It follows that the position and velocity VRR ratios are, respectively, given by

(9.94)

(9.95)

The stability of the  filter is determined from its system transfer func-
tions. For this purpose, compute the roots for Eq. (9.80) with  from Eq.
(9.89),
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 Figure 9.20. An implementation of an  tracker.-6
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(9.96)

Solving Eq. (9.96) for  yields

(9.97)

and in order to guarantee stability

 (9.98)

Two cases are analyzed. First,  are real. In this case (the details are left as
an exercise),

(9.99)
The second case is when the roots are complex; in this case we find

 (9.100)

The system transfer functions can be derived by using Eqs. (9.79), (9.89),
and (9.90), 

(9.101)

Up to this point all relevant relations concerning the  filter were made
with no regard to how to choose the gain coefficients (  and ). Before con-
sidering the methodology of selecting these coefficients, consider the main
objective behind using this filter. The twofold purpose of the  tracker can
be described as follows:

1. The tracker must reduce the measurement noise as much as possible.

2. The filter must be able to track maneuvering targets, with as little residual 
(tracking error) as possible.

The reduction of measurement noise is normally determined by the VRR
ratios. However, the maneuverability performance of the filter depends heavily
on the choice of the parameters  and . 

A special variation of the  filter was developed by Benedict and Bord-
ner1, and is often referred to as the Benedict-Bordner filter. The main advan-

1. Benedict, T. R. and Bordner, G. W., Synthesis of an Optimal Set of Radar Track-
While-Scan Smoothing Equations, IRE Transaction on Automatic Control, AC-7, 
July 1962, pp. 27-32.
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tage of the Benedict-Bordner is reducing the transient errors associated with
the  tracker. This filter uses both the position and velocity VRR ratios as
measures of performance. It computes the sum of the squared differences
between the input (position) and the output when the input has a unit step
velocity at time zero. Additionally, it computes the squared differences
between the real velocity and the velocity output when the input is as described
earlier. Both error differences are minimized when

(9.102)

In this case, the position and velocity VRR ratios are, respectively, given by

(9.103)

(9.104)

Another important sub-class of the  tracker is the critically damped filter,
often called the fading memory filter. In this case, the filter coefficients are
chosen on the basis of a smoothing factor , where . The gain coeffi-
cients are given by

(9.105)

(9.106)

Heavy smoothing means  and little smoothing means . The ele-
ments of the covariance matrix for a fading memory filter are

(9.107)

(9.108)

(9.109)

9.8.2. The  Filter

The  tracker produces, for the  observation, smoothed estimates of
position, velocity, and acceleration. It also produces the predicted position and
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velocity for the  observation. An implementation of the  tracker
is shown in Fig. 9.21.

The  tracker will follow an input whose acceleration is constant with no
steady state errors. Again, in order to reduce the error at the output of the
tracker, a weighted difference between the measured and predicted values is
used in estimating the smoothed position, velocity, and acceleration as follows:

(9.110)

(9.111)

(9.112)

(9.113)

and the initialization process is 
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 Figure 9.21. An implementation for an  tracker.-67

&

27

T2
-----

T

T2 2( T

&

x··s

delay, z
1–

delay, z
1–

+
+

+

+
+ +

+

+

++

© 2004 by Chapman & Hall/CRC CRC Press LLC



 

Using Eq. (9.63) the state transition matrix for the  filter is 

(9.114)

The covariance matrix (which is symmetric) can be computed from Eq. (9.76).
For this purpose, note that 

(9.115)

(9.116)

and

(9.117)

Substituting Eq. (9.117) into (9.76) and collecting terms the VRR ratios are
computed as

(9.118)

(9.119)

(9.120)

As in the case of any discrete time system, this filter will be stable if and only if
all of its poles fall within the unit circle in the z-plane. 

The  characteristic equation is computed by setting 
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(9.121)

Substituting Eq. (9.117) into (9.121) and collecting terms yield the following
characteristic function:

(9.122)

The  becomes a Benedict-Bordner filter when 

(9.123)

Note that for  Eq. (9.123) reduces to Eq. (9.102). For a critically damped
filter the gain coefficients are 

(9.124)

(9.125)

(9.126)

Note that heavy smoothing takes place when , while  means that
no smoothing is present.

MATLAB Function “ghk_tracker.m”

The function “ghk_tracker.m” implements the steady state  filter. It is
given in Listing 9.2 in  Section 9.11. The syntax is as follows:

[residual, estimate] = ghk_tracker (X0, smoocof, inp, npts, T, nvar)

where

Symbol Description Status

X0 initial state vector input

smoocof desired smoothing coefficient input

inp array of position measurements input

npts number of points in input position input

T sampling interval input

nvar desired noise variance input

residual array of position error (residual) output

estimate array of predicted position output
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Note that “ghk_tracker.m” uses MATLAB’s function “normrnd.m” to gener-
ate zero mean Gaussian noise, which is part of MATLAB’s Statistics Toolbox.
If this toolbox is not available to the user, then “ghk_tracker.m” function-call
must be modified to

[residual, estimate] = ghk_tracker1 (X0, smoocof, inp, npts, T)

which is also part of Listing 9.2. In this case, noise measurements are either to
be considered unavailable or are part of the position input array.

To illustrate how to use the functions ghk_tracker.m and ghk_tracker1.m,
consider the inputs shown in Figs. 9.22 and 9.23. Fig. 9.22 assumes an input
with lazy maneuvering, while Fig. 9.23 assumes an aggressive maneuvering
case. For this purpose, the program called “fig9_21.m” was written. It is given
in Listing 9.3 in  Section 9.11. 

Figs. 9.24 and 9.25 show the residual error and predicted position corre-
sponding (generated using the program “fig9_21.m”) to Fig. 9.22 for two
cases: heavy smoothing and little smoothing with and without noise. The noise
is white Gaussian with zero mean and variance of . Figs. 9. 26 and
9.27 show the residual error and predicted position corresponding (generated
using the program “fig9_20.m”) to Fig. 9.23 with and without noise.

Nv
2 0.05=

 Figure 9.22. Position (truth-data); lazy maneuvering. 
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 Figure 9.23. Position (truth-data); aggressive maneuvering. 

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0
0

0 .5

1

1 .5

2

2 .5

3

3 .5

S a m p le  n u m b e r

P
o

s
it

io
n

 Figure 9.24a-1. Predicted and true position.  (i.e., large gain 
coefficients). No noise present.
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 Figure 9.24a-2. Position residual (error). Large gain coefficients. 
No noise. The error settles to zero fairly quickly.
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 Figure 9.24b-1. Predicted and true position.  (i.e., small 
gain coefficients). No noise present.
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 Figure 9.24b-2. Position residual (error). Small gain coefficients. No noise. 
It takes the filter longer time for the error to settle down.
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 Figure 9.25a-1. Predicted and true position.  (i.e., large 
gain coefficients). Noise is present.
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 Figure 9.25a-2. Position residual (error). Large gain coefficients. Noise present. 
The error settles down quickly. The variation is due to noise.
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 Figure 9.25b-1. Predicted and true position.  (i.e., small gain 
coefficients). Noise is present.
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 Figure 9.25b-2. Position residual (error). Small gain coefficients. Noise present. 
The error requires more time before settling down. The 
variation is due to noise.
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 Figure 9.26a. Predicted and true position.  (i.e., large gain 
coefficients). Noise is present.
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 Figure 9.26b. Position residual (error). Large gain coefficients. No noise. 
The error settles down quickly.
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 Figure 9.27a. Predicted and true position.  (i.e., small gain coefficients). 
Noise is present.
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9.9. The Kalman Filter

The Kalman filter is a linear estimator that minimizes the mean squared error
as long as the target dynamics are modeled accurately. All other recursive fil-
ters, such as the  and the Benedict-Bordner filters, are special cases of the
general solution provided by the Kalman filter for the mean squared estimation
problem. Additionally, the Kalman filter has the following advantages:

1. The gain coefficients are computed dynamically. This means that the same 
filter can be used for a variety of maneuvering target environments. 

2.  The Kalman filter gain computation adapts to varying detection histories, 
including missed detections.

3. The Kalman filter provides an accurate measure of the covariance matrix. 
This allows for better implementation of the gating and association pro-
cesses. 

4. The Kalman filter makes it possible to partially compensate for the effects 
of mis-correlation and mis-association. 

Many derivations of the Kalman filter exist in the literature; only results are
provided in this chapter. Fig. 9.28 shows a block diagram for the Kalman filter.

 Figure 9.27b. Position residual (error). Small gain coefficients. Noise present. The 
error stays fairly large; however, its average is around zero.  The 
variation is due to noise.
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The Kalman filter equations can be deduced from Fig. 9.28. The filtering equa-
tion is

(9.127)

The measurement vector is

(9.128)

where  is zero mean, white Gaussian noise with covariance ,

(9.129)

The gain (weight) vector is dynamically computed as

(9.130)

where the measurement noise matrix  represents the predictor covariance
matrix, and is equal to

(9.131)

where  is the covariance matrix for the input ,

(9.132)
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 Figure 9.28. Structure of the Kalman filter.
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The corrector equation (covariance of the smoothed estimate) is

(9.133)

Finally, the predictor equation is 

(9.134)

9.9.1.  The Singer -Kalman Filter

 The Singer1 filter is a special case of the Kalman where the filter is gov-
erned by a specified target dynamic model whose acceleration is a random pro-
cess with autocorrelation function given by

 (9.135)

where  is the correlation time of the acceleration due to target maneuvering
or atmospheric turbulence. The correlation time  may vary from as low as
10 seconds for aggressive maneuvering to as large as 60 seconds for lazy
maneuvering cases. 

Singer defined the random target acceleration model by a first order Markov
process given by

(9.136)

where  is a zero mean, Gaussian random variable with unity variance,
 is the maneuver standard deviation, and the maneuvering correlation coef-

ficient  is given by 

(9.137)

The continuous time domain system that corresponds to these conditions is the
same as the Wiener-Kolmogorov whitening filter which is defined by the dif-
ferential equation 

(9.138)

1. Singer, R. A., Estimating Optimal Tracking Filter Performance for Manned Maneu-
vering Targets, IEEE Transaction on Aerospace and Electronics, AES-5, July, 1970, 
pp. 473-483.
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where  is equal to . The maneuvering variance using Singer’s model
is given by

(9.139)

 is the maximum target acceleration with probability  and the term
 defines the probability that the target has no acceleration. 

The transition matrix that corresponds to the Singer filter is given by

(9.140)

Note that when  is small (the target has constant acceleration),
then Eq. (9.140) reduces to Eq. (9.114). Typically, the sampling interval  is
much less than the maneuvering time constant ; hence, Eq. (9.140) can be
accurately replaced by its second order approximation. More precisely,

 (9.141)

The covariance matrix was derived by Singer, and it is equal to

(9.142)

where
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(9.146)

(9.147)

(9.148)

Two limiting cases are of interest:

1. The short sampling interval case ( ),

(9.149)

and the state transition matrix is computed from Eq. (9.141) as

(9.150)

which is the same as the case for the  filter (constant acceleration).

2. The long sampling interval ( ). This condition represents the case 

when acceleration is a white noise process. The corresponding covariance 
and transition matrices are, respectively, given by

(9.151)

 (9.152)

Note that under the condition that , the cross correlation terms  and
 become very small. It follows that estimates of acceleration are no longer
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available, and thus a two state filter model can be used to replace the three state
model. In this case,

(9.153)

(9.154)

9.9.2. Relationship between Kalman and  Filters

The relationship between the Kalman filter and the  filters can be easily
obtained by using the appropriate state transition matrix , and gain vector 
corresponding to the  in Eq. (9.127). Thus,

(9.155)

with (see Fig. 9.21) 

(9.156)

(9.157)

(9.158)

Comparing the previous three equations with the  filter equations yields

(9.159)

Additionally, the covariance matrix elements are related to the gain coeffi-
cients by
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(9.160)

Eq. (9.160) indicates that the first gain coefficient depends on the estimation
error variance of the total residual variance, while the other two gain coeffi-
cients are calculated through the covariances between the second and third
states and the first observed state.

MATLAB Function “kalman_filter.m”

The function “kalman_filter.m” implements a state Singer-  Kalman fil-
ter. It is given in Listing 9.4 in  Section 9.11. The syntax is as follows:

[residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar)

where

Note that “kalman_filter.m” uses MATLAB’s function “normrnd.m” to gener-
ate zero mean Gaussian noise, which is part of MATLAB’s Statistics Toolbox. 

To illustrate how to use the functions “kalman_filter.m”, consider the inputs
shown in Figs. 9.22 and 9.23. Figs. 9.29 and 9.30 show the residual error and
predicted position corresponding to Figs. 9.22 and 9.23. These plots can be
reproduced using the program “fig9_28.m” given in Listing 9.5 in  Section
9.11.

Symbol Description Status

npts number of points in input position input

T sampling interval input

X0 initial state vector input

inp input array input

R noise variance see Eq. (9-129) input

nvar desired state noise variance input

residual array of position error (residual) output

estimate array of predicted position output

k1

k2

k3

1

C11 Nv
2+

--------------------
C11

C12

C13

=

-67
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 Figure 9.29a. True and predicted positions. Lazy maneuvering. Plot produced 
using the function “kalman_filter.m”.
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 Figure 9.29b. Residual corresponding to Fig. 9.29a.
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 Figure 9.30a. True and predicted positions. Aggressive maneuvering. Plot 
produced using the function “kalman_filter.m”.
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 Figure 9.30b. Residual corresponding to Fig. 9.30a.
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9.10. “MyRadar” Design Case Study - Visit 9

9.10.1.Problem Statement

Implement a Kalman filter tracker into the “MyRadar” design case study.

9.10.2. A Design1

For this purpose, the MATLAB GUI workspace entitled “kalman_gui.m”
was developed. It is shown in Fig. 9.31. In this design, the inputs can be initial-
ized to correspond to either target type (aircraft and missile). For example,
when you click on the button “ResetMissile,” the initial x-, y-, and z-detection
coordinates for the missile are loaded into the “Starting Location” field. The
corresponding target velocity is also loaded in the “velocity in x direction”
field. Finally, all other fields associated with the Kalman filter are also loaded
using default values that are appropriate for this design case study. Note that
the user can alter these entries as appropriate. 

This program generates a fictitious trajectory for the selected target type.
This is accomplished using the function “maketraj.m”. It is given in Listing
9.6 in Section 9.11. The user can either use this program, or import their own
specific trajectory. The function “maketraj.m” assumes constant altitude, and
generates a manuevering trajectory in the x-y plane, as shown in Fig. 9.32. This
trajectory can be changed using the different fields in the “trajectory Parame-
ter”  fields. 

Next the program corrupts the trajectory by adding white Guassian noise to
it. This is accomplished by the function “addnoise.m” which is given in List-
ing 9.7 in Section 9.11. A six-state Kalman filter named “kalfilt.m”  is then uti-
lized to perform the tracking task. This function is given in Listing 9.8. 

The azimuth, elevation, and range errors are input to the program using their
corresponding fields on the GUI. In this example, these entries are assumed
constant throughout the simulation. In practice, this is not true and these values
will change. They are caluclated by the radar signal processor on a “per pro-
cessing interval” basis and then are input into the tracker. For example, the
standard deviation of the error in the range measurement is 

(9.161)

1. The MATLAB code in this section was developed by Mr. David Hall, Consultant to 
Decibel Research, Inc., Huntsville, Alabama.  

NR
' R

2 SNR9
------------------------ c

2B 2 SNR9
--------------------------------= =
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 Figure 9.31. MATLAB GUI workspace associated with the “MyRadar” design 
case study- visit 9.



where  is the range resolution,  is the speed of light,  is the bandwidth,
and  is the measurement SNR. 

The standard deviation of the error in the velocity measurement is 

(9.162)

where  is the wavelength and  is the uncompressed pulsewidth. The stan-
dard deviation of the error in the angle measurement is

(9.163)

where  is the antenna beamwidth of the angular coordinate of the measure-
ment (azimuth and elevation). 

In this example, the radar is located at . This simulation
calculates and plots the following outputs:

Fig. 9.32 through Fig. 9.42 shows typical outputs produced using this simu-
lation for the missile. 

TABLE 9.1. Output list generated by the “kalman_gui.m” simulation

Figure # Description

9.32 uncorrupted input trajectory

9.33 corrupted input trajectory

9.34 corrupted and uncorrupted x-position

9.35 corrupted and uncorrupted y-position

9.36 corrupted and uncorrupted z-position

9.37 corrupted and filtered x-, y- and z-positions 

9.38 predicted x-, y-, and z- velocities 

9.39 position residuals

9.40 velocity residuals

9.41 covariance matrix components versus time

9.42 Kalman filter gains versus time

' R c B
SNR

Nv
5

2? 2 SNR9
-------------------------------=

5 ?

Na
V

1.6 2 SNR9
--------------------------------=

V

x y zD D# $ 0 0 0D D# $=
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 Figure 9.32. Missile uncorrupted trajectory.

 Figure 9.33. Missile corrupted trajectory.
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 Figure 9.34. Missile x-position from 153 to 160 seconds.

 Figure 9.35. Missile y-position.
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 Figure 9.36. Missile z-position.

 Figure 9.37. Missile trajectory and filtered trajectory.
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 Figure 9.38. Missile velocity filtered.

 Figure 9.39. Missile position residuals.
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 Figure 9.40. Missile velocity residuals.

 Figure 9.41. Missile covariance matrix components versus time.
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9.11. MATLAB Program and Function Listings

This section contains listings of all MATLAB programs and functions used
in this chapter. Users are encouraged to rerun this code with different inputs in
order to enhance their understanding of the theory.

Listing 9.1. MATLAB Function “mono_pulse.m”
function mono_pulse(phi0)
eps = 0.0000001;
angle = -pi:0.01:pi;
y1 = sinc(angle + phi0);
y2 = sinc((angle - phi0));
ysum = y1 + y2;
ydif = -y1 + y2;
figure (1)
plot (angle,y1,'k',angle,y2,'k');
grid;
xlabel ('Angle - radians')
ylabel ('Squinted patterns')

 Figure 9.42. Kalman filter gains versus time.
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figure (2)
plot(angle,ysum,'k');
grid;
xlabel ('Angle - radians')
ylabel ('Sum pattern')
figure (3)
plot (angle,ydif,'k');
grid;
xlabel ('Angle - radians')
ylabel ('Difference pattern')
angle = -pi/4:0.01:pi/4;
y1 = sinc(angle + phi0);
y2 = sinc((angle - phi0));
ydif = -y1 + y2;
ysum = y1 + y2;
dovrs = ydif ./ ysum;
figure(4)
plot (angle,dovrs,'k');
grid;
xlabel ('Angle - radians')
ylabel ('voltage gain')

Listing 9.2. MATLAB Function “ghk_tracker.m”
function [residual, estimate] = ghk_tracker (X0, smoocof, inp, npts, T, nvar)
rn = 1.;
% read the initial estimate for the state vector
X = X0; 
theta = smoocof;
%compute values for alpha, beta, gamma
w1 = 1. - (theta^3);
w2 = 1.5 * (1. + theta) * ((1. - theta)^2) / T;
w3 = ((1. - theta)^3) / (T^2);
% setup the transition matrix PHI
PHI = [1. T (T^2)/2.;0. 1. T;0. 0. 1.];
while rn < npts ;
   %use the transition matrix to predict the next state
   XN = PHI * X;
   error = (inp(rn) + normrnd(0,nvar)) - XN(1);
   residual(rn) = error;
   tmp1 = w1 * error;
   tmp2 = w2 * error;
   tmp3 = w3 * error;
   % compute the next state
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   X(1) = XN(1) + tmp1;
   X(2) = XN(2) + tmp2;
   X(3) = XN(3) + tmp3;
   estimate(rn) = X(1);
   rn = rn + 1.;
end
return

MATLAB Function “ghk_tracker1.m”

function [residual, estimate] = ghk_tracker1 (X0, smoocof, inp, npts, T)
rn = 1.;
% read the initial estimate for the state vector
X = X0; 
theta = smoocof;
%compute values for alpha, beta, gamma
w1 = 1. - (theta^3);
w2 = 1.5 * (1. + theta) * ((1. - theta)^2) / T;
w3 = ((1. - theta)^3) / (T^2);
% setup the transition matrix PHI
PHI = [1. T (T^2)/2.;0. 1. T;0. 0. 1.];
while rn < npts ;
   %use the transition matrix to predict the next state
   XN = PHI * X;
   error = inp(rn)  - XN(1);
   residual(rn) = error;
   tmp1 = w1 * error;
   tmp2 = w2 * error;
   tmp3 = w3 * error;
   % compute the next state
   X(1) = XN(1) + tmp1;
   X(2) = XN(2) + tmp2;
   X(3) = XN(3) + tmp3;
   estimate(rn) = X(1);
   rn = rn + 1.;
end
return

Listing 9.3. MATLAB Program “fig9_21.m”
clear all
eps = 0.0000001;
npts = 5000;
del = 1./ 5000.;
t = 0. : del : 1.;
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% generate input sequence
inp = 1.+ t.^3 + .5 .*t.^2 + cos(2.*pi*10 .* t) ;
% read the initial estimate for the state vector
X0 = [2,.1,.01]';
% this is the update interval in seconds
T = 100. * del;
% this is the value of the smoothing coefficient
xi = .91;
[residual, estimate] = ghk_tracker (X0, xi, inp, npts, T, .01);
figure(1)
plot (residual(1:500))
xlabel ('Sample number')
ylabel ('Residual error')
grid
figure(2)
NN = 4999.;
n = 1:NN;
plot (n,estimate(1:NN),'b',n,inp(1:NN),'r')
xlabel ('Sample number')
ylabel ('Position')
legend ('Estimated','Input')

Listing 9.4. MATLAB Function “kalman_filter.m”
function [residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar)
N = npts;
rn=1;
% read the initial estimate for the state vector
X = X0;
% it is assumed that the measurement vector H=[1,0,0]
% this is the state noise variance
VAR = nvar;
% setup the initial value for the prediction covariance.
S = [1. 1. 1.; 1. 1. 1.; 1. 1. 1.];
% setup the transition matrix PHI
PHI = [1. T (T^2)/2.; 0. 1. T; 0. 0. 1.];
% setup the state noise covariance matrix
Q(1,1) = (VAR * (T^5)) / 20.;
Q(1,2) = (VAR * (T^4)) / 8.;
Q(1,3) = (VAR * (T^3)) / 6.;
Q(2,1) = Q(1,2);
Q(2,2) = (VAR * (T^3)) / 3.;
Q(2,3) = (VAR * (T^2)) / 2.;
Q(3,1) = Q(1,3);
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Q(3,2) = Q(2,3);
Q(3,3) = VAR * T;
while rn < N ;
   %use the transition matrix to predict the next state
   XN = PHI * X;
   % Perform error covariance extrapolation
   S = PHI * S * PHI' + Q;
   % compute the Kalman gains
   ak(1) = S(1,1) / (S(1,1) + R);
   ak(2) = S(1,2) / (S(1,1) + R);
   ak(3) = S(1,3) / (S(1,1) + R);
   %perform state estimate update:
   error = inp(rn) + normrnd(0,R) - XN(1);
   residual(rn) = error;
   tmp1 = ak(1) * error;
   tmp2 = ak(2) * error;
   tmp3 = ak(3) * error;
   X(1) = XN(1) + tmp1;
   X(2) = XN(2) + tmp2;
   X(3) = XN(3) + tmp3;
   estimate(rn) = X(1);
   % update the error covariance
   S(1,1) = S(1,1) * (1. -ak(1));
   S(1,2) = S(1,2) * (1. -ak(1));
   S(1,3) = S(1,3) * (1. -ak(1));
   S(2,1) = S(1,2);
   S(2,2) = -ak(2) * S(1,2) + S(2,2);
   S(2,3) = -ak(2) * S(1,3) + S(2,3);
   S(3,1) = S(1,3);
   S(3,3) = -ak(3) * S(1,3) + S(3,3);
   rn = rn + 1.;
end

Listing 9.5. MATLAB Program “fig9_28.m”
clear all
npts = 2000;
del = 1/2000;
t = 0:del:1;
inp = (1+.2 .* t + .1 .*t.^2) + cos(2. * pi * 2.5 .* t);
X0 = [1,.1,.01]';
% it is assumed that the measurement vector H=[1,0,0]
% this is the update interval in seconds
T = 1.;
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% enter the measurement noise variance
R = .035;
% this is the state noise variance
nvar = .5;
[residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar);
figure(1)
plot(residual)
xlabel ('Sample number')
ylabel ('Residual')
figure(2)
subplot(2,1,1)
plot(inp)
axis tight
ylabel ('position - truth')
subplot(2,1,2)
plot(estimate)
axis tight
xlabel ('Sample number')
ylabel ('Predicted position')

Listing 9.6. MATLAB Function “maketraj.m”
function [times , trajectory] = maketraj(start_loc, xvelocity, yamp, yperiod, 
zamp, zperiod, samplingtime, deltat)
% maketraj.m
% by David J. Hall
% for Bassem Mahafza
% 17 June 2003
% 17:01
% USAGE:  [times , trajectory] = maketraj(start_loc, xvelocity, yamp, yperiod, 
zamp, zperiod, samplingtime, deltat)
% NOTE: all coordinates are in radar reference coordinates.
% INPUTS
% name         dimension explanation                             units
%------        ------    ---------------                         -------
% start_loc     3 X 1    starting location of target             m
% xvelocity     1        velocity of target                      m/s
% yamp          1        amplitude of oscillation y direction    m
% yperiod       1        period of oscillation y direction       m
% zamp          1        amplitude of oscillation z direction    m
% zperiod       1        period of oscillation z direction       m
% samplingtime  1        length of interval of trajectory        sec
% deltat        1        time between samples                    sec
%
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% OUTPUTS
%
% name         dimension               explanation              units
%------        ----------              ---------------          ------
% times        1 X samplingtime/deltat vector of times            
%                                      corresponding to samples sec
% trajectory   3 X samplingtime/deltat trajectory x,y,z         m
%
times = 0: deltat: samplingtime ;
x = start_loc(1)+xvelocity.*times ;
if yperiod~=0
   y = start_loc(2)+yamp*cos(2*pi*(1/yperiod).*times) ;
else
   y = ones(1, length(times))*start_loc(2) ;
end
if zperiod~=0
   z = start_loc(3)+zamp*cos(2*pi*(1/zperiod).*times)  ;
else
   z = ones(1, length(times))*start_loc(3) ;    
end
trajectory = [x ; y  ; z] ;

Listing 9.7. MATLAB Function “addnoise.m”
function [noisytraj ] = addnoise(trajectory, sigmaaz, sigmael, sigmarange )
% addnoise.m
% by David J. Hall
% for Bassem Mahafza
% 10 June 2003
% 11:46
% USAGE: [noisytraj ] = addnoise(trajectory, sigmaaz, sigmael, sigmarange )
% INPUTS
% name         dimension  explanation                             units
%------        ------     ---------------                         -------
% trajectory   3 X POINTS trajectory in radar reference coords    [m;m;m]
% sigmaaz      1          standard deviation of azimuth error     radians
% sigmael      1          standard deviation of elevation error   radians
% sigmarange   1          standard deviation of range error       m
%
% OUTPUTS
% name         dimension   explanation                            units
%------        ------      ---------------                        -------
% noisytraj    3 X POINTS  noisy trajectory                       [m;m;m]
noisytraj = zeros(3, size(trajectory,2)) ;
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for loop = 1 : size(trajectory,2)
   x = trajectory(1,loop);
   y = trajectory(2,loop);
   z = trajectory(3,loop);
   azimuth_corrupted =  atan2(y,x) + sigmaaz*randn(1) ;
   elevation_corrupted = atan2(z, sqrt(x^2+y^2)) + sigmael*randn(1) ;
   range_corrupted = sqrt(x^2+y^2+z^2)  + sigmarange*randn(1) ;
   x_corrupted = 
range_corrupted*cos(elevation_corrupted)*cos(azimuth_corrupted) ;
   y_corrupted = 
range_corrupted*cos(elevation_corrupted)*sin(azimuth_corrupted) ;
   z_corrupted = range_corrupted*sin(elevation_corrupted) ;
   noisytraj(:,loop) = [x_corrupted ; y_corrupted; z_corrupted ] ;
end % next loop

Listing 9.8. MATLAB Function “kalfilt.m”
function [filtered, residuals , covariances, kalmgains] = kalfilt(trajectory, x0, 
P0, phi, R, Q )
% kalfilt.m
% by David J. Hall
% for Bassem Mahafza
% 10 June 2003
% 11:46
% USAGE: [filtered, residuals , covariances, kalmgains] = kalfilt(trajectory, 
x0, P0, phi, R, Q )
%
% INPUTS
% name         dimension                    explanation                                  units
%------        ------                       ---------------                              -------
% trajectory   NUMMEASUREMENTS X NUMPOINTS  trajectory in radar 
reference coords         [m;m;m]
% x0           NUMSTATES X 1                initial estimate of state vector             m, 
m/s
% P0           NUMSTATES X NUMSTATES        initial estimate of covariance 
matrix        m, m/s
% phi          NUMSTATES X NUMSTATES        state transition matrix                      
-
% R            NUMMEASUREMENTS X NUMMEASUREMENTS   measurement 
error covariance matrix   m
% Q            NUMSTATES X NUMSTATES        state error covariance matrix                
m, m/s
%
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% OUTPUTS
% name         dimension                    explanation                                  units
%------        ------                       ---------------                              -------
% filtered     NUMSTATES X NUMPOINTS        filtered trajectory x,y,z pos, vel    
[m; m/s; m; m/s; m; m/s]
% residuals    NUMSTATES X NUMPOINTS        residuals of filtering                
[m;m;m]
% covariances  NUMSTATES X NUMPOINTS        diagonal of covariance 
matrix         [m;m;m]
% kalmgains    (NUMSTATES X NUMMEASUREMENTS) 
%                 X NUMPOINTS               Kalman gain matrix                    -
NUMSTATES = 6 ;
NUMMEASUREMENTS = 3 ;
NUMPOINTS = size(trajectory, 2) ;
% initialize output matrices
filtered = zeros(NUMSTATES, NUMPOINTS) ;
residuals = zeros(NUMSTATES, NUMPOINTS) ;
covariances = zeros(NUMSTATES, NUMPOINTS) ;
kalmgains = zeros(NUMSTATES*NUMMEASUREMENTS, NUMPOINTS) ;
% set matrix relating measurements to states
H = [1 0 0 0 0 0 ; 0 0 1 0 0 0 ; 0 0 0 0 1 0];
xhatminus = x0 ;
Pminus = P0 ;
 for loop = 1: NUMPOINTS
    % compute the Kalman gain
   K = Pminus*H'*inv(H*Pminus*H' + R) ;
   kalmgains(:,loop) = reshape(K, NUMSTATES*NUMMEASUREMENTS, 1) ;
   % update the estimate with the measurement z
   z = trajectory(:,loop) ;
   xhat = xhatminus + K*(z - H*xhatminus) ;
   filtered(:,loop) = xhat ;
   residuals(:,loop) = xhat - xhatminus ;
   % update the error covariance for the updated estimate
   P = ( eye(NUMSTATES, NUMSTATES) - K*H)*Pminus ;
   covariances(:,loop) = diag(P) ;  % only save diagonal of covariance matrix
   % project ahead
   xhatminus_next = phi*xhat ;
   Pminus_next = phi*P*phi' + Q ;
    xhatminus = xhatminus_next ;
   Pminus = Pminus_next ;
end 
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10.1.  Introduction

Any deliberate electronic effort intended to disturb normal radar operation is 
usually referred to as an Electronic Countermeasure (ECM). This may also 
include chaff, radar decoys, radar RCS alterations (e.g., radio frequency 
absorbing materials), and, of course, radar jamming. 

