Chapter 8 Phased Arrays

8.1. Directivity, Power Gain, and Effective Aperture

Radar antennas can be characterlzgdhe directive gairG, , power gain
G, and effective aperturd, . Antenna gain is a term used to describe the abil-
ity of an antenna to concentrate thengmitted energy in a certain direction.
Directive gain, or simply directivity, isiore representative of the antenna radi-
ation pattern, while power gain is normally used in the radar equation. Plots of
the power gain and directivity, w@wh normalized to unity, are call@htenna
radiation pattern The directivity of a transmitting antenna can be defined by

_ maximum radiation intensity
b average radiation intensity

(8.1)

The radiation intensity is the power per unit solid angle in the direction
$# %nd denoted bPH # % . The average radiation intensity 4&er radi-
ans (solid angle) is the total powdivided by 4& . Hence, Eq. (8.1) can be

written as
G. = 4&maximum radiated powér unit solid angle 82)
D total radiated power '
It follows that
PS# ©
Gp = 4& 2&&—'{9“— 8.3)
((PSE# @ d"
00

As an approximation, it is stiomary to rewte Eqg. (8.3) as
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4&
Gp T (8.4)
where!; and"; are the antenna hadtwer (3-dB) beamwidths in either
direction.

The antenna power gain and its directivity are related by

G = *.Gp (8.5)

where *, is the radiation efficiencydtor. In this book, the antenna power
gain will be denoted again. The radiation efficiency factor accounts for the
ohmic losses associated with the antennherefore, the definition for the
antenna gain is also given in Eq. (8.The antenna effective apertufg is
related to gain by

A = == (8.6)

where + is the wavelength. The relaiship between the antenna’s effective
apertureA, and the physical apertére is
A, = *A 8.7)
0,* 1

* 1l

* is referred to as the apertwefficiency, and good antennas require 1
(in this book* = 1 is always assumed, i&,= A ).

Using simple algebraic manipulations of Egs. (8.4) through (8.6) (assuming
that*, = 1) yields

48A
G=—) A% (8.8)
|
+ 3 3
Consequently, the angular cross section of the beam is
2
+
13"3) — (8.9)
3 3 Ae
Eqg. (8.9) indicateghat the antenna beamwidth decrease#Ees increases. It

follows that, in surveillance operatignthe number of beam positions an
antenna will take on to cover a volurie  is

V

NBeams- | "

3 3

(8.10)
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and whenV represents the entirenfgphere, Eq. (8.10) is modified to

2& . 28A.. G
NBeams‘ | " ) 2 e) E (811)
3 3 +

8.2. Near and Far Fields

The electric field intensity generateaiin the energy emitted by an antenna
is a function of the antenna physiagerture shape arttle electric current
amplitude and phase distribution across the aperture. Plots of the modulus of
the electric field intensity of the enet radiation|E® # %o, are referred to as
theintensity patterrof the antenna. Alternativglplots of|[EH # ?v% are called
the power radiation patterrfthe same aP8 # % ).

Based on the distance from the facahaf antenna, where the radiated elec-
tric field is measured, three distingtgions are identifiedThey are the near
field, Fresnel, and the Fraunhofer mgs. In the near field and the Fresnel
regions, rays emitted from the anterireve spherical wavefronts (equi-phase
fronts). In the Fraunhofer regions thews&onts can be locally represented by
plane waves. The near fiehnd the Fresnel regions are normally of little inter-
est to most radar applications. Maatar systems operate in the Fraunhofer
region, which is also known as the far field region. In the far field region, the
electric field intensity can be computiedm the aperture Fourier transform.

Construction of the far criterion can be developed with the help of Fig. 8.1.
Consider a radiating source at pointiat emits spherical waves. A receiving
antenna of lengtld is at distance agwirom the source. The phase differ-
ence between a spherical wave and al Ipleane wave at the receiving antenna
can be expressed in terms of the distalce . The distance is given by

- AO_0OB = 2+28F
/[r =A0-0B= |r +021—r (8.12)
and since in the far field»d , Eq. (8.12) is approximated via binomial expan-
sion by
2
= 2)y,2dF ;3 d
/r =15 1+02r1_11) ar (8.13)

It is customary to assume far fielchen the distancér  corresponds to less
thanl' 16 of a wavelength (i.e22.54 ). More precisely, if

/r=d2'8r, +'16 (8.14)
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then a useful expression for far field is

r52d%" + (8.15)

Note that far field is a function of both the antenna size and the operating
wavelength.

_ antenna
spherical A
wavefront A
© d
radiating r
source

|A
|

Figure 8.1. Constructionof far field criterion.

8.3. General Arrays

An array is a composite antenna formed from two or more basic radiators.
Each radiator is denoted as an elem&he elements foring an array could
be dipoles, dish reflectors, slots in a wave guide, or any other type of radiator.
Array antennas synthesize narrowedtive beams that may be steered,
mechanically or electronically, imany directions. Electronic steering is
achieved by controlling the phase oétburrent feeding the array elements.
Arrays with electronic beam steerirgapability are called phased arrays.
Phased array antennas, when compéweather simple antennas such as dish
reflectors, are costly and mplicated to design. However, the inherent flexibil-
ity of phased array antennas to steertibbam electronically and also the need
for specialized multi-function radar sgsis have made phased array antennas
attractive for radar applications.
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Figure 8.2 Geometry for an array antenna.
Single element

Fig. 8.2 shows the geometrical fundamentals associated with this problem.
In general, consider the radiatioousce located aix,#y, #, % with respect to a
phase reference &#0# % . The electricdieleasured at far field poit  is
&R

Rl

E9# % I, fa# % (8.16)

where |, is the complex amplitud& = 2&' + is the wave number, and
f8 # Y%s the radiation pattern.

Now, consider the case where the radiasource is an array made of many
elements, as shown in Fig. 8.3. The ciioates of each radi@t with respect to
the phase reference &#y, # % , and the eefiiom the origin to théth  ele-
ment is given by

é ~ ~ ~
r=ax +ay +az (8.17)
The far field componenthat constitute the tal electric field are

—KR;

Ed# % IieTifSH #' % (8.18)
where
R= [R| = [F=H = /sx—x %or y—y; For - 3, % oo
= 1 1+ C+y2 + 22 w2 — 28K, +yy, +27 Or |
Using spherical coordinates, where= rsin! co§ y,= rsin! sir¥ , and

z = rcos vyields
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Figure 8.3 Geometry for an array antenna.

Sy +2 % |B

2 2
r r

«1 (8.20)

Thus, a good approximation (using binomial expansion) for Eq. (8.19) is
R = r—r¥;sin! co$ +y;sin! sif +zcosl % (8.21)

It follows that the phase contributiontae far field poinfrom theith radiator
with respect to the phase reference is

kR e_jkr ejk$<,sin! co$ +y;sin! sif' +zcos %

(8.22)
Remember, however, that the uvetctor f along the vectdr s
fo = % = a,sin! co$ +aysin! sif' +a,cosl (8.23)
Hence, we can revte Eq. (8.22) as
—ikR, _ K& 680 % —jkr (8 9# %
o KR ik e;k&?.es?o/: gikrd (8.29)
Finally, by virtue of superposition, the total electric field is
N
8. 9# %
E## % Q e (8.25)

i=1
which is known as the array factor fam array antenna where the complex cur-
rent for theith element i
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In general, an array can be fully chaeaized by its array factor. This is true
since knowing the array factor provides the designer with knowledge of the
array’s (1) 3-dB beamwidth; (2) null-tadll beamwidth; (3) distance from the
main peak to the first sidelobe; (4) heigf the first sidelobe as compared to
the main beam; (5) location of the nulls; (6) rate of decrease of the sidelobes;
and (7) grating lobes’ locations.

8.4. Linear Arrays

Fig. 8.4 shows a linear array antenoasisting ofN idetical elements. The
element spacing id  (normally measuieavavelength units). Let element #1
serve as a phase reference for the affeym the geometry, it is clear that an
outgoing wave at thath  element Isatie phase at tHtn+ 1 %h  element by
kdsin: , wherek = 2&' + . The combined phaaethe far field observation
point P is independent df and is computed from Eq. (8.24) as

8% % % k¥i6fo% $—1%dsin: (8.26)

Thus, from Eq. (8.25), thelectric field at a far &ld observation point with
direction-sine equal tgin:  (assuming isotropic elements) is

N
Egsin: % Q g%~ 1 Fdsin: % 8.27)
n=1

Expanding the summation in Eq. (8.27) yields

E$sin: %= 1+ejkdsin: ny +ej$\l—1%<dsin: % (8.28)

The right-hand side of Eq. (8.29) igaometric series, which can be expressed
in the form

N
1+a+a2+a3+; +aN 1% l-a

8.29
1-a (8.29)
Replacinga byd“®*™ yields
, 1NN _gcosNkdsin: % j$sinNkdsin: %
E D% = .
$sin: 9 1 _ gkdsim: 1—$coskdsin: % j$sinkdsin: % (630
The far field array intensity pattern is then given by
|E$sin: %= JES$sin: ®<$sin: % (8.31)

© 2004 by Chapman & Hall/CRC CRC Press |



<

Figure 8.4. Linear array of equally spaced elements.

Substituting Eqg. (8.30) into Eq. (8.31) and collecting terms yield

_ in: @ i in 9
IESsin: %= J$l cosNkdsin: %+ $sinNkdsin: % (8.32)
$1 - coskdsin: 96+ $sinkdsin: %
_ [L=cosNkdsin:
1 - coskdsin:
and using the trigonometric identify— cosl = 2$sin! 2% yields
|ESsin: %= ‘MI‘J (8.33)
singkdsin: ' 29
which is a periodic function dfdsin: , with a period equal2®
The maximum value dE$sin: % , which occurs:at= 0, is equdlito
follows that the normalized intensity pattern is equal to
o L |si kdsin: %2
E $sin: %= = |SINSN 0 (8.34)
B %= N ‘sin%dsin: %2 9

The normalized two-way array pattern (radiation pattern) is given by
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1 osing$Nkdsin: %2 9%

o 6 =
G3sin: % |E,Ssin: %5 N2 O sin$kdsin: %62 %L

(8.35)

Fig. 8.5 shows a plot of Eq. (8.35) verssig! for= 8 . The radiation
patternG$sin: % has cylindrical synmetry about its axisksin ;= 0%, and is
independent of the azimuth angle. Thus, it is completely determined by its val-
ues within the interva0=: =& %. This plot can be reproduced using MAT-
LAB program“fig8_5.m” given in Listing 8.1 in Section 8.8.

The main beam of an array can $teered electronicallpy varying the
phase of the current applied to eachyaai@ment. Steering the main beam into
the direction-sinesin: ; is accomplishdy making the phase difference
between any two adjacent elementsatdo kdsin: , . In this case, the normal-
ized radiation pattern can be written as
1 psin>Nkd'2 %sin = sin: , %8¢

in 9 il
Gsin: % N2 O sinsgkd' 2 sin = sin: (%81

(8.36)

If : o = 0 then the main beam is perpeadiar to the array axis, and the array
is said to be a broadside array. Alteively, the array is called an endfire array
when the main beam posmalong the array axis.

The radiation pattern maxima are computed using L'Hopital’s rule when
both the denominator and numerator of Eq. (8.35) are zeros. More precisely,

KASin: _ @ng  : m=o#1m # (8.37)

-1 08 06 04 02 o 0.2 04 06 08 1
sine angle - dimensionless

Figure 8.5a. Normalized radiation pattern for a linear array; N = 8; d = +.
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Figure 8.5b. Polar plot for the array pattern in Fig. 8.5a.

P ow er pattem [dB]

Figure 8.5c. Polar plot for the power pattern in Fig. 8.5a.
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Figure 8.5d. Three-dimensional plot fo the radiation pattern in Fig. 8.5a.

Solving for: vyields

. aci2AEM3 ) _
m = asun(z)@d—1 rm=0#1L # (8.38)

where the subscripin  is used as a maxima indicator. The first maximum
occurs at: ; = 0 , and is denoted ag timain beam (lobe). Other maxima
occurring afm/ 51 are called grating Iabésrating lobes are undesirable and
must be suppressed. The grating lobes occur at non-real angles when the abso-
lute value of the arc-sine argument in &}38) is greater than unity; it follows

that d =+ . Under this condition, the main lobe is assumed to be at0
(broadside array). Alterniaely, when electronic beasteering is considered,

the grating lobes occur at

+Nn

|sin: —sin: o = @y ;N o= 124 (8.39)
Thus, in order to prevent the grating lobes from occurring betwdén , the

element spacing should foe= +"'2

The radiation pattern attains secondaigxima (sidelobes) when the numer-
ator of Eq. (8.35) is maximum, or equivalently
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Nkdsin: _ T
M @|+1% = 1 (8.40)

Solving for: yields

. +2l+1
= asm%%d N % = 1H2#H (8.41)

where the subscrigt is used as atidation of sidelobe maxima. The nulls of
the radiation pattern occur when only thenerator of Eq. (8.36) is zero. More
precisely,

N n = 1#2#
—kdsin: = @& ; 8.42
2 @ n A NH2N#, (642
Again solving for:  yields
_ o 4n3 . N =1#2#
D, = asi N ; 8.43
" r%@le n A N#2N#; ©49

where the subscript  is used as a mdicator. Define the angle which corre-
sponds to the half power point ag, . It follows that the half power (3 dB)
beamwidth i2|: ., —: ;| . This occurs when

Ny v . . a2 + 27823
2kdsm. n = 1.391radiansB : | = asn%z&d—N 1 (8.44)

8.4.1. Array Tapering

Fig. 8.6a shows a normalized two-way radiation pattern of a uniformly
excited linear array of sizd = 8 ,eshent spacingl = +'2 . The first side-
lobe is aboutl3.46 dB below the main lobe, and for most radar applications
this may not be sufficient. Fig. 8.6b shows the 3-D plot for the radiation pattern
shown in Fig. 8.6.a.

In order to reduce the sidelobe levels, the array must be designed to radiate
more power towards the center, and much less at the edges. This can be
achieved through tapering (windowintile current distribtion over the face
of the array. There are many possibleeting sequences that can be used for
this purpose. However, as known from spectral analysis, windowing reduces
sidelobe levels at the expense of widening the main beam. Thus, for a given
radar application, the choice of the tapering sequence must be based on the
trade-off between sidelobe reduction and main beam widening. The MATLAB
signal processing toolbox provides users with a wide variety of built-in win-
dows. This list includes'Bartlett, Barthannwin, Blackmanharris, Bohman-
win, Chebwin, Gausswin, Hammingdann, Kaiser, Nuttallwin, Rectwin,
Triang, and Tukeywin.”
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Figure 8.6a. Normalized patten for a linear array. N = 8, d = +'2.

50
45
Electric Far Field (E-Total) [dB] 40
35
30
25

20

Figure 8.6b. Three-dimensional plot fo the radiation pattern in Fig. 8.6a.
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Table 8.1 summarizes the impact of most common windows on the array pat-
tern in terms of main beam widening and peak reduction. Note that the rectan-
gular window is used as the baseline. This is also illustrated in Fig. 8.7.

TABLE 8.1. Common windows.

Window Null-to-null Beamwidth Peak Reduction
Rectangular 1 1
Hamming 2 0.73
Hanning 2 0.664
Blackman 6 0.577
Kaiser (C = 6% 2.76 0.683
Kaiser (C = 3% 1.75 0.882

Window

Window

Figure 8.7. Most common windows. Tts figure can be reproduced using
MATLAB program “fig8_7.m" given in Listing 8.2 in Section 8.8.
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8.4.2. Computation of the Radiation Pattern via the DFT

Fig. 8.8 shows a linear array of sike element spacing , and wavelength
+. The radiators are circular diesh of diameterd . Letv$n% and Bnh %
respectively, denote the tapering qidise shifting sequences. The normalized
electric field at a far field pat in the direction-sinein: s

N-1 .2 oN-133
) EH-555
ES$sin: % 9 w$n & (8.45)
n=0

where in this case the phase referencwken as the physical center of the
array, and

E" = g—f‘—(-jsin: (8.46)

Expanding Eq. (8.45) and factoring the common phase term
expIN — 1 %E"2 ?yield

Essin: % ™ 17E2rng0 g6t ™ 1R gt g™ T2 %E (8.47)
+; +twiN-1%
By using the symmetry property ofnandow sequence (remember that a win-
dow must be symmetrical about its cenfraint), we can rewrite Eq. (8.47) as

Egsin: % € "FwSN—1 @™ 1%L wan— 2 i N -2 %E (8.48)
+; +w B
d
B E—

DY  psite DRV |DBW DH

Figure 8.8. Linear array of size 5, with tapering aml phase shifting hardware.
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where"; = $N-1%E"2 .
Define FV] = exp$jE"n9% = @#1# M —1G. It follows that

N-1

E$sin: % ej"°>w$)%w$l%i+; +WON-19%, ~ ? (8.49)

N-1
i
=€ "Q wsn o,
n=0

The discrete Fourier transform of the sequenta % is defined as

N-1 _§28nq%
W$q% Q wsn % N cg=o#l#  MW-1 (8.50)
n=0

The setFsin: ;G which makeg, equal to the DFT kernel is
in: ;=24 q=o#l# M-1 851
sin: 4 Nd 7 q # (8.51)
Then by using Eq. (8.51) in Eq. (8.50) yields

ES$sin: % ej"°W$q% (8.52)

The one-way array pattern is computed as the modulus of Eq. (8.52). It follows
that the one-way radiation pattern of peeed linear array of circular dishes is

G$sin: % G, [W$qdo (8.53)

whereG, is the element pattern.

In practice, phase shifters are normathplemented as padf the Transmit/
Receive (TR) modules, ugjra finite number of bits. Consequently, due to the
guantization error (difference betweelesired phase and actual quantized
phase) the sidelobe levels are affected.

MATLAB Function “linear_array.m”

The function‘linear_array.m” computes and plotseHinear array gain pat-
tern as a function of real sine-space (¢hesteering angle). It is given in List-
ing 8.3 in Section 8.8. The syntax is as follows:

[theta, patternr, patterng] = linear_array(Nr, dolr, theta0, winid, win, nbits)
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where

Symbol Description Units Status
Nr number of elements in array none input
dolr element spacing in tabda units wavelengths input
thetaO steering angle degrees input

winid -1: No weighting is used none input

1: Use weighting defined in win

win window for sidelobe control none input
nbits negative #: perfect quantization none input
positive #: use2"?'s guantization levels
theta real angle available for steering degrees output
patternr array pattern dB output
patterng gain pattern dB output
nl

A MATLAB based GUI workspace calledlinear_array gui.m”> was

developed for this function. It shown in Fig. 8.9.

Number of 25
elements
C— Window choice
Element spacing 056
in lambda units [Mone =l
Steering angle 0.0
in degrees
nbits -3
neg === no

quantization

Figure 8.9. MATLAB GUI workspace associated withthe function
“linear_array.m”.

1. The MATLAB “Signal Processing” Toolbdg required to execute this program.
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Figs. 8.10 through 8. 18 respectively show plots of the array gain pattern ver-
sus steering angle ftine following cases:

[theta, patternr, patterng] = lineararray(25, 0.5, 0, -1, -1, -3);

[theta, patternr, patterng] = linear_aay(25, 0.5, 0, 1, ‘Hamming’, -3);
[theta, patternr, patterng] = lineararray(25, 0.55, -1, -1, 3);

[theta, patternr, patterng] = linear_amay(25, 0.5, 5, 1, ‘Hamming’, 3);
[theta, patternr, patterng] = linear_may(25, 0.5, 251, ‘Hamming’, 3);
[theta, patternr, patterng] = lineararray(25, 1.5, 40, -1, -1, -3);

[theta, patternr, patterng] = linear_iaay(25, 1.5, 401, ‘Hamming’, -3);
[theta, patternr, patterng] = lineararray(25, 1.5, -40, -1, -1, 3);

[theta, patternr, patterng] = linear_amy(25, 1.5, -40, 1, ‘Hamming’, 3);

Users are advised to utilize the GUI developed for this function and test a
few cases of their own.

Gain pattem - dB

-0 a0 <40 20 0 20 40 B0 a0
Steering angle - degrees

Figure 8.10. Array gain pattern: Nr = 25; dolr = 0.5; |, = 04;
win = none nbits= -3.
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Figure 8.11. Array gain pattern: Nr = 25; dolr = 0.5; !, = 04;

= -3

win = Hamming nbits

Steering angle - degrees

Figure 8.12. Array gain pattern: Nr = 25; dolr = 0.5; |, = 54;

=3

win = none nbits
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25l

gp - wened uen

Steering angle - degrees

Figure 8.13. Array gain pattern: Nr = 25; dolr = 0.5; |, = 54;

=3

= Hamming nbits

win

ap - woned uren

Steering angle - degrees

Figure 8.14. Array gain pattern: Nr = 25; dolr = 0.5; !, = 254;

=3

win = Hamming nbits
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Gain pattem - dB

------------------------------

20 60 40 20 o 20 40 80 &0
Steering angle - degrees

Figure 8.15. Array gain pattern: Nr = 25; dolr = 1.5; |, = 404;
win = none nbits= -3

S

Gain pattem - dB

o} 40
Steering angle - degrees

Figure 8.16. Array gain pattern: Nr = 25; dolr = 1.5; |, = 404;
win = Hamming nbits= -3
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Gain pattem - dB

-0 80 40 20 o 20 40 80 a0
Steering angle - degrees

Figure 8.17. Array gain pattern: Nr = 25; dolr = 1.5; |, = —404 ;
win = none nbits= 3

..............................

Gain pattem - dB

20 0 20
Steering angle - degrees

Figure 8.18. Array gain pattern: Nr = 25; dolr = 1.5; | ; = —404;
win = Hamming nbits= 3
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8.5. Planar Arrays

Planar arrays are a natural extensiotirafar arrays. Planar arrays can take
on many configurations, depending on the element spacing and distribution
defined by a “grid.” Examples includectangular, rectantar with circular
boundary, hexagonal with circular boundary, circular, and concentric circular
grids, as illustrated in Fig. 8.19.

Planar arrays can be steered ievation and azimuth{# %, as illustrated
in Fig. 8.20 for a rectandar grid array. The eleméspacing along the x- and
y-directions are respectively denoteddyyandd, . The total electric field at a
far field observation point for any planar array can be computed using Egs.
(8.24) and (8.25).

(e)

Figure 8.19. Planar array grids. (a) Reangular; (b) Rectangular with circular
boundary; (c) Circular; (d) Concentric circular; and (e) Hexagonal.
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Rectangular Grid Arrays

5 Copsider theNHM  rectangular grid as shown in Fig. 8.20. The dot product
r,6ry, where the vector; is the vectortheith element in the array angl

is the unit vector to the far field observation point, can be broken linearly into
its x- andy-components. It follows that theeelric field components due to the
elements distributed along the x- and y-directions are respectively, given by

far field
point

Figure 8.20. Rectangular array geometry.

N
Ed# % Q IXnem_l%d*Sim ¢ (8.5)

n=1

N
E9# % Q |,

m=1

jgm—-1 sin! sift
e' ay (8.55)

The total electric field at the far field observation point is then given by

E§# % ES# BIH % (8.56)
2 N N 3
| j9m—1ded,sin! sirt | 9 —1 %d,sin! co$ j
19 1y.8 319 k€ N
0m=1 10n=l 1
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Eq. (8.56) can be expressed in terms of the directional cosines

sin! co$

. . (8.57a)
sin! sir

<
1

us
atarg- 7

. 2 2
I = asinju™+ Vv

The visible region is then defined by

JUEHVA 1 (8.58)

It is very common to express a plararay’s ability to steer the beam in
space in terms of th&l#V  space insteldhe angles #"
how a beam steered in a certaih

(8.57b)

. Fig. 8.21 shows
redtion is translated intd#V  space.