In general, ECM is used by the offense to accomplish one, several, or possi-
bly all of the following objectives: (1) deny proper target detection; (2) gener-
ate operator confusion and / or deception; (3) force delays in detection and 
tracking initiation; (4) generate false tracks of non-real targets; (5) overload 
the radar computer with an excessive number of targets; (6) deny accurate 
measurements of the target range and range rate; (7) force dropped tracks; and 
(8) introduce errors in target position and range rate. Alternatively, the defense 
may utilize Electronic counter-countermeasures (ECCM) to overcome and 
mitigate the effects of ECM on the radar. When deployed properly, ECCM 
techniques and / or hardware can have the following effects: (1) prevent 
receiver saturation; (2) maintain a reasonable CFAR rate; (3) enhance the sig-
nal to jammer ratio; (4) properly identify and discriminate directional interfer-
ence; (5) reject invalid targets; and (6) maintain true target tracks.

ECM techniques can be exploited by a radar system in many different ways 
and can be categorized into two classes:

1. Mr. J. Michael Madewell is with the US Army Space and Missile Defense Com-
mand in Huntsville, Alabama.
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1. Denial ECM techniques: Denial ECM techniques can be either active or 
passive. Active denial ECM techniques include: CW, short pulse, long 
pulse, spot noise, barrage noise, and sidelobe repeaters. Passive ECM tech-
niques include chaff and Radar Absorbing Material (RAM).

2. Deception ECM techniques: Deception ECM techniques are also broken 
down into active and passive techniques. Active deception ECM techniques 
include repeater jammers and false target generators. Passive deception 
ECM include chaff and RAM.   

10.2. Jammers

Jammers can be categorized into two general types: (1) barrage jammers and 
(2) deceptive jammers (repeaters). When strong jamming is present, detection 
capability is determined by receiver signal-to-noise plus interference ratio 
rather than SNR. In fact, in most cases, detection is established based on the 
signal-to-interference ratio alone.

Barrage jammers attempt to increase the noise level across the entire radar 
operating bandwidth. Consequently, this lowers the receiver SNR, and, in turn, 
makes it difficult to detect the desired targets. This is the reason why barrage 
jammers are often called maskers (since they mask the target returns). Barrage 
jammers can be deployed in the main beam or in the sidelobes of the radar 
antenna. If a barrage jammer is located in the radar main beam, it can take 
advantage of the antenna maximum gain to amplify the broadcasted noise sig-
nal. Alternatively, sidelobe barrage jammers must either use more power, or 
operate at a much shorter range than main beam jammers. Main beam barrage 
jammers can be deployed either on-board the attacking vehicle, or act as an 
escort to the target. Sidelobe jammers are often deployed to interfere with a 
specific radar, and since they do not stay close to the target, they have a wide 
variety of stand-off deployment options. 

Repeater jammers carry receiving devices on board in order to analyze the 
radar’s transmission, and then send back false target-like signals in order to 
confuse the radar. There are two common types of repeater jammers: spot noise 
repeaters and deceptive repeaters. The spot noise repeater measures the trans-
mitted radar signal bandwidth and then jams only a specific range of frequen-
cies. The deceptive repeater sends back altered signals that make the target 
appear in some false position (ghosts). These ghosts may appear at different 
ranges or angles than the actual target. Furthermore, there may be several 
ghosts created by a single jammer. By not having to jam the entire radar band-
width, repeater jammers are able to make more efficient use of their jamming 
power. Radar frequency agility may be the only way possible to defeat spot 
noise repeaters.
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In general a jammer can be identified by its effective operating bandwidth 
 and by its Effective Radiated Power (ERP), which is proportional to the 

jammer transmitter power . More precisely,

(10.1)

where  is the jammer antenna gain and  is the total jammer losses. The 
effect of a jammer on a radar is measured by the Signal-to-Jammer ratio (S/J). 

10.2.1. Self-Screening Jammers (SSJ)

Self-screening jammers, also known as self-protecting jammers and as main 
beam jammers, are a class of ECM systems carried on the vehicle they are pro-
tecting. Escort jammers (carried on vehicles that accompany the attacking 
vehicles) can also be treated as SSJs if they appear at the same range as that of 
the target(s). 

Assume a radar with an antenna gain , wavelength , aperture , band-
width , receiver losses , and peak power . The single pulse power 
received by the radar from a target of RCS , at range , is

(10.2)

 is the radar pulsewidth. The power received by the radar from an SSJ jam-
mer at the same range is

(10.3)

where  are, respectively, the jammer’s peak power, antenna gain, 
operating bandwidth, and losses. Using the relation

(10.4)

then Eq. (10.3) can be written as

(10.5)

Note that . This is needed in order to compensate for the fact that the 
jammer bandwidth is usually larger than the operating bandwidth of the radar. 
Jammers are normally designed to operate against a wide variety of radar sys-
tems with different bandwidths. 
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Substituting Eq. (10.1) into Eq. (10.5) yields,

(10.6)

Thus, S/J ratio for a SSJ case is obtained from Eqs. (10.6) and (10.2),

  (10.7)

and when pulse compression is used, with time-bandwidth-product , then 
Eq. (10.7) can be written as

(10.8)

Note that to obtain Eq. (10.8), one must multiply Eq. (10.7) by the factor 
 and use the fact that .

The jamming power reaches the radar on a one-way transmission basis, 
whereas the target echoes involve two-way transmission. Thus, the jamming 
power is generally greater than the target signal power. In other words, the ratio 

 is less than unity. However, as the target becomes closer to the radar, 
there will be a certain range such that the ratio  is equal to unity. This 
range is known as the cross-over range. The range window where the ratio 

 is sufficiently larger than unity is denoted as the detection range. In order 
to compute the crossover range , set  to unity in Eq. (10.8) and solve 
for range. It follows that

(10.9)

MATLAB Program “ssj_req.m”

The program “ssj_req.m” implements Eqs. (10.9); it is given in Listing 10.1 
in Section 10.5. This program calculates the cross-over range and generates 
plots of relative  and  versus range normalized to the cross-over range, as 
illustrated in Fig. 10.1a. 

In this example, the following parameters were utilized: radar peak power 
, jammer peak power , radar operating bandwidth 

, jammer bandwidth , radar and jammer losses 
, target cross section , radar antenna gain 

, jammer antenna gain , the radar operating frequency 
is . The syntax is as follows:
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[BR_range] = ssj_req (pt, g, freq, sigma, br, loss, pj, bj, gj, lossj)

where

Symbol Description Units Status

pt radar peak power W input

g radar antenna gain dB input

freq radar operating frequency Hz input

sigma target cross section m2 input

br radar operating bandwidth Hz input

loss radar losses dB input

pj jammer peak power W input

bj jammer bandwidth Hz input

gj jammer antenna gain dB input

lossj jammer losses dB input

BR_range cross-over range Km output

 Figure 10.1a. Target and jammer echo signals. Plots were generated using 
the program “ssj_req.m” and using the input parameters 
defined on the previous page.
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Burn-through Range

If jamming is employed in the form of Gaussian noise, then the radar 
receiver has to deal with the jamming signal the same way it deals with noise 
power in the radar. Thus, detection, tracking, and other functions of the radar 
signal and data processors are no longer dependent on the SNR. In this case, 
the S/(J+N) ratio must be calculated. More precisely,

(10.10)

where  is Boltzman’s constant and  is the effective noise temperature. 

The S/(J+N) ratio should be used in place of the SNR when calculating the 
the radar equation and when computing the probability of detection. Further-
more, S/(J+N) must also be used in place of the SNR when using coherent or 
non-coherent pulse integration. 

 Figure 10.1b. Burn-through range versus jammer and radar peak powers 
corresponding to example used in generating Fig. 10.1a. 

S
J N+
-------------

PtG" Ar#

4$% &2R4L
-----------------------* +

, -

ERP% &Ar

4$R2BJ

---------------------- kT0+
* +
. /
, -
-------------------------------------------=

k T0

© 2004 by Chapman & Hall/CRC CRC Press LLC



The range at which the radar can detect and perform proper measurements 
for a given S/(J+N) value is defined as the burn-through range. It is given by

 (10.11)

MATLAB Function “sir.m”

The MATLAB function “sir.m”  implements Eq. (10.10). It generates plots 
of the S/(J+N) versus detection range and plots of the burn-through range ver-
sus the jammer ERP. It is given in Listing 10.2 in Section 10.5. The syntax is as 
follows:

[SIR] = sir (pt, g, sigma, freq, tau,T0, loss, R, pj, bj, gj, lossj)

where

Fig. 10.2 shows some typical outputs generated by this function when the 
inputs are as follows: 

Symbol Description Units Status

pt radar peak power W input

g radar antenna gain dB input

sigma target cross section m2 input

freq radar operating frequency Hz input

tau radar pulsewidth seconds input

T0 effective noise temperature Kelvin input

loss radar losses dB input

R range. can be single value or a vector Km input

pj jammer peak power W input

bj jammer bandwidth Hz input

gj jammer antenna gain dB input

lossj jammer losses dB input

SIR S/(J+N) dB output

Input Parameter Value

pt 50KW

g 35 dB

sigma 10 square meters

freq 5.6 GHz

RBT
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MATLAB Function “burn_thru.m”

The MATLAB function “burn_thru.m” implements Eq. (10.10) and (10.11). 
It generates plots of the S/(J+N) versus detection range and plots of the burn-
through range versus the jammer ERP. It is given in Listing 10.3 in Section 
10.5. The syntax is as follows:

[Range] = burn_thru (pt, g, sigma, freq, tau, T0, loss, pj, bj, gj, lossj, sir0, 
ERP)

tau 50 micro-seconds

T0 290

loss 5 dB

R linspace(10,400,5000) Km

pj 200 Watts

bj 50 MHz

gj 10 dB

lossj 0.3 dB

Input Parameter Value

 Figure 10.2. S/(J+N) versus detection range.   
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where

Fig. 10.3 shows some typical outputs generated by this function when the 
inputs are as follows: 

Symbol Description Units Status

pt radar peak power W input

g radar antenna gain dB input

sigma target cross section m2 input

freq radar operating frequency Hz input

tau radar pulsewidth seconds input

T0 effective noise temperature Kelvin input

loss radar losses dB input

pj jammer peak power W input

bj jammer bandwidth Hz input

gj jammer antenna gain dB input

lossj jammer losses dB input

sir0 desired SIR dB input

ERP desired ERP. can be a vector Watts input

Range burn-through range Km output

Input Parameter Value

pt 50KW

g 35 dB

sigma 10 square meters

freq 5.6 GHz

tau 0.5 milli-seconds

T0 290

loss 5 dB

pj 200 Watts

bj 500 MHz

gj 10 dB

lossj 0.3 dB

sir0 15dB

ERP linspace(1, 1000, 1000) W
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10.2.2. Stand-Off Jammers (SOJ)

Stand-off jammers (SOJ) emit ECM signals from long ranges which are 
beyond the defense’s lethal capability. The power received by the radar from 
an SOJ jammer at range  is 

(10.12)

where all terms in Eq. (10.12) are the same as those for the SSJ case except for 
. The gain term  represents the radar antenna gain in the direction of the 

jammer and is normally considered to be the sidelobe gain.

The SOJ radar equation is then computed as

(10.13)

and when pulse compression is used, with time-bandwidth-product  then 
Eq. (10.13) can be written as

 Figure 10.3. Burn-through range versus ERP. (S/(J+N) = 15 dB.
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(10.14)

Again, the cross-over range is that corresponding to ; it is given by

(10.15)

MATLAB Program “soj_req.m”

The program “soj_req.m” implements Eqs. (10.15); it is given in Listing 
10.4 in Section 10.5. The inputs to the program “soj_req.m” are the same as in 
the SSJ case, with two additional inputs: the radar antenna gain on the jammer 

 and radar-to-jammer range . This program generates the same types of 
plots as in the case of the SSJ. Typical output is in Fig. 10.4 utilizing the same 
parameters as those in the SSJ case, with jammer peak power , 
jammer antenna gain , radar antenna gain on the jammer 

, and radar to jammer range . 
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 Figure 10.4. Target and jammer echo signals. Plots were generated using 
the program “soj_req.m”. 
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Again if the jamming is employed in the form of Gaussian noise, then the 
radar receiver has to deal with the jamming signal the same way it deals with 
noise power in the radar. In this case, the S/(J+N) is

(10.16)

10.3. Range Reduction Factor

Consider a radar system whose detection range  in the absence of jamming 
is governed by

(10.17)

The term Range Reduction Factor (RRF) refers to the reduction in the radar 
detection range due to jamming. More precisely, in the presence of jamming 
the effective radar detection range is

(10.18)

In order to compute RRF, consider a radar characterized by Eq. (10.17), and 
a barrage jammer whose output power spectral density is  (i.e., Gaussian-
like). Then the amount of jammer power in the radar receiver is

(10.19)

where  is the jammer effective temperature. It follows that the total jammer 
plus noise power in the radar receiver is given by 

(10.20)

In this case, the radar detection range is now limited by the receiver signal-to-
noise plus interference ratio rather than SNR. More precisely,

(10.21)

The amount of reduction in the signal-to-noise plus interference ratio because 
of the jammer effect can be computed from the difference between Eqs. 
(10.17) and (10.21). It is expressed (in dB) by
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 (10.22)

Consequently, the RRF is 

(10.23)

MATLAB Function “range_red_factor.m”

The function “range_red_factor.m” implements Eqs. (10.22) and (10.23); it 
is given in Listing 10.5 in Section 10.5. This function generates plots of RRF 
versus: (1) the radar operating frequency; (2) radar to jammer range; and (3) 
jammer power. Its syntax is as follows:

[RRF] = range_red_factor (te, pj, gj, g, freq, bj, rangej, lossj)

where

The following values were used to produce Figs. 10.5 through 10.7.

Symbol Description Units Status

te radar effective temperature K input

pj jammer peak power W input

gj jammer antenna gain dB input

g radar antenna gain on jammer dB input

freq radar operating frequency Hz input

bj jammer bandwidth Hz input

rangej radar to jammer range Km input

lossj jammer losses dB input

Symbol Value

te 500 kelvin

pj 500 KW

gj 3 dB

g 45 dB

freq 10 GHz

bj 10 MHZ

rangej 750 Km

lossj 1 dB

9 10.0 1
TJ

Te
-----+* +

, -log8=

RRF 10
9–

40
------

=
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 Figure 10.5. Range reduction factor versus radar operating wavelength. This 
plot was generated using the function “range_red_factor.m”.

 Figure 10.6. Range reduction factor versus radar to jammer range. This 
plot was generated using the function “range_red_factor.m”.
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10.4. Chaff

In principle, chaff is composed of a large number of small RF reflectors that 
have large RCS values. Chaff is usually deployed around the target as means of 
ECM. Historically, chaff was made of aluminum foil; however, in recent years 
most chaff is made of the more rigid fiber glass with conductive coating.

Chaff can be categorized into two types: (1) denial chaff and (2) deceptive 
chaff. In the first case, the chaff is deployed in order to screen targets that 
reside within or near the deployed chaff cloud. In the second case, the chaff 
cloud is dispersed to complicate and/or overwhelm the tracking and processing 
functions of the radar by luring the tracker away from the target and/or creating 
multiple false targets. 

The maximum chaff RCS occurs when the individual chaff-dipole length  
is one half the radar wavelength. The average RCS for a single dipole when 
viewed broadside is

(10.24)

 Figure 10.7. Range reduction factor versus jammer peak power. This plot was 
generated using the function “range_red_factor.m”.
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and for an average aspect angle, it drops to 

(10.25)

where the subscript  is used to indicate a single dipole, and  is the 
radar wavelength. The total chaff RCS within a radar resolution volume is

 (10.26)

where  is the total number of dipoles,  is the radar resolution cell vol-
ume,  is the chaff scattering volume, and  is the radar antenna beam 
shape loss for the chaff cloud. 

Echoes from a chaff cloud are typically random and have thermal noise-like 
characteristics because the individual clutter components (scatterers) have ran-
dom phases and amplitudes. Due to these characteristics, chaff is often statisti-
cally described by a probability distribution function. The type of distribution 
depends on the nature of the chaff cloud itself, radar operating parameters, and 
the viewing angle of the radar. Thus, the signal-to-chaff ratio is given by

(10.27)

where  is the target RCS and  is the chaff-cancellation-ratio. The value 
of CCR depends on the type of chaff mitigation techniques adopted by the 
radar signal and data processors. Since chaff is a form of volumetric clutter, 
signal processing and MTI techniques developed for rain and other forms of 
volumetric clutter can be applied to mitigate many of the effects of chaff. The 
next section provides an example of one such chaff mitigation technique.

10.4.1. Multiple MTI Chaff Mitigation Technique1

In this section, an algorithmic (schema) approach for detecting and tracking 
targets in highly cluttered environments is presented. The approach is to accu-
rately track the centroid of the chaff cloud using a combination of medium 
band (MB) and wide-band (WB) range resolution radar waveforms. 

At moderate Pulse Repetition Frequencies (PRFs), differential target veloci-
ties (about the centroid of the chaff cloud) are detected and tracked via Doppler 
banks of transversal filters that are tuned to detect the target velocity differ-

1. This section is extracted from the paper: J. Michael Madewell, Mitigating the Effects 
of Chaff in Ballistic Missile Defense, 2003 IEEE Radar Conference, Huntsville, AL, 
May 2003.
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ences. Through sensitivity analysis models, the theoretical lower bound on 
detectable differential target velocity as a function of the chaff cloud composi-
tion (e.g., clutter cross section, clutter spectral width, number of dipoles, and 
clutter velocity standard deviation) and radar related parameters (e.g., wave-
form frequency, bandwidth, integration times, PRFs, and signal-to-clutter 
ratio) are analyzed.

Overview

A five-step approach for detecting and tracking targets in highly cluttered 
environments has been developed. The five steps are:

1. Utilize a 1 to 5 percent MB bandwidth, high PRF radar waveform, to mea-
sure the chaff cloud range extent, centroid, and velocity growth rate.

2. Establish track on the centroid of the chaff cloud with the MB waveform. 

3. Based on course track information obtained in steps 1) and 2), implement 
WB track (10% or greater bandwidth waveform) on the cloud centroid.

4. Design a doppler bank of Moving Target Indicator (MTI) transversal filters 
to provide adequate gain at specific velocity increments about the WB cen-
troid track. 

5. Process the Multiple MTI (M2) doppler filters in parallel to detect differ-
ences in target Doppler (with respect to the cloud centroid track velocity). 
Targets are detected when integration at the correct Doppler difference 
occurs.

Operational concerns that have been identified for implementation of this 
approach include: (1) the ability of a radar to adequately track the centroid of 
the chaff cloud (i.e., track precision); (2) the ability of a radar to detect small 
differences in target Doppler relative to the chaff cloud centroid (i.e., Doppler 
precision); and (3) the ability of a filter (in this case, a bank of MTI's) to 
achieve the necessary processing gain to detect the target

Theoretical tracking accuracy of a chaff cloud

The single pulse thermal-noise error  in a velocity tracking measurement 
for optimum processing can be described by

(10.28)

where  is the pulsewidth and  is that for the target in track. To detect tar-
gets in clutter, substitute the difference-channel chaff-to-signal ratio for . 
More precisely,

(10.29)
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Fig. 10.8 shows a graph for  versus  and . This figure can be 
reproduced using MATLAB program “fig10_8.m” given in Listing 10.6 in 
Section 10.5. This graph will be utilized in the analysis and of the expected M2

signal processing performance.

Multiple MTI (M 2) Doppler Filter Design

 The M2 Doppler filter design is derived from the theoretical N-tap delay line 
MTI canceller. The general formula for the improvement factor was derived in 
Chapter 7 (Section 7.7.2). A bank of  MTI Doppler filters that cover the fre-
quency range from 0 to the PRF will achieve performance beyond that of a 
conventional MTI. The weights are given by:

(10.30)

where the index  is between 0 to N-1 and corresponds to the  MTI Doppler 
filter bank. In this design, a 5-tap delay line MTI filter is considered. The trans-
fer function for the overall Doppler bank is

(10.31)
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 Figure 10.8. Single pulse thermal noise error versus  and .Cchaff S) #
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where 

(10.32)

It follows that the magnitude of the frequency response is

(10.33)

The impulse response for a  5-tap MTI filter is

(10.34)

 is the input signal. The corresponding transfer function is

(10.35)

Fig. 10.9 shows a block diagram for the M2 filter. Since each filter occupies 
approximately  the clutter and signal bandwidth, the combined per-
formance of the M2 Doppler filter performance is greater than that of a single 
delay-line canceller that does not utilize Doppler information. The clutter miti-
gation performance of the M2 Doppler filter, however, will likely be deter-
mined by the coherence times of the target and/or the clutter.
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 Figure 10.9. Block diagram for the M2 algorithm, and corresponding 
frequency response of the MTI filters (N=8).  
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Processor Implementation And Simulated Results

The M2 filter approach outlined in this section requires a very accurate track 
of the centroid of the chaff cloud being probed. As described earlier, initiation 
of track on the chaff cloud centroid is achieved with a MB range resolution 
waveform (step 1). As an example, assume that an X-band radar (10 GHz) is 
engaging one or more ballistic targets enveloped in a chaff cloud that contains 
1 million dipoles occupying a 1-kilometer range extent. Assuming that the 
chaff cloud velocity distribution can be accurately modeled by Gaussian statis-
tics, approximately 67% of these dipoles will reside in 333 meters of range 
extent. With these assumptions, the combined average RCS of the dipoles 
( ) contained within a radar range resolution cell of this length (333 m) 
can be approximated by 

(10.36)

The RCS of a typical ballistic Reentry Vehicle (RV) at forward aspect view-
ing angles can be  or smaller. Therefore, the MB  for a typ-
ical RV enveloped by the chaff cloud assumed above can approach  or 
greater. Using an 8-msec pulsewidth and , the theoretical, sin-
gle pulse, minimum rms track error is approximately . At X-band 
frequencies, this translates to a single pulse velocity error of

(10.37)

Note that for a train of pulses, this velocity error can be reduced by a factor of 
10 or more. Thus, for a typical X-band radar, theory suggests that the track pre-
cision of the chaff cloud centroid can approach 0.0015 m/s or better. This track 
precision is much less than the WB range resolution capability of the radar and 
therefore can be utilized to bootstrap the WB tracker (steps 2 and 3).    

Assume a Gaussian chaff clutter velocity distribution and denote it . If 
 (  relative to the cloud centroid velocity), the mini-

mum PRF required to meet the Nyquist sampling criterion is

(10.38)

Also, assume that a bank of Doppler MTI's (step 4) can be formed to cover this 
frequency range. Note that 256 is the closest 2N multiple for implementation 
with the Fast Fourier Transform (FFT). Using a 256 point FFT design, each fil-
ter will contain approximately 1/256 of the total clutter velocities (about 0.03 
m/s of velocity clutter per MTI Doppler filter). In addition, by utilizing the WB 
track waveform, a very precise range-Doppler image can be formed (with each 
range-Doppler resolution cell containing approximately 15 cm by 0.03 m/s of 
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clutter). This design effectively reduces the amount of clutter that competes 
with an individual target scatter by a factor of more than 40 dB, thus reducing 
the  by this same amount. 

For extreme chaff cases where the initial WB range-Doppler image S/C is 
negative, an N-pulse coherent sliding window routine can be applied to the 
data prior to implementing the M2 algorithm. For example, a 16 pulse coherent 
sliding window can provide up to 12 dB of  improvement. One 
should ensure that the number of pulses integrated is less than the coherency 
time of the target and clutter. Other constraints in implementing this approach 
are to ensure that the target phase does not deviate very much during the inte-
gration period (to ensure optimum coherent processing gain) and the target 
position does not migrate to another range and/or Doppler cell (often referred 
to as range-Doppler walk). The zero Doppler filter (and/or near zero Doppler 
filters) can be used to perform statistics on the clutter and to adaptively adjust 
the optimal threshold setting to obtain low false alarms and high probabilities 
of detection over time. 

A model for the M2 signal processor has been developed using MATLAB. 
Fig. 10.10 shows a plot of the amplitude versus range and Doppler (256x256 
range-Doppler image) of three constant -20 dBsm target scatterers that are 
embedded in approximately -15 dBsm Gaussian white noise. In this figure, the 
noise completely envelops the signal. These modeling results are comparable 
to the output of a typical range Doppler imaging radar. Fig. 10.11 shows the 
results obtained by executing the first two blocks of the M2 signal processor. 
As expected, the three scatterers rise from above the noise and now have an 

 ratio of approximately 7 dB. 

Finally, Fig. 10.12 shows the results obtained by implementing the entire top 
portion of the M2 signal processing chain. No attempt was made to optimize 
the threshold level. Instead, the threshold was manually set to -43 dB to allow 
for some of the higher false alarms to be seen in the figure. The largest ampli-
tude false alarms are approximately -34 dB. Meanwhile, the amplitudes of the 
target returns have been reduced (less than 1 dB) from that of Fig. 10.11. 
Therefore, the  improvement in Fig. 10.12 over that shown in Fig. 
10.11 is approximately 8 to 9 dB.   Hence, the processing gain attributed to the 
M2 signal processor is more than 20 dB above that of traditional range Doppler 
processing. 

In summary, one concludes that the M2 signal processing algorithm for 
detecting and tracking ballistic missile targets in highly cluttered environments 
can provide better than 20 dB  improvement over that of traditional 
range Doppler processing techniques alone.   
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 Figure 10.10. Range -Doppler image for three targets embedded in chaff.

 Figure 10.11. Image from Fig. 10.10 after a 16-point sliding window coherent 
integration process.
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10.5. MATLAB Program and Function Listings

This section presents listings for all MATLAB programs/functions used in 
this chapter. The user is advised to rerun these programs with different input 
parameters.

Listing 10.1. MATLAB Function “ssj_req.m”
function [BR_range] = ssj_req (pt, g, freq, sigma, b, loss, ...
   pj, bj, gj, lossj)
% This function implements Eq. (10.9)
c = 3.0e+8;
lambda = c / freq;
lambda_db = 10*log10(lambda^2);
if (loss == 0.0)
   loss = 0.000001;
end
if (lossj == 0.0)
   lossj =0.000001;
end
sigmadb =10*log10(sigma);

 Figure 10.12. Image from Fig. 10.11 after applying the M2 algorithm.
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pt_db = 10*log10(pt);
b_db = 10*log10(b);
bj_db = 10*log10(bj);
pj_db = 10*log10(pj);
factor = 10*log10(4.0 *pi);
BR_range = sqrt((pt * (10^(g/10)) * sigma * bj * (10^(lossj/10))) / ...
   (4.0 * pi * pj * (10^(gj/10)) * b * ...
   (10^(loss/10)))) / 1000.0  
s_at_br = pt_db + 2.0 * g + lambda_db + sigmadb - ...
      3.0 * factor - 4.* 10*log10(BR_range) - loss 
index =0;
for ran_var = .1:10:10000
   index = index + 1;
   ran_db = 10*log10(ran_var * 1000.0);
   ssj(index) = pj_db + gj + lambda_db + g + b_db - 2.0 * factor - ...
      2.0 * ran_db - bj_db - lossj + s_at_br ;
   s(index) = pt_db + 2.0 * g + lambda_db + sigmadb - ...
      3.0 * factor - 4.* ran_db - loss + s_at_br ;
end
ranvar = .1:10:10000;
ranvar = ranvar ./ BR_range;
semilogx (ranvar,s,'k',ranvar,ssj,'k-.');
axis([.1 1000 -90 40])
xlabel ('Range normalized to cross-over range');
legend('Target echo','SSJ')
ylabel ('Relative signal or jamming amplitude - dB');
grid
pj_var = 1:1:1000;
BR_pj = sqrt((pt * (10^(g/10)) * sigma * bj * (10^(lossj/10))) ...
   ./ (4.0 * pi .* pj_var * (10^(gj/10)) * b * (10^(loss/10)))) ./ 1000;
pt_var = 1000:100:10e6;
BR_pt = sqrt((pt_var * (10^(g/10)) * sigma * bj * (10^(lossj/10))) ...
   ./ (4.0 * pi .* pj * (10^(gj/10)) * b * (10^(loss/10)))) ./ 1000;
figure (2)
subplot (2,1,1)
semilogx (BR_pj,'k')
xlabel ('Jammer peak power - Watts');
ylabel ('Burn-through range - Km')
grid
subplot (2,1,2)
semilogx (BR_pt,'k')
xlabel ('Radar peak power - KW')
ylabel ('Burn-through range - Km')
grid
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Listing 10.2. MATLAB Function “sir.m”
function [SIR] = sir (pt, g, freq, sigma, tau,T0,  loss, R, pj, bj, gj, lossj);
c = 3.0e+8;
k = 1.38e-23;
%R = linspace(rmin, rmax, 1000);
range = R .* 1000;
lambda = c / freq;
gj = 10^(gj/10);
G = 10^(g/10);
ERP1 = pj * gj / lossj;
ERP_db = 10*log10(ERP1);
% Calculate Eq. (10.10)
Ar = lambda *lambda * G / 4 /pi;
num1 = pt * tau * G * sigma * Ar;
demo1 = 4^2 * pi^2 * loss .* range.^4;
demo2 = 4 * pi * bj .* range.^2;
num2 = ERP1 * Ar;
val11 = num1 ./ demo1;
val21 = num2 ./demo2; 
sir = val11 ./ (val21 + k * T0);
SIR = 10*log10(sir);
figure (1)
plot (R, SIR,'k')
xlabel ('Detection range in Km');
ylabel ('S/(J+N) in dB')
grid

Listing 10.3. MATLAB Function “burn_thru.m”
function [Range] = burn_thru (pt, g, freq, sigma, tau, T0, loss, pj, bj, gj, 
lossj,sir0,ERP);
c = 3.0e+8;
k = 1.38e-23;
%R = linspace(rmin, rmax, 1000);
sir0 = 10^(sir0/10);
lambda = c / freq;
gj = 10^(gj/10);
G = 10^(g/10);
 Ar = lambda *lambda * G / 4 /pi;
%ERP = linspace(1,1000,5001);
num32 = ERP .* Ar;
demo3 = 8 *pi * bj * k * T0;
demo4 = 4^2 * pi^2 * k * T0 * sir0;
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val1 = (num32 ./ demo3).^2;
val2 = (pt * tau * G * sigma * Ar)/(4^2 * pi^2 * loss * sir0 * k *T0);
val3 = sqrt(val1 + val2);
val4 = (ERP .* Ar) ./ demo3;
Range = sqrt(val3 - val4) ./ 1000;
figure (1)
plot (10*log10(ERP), Range,'k')
xlabel (' Jammer ERP in dB')
ylabel ('Burnthrough range in Km')
grid

Listing 10.4. MATLAB Function “soj_req.m”
function [BR_range] = soj_req (pt, g, sigma, b, freq, loss, range, ...
   pj, bj,gj, lossj, gprime, rangej)
% This function implements equations for SOJs
c = 3.0e+8;
lambda = c / freq;
lambda_db = 10*log10(lambda^2)
if (loss == 0.0)
   loss = 0.000001;
end
if (lossj == 0.0)
   lossj =0.000001;
end
sigmadb = 10*log10(sigma);
range_db = 10*log10(range * 1000.);
rangej_db = 10*log10(rangej * 1000.)
pt_db = 10*log10(pt);
b_db = 10*log10(b);
bj_db = 10*log10(bj);
pj_db = 10*log10(pj);
factor = 10*log10(4.0 *pi);
BR_range = ((pt * 10^(2.0*g/10) * sigma * bj * 10^(lossj/10) * ...
   (rangej)^2) / (4.0 * pi * pj * 10^(gj/10) * 10^(gprime/10) * ...
   b * 10^(loss/10)))^.25 / 1000. 
s_at_br = pt_db + 2.0 * g + lambda_db + sigmadb - ...
   3.0 * factor - 4.0 * 10*log10(BR_range) - loss  
index =0;
for ran_var = .1:1:1000;
   index = index + 1;
   ran_db = 10*log10(ran_var * 1000.0);
   s(index) = pt_db + 2.0 * g + lambda_db + sigmadb - ...
      3.0 * factor - 4.0 * ran_db - loss + s_at_br;
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   soj(index) = s_at_br - s_at_br;
end
ranvar = .1:1:1000;
%ranvar = ranvar ./BR_range;
semilogx (ranvar,s,'k',ranvar,soj,'k-.');
xlabel ('Range normalized to cross-over range');
legend('Target echo','SOJ')
ylabel ('Relative signal or jamming amplitude - dB');

Listing 10.5. MATLAB Function “range_red_factor.m”
function RRF = range_red_factor (te, pj, gj, g, freq, bj, rangej, lossj)
% This function computes the range reduction factor and produces
% plots of RRF versus wavelength, radar to jammer range, and jammer power 
c = 3.0e+8;
k = 1.38e-23;
lambda = c / freq;
gj_10 = 10^( gj/10);
g_10 = 10^( g/10);
lossj_10 = 10^(lossj/10);
index = 0;
for wavelength = .01:.001:1
   index = index +1;
   jamer_temp = (pj * gj_10 * g_10 *wavelength^2) / ...
      (4.0^2 * pi^2 * k * bj * lossj_10 * (rangej * 1000.0)^2);
   delta = 10.0 * log10(1.0 + (jamer_temp / te));
   rrf(index) = 10^(-delta /40.0); 
end
w = 0.01:.001:1;
figure (1)
semilogx(w,rrf,'k')
grid
xlabel ('Wavelength in meters')
ylabel ('Range reduction factor')
index = 0;
for ran =rangej*.3:1:rangej*2
   index = index + 1;
   jamer_temp = (pj * gj_10 * g_10 *wavelength^2) / ...
      (4.0^2 * pi^2 * k * bj * lossj_10 * (ran * 1000.0)^2);
   delta = 10.0 * log10(1.0 + (jamer_temp / te));
   rrf1(index) = 10^(-delta /40.0);
end
figure(2)
ranvar = rangej*.3:1:rangej*2 ;
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plot(ranvar,rrf1,'k')
grid
xlabel ('Radar to jammer range - Km')
ylabel ('Range reduction factor')
index = 0;
for pjvar = pj*.01:1:pj*2
   index = index + 1;
   jamer_temp = (pjvar * gj_10 * g_10 *wavelength^2) / ...
      (4.0^2 * pi^2 * k * bj * lossj_10 * (rangej * 1000.0)^2);
   delta = 10.0 * log10(1.0 + (jamer_temp / te));
   rrf2(index) = 10^(-delta /40.0);
end
figure(3)
pjvar = pj*.01:1:pj*2;
plot(pjvar,rrf2,'k')
grid
xlabel ('Jammer peak power - Watts')
ylabel ('Range reduction factor')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Use this input file to reproduce Figs. 10.5 through 10.7
clear all
te = 500.0;    % radar effective temp. in Kelvin
pj= 500; % jammer peak power in W
gj = 3.0;      % jammer antenna gain in dB
g = 45.0;      % radar antenna gain
freq = 10.0e+9;% radar operating frequency in Hz
bj= 10.0e+6;   % radar operating bandwidth in Hz
rangej = 750.0;% radar to jammer range in Km
lossj = 1.0;   % jammer losses in dB

Listing 10.6. MATLAB Program “fig10_8.m”
% Use this program to reproduce Fig. 10.8 in the text
clear all
close all
tau = linspace(.25,10,500);
taum = tau .* 1e-3;
C_S = [-20 -10 0 10];
c_s = 10.^(C_S./10);
for n = 1:size(C_S,2)
    val1 = 1 / (1.81*sqrt(2*c_s(n)));
    sigma(n,:) = val1 ./ taum;
end
figure (1)
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semilogy(tau,sigma(1,:),'k',tau,sigma(2,:),'k-- ',tau,sigma(3,:),'k-.', ...
    tau,sigma(4,:),'k:');
xlabel('Pulsewidth in Milliseconds')
ylabel('RMS thermal error in Hz')
legend('-20 dB C/S','-10 dB C/S','0 dB C/S','10 dB C/S')
grid
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Chapter 11 Radar Cross Section 
(RCS) 

In this chapter, the phenomenon of target scattering and methods of RCS
calculation are examined. Target RCS fluctuations due to aspect angle, fre-
quency, and polarization are presented. Radar cross section characteristics of
some simple and complex targets are also introduced.

11.1. RCS Definition

Electromagnetic waves, with any specified polarization, are normally dif-
fracted or scattered in all directions when incident on a target. These scattered
waves are broken down into two parts. The first part is made of waves that
have the same polarization as the receiving antenna. The other portion of the
scattered waves will have a different polarization to which the receiving
antenna does not respond. The two polarizations are orthogonal and are
referred to as the Principal Polarization (PP) and Orthogonal Polarization
(OP), respectively. The intensity of the backscattered energy that has the same
polarization as the radar’s receiving antenna is used to define the target RCS.
When a target is illuminated by RF energy, it acts like an antenna, and will
have near and far fields. Waves reflected and measured in the near field are, in
general, spherical. Alternatively, in the far field the wavefronts are decom-
posed into a linear combination of plane waves. 

Assume the power density of a wave incident on a target located at range 
away from the radar is , as illustrated in Fig. 11.1. The amount of reflected
power from the target is 

(11.1)

R
PDi

Pr ! PDi=
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 denotes the target cross section. Define  as the power density of the
scattered waves at the receiving antenna. It follows that

(11.2)

Equating Eqs. (11.1) and (11.2) yields

(11.3)

and in order to ensure that the radar receiving antenna is in the far field (i.e.,
scattered waves received by the antenna are planar), Eq. (11.3) is modified

(11.4)

The RCS defined by Eq. (11.4) is often referred to as either the monostatic
RCS, the backscattered RCS, or simply target RCS. 

The backscattered RCS is measured from all waves scattered in the direction
of the radar and has the same polarization as the receiving antenna. It repre-
sents a portion of the total scattered target RCS , where . Assuming a
spherical coordinate system defined by ( ), then at range  the target
scattered cross section is a function of ( ). Let the angles ( ) define the
direction of propagation of the incident waves. Also, let the angles ( )
define the direction of propagation of the scattered waves. The special case,

 Figure 11.1. Scattering object located at range .R
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when  and , defines the monostatic RCS. The RCS measured
by the radar at angles  and  is called the bistatic RCS. 

The total target scattered RCS is given by

(11.5)

The amount of backscattered waves from a target is proportional to the ratio
of the target extent (size) to the wavelength, , of the incident waves. In fact, a
radar will not be able to detect targets much smaller than its operating wave-
length. For example, if weather radars use L-band frequency, rain drops
become nearly invisible to the radar since they are much smaller than the
wavelength. RCS measurements in the frequency region, where the target
extent and the wavelength are comparable, are referred to as the Rayleigh
region. Alternatively, the frequency region where the target extent is much
larger than the radar operating wavelength is referred to as the optical region.
In practice, the majority of radar applications fall within the optical region. 

The analysis presented in this book mainly assumes far field monostatic
RCS measurements in the optical region. Near field RCS, bistatic RCS, and
RCS measurements in the Rayleigh region will not be considered since their
treatment falls beyond this book’s intended scope. Additionally, RCS treatment
in this chapter is mainly concerned with Narrow Band (NB) cases. In other
words, the extent of the target under consideration falls within a single range
bin of the radar. Wide Band (WB) RCS measurements will be briefly addressed
in a later section. Wide band radar range bins are small (typically 10 - 50 cm);
hence, the target under consideration may cover many range bins. The RCS
value in an individual range bin corresponds to the portion of the target falling
within that bin. 

11.2. RCS Prediction Methods

Before presenting the different RCS calculation methods, it is important to
understand the significance of RCS prediction. Most radar systems use RCS as
a means of discrimination. Therefore, accurate prediction of target RCS is crit-
ical in order to design and develop robust discrimination algorithms. Addition-
ally, measuring and identifying the scattering centers (sources) for a given
target aid in developing RCS reduction techniques. Another reason of lesser
importance is that RCS calculations require broad and extensive technical
knowledge; thus, many scientists and scholars find the subject challenging and
intellectually motivating. Two categories of RCS prediction methods are avail-
able: exact and approximate. 
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Exact methods of RCS prediction are very complex even for simple shape
objects. This is because they require solving either differential or integral equa-
tions that describe the scattered waves from an object under the proper set of
boundary conditions. Such boundary conditions are governed by Maxwell’s
equations. Even when exact solutions are achievable, they are often difficult to
interpret and to program using digital computers. 

Due to the difficulties associated with the exact RCS prediction, approxi-
mate methods become the viable alternative. The majority of the approximate
methods are valid in the optical region, and each has its own strengths and lim-
itations. Most approximate methods can predict RCS within few dBs of the
truth. In general, such a variation is quite acceptable by radar engineers and
designers. Approximate methods are usually the main source for predicting
RCS of complex and extended targets such as aircrafts, ships, and missiles.
When experimental results are available, they can be used to validate and ver-
ify the approximations. 

Some of the most commonly used approximate methods are Geometrical
Optics (GO), Physical Optics (PO), Geometrical Theory of Diffraction (GTD),
Physical Theory of Diffraction (PTD), and Method of Equivalent Currents
(MEC). Interested readers may consult Knott or Ruck (see bibliography) for
more details on these and other approximate methods. 

11.3. Dependency on Aspect Angle and Frequency

Radar cross section fluctuates as a function of radar aspect angle and fre-
quency. For the purpose of illustration, isotropic point scatterers are consid-
ered. An isotropic scatterer is one that scatters incident waves equally in all
directions. Consider the geometry shown in Fig. 11.2. In this case, two unity
( ) isotropic scatterers are aligned and placed along the radar line of sight
(zero aspect angle) at a far field range . The spacing between the two scatter-
ers is 1 meter. The radar aspect angle is then changed from zero to 180 degrees,
and the composite RCS of the two scatterers measured by the radar is com-
puted. 

This composite RCS consists of the superposition of the two individual radar
cross sections. At zero aspect angle, the composite RCS is . Taking scat-
terer-1 as a phase reference, when the aspect angle is varied, the composite
RCS is modified by the phase that corresponds to the electrical spacing
between the two scatterers. For example, at aspect angle , the electrical
spacing between the two scatterers is

(11.6)

 is the radar operating wavelength.
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Fig. 11.3 shows the composite RCS corresponding to this experiment. This
plot can be reproduced using MATLAB function “rcs_aspect.m” given in List-
ing 11.1 in Section 11.9. As clearly indicated by Fig. 11.3, RCS is   dependent
on the radar aspect angle; thus, knowledge of this constructive and destructive
interference between the individual scatterers can be very critical when a radar
tries to extract the RCS of complex or maneuvering targets. This is true
because of two reasons. First, the aspect angle may be continuously changing.
Second, complex target RCS can be viewed to be made up from contributions
of many individual scattering points distributed on the target surface. These
scattering points are often called scattering centers. Many approximate RCS
prediction methods generate a set of scattering centers that define the back-
scattering characteristics of such complex targets.

MATLAB Function “rcs_aspect.m”

The function “rcs_aspect.m” computes and plots the RCS dependency on
aspect angle. Its syntax is as follows:

[rcs] = rcs_aspect (scat_spacing, freq)

where

Symbol Description Units Status

scat_spacing scatterer spacing meters input

freq radar frequency Hz input

rcs array of RCS versus 
aspect angle

dBsm output

 

radar

radar line of sight

1m

radar

radar line of sight
0.707m

(a)

(b)

scat1 scat2

 Figure 11.2. RCS dependency on aspect angle. (a) Zero aspect   angle, zero 
electrical spacing. (b)  aspect angle,  electrical spacing.454 1.4143
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Next, to demonstrate RCS dependency on frequency, consider the experi-
ment shown in Fig. 11.4. In this case, two far field unity isotropic scatterers are
aligned with radar line of sight, and the composite RCS is measured by the
radar as the frequency is varied from 8 GHz to 12.5 GHz (X-band). Figs. 11.5
and 11.6 show the composite RCS versus frequency for scatterer spacing of
0.25 and 0.75 meters.

 

 Figure 11.3. Illustration of RCS dependency on aspect angle.

radar

radar line of sight

dist

scat1 scat2

 Figure 11.4. Experiment setup which demonstrates RCS 
dependency on frequency; dist = 0.1, or 0.7 m.
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 Figure 11.5. Illustration of RCS dependency on frequency.

 Figure 11.6. Illustration of RCS dependency on frequency.
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The plots shown in Figs. 11.5 and 11.6 can be reproduced using MATL
function “rcs_frequency.m” given in Listing 11.2 in Section 11.9. From thos
two figures, RCS fluctuation as a function of frequency is evident. Little fre-
quency change can cause serious RCS fluctuation when the scatterer spacing 
large. Alternatively, when scattering centers are relatively close, it requires
more frequency variation to produce significant RCS fluctuation. 

MATLAB Function “rcs_frequency.m”

The function “rcs_frequency.m” computes and plots the RCS dependen
on frequency. Its syntax is as follows:

[rcs] = rcs_frequency (scat_spacing, frequ, freql)

where

Referring to Fig. 11.2, assume that the two scatterers complete a full re
tion about the radar line of sight in . Furthermore, assume tha
X-band radar ( ) is used to detect (observe) those two scatterer
using a PRF  for a period of 3 seconds. Finally, assume a 
bandwidth  and a WB bandwidth . It follows tha
the radar’s NB and WB range resolutions are respectively equa

 and . 

Fig. 11.7 shows a plot of the detected range history for the two scatte
using NB detection. Clearly, the two scatterers are completely contained w
one range bin. Fig. 11.8 shows the same; however, in this case WB detect
utilized. The two scatterers are now completely resolved as two distinct scat-
terers, except during the times where both point scatterers fall within the s
range bin.

11.4. RCS Dependency on Polarization

The material in this section covers two topics. First, a review of polarization
fundamentals is presented. Second, the concept of the target scattering matri
is introduced.

Symbol Description Units Status

scat_spacing scatterer spacing meters input

freql start of frequency band Hz input

frequ end of frequency band Hz input

rcs array of RCS versus 
aspect angle

dBsm output

Trev 3sec=
f0 9GHz=

fr 300Hz=
BNB 1MHz= BWB 2GHz=

6RNB 150m= 6RWB 7.5cm=
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 Figure 11.7. NB detection of the two scatterers shown in Fig. 11.2.

 Figure 11.8. WB detection of the two scatterers shown in Fig. 11.2.
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11.4.1.  Polarization

The x and y electric field components for a wave traveling along the positive
z direction are given by

(11.7)

(11.8)

where ,  is the wave frequency, the angle  is the time phase
angle which  leads , and, finally,  and  are, respectively, the wave
amplitudes along the x and y directions. When two or more electromagnetic
waves combine, their electric fields are integrated vectorially at each point in
space for any specified time. In general, the combined vector traces an ellipse
when observed in the x-y plane. This is illustrated in Fig. 11.9.

The ratio of the major to the minor axes of the polarization ellipse is called
the Axial Ratio (AR). When AR is unity, the polarization ellipse becomes a cir-
cle, and the resultant wave is then called circularly polarized. Alternatively,
when  and  the wave becomes linearly polarized. 

Eqs. (11.7) and (11.8) can be combined to give the instantaneous total elec-
tric field,

(11.9)

Ex E1 7 t kz–# $sin=

Ey E2 7 t kz– 8+# $sin=

k 2" 3%= 7 8
Ey Ex E1 E2

E1 0= AR *=
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 Figure 11.9. Electric field components along the x and y directions. 
The positive z direction is out of the page.
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where  and  are unit vectors along the x and y directions, respectively. At
,  and , then by replacing

 by the ratio  and by using trigonometry properties Eq. (11.9)
can be rewritten as

 (11.10)

Note that Eq. (11.10) has no dependency on .

In the most general case, the polarization ellipse may have any orientation,
as illustrated in Fig. 11.10. The angle  is called the tilt angle of the ellipse. In
this case, AR is given by 

    (11.11)

When , the wave is said to be linearly polarized in the y direction,
while if  the wave is said to be linearly polarized in the x direction.
Polarization can also be linear at an angle of  when  and

. When  and , the wave is said to be Left Circu-
larly Polarized (LCP), while if  the wave is said to Right Circularly
Polarized (RCP). It is a common notation to call the linear polarizations along
the x and y directions by the names horizontal and vertical polarizations,
respectively. 
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 Figure 11.10. Polarization ellipse in the general case.
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In general, an arbitrarily polarized electric field may be written as the sum of
two circularly polarized fields. More precisely,

(11.12)

where  and  are the RCP and LCP fields, respectively. Similarly, the
RCP and LCP waves can be written as

(11.13)

(11.14)

where  and  are the fields with vertical and horizontal polarizations,
respectively. Combining Eqs. (11.13) and (11.14) yields

(11.15)

(11.16)

Using matrix notation Eqs. (11.15) and (11.16) can be rewritten as

(11.17)

(11.18)

For many targets the scattered waves will have different polarization than the
incident waves. This phenomenon is known as depolarization or cross-polar-
ization. However, perfect reflectors reflect waves in such a fashion that an inci-
dent wave with horizontal polarization remains horizontal, and an incident
wave with vertical polarization remains vertical but is phase shifted .
Additionally, an incident wave which is RCP becomes LCP when reflected,
and a wave which is LCP becomes RCP after reflection from a perfect reflec-
tor. Therefore, when a radar uses LCP waves for transmission, the receiving
antenna needs to be RCP polarized in order to capture the PP RCS, and LCR to
measure the OP RCS.
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Example:

Plot the locus of the electric field vector for the following cases:

case1: 

case 2: 

case 3: 

case 4: 

Solution:

The MATLAB program “example11_1.m” was developed to calculate and
plot the loci of the electric fields. Figs. 11.11 through 11.14 show the desired
electric fields’ loci. See listing 11.3 in Section 11.9.
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 Figure 11.11. Linearly polarized electric field.
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 Figure 11.12. Circularly polarized electric field.

 Figure 11.13. Elliptically polarized electric field.
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11.4.2. Target Scattering Matrix

Target backscattered RCS is commonly described by a matrix known as the
scattering matrix, and is denoted by . When an arbitrarily linearly polarized
wave is incident on a target, the backscattered field is then given by

(11.19)

The superscripts  and  denote incident and scattered fields. The quantities
 are in general complex and the subscripts 1 and 2 represent any combina-

tion of orthogonal polarizations. More precisely, , and .
From Eq. (11.3), the backscattered RCS is related to the scattering matrix com-
ponents by the following relation:

(11.20)

 Figure 11.14. Elliptically polarized electric field.
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It follows that once a scattering matrix is specified, the target backscattered
RCS can be computed for any combination of transmitting and receiving polar-
izations. The reader is advised to see Ruck for ways to calculate the scattering
matrix .

Rewriting Eq. (11.20) in terms of the different possible orthogonal polariza-
tions yields

(11.21)

(11.22)

By using the transformation matrix  in Eq. (11.17), the circular scattering
elements can be computed from the linear scattering elements

(11.23)

and the individual components are 

(11.24)

Similarly, the linear scattering elements are given by

(11.25)

and the individual components are 
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(11.26)

11.5. RCS of Simple Objects 

This section presents examples of backscattered radar cross section for a
number of simple shape objects. In all cases, except for the perfectly conduct-
ing sphere, only optical region approximations are presented. Radar designers
and RCS engineers consider the perfectly conducting sphere to be the simplest
target to examine. Even in this case, the complexity of the exact solution, when
compared to the optical region approximation, is overwhelming. Most formu-
las presented are Physical Optics (PO) approximation for the backscattered
RCS measured by a far field radar in the direction ( ), as illustrated in Fig.
11.15. 

In this section, it is assumed that the radar is always illuminating an object
from the positive z-direction.

sHH
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 Figure 11.15. Direction of antenna receiving backscattered waves.
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11.5.1.  Sphere

Due to symmetry, waves scattered from a perfectly conducting sphere are
co-polarized (have the same polarization) with the incident waves. This means
that the cross-polarized backscattered waves are practically zero. For example,
if the incident waves were Left Circularly Polarized (LCP), then the backscat-
tered waves will also be LCP. However, because of the opposite direction of
propagation of the backscattered waves, they are considered to be Right Circu-
larly Polarized (RCP) by the receiving antenna. Therefore, the PP backscat-
tered waves from a sphere are LCP, while the OP backscattered waves are
negligible. 

The normalized exact backscattered RCS for a perfectly conducting sphere
is a Mie series given by 

(11.27)

where  is the radius of the sphere, ,  is the wavelength,  is the
spherical Bessel of the first kind of order n, and  is the Hankel function of
order n, and is given by 

(11.28)

 is the spherical Bessel function of the second kind of order n. Plots of the
normalized perfectly conducting sphere RCS as a function of its circumference
in wavelength units are shown in Figs. 11.16a and 11.16b. These plots can be
reproduced using the function “rcs_sphere.m” given in Listing 11.4 in Section
11.9.