Figure 8.21. Translation from spheical coordinates into U,V space
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The rectangular array one-way intengittern is then equal to the product
of the individual patterns. More precisely for a uniform excitation
(Iym =1, = const),

ES# % sing®NKkd, sin! cos %2 %
sing¥kd, sin! cog %2 9

S|r_1$\lkq,§|n! gm' %2 % ©.59)
sm%(dysml sit %2 9

The radiation pattern maxima, nulls, sidelobes, and grating lobes in both the
x- andy-axes are computed in a similar fashto the lineaarray case. Addi-
tionally, the same conditions for grating lobe control are applicable. Note the
symmetry is about the angle

Circular Grid Arrays

The geometry of interest is shown irgF8.19c. In this cas®& elements are
distributed equally on the outer circle whose radius is . For this purpose con-
sider the geometry shown in Fig. 8.22. From the geometry

D, = %‘ n n=1#2# M (8.60)

The coordinates of theth  element are

X, = a cosD,

Yn

a sinD, (8.61)
z,=0
It follows that
k$n6F0 % 8 = k$asin! cog cob ,+asin! sift siD ,+ 0% (8.62)
which can be rearranged as
8, = aksin! $co8 coB |, + sin" sirD , % (8.63)

Then by using the identitgosfA — B %= cosAcosB + sinAsinB , Eq.(8.63)
collapses to

8 , = aksin! cos® " % (8.64)
Finally by using Eg. (8.25), the far field electric field is then given by
N
E§#a% Q I, expﬁ,j%sin! cosp ,—" )151 (8.65)

n=1
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where I, represents the complex emtr distribution for thenth element.
When the array main beaisidirected in thel j#", %Eq. (8.65) takes on the
following form

N
@) . : P
Ea# a% Q InexpM%axm! cosP ,—" % sin! jcos¥D,, —" ; YBN8.66)
K L

n=1

Figure 8.22. Geometry for a circular array.

MATLAB program “circular_array.m”

The MATLAB program“circular_array.m” calculates and plots the rectan-
gular and polar array patterns for acalar array versu¢ and  constant
planes. It is given in Listing 8.4 in Section 8.8. The input parameters to this
program include:

Symbol Description Units
a Circular array radius +
N number of elements none
thetaO main direction in! degrees
phio main direction in" degrees
Variations ‘Theta’; or ‘Phi’ none
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Symbol Description Units
degrees

phid constant" plane

thetad constant!  plane degrees

Consider the case when the inputs are:

a 15
N 10 dipole antennas
thetaO o, = 454
ph|0 "o = 604
Variations ‘Theta’
phid "4 = 604
thetad Iy = 454

Fig.s 8.23 and 8.24 respectively show #iray pattern in relative amplitude
and the power pattern versus the angle . Figs. 8.25 and 8.26 are similar to
Figs. 8.23 and 8.24 excepttinis case the patternseagplotted in polar coordi-

nates.
Fig. 8.27 shows a plot of the normalized single element pattern (upper left

corner), the normalized ray factor (upper right ¢aer), and the total array
pattern (lower left corner). Fig. 8.28 shows the 3-D pattern for this example in

the!# space.

Figs. 8.29 through 8.33 are similar to those in Figs. 8.23 through 8.27,
except in this case the inpparameters are given by:

a 15
N 10 dipole antennas
thetaO o, = 454
phiO "0 = 604
Variations ‘Phi’
phid "4 = 604
thetad Iy = 454
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Figure 8.23. Array factor pattern for a circular arra y, using the parameters
defined in the table on top of pge 346 (rectangular coordinates).
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Figure 8.24. Same as Bi 8.23 using dB scale.
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Figure 8.25. Array factor pattern for a circular array, using the parameters
defined in the table on top ofpage 346 (polar coordinates).

P ow er pattem [dB]

Figure 8.26. Same as Bi 8.25 using dB scale.
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Element normalized E field [dB] Array Factor normalized [dB]

L .
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Total normalized E field [dB)
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150, 50

S -/,f .\\I

Figure 8.27. Element, aray factor, and total pattern for the circular array
defined in the table on top of page 346.

Total normalized E field
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Figure 8.28. 3-D total array pattern(in ! # space) for tre circular array
defined in the table on top of page 346.
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Theta = 90° plane

Array pattem

150 200
Phi [Degrees]

Figure 8.29. Array factor pattern for a circular array, using the parameters
defined in the table on bottom of age 346 (rectangular coordinates).

Theta = 90° plane

P ow er pattem [dB]

1
0 B0 100 150 200 280 300 360
Phi [Degrees]

Figure 8.30. Same as Bi 8.29 using dB scale.
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Figure 8.31. Array factor pattern for a circular array, using the parameters
defined in the table on bottom ofpage 346 (polar coordinates).

Pow er pattem [dB]

Figure 8.32. Same as Bi 8.31 using dB scale.
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Element normalized E field [dB] Array Factor normalized [dB]
@

Figure 8.33. Element, aray factor, and total pattern for the circular array
defined in the table on bottom of page 346.

Concentric Grid Circular Arrays

The geometry of interest is shown in Fig. 8.19d and Fig. 8.34. In this case,
N, elements are distributed equally tire outer circle whose radius &
while other N; elements are linearly distributed on the inner circle whose
radius isa; . The element located on tenter of both circles is used as the
phase reference. In this configuost there areN; + N, +1  total elements in
the array.

The array pattern is derived in two stepirst, the array pattern correspond-
ing to the linearly distributed concentric circular arrays whth Ayd ele-
ments and the center element are computed separately. Second, the overall
array pattern corresponding to the twacentric arrays and the center element
are added. The element pattern of identical antenna eiments are consid-
ered in the first step. Thus, the total pattern becomes,

ES# % E8# %BES# ;a, WEHH ;a,% (8.67)

Fig. 8.35 shows a 3-D plot for concentric circular array in!t#e space for
the following parameters:
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a; N, a, N,

1+ 8 (+'2 dipoles) x> 8¢'2 dipoles)

\

Figure 8.34. Concentriccircular array geometry.
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Figure 8.35. 3-D array pattern fora concentric circular array; ! = 454
and" = 904
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Rectangular Grid with Gicular Boundary Arrays

The far field electric field associatedth this configuration can be easily
obtained from that correspdimg to a rectangular igk. In order to accomplish
this task follow these steps: FirstJes the desired maximum number of ele-
ments along the diameter of the circle and denote iNpy . Also select the
associated element spacingk#d, . Defia rectangular array of size
Ny HNy. Draw a circle centered &#y % $0#0% with radiys ~ where

Ng—=1,
2

andEx, d,'4 . Finally, modify the weighting function across the rectangular
array by multiplying it with the two-dimensional sequer@#n% , where

rg = Ex (8.68)

, if dis to $m#ngh element P
admn% ﬁl § N (8.69)
KO ; elsewhereL

where distancegis , is measured frore ttenter of the circle. This is illus-
trated in Fig. 8.36.

adm¥n% 1

Figure 8.36. Elements with soti dots havea$m#n% - 1 ; other elements
have a$m#n% O .

Hexagonal Grid Arrays
The analysis provided in this section is limited to hexagonal arrays with cir-

cular boundaries. The horizontal element spacing is denotd as  and the ver-
tical element spacing is

(8.70)
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The array is assumed to have the mmaxin number of identical elements along
the x-axis ¢ = 0 ). This number is deted byN, , wheréN, is an odd num-
ber in order to obtain a symmetricray, where an element is present at
Sty %= $0#0 %The number of rows in the array is denotedy . The hori-
zontal rows are indexed by which varies freff\, —1 %2 g —1 %2

The number of elements in timeth  wds denoted byN  and is defined by

N, = N,—[m| (8.71)

The electric field at a fafield observation point is computed using Eq.
(8.24) and (8.25). The phasssaciated witfi#n%h location is

28&d, . N3. o . A3
" in = szm! [%m+ é%:os +n2>=sin } (8.72)

MATLAB Function “rect_array.m”

The function“rect_array.m” computes and plots the rectangular antenna
gain pattern in the visible),V space. This function is given in Listing 8.5 in
Section 8.8. The syntax is as follows:

[pattern] = rect_array(Nxr, Nyr, dolxr, dolyr, thetaO, phiO, winid, win, nbits)

where
Symbol Description Units Status
Nxr number of elements along x none input
Nyr number of elements along y none inpuit
dolxr element spacing in lambdenits along x | \&velengths input
dolyr element spacing in lambdenits alongy | \&velengths input
thetaO elevation steiag angle degrees input
phio azimuth steering angle degrees input
winid -1: No weighting is used none input
1: Use weighting defined in win
win window for sidelobe control none input
nbits negative #: perfect quantization none input
positive #: us@"™'"s quantization levels
pattern gain pattern dB output
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A MATLAB based GUI workspace callé@drray.m” was developed for this
function. It shown in Fig. 8.37he user is advised to use this MATLAB Gul
workspace to generate array gain @ats that match this requirement.

Fig.s 8.38 through 8.43 respectively shplots of the array gain pattern in
the U-V space, for the following cases:

I Edit Tex: .
“window array pattern

Pl Cdit Tex: MOME - rectangular -+
Meirc Edit Tex:

dobr | EdtTes

dolyr | EdtTex
thetal | EdiTex  deg

phid | EdtTex  deg

mbits | CdtTes Plot ‘ Exit ‘

Figure 8.37. MATLAB GUI workspace “array.m.”

[pattern] = rect_array(15, 150.5, 0.5, 0, 0, -1, -1, -3) (8.73)
[pattern] = rect_array(15, 15, 0.5, 0.5, 20, 30, -1, -1, -3) (8.74)
[pattern] = rect_array(15, 15, 0.5, 0.5, 30, 30, 1, ‘Hamming’, -3)(8.75)
[pattern] = rect_array(15, 15, 0.5, 0.5, 30, 30, -1, -1, 3) (8.76)
[pattern] = rect_array(15, 15, 1, 0.5, 10, 30, -1, -1, -3) (8.77)
[pattern] = rect_array(15, 151, 1,0, 0, -1, -1, -3) (8.78)

1. This GUI was developed by Mr. David J.IHH&onsultant to Decibel Research, Inc.,
Huntsville, Alabama.
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Gain pattern - dB

Figure 8.38a. 3-D gain patterrcorresponding to Eq. (8.73).
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Figure 8.38b. Contour plot corresponding to Eq. (8.73).
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Electric Far Field (E-Total) [dB]

70

Figure 8.38c. Three-dimensional plof! # space) corresponding to Eq. (8.73).

Gain pattern - dB

Figure 8.39a. 3-D gain patterrcorresponding to Eq. (8.74).
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Figure 8.39b. Contour plot caresponding to Eq. (8.74).
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Figure 8.39c. 3-D plot { # space) corresponding to Eq. (8.74).
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Figure 8.40a. 3-D gain pattern corresponding to Eq. (8.75).
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Figure 8.40b. Contour plot caresponding to Eq. (8.75).
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Gain pattern - dB

iaeis
(0

v
h
e e e

i)

WON®)E

[

@K

Figure 8.41b. Contour plot caresponding to Eq. (8.76).

© 2004 by Chapman & Hall/CRC CRC Press |



Electric Far Field (E-Total) [dB]

70

Figure 8.41c. 3-D plot { # space) corresponding to Eq. (8.76).
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Figure 8.42a. 3-D gain patterrcorresponding to Eq. (8.77).
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Figure 8.42b. Contour plot caresponding to Eq. (8.77).
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Figure 8.42c. 3-D plot { #
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Figure 8.43a. 3-D gain patterrcorresponding to Eq. (8.78).
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Figure 8.43b. Contour plot caresponding to Eq. (8.78).
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Figure 8.43c. 3-D plot { # spacegorresponding to Eq. (8.78).