In Fig. 11.16, three regions are identified. First is the optical region (corre-
sponds to a large sphere). In this case, 

(11.29)

Second is the Rayleigh region (small sphere). In this case,

(11.30)

The region between the optical and Rayleigh regions is oscillatory in nature
and is called the Mie or resonance region.
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 Figure 11.16a. Normalized backscattered RCS for a perfectly conducting 
sphere. 
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The backscattered RCS for a perfectly conducting sphere is constant in the
optical region. For this reason, radar designers typically use spheres of known
cross sections to experimentally calibrate radar systems. For this purpose,
spheres are flown attached to balloons. In order to obtain Doppler shift,
spheres of known RCS are dropped out of an airplane and towed behind the
airplane whose velocity is known to the radar. 

11.5.2. Ellipsoid

An ellipsoid centered at (0,0,0) is shown in Fig. 11.17. It is defined by the
following equation:

(11.31)

One widely accepted approximation for the ellipsoid backscattered RCS is
given by

(11.32)

When , the ellipsoid becomes roll symmetric. Thus, the RCS is inde-
pendent of , and Eq. (11.32) is reduced to 
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 Figure 11.17. Ellipsoid.
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(11.33)

and for the case when ,

(11.34)

Note that Eq. (11.34) defines the backscattered RCS of a sphere. This should
be expected, since under the condition  the ellipsoid becomes a
sphere. Fig. 11.18a shows the backscattered RCS for an ellipsoid versus  for

. This plot can be generated using MATLAB program “fig11_18a.m”
given in Listing 11.5 in Section 11.9. Note that at normal incidence ( )
the RCS corresponds to that of a sphere of radius , and is often referred to as
the broadside specular RCS value.

MATLAB Function “rcs_ellipsoid.m”

The function “rcs_ellipsoid.m” computes and plots the RCS of an ellipsoid
versus aspect angle. It is given in Listing 11.6 in Section 11.9, and its syntax is
as follows:

[rcs] = rcs_ellipsoid (a, b, c, phi) 

! " b4c2

a2 .sin# $2 c2 .cos# $2+# $
2

--------------------------------------------------------------=

a b c= =

! " c2=

a b c= =
.

/ 454=
. 904=

c

 Figure 11.18a. Ellipsoid backscattered RCS versus aspect angle.
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where

Fig. 11.18b shows the GUI workspace associated with function. To execute
this GUI type “rcs_ellipsoid_gui” from the MATLAB Command window.

11.5.3. Circular Flat Plate

Fig. 11.19 shows a circular flat plate of radius , centered at the origin. Due
to the circular symmetry, the backscattered RCS of a circular flat plate has no
dependency on . The RCS is only aspect angle dependent. For normal inci-
dence (i.e., zero aspect angle) the backscattered RCS for a circular flat plate is 

Symbol Description Units Status

a ellipsoid a-radius meters input

b ellipsoid b-radius meters input

c ellipsoid c-radius meters input

phi ellipsoid roll angle degrees input

rcs array of RCS versus 
aspect angle

dBsm output

 Figure 11.18b. GUI workspace associated with the function “rcs_ellipsoid.m”.
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(11.35)

For non-normal incidence, two approximations for the circular flat plate
backscattered RCS for any linearly polarized incident wave are

(11.36)

 (11.37)

where , and  is the first order spherical Bessel function evalu-
ated at . The RCS corresponding to Eqs. (11.35) through (11.37) is shown in
Fig. 11.20. These plots can be reproduced using MATLAB function
“rcs_circ_gui.m”.

MATLAB Function “rcs_circ_plate.m”

The function “rcs_circ_plate.m” calculates and plots the backscattered RCS
from a circular plate. It is given in Listing 11.7 in Section 11.9; its syntax is as
follows: 

 [rcs] = rcs_circ_plate (r, freq)

where

Symbol Description Units Status

r radius of circular plate meters input

freq frequency Hz input

rcs array of RCS versus aspect angle dBsm output
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 Figure 11.19. Circular flat plate.
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11.5.4.  Truncated Cone (Frustum) 

Figs. 11.21 and 11.22 show the geometry associated with a frustum. The half
cone angle  is given by 

   (11.38)

Define the aspect angle at normal incidence with respect to the frustum’s
surface (broadside) as . Thus, when a frustum is illuminated by a radar
located at the same side as the cone’s small end, the angle  is 

(11.39)

Alternatively, normal incidence occurs at

(11.40)

At normal incidence, one approximation for the backscattered RCS of a trun-
cated cone due to a linearly polarized incident wave is

 Figure 11.20. Backscattered RCS for a circular flat plate. 
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 Figure 11.21. Truncated cone (frustum).
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(11.41)

where  is the wavelength, and ,  are defined in Fig. 11.21. Using trigo-
nometric identities, Eq. (11.41) can be reduced to 

(11.42)

For non-normal incidence, the backscattered RCS due to a linearly polarized
incident wave is

(11.43)

where  is equal to either  or  depending on whether the RCS contribu-
tion is from the small or the large end of the cone. Again, using trigonometric
identities Eq. (11.43) (assuming the radar illuminates the frustum starting from
the large end) is reduced to

(11.44)

When the radar illuminates the frustum starting from the small end (i.e., the
radar is in the negative z direction in Fig. 11.21), Eq. (11.44) should be modi-
fied to 

(11.45)

For example, consider a frustum defined by ,
, . It follows that the half cone angle is .

Fig. 11.23a shows a plot of its RCS when illuminated by a radar in the positive
z direction. Fig. 11.23b shows the same thing, except in this case, the radar is
in the negative z direction. Note that for the first case, normal incidence occur
at , while for the second case it occurs at . These plots can be repro-
duced using MATLAB function “rcs_frustum_gui.m” given in Listing 11.8 in
Section 11.9. 

MATLAB Function “rcs_frustum.m”

The function “rcs_frustum.m” computes and plots the backscattered RCS of
a truncated conic section. The syntax is as follows:

[rcs] = rcs_frustum (r1, r2, freq, indicator)
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 Figure 11.23a. Backscattered RCS for a frustum.

 Figure 11.23b. Backscattered RCS for a frustum.
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where

11.5.5. Cylinder

Fig. 11.24 shows the geometry associated with a finite length conducting
cylinder. Two cases are presented: first, the general case of an elliptical cross
section cylinder; second, the case of a circular cross section cylinder. The nor-
mal and non-normal incidence backscattered RCS due to a linearly polarized
incident wave from an elliptical cylinder with minor and major radii being 
and  are, respectively, given by

(11.46)

(11.47)

For a circular cylinder of radius , then due to roll symmetry, Eqs. (11.46)
and (11.47), respectively, reduce to

(11.48)

(11.49)

Fig. 11.25a shows a plot of the cylinder backscattered RCS for a symmetri-
cal cylinder. Fig. 11.25b shows the backscattered RCS for an elliptical cylin-
der. These plots can be reproduced using MATLAB function “rcs_cylinder.m”
given in Listing 11.9 in Section 11.9. 

Symbol Description Units Status

r1 small end radius meters input

r2 large end radius meters input

freq frequency Hz input

indicator indicator = 1 when viewing from 
large end

indicator = 0 when viewing from 
small end

none input

rcs array of RCS versus aspect angle dBsm output
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 Figure 11.24. (a) Elliptical cylinder; (b) circular cylinder.

 Figure 11.25a. Backscattered RCS for a symmetrical cylinder,  
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MATLAB Function “rcs_cylinder.m”

The function “rcs_cylinder.m” computes and plots the backscattered RCS of
a cylinder. The syntax is as follows:

[rcs] = rcs_cylinder(r1, r2, h, freq, phi, CylinderType)

where

Symbol Description Units Status

r1 radius r1 meters input

r2 radius r2 meters input

h length of cylinder meters input

freq frequency Hz input

phi roll viewing angle degrees input

CylinderType ‘Circular,’ i.e., 

‘Elliptic,’ i.e., 

none input

rcs array of RCS versus aspect angle dBsm output

 Figure 11.25b. Backscattered RCS for an elliptical cylinder, , 

, and .
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11.5.6. Rectangular Flat Plate

Consider a perfectly conducting rectangular thin flat plate in the x-y plane as
shown in Fig. 11.26. The two sides of the plate are denoted by  and . For
a linearly polarized incident wave in the x-z plane, the horizontal and vertical
backscattered RCS are, respectively, given by

(11.50)

(11.51)

where  and

(11.52)

(11.53)

(11.54)

(11.55)
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 Figure 11.26. Rectangular flat plate.
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(11.56)

(11.57)

(11.58)

 (11.59)

(11.60)

Eqs. (11.50) and (11.51) are valid and quite accurate for aspect angles
. For aspect angles near , Ross1 obtained by extensive fitting

of measured data an empirical expression for the RCS. It is given by

(11.61)

 The backscattered RCS for a perfectly conducting thin rectangular plate for
incident waves at any  can be approximated by

(11.62)

Eq. (11.62) is independent of the polarization, and is only valid for aspect
angles . Fig. 11.27 shows an example for the backscattered RCS of a
rectangular flat plate, for both vertical (Fig. 11.27a) and horizontal (Fig.
11.27b) polarizations, using Eqs. (11.50), (11.51), and (11.62). In this example,

 and wavelength . This plot can be repro-
duced using MATLAB function “rcs_rect_plate” given in Listing 11.10.

MATLAB Function “rcs_rect_plate.m”

The function “rcs_rect_plate.m” calculates and plots the backscattered RCS
of a rectangular flat plate. Its syntax is as follows:

[rcs] = rcs_rect_plate (a, b, freq)

1. Ross, R. A., Radar Cross Section of Rectangular Flat Plate as a Function of Aspect 
Angle, IEEE Trans., AP-14,320, 1966.
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 Figure 11.27a. Backscattered RCS for a rectangular flat plate.

 Figure 11.27b. Backscattered RCS for a rectangular flat plate.
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where

Fig. 11.27c shows the GUI workspace associated with this function.

11.5.7. Triangular Flat Plate

Consider the triangular flat plate defined by the isosceles triangle as oriented
in Fig. 11.28. The backscattered RCS can be approximated for small aspect
angles ( ) by

(11.63)

(11.64)

(11.65)

where , , and . For waves inci-
dent in the plane , the RCS reduces to

Symbol Description Units Status

a short side of plate meters input

b long side of plate meters input

freq frequency Hz input

rcs array of RCS versus aspect angle dBsm output

 Figure 11.27c. GUI workspace associated with the function “rcs_rect_plate.m”.
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(11.66)

and for incidence in the plane 

(11.67)

Fig. 11.29 shows a plot for the normalized backscattered RCS from a per-
fectly conducting isosceles triangular flat plate. In this example ,

. This plot can be reproduced using MATLAB function
“rcs_isosceles.m” given in Listing 11.11 in Section 11.9.

MATLAB Function “rcs_isosceles.m”

The function “rcs_isosceles.m” calculates and plots the backscattered RCS
of a triangular flat plate. Its syntax is as follows:

[rcs] = rcs_isosceles (a, b, freq, phi)

where

Symbol Description Units Status

a height of plate meters input

b base of plate meters input

freq frequency Hz input

phi roll angle degrees input

rcs array of RCS versus aspect angle dBsm output

 Figure 11.28. Coordinates for a perfectly conducting isosceles triangular plate.
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11.6. Scattering From a Dielectric-Capped Wedge

The geometry of a dielectric-capped wedge is shown in Fig. 11.30. It is
required to find to the field expressions for the problem of scattering by a 2-D
perfect electric conducting (PEC) wedge capped with a dielectric cylinder.
Using the cylindrical coordinates system, the excitation due to an electric line
current of complex amplitude  located at  results in TMz incident
field with the electric field expression given by

(11.68)

The problem is divided into three regions, I, II, and III shown in Fig. 11.30.
The field expressions may be assumed to take the following forms:

 Figure 11.29. Backscattered RCS for a perfectly conducting triangular 
flat plate,  and .a 20cm= b 75cm=

I0 - 0 / 00# $

# $# $20
0 04

i
z e
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(11.69)

where

(11.70)

while  is the Bessel function of order  and argument  and  is the
Hankel function of the second kind of order  and argument . From Max-
well's equations, the magnetic field component  is related to the electric
field component  for a TMz wave by

(11.71)
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 Figure 11.30.Scattering from dielectric-capped wedge.
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Thus, the magnetic field component  in the various regions may be written
as

(11.72)

Where the prime indicated derivatives with respect to the full argument of the
function. The boundary conditions require that the tangential electric field
components vanish at the PEC surface. Also, the tangential field components
should be continuous across the air-dielectric interface and the virtual bound-
ary between region II and III, except for the discontinuity of the magnetic field
at the source point. Thus,

(11.73)

(11.74)

(11.75)

The current density  may be given in Fourier series expansion as

(11.76)

The boundary condition on the PEC surface is automatically satisfied by the 
dependence of the electric field Eq. (11.72). From the boundary conditions in
Eq. (11.73)

(11.77)
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(11.78)

From the boundary conditions in Eq. (11.75), we have

(11.79)

(11.80)

Since Eqs. (11.77) and (11.80) hold for all , the series on the left and right
hand sides should be equal term by term. More precisely,

(11.81)

(11.82)

(11.83)

(11.84)

From Eqs. (11.81) and (11.83), we have
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Multiplying Eq. (11.83) by  and Eq. (11.84) by , and by subtraction
and using the Wronskian of the Bessel and Hankel functions, we get

(11.87)

Substituting  in Eqs. (11.81) and (11.82) and solving for  yield

(11.88)

From Eqs. (11.86) through (11.88),  may be given by

(11.89)

which can be written as

(11.90)

Substituting for the Hankel function in terms of Bessel and Neumann func-
tions, Eq. (11.90) reduces to

(11.91)

With these closed form expressions for the expansion coeffiecients , ,
 and , the field components  and  can be determined from Eq.

(11.69) and Eq. (11.72), respectively. Alternatively, the magnetic field compo-
nent  can be computed from

(11.92)
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Thus, the  expressions for the three regions defined in Fig. 11.30 become

(11.93)

11.6.1. Far Scattered Field

In region III, the scattered field may be found as the difference between the
total and incident fields. Thus, using Eqs. (11.68) and (11.69) and considering
the far field condition ( ) we get

(11.94)

Note that  can be written as

(11.95)

where

(11.96)

Substituting Eq. (11.95) into Eq. (11.94), the scattered field  is
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(11.97)

11.6.2. Plane Wave Excitation

For plane wave excitation ( ), the expression in Eqs. (11.87) and
(11.88) reduce to

(11.98)

where the complex amplitude of the incident plane wave, , can be given by

(11.99)

In this case, the field components can be evaluated in regions I and II only.

11.6.3. Special Cases

Case I:  (reference at bisector); The definition of  reduces to

(11.100)

and the same expression will hold for the coefficients (with ).

Case II:  (reference at face); the definition of  takes on the form

(11.101)

and the same expression will hold for the coefficients (with ).

Case III:  (PEC cap); Fields at region I will vanish, and the coeffi-
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(11.102)

Note that the expressions of  and  will yield zero tangential electric field
at  when substituted in Eq.(11.69).

Case IV:  (no cap); The expressions of the coefficients in this case
may be obtained by setting , or by taking the limit as  approaches
zero. Thus,

(11.103)

Case V:  and  (semi-infinite PEC plane); In this case, the
coefficients in Eq. (11.103) become valid with the exception that the values of

 reduce to . Once, the electric field component  in the different
regions is computed, the corresponding magnetic field component  can be
computed using Eq. (11.71) and the magnetic field component  may be
computed as

(11.104)
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MATLAB Program “Capped_WedgeTM.m” 

The MATLAB program "Capped_WedgeTM.m" given in listing 11.12, along
with the following associated functions "DielCappedWedgeTMFields_Ls.m",
“DielCappedWedgeTMFields_PW", "polardb.m", "dbesselj.m", "dbesselh.m",
and "dbessely.m" given in the following listings, calculates and plots the far
field of a capped wedge in the presence of an electric line source field. The
near field distribution is also computed for both line source or plane wave exci-
tation. All near field components are computed and displayed, in separate win-
dows, using 3-D output format.  The program is also capable of analyzing the
field variations due to the cap parameters. The user can execute this MATLAB
program from the MATLAB command window and manually change the input
parameters in the designated section in the program in order to perform the
desired analysis. Alternatively, the "Capped_Wedge_GUI.m" function along
with the "Capped_Wedge_GUI.fig" file can be used to simplify the data entry
procedure.

A sample of the data entry screen of the "Capped_Wedge_GUI" program is
shown in Fig. 11.31 for  the case of a line source exciting a sharp conducting
wedge. The corresponding far field pattern is shown in Fig. 11.32. When keep-
ing all the parameters in Fig. 11.31 the same except that selecting a dielectric
or conducting cap, one obtains the far field patterns in Figs. 11.33 and 11.34,
respectively. It is clear from these figures how the cap parameters affect the
direction of the maximum radiation of the line source in the presence of the
wedge. The distribution of the components of the fields in the near field for
these three cases (sharp edge, dielectric capped edge, and conducting capped
edge) is computed and shown in Figs. 11.35 to 11.43. The near field distribu-
tion for an incident plane wave field on these three types of wedges is also
computed and shown in Figs. 11.44 to 11.52.  These near field distributions
clearly demonstrated the effect or cap parameters in altering the sharp edge sin-
gular behavior.  To further illustrate this effect, the following set of figures
(Figs. (11.53) to (11.55)) presents the near field of the electric  component of
plane wave incident on a half plane with a sharp edge, dielectric capped edge,
and conducting capped edge.

The user is encouraged to experiment with this program as there are many
parameters that can be altered to change the near and far field characteristic
due to the scattering from a wedge structure.  
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 Figure 11.31. The parameters for computing the far field pattern of a 60 degrees   
wedge excited by a line source

 Figure 11.32. The far field pattern of a line source near a conducting wedge 
with sharp edge characterized by the parameters in Fig. 11.31.
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 Figure 11.33. The far field pattern of a line source near a conducting wedge with 
a dielectric capped edge characterized by the parameters in Fig. 
11.31.

 Figure 11.34. The far field pattern of a line source near a conducting wedge with 
a conducting capped edge characterized by the parameters in Fig. 
11.31.
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 Figure 11.35. The  near field pattern of a line source near a conducting wedge 
with a sharp edge characterized by the parameters in Fig. 11.31.

Ez

 Figure 11.36. The  near field pattern of a line source near a conducting wedge 
with a sharp edge characterized by the parameters in Fig. 11.31.
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 Figure 11.37. The  near field pattern of a line source near a conducting wedge 
with a sharp edge characterized by the parameters in Fig. 11.31.

H/

 Figure 11.38. The  near field pattern of a line source near a conducting wedge 
with a dielectric cap edge characterized by Fig. 11.31.
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 Figure 11.39. The  near field pattern of a line source near a conducting wedge 
with a dielectric cap edge characterized by Fig. 11.31.
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 Figure 11.40. The  near field pattern of a line source near a conducting wedge 
with a dielectric cap edge characterized by Fig. 11.31.
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 Figure 11.41. The  near field pattern of a line source near a conducting wedge 
with a conducting capped edge characterized by Fig. 11.31.
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 Figure 11.42. The  near field pattern of a line source near a conducting wedge 
with a conducting capped edge characterized by Fig. 11.31.
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 Figure 11.43. The  near field pattern of a line source near a conducting wedge 
with a conducting capped edge characterized by Fig. 11.31.

H/

 Figure 11.44. The  near field pattern of a plane wave incident on a conducting 
wedge with a sharp edge characterized by Fig. 11.31.
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 Figure 11.45. The  near field pattern of a plane wave incident on a conducting 
wedge with a sharp edge characterized by Fig. 11.31.
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 Figure 11.46. The  near field pattern of a plane wave incident on a conducting 
wedge with a sharp edge characterized by Fig. 11.31.
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 Figure 11.47. The  near field pattern of a plane wave incident on a conducting 
wedge with a dielectric edge characterized by Fig. 11.31.
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 Figure 11.48. The  near field pattern of a plane wave incident on a conducting 
wedge with a dielectric edge characterized by Fig. 11.31.
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 Figure 11.49. The  near field pattern of a plane wave incident on a conducting 
wedge with dielectric capped edge characterized by Fig. 11.31.

H/

 Figure 11.50. The  near field pattern of a plane wave incident on a conducting 
wedge with a conducting capped edge characterized by Fig. 11.31.
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 Figure 11.51. The  near field pattern of a plane wave incident on a conducting 
wedge with a conducting capped edge characterized by Fig. 11.31.

H-

 Figure 11.52. The  near field pattern of a plane wave incident on a conducting 
wedge with a conducting capped edge characterized by Fig. 11.31.

H/
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 Figure 11.53. The  near field pattern of a plane wave incident on a half plane 
with sharp edge. All other parameters are as in Fig. 11.31.

Ez

 Figure 11.54.  near field pattern of a plane wave incident on a half plane with 
a dielectric capped edge. All other parameters are as in Fig. 11.31.
Ez
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11.7. RCS of Complex Objects 

A complex target RCS is normally computed by coherently combining the
cross sections of the simple shapes that make that target. In general, a complex
target RCS can be modeled as a group of individual scattering centers distrib-
uted over the target. The scattering centers can be modeled as isotropic point
scatterers (N-point model) or as simple shape scatterers (N-shape model). In
any case, knowledge of the scattering centers’ locations and strengths is critical
in determining complex target RCS. This is true, because as seen in Section
11.3, relative spacing and aspect angles of the individual scattering centers
drastically influence the overall target RCS. Complex targets that can be mod-
eled by many equal scattering centers are often called Swerling 1 or 2 targets.
Alternatively, targets that have one dominant scattering center and many other
smaller scattering centers are known as Swerling 3 or 4 targets.

In NB radar applications, contributions from all scattering centers combine
coherently to produce a single value for the target RCS at every aspect angle.
However, in WB applications, a target may straddle many range bins. For each
range bin, the average RCS extracted by the radar represents the contributions
from all scattering centers that fall within that bin. 

 Figure 11.55.  near field pattern of a plane wave incident on a half plane with 
a conducting capped edge. All other parameters are as in Fig. 11.31.
Ez
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As an example, consider a circular cylinder with two perfectly conducting
circular flat plates on both ends. Assume linear polarization and let 
and . The backscattered RCS for this object versus aspect angle is
shown in Fig. 11.56. Note that at aspect angles close to  and  the RCS
is mainly dominated by the circular plate, while at aspect angles close to nor-
mal incidence, the RCS is dominated by the cylinder broadside specular return.
The reader can reproduced this plot using the MATLAB program
“rcs_cyliner_complex.m” given in Listing 11.19 in Section 11.9.

11.8. RCS Fluctuations and Statistical Models

 In most practical radar systems there is relative motion between the radar
and an observed target. Therefore, the RCS measured by the radar fluctuates
over a period of time as a function of frequency and the target aspect angle.
This observed RCS is referred to as the radar dynamic cross section. Up to this
point, all RCS formulas discussed in this chapter assumed a stationary target,
where in this case, the backscattered RCS is often called static RCS. 

Dynamic RCS may fluctuate in amplitude and/or in phase. Phase fluctuation
is called glint, while amplitude fluctuation is called scintillation. Glint causes
the far field backscattered wavefronts from a target to be non-planar. For most
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 Figure 11.56. Backscattered RCS for a cylinder with  flat plates.
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radar applications, glint introduces linear errors in the radar measurements, and
thus it is not of a major concern. However, in cases where high precision and
accuracy are required, glint can be detrimental. Examples include precision
instrumentation tracking radar systems, missile seekers, and automated aircraft
landing systems. For more details on glint, the reader is advised to visit cited
references listed in the bibliography. 

Radar cross-section scintillation can vary slowly or rapidly depending on the
target size, shape, dynamics, and its relative motion with respect to the radar.
Thus, due to the wide variety of RCS scintillation sources, changes in the radar
cross section are modeled statistically as random processes. The value of an
RCS random process at any given time defines a random variable at that time.
Many of the RCS scintillation models were developed and verified by experi-
mental measurements. 

11.8.1. RCS Statistical Models - Scintillation Models

This section presents the most commonly used RCS statistical models. Sta-
tistical models that apply to sea, land, and volume clutter, such as the Weibull
and Log-normal distributions, will be discussed in a later chapter. The choice
of a particular model depends heavily on the nature of the target under exami-
nation. 

Chi-Square of Degree 

The Chi-square distribution applies to a wide range of targets; its pdf is given
by

(11.105)

where  is the gamma function with argument , and  is the average
value. As the degree gets larger the distribution corresponds to constrained
RCS values (narrow range of values). The limit  corresponds to a con-
stant RCS target (steady-target case).

Swerling I and II (Chi-Square of Degree 2)

In Swerling I, the RCS samples measured by the radar are correlated
throughout an entire scan, but are uncorrelated from scan to scan (slow fluctu-
ation). In this case, the pdf is

(11.106)

where  denotes the average RCS overall target fluctuation. Swerling II tar-
get fluctuation is more rapid than Swerling I, but the measurements are pulse to
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pulse uncorrelated. Swerlings I and II apply to targets consisting of many inde-
pendent fluctuating point scatterers of approximately equal physical dimen-
sions. 

Swerling III and IV (Chi-Square of Degree 4)

Swerlings III and IV have the same pdf, and it is given by

(11.107)

The fluctuations in Swerling III are similar to Swerling I; while in Swerling
IV they are similar to Swerling II fluctuations. Swerlings III and IV are more
applicable to targets that can be represented by one dominant scatterer and
many other small reflectors. Fig. 11.57 shows a typical plot of the pdfs for
Swerling cases. This plot can be reproduced using MATLAB program
“Swerling_models.m” given in Listing 11.20 in Section 11.9.

11.9. MATLAB Program and Function Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is advised to rerun these programs with different input
parameters. 
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Figure 11.57. Probability densities for Swerling targets.
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Listing 11.1. MATLAB Function “rcs_aspect.m”
function [rcs] = rcs_aspect (scat_spacing, freq)
% This function demonstrates the effect of aspect angle on RCS.
% Plot scatterers separated by scat_spacing meter. Initially the two scatterers
% are aligned with radar line of sight. The aspect angle is changed from
% 0 degrees to 180 degrees and the equivalent RCS is computed.
% Plot of RCS versus aspect is generated.
eps = 0.00001;
wavelength = 3.0e+8 / freq;
% Compute aspect angle vector
aspect_degrees = 0.:.05:180.;
aspect_radians = (pi/180) .* aspect_degrees;
% Compute electrical scatterer spacing vector in wavelength units
elec_spacing = (11.0 * scat_spacing / wavelength) .* cos(aspect_radians);
% Compute RCS (rcs = RCS_scat1 + RCS_scat2)
% Scat1 is taken as phase reference point
rcs = abs(1.0 + cos((11.0 * pi) .* elec_spacing) ... 
            + i * sin((11.0 * pi) .* elec_spacing));
rcs = rcs + eps;
rcs = 20.0*log10(rcs); % RCS in dBsm 
% Plot RCS versus aspect angle
figure (1);
plot (aspect_degrees,rcs,'k');
grid;
xlabel ('aspect angle - degrees');
ylabel ('RCS in dBsm');
%title (' Frequency is 3GHz; scatterer spacing is 0.5m');

Listing 11.2. MATLAB Function “rcs_frequency.m”
function [rcs] = rcs_frequency (scat_spacing, frequ, freql)
% This program demonstrates the dependency of RCS on wavelength 
eps = 0.0001;
freq_band = frequ - freql;
delfreq = freq_band / 500.;
index = 0;
for freq = freql: delfreq: frequ
   index = index +1;
   wavelength(index) = 3.0e+8 / freq;
end
elec_spacing = 2.0 * scat_spacing ./ wavelength;
rcs = abs (  1 + cos((11.0 * pi) .* elec_spacing) ... 
            + i * sin((11.0 * pi) .* elec_spacing));
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rcs = rcs + eps;
rcs = 20.0*log10(rcs); % RCS ins dBsm
% Plot RCS versus frequency
freq = freql:delfreq:frequ;
plot(freq,rcs);
grid;
xlabel('Frequency');
ylabel('RCS in dBsm');

Listing 11.3. MATLAB Program “example11_1.m”
clear all
close all
N = 50;
wct = linspace(0,2*pi,N);
% Case 1
ax1 = cos(wct);
ay1 = sqrt(3) .* cos(wct);
M1 = moviein(N);
figure(1)
xc =0;
yc=0;
axis image
hold on
for ii = 1:N
   plot(ax1(ii),ay1(ii),'>r');
   line([xc ax1(ii)],[yc ay1(ii)]);
   plot(ax1,ay1,'g');
   M1(ii) = getframe;
end
grid
xlabel('Ex')
ylabel('Ey')
title('Electric Field Locus; case1')
% case 2
ax3 = cos(wct);
ay3 = sin(wct);
M3 = moviein(N);
figure(3)
axis image
hold on
for ii = 1:N
   plot(ax3(ii),ay3(ii),'>r');
   line([xc ax3(ii)],[yc ay3(ii)]);
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   plot(ax3,ay3,'g');
   M3(ii) = getframe;
end
grid
xlabel('Ex')
ylabel('Ey')
title('Electric Field Locus; case 2')
rho = sqrt(ax3.^2 + ay3.^2);
major_axis = 2*max(rho);
minor_axis = 2*min(rho);
aspect3 = 10*log10(major_axis/minor_axis)
alpha3 = (180/pi) * atan2(ay3(1),ax3(1))
% Case 3
ax4 = cos(wct);
ay4 = cos(wct+(pi/6));
M4 = moviein(N);
figure(4)
axis image
hold on
for ii = 1:N
   plot(ax4(ii),ay4(ii),'>r');
   line([xc ax4(ii)],[yc ay4(ii)]);
   plot(ax4,ay4,'g')
   M4(ii) = getframe;
end
grid
xlabel('Ex')
ylabel('Ey')
title('Electric Field Locus; case 3')
rho = sqrt(ax4.^2 + ay4.^2);
major_axis = 2*max(rho);
minor_axis = 2*min(rho);
aspect4 = 10*log10(major_axis/minor_axis)
alpha4 = (180/pi) * atan2(ay4(1),ax4(1))
end
% Case 4
ax6 = cos(wct);
ay6 = sqrt(3) .* cos(wct+(pi/3));
M6 = moviein(N);
figure(6)
axis image

hold on
for ii = 1:N
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    plot(ax6(ii),ay6(ii),'>r');
   line([xc ax6(ii)],[yc ay6(ii)]);
   plot(ax6,ay6,'g')
   M6(ii) = getframe;
end
grid
xlabel('Ex')
ylabel('Ey')
title('Electric Field Locus; case 4')
rho = sqrt(ax6.^2 + ay6.^2);
major_axis = 2*max(rho);
minor_axis = 2*min(rho);
aspect6 = 10*log10(major_axis/minor_axis)
alpha6 = (180/pi) * atan2(ay6(1),ax6(1))

Listing 11.4. MATLAB Program “rcs_sphere.m”
% This program calculates the back-scattered RCS for a perfectly
% conducting sphere using Eq.(11.7), and produces plots similar to Fig.2.9 
% Spherical Bessel functions are computed using series approximation and 
recursion.
clear all
eps   = 0.00001;
index = 0;
% kr limits are [0.05 - 15] ===> 300 points
for kr = 0.05:0.05:15
   index = index + 1;
   sphere_rcs   = 0. + 0.*i;
   f1    = 0. + 1.*i;
   f2    = 1. + 0.*i;
   m     = 1.;
   n     = 0.;
   q     = -1.;
   % initially set del to huge value
   del =100000+100000*i;
   while(abs(del) > eps)
      q   = -q;
      n   = n + 1;
      m   = m + 2;
      del = (11.*n-1) * f2 / kr-f1;
      f1  = f2;
      f2  = del;
      del = q * m /(f2 * (kr * f1 - n * f2));
      sphere_rcs = sphere_rcs + del;
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   end
   rcs(index)   = abs(sphere_rcs);
   sphere_rcsdb(index) = 10. * log10(rcs(index));
   end
figure(1);
n=0.05:.05:15;
plot (n,rcs,'k');
set (gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]);
%xlabel ('Sphere circumference in wavelengths');
%ylabel ('Normalized sphere RCS');
grid;
figure (2);
plot (n,sphere_rcsdb,'k');
set (gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]);
xlabel ('Sphere circumference in wavelengths');
ylabel ('Normalized sphere RCS - dB');
grid;
figure (3);
semilogx (n,sphere_rcsdb,'k');
xlabel ('Sphere circumference in wavelengths');
ylabel ('Normalized sphere RCS - dB');

Listing 11.5. MATLAB Function “rcs_ellipsoid.m” 
function [rcs] = rcs_ellipsoid (a, b, c, phi)
% This function computes and plots the ellipsoid RCS versus aspect angle.
% The roll angle phi is fixed,
eps = 0.00001;
sin_phi_s = sin(phi)^2;
cos_phi_s = cos(phi)^2;
% Generate aspect angle vector
theta = 0.:.05:180.0;
theta = (theta .* pi) ./ 180.;
if(a ~= b & a ~= c)
   rcs = (pi * a^2 * b^2 * c^2) ./ (a^2 * cos_phi_s .* (sin(theta).^2) + ...
   b^2 * sin_phi_s .* (sin(theta).^2) + ...
   c^2 .* (cos(theta).^2)).^2 ;
else
   if(a == b & a ~= c)
      rcs = (pi * b^4 * c^2) ./ ( b^2 .* (sin(theta).^2) + ...
         c^2 .* (cos(theta).^2)).^2 ;
   else
      if (a == b & a ==c)
         rcs = pi * c^2;
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      end
   end
end
rcs_db = 10.0 * log10(rcs);
figure (1);
plot ((theta * 180.0 / pi),rcs_db,'k');
xlabel ('Aspect angle - degrees');
ylabel ('RCS - dBsm');
%title ('phi = 45 deg, (a,b,c) = (.15,.20,.95) meter')
grid;

Listing 11.6. MATLAB Program “fig11_18a.m”
% Use this program to reproduce Fig. 11.18a
%This program computes the back-scattered RCS for an ellipsoid.
% The angle phi is fixed to three values 0, 45, and 90 degrees
% The angle theta is varied from 0-180 deg.
% A plot of RCS versus theta is generated
% Last modified on July 16, 2003
clear all;
% ===   Input parameters   ===
a = .15;            % 15 cm
b = .20;            % 20 cm
c = .95 ;           % 95 cm
% ===   End of Input parameters   ===
as = num2str(a);
bs = num2str(b);
cs = num2str(c);
eps = 0.00001;
dtr = pi/180;
for q = 1:3
    if q == 1 
        phir = 0;       % the first value of the angle phi
    elseif q == 2
        phir = pi/4;    % the second value of the angle phi
    elseif q == 3
        phir = pi/2;    % the third value of the angle phi
    end   
    sin_phi_s = sin(phir)^2;
    cos_phi_s = cos(phir)^2;
    % Generate aspect angle vector
    theta = 0.:.05:180;
    thetar = theta * dtr;
    if(a ~= b & a ~= c)
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        rcs(q,:) = (pi * a^2 * b^2 * c^2) ./ (a^2 * cos_phi_s .* (sin(thetar).^2) + ...
            b^2 * sin_phi_s .* (sin(thetar).^2) + ...
            c^2 .* (cos(thetar).^2)).^2 ;
    elseif(a == b & a ~= c)
        rcs(q,:) = (pi * b^4 * c2̂) ./ ( b^2 .* (sin(thetar).^2) + ...
            c^2 .* (cos(thetar).^2)).^2 ;
    elseif (a == b & a ==c)
        rcs(q,:) = pi * c^2;
    end
end
rcs_db = 10.0 * log10(rcs);
figure (1);
plot(theta,rcs_db(1,:),'b',theta,rcs_db(2,:),'r:',theta,rcs_db(3,:),'g--','line-
width',1.5);
xlabel ('Aspect angle, Theta [Degrees]');
ylabel ('RCS - dBsm');
title (['Ellipsoid with (a,b,c) = (', [as],', ', [bs],', ', [cs], ')  meter'])
legend ('phi = 0^o','phi = 45^o','phi = 90^o')
grid;

Listing 11.7. MATLAB Function “rcs_circ_plate.m” 
function [rcsdb] = rcs_circ_plate (r, freq) 
% This program calculates and plots the backscattered RCS of
% circular flat plate of radius r.
eps = 0.000001;
% Compute aspect angle vector
% Compute wavelength
lambda = 3.e+8 / freq; % X-Band
index = 0;
for aspect_deg = 0.:.1:180
   index = index +1;
   aspect = (pi /180.) * aspect_deg; 
% Compute RCS using Eq. (2.37)
   if (aspect == 0 | aspect == pi)
       rcs_po(index) = (4.0 * pi^3 * r^4 / lambda^2) + eps;
       rcs_mu(index) = rcs_po(1);
    else
       x = (4. * pi * r / lambda) * sin(aspect);
       val1 = 4. * pi^3 * r^4 / lambda^2;
       val2 = 2. * besselj(1,x) / x;
       rcs_po(index) = val1 * (val2 * cos(aspect))^2 + eps;
% Compute RCS using Eq. (2.36)
       val1m = lambda * r;
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       val2m = 8. * pi * sin(aspect) * (tan(aspect)^2);
       rcs_mu(index) = val1m / val2m + eps;
    end
 end
 % Compute RCS using Eq. (2.35) (theta=0,180)
rcsdb = 10. * log10(rcs_po);
rcsdb_mu = 10 * log10(rcs_mu);
angle = 0:.1:180;
plot(angle,rcsdb,'k',angle,rcsdb_mu,'k-.')
grid;
xlabel ('Aspect angle - degrees');
ylabel ('RCS - dBsm');
legend('Using Eq.(11.37)','Using Eq.(11.36)')
freqGH = num2str(freq*1.e-9);
title (['Frequency = ',[freqGH],'  GHz']);

Listing 11.8. MATLAB Function “rcs_frustum.m”
function [rcs] = rcs_frustum (r1, r2, h, freq, indicator)
% This program computes the monostatic RCS for a frustum.
% Incident linear Polarization is assumed.
% To compute RCP or LCP RCS one must use Eq. (11.24)
% When viewing from the small end of the frustum
% normal incidence occurs at aspect pi/2 - half cone angle
% When viewing from the large end, normal incidence occurs at
% pi/2 + half cone angle.
% RCS is computed using Eq. (11.43). This program assumes a geometry
format long
index = 0;
eps = 0.000001;
lambda = 3.0e+8 /freq;
% Enter frustum's small end radius
%r1 =.02057;
% Enter Frustum's large end radius
%r2 = .05753;
% Compute Frustum's length
%h = .20945;
% Comput half cone angle, alpha
alpha = atan(( r2 - r1)/h);
% Compute z1 and z2
z2 = r2 / tan(alpha);
z1 = r1 / tan(alpha);
delta = (z2^1.5 - z1^1.5)^2;
factor = (8. * pi * delta) / (9. * lambda);
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%('enter 1 to view frustum from large end, 0 otherwise')
large_small_end = indicator;
if(large_small_end == 1)
   % Compute normal incidence, large end
   normal_incedence = (180./pi) * ((pi /2) + alpha)
   % Compute RCS from zero aspect to normal incidence
   for theta = 0.001:.1:normal_incedence-.5
      index = index +1;
      theta = theta * pi /180.;
      rcs(index) = (lambda * z1 * tan(alpha) *(tan(theta - alpha))^2) / ...
         (8. * pi *sin(theta)) + eps;
   end
   %Compute broadside RCS
   index = index +1;
   rcs_normal = factor * sin(alpha) / ((cos(alpha))^4) + eps;
   rcs(index) = rcs_normal;
   % Compute RCS from broad side to 180 degrees 
   for theta = normal_incedence+.5:.1:180
      index = index + 1;
      theta =  theta * pi / 180. ;
      rcs(index) = (lambda * z2 * tan(alpha) *(tan(theta - alpha))^2) / ...
         (8. * pi *sin(theta)) + eps;
   end
else
   % Compute normal incidence, small end
   normal_incedence = (180./pi) * ((pi /2) - alpha)
   % Compute RCS from zero aspect to normal incidence (large end of frustum)
   for theta = 0.001:.1:normal_incedence-.5
      index = index +1;
      theta = theta * pi /180.;
      rcs(index) = (lambda * z1 * tan(alpha) *(tan(theta + alpha))^2) / ...
         (8. * pi *sin(theta)) + eps;
   end
   %Compute broadside RCS
   index = index +1;
   rcs_normal = factor * sin(alpha) / ((cos(alpha))^4) + eps;
   rcs(index) = rcs_normal;
   % Compute RCS from broad side to 180 degrees (small end of frustum)
   for theta = normal_incedence+.5:.1:180
      index = index + 1;
      theta =  theta * pi / 180. ;
      rcs(index) = (lambda * z2 * tan(alpha) *(tan(theta + alpha))^2) / ...
         (8. * pi *sin(theta)) + eps;
   end
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end
% Plot RCS versus aspect angle
delta = 180 /index;
angle = 0.001:delta:180;
plot (angle,10*log10(rcs));
grid;
xlabel ('Aspect angle - degrees');
ylabel ('RCS - dBsm');
if(indicator ==1)
    title ('Viewing from large end');
else
    title ('Viewing from small end');
end

Listing 11.9. MATLAB Function “rcs_cylinder.m”
function [rcs] = rcs_cylinder(r1, r2, h, freq, phi, CylinderType)
% rcs_cylinder.m
% This program computes monostatic RCS for a finite length
% cylinder of either curricular or elliptical cross-section.
% Plot of RCS versus aspect angle theta is generated at a specified 
% input angle phi
% Last modified on July 16, 2003
 r = r1;           % radius of the circular cylinder
eps =0.00001;
dtr = pi/180;
phir = phi*dtr;
freqGH = num2str(freq*1.e-9);
lambda = 3.0e+8 /freq;      % wavelength
% CylinderType= 'Elliptic';   % 'Elliptic' or 'Circular' 
switch CylinderType
case 'Circular'
    % Compute RCS from 0 to (90-.5)  degrees 
    index = 0;
    for theta = 0.0:.1:90-.5
        index = index +1;
        thetar = theta * dtr;
        rcs(index) = (lambda * r * sin(thetar) / ...
            (8. * pi * (cos(thetar))^2)) + eps;
    end
    % Compute RCS for broadside specular at 90 degree
    thetar = pi/2;
    index = index +1;
    rcs(index) = (2. * pi * h^2 * r / lambda )+ eps;    
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    % Compute RCS from (90+.5) to 180 degrees
    for theta = 90+.5:.1:180.
        index = index + 1;
        thetar = theta * dtr;
        rcs(index) = ( lambda * r * sin(thetar) / ...
            (8. * pi * (cos(thetar))^2)) + eps;
    end
case 'Elliptic'
    r12 = r1*r1;
    r22 = r2*r2;
    h2 = h*h;
    % Compute RCS from 0 to (90-.5)  degrees 
    index = 0;
    for theta = 0.0:.1:90-.5
        index = index +1;
        thetar = theta * dtr;
        rcs(index) =  lambda * r12 * r22 * sin(thetar) / ...
                 ( 8*pi* (cos(thetar)^2)* ( (r12*cos(phir)^2 + r22*sin(phir)^2)^1.5 
))+ eps;    
    end
    % Compute RCS for broadside specular at 90 degree
    index = index +1;
    rcs(index) = 2. * pi * h2 * r12 * r22 / ...
                 ( lambda*( (r12*cos(phir)^2 + r22*sin(phir)^2)^1.5 ))+ eps;    
    % Compute RCS from (90+.5) to 180 degrees
    for theta = 90+.5:.1:180.
        index = index + 1;
        thetar = theta * dtr;
        rcs(index) =  lambda * r12 * r22 * sin(thetar) / ...
                 ( 8*pi* cos(thetar)^2* ( (r12*cos(phir)^2 + r22*sin(phir)^2)^1.5 ))+ 
eps;    
    end
end
% Plot the results
delta= 180/(index-1);
angle = 0:delta:180;
plot(angle,10*log10(rcs),'k','linewidth',1.5);
grid;
xlabel ('Aspect angle, Theta [Degrees]');;
ylabel ('RCS - dBsm');
title  ([[CylinderType],'  Cylinder','  at Frequency = ',[freqGH],'  GHz']);
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Listing 11.10. MATLAB Function “rcs_rect_plate.m”
function  [rcsdb_h,rcsdb_v] = rcs_rect_plate(a, b, freq)
% This program computes the backscattered RCS for a rectangular 
% flat plate. The RCS is computed for vertical and horizontal
% polarization based on Eq.s(11.50)through (11.60). Also Physical
% Optics approximation Eq.(11.62) is computed.
% User may vary frequency, or the plate's dimensions.
% Default values are a=b=10.16cm; lambda=3.25cm.
eps = 0.000001;
% Enter a, b, and lambda
lambda = .0325;
ka = 2. * pi * a / lambda;
% Compute aspect angle vector
theta_deg = 0.05:0.1:85;
theta = (pi/180.) .* theta_deg;
sigma1v = cos(ka .*sin(theta)) - i .* sin(ka .*sin(theta)) ./ sin(theta);
sigma2v = exp(i * ka - (pi /4)) / (sqrt(2 * pi) *(ka)^1.5);
sigma3v = (1. + sin(theta)) .* exp(-i * ka .* sin(theta)) ./ ...
   (1. - sin(theta)).^2;
sigma4v = (1. - sin(theta)) .* exp(i * ka .* sin(theta)) ./ ...
   (1. + sin(theta)).^2;
sigma5v = 1. - (exp(i * 2. * ka - (pi / 2)) / (8. * pi * (ka)^3));
sigma1h = cos(ka .*sin(theta)) + i .* sin(ka .*sin(theta)) ./ sin(theta);
sigma2h = 4. * exp(i * ka * (pi / 4.)) / (sqrt(2 * pi * ka));
sigma3h =  exp(-i * ka .* sin(theta)) ./ (1. - sin(theta));
sigma4h = exp(i * ka * sin(theta)) ./ (1. + sin(theta));
sigma5h = 1. - (exp(j * 2. * ka + (pi / 4.)) / 2. * pi * ka);
% Compute vertical polarization RCS
rcs_v = (b^2 / pi) .* (abs(sigma1v - sigma2v .*((1. ./ cos(theta)) ...
   + .25 .* sigma2v .* (sigma3v + sigma4v)) .* (sigma5v).^-1)).^2 + eps;
% compute horizontal polarization RCS
rcs_h = (b^2 / pi) .* (abs(sigma1h - sigma2h .*((1. ./ cos(theta)) ...
   - .25 .* sigma2h .* (sigma3h + sigma4h)) .* (sigma5h).^-1)).^2 + eps;
% Compute RCS from Physical Optics, Eq.(11.62)
angle = ka .* sin(theta);
rcs_po = (4. * pi* a^2 * b^2 / lambda^2 ).*  (cos(theta)).^2 .* ...
   ((sin(angle) ./ angle).^2) + eps;
rcsdb_v = 10. .*log10(rcs_v);
rcsdb_h = 10. .*log10(rcs_h);
rcsdb_po = 10. .*log10(rcs_po);
figure(2)
plot (theta_deg, rcsdb_v,'k',theta_deg,rcsdb_po,'k -.');
set(gca,'xtick',[10:10:85]);
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freqGH = num2str(freq*1.e-9);
A = num2str(a);
B = num2str(b);
title (['Vertical Polarization,  ','Frequency = ',[freqGH],'  GHz, ', '  a = ', [A], ' 
m','  b = ',[B],' m']);
ylabel ('RCS -dBsm');
xlabel ('Aspect angle - deg');
legend('Eq.(11.50)','Eq.(11.62)')
figure(3)
plot (theta_deg, rcsdb_h,'k',theta_deg,rcsdb_po,'k -.');
set(gca,'xtick',[10:10:85]);
title (['Horizontal Polarization,  ','Frequency = ',[freqGH],'  GHz, ', '  a = ', 
[A], ' m','  b = ',[B],' m']);
ylabel ('RCS -dBsm');
xlabel ('Aspect angle - deg');
legend('Eq.(11.51)','Eq.(11.62)')

Listing 11.11. MATLAB Function “rcs_isosceles.m”
function [rcs] = rcs_isosceles (a, b, freq, phi)
% This program calculates the backscattered RCS for a perfectly
% conducting triangular flat plate, using Eqs. (11.63) through (11.65)
% The default case is to assume phi = pi/2. These equations are
% valid for aspect angles less than 30 degrees
% compute area of plate
A = a * b / 2.;
lambda = 3.e+8 / freq;
phi = pi / 2.;
ka = 2. * pi / lambda;
kb = 2. *pi / lambda;
% Compute theta vector
theta_deg = 0.01:.05:89;
theta = (pi /180.) .* theta_deg;
alpha = ka * cos(phi) .* sin(theta);
beta =  kb * sin(phi) .* sin(theta);
if (phi == pi / 2)
  rcs = (4. * pi * A^2 / lambda^2) .* cos(theta).^2 .* (sin(beta ./ 2)).^4 ...
     ./ (beta./2).^4 + eps;
end
if (phi == 0)
   rcs = (4. * pi * A^2 / lambda^2) .* cos(theta).^2 .* ...
      ((sin(alpha).^4 ./ alpha.^4) + (sin(2 .* alpha) - 2.*alpha).^2 ...
      ./ (4 .* alpha.^4)) + eps;
end
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if (phi ~= 0 & phi ~= pi/2)
   sigmao1 = 0.25 *sin(phi)^2 .* ((11. * a / b) * cos(phi) .* ...
      sin(beta) - sin(phi) .* sin(11. .* alpha)).^2;
   fact1 = (alpha).^2 - (.5 .* beta).^2;
   fact2 = (sin(alpha).^2 - sin(.5 .* beta).^2).^2;
   sigmao = (fact2 + sigmao1) ./ fact1;
   rcs = (4. * pi * A^2 / lambda^2) .* cos(theta).^2 .* sigmao + eps;
end
rcsdb = 10. *log10(rcs);
plot(theta_deg,rcsdb,'k')
xlabel ('Aspect angle - degrees');
ylabel ('RCS - dBsm')
%title ('freq = 9.5GHz, phi = pi/2');
grid;

Listing 11.12. MATLAB Program “Capped_WedgeTM.m”
     % Program to calculate the near field of a sharp conducting wedge
% due to an incident field from a line source or a plane wave 
% By: Dr. Atef Elsherbeni -- atef@olemiss.edu  
% This program uses 6 other functions
% Last modified July 24, 2003
clear all
close all
img = sqrt(-1);
rtd = 180/pi;   dtr = pi/180;
mu0 = 4*pi*1e-7;                % Permeability of free space      
eps0 = 8.854e-12;               % Permittivity of free space 
%  =====   Input parameters   =====
alphad = 30;                    % above x Wedge angle
betad = 30;                     % Below x wedge angle
reference = 'on x-axis';         % Reference condition 'top face' or 'bisector' or 
'on x-axis'
CapType = 'Diel';               % Cap Type 'Cond', 'diel' or 'None'
ar = .15;                       % Cap radius in lambda
rhop = 0.5;                     % radial Position of the line source in terms of lambda
phipd = 180;                    % angular position of the line source                 
Ie = .001;                       % Amplitude of the current source
freq = 2.998e8;                 % frequency
mur = 1;        
epsr = 1;  
ax = 1.5;    by = 1;            % area for near field calculations
nx = 30;        ny = 20;        % Number of points for near field calculations
%  =====  End of Input Data   =====
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alpha = alphad*dtr;
beta = betad *dtr;

switch reference
    case 'top face'
        alpha = 0;
        vi = pi/(2*pi-beta);
    case 'bisector'
        beta = alpha;
        vi = pi/(2*pi-2*beta);
    case 'on x-axis'
        vi = pi/(2*pi-alpha-beta);
end
phip = phipd*dtr;
etar = sqrt(mur/epsr);
mu = mu0*mur;
eps = eps0*epsr;
lambda = 2.99e8/freq;
k = 2*pi/lambda;                % free space wavenumber
ka = k*ar;
k1 = k*sqrt(mur*epsr);         % wavenumber inside dielectric
k1a = k1*ar;
krhop = k*rhop;
omega =2*pi*freq;
%   <<< Far field Calculations of Ez component >>>
%   ===   Line source excitation   ===
Nc =round(1+2*k*rhop);          % number of terms for series summation  
Term   = pi*omega*mu0/(2*pi-alpha-beta);
Term0D =  img*4*pi/(2*pi-alpha-beta);
Term0C = -img*4*pi/(2*pi-alpha-beta);
Term0  =      4*pi/(2*pi-alpha-beta);
for ip = 1:360   
    phii = (ip -1)*dtr;
    xphi(ip) = ip-1;
    if phii > alpha  & phii < 2*pi-beta %  outside the wedge region
        EzFLs(ip) = 0;
        for m = 1:Nc  
            v = m*vi;     
            ssterm = (img^v)*sin(v*(phip-alpha))*sin(v*(phii-alpha));
            switch CapType
                case 'Diel'                   
                    Aterm = k * besselj(v,k1a)*(dbesselj(v,ka)*bessely(v,krhop)...
                           -dbessely(v,ka)*besselj(v,krhop)) ...
                           +k1*dbesselj(v,k1a)*( bessely(v,ka)*besselj(v,krhop)...
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                           -besselj(v,ka)*bessely(v,krhop));
                    Bterm =k*dbesselh(v,2,ka)*besselj(v,k1a) ...
                          -k1*besselh(v,2,ka)*dbesselj(v,k1a);
                    EzLS(m) = Term0D*ssterm*Aterm/Bterm; 
                case 'Cond'
                    Aterm = bessely(v,ka)*besselj(v,krhop) ...
                          - besselj(v,ka)*bessely(v,krhop);
                    Bterm = besselh(v,2,ka);                
                    EzLS(m) = Term0C*ssterm*Aterm/Bterm;   
                case 'None'               
                    EzLS(m) = Term0*ssterm*besselj(v,krhop);      
            end          
        end
        EzFLs(ip) = abs(sum(EzLS));
    else 
        EzFLs(ip)=0;
    end
end
EzFLs = EzFLs/max(EzFLs);

figure(1);
plot(xphi,EzFLs,'linewidth',1.5);
xlabel('Observation angle \phi^o'); 
ylabel('Ez');
axis ([0 360 0 1])
title('Total Far Field (Ez) [Line source excitation]');

figure(2)
polardb(xphi*dtr,EzFLs,'k')
title ('Total Far Field (Ez) [dB]')

%   <<<   Near field observation points   >>>
delx = 2*ax/nx; dely = 2*by/ny;
xi = -ax;   yi = -by;           % Initial values for x and y
for i = 1:nx
    for j = 1:ny
        x(i,j) = xi + (i-1)*delx;
        y(i,j) = yi + (j-1) *dely;
        rho(i,j) = sqrt(x(i,j)^2+y(i,j)^2);
        phi(i,j) = atan2(y(i,j),x(i,j));
        if phi(i,j) < 0
            phi(i,j) = phi(i,j) + 2*pi;
        end    
        if rho(i,j) <= 0.001
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            rho(i,j) = 0.001;
        end
    end 
end