MATLAB Function “circ_array.m”

The function“circ_array.m” computes and plots the rectangular grid with a
circular array boundary antenna gain pattern in the visiblé space. This
function is given in Listing 8.6 inétion 8.8. The syntax is as follows:

[pattern, amn] = circ_array(N, dolxr, dgr, thetaO, phiO, winid, win, nbits);

where
Symbol Description Units Status
N number of elementdong diameter none input
dolxr element spacing in lambadenits along x | \&velengths input
dolyr element spacing in lambdeits alongy | \&velengths input
thetaO elevation steiag angle degrees input
phio azimuth steering angle degrees input
winid -1: No weighting is used none input
1: Use weighting defined in win
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Symbol Description Units Status

win window for sidelobe control none input

nbits negative #: péect quantization none input

. nbits .
positive #: use? guantization levels

patterng gain pattern dB output

amn a(m,n) sequence defined in Eq. (8.68 none output

Figs. 8.44 through 8.49 respectively show plots of the array gain pattern ver-
sus steering for the following cases:

[pattern, amn] = circ_array(15, 0.5, 0.5, 0, 0, -1, -1, -3) (8.79)
[pattern, amn] = circ_array(150.5, 0.5, 20, 30, -1, -1, -3) (8.80)
[pattern, amn] = circ_array(15, 0.5, 0.5, 30, 30, 1, ‘Hamming’, -3}8.81)
[pattern, amn] = circ_array(15, 0.5, 0.5, 30, 30, -1, -1, 3) (8.82)
[pattern, amn] = circ_array(15, 1, 0.5, 10, 30, -1, -1, -3) (8.83)

[pattern, amn] = circ_array(15, 1, 1, 0, O, -1, -1, -3) (8.84)

Note the functiori‘circ_array.m” uses the functiofirec_to_circ.m”, which
computes the arrag$m#n% . It is given in Listing 8.7 in Section 8.8.

The MATLAB GUI workspace defined ifarray.m” can be used to execute
this function.
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Gain pattern - dB
& &

Figure 8.44b. Contour plot caresponding to Eq. (8.79).
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Electric Far Field (E-Total) [dB]

Figure 8.44c. 3-D plot { # spacejorresponding to Eq. (8.79).

Gain pattern - dB

Figure 8.45a. 3-D gain patterrcorresponding to Eq. (8.80).
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Figure 8.45b. Contour plot caresponding to Eq. (8.80).
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Figure 8.45c. 3-D plot { # spacejorresponding to Eq. (8.80).
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Gain pattern - dB

Figure 8.46b. Contour plot caresponding to Eq. (8.81).
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Figure 8.47a. 3-D gain patterrcorresponding to Eq. (8.82).

Figure 8.47b. Contour plot corresponding to Eq. (8.82).
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Electric Far Field (E-Total) [dB]
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Figure 8.47c. 3-D plot { # spacejorresponding to Eq. (8.82).

Gain pattern - dB

Figure 8.48a. 3-D gain patterrcorresponding to Eq. (8.83).
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Figure 8.48b. Contour plot corresponding to Eq. (8.83).
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Figure 8.49b. Contour plot corresponding to Eq. (8.84).
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Figure 8.49c. 3-D plot { # spacejorresponding to Eq. (8.84).

The progranfarray.m” also plots the array’s elemt spacing pattern. Figs.
8.50a and 8.50b show two examples. TXig" indicate the location of actual
active array elements, while tha@s” indicate the locationf dummy or virtual
elements created merely for comgtidnal purposes. More precisely, Fig.
8.50a shows a rectangular grid with circular boundary as defined in Egs. (8.67)
and (8.68) withd, = d, = 0.5+ and = 0.35+ . Fig. 8.50b shows a similar
configuration except that adlement spacing, = 1.5+ amdf, = 0.5+

8.6. Array Scan Loss

Phased arrays experience gain loss wtherbeam is steed away from the
array boresight, or zenith gnmal to the face of the array). This loss is due to
the fact that the array effective apeetlbecomes smaller and consequently the
array beamwidth is broadened, as illustrated in Fig. 8.51. This loss in antenna

gain is called scan losk,.,, ,where

A G
Lscan = (2)1?'%2 = Ozaf (8.85)

A, is effective aperturarea at scan angle , acgl is effective array gain at
the same angle.
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Figure 8.50a. A 15 element circulaarray made from a rectangular

array with circular boun dary. Element spacingd,
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Figure 8.50b. A 15 element circular aray made from a rectangular array

with circular boundary. Element spacingdy = 0.5+ andd, = 1.5+
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Figure 8.51. Reduction in array effetive aperture due to electronic
scanning.

The beamwidth at scan andle is

Q — Qbroadside
| = —

(8.86)
cos!

due to the increased scan loss at laggnning angles. In order to limit the
scan loss to under some acceptable pralctialues, most arrays do not scan
electronically beyond about = 604 . Suehrays are called Full Field Of

View (FFOV). FFOV arrays employeahent spacing 0.6+ or less to avoid
grating lobes. FFOV array scan loss is approximated by

Locan) $co8 95 (8.87)

Arrays that limit electronic soming to underr = 604 are referred to as
Limited Field of View (LFOV) arrgs. In this case the scan loss is

-4

sincz)%isin! 1
Lecan = 2d (8.88)
Tsin!

Fig. 8.52 shows a plot for scan loss versean angle. This figure can be repro-
duced using MATLAB progrartfig8_52.m” given in Listing 8.8.
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Figure 8.52. Scan lossgersus scan anglehased on Eq. (8.87).

8.7. “MyRadar” Design Case Study - Visit 8

8.7.1. Problem Statement

Modify the “MyRadar” design case study such that we employ a phased
array antenna. For this purpose, modify the design requirements such that the
search volume is now defined Q¢ = 104  &Rgd, 454 . Assume X-band, if
possible. Design an electronically steered radar (ESR). Non-coherent integra-
tion of a few pulses may be used, if neags Size the radar so that it can ful-
fill this mission. Calculate the antenna gain, aperture size, missile and aircraft
detection range, number of elementghia array, etc. All other design require-
ments are as defined in the previous chapters.

8.7.2. A Design
The search volume is

R = 104H454 _ 0.1371 steradian (8.89)

957.296%
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For an X-band radar, choo§g= 9GHz , then

+ = = 0.0333n (8.90)

Assume an aperture sizg = 2.25m°  ;thus

_ 48A. _ 4H&H2.25 _

+° 0.0333%

Assume square aperture. It followstlhe aperture 3-dB beamwidth is cal-
culated from

2 3 /
25 %J B 1, = 4H&H18022 - 13 (@.62)
0 12,1 25451.991H &

The number of beams requiradfill the search volume is

G

25451.991B G = 44dB 8.91)

n, = k B n, = 399.5B choose p = 400 (8.93)

= J
P '
$1.3' 57.200%, _,

Note that the packing factd, is ustedallow for beanoverlap in order to
avoid gaps in the beam coverage. Thedeacan rate is 2 seconds. Thus, the
minimum PRF should correspond to 200 beams per second, (ime 200Hz ).
This PRF will allow the rdar to visit each beam gition only once during a
complete scan.

It was determined in Chapter 2 thapulse non-coherent integration along
with a cumulative detection scheme egquired to achieve the desired proba-
bility of detection. It was also deterneid that the single pulse energy for the
missile and aircraft cases are respectively given by (see page 118)

E, = 0.1147oules (8.94)
E, = 0.10290oules (8.95)
However, these values were derived using 0.1m énd 2827.4 . The

new wavelength iss = 0.0333n and the new gairds= 25451.99 . Thus,
the missile and aircraft single pulseeegy, assuming the same single pulse
SNR as derived in Chapter 2 (.&NR= 4dB ) are

2
£ = 01147H-QLH2827.E 51 006oiies (8.96)

0.0333 H25457
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2
£, = 0.1020H-0-LH2827.8 011000 les 697

0.0333 H25457
The single pulse peak power that will satisfy detection for both target types
is

p, = 2012765_ 435 gy (8.98)

20H10°
whereS = 20Ts is used.

Note that since a 4-pulse non-coherent integration is adopted, the minimum
PRF is increased to

f, = 200H 4 = 800Hz (8.99)
and the total number of beamsns = 1600 . Consequently the unambiguous
range is
3H10® _
R, . >HB00 ~ 187.5Km (8.100)
(1.102)

Since the effective apiere isA, = 2.25m° , then byssuming an array effi-

ciency* = 0.8 the actual array size is

A= 20'—%5 = 281257 (8.102)

It follows that the physical aryasides arel.68mH1.68m . Thus, by selecting
the array element spacirty= 0.6+ amagr of size84H 84 elements satis-
fies the design requirements.

Since the field of view is lessah @2.54 , one can use element spacing as
large asd = 1.5+ without introducing any grating lobes into the array FOV.
Using this option yields an ayaf size34H 34 = 1156 elements. Hence, the
required power per element is less tigagW

8.8. MATLAB Program and Function Listings

This section contains listings afl MATLAB programs and functions used
in this chapter. Users are encouragerktan this code with different inputs in
order to enhance their understanding of the theory.
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Listing 8.1. MATLAB Program “fig8_5.m”"

% Use this code to produce figure 8.5a and 8.5b based on equation 8.34
clear all

close all

eps = 0.00001;

k = 2*pi;

theta = -pi : pi / 10791 : pi;

var = sin(theta);

nelements = 8;

d=1; % d=1;

num = sin((nelements * k * d * 0.5) .* var);

if(abs(num) <= eps)
num = eps;
end
den = sin((k* d * 0.5) .* var);
if(abs(den) <= eps)
den = eps;
end

pattern = abs(num ./ den);
maxval = max(pattern);
pattern = pattern ./ maxval;

figure(1)

plot(var,pattern)

xlabel('sine angle - dimensionless')
ylabel('Array pattern’)

grid

figure(2)
plot(var,20*log10(pattern))

axis ([-1 1 -60 0])

xlabel('sine angle - dimensionless')
ylabel('"Power pattern [dB]")

grid;

figure(3)

theta = theta +pi/2;
polar(theta,pattern)

title (‘Array pattern’)

figure(4)
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polardb(theta,pattern)
title (‘Power pattern [dB]")

Listing 8.2. MATLAB Program “fig8_7.m”"

% Use this program to reproduce Fig. 8.7 of text
clear all

close all

eps =0.00001;

N = 32;

rect(1:32) = 1;

ham = hamming(32);

han = hanning(32);

blk = blackman(32);

k3 = kaiser(32,3);

k6 = kaiser(32,6);

RECT = 20*log10(abs(fftshiftit(rect, 512)))./32 +eps);
HAM = 20*log10(abs(fftshift(fft(ham, 512)))./32 +eps);
HAN = 20*log10(abs(fftshift(fft(han, 512)))./32+eps);
BLK = 20*log10(abs(fftshift(fft(blk, 512)))./32+eps);
K6 = 20*log10(abs(fftshift(fft(k6, 512)))./32+eps);

x = linspace(-1,1,512);

figure

subplot(2,1,1)
plot(x,RECT,'k--',x,HAM,'k',x, HAN,'k-.");

xlabel('x")

ylabel('Window")

grid

axis tight

legend('Rectangular','Hamming’,’'Hanning’)
subplot(2,1,2)

plot(x,RECT,'k--',x,BLK,'k' x,K6,'K-.")