%    Line source excitation, near field calculations

%    ====   Line source coefficients    ====
Nc =round(1+2*k*max(max(rho)));          % number of terms for series sum-
mation  
Term   = Ie*pi*omega*mu0/(2*pi-alpha-beta);
for m = 1:Nc  
    v = m*vi;     
    switch CapType
        case 'Diel'
            b(m) = -Term * besselh(v,2,krhop);
            c(m) = -b(m) * (k*dbesselj(v,ka)*besselj(v,k1a) ...
                   -k1*besselj(v,ka)*dbesselj(v,k1a)) ...
                   /(k*dbesselh(v,2,ka)*besselj(v,k1a) ...
                   -k1*besselh(v,2,ka)*dbesselj(v,k1a));
            d(m) = c(m) + b(m) * besselj(v,krhop) ...
                 / besselh(v,2,krhop);
            a(m) = ( b(m) * besselj(v,ka)+c(m) ...
                 * besselh(v,2,ka))/besselj(v,k1a);
        case 'Cond'
            b(m) = -Term * besselh(v,2,krhop);
            c(m) = -b(m) * besselj(v,ka)/besselh(v,2,ka);
            d(m) = c(m) + b(m) * besselj(v,krhop) ...
                 / besselh(v,2,krhop);
            a(m) = 0;
        case 'None'               
            b(m) = -Term * besselh(v,2,krhop);
            c(m) = 0;
            d(m) = -Term * besselj(v,krhop); 
            a(m) = b(m);  
    end          
end
   termhphi = sqrt(-1)*omega*mu0;
termhrho = -termhphi;
for i = 1:nx
    for j = 1:ny
        for m = 1:Nc
            v = m*vi;  % Equation 
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             [Ezt,Hphit,Hrhot] = 
DielCappedWedgeTMFields_Ls(v,m,rho(i,j),phi(i,j),rhop, ...
                                 phip,ar,k,k1,alpha,beta,a,b,c,d);
            Eztt(m) = Ezt;
            Hphitt(m) = Hphit;
            Hrhott(m) = Hrhot;
        end
        SEz(i,j) = sum(Eztt);
        SHphi(i,j) = sum(Hphitt)/termhphi;
        SHrho(i,j) = sum(Hrhott)/termhrho;
    end
end
figure(3);
surf(x,y,abs(SEz));
axis ('equal'); 
view(45,60); 
shading interp;
xlabel('x'); 
ylabel('y'); 
zlabel('E_z');
title('Ez [Line source excitation]');
colorbar; colormap(copper);  % colormap(jet);
figure(4);
surf(x,y,377*abs(SHrho));
axis ('equal');
view(45,60);  
shading interp;
xlabel('x'); 
ylabel('y'); 
zlabel('\eta_o  H\rho');
title('\eta_o  H\rho [Line source excitation]');
colorbar; colormap(copper);  % colormap(jet);
figure(5);
surf(x,y,377*abs(SHphi));
axis ('equal');
view(45,60); 
shading interp;
xlabel('x'); 
ylabel('y'); 
zlabel('\eta_o  H\phi');
title('\eta_o  H\phi [Line source excitation]')
colorbar; colormap(copper);  % colormap(jet);
%   ===   Plane wave excitation, near field calculations   ===
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Nc =round(1+2*k*max(max(rho)));          % number of terms for series sum-
mation  
Term   = 4*pi/(2*pi-alpha-beta);
for m = 1:Nc  
    v = m*vi;     
    switch CapType
        case 'Diel'
            b(m) = Term * img^v;
            c(m) = -b(m) * (k*dbesselj(v,ka)*besselj(v,k1a)...
                   -k1*besselj(v,ka)*dbesselj(v,k1a)) ...
                  / (k*dbesselh(v,2,ka)*besselj(v,k1a) ...
                   -k1*besselh(v,2,ka)*dbesselj(v,k1a));
            a(m) = ( b(m) * besselj(v,ka)+c(m) * besselh(v,2,ka))/besselj(v,k1a);
        case 'Cond'
            b(m) = -Term * img^v;
            c(m) = -b(m) * besselj(v,ka)/besselh(v,2,ka);
            a(m) = 0;
        case 'None'               
            b(m) = -Term * img^v;
            c(m) = 0;
            a(m) = b(m);  
    end          
end
termhphi = sqrt(-1)*omega*mu0;
termhrho = -termhphi;
for i = 1:nx
    for j = 1:ny
        for m = 1:Nc
            v = m*vi;  % Equation 
             [Ezt,Hphit,Hrhot] = 
DielCappedWedgeTMFields_PW(v,m,rho(i,j),phi(i,j), ...
                                 phip,ar,k,k1,alpha,beta,a,b,c);
            Eztt(m) = Ezt;
            Hphitt(m) = Hphit;
            Hrhott(m) = Hrhot;
end
        EzPW(i,j) = sum(Eztt);
        HphiPW(i,j) = sum(Hphitt)/termhphi;
        HrhoPW(i,j) = sum(Hrhott)/termhrho;
   end
end           
figure(6);
surf(x,y,abs(EzPW));
axis ('equal');
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view(45,60); 
shading interp;
xlabel('x'); 
ylabel('y'); 
zlabel('E_z');
colorbar; colormap(copper);  % colormap(jet);
title('Near Field (Ez) [Plane wave excitation]');
figure(7);
surf(x,y,377*abs(HrhoPW));
axis ('equal');
view(45,60); 
shading interp;
xlabel('x'); 
ylabel('y'); 
zlabel('\eta_o H\rho');
title('\eta_o H\rho [Plane wave excitation]');
colorbar; colormap(copper);  % colormap(jet);
figure(8);
surf(x,y,377*abs(HphiPW));
axis ('equal');
view(45,60); 
shading interp;
xlabel('x'); 
ylabel('y'); 
zlabel('\eta_o H\phi');
title('\eta_o H\phi [Plane wave excitation]');
colorbar; colormap(copper);  % colormap(jet);

Listing 11.13.  MATLAB Function  
"DielCappedWedgeTMFields_Ls.m"

function [Ezt,Hphit,Hrhot] = 
DielCappedWedgeTMFields_Ls(v,m,rhoij,phiij,rhop,phip,ar,k,k1,alpha,beta,a,
b,c,d);
% Function to calculate the near field components of a capped wedge 
% with a line source excitation at one near field point
% This function is to be called by the Main program: 
Diel_Capped_WedgeTM.m
% By: Dr. Atef Elsherbeni -- atef@olemiss.edu 
% Last modified July 23, 2003
Ezt = 0;  Hrhot = 0;  Hphit = 0;    % Initialization
if phiij > alpha  & phiij < 2*pi-beta %  outside the wedge region
    krho = k*rhoij;
    k1rho = k1*rhoij;
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    jvkrho = besselj(v,krho);
    hvkrho = besselh(v,2,krho);
    jvk1rho = besselj(v,k1rho);
    djvkrho = dbesselj(v,krho);
    djvk1rho = dbesselj(v,k1rho);
    dhvkrho = dbesselh(v,2,krho);    
    ssterm = sin(v*(phip-alpha))*sin(v*(phiij-alpha));
    scterm = sin(v*(phip-alpha))*cos(v*(phiij-alpha));
       if rhoij <= ar   % field point location is inside the cap region
        Ezt = a(m)*jvk1rho*ssterm; 
        Hphit = k1*a(m)*djvk1rho*ssterm;
        Hrhot = v*a(m)*jvk1rho*scterm/rhoij;
    elseif rhoij <= rhop   % field point location is between cap and the line 
source location
        Ezt = (b(m)*jvkrho+c(m)*hvkrho)*ssterm; 
        Hphit = k*(b(m)*djvkrho+c(m)*dhvkrho)*ssterm; 
        Hrhot = v*(b(m)*jvkrho+c(m)*hvkrho)*scterm/rhoij;
    elseif rhoij > rhop % field point location is greater than the line source loca-
tion
        Ezt = d(m)*hvkrho*ssterm; 
        Hphit = k*d(m)*dhvkrho*ssterm;
        Hrhot = v*d(m)*hvkrho*scterm/rhoij;
    end
else
    Ezt = 0;    Hrhot = 0;  Hphit = 0;  % inside wedge region
End

Listing 11.14. MATLAB Function 
"DielCappedWedgeTMFields_PW.m"

function [Ezt,Hphit,Hrhot] = 
DielCappedWedgeTMFields_PW(v,m,rhoij,phiij,phip,ar,k,k1,alpha,beta,a,b,c)
;
% Function to calculate the near field components of a capped wedge 
% with a line source excitation at one near field point
% This function is to be called by the Main program: 
Diel_Capped_WedgeTM.m
% By: Dr. Atef Elsherbeni -- atef@olemiss.edu 
% Last modified July 23, 2003
Ezt = 0;  Hrhot = 0;  Hphit = 0;    % Initialization
if phiij > alpha  & phiij < 2*pi-beta %  outside the wedge region
    krho = k*rhoij;
    k1rho = k1*rhoij;
    jvkrho = besselj(v,krho);
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    hvkrho = besselh(v,2,krho);
    jvk1rho = besselj(v,k1rho);
    djvkrho = dbesselj(v,krho);
    djvk1rho = dbesselj(v,k1rho);
    dhvkrho = dbesselh(v,2,krho);    
    ssterm = sin(v*(phip-alpha))*sin(v*(phiij-alpha));
    scterm = sin(v*(phip-alpha))*cos(v*(phiij-alpha));
    if rhoij <= ar   % field point location is inside the cap region
        Ezt = a(m)*jvk1rho*ssterm; 
        Hphit = k1*a(m)*djvk1rho*ssterm;
        Hrhot = v*a(m)*jvk1rho*scterm/rhoij;
    else   % field point location is between the cap and the line source location
        Ezt = (b(m)*jvkrho+c(m)*hvkrho)*ssterm; 
        Hphit = k*(b(m)*djvkrho+c(m)*dhvkrho)*ssterm; 
        Hrhot = v*(b(m)*jvkrho+c(m)*hvkrho)*scterm/rhoij;
    end
else
    Ezt = 0;    Hrhot = 0;  Hphit = 0;  % inside wedge region
End

Listing 11.15. MATLAB Function "polardb.m"
function polardb(theta,rho,line_style)
%   POLARDB  Polar coordinate plot.
%   POLARDB(THETA, RHO) makes a plot using polar coordinates of
%   the angle THETA, in radians, versus the radius RHO in dB.
%   The maximum value of RHO should not exceed 1. It should not be
%   normalized, however (i.e., its max. value may be less than 1).
%   POLAR(THETA,RHO,S) uses the linestyle specified in string S.
%   See PLOT for a description of legal linestyles.
if nargin < 1
    error('Requires 2 or 3 input arguments.')
elseif nargin == 2 
    if isstr(rho)
        line_style = rho;
        rho = theta;
        [mr,nr] = size(rho);
        if mr == 1
            theta = 1:nr;
        else
            th = (1:mr)';
            theta = th(:,ones(1,nr));
        end
    else
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        line_style = 'auto';
    end
elseif nargin == 1
    line_style = 'auto';
    rho = theta;
    [mr,nr] = size(rho);
    if mr == 1
        theta = 1:nr;
    else
        th = (1:mr)';
        theta = th(:,ones(1,nr));
    end
end
if isstr(theta) | isstr(rho)
    error('Input arguments must be numeric.');
end
if ~isequal(size(theta),size(rho))
    error('THETA and RHO must be the same size.');
end
% get hold state
cax = newplot;
next = lower(get(cax,'NextPlot'));
hold_state = ishold;
% get x-axis text color so grid is in same color
tc = get(cax,'xcolor');
ls = get(cax,'gridlinestyle');
% Hold on to current Text defaults, reset them to the
% Axes' font attributes so tick marks use them.
fAngle  = get(cax, 'DefaultTextFontAngle');
fName   = get(cax, 'DefaultTextFontName');
fSize   = get(cax, 'DefaultTextFontSize');
fWeight = get(cax, 'DefaultTextFontWeight');
fUnits  = get(cax, 'DefaultTextUnits');
set(cax, 'DefaultTextFontAngle',  get(cax, 'FontAngle'), ...
    'DefaultTextFontName',   get(cax, 'FontName'), ...
    'DefaultTextFontSize',   get(cax, 'FontSize'), ...
    'DefaultTextFontWeight', get(cax, 'FontWeight'), ...
    'DefaultTextUnits','data')
% make a radial grid
    hold on;
    maxrho =1;
    hhh=plot([-maxrho -maxrho maxrho maxrho],[-maxrho maxrho maxrho -
maxrho]);
    set(gca,'dataaspectratio',[1 1 1],'plotboxaspectratiomode','auto')

© 2004 by Chapman & Hall/CRC CRC Press LLC



    v = [get(cax,'xlim') get(cax,'ylim')];
    ticks = sum(get(cax,'ytick')>=0);
    delete(hhh);
% check radial limits and ticks
    rmin = 0; rmax = v(4); rticks = max(ticks-1,2);
    if rticks > 5   % see if we can reduce the number
        if rem(rticks,2) == 0
            rticks = rticks/2;
        elseif rem(rticks,3) == 0
            rticks = rticks/3;
        end
    end
% only do grids if hold is off
if ~hold_state
% define a circle
    th = 0:pi/50:2*pi;
    xunit = cos(th);
    yunit = sin(th);
% now really force points on x/y axes to lie on them exactly
    inds = 1:(length(th)-1)/4:length(th);
    xunit(inds(2:2:4)) = zeros(2,1);
    yunit(inds(1:2:5)) = zeros(3,1);
% plot background if necessary
    if ~isstr(get(cax,'color')),
       patch('xdata',xunit*rmax,'ydata',yunit*rmax, ...
             'edgecolor',tc,'facecolor',get(gca,'color'),...
             'handlevisibility','off');
    end
% draw radial circles with dB ticks
    c82 = cos(82*pi/180);
    s82 = sin(82*pi/180);
    rinc = (rmax-rmin)/rticks;
    tickdB=-10*(rticks-1);    % the innermost tick dB value
    for i=(rmin+rinc):rinc:rmax
        hhh = plot(xunit*i,yunit*i,ls,'color',tc,'linewidth',1,...
                   'handlevisibility','off');
        text((i+rinc/20)*c82*0,-(i+rinc/20)*s82, ...
            ['  ' num2str(tickdB) ' dB'],'verticalalignment','bottom',...
            'handlevisibility','off')
        tickdB=tickdB+10;
    end
    set(hhh,'linestyle','-') % Make outer circle solid
% plot spokes
    th = (1:6)*2*pi/12;
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    cst = cos(th); snt = sin(th);
    cs = [-cst; cst];
    sn = [-snt; snt];
    plot(rmax*cs,rmax*sn,ls,'color',tc,'linewidth',1,...
         'handlevisibility','off')
% annotate spokes in degrees
    rt = 1.1*rmax;
    for i = 1:length(th)
        text(rt*cst(i),rt*snt(i),int2str(i*30),...
             'horizontalalignment','center',...
             'handlevisibility','off');
        if i == length(th)
            loc = int2str(0);
        else
            loc = int2str(180+i*30);
        end
        text(-rt*cst(i),-rt*snt(i),loc,'horizontalalignment','center',...
             'handlevisibility','off')
    end
% set view to 2-D
    view(2);
% set axis limits
    axis(rmax*[-1 1 -1.15 1.15]);
end
% Reset defaults.
set(cax, 'DefaultTextFontAngle', fAngle , ...
    'DefaultTextFontName',   fName , ...
    'DefaultTextFontSize',   fSize, ...
    'DefaultTextFontWeight', fWeight, ...
    'DefaultTextUnits',fUnits );
% Tranfrom data to dB scale
rmin = 0; rmax=1;
rinc = (rmax-rmin)/rticks;
rhodb=zeros(1,length(rho));
for i=1:length(rho)
    if rho(i)==0
        rhodb(i)=0;
    else
        rhodb(i)=rmax+2*log10(rho(i))*rinc;
    end
    if rhodb(i)<=0
        rhodb(i)=0;
    end
end
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% transform data to Cartesian coordinates.
xx = rhodb.*cos(theta);
yy = rhodb.*sin(theta);
% plot data on top of grid
if strcmp(line_style,'auto')
    q = plot(xx,yy);
else
    q = plot(xx,yy,line_style,'linewidth',1.5);
end
if nargout > 0
    hpol = q;
end
if ~hold_state
    set(gca,'dataaspectratio',[1 1 1]), axis off; set(cax,'NextPlot',next);
end
set(get(gca,'xlabel'),'visible','on')
set(get(gca,'ylabel'),'visible','on')

Listing 11.16. MATLAB Function "dbesselj.m"
function [ res ] = dbesselj( nu,z )
res=besselj(nu-1,z)-besselj(nu,z)*nu/z;

Listing 11.17. MATLAB Function "dbessely.m"
function [ res ] = dbessely( nu,z )
res=bessely(nu-1,z)-bessely(nu,z)*nu/z;

Listing 11.18. MATLAB Function "dbesselh.m"
function [ res ] = dbesselh(nu,kind,z)
res=besselh(nu-1,kind,z)-besselh(nu,kind,z)*nu/z;

Listing 11.19. MATLAB Program “rcs_cylinder_complex.m”
% This program computes the backscattered RCS for a cylinder
% with flat plates.
clear all
index = 0;
eps =0.00001;
a1 =.125;
h = 1.;
lambda = 3.0e+8 /9.5e+9;
lambda = 0.00861;
index = 0;
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for theta = 0.0:.1:90-.1
   index = index +1;
   theta = theta * pi /180.;
   rcs(index) = (lambda * a1 * sin(theta) / ...
      (8 * pi * (cos(theta))^2)) + eps;
end
theta*180/pi;
theta = pi/2;
index = index +1;
rcs(index) = (2 * pi * h^2 * a1 / lambda )+ eps;
for theta = 90+.1:.1:180.
   index = index + 1;
   theta = theta * pi / 180.;
   rcs(index) = ( lambda * a1 * sin(theta) / ...
      (8 * pi * (cos(theta))^2)) + eps;
end
r = a1;
index = 0;
for aspect_deg = 0.:.1:180
   index = index +1;
   aspect = (pi /180.) * aspect_deg; 
% Compute RCS using Eq. (11.37)
   if (aspect == 0 | aspect == pi)
       rcs_po(index) = (4.0 * pi^3 * r^4 / lambda^2) + eps;
       rcs_mu(index) = rcs_po(1);
    else
       x = (4. * pi * r / lambda) * sin(aspect);
       val1 = 4. * pi^3 * r^4 / lambda^2;
       val2 = 2. * besselj(1,x) / x;
       rcs_po(index) = val1 * (val2 * cos(aspect))^2 + eps;
    end
 end
rcs_t =(rcs_po + rcs);
angle = 0:.1:180;
plot(angle,10*log10(rcs_t(1:1801)),'k');
grid;
xlabel ('Aspect angle -degrees');
ylabel ('RCS -dBsm');

Listing 11.20. MATLAB Program “Swerling_models.m”
% This program computes and plots Swerling statistical models
% sigma_bar = 1.5; 
clear all
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sigma = 0:0.001:6;
sigma_bar = 1.5;
swer_3_4 = (4. / sigma_bar^2) .* sigma .* ...
   exp(-2. * (sigma ./ sigma_bar));
%t.*exp(-(t.^2)./2.
swer_1_2 = (1. /sigma_bar) .* exp( -sigma ./ sigma_bar);
plot(sigma,swer_1_2,'k',sigma,swer_3_4,'k');
grid;
gtext ('Swerling I,II');
gtext ('Swerling III,IV');
xlabel ('sigma');
ylabel ('Probability density');
title ('sigma-bar = 1.5');
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This chapter provides an introduction to Tactical Synthetic Aperture Radar 
(TSAR). The purpose of this chapter is to further develop the readers’ under-
standing of SAR by taking a closer look at high resolution spotlight SAR 
image formation algorithms, motion compensation techniques, autofocus algo-
rithms, and performance metrics.

12.1.  Introduction

Modern airborne radar systems are designed to perform a large number of 
functions which range from detection and discrimination of targets to mapping 
large areas of ground terrain. This mapping can be performed by the Synthetic 
Aperture Radar (SAR). Through illuminating the ground with coherent radia-
tion and measuring the echo signals, SAR can produce high resolution two-
dimensional (and in some cases three-dimensional) imagery of the ground sur-
face. The quality of ground maps generated by SAR is determined by the size 
of the resolution cell. A resolution cell is specified by both range and azimuth 
resolutions of the system. Other factors affecting the size of the resolution cells 
are (1) size of the processed map and the amount of signal processing 
involved; (2) cost consideration; and (3) size of the objects that need to be 
resolved in the map. For example, mapping gross features of cities and coast-
lines does not require as much resolution when compared to resolving houses, 
vehicles, and streets.

1. Dr. Brian J. Smith is with the US Army Aviation and Missile Command (AMCOM), 
Redstone Arsenal, Alabama. 
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SAR systems can produce maps of reflectivity versus range and Doppler 
(cross range). Range resolution is accomplished through range gating. Fine 
range resolution can be accomplished by using pulse compression techniques. 
The azimuth resolution depends on antenna size and radar wavelength. Fine 
azimuth resolution is enhanced by taking advantage of the radar motion in 
order to synthesize a larger antenna aperture. Let  denote the number of 
range bins and let  denote the number of azimuth cells. It follows that the 
total number of resolution cells in the map is . SAR systems that are gen-
erally concerned with improving azimuth resolution are often referred to as 
Doppler Beam-Sharpening (DBS) SARs. In this case, each range bin is pro-
cessed to resolve targets in Doppler which correspond to azimuth. This chapter 
is presented in the context of DBS.

Due to the large amount of signal processing required in SAR imagery, the 
early SAR designs implemented optical processing techniques. Although such 
optical processors can produce high quality radar images, they have several 
shortcomings. They can be very costly and are, in general, limited to making 
strip maps. Motion compensation is not easy to implement for radars that uti-
lize optical processors. With the recent advances in solid state electronics and 
Very Large Scale Integration (VLSI) technologies, digital signal processing in 
real time has been made possible in SAR systems. 

12.2.  Side Looking SAR Geometry

Fig. 12.1 shows the geometry of the standard side looking SAR. We will 
assume that the platform carrying the radar maintains both fixed altitude  and 
velocity . The antenna  beamwidth is , and the elevation angle (mea-
sured from the z-axis to the antenna axis) is . The intersection of the antenna 
beam with the ground defines a footprint. As the platform moves, the footprint 
scans a swath on the ground.

The radar position with respect to the absolute origin , at any 
time, is the vector . The velocity vector  is

 (12.1)

The Line of Sight (LOS) for the current footprint centered at  is defined 
by the vector , where  denotes the central time of the observation inter-
val  (coherent integration interval). More precisely,

(12.2)
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Figure 12.1. Side looking SAR geometry.
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where  and  are the absolute and relative times, respectively. The vector  
defines the ground projection of the antenna at central time. The minimum 
slant range to the swath is , and the maximum range is denoted , as 
illustrated by Fig. 12.2. It follows that

(12.3)

Notice that the elevation angle  is equal to 

(12.4)

where  is the grazing angle. The size of the footprint is a function of the 
grazing angle and the antenna beamwidth, as illustrated in Fig. 12.3. The SAR 
geometry described in this section is referred to as SAR “strip mode” of opera-
tion. Another SAR mode of operation, which will not be discussed in this 
chapter, is called “spot-light mode,” where the antenna is steered (mechani-
cally or electronically) to continuously illuminate one spot (footprint) on the 
ground. In this case, one high resolution image of the current footprint is gen-
erated during an observation interval. 

12.3.  SAR Design Considerations

The quality of SAR images is heavily dependent on the size of the map reso-
lution cell shown in Fig. 12.4. The range resolution, , is computed on the 
beam LOS, and is given by

 (12.5)
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where  is the pulsewidth. From the geometry in Fig. 12.5 the extent of the 
range cell ground projection  is computed as

(12.6)

The azimuth or cross range resolution for a real antenna with a  beam-
width  (radians) at range  is

(12.7)

However, the antenna beamwidth is proportional to the aperture size, 

(12.8)

where  is the wavelength and  is the aperture length. It follows that

(12.9)

And since the effective synthetic aperture size is twice that of a real array, the 
azimuth resolution for a synthetic array is then given by

Figure 12.4b. Definition of a resolution cell. 
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(12.10)

Furthermore, since the synthetic aperture length  is equal to , Eq. 
(12.10) can be rewritten as

(12.11)

The azimuth resolution can be greatly improved by taking advantage of the 
Doppler variation within a footprint (or a beam). As the radar travels along its 
flight path the radial velocity to a ground scatterer (point target) within a foot-
print varies as a function of the radar radial velocity in the direction of that 
scatterer. The variation of Doppler frequency for a certain scatterer is called the 
“Doppler history.”

Let  denote the range to a scatterer at time , and  be the correspond-
ing radial velocity; thus the Doppler shift is

(12.12)

where  is the range rate to the scatterer. Let  and  be the times when 
the scatterer enters and leaves the radar beam, respectively, and  be the time 
that corresponds to minimum range. Fig. 12.6 shows a sketch of the corre-
sponding . Since the radial velocity can be computed as the derivative of 

 with respect to time, one can clearly see that Doppler frequency is maxi-
mum at , zero at , and minimum at , as illustrated in Fig. 12.7. 
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In general, the radar maximum PRF, , must be low enough to avoid
range ambiguity. Alternatively, the minimum PRF, , must be high enough
to avoid Doppler ambiguity. SAR unambiguous range must be at least as 
as the extent of a footprint. More precisely, since target returns from maximum
range due to the current pulse must be received by the radar before the ne
pulse is transmitted, it follows that SAR unambiguous range is given by

(12.13)

An expression for unambiguous range was derived in Chapter 1, an
repeated here as Eq. (12.14), 

 (12.14)
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Combining Eq. (12.14) and Eq. (12.13) yields

(12.15)

 SAR minimum PRF, , is selected so that Doppler ambiguity is avoided. 
In other words,  must be greater than the maximum expected Doppler 
spread within a footprint. From the geometry of Fig. 12.8, the maximum and 
minimum Doppler frequencies are, respectively, given by

(12.16)

(12.17)

It follows that the maximum Doppler spread is

(12.18)

Substituting Eqs. (12.16) and (12.17) into Eq. (12.18) and applying the proper 
trigonometric identities yield

(12.19)

Finally, by using the small angle approximation we get

(12.20)

Therefore, the minimum PRF is 

(12.21)

Combining Eqs. (11.15) and (11.21) we get

(12.22)

It is possible to resolve adjacent scatterers at the same range within a foot-
print based only on the difference of their Doppler histories. For this purpose, 
assume that the two scatterers are within the  range bin. 
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Denote their angular displacement as , and let  be the minimum 
Doppler spread between the two scatterers such that they will appear in two 
distinct Doppler filters. Using the same methodology that led to Eq. (12.20) we 
get

(12.23)

where  is the elevation angle corresponding to the  range bin. 

The bandwidth of the individual Doppler filters must be equal to the inverse of 
the coherent integration interval  (i.e., ). It follows that

(12.24)

Substituting  for  yields

(12.25)

Therefore, the SAR azimuth resolution (within the  range bin) is

(12.26)

Note that when , Eq. (12.26) is identical to Eq. (12.10).

12.4.  SAR Radar Equation

The single pulse radar equation was derived in Chapter 1, and is repeated 
here as Eq. (12.27),

(12.27)

where:  is peak power;  is antenna gain;  is wavelength;  is radar cross 
section;  is radar slant range to the  range bin;  is Boltzman’s constant; 

 is receiver noise temperature;  is receiver bandwidth; and  is radar 
losses. The radar cross section is a function of the radar resolution cell and ter-
rain reflectivity. More precisely,

(12.28)
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where  is the clutter scattering coefficient,  is the azimuth resolution, 
and Eq. (12.6) was used to replace the ground range resolution. The number of 
coherently integrated pulses within an observation interval is

(12.29)

where  is the synthetic aperture size. Using Eq. (12.26) in Eq. (12.29) and 
rearranging terms yield

(12.30)

The radar average power over the observation interval is 

(12.31)

The SNR for  coherently integrated pulses is then

(12.32)

Substituting Eqs. (11.31), (11.30), and (11.28) into Eq. (12.32) and performing 
some algebraic manipulations give the SAR radar equation, 

(12.33)

Eq. (12.33) leads to the conclusion that in SAR systems the SNR is (1) 
inversely proportional to the third power of range; (2) independent of azimuth 
resolution; (3) function of the ground range resolution; (4) inversely propor-
tional to the velocity ; and (5) proportional to the third power of wavelength. 

12.5.  SAR Signal Processing

There are two signal processing techniques to sequentially produce a SAR 
map or image; they are line-by-line processing and Doppler processing. The 
concept of SAR line-by-line processing is as follows: Through the radar linear 
motion a synthetic array is formed, where the elements of the current synthetic 
array correspond to the position of the antenna transmissions during the last 
observation interval. Azimuth resolution is obtained by forming narrow syn-
thetic beams through combinations of the last observation interval returns. Fine 
range resolution is accomplished in real time by utilizing range gating and 
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pulse compression. For each range bin and each of the transmitted pulses dur-
ing the last observation interval, the returns are recorded in a two-dimensional 
array of data that is updated for every pulse. Denote the two-dimensional array 
of data as .