xlabel('x")

ylabel('Window")
legend('Rectangular','Blackman’,'Kasier at \beta = 6)
grid

axis tight

Listing 8.3. MATLAB Function “linear_array.m”
function [theta,patternr,patterng] =
linear_array(Nr,dolr,thetaO,winid,win,nbits);
% This function computes and returns the gain radiation pattern for a linear
array
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% It uses the FFT to compute the pattern
%%%%%%% %% *Frirrreak [NPY TS *xkxkkkirr 040606%%% %% %%
% Nr ==> number of elements; dolr ==> element spacing (d) in lambda units
divided by lambda
% thetaO ==> steering angle in degrees; winid ==> use winid negative for no
window, winid positive to enter your window of size(Nr)
% win is input window, NOTE that mimust be an NrX1 row vector; nbits
==> number of bits used in the phase shifters
% negative nbits mean no quantization is used
%%%%% % *rrxxerkk QUTPU TS *rxrkkkkiix 0406%0%%%%%%%%%
% theta ==> real-space angle; patternr ==> array radiation pattern in dBs
% patterng ==> array directive gain pattern in dBs
%%%9%0%%% %% %0 Y0Yp ****Frrrik Hkkkkk 0/406%6%%% %% %% %%
eps = 0.00001;
n = 0:Nr-1,
i = sqgrt(-1);
%if dolr is > 0.5 then; choose dol = 0.25 and compute new N
if(dolr <=0.5)
dol = dolr;
N = Nr;
else
ratio = ceil(dolr/.25);
N = Nr * ratio;
dol = 0.25;
end
% choose proper size ffgr minimum value choose 256
Nrx =10 * N;
nfft = 2”(ceil(log(Nrx)/log(2)));
if nfft < 256
nfft = 256;
end
% convert steering angle into radians; and compute the sine of angle
thetaO = thetaO *pi /180.;
sinthetaO = sin(theta0);
% determine and compute quantized steering angle
if nbits <0
phase0 = exp(i*2.0*pi .* n * dolr * sintheta0);
else
% compute and add the phase shift terms (WITH nbits quantization)
% Use formula thetal = (2*pi*n*dol) * sin(thetaO) divided into 2”*nbits
% and rounded to éhnearest qunatization level
levels = 2”nbits;
glevels = 2.0 * pi / levels; % compute quantization levels
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% compute the phase level and round it to the closest quantization level at
each array element
angleq = round(dolr .* n * sinthaD * levels) .* glevels; % vector of possi-
ble angles
phase0 = exp(i*angleq);
end
% generate array of elements with or without window
if winid <0
wr(1:Nr) = 1;
else
wr = win’;
end
% add the phase shift terms
wr = wr .* phase0;
% determine if interpolation is needed (i.e., N > Nr)
if N> Nr
w(1:N) =0;
w(1l:ratio:N) = wr(1:Nr);
else
W = Wr;
end
% compute the sine(theta) in real spahat corresponds to the FFT index
arg = [-nfft/2:(nfft/2)-1] ./ (nfft*dol);
idx = find(abs(arg) <= 1);
sinetheta = arg(idx);
theta = asin(sinetheta);
% convert angle into degrees
theta = theta .* (180.0 / pi);
% Compute fft of w (radiation pattern)
patternv = (abs(fftshift(fft(w,nfft)))). 2;
% convert radiationa pattern to dBs
patternr = 10*log10(patternv(idx) ./Nr + eps);
% Compute directive gain pattern
rbarr = 0.5 *sum(patternv(idx)) ./ (nfft * dol);
patterng = 10*log10(patternv(idx} eps) - 10*log10(rbarr + eps);
return

Listing 8.4. MATLAB Program “circular_array.m”

% Circular Array in the x-y plane

% Element is a short dipole antenna parallel to the z axis
% 2D Radiation Patterns fdixed phi or fixed theta

% dB polar plots uses the polardb.m file

% Last modified: July 13, 2003
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%
%%%% Element expression ne¢dde modified if different
%%%% than a short dipole antenna along the z axis

clear all

clf

% close all

% ==== Input Parameters ====

a=1,; % radius of the circle

N = 20; % numbeof Elements of the circular array

thetaO = 45; % main beam Theta direction

phi0 = 60; % main beam Phi direction

% Theta or Phi variations for the calculations of the far field pattern
Variations = 'Phi'; % Correct dections are 'Theta' or 'Phi'

phid = 60; % constant phi plane for theta variations
thetad = 45; % constant theta plane for phi variations
% ==== End of Input parameters section ====

dtr = pi/180; % conversion factors

rtd = 180/pi;

phiOr = phiO*dtr;
thetaOr = thetaO*dtr;

lambda = 1;
k = 2*pi/lambda;
ka = k*a; % Wavenumber times the radius
jka = j*ka;
I(1:N) = 1; % Elements excitation Amplitude and Phase
alpha(1:N) =0;
forn=1:N % Element positions Uniformly distributed along the circle
phin(n) = 2*pi*n/N;
end
switch Variations
case 'Theta'
phir = phid*dtr; % Pattern in a constant Phi plane
i=0;
for theta = 0.001:1:181
i =i+1;

thetar(i) = theta*dtr;
angled(i) = tieta; angler(i) = thetar(i);
Arrayfactor(i) = 0;
forn=1:N
Arrayfactor(i) =Arrayfactor(i) + I(n)*exp(j*alpha(n)) ...
* exp( jka*(sin(thetar(i))*cos(phir -phin(n))) ...
gi(sin(thetaOr )*cos(phiOr-phin(n))) );
end
Arrayfactor(i) = abs(Arrayfactor(i));
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Element(i) = abs(sin(thetar(i)+0*dtr)); % use the abs function to avoid

end
case 'Phi’
thetar = thetad*dtr; % Pattern in a constant Theta plane
i=0;
for phi = 0.001:1:361

i =i+1;
phir(i) = phi*dtr;
angled(i) = phi; angler(i) = phir(i);
Arrayfactor(i) = 0;
forn=1:N
Arrayfactor(i) =Arrayfactor(i) + I(n)*exp(j*alpha(n)) ...
* exp( jka*(sin(thetar )*cos(phir(i)-phin(n))) ...
Ji(sin(thetaOr)*cos(phiOr -phin(n))) );
end
Arrayfactor(i) = abs(Arrayfactor(i));
Element(i) = abs(sin(thetar+0*dtr)); % use the abs function to avoid
end
end
angler = angled*dtr;
Element = Element/max(Element);
Array = Arrayfactorimax(Arrayfactor);
ArraydB = 20*log10(Array);
EtotalR =(Element.*Arrayfactor)/max(Element.*Arrayfactor);
figure(1)
plot(angled,Array)
ylabel('Array pattern’)
grid
switch Variations
case 'Theta'
axis (0180011
% theta = theta +pi/2;
xlabel('Theta [Degrees]’)
title ('phi = 90”0 plane")
case 'Phi’
axis ((0360011])
xlabel('Phi [Degrees]’)
title ('Theta = 90”0 plane')
end
figure(2)
plot(angled,ArraydB)
%axis ([-1 1 -60 0])
ylabel('Power pattern [dB]")
grid;
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switch Variations
case 'Theta'

axis ([0 180-60 01])

xlabel('Theta [Degrees]’)

title ( 'phi = 90”0 plane’)

case 'Phi'
axis ([0 360 -60 0])

xlabel('Phi [Degrees]’)

title ('Theta = 90”0 plane')
end
figure(3)
polar(angler,Array)
title ('Array pattern’)
figure(4)
polardb(angler,Array)
title (‘Power pattern [dB]’)
% the plots provided above are for the array factor based on the circular
% array plots for other patterns such as those for the antenna element
% (Element)or the total pattern (Etotal based on Element*Arrayfactor) can
% also be displayed by the user as all these patterns are already computed
% above.
figure(10)
subplot(2,2,1)
polardb (angler,Element,'b-"); % rectangular plot of element pattern
title('Element normalized E field [dB]")
subplot(2,2,2)
polardb(angler,Array,'b-")
title(* Array Factor normalized [dB]")
subplot(2,2,3)
polardb(angler,EtotalR,'b-"); % polar plot
title('Total normalized E field [dB]’)
%%%%%%% %% %% %% %% % %% %% %% %% %%
%%6%%%%% %% %% %% %% % %% %% %% %% %%
function polardb(theta,rho,line_style)
% POLARDB Polar coordinate plot.
% POLARDB(THETA, RHO) makes a plot using polar coordinates of
% the angle THETA, in radians, versus the radius RHO in dB.
% The maximum value of RHO sltbnot exceed 1. It should not be
% normalized, however (i.e., its max. value may be less than 1).
% POLAR(THETA,RHO,S) uses the linestyle specified in string S.
% See PLOT for a description of legal linestyles.
if nargin < 1
error('Requires 2 or 3 input arguments.")

elseif nargin ==
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if isstr(rho)
line_style = rho;
rho = theta;
[mr,nr] = size(rho);
if mr ==
theta = 1:nr;
else
th = (L:mr)";
tieta = th(:,ones(1,nr));
end
else
line_style = 'auto’;
end
elseif nargin ==
line_style = 'auto’;
rho = theta;
[mr,nr] = size(rho);
if mr==
theta = 1:nr;
else
th = (1:mr)";
theta = th(:,ones(1,nr));
end
end
if isstr(theta) | isstr(rho)
error('Input arguments must be numeric.");
end
if ~isequal(size(theta),size(rho))
error('THETA and RHO must be the same size.");
end
% get hold state
cax = newplot;
next = lower(get(cax,'NextPlot");
hold_state = ishold;

% get x-axis text color sgrid is in same color

tc = get(cax,'xcolor";

Is = get(cax,'gridlinestyle’);

% Hold on to current Text defaults, reset them to the
% Axes' font attributes so tick marks use them.
fAngle = get(cax, 'BfaultTextFontAngle");

fName = get(cax, 'DefaultTextFontName);

fSize = get(cax, 'DefaultTextFontSize");

fWeight = get(cax, 'BfaultTextFontWeight');

© 2004 by Chapman & Hall/CRC CRC Press |



fUnits = get(cax, 'DefaultTextUnits");

set(cax, 'DefaultTextbthtAngle', get(cax, 'FontAngle'), ...
'‘DefaultTextFontName' get(cax, 'FontName), ...
'‘DefaultTextFontSize', get(cax, 'FontSize'"), ...
'‘DefaultTextFontWeightget(cax, 'FontWeight'), ...
'‘DefaultTextUnits','data’)

% make a radial grid
hold on;
maxrho =1,
hhh=plot([-maxrho -maxrho maxrho maxrho],[-maxrho maxrho maxrho -

maxrho]);
set(gca,'dataaspectratio’,fiL 1],'plotboxaspectratiomode’,'auto’)
v = [get(cax,'xlim") get(cax,'ylim")];
ticks = sunmdet(cax,'ytick")>=0);
delete(hhh);

% check radial limits and ticks
rmin = 0; rmax = v(4); rticks = max(ticks-1,2);
if rticks >5 % see if we can reduce the number

if rem(rticks,2) == 0
rticks = rticks/2;
elseif rem(rticks,3) == 0
rticks = rticks/3;
end
end

% only do grids if hold is off

if ~hold_state

% define a circle
th = 0:pi/50:2*pi;

Xunit = cos(th);
yunit = sin(th);

% now really force points ox/y axes to lie on them exactly
inds = 1:(length(th)-1)/4:length(th);
xunit(inds(2:2:4)) = zeros(2,1);
yunit(inds(1:2:5)) = zeros(3,1);

% plot background if necessary
if ~isstr(get(cax,'color")),

patch('xdata’,xunit*rmax,'ydata’,yunit*rmax, ...
‘edgecolatc,'facecolor',gdpca,'color’),...
‘handlevisibility','off");
end