To further illustrate the concept of line-by-line processing, consider the case 
where a map of size  is to be produced, where  is the number of azi-
muth cells and  is the number of range bins. Hence,  is of size 

, where the columns refer to range bins, and the rows refer to azimuth 
cells. For each transmitted pulse, the echoes from consecutive range bins are 
recorded sequentially in the first row of . Once the first row is com-
pletely filled (i.e., returns from all range bins have been received), all data (in 
all rows) are shifted downward one row before the next pulse is transmitted. 
Thus, one row of  is generated for every transmitted pulse. Consequently, 
for the current observation interval, returns from the first transmitted pulse will 
be located in the bottom row of , and returns from the last transmitted 
pulse will be in the first row of . 

In SAR Doppler processing, the array  is updated once every  pulses 
so that a block of  columns is generated simultaneously. In this case,  
refers to the number of transmissions during an observation interval (i.e., size 
of the synthetic array). From an antenna point of view, this is equivalent to 
having  adjacent synthetic beams formed in parallel through electronic steer-
ing.

12.6.  Side Looking SAR Doppler Processing

Consider the geometry shown in Fig. 12.9, and assume that the scatterer  
is located within the  range bin. The scatterer azimuth and elevation angles 
are  and , respectively. The scatterer elevation angle  is assumed to be 
equal to , the range bin elevation angle. This assumption is true if the 
ground range resolution, , is small; otherwise,  for some 
small ; in this chapter .

The normalized transmitted signal can be represented by

(12.34)

where  is the radar operating frequency, and  denotes the transmitter 
phase. The returned radar signal from  is then equal to

(12.35)

where  is the round-trip delay to the scatterer, and  includes scat-
terer strength, range attenuation, and antenna gain. The round-trip delay is 
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(12.36)

where  is the speed of light and  is the scatterer slant range. From the 
geometry in Fig. 12.9, one can write the expression for the slant range to the 

 scatterer within the  range bin as

(12.37)

And by using Eq. (12.36) the round-trip delay can be written as

(12.38)

The round-trip delay can be approximated using a two-dimensional second 
order Taylor series expansion about the reference state . Per-
forming this Taylor series expansion yields
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 (12.39)

where the over-bar indicates evaluation at the state , and the subscripts 
denote partial derivatives. For example,  means

(12.40)

The Taylor series coefficients are 

(12.41)

(12.42)

(12.43)

Note that other Taylor series coefficients are either zeros or very small. Hence, 
they are neglected. Finally, we can rewrite the returned radar signal as

(12.44)

Observation of Eq. (12.44) indicates that the instantaneous frequency for the 
 scatterer varies as a linear function of time due to the second order phase 

term  (this confirms the result we concluded about a scatterer 
Doppler history). Furthermore, since this phase term is range-bin dependent 
and not scatterer dependent, all scatterers within the same range bin produce 
this exact second order phase term. It follows that scatterers within a range bin 
have identical Doppler histories. These Doppler histories are separated by the 
time delay required to fly between them, as illustrated in Fig. 12.10.

Suppose that there are  scatterers within the  range bin. In this case, the 
combined returns for this cell are the sum of the individual returns due to each 
scatterer as defined by Eq. (12.44). In other words, superposition holds, and the 
overall echo signal is

(12.45)
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A signal processing block diagram for the  range bin is illustrated in Fig. 
12.11. It consists of the following steps. First, heterodyning with the carrier 
frequency is performed to extract the quadrature components. 

This is followed by LP filtering and A/D conversion. Next, deramping or 
focusing to remove the second order phase term of the quadrature components 
is carried out using a phase rotation matrix. The last stage of the processing 
includes windowing, performing an FFT on the windowed quadrature compo-
nents, and scaling the amplitude spectrum to account for range attenuation and 
antenna gain.

The discrete quadrature components are

(12.46)

(12.47)

and  denotes the  sampling time (remember that ). 
The quadrature components after deramping (i.e., removal of the phase 

) are given by

(12.48)
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12.7.  SAR Imaging Using Doppler Processing

It was mentioned earlier that SAR imaging is performed using two orthogo-
nal dimensions (range and azimuth). Range resolution is controlled by the 
receiver bandwidth and pulse compression. Azimuth resolution is limited by 
the antenna beamwidth. A one-to-one correspondence between the FFT bins 
and the azimuth resolution cells can be established by utilizing the signal 
model described in the previous section. Therefore, the problem of target 
detection is transformed into a spectral analysis problem, where detection is 
based on the amplitude spectrum of the returned signal. The FFT frequency 
resolution  is equal to the inverse of the observation interval . It follows 
that a peak in the amplitude spectrum at  indicates the presence of a scat-
terer at frequency .

For an example, consider the scatterer  within the  range bin. The 
instantaneous frequency  corresponding to this scatterer is 

(12.49)

This is the same result derived in Eq. (12.23), with . Therefore, the 
scatterers separated in Doppler by more than  can then be resolved. 

Fig. 12.12 shows a two-dimensional SAR image for three point scatterers 
located 10 Km down-range. In this case, the azimuth and range resolutions are 
equal to 1 m and the operating frequency is 35GHz. Fig. 12.13 is similar to Fig. 
12.12, except in this case the resolution cell is equal to 6 inches. One can 
clearly see the blurring that occurs in the image. Figs. 12.12 and 12.13 can be 
reproduced using the program “fig12_12_13.m” given in Listing 12.1 in Sec-
tion 12.10.

12.8.  Range Walk

As shown earlier, SAR Doppler processing is achieved in two steps: first, 
range gating and second, azimuth compression within each bin at the end of the 
observation interval. For this purpose, azimuth compression assumes that each 
scatterer remains within the same range bin during the observation interval. 
However, since the range gates are defined with respect to a radar that is mov-
ing, the range gate grid is also moving relative to the ground. As a result a scat-
terer appears to be moving within its range bin. This phenomenon is known as 
range walk. A small amount of range walk does not bother Doppler processing 
as long as the scatterer remains within the same range bin. However, range 
walk over several range bins can constitute serious problems, where in this 
case Doppler processing is meaningless. 
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 Figure 12.12. Three point scatterer image. Resolution cell is 1m2. 

 Figure 12.13. Three point scatterer image. Resolution cell is squared inches.
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12.9. A Three-Dimensional SAR Imaging Technique

This section presents a new three-dimensional (3-D) Synthetic Aperture 
Radar (SAR) imaging technique.1 It utilizes a linear array in transverse motion 
to synthesize a two-dimensional (2-D) synthetic array. Elements of the linear 
array are fired sequentially (one element at a time), while all elements receive 
in parallel. A 2-D information sequence is computed from the equiphase two-
way signal returns. A signal model based on a third-order Taylor series expan-
sion about incremental relative time, azimuth, elevation, and target height is 
used. Scatterers are detected as peaks in the amplitude spectrum of the infor-
mation sequence. Detection is performed in two stages. First, all scatterers 
within a footprint are detected using an incomplete signal model where target 
height is set to zero. Then, processing using the complete signal model is per-
formed only on range bins containing significant scatterer returns. The differ-
ence between the two images is used to measure target height. Computer 
simulation shows that this technique is accurate and virtually impulse invari-
ant.

12.9.1. Background

Standard Synthetic Aperture Radar (SAR) imaging systems are generally 
used to generate high resolution two-dimensional (2-D) images of ground ter-
rain. Range gating determines resolution along the first dimension. Pulse com-
pression techniques are usually used to achieve fine range resolution. Such 
techniques require the use of wide band receiver and display devices in order 
to resolve the time structure in the returned signals. The width of azimuth cells 
provides resolution along the other dimension. Azimuth resolution is limited 
by the duration of the observation interval.

This section presents a three-dimensional (3-D) SAR imaging technique 
based on Discrete Fourier Transform (DFT) processing of equiphase data col-
lected in sequential mode (DFTSQM). It uses a linear array in transverse 
motion to synthesize a 2-D synthetic array. A 2-D information sequence is 
computed from the equiphase two-way signal returns. To this end, a new signal 
model based on a third-order Taylor series expansion about incremental rela-
tive time, azimuth, elevation, and target height is introduced. Standard SAR 
imaging can be achieved using an incomplete signal model where target height 
is set to zero. Detection is performed in two stages. First, all scatterers within a 
footprint are detected using an incomplete signal model, where target height is 
set to zero. Then, processing using the complete signal model is performed 

1. This section is extracted from: Mahafza, B. R. and Sajjadi, M., Three-Dimensional 
SAR Imaging Using a Linear Array in Transverse Motion, IEEE - AES Trans., Vol. 
32, No. 1, January 1996, pp. 499-510.
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only on range bins containing significant scatterer returns. The difference 
between the two images is used as an indication of target height. Computer 
simulation shows that this technique is accurate and virtually impulse invari-
ant.

12.9.2. DFTSQM Operation and Signal Processing

Linear Arrays 

Consider a linear array of size , uniform element spacing , and wave-
length . Assume a far field scatterer  located at direction-sine . 
DFTSQM operation for this array can be described as follows. The elements 
are fired sequentially, one at a time, while all elements receive in parallel. The 
echoes are collected and integrated coherently on the basis of equal phase to 
compute a complex information sequence . The x-
coordinates, in -units, of the  element with respect to the center of the 
array is

(12.50)

The electric field received by the  element due to the firing of the , and 
reflection by the  far field scatterer , is

(12.51)

(12.52)

(12.53)

where  is the target cross section,  is the two-way element gain, and 
 is the range attenuation with respect to reference range . The scat-

terer phase is assumed to be zero; however it could be easily included. Assum-
ing multiple scatterers in the array’s FOV, the cumulative electric field in the 
path  due to reflections from all scatterers is 

 (12.54)

where the subscripts  denote the quadrature components. Note that the 
variable part of the phase given in Eq. (12.52) is proportional to the integers 
resulting from the sums . In the far field 
operation there are a total of  distinct  sums. Therefore, 
the electric fields with paths of the same  sums can be collected 

N d
, P " lsin

b m$ %m; 0 2N 1–#=@ A
d xn

th

xn
N 1–

2
-------------– n+0 1

2 3n; 0 ? N 1–#= =

x2
th x1

th

l th P

E x1 x2 sl;#$ % G2 sl$ %
R0

R
-----0 1

2 3
4

6l exp jB x1 x2 sl;#$ %$ %=

B x1 x2# sl;$ % 27
,

------ x1 x2+$ %sl$ %=

sl " lsin=

6l G2 sl$ %
R0 R($ %4 R0

x1 x2C

E x1 x2#$ % EI x1 x2 sl;#$ % jEQ x1 x2 sl;#$ %+; <

all l

>=

I Q#$ %

xn1 xn2+$ %; n1 n2#$ % 0 ? N 1–#=@ A
2N 1–$ % xn1 xn2+$ %

xn1 xn2+$ %

© 2004 by Chapman & Hall/CRC CRC Press LLC



coherently. In this manner the information sequence  is 
computed, where  is set to zero. At the same time one forms the 
sequence  which keeps track of the number of 
returns that have the same  sum. More precisely, for 

(12.55)

(12.56)

It follows that

(12.57)

which is a triangular shape sequence.

The processing of the sequence  is performed as follows: (1) the 
weighting takes the sequence  into account; (2) the complex sequence 

 is extended to size , a power integer of two, by zero padding; (3) 
the DFT of the extended sequence  is computed,

(12.58)

and, (4) after compensation for antenna gain and range attenuation, scatterers 
are detected as peaks in the amplitude spectrum . Note that step (4) is 
true only when

(12.59)

where  denotes the direction-sine of the  scatterer, and  is 
implied in Eq. (12.59).

The classical approach to multiple target detection is to use a phased array 
antenna with phase shifting and tapering hardware. The array beamwidth is 
proportional to , and the first sidelobe is at about -13 dB. On the other 
hand, multiple target detection using DFTSQM provides a beamwidth propor-
tional to  as indicated by (Eq. (12.59), which has the effect of dou-
bling the array’s resolution. The first sidelobe is at about -27 dB due to the 
triangular sequence . Additionally, no phase shifting hardware is 
required for detection of targets within a single element’s field of view.
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Rectangular Arrays 

DFTSQM operation and signal processing for 2-D arrays can be described as 
follows. Consider an  rectangular array. All  elements are fired 
sequentially, one at a time. After each firing, all the  array elements 
receive in parallel. Thus,  samples of the quadrature components are col-
lected after each firing, and a total of  samples will be collected. How-
ever, in the far field operation, there are only  distinct 
equiphase returns. Therefore, the collected data can be added coherently to 
form a 2-D information array of size . The two-way 
radiation pattern is computed as the modulus of the 2-D amplitude spectrum of 
the information array. The processing includes 2-D windowing, 2-D Discrete 
Fourier Transformation, antenna gain, and range attenuation compensation. 
The field of view of the 2-D array is determined by the 3 dB pattern of a single 
element. All the scatterers within this field will be detected simultaneously as 
peaks in the amplitude spectrum.

Consider a rectangular array of size , with uniform element spacing 
, and wavelength . The coordinates of the  element, in -

units, are

(12.60)

(12.61)

Assume a far field point  defined by the azimuth and elevation angles 
. In this case, the one-way geometric phase for an element is

(12.62)

Therefore, the two-way geometric phase between the  and  ele-
ments is

(12.63)

The two-way electric field for the  scatterer at  is

(12.64)

Assuming multiple scatterers within the array’s FOV, then the cumulative elec-
tric field for the two-way path  is given by
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(12.65)

All formulas for the 2-D case reduce to those of a linear array case by setting 
 and .

The variable part of the phase given in Eq. (12.63) is proportional to the inte-
gers  and . Therefore, after completion of the sequential fir-
ing, electric fields with paths of the same  sums, where

 (12.66)

(12.67)

can be collected coherently. In this manner the 2-D information array 
 is computed. The coefficient sequence 
 is also computed. More precisely,

(12.68)

(12.69)

It follows that

(12.70)

The processing of the complex 2-D information array  is simi-
lar to that of the linear case with the exception that one should use a 2-D DFT. 
After antenna gain and range attenuation compensation, scatterers are detected 
as peaks in the 2-D amplitude spectrum of the information array. A scatterer 
located at angles  will produce a peak in the amplitude spectrum at 
DFT indexes , where

 (12.71)

(12.72)

Derivation of Eq. (12.71) is in Section 12.9.7.

12.9.3. Geometry for DFTSQM SAR Imaging

Fig. 12.14 shows the geometry of the DFTSQM SAR imaging system. In 
this case,  denotes the central time of the observation interval, . The air-
craft maintains both constant velocity  and height . The origin for the rela-
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tive system of coordinates is denoted as . The vector  defines the radar 
location at time . The transmitting antenna consists of a linear real array 
operating in the sequential mode. The real array is of size , element spacing 

, and the radiators are circular dishes of diameter . Assuming that the 
aircraft scans  transmitting locations along the flight path, then a rectangular 
array of size  is synthesized, as illustrated in Fig. 12.15.
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 Figure 12.14. Geometry for DFTSQM imaging system.
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 Figure 12.15. Synthesized 2-D array.
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The vector  defines the center of the 3 dB footprint at time . The cen-
ter of the array coincides with the flight path, and it is assumed to be perpen-
dicular to both the flight path and the line of sight . The unit vector  
along the real array is 

(12.73)

where  is the elevation angle, or the complement of the depression angle, 
for the center of the footprint at central time .

12.9.4. Slant Range Equation

Consider the geometry shown in Fig. 12.16 and assume that there is a scat-
terer  within the  range cell. This scatterer is defined by 

(12.74)

The scatterer  (assuming rectangular coordinates) is given by 

(12.75)

(12.76)

where  denotes the elevation angle for the  range cell at the center of the 
observation interval and  is an incremental angle. Let  refer to the vector 
between the  array element and the point , then
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(12.77)

(12.78)

The range between a scatterer  within the  range cell and the  element 
of the real array is

(12.79)

It is more practical to use the scatterer's elevation and azimuth direction-
sines rather than the corresponding increments. Therefore, define the scat-
terer's azimuth and elevation direction-sines as 

(12.80)

(12.81)

Then, one can rewrite Eq. (12.79) as

(12.82)

(12.83)

Expanding  as a third order Taylor series expansion about incremental 
 yields

(12.84)

where subscripts denote partial derivations, and the over-bar indicates evalua-
tion at the state . Note that

(12.85)

Section 12.9.8 has detailed expressions of all non-zero Taylor series coeffi-
cients for the  range cell.
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(12.86)

are small and can be neglected. Thus, the range  is approximated by

(12.87)

Consider the following two-way path: the  element transmitting, scatterer 
 reflecting, and the  element receiving. It follows that the round trip 

delay corresponding to this two-way path is

(12.88)

where  is the speed of light.

12.9.5. Signal Synthesis

The observation interval is divided into  subintervals of width 
. During each subinterval, the real array is operated in 

sequential mode, and an array length of  is synthesized. The number of sub-
intervals  is computed such that  is large enough to allow sequential 
transmission for the real array without causing range ambiguities. In other 
words, if the maximum range is denoted as  then

(12.89)

Each subinterval is then partitioned into  sampling subintervals of width
. The location  represents the sampling time at which the  ele-

ment is transmitting during the  subinterval.

The normalized transmitted signal during the  subinterval for the  
element is defined as

(12.90)

where  denotes the transmitter phase, and  is the system operating fre-
quency. Assume that there is only one scatterer, , within the  range cell 
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defined by . The returned signal at the  element due to fir-
ing from the  element and reflection from the  scatterer is

(12.91)

where  represents the two-way antenna gain, and the term 
denotes the range attenuation at the  range cell. The analysis in this paper 
will assume hereon that  and  are both equal to zeroes.

Suppose that there are  scatterers within the  range cell, with angular 
locations given by

(12.92)

The composite returned signal at time  within this range cell due to the 
path  is

(12.93)

The platform motion synthesizes a rectangular array of size , where 
only one column of  elements exists at a time. However, if  and the 
real array is operated in the sequential mode, a square planar array of size 

 is synthesized. The element spacing along the flight path is 
.

Consider the  range bin. The corresponding two-dimensional information 
sequence consists of  similar vectors. 
The  vector represents the returns due to the sequential firing of all  ele-
ments during the  subinterval. Each vector has  rows, and it is 
extended, by adding zeroes, to the next power of two. For example, consider 
the  subinterval, and let . Then, the elements of the extended 
column  are

(12.94)
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12.9.6. Electronic Processing

Consider again the  range cell during the  subinterval, and the two-
way path:  element transmitting and  element receiving. The analog 
quadrature components corresponding to this two-way path are

(12.95)

(12.96)

(12.97)

where  denotes antenna gain, range attenuation, and scatterers' strengths. The 
subscripts for  have been dropped for notation simplicity. Rearranging Eq. 
(12.97) and collecting terms yields

(12.98)

After analog to digital (A/D) conversion, deramping of the quadrature compo-
nents to cancel the quadratic phase  is performed. Then, the 
digital quadrature components are

(12.99)

(12.100)
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(12.101)

The instantaneous frequency for the  scatterer within the  range cell is 
computed as

(12.102)

Substituting the actual values for , ,  and collecting 
terms yields

(12.103)

Note that if , then

(12.104)

which is the Doppler value corresponding to a ground patch (see Eq. (12.49)).

The last stage of the processing consists of three steps: (1) two-dimensional 
windowing; (2) performing a two-dimensional DFT on the windowed quadra-
ture components; and (3) scaling to compensate for antenna gain and range 
attenuation.

12.9.7. Derivation of Eq. (12.71)

Consider a rectangular array of size , with uniform element spacing 
, and wavelength . Assume sequential mode operation where 

elements are fired sequentially, one at a time, while all elements receive in par-
allel. Assume far field observation defined by azimuth and elevation angles 

. The unit vector  on the line of sight, with respect to , is given by 

(12.105)

The  element of the array can be defined by the vector 

(12.106)

where . The one-way geometric phase for this element is

(12.107)
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where  is the wave-number, and the operator  indicates dot 
product. Therefore, the two-way geometric phase between the  and 

 elements is

(12.108)

The cumulative two-way normalized electric field due to all transmissions is

(12.109)

where the subscripts  and , respectively, refer to the transmitted and 
received electric fields. More precisely,

(12.110)

(12.111)

In this case,  denotes the tapering sequence. Substituting Eqs. 
(12.108), (12.110), and (12.111) into Eq. (12.109) and grouping all fields with 
the same two-way geometric phase yields

(12.112)

(12.113)

(12.114)

(12.115)

(12.116)

The two-way array pattern is then computed as

(12.117)

Consider the two-dimensional DFT transform, , of the array 
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(12.118)

Comparison of Eqs. (12.117) and Eq. (12.118) indicates that  is equal to 
 if

(12.119)

(12.120)

It follows that 

(12.121)

12.9.8. Non-Zero Taylor Series Coefficients for the kth Range Cell 

(12.122)

(12.123)

(12.124)
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(12.128)
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(12.130)

(12.131)

(12.132)

(12.133)

(12.134)

(12.135)
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(12.137)
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12.10. MATLAB Programs and Functions

Listing 12.1. MATLAB Program “fig12_12-13.m”
%                        Figures 12.12 and 12.13
%    Program to do Spotlight SAR using the rectangular format and
%    HRR for range compression.   
%                        13 June 2003
%                     Dr. Brian J. Smith
clear all;
%%%%%%%%% SAR Image Resolution %%%%
dr = .50;
da = .10;
% dr = 6*2.54/100;
% da = 6*2.54/100;
%%%%%%%%% Scatter Locations %%%%%%%
xn = [10000 10015 9985];  % Scatter Location, x-axis
yn = [0 -20 20];          % Scatter Location, y-axis
Num_Scatter = 3;          % Number of Scatters
Rnom = 10000;
%%%%%%%%% Radar Parameters %%%%%%%%
f_0 =   35.0e9;    % Lowest Freq. in the HRR Waveform
df =     3.0e6;    % Freq. step size for HRR, Hz
c =        3e8;    % Speed of light, m/s
Kr = 1.33;
Num_Pulse = 2^(round(log2(Kr*c/(2*dr*df))));
Lambda = c/(f_0 + Num_Pulse*df/2);
%%%%%%%%% Synthetic Array Parameters %%%%%%%
du = 0.2;
L = round(Kr*Lambda*Rnom/(2*da));
U = -(L/2):du:(L/2);
Num_du = length(U);
%%%%%%%%% This section generates the target returns %%%%%%
Num_U = round(L/du);
I_Temp = 0;
Q_Temp = 0;
for I = 1:Num_U
    for J = 1:Num_Pulse
        for K = 1:Num_Scatter
            Yr = yn(K) - ((I-1)*du - (L/2));
            Rt = sqrt(xn(K)^2 + Yr^2);
            F_ci = f_0 + (J -1)*df;
            PHI = -4*pi*Rt*F_ci/c;
            I_Temp = cos(PHI) + I_Temp;
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            Q_Temp = sin(PHI) + Q_Temp;
        end;
        IQ_Raw(J,I) = I_Temp + i*Q_Temp;
        I_Temp = 0.0;
        Q_Temp = 0.0;
    end;
end;
%%%%%%%%%% End target return section %%%%%
%%%%%%%%%% Range Compression %%%%%%%%%%%%%
Num_RB = 2*Num_Pulse;
WR = hamming(Num_Pulse);
for I = 1:Num_U
    Range_Compressed(:,I) = fftshift(ifft(IQ_Raw(:,I).*WR,Num_RB));
end;
%%%%%%%%%% Focus Range Compressed Data %%%%
dn = (1:Num_U)*du - L/2;
PHI_Focus = -2*pi*(dn.^2)/(Lambda*xn(1));
for I = 1:Num_RB
    Temp = angle(Range_Compressed(I,:)) - PHI_Focus;
    Focused(I,:) = abs(Range_Compressed(I,:)).*exp(i*Temp);
end;
%Focused = Range_Compressed;
%%%%%%%%%% Azimuth Compression %%%%%%%%%%%%
WA = hamming(Num_U);
for I = 1:Num_RB
   AZ_Compressed(I,:) = fftshift(ifft(Focused(I,:).*WA'));
end;
 SAR_Map = 10*log10(abs(AZ_Compressed));
Y_Temp = (1:Num_RB)*(c/(2*Num_RB*df));
Y = Y_Temp - max(Y_Temp)/2;
X_Temp = (1:length(IQ_Raw))*(Lambda*xn(1)/(2*L));
X = X_Temp - max(X_Temp)/2;
image(X,Y,20-SAR_Map);  % 
%image(X,Y,5-SAR_Map);  % 
axis([-25 25 -25 25]); axis equal; colormap(gray(64));
xlabel('Cross Range (m)'); ylabel('Down Range (m)');
grid
%print -djpeg .jpg
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13.1.  Signal and System Classifications

In general, electrical signals can represent either current or voltage, and may 
be classified into two main categories: energy signals and power signals. 
Energy signals can be deterministic or random, while power signals can be 
periodic or random. A signal is said to be random if it is a function of a random 
parameter (such as random phase or random amplitude). Additionally, signals 
may be divided into low pass or band pass signals. Signals that contain very 
low frequencies (close to DC) are called low pass signals; otherwise they are 
referred to as band pass signals. Through modulation, low pass signals can be 
mapped into band pass signals. 

The average power  for the current or voltage signal  over the interval 
 across a  resistor is 

(13.1)

The signal  is said to be a power signal over a very large interval 
, if and only if it has finite power; it must satisfy the following 

relation:

(13.2)

Using Parseval’s theorem, the energy  dissipated by the current or voltage 
signal  across a  resistor, over the interval , is 
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(13.3)

The signal  is said to be an energy signal if and only if it has finite 
energy,

(13.4)

A signal  is said to be periodic with period  if and only if 

(13.5)

where  is an integer.

Example:

Classify each of the following signals as an energy signal, as a power signal, 
or as neither. All signals are defined over the interval : 

, .

Solution:

 

Note that since the cosine function is periodic, the limit is not necessary.

 

Electrical systems can be linear or nonlinear. Furthermore, linear systems 
may be divided into continuous or discrete. A system is linear if the input sig-
nal  produces  and  produces ; then for some arbitrary 
constants  and  the input signal  produces the output 

. A linear system is said to be shift invariant (or time invari-
ant) if a time shift at its input produces the same shift at its output. More pre-
cisely, if the input signal  produces  then the delayed signal  
produces the output . The impulse response of a Linear Time Invariant 
(LTI) system, , is defined to be the system’s output when the input is an 
impulse (delta function).
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13.2.  The Fourier Transform

The Fourier Transform (FT) of the signal  is

(13.6)

or

(13.7)

and the Inverse Fourier Transform (IFT) is

(13.8)

or

(13.9)

where, in general,  represents time, while  and  represent fre-
quency in radians per second and Hertz, respectively. In this book we will use 
both notations for the transform, as appropriate (i.e.,  and ).

A detailed table of the FT pairs is listed in Appendix 13A. The FT properties 
are (the proofs are left as an exercise):

1. Linearity:

(13.10)

2. Symmetry: If  then

(13.11)

3. Shifting: For any real time 

(13.12)
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4. Scaling: If  then

(13.13)

5. Central Ordinate: 

(13.14)

(13.15)

6. Frequency Shift: If  then

(13.16)

7. Modulation: If  then

(13.17)

(13.18)

8. Derivatives:

(13.19)

9. Time Convolution: if  and  have Fourier transforms  and 

, respectively, then

(13.20)

10. Frequency Convolution: 

(13.21)
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11. Autocorrelation:

(13.22)

12. Parseval’s Theorem: The energy associated with the signal  is

(13.23)

13. Moments: The  moment is

(13.24)

13.3.  The Fourier Series

A set of functions  is said to be orthogonal over 
the interval  if and only if 

(13.25)

where the asterisk indicates complex conjugate, and  are constants. If 
 for all , then the set  is said to be an orthonormal set.