% draw radial circles with dB ticks
€82 = cos(82*pi/180);
s82 = sin(82*pi/180);
rinc = (rmax-rmin)/rticks;
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tickdB=-10*(rticks-1); % the innermost tick dB value
for i=(rmin+rinc):rinc:rmax
hhh = plot(xunit*i,yunit*i,Is,'color',tc,' linewidth',1,...
'handlevisibility','off");
text((i+rinc/20)*c82*0,-(i+rinc/20)*s82, ...
[ " num2str(tickdB) ' dB','verticalalignment','bottom’,...
‘handlevisibility','off")
tickdB=tickdB+10;
end
set(hhh,'linestyle','-") % Make outer circle solid
% plot spokes
th = (1:6)*2*pi/12;
cst = cos(th); snt = sin(th);
cs = [-cst; cst];
sn = [-snt; snt];
plot(rmax*cs,rmax*sngl,'color',tc, linewidth',1,...
‘handlevisibility','off")
% annotate spokes in degrees
rt = 1.1*rmax;
for i = 1:length(th)
text(rt*cst(i),rt*snt(i),int2str(i*30),...
'horizontalalignment’,'center’, ...
‘handlevisibility','off");
if i == length(th)
loc = int2str(0);
else
loc = int2str(180+i*30);
end
text(-rt*c#(i),-rt*snt(i),loc,'horizontalalignment','center’,...
‘handlevisibility','off")
end
% set view to 2-D
view(2);
% set axis limits
axis(rmax*[-1 1 -1.15 1.15]);
end
% Reset defaults.
set(cax, 'DefaultTextFontAngle', fAngle , ...
'‘DefaultTextFontName', fName, ...
'‘DefaultTextFontSize', fSize, ...
'‘DefaultTextFontWeight', fWeight, ...
‘DefaultTextUnits', fUnits );
% Transfrom data to dB scale
rmin = 0; rmax=1;
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rinc = (rmax-rmin)/rticks;
rhodb=zeros(1,length(rho));
for i=1:length(rho)
if rho(i)==0
rhodb(i)=0;
else
rhodb(i)=rmax+2*log10(rho(i))*rinc;
end
if rhodb(i)<=0
rhodb(i)=0;
end
end
% transform data to Cartesian coordinates.
xx = rhodb.*cos(theta);
yy = rhodb.*sin(theta);
% plot data on top of grid
if strcmp(line_style,'auto’)
q = plot(xx,yy);
else
g = plotkx,yy,line_style);
end
if nargout > 0
hpol = q;
end
if ~hold_state
set(gca,'dataaspectratio’,[1 1)1jpxis off; setfax,'NextPlot',next);
end
set(get(gca,'xlabel'),'visible','on")
set(get(gca,'ylabel'),'visible','on")

Listing 8.5. MATLAB Function “rect_array.m”

function [pattern] =
rect_array(Nxr,Nyr,dolxr,dolyr,theta0,phiO,winid,win,nbits);
%%%%%%%%%% kkkkkkkkkkhkk kkhkkkkkkkkkkk %%%%%%%%%%

% This function computes the 3-D directive gain patterns for a planar array
% This function uses the fft2 to compute its output

%%%%%%%% *kkkkkkkkkkk INPU TS *kkkkkkkkkkk %%%%%%%%%

% Nxr ==> number of along x-axis; Nyr ==> number of elements along y-
axis

% dolxr ==> element spacing in x-dirdoin; dolyr ==> element spacing in y-
direction Both are in lambda units

% thetaO ==> elevation steering angle in degrees, phi0 ==> azimuth steering
angle in degrees
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% winid ==> window identifier; winid negative ==> no window ; winid posi-
tive ==> use window given by win
% win ==> input window function (2-D window) MUST be of size (Nxr X Nyr)
% nbits is the number of nbits used in phase quantization; nbits negative ==>
NO quantization
%%%%% k*kkkkkkkkkk OUTPUT S *kkkkkkkkkkkk %%%%%%%
% pattern ==> directive gain pattern
%%%%%%% kkkkkkkkkkkkk *kkkkkkkkkk %%%%%%%%%%%%
eps = 0.0001;
nx = 0:Nxr-1,
ny = 0:Nyr-1;
i = sqgrt(-1);
% check that window size is the same as the array size
[nw,mw] = size(win);
if winid >0
if nw ~= Nxr
fprintf(STOP == Window sizemust be the same as the array")
return
end
if mw ~= Nyr
fprintf(STOP == Window sizemust be the same as the array")
return
end
end

%if dol is > 0.5 then; choose dol = 0.5 and compute new N
if(dolxr <=0.5)

ratiox =1 ;

dolx = dolxr ;

NXx = NXxr ;
else

ratiox = ceil(dolxr/.5) ;
Nx = (Nxr-1) * ratiox + 1 ;

dolx =0.5;
end
if(dolyr <=0.5)
ratioy=1 ;
doly = dolyr ;
Ny = Nyr ;
else

ratioy = ceil(dolyr/.5) ;
Ny = (Nyr -1) * ratioy + 1 ;
doly=0.5;

end
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% choose proper size fft, for minimum value choose 256X256
Nrx =10 * Nx;

Nry = 10 * Ny;

nfftx = 2~(ceil(log(Nrx)/log(2)));

nffty = 2~(ceil(log(Nry)/log(2)));

if nfftx < 256
nfftx = 256;
end
if nffty < 256
nffty = 256;
end
% generate array of elements with or without window
if winid <0
array = ones(Nxr,Nyr);
else
array = win;
end

% convert steering angles (thetaO, phiO) to radians
thetaO = thetaO * pi / 180;
phiO = phi0 * pi / 180;
% convert steering angles (theta0O, phi0) to U-V sine-space
u0 = sin(theta0) * cos(phi0);
vO = sin(theta0) * sin(phi0);
% Use formula thetal = (2*pi*n*dol) *sin(theta0) divided into 2”m levels
% and rounded to the meest qunatization level
if nbits <0
phasem = exp(i*2*pi*dolx*u0 .* nx *ratiox);
phasen = exp(i*2*pi*doly*v0 .* ny *ratioy);
else
levels = 2”nbits;
glevels = 2.0*pi / levels¥% compute quantization levels
sinthetaq = round(dolx .* nx * ublevels * ratiox) .* glevels; % vector of
possible angles
sinphiqg = round(doly .* ny * vO *dvels *ratioy) .* glevels; % vector of pos-
sible angles
phasem = exp(i*sinthetaq);
phasen = exp(i*sinphiq);
end
% add the phase shift terms
array = array .* (transpose(phasem) * phasen);
% determine if interpolation is needed (i.e., N > Nr)
if (Nx > Nxr )| (Ny > Nyr)
for xloop =1 : Nxr
temprow = array(xloop, 3) ;
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w( (xloop-1)*ratiox+1, 1l:ratioy:Ny) = temprow ;
end
array = w;
else
w = array ;
% w(1:Nx, :) = array(1:N,);
end
% Compute array pattern
arrayfft = abs(fftshift(ff2(w,nfftx,nffty))).~2 ;
%compute [su,sv] matrix
U = [-nfftx/2:(nfftx/2)-1] ./(dolx*nfftx);
indexx = find(abs(U) <= 1);
U = U(indexx);
V = [-nffty/2:(nffty/2)-1] ./(doly*nffty);
indexy = find(abs(V) <= 1);
V = V(indexy);
%Normalize to generate gain patern
rbar=sum(sum(arrayfft(indexx,indexy) dolx/doly/4/nfftx/nffty;
arrayfft = arrayfft(indexx,indexy) ./rbar;
[SU,SV] = meshgrid(V,U);
indx = find((SU."2 + SV.A2) >1);
arrayfft(indx) = eps/10;
pattern = 10*log10(arrayfft +eps);
figure(1)
mesh(V,U,pattern);
xlabel('V")
ylabel('U");
zlabel('Gain pattern - dB")
figure(2)
contour(V,U,pattern)
grid
axis image
xlabel('V")
ylabel('U");
axis([-1 1 -1 1])
figure(3)
X0 = (Nx+1)/2 ;
y0 = (Ny+1)/2 ;
radiusx = dolx*((Nx-1)/2) ;
radiusy = doly*((Ny-1)/2) ;
[xxx, yyy]=find(abs(array)>eps);
XXX = XXX-XO ;
yyy =yyy-yo0 ;
plot(yyy*doly, xxx*dolx,'rx’)

© 2004 by Chapman & Hall/CRC CRC Press |



hold on

axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5 radiusx+0.5]);
grid

title(‘fantenna spacing pattern’);

xlabel('y - \lambda units')

ylabel('x - \lambda units')

[xxx0, yyyO]=find(abs(array)<=eps);

XXX0 = xxx0-x0 ;

yyyO =yyy0-y0 ;

plot(yyyO*doly, xxx0*dolx,'co")

axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5 radiusx+0.5]);
hold off

return

Listing 8.6. MATLAB Function “circ_array.m”

function [pattern,amn] =

circ_array(N,dolxr,dolyr,theta0,phiO,winid,win,nbits);

%%%%%%%%% kkkkkkkkkkhk hkkkkhkkkkkhkkkhkk %%%%%%%%%%%

% This function computes the 3-D directive gain patterns for a circular planar
array

% This function uses the fft2 to compitdeutput. It assumes that there are the
same number of elementsd) the major x- and y-axes

%%%%%%%% *kkkkkkkkkkk INPU TS *kkkkkkkkkkk %%%%%%%%

% N ==> number of elements along x-aixs or y-axis

% dolxr ==> element spacing in x-diréion; dolyr ==> element spacing in y-
direction. Both are in lambda units

% thetaO ==> elevation steering angle in degrees, phi0 ==> azimuth steering
angle in degrees

% This function uses the function (rec_to_circ) which computes the circular
array from a square

% array (of size NXN) using the notation developed by ALLEN,J.L.,"The The-
ory of Array Antennas

% (with Emphasis on Radar Application)" MIT-LL Technical Report No. 323,
July, 25 1965.

% winid ==> window identifier; winid negative ==> no window ; winid posi-
tive ==> use window given by win

% win ==> input window function (2-D window) MUST be of size (Nxr X Nyr)
% nbits is the number of nbits used in phase quantization; nbits negative ==>
NO quantization

%%%%%%% *kkkkkkkkkk OUTP UTS *kkkkkkkkkkkk %%%%%%%%

% amn ==> array of ones and zeros; ones indicate true element location on
the grid

% zeros mean no elements at that location; pattern ==> directive gain pattern
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%%%%%%%%% k*kkkkkkkkkkkkkk *kkkkkkkk %%%%%%%%%%%%
eps = 0.0001;
nx = 0:N-1;
ny = 0:N-1;
i = sqgrt(-1);
% check that window size is the same as the array size
[nw,mw] = size(win);
if winid >0
if mw ~=N
fprintf(STOP == Window size must be the same as the array’)
return
end
if nw~=N
fprintf(STOP == Window size must be the same as the array’)
return
end
end
%if dol is > 0.5 then; choose dol = 0.5 and compute new N
if(dolxr <=0.5)

ratiox =1 ;

dolx = dolxr ;

Nx=N;
else

ratiox = ceil(dolxr/.5) ;
Nx = (N-1) * ratiox + 1 ;

dolx =0.5;
end
if(dolyr <=0.5)
ratioy =1 ;
doly = dolyr ;
Ny =N;
else

ratioy = ceil(dolyr/.5);
Ny = (N-1)*ratioy + 1 ;
doly=0.5;
end
% choose proper size fft, for minimum value choose 256X256
Nrx =10 * Nx;
Nry = 10 * Ny;
nfftx = 2~(ceil(log(Nrx)/log(2)));
nffty = 2~(ceil(log(Nry)/log(2)));

if nfftx < 256
nfftx = 256;
end
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if nffty < 256

nffty = 256;
end
% generate array of elements with or without window
if winid <0
array = ones(N,N);
else
array = win;
end

% convert steering angles (thetaO, phiO) to radians
thetaO = thetaO * pi / 180;
phiO = phi0 * pi / 180;
% convert steering angles (thetaO, phi0) to U-V sine-space
u0 = sin(theta0) * cos(phi0);
vO = sin(theta0) * sin(phi0);
% Use formula thetal = (2*pi*n*dol) *sin(theta0) divided into 2”m levels
% and rounded to the aeest qunatization level
if nbits <0
phasem = exp(i*2*pi*dolx*u0 .* nx * ratiox);
phasen = exp(i*2*pi*doly*v0 .* ny * ratioy);
else
levels = 2”nbits;
glevels = 2.0*pi / levels¥% compute quantization levels
sinthetaq = round(dolx .* nx * ublevels * ratiox) .* glevels; % vector of
possible angles
sinphiqg = round(doly .* ny * vO *dvels *ratioy) .* glevels; % vector of pos-
sible angles
phasem = exp(i*sinthetaq);
phasen = exp(i*sinphiq);
end
% add the phase shift terms
array = array .* (transpose(phasem) * phasen) ;

% determine if interpolation is needed (i.e., N > Nr)
if (Nx>N)| (Ny > N)
forxloop=1:N
temprow = array(xloop, 3) ;
w( (xloop-1)*ratiox+1, 1l:ratioy:Ny) = temprow ;
end
array = w;
else
w(1:Nx, :) = array(1:N,:);
end
% Convert rectangular array into circular using function rec_to_circ
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[m,n] = size(w) ;
NC = max(m,n); % Use Allens algorithm

if Nx == Ny
temp_array = w;
else

midpoint = (NC-1)/2 +1 ;
midwm = (m-1)/2 ;
midwn = (n-1)/2 ;
temp_array = zeros(NC,NC);
temp_array(midpoint-midwm:midpoint+midwm, midpoint-midwn:mid-
point+midwn) = w ;
end
amn = rec_to_circ(NC); % muste rectangular array (Nx=Ny)
amn = temp_array .* amn ;

% Compute array pattern

arrayfft = abs(fftshift(fft2&mn,nfftx, nffty))).”2 ;
%compute [su,sv] matrix

U = [-nfftx/2:(nfftx/2)-1] ./(dolx*nfftx);
indexx = find(abs(U) <= 1);

U = U(indexx);

V = [-nffty/2:(nffty/2)-1] ./(doly*nffty);
indexy = find(abs(V) <= 1);

V = V(indexy);

[SU,SV] = meshgrid(V,U);

indx = find((SU."2 + SV."2) >1);
arrayfft(indx) = eps/10;

%Normalize to generate gain pattern
rbar=sum(sum(arrayfft(iindexx,indexy) dolx/doly/4/nfftx/nffty;
arrayfft = arrayfft(indexx,indexy) ./rbar;
[SU,SV] = meshgrid(V,U);

indx = find((SU."2 + SV."2) >1);
arrayfft(indx) = eps/10;

pattern = 10*log10(arrayfft +eps);
figure(1)

mesh(V,U,pattern);

xlabel('V")

ylabel('U");

zlabel('Gain pattern - dB")

figure(2)

contour(V,U,pattern)

axis image

grid

xlabel('V")
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ylabel('U");

axis([-1 1 -1 1])

figure(3)

X0 = (NC+1)/2;

y0 = (NC+1)/2;

radiusx = dolx*((NC-1)/2 + 0.05/dolx) ;

radiusy = doly*((NC-1)/2 + 0.05/dolx) ;

theta=5 ;

[xxx, yyy]=find(abs(amn)>0);

XXX = XXX-XO ;

yyy =yyy-yo ;

plot(yyy*doly, xxx*dolx,'rx")

axis equal

hold on

axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5 radiusx+0.5]);
grid

title(‘fantenna spacing pattern’);

xlabel('y - \lambda units')

ylabel('x - \lambda units')

[X, y]= makeellip( 0, O, rdiusx, radiusy, theta) ;

plot(y, X) ;

axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5 radiusx+0.5]);
[xxx0, yyyO]=find(abs(amn)<=0);

XXX0 = xxx0-x0 ;

yyyO = yyy0-y0 ;

plot(yyyO*doly, xxx0*dolx,'co")

axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5 radiusx+0.5]);
axis equal

hold off ;

return

Listing 8.7. MATLAB Function “rec_to_circ.m”

function amn = rec_to_circ(N)
midpoint = (N-1)/2 + 1;
amn = zeros(N);
arrayl(midpoint,midpoint) = N;
x0 = midpoint;
y0 = x0;
fori=1:N

forj=1:N

distance(i,j) = sqrt((x0-i)"2 + (y0-j)*2);

end

end
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idx = find(distance < (N-1)/2 + .4);
amn (idx) = 1;
return

Listing 8.8. MATLAB Program “fig8_52.m”

%Use this program to reproduce Fig. 8.40. Based on Eq. (8.87)
clear all

close all

d = 0.6; % element spacing in lambda units
betadeg = linspace(0,22.5,1000);

beta = betadeg .*pi ./180;

den = pi*d .* sin(beta);

numarg = den;

num = sin(numarg);

Iscan = (num./den)."-4;

LSCAN = 10*log10(Iscan+eps);

figure (1)

plot(betadeg,LSCAN)

xlabel('scan angle in degrees')
ylabel('Scan loss in dB')

grid

title('Element spacing is d = 0.6 \lambda ")
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Chapter 9 Target Tracking

Single Target Tracking

Tracking radar systems are used teasure the target’s relative position in
range, azimuth angle, el#on angle, and velocity. Then, by using and keep-
ing track of these measured parametkesradar can predict their future val-
ues. Target tracking is important to military radars as well as to most civilian
radars. In military radars, tracking is responsible for fire control and missile
guidance; in fact, missile guidance is almost impossible without proper target
tracking. Commercial radar systems, such as civilian airport traffic control
radars, may utilize tracking as a means of controlling incoming and departing
airplanes.

Tracking techniques can be divided into range/velocity tracking and angle
tracking. It is also customary to distinguish between continuous single-target
tracking radars and multi-targetatk-while-scan (TW}g radars. Tracking
radars utilize pencil beam (very narroantenna patterns. It is for this reason
that a separate search radar is neddef@cilitate target acquisition by the
tracker. Still, the tracking radar h&s search the volume where the target's
presence is suspected. Fois purpose, tracking radanse special search pat-
terns, such as helical, T.V. raster, tdusand spiral patterns, to name a few.

9.1. Angle Tracking

Angle tracking is concerned with igerating continuous measurements of
the target's angular position in the mrith and elevation coordinates. The
accuracy of early generation angladking radars depended heavily on the
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size of the pencil beam employed. Most modern radar systems achieve very
fine angular measurements by utilizing monopulse tracking techniques.

Tracking radars use the angular deviation from the antenna main axis of the
target within the beam to generatearor signal. This dgation is normally
measured from the antenna’s main aXike resultant error signal describes
how much the target has deviated frttme beam main axis. Then, the beam
position is continuously changed in an attempt to produce a zero error signal. If
the radar beam is normal to the targeéaximum gain), then the target angular
position would be the same as that af ieam. In practice, this is rarely the
case.

In order to be able to quickly change the beam position, the error signal
needs to be a linear function of the deviation angle. It can be shown that this
condition requires the beam’s axis to be squinted by some angle (squint angle)
off the antenna’s main axis.

9.1.1. Sequential Lobing

Sequential lobing is one of the first tracking techniques that was utilized by
the early generation of radar systems. Sequential lobing is often referred to as
lobe switching or sequential switchinig.has a tracking accuracy that is lim-
ited by the pencil beamwidth used andtbg noise caused by either mechani-
cal or electronic switchip mechanisms. However, it is very simple to
implement. The pencil beam usedsiequential lobing must be symmetrical
(equal azimuth and elevation beamwidths).

Tracking is achieved (in one coordinate) by continuously switching the pen-
cil beam between two pre-determinesgmmetrical positions around the
antenna’s Line of Sight (LOS) axis. Hence, the name sequential lobing is
adopted. The LOS is called the radar tiaglaxis, as illustrated in Fig. 9.1.

As the beam is switched between th® positions, the radar measures the
returned signal levels. The differenoetween the two measured signal levels
is used to compute the angular errgnsil. For example, when the target is
tracked on the tracking axis, as the casEig. 9.1a, the voltage difference is
zero. However, when the target is oféttracking axis, as in Fig. 9.1b, a non-
zero error signal is produced. The sa@frihe voltage diffeznce determines the
direction in which the antenna must be moved. Keep in mind, the goal here is
to make the voltage difference be equal to zero.

In order to obtain the angular error in the orthogonal coordinate, two more
switching positions are required forathcoordinate. Thus, tracking in two
coordinates can be accomplished by gsincluster of four antennas (two for
each coordinate) or by audlter of five antennas. the latter case, the middle
antenna is used to transmit, whitee other four are used to receive.
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beam A beam B
return return

beam A
return beam B

‘ ‘ return

(b)

Figure 9.1. Sequential lobing. (aJarget is located on track axis.
(b) Target is off track axis.

9.1.2. Conical Scan

Conical scan is a logical extensionsgfquential lobing where, in this case,
the antenna is continuoustgtated at an offset angle, or has a feed that is
rotated about the antenna’s main axis. Fig. 9.2 shows a typical conical scan
beam. The beam scan freqog, in radians per second, is denoted as . The
angle between the antenna’s LOS andrttation axis is the squint angle
The antenna’s beam positids continuously changed so that the target will
always be on the tracking axis.

Fig. 9.3 shows a simplified conical scan radar system. The envelope detector
is used to extract thettgn signal amplitude and the Automatic Gain Control
(AGC) tries to hold theeaceiver output to a constant value. Since the AGC
operates on large time constants, it can hold the average signal level constant
and still preserve the signal rapid scan variation. It follows that the tracking
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error signals (azimuth andesfation) are functions dlie target's RCS; they are
functions of its angular position off the main beam axis.

In order to illustrate howonical scan tracking is hieved, we will first con-
sider the case shown in Fig. 9.4. In tbése, as the antenna rotates around the
tracking axis all target returns hattee same amplitude (zero error signal).
Thus, no further action is required.

rotating
feed

Figure 9.2. Conical scan beam.

> Az & El
senvo Am servo moto,
g drive

elevation transmittel M
error g
detector |
) — envelope| | Mixer& | |
— detector IF Amp. I |
AGC
azimuth ~ scan motor &

error [ scan referenc
detector

Figure 9.3. Simplified canical scan radar system.
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time

Figure 9.4. Error signal producedwhen the target is on the tracking
axis for conical scan.

Next, consider the case depicted by Big. Here, when thbeam is at posi-
tion B, returns from the target will have maximum amplitude, and when the
antenna is at position A, returns from the target have minimum amplitude.
Between those two positions, the amplitude of the target returns will vary
between the maximum value at position B, and the minimum value at position
A. In other words, Amplitude Modulation (AM) exists on top of the returned
signal. This AM envelope corresponts the relative position of the target
within the beam. Thus, the extracted Advivelope can be used to derive a
servo-control system in order to pdit the target on the tracking axis.

Now, let us derive the error signal egpsion that is used to drive the servo-
control system. Consider the top view of the beam axis location shown in Fig.
9.6. Assume that = 0 is the starting beam position. The locations for maxi-
mum and minimum target returns are aldentified. The quantitys defines
the distance between the target locatiod the antenna’s tracking axis. It fol-
lows that the azimuth and elevatiemors are, respectively, given by

% = %in " 9.1)
% = %os " 9.2)

These are the error signals that the radas to align the tracking axis on the
target.
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Figure 9.5. Error signal produced when the target is off the
tracking axis for conical scan.

/ .
 maximum target
return

target——
tracking
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return
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Figure 9.6. Top view of beam axis for a complete scan.
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The AM signalE#t $ can then be written as
E# $= Ejcos# jt—" $= E %cos t+Ey%sin! gt (9.3)

whereE, is a constant called the errapsl,! . is the scan frequency in radi-

ans per seconds, afid is the angle already defined. The scan reference is the
signal that the radar generates to keep track of the antenna’s position around a
complete path (scan). Tledevation error signal is obtained by mixing the sig-

nal E#t $ with cos It (the reference signal) followed by low pass filtering.
More precisely,

Eft $= Ejcost t—" ®osl t = - %EOCOS' +%cos#2! SL="9% (99
and after low pass filtering we get
_ 1 .
Ef $= - éEocos (9.5)

Negative elevation error drives tlmtenna beam downward, while positive
elevation error drives the antenna beapward. Similarly, the azimuth error

signal is obtained by multiplying# $ bgin !t  followed by low pass filter-
ing. It follows that

E# $= %Eosin" (9.6)

The antenna scan rate is limitedthg scanning mechanism (mechanical or
electronic), where electronic scanningmsich faster and more accurate than
mechanical scan. In either case, the ragads at least four target returns to be
able to determine the target azimutid &levation coordinates (two returns per
coordinate). Therefore, the maximum congedn rate is equal to one fourth of
the PRF. Rates as high as 30 scans per seconds are commonly used.

The conical scan squint angle needs to be large enough so that a good error
signal can be measured. However, due to the squint angle, the antenna gain in
the direction of the tracking axis is less than maximum. Thus, when the target
is in track (located on #htracking axis), the SNR #ers a loss equal to the
drop in the antenna gain. This loss is known as the squint or crossover loss.
The squint angle is normally chosench that the two-way (transmit and
receive) crossover loss is less than a few decibels.

9.2. Amplitude Comparison Monopulse

Amplitude comparison monopulse tracking is similar to lobing in the sense
that four squinted beams are required to measure the target’s angular position.
The difference is that the four beame generated simultaneously rather than
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sequentially. For this purpose, a speeiatenna feed is utilized such that the
four beams are produced using a single pulse, hence the nhame “monopulse.”
Additionally, monopulse #cking is more accurate and is not susceptible to
lobing anomalies, such as AM jamming and gain inversion ECM. Finally, in
sequential and conical lobing, variatidnghe radar echoes degrade the track-
ing accuracy; however, this is not aplem for monopulse techniques since a
single pulse is used to produce the error signals. Monopulse tracking radars can
employ both antenna reflectorswasll as phased array antennas.

Fig. 9.7 show a typical monopulse anteipagétern. The four beams A, B, C,
and D represent the four conical sdaam positions. Four feeds, mainly
horns, are used to produce the monopulse antenna pattern. Amplitude
monopulse processing requires that the four signals have the same phase and
different amplitudes.

Figure 9.7. Monopuse antenna pattern.

A good way to explain the concept of amplitude monopulse technique is to
represent the target echo signal byraleicentered at the antenna’s tracking
axis, as illustrated by Fig. 9.8a, whethe four quadrants represent the four
beams. In this case, tlieur horns receive an equal amount of energy, which
indicates that the target is located the antenna’s tracking axis. However,
when the target is off the tracking axisgs. 9.8b-d), an imbalance of energy
occurs in the different beams. This infdyace of energy is used to generate an
error signal that drives the servo-control system. Monopulse processing con-
sists of computing a suf&  and twdference' (azimuth and elevation)
antenna patterns. Then by dividing a  channel voltage By the  channel volt-
age, the angle of the signal can be determined.

The radar continuously compares tamplitudes and phases of all beam
returns to sense the amount of tardisplacement off the tracking axis. It is
critical that the phases of the four sidg be constant in both transmit and
receive modes. For this gaose, either digital netwwks or microwave compar-
ator circuitry are utilized. Fig. 9.9 shows a block diagram for a typical micro-
wave comparator, where the three recesteannels are declared as the sum
channel, elevation angle differenceanhel, and azimuth angle difference
channel.
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Figure 9.8. lllustration of monopulse concept. (a) Target is on the
tracking axis. (b) - (d) Target is off the tracking axis.
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\><0 el (A+B)-(D+C) elevation error
(A+D) \
o az (AD)X(B+C)  4zimuth error
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j&)
y & (+D)BHC) sum channel
(B+C)
c —

Figure 9.9. Monopulse comparator.

To generate the elevation differermeam, one can use the beam difference
(A-D) or (B-C). However, by first forming the sum patterns (A+B) and (D+C)
and then computing the difference (A+g)+C), we achieve a stronger eleva-
tion difference signal, ,; . Similarly, by first forming the sum patterns (A+D)
and (B+C) and then computing the difference (AHB)-C), a stronger azi-
muth difference signal, ,, , is produced.

A simplified monopulse radar block diagram is shown in Fig. 9.10. The sum
channel is used for both transmit areteive. In the receive mode the sum
channel provides the phase referencetifie other two difference channels.
Range measurements can also be oldairen the sum channel. In order to
illustrate how the sum and differenceteima patterns arformed, we will
assume asin" ("  single element antepadtern and squint angle, . The
sum signal in one coordinate (azimuth or elevation) is then given by

sin#’ " o$_sin# +" (%

&#' $=
$ #I = 0$ #I +" O$

(9.7)
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Figure 9.10. Simplified amplitude com@rison monopulse radar block diagram.



and a difference signal in the same coordinate is

sin# "' ¢$ sin# +" ;$

'Y $= —
M

(9.8)

MATLAB Function “mono_pulse.m”

The function “mono_pulse.m” implements Egs. (9.7) and (9.8). Its output
includes plots of the sum and difference antenna patterns as well as the differ-
ence-to-sum ratio. It is given in Lisgr9.1 in Section 9.11. The syntax is as
follows:

mono_pulse (phi0)

wherephiOis the squint angle in radians.

Fig. 9.11 (a-c) shows the corresponding plots for the sum and difference pat-
terns for" ; = 0.15 radians. Fig. 9.12 (a-c) is similar to Fig. 9.11, except in
this case'; = 0.75 radians. Clearly, them and difference patterns depend
heavily on the squint angle. Using a relatively small squint angle produces a
better sum pattern than that resulting from a larger angle. Additionally, the dif-
ference pattern slope is steeper for the small squint angle.

/I
TN
| /)

/// \
BEEERNY, \

-4 -3 -2 -1 0 1 2 3 4
Angle - radians

Squinted patterns

Figure 9.11a. Two squinted pattes. Squint angle is" ; = 0.15 radians.
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Figure 9.11b. Sum patterncorresponding to Fig. 9.11a.
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Figure 9.11c. Difference pattern corresponding to Fig. 9.11a.
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Figure 9.12a. Two squinted pattens. Squint angle is" ; = 0.75 radians.
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Figure 9.12b. Sum pattern corresponding to Fig. 9.12a.
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Figure 9.12c. Difference patterrcorresponding to Fig. 9.12a.

The difference channels give us adigation of whether the target is on or
off the tracking axis. However, this signal amplitude depends not only on the
target angular position, but also on the target's range and RCS. For this reason
the ratio' & (delta over sum) can bsed to accurately estimate the error
angle that only depends on the target's angular position.

Let us now address how the error sigreals computed. First, consider the
azimuth error signal. Defe the signal$s;, an§, as

S, = A+D (9.9)
S, =B+C (9.10)

The sum signal is&= S;+S, , and the azimuth difference signal is
"~ S-S, If S)) S,, then both channels have the same pltdse (since
the sum channel is used for phasenafee). Alternatively, ifS; + S, , then the
two channels ar&d80* out of phase. $ananalysis can be done for the ele-
vation channel, where in this caS¢ = A+ B a&d=D+C . Thus, the
error signal output is

% = il Cos, (9.11)
&

where, is the phase angle between the sum and difference channels and it is
equal to0* o0rl80* . More precisely, jf = 0, then the target is on the track-
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ing axis; otherwise it is off the tracking axis. Fig. 9.13 (a,b) shows a plot for the
ratio' & for the monopulse radar wieosum and difference patterns are in
Figs. 9.11 and 9.12.

0.8

voltage gain

.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Angle - radians

Figure 9.13a. Difference-to-sum rdo corresponding to Fig. 9.11a.

voltage gain

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Angle - radians

Figure 9.13b. Difference-to-sunratio corresponding to Fig. 9.12a.
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9.3. Phase Comparison Monopulse

Phase comparison monopulse is similar to amplitude comparison monopulse
in the sense that the target angutaordinates are extractém one sum and
two difference channels. The main difface is that the four signals produced
in amplitude comparison monopulse will have similar phases but different
amplitudes; however, in phase comparison monopulse the signals have the
same amplitude and different phasBbase comparisomonopulse tracking
radars use a minimum of a two-elememagrantenna for each coordinate (azi-
muth and elevation), asubtrated in Fig. 9.14. Ahase error signal (for each
coordinate) is computed from the phaterence between the signals gener-
ated in the antenna elements.

antenna
axis

target

Figure 9.14. Single coordinate phase comparison monopulse antenna.

Consider Fig. 9.14; since the angle isequalto (2 , it follows that
R = R+197 _o8pcosls 422 (9.12)
1 [0 =277 0 '
2
= R2+g —dRsin"
4

and sinced « R we can use the binomial series expansion to get

19,9 w2
R; 3 R/1+ 2Rsm 0 (9.13)
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Similarly,
R, 3 Rl1-9 gin" 2 (9.14)
257 oR 0 :

The phase difference between thve elements is then given by

4 = %ml—Rz $= %‘dsin" (9.15)
where5 is the wavelength. The phase differefice  is used to determine the
angular target location. Note that4f = 0 , then the target would be on the
antenna’s main axis. The problem with this phase comparison monopulse tech-
nique is that it is quite difficult to maintain a stable measurement of the off
boresight angl¢ , which causes seripagformance degradation. This prob-
lem can be overcome by implementing a phase comparison monopulse system
as illustrated in Fig. 9.15.

The (single coordinate) sum and difface signals are, respectively, given
by

&#' $= S, +S, (9.16)

'# $= S-S, (9.17)

where theS; and, are the signaldhie two elements. Now, sincg  and
S, have similar amplitude and are @ifént in phase by , we can write

S = %e’“ (9.18)

It follows that

"% $=SH-e'$ (9.19)

&

Figure 9.15. Single coordinate phase monopulse antenna,
with sum and difference channels.
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&#' $= S;#l + e*s (9.20)

The phase error signal is compufean the ratio' & . More precisely,

. —j4
S

R, [ )
8 110 = Jtan/20 (9.21)

which is purely imaginary. The modulus of the error signal is then given by

o
2l tan; 2 (9.22)
This kind of phase comparison monopuiseker is often called the half-angle

tracker.

9.4. Range Tracking

Target range is measured by estimating the round-trip delay of the transmit-
ted pulses. The process of continuously estimating the range of a moving target
is known as range tracking. Since the range to a moving target is changing with
time, the range tracker must be constaatljusted to keep the target locked in
range. This can be accomplished usingplit gate system, where two range
gates (early and late) are utilized. The concept of split gate tracking is illus-
trated in Fig. 9.16, whemesketch of a typical pulsed radar echo is shown in the
figure. The early gate opens at the @ptited starting time of the radar echo
and lasts for half its duration. The latdeggapens at the center and closes at the
end of the echo signal. For this purppgood estimates of the echo duration
and the pulse center time must be regbtb the range tracker so that the early
and late gates can be placed propetythe start and center times of the
expected echo. This reporting process is widely known as the “designation pro-
cess.”

The early gate produces positive voltage output while the late gate produces
negative voltage output. The outputs of the early and late gates are subtracted,
and the difference signal is fed into ategrator to generate an error signal. If
both gates are placed properly in time, the integrator output will be equal to
zero. Alternatively, when the gates ai timed properly, the integrator output
is not zero, which gives an indication that the gates must be moved in time, left
or right depending on the sign of the integrator output.
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Figure 9.16. lllustration of split-range gate.
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Multiple