An electrical signal  can be expressed over the interval  as a 
weighted sum of a set of orthogonal functions as 

(13.26)

where  are, in general, complex constants, and the orthogonal functions 
 are called basis functions. If the integral-square error over the interval 
 is equal to zero as  approaches infinity, i.e., 

(13.27)
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then the set  is said to be complete, and Eq. (13.26) becomes an 
equality. The constants  are computed as

(13.28)

Let the signal  be periodic with period , and let the complete orthogo-
nal set  be 

(13.29)

Then the complex exponential Fourier series of  is

(13.30)

Using Eq. (13.28) yields

(13.31)

The FT of Eq. (13.30) is given by

(13.32)

where  is delta function. When the signal  is real we can compute 
its trigonometric Fourier series from Eq. (13.30) as 
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(13.34)

The coefficients  are all zeros when the signal  is an odd function of 
time. Alternatively, when the signal is an even function of time, then all  are 
equal to zero. 

Consider the periodic energy signal defined in Eq. (13.33). The total energy 
associated with this signal is then given by

(13.35)

13.4.  Convolution and Correlation Integrals

The convolution  between the signals  and  is defined by

(13.36)

where  is a dummy variable, and the operator  is used to symbolically 
describe the convolution integral. Convolution is commutative, associative, 
and distributive. More precisely,

(13.37)

For the convolution integral to be finite at least one of the two signals must be 
an energy signal. The convolution between two signals can be computed using 
the FT

(13.38)

Consider an LTI system with impulse response  and input signal . It 
follows that the output signal  is equal to the convolution between the 
input signal and the system impulse response, 
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(13.39)

The cross-correlation function between the signals  and  is defined 
as

(13.40)

Again, at least one of the two signals should be an energy signal for the corre-
lation integral to be finite. The cross-correlation function measures the similar-
ity between the two signals. The peak value of  and its spread around 
this peak are an indication of how good this similarity is. The cross-correlation 
integral can be computed as

(13.41)

When  we get the autocorrelation integral, 

(13.42)

Note that the autocorrelation function is denoted by  rather than . 
When the signals  and  are power signals, the correlation integral 
becomes infinite and, thus, time averaging must be included. More precisely,

(13.43)

13.5.  Energy and Power Spectrum Densities 

Consider an energy signal . From Parseval’s theorem, the total energy 
associated with this signal is

(13.44)

When  is a voltage signal, the amount of energy dissipated by this signal 
when applied across a network of resistance  is

y t! " x ?! "h t ?–! " ?d

&–

&

% h ?! "x t ?–! " ?d

&–

&

%= =

x t! " g t! "

Rxg t! " xA ?! "g t ?+! " ?d

&–

&

%=

Rxg t! "

Rxg t! " F 1– XA /! "G /! "- .=

x t! " g t! "=

Rx t! " xA ?! "x t ?+! " ?d

&–

&

%=

Rx t! " Rxx t! "
x t! " g t! "

Rxg t! " 1
T
---

T &)
lim xA ?! "g t ?+! " ?d

T 2(–

T 2(

%=

x t! "

E x t! " 2 td

&–

&

%
1

2,
------ X /! " 2 /d

&–

&

%= =

x t! "
R

© 2004 by Chapman & Hall/CRC CRC Press LLC



(13.45)

Alternatively, when  is a current signal we get

(13.46)

The quantity  represents the amount of energy spread per unit fre-
quency across a  resistor; therefore, the Energy Spectrum Density (ESD) 
function for the energy signal  is defined as

(13.47)

The ESD at the output of an LTI system when  is at its input is

(13.48)

where  is the FT of the system impulse response, . It follows that the 
energy present at the output of the system is 

(13.49)

Example: 

The voltage signal  is applied to the input of a low pass 
LTI system. The system bandwidth is , and its input resistance is . If 

 over the interval  and zero elsewhere, compute 
the energy at the output.

Solution: 

From Eqs. (13.45) and (13.49) we get

 

Using Fourier transform tables and substituting  yield
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Completing the integration yields

 

Note that an infinite bandwidth would give , only 11% larger.

The total power associated with a power signal  is

(13.50)

Define the Power Spectrum Density (PSD) function for the signal  as 
, where

(13.51)

It can be shown that (see Problem 1.13)

(13.52)

Let the signals  and  be two periodic signals with period . The 
complex exponential Fourier series expansions for those signals are, respec-
tively, given by

(13.53)

(13.54)

The power cross-correlation function  was given in Eq. (13.43), and is 
repeated here as Eq. (13.55),

(13.55)

Note that because both signals are periodic the limit is no longer necessary. 
Substituting Eqs. (13.53) and (13.54) into Eq. (13.55), collecting terms, and 
using the definition of orthogonality, we get
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(13.56)

When , Eq. (13.56) becomes the power autocorrelation function,

(13.57)

The power spectrum and cross-power spectrum density functions are then 
computed as the FT of Eqs. (13.57) and (13.56), respectively. More precisely,

(13.58)

The line (or discrete) power spectrum is defined as the plot of  versus , 

where the lines are  apart. The DC power is , and the total 

power is .

13.6.  Random Variables

Consider an experiment with outcomes defined by a certain sample space. 
The rule or functional relationship that maps each point in this sample space 
into a real number is called “random variable.” Random variables are desig-
nated by capital letters (e.g., ), and a particular value of a random vari-
able is denoted by a lowercase letter (e.g., ). 

The Cumulative Distribution Function (cdf) associated with the random vari-
able  is denoted as , and is interpreted as the total probability that the 
random variable  is less or equal to the value . More precisely,

(13.59)

The probability that the random variable  is in the interval  is then 
given by 
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(13.60)

The cdf has the following properties:

(13.61)

It is often practical to describe a random variable by the derivative of its cdf, 
which is called the Probability Density Function (pdf). The pdf of the random 
variable  is

(13.62)

or, equivalently,

(13.63)

The probability that a random variable  has values in the interval  is

(13.64)

Define the  moment for the random variable  as

(13.65)

The first moment, , is called the mean value, while the second moment, 
, is called the mean squared value. When the random variable  

represents an electrical signal across a  resistor, then  is the DC com-
ponent, and  is the total average power.

The  central moment is defined as

(13.66)
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and, thus, the first central moment is zero. The second central moment is called 
the variance and is denoted by the symbol ,

(13.67)

Appendix 13B has some common pdfs and their means and variances.

In practice, the random nature of an electrical signal may need to be 
described by more than one random variable. In this case, the joint cdf and pdf
functions need to be considered. The joint cdf and pdf for the two random vari-
ables  and  are, respectively, defined by

(13.68)

(13.69)

The marginal cdfs are obtained as follows:

(13.70)

If the two random variables are statistically independent, then the joint cdfs and 
pdfs are, respectively, given by

(13.71)

(13.72)

Let us now consider a case when the two random variables  and  are 
mapped into two new variables  and  through some transformations  
and  defined by

(13.73)

The joint pdf, , may be computed based on the invariance of proba-
bility under the transformation. One must first compute the matrix of deriva-
tives; then the new joint pdf  is computed as

(13.74)
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(13.75)

where the determinant of the matrix of derivatives  is called the Jacobian.

The characteristic function for the random variable  is defined as

(13.76)

The characteristic function can be used to compute the pdf for a sum of inde-
pendent random variables. More precisely, let the random variable  be equal 
to

(13.77)

where  is a set of independent random variables. It can be 
shown that

 (13.78)

and the pdf  is computed as the inverse Fourier transform of  (with 
the sign of  reversed),

 (13.79)

The characteristic function may also be used to compute the  moment for 

the random variable  as

(13.80)

13.7.  Multivariate Gaussian Distribution

Consider a joint probability for  random variables, . These 
variables can be represented as components of an  random column vec-
tor, . More precisely,
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(13.81)

where the superscript indicates the transpose operation. The joint pdf for the 
vector  is

(13.82)

The mean vector is defined as

(13.83)

and the covariance is an  matrix given by

(13.84)

Note that if the elements of the vector  are independent, then the covariance 
matrix is a diagonal matrix.

By definition a random vector  is multivariate Gaussian if its pdf has the 
form

(13.85)

where  is the mean vector,  is the covariance matrix,  is inverse of 
the covariance matrix and  is its determinant, and  is of dimension . If 

 is a  matrix of rank , then the random vector  is a k-variate 
Gaussian vector with

(13.86)

(13.87)

The characteristic function for a multivariate Gaussian pdf is defined by

(13.88)

Then the moments for the joint distribution can be obtained by partial differen-
tiation. For example,
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(13.89)

Example: 

The vector  is a 4-variate Gaussian with

Define

Find the distribution of  and the distribution of

Solution:

 has a bivariate Gaussian distribution with

The vector  can be expressed as

It follows that
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13.8. Random Processes

A random variable  is by definition a mapping of all possible outcomes of 
a random experiment to numbers. When the random variable becomes a func-
tion of both the outcomes of the experiment as well as time, it is called a ran-
dom process and is denoted by . Thus, one can view a random process as 
an ensemble of time domain functions that are the outcome of a certain random 
experiment, as compared to single real numbers in the case of a random vari-
able.

Since the cdf and pdf of a random process are time dependent, we will denote 
them as  and , respectively. The  moment for the random 
process  is 

(13.90)

A random process  is referred to as stationary to order one if all its sta-
tistical properties do not change with time. Consequently, , 
where  is a constant. A random process  is called stationary to order two 
(or wide sense stationary) if

(13.91)

for all  and . 

Define the statistical autocorrelation function for the random process  
as

(13.92)

The correlation  is, in general, a function of . As a con-

sequence of the wide sense stationary definition, the autocorrelation function 
depends on the time difference , rather than on absolute time; and 

thus, for a wide sense stationary process we have
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(13.93)

If the time average and time correlation functions are equal to the statistical 
average and statistical correlation functions, the random process is referred to 
as an ergodic random process. The following is true for an ergodic process:

(13.94)

(13.95)

The covariance of two random processes  and  is defined by

(13.96)

which can be written as

(13.97)

13.9.  Sampling Theorem

Most modern communication and radar systems are designed to process dis-
crete samples of signals bearing information. In general, we would like to 
determine the necessary condition such that a signal can be fully reconstructed 
from its samples by filtering, or data processing in general. The answer to this 
question lies in the sampling theorem which may be stated as follows: let the 
signal  be real-valued and band-limited with bandwidth ; this signal can 
be fully reconstructed from its samples if the time interval between samples is 
no greater than .

Fig. 13.1 illustrates the sampling process concept. The sampling signal  
is periodic with period , which is called the sampling interval. The Fourier 
series expansion of  is

(13.98)

The sampled signal  is then given by

E X t! "7 8 X=

T X ?! " E X t! "X t ?+! "7 8=

1
T
--- x t! " td

T 2(–

T 2(

%T &)
lim E X t! "7 8 X= =

1
T
--- xA t! "x t ?+! " td

T 2(–

T 2(

%T &)
lim T X ?! "=

X t! " Y t! "

CXY t t ?+#! " E X t! " E X t! "7 8–- . Y t ?+! " E Y t ?+! "7 8–- .7 8=

CXY t t ?+#! " T XY ?! " XY–=

x t! " B

1 2B! "(

p t! "
Ts

p t! "

p t! " Pne

j2, nt
Ts

--------------

n &–=

&

F=

xs t! "

© 2004 by Chapman & Hall/CRC CRC Press LLC



(13.99)

Taking the FT of Eq. (13.99) yields

(13.100)

where  is the FT of . Therefore, we conclude that the spectral den-

sity, , consists of replicas of  spaced  apart and scaled by 

the Fourier series coefficients . A Low Pass Filter (LPF) of bandwidth  

can then be used to recover the original signal .

When the sampling rate is increased (i.e.,  decreases), the replicas of 
 move farther apart from each other. Alternatively, when the sampling 

rate is decreased (i.e.,  increases), the replicas get closer to one another. The 
value of  such that the replicas are tangent to one another defines the mini-
mum required sampling rate so that  can be recovered from its samples by 
using an LPF. It follows that

(13.101)

The sampling rate defined by Eq. (13.101) is known as the Nyquist sampling 
rate. When , the replicas of  overlap and, thus,  cannot 

be recovered cleanly from its samples. This is known as aliasing. In practice, 
ideal LPF cannot be implemented; hence, practical systems tend to over-sam-
ple in order to avoid aliasing.
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Figure 13.1. Concept of sampling.
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Example: 

Assume that the sampling signal  is given by 

 

Compute an expression for .

Solution: 

The signal  is called the Comb function. Its exponential Fourier series 
is

It follows that

Taking the Fourier transform of this equation yields

.

Before proceeding to the next section, we will establish the following nota-
tion: samples of the signal  are denoted by  and referred to as a dis-
crete time domain sequence, or simply a sequence. If the signal  is 
periodic, we will denote its sample by the periodic sequence .

13.10.  The Z-Transform

The Z-transform is a transformation that maps samples of a discrete time 
domain sequence into a new domain known as the z-domain. It is defined as

(13.102)
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where , and for most cases, . It follows that Eq. (13.102) can 
be rewritten as

(13.103)

In the z-domain, the region over which  is finite is called the Region of 
Convergence (ROC). Appendix 13C has a list of most common Z-transform 
pairs. The Z-transform properties are (the proofs are left as an exercise):

1. Linearity:

(13.104)

2. Right-Shifting Property:

(13.105)

3. Left-Shifting Property:

(13.106)

4. Time Scaling:

(13.107)

5. Periodic Sequences:

(13.108)

where  is the period.

6. Multiplication by :

(13.109)

7. Division by ; a is a real number:
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(13.110)

8. Initial Value:

(13.111)

9. Final Value:

(13.112)

10. Convolution:

(13.113)

11. Bilateral Convolution:

(13.114)

Example: 

Prove Eq. (13.109).

Solution: 

Starting with the definition of the Z-transform,

Taking the derivative, with respect to z, of the above equation yields
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It follows that

In general, a discrete LTI system has a transfer function  which 
describes how the system operates on its input sequence  in order to pro-
duce the output sequence . The output sequence  is computed from 
the discrete convolution between the sequences  and ,

(13.115)

However, since practical systems require that the sequence  be of finite 
length, we can rewrite Eq. (13.115) as

(13.116)

where  denotes the input sequence length. Taking the Z-transform of Eq. 
(13.116) yields

(13.117)

and the discrete system transfer function is

(13.118)

Finally, the transfer function  can be written as

(13.119)

where  is the amplitude response, and  is the phase response.
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13.11.  The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a mathematical operation that 
transforms a discrete sequence, usually from the time domain into the fre-
quency domain, in order to explicitly determine the spectral information for the 
sequence. The time domain sequence can be real or complex. The DFT has 
finite length , and is periodic with period equal to . 

The discrete Fourier transform for the finite sequence  is defined by 

(13.120)

The inverse DFT is given by

(13.121)

The Fast Fourier Transform (FFT) is not a new kind of transform different 
from the DFT. Instead, it is an algorithm used to compute the DFT more effi-
ciently. There are numerous FFT algorithms that can be found in the literature. 
In this book we will interchangeably use the DFT and the FFT to mean the 
same thing. Furthermore, we will assume radix-2 FFT algorithm, where the 
FFT size is equal to  for some integer . 

13.12.  Discrete Power Spectrum

Practical discrete systems utilize DFTs of finite length as a means of numer-
ical approximation for the Fourier transform. It follows that input signals must 
be truncated to a finite duration (denoted by ) before they are sampled. This 
is necessary so that a finite length sequence is generated prior to signal pro-
cessing. Unfortunately, this truncation process may cause some serious prob-
lems.

To demonstrate this difficulty, consider the time domain signal 
. The spectrum of  consists of two spectral lines at . 

Now, when  is truncated to length  seconds and sampled at a rate 
, where  is the number of desired samples, we produce the 

sequence . The spectrum of  would still be 
composed of the same spectral lines if  is an integer multiple of  and if the 
DFT frequency resolution  is an integer multiple of . Unfortunately, those 
two conditions are rarely met and, as a consequence, the spectrum of  
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spreads over several lines (normally the spread may extend up to three lines). 
This is known as spectral leakage. Since  is normally unknown, this discon-
tinuity caused by an arbitrary choice of  cannot be avoided. Windowing tech-
niques can be used to mitigate the effect of this discontinuity by applying 
smaller weights to samples close to the edges.

A truncated sequence  can be viewed as one period of some periodic 
sequence  with period . The discrete Fourier series expansion of  
is 

(13.122)

It can be shown that the coefficients  are given by

(13.123)

where  is the DFT of . Therefore, the Discrete Power Spectrum 

(DPS) for the band limited sequence  is the plot of  versus , where 

the lines are  apart,

 (13.124)

Before proceeding to the next section, we will show how to select the FFT 
parameters. For this purpose, consider a band limited signal  with band-
width . If the signal is not band limited, a LPF can be used to eliminate 
frequencies greater than . In order to satisfy the sampling theorem, one must 
choose a sampling frequency , such that

   (13.125)

The truncated sequence duration  and the total number of samples  are 
related by
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(13.126)

or equivalently,

(13.127)

It follows that

 (13.128)

and the frequency resolution is

(13.129)

13.13.  Windowing Techniques

Truncation of the sequence  can be accomplished by computing the 
product,

(13.130)

where 

(13.131)

where . The finite sequence  is called a windowing sequence, or 
simply a window. The windowing process should not impact the phase 
response of the truncated sequence. Consequently, the sequence  must 
retain linear phase. This can be accomplished by making the window symmet-
rical with respect to its central point. 

If  for all  we have what is known as the rectangular window. It 
leads to the Gibbs phenomenon which manifests itself as an overshoot and a 
ripple before and after a discontinuity. Fig. 13.2 shows the amplitude spectrum 
of a rectangular window. Note that the first side lobe is at  below the 
main lobe. Windows that place smaller weights on the samples near the edges 
will have lesser overshoot at the discontinuity points (lower side lobes); hence, 
they are more desirable than a rectangular window. However, sidelobes reduc-
tion is offset by a widening of the main lobe. Therefore, the proper choice of a 
windowing sequence is continuous trade-off between side lobe reduction and 
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main lobe widening. Table 13.1 gives a summary of some  windows with the 
corresponding impact on main beam widening and peak reduction.

The multiplication process defined in Eq. (13.131) is equivalent to cyclic 
convolution in the frequency domain. It follows that  is a smeared (dis-
torted) version of . To minimize this distortion, we would seek windows 
that have a narrow main lobe and small side lobes. Additionally, using a win-
dow other than a rectangular window reduces the power by a factor , where

(13.132)

It follows that the DPS for the sequence  is now given by

(13.133)

TABLE 13.1. Common windows.

Window
Null-to-null Beamwidth. Rectangular 

window is  the reference. 
Peak 

Reduction

Rectangular 1 1

Hamming 2 0.73

Hanning 2 0.664

Blackman 6 0.577

Kaiser ( 2.76 0.683

Kaiser ( 1.75 0.882
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where  is defined in Eq. (13.132). Table 13.2 lists some common windows. 

Figs. 13.3 through 13.5 show the frequency domain characteristics for these 
windows. These figures can be reproduced using MATLAB program 
“figs13.m”. 

TABLE 13.2. Some common windows. 

Window Expression
First side 
lobe 

Main lobe 
width

rectangular

Hamming

Hanning

Kaiser

 is the zero-order modified Bessel 

function of the first kind

Figure 13.2. Normalized amplitude spectrum for rectangular window. 
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Figure 13.3. Normalized amplitude spectrum for Hamming window. 

Figure 13.4. Normalized amplitude spectrum for Hanning window. 
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13.14. MATLAB Programs

Listing 13.1. MATLAB Program “figs13.m”
%Use this program to reproduce figures in Section 13.13.
clear all
close all
eps = 0.0001;
N = 32;
win_rect (1:N) = 1;
win_ham = hamming(N);
win_han = hanning(N);
win_kaiser = kaiser(N, pi);
win_kaiser2 = kaiser(N, 5);
Yrect = abs(fft(win_rect, 512));
Yrectn = Yrect ./ max(Yrect);
Yham = abs(fft(win_ham, 512));
Yhamn = Yham ./ max(Yham);
Yhan = abs(fft(win_han, 512));
Yhann = Yhan ./ max(Yhan);

Figure 13.5. Normalized amplitude spectrum for Kaiser window.
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YK = abs(fft(win_kaiser, 512));
YKn = YK ./ max(YK);
YK2 = abs(fft(win_kaiser2, 512));
YKn2 = YK2 ./ max(YK2);
figure (1)
plot(20*log10(Yrectn+eps),'k')
xlabel('Sample number')
ylabel('20*log10(amplitude)')
axis tight
grid
figure(2) 
plot(20*log10(Yhamn + eps),'k')
xlabel('Sample number')
ylabel('20*log10(amplitude)')
grid
axis tight
figure (3)
plot(20*log10(Yhann+eps),'k')
xlabel('Sample number')
ylabel('20*log10(amplitude)')
grid
axis tight
figure(4)
plot(20*log10(YKn+eps),'k')
grid
hold on 
plot(20*log10(YKn2+eps),'k--')
xlabel('Sample number')
ylabel('20*log10(amplitude)')
legend('Kaiser par. = \pi','Kaiser par. =5') 
axis tight
hold off
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This chapter provides a summary of all MATLAB program and function 
names used throughout this book. All these programs and functions can be 
downloaded from the CRC Press Web site (www.crcpress.com). For this pur-
pose, follow this procedure: 1) from your Web browser type “http://www.crc-
press.com”, 2) click on “Electronic Products”, 3) click on “Download & 
Updates”, and finally 4) follow instructions of how to download a certain set 
of code off that Web page. Furthermore, this MATLAB code can also be 
downloaded from The MathWorks Web site by following these steps: 1) from 
the Web browser type: “http://mathworks.com/matlabcentral/fileexchange/”, 
2) place the curser on “Companion Software for Books” and click on “Com-
munications”. 

 Chapter 1: Introduction to Radar Basics

Name Purpose

radar_eq Implements radar equation

fig1_12 Reproduces Fig. 1.12

fig1_13 Reproduces Fig. 1.13

ref_snr Calculates the radar reference range or SNR

power_aperture Implements the power aperture radar equation

fig1_16 Reproduces Fig. 1.16

casestudy1_1 Program for mini design case study 1.1

fig1_19 Reproduces Fig. 1.19

fig1_21 Reproduces Fig. 1.21

pulse_integration Performs coherent or non-coherent pulse integra-
tion
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Chapter 14 MATLAB Program 
and Function Name 
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 Chapter 2: Radar Detection

myradarvisit1_1 Program for “MyRadar” design case study - visit 
1

fig1_27 Reproduces Fig. 1.27

fig1_28 Reproduces Fig. 1.128

Name Purpose (all functions have associated GUI)

fig2_2 Reproduces Fig. 2.2

que_func Implements Marcum’s Q-function

fig2_3 Reproduces Fig. 2.3

prob_snr1 Calculates single pulse probability of detection

fig2_6a Reproduces Fig. 2.6a

improv_fac Calculates the improvement factor

fig2_6b Reproduces Fig. 2.6b

incomplete_gamma Calculates the incomplete Gamma function

factor Calculates the factorial of an integer

fig2_7 Reproduces Fig. 2.7

threshold Calculates the detection threshold value

fig2_8 Reproduces Fig. 2.8

pd_swerling5 Calculates the Swerling 0 or 5 Prob. of detection

fig2_9 Reproduces Fig. 2.9

pd_swrling1 Calculates the Swerling 1 Prob. of detection

fig2_10 Reproduces Fig. 2.10

pd_swrling2 Calculates the Swerling 2 Prob. of detection

fig2_11ab Reproduces Fig.s 2.11 a and b

pd_swrling3 Calculates the Swerling 3 Prob. of detection

fig2_12 Reproduces Fig. 2.12

pd_swrling4 Calculates the Swerling 4 Prob. of detection

fig2_13 Reproduces Fig. 2.13

fig2_14 Reproduces Fig. 2.14

Name Purpose
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 Chapter 3: Radar Waveforms

 Chapter 4: The Radar Ambiguity Function

fluct_loss Calculates the SNR loss due to RCS fluctuation

fig2_15 Reproduces Fig. 2.15

myradar_visit2_1 Program for “MyRadar” design case study visit 
2.1

myradar_visit2_2 Program for “MyRadar” design case study visit 
2.2

fig2_21 Reproduces Fig. 2.21

Name Purpose

fig3_7 Reproduces Fig. 3.7

fig3_8 Reproduces Fig. 3.8

hrr_profile Computes and plots HRR profile

fig3_17 Reproduces Fig. 3.17

Name Purpose

single_pulse_ambg Calculate and plot ambiguity function for a single 
pulse

fig4_2 Reproduces Fig. 4.2

fig4_4 Reproduces Fig. 4.4

lfm_ambig Calculates and plot LFM ambiguity function

fig4_5 Reproduces Fig. 4.5

fig4_6 Reproduces Fig. 4.6

train_ambg Calculates and plots ambiguity function for a train 
of coherent pulses

fig4_8 Reproduces Fig. 4.8

barker_ambg Calculates and plots ambiguity function corre-
sponding to a Barker code

Name Purpose (all functions have associated GUI)
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 Chapter 5: Pulse Compression

 Chapter 6: Surface and Volume Clutter

 Chapter 7: Moving Target Indicator (MTI) - Clutter 
Mitigation

prn_ambig Calculates and plots ambiguity function corre-
sponding to a PRN code

myradar_visit4 Program for “MyRadar” design case study visit 4

Name Purpose

fig5_3 Reproduces Fig. 5.3

matched_filter Performs pulse compression using a matched filter

power_integer_2 Calculates the power integer of 2 for a given posi-
tive integer

stretch Performs pulse compression using stretch process-
ing

fig5_14 Reproduces Fig. 5.14

Name Purpose

clutter_rcs Calculates and plots clutter RCS versus range

myradar_visit6 Program for “MyRadar” design case study visit 6

Name Purpose

single_canceler Performs single delay line MTI operation

double_canceler Performs double delay line MTI operation

fig7_9 Reproduces Fig. 7.9

fig7_10 Reproduces Fig. 7.10

fig7_11 Reproduces Fig. 7.11

myradar_visit7 Program for “MyRadar” design case study visit 7

Name Purpose
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 Chapter 8: Phased Arrays

 Chapter 9: Target Tracking

 Chapter 10: Electronic Countermeasures (ECM)

Name Purpose

fig8_5 Reproduces Fig. 8.5

fig8_7 Reproduces Fig. 8.7

linear_array Calculates the linear array gain pattern

circular_array Calculates the array pattern for a circular array

rect_array Calculates the rectangular array gain pattern

circ_array Calculates the circular array gain pattern

rec_to_circ Calculates the boundary for rectangular array 
with circular boundary

fig8_52 Reproduces Fig. 8.52

Name Purpose

mono_pulse Calculate the sum and difference antenna patterns

ghk_tracker implements the GHK filter

fir9_21 Reproduces Fig. 9.21

kalman_filter Implements a 3-state Kalman filter

fig9_28 Reproduces Fig. 9.28

maketraj Calculates and generates a trajectory

addnoise Corrupts a trajectory

kalfilt Implements a 6-state Kalman filter

Name Purpose

ssj_req Implements SSJ radar equation

sir Calculates and plots the S/(J+N) ratio

bun_thru Calculates the burnthrough range

soj_req Implements the SOJ radar equation
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 Chapter 11: Radar Cross Section (RCS)

 Chapter 12: High Resolution Tactical Synthetic 
Aperture Radar (TSAR)

range_red_factor Calculates the range reduction factor

fig10_8 Reproduces Fig. 10.8

Name Purpose (all functions have associated GUI)

rcs_aspect compute and plot RCS dependency on aspect 
angle

rcs_frequency compute and plot RCS dependency on frequency

example11_1 Used in solving Example on page 

rcs_sphere compute and plot RCS of a sphere

rcs_ellipsoid compute and plot RCS of an ellipsoid

rcs_circ_plate compute and plot RCS of a circular flat plate

rcs_frustum compute and plot RCS of a truncated cone

rcs_cylinder compute and plot RCS of a cylinder

rcs_rect_plate compute and plot RCS of a rectangular flat plate

rcs_isosceles compute and plot RCS of a triangular flat plate

CappedWedgeTM Used to calculate the TM E-field for a capped 
wedge

rcs_cylinder_complex reproduce Fig. 2.22

swerlin_models reproduce Fig. 2.24 

Name Purpose

fig12_12_13 Reproduces Figs. 12.12 and 12.13

Name Purpose
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 Chapter 13: Signal Processing

Name Purpose

figs13 Reproduces Fig. 13.2 through Fig. 13.5.
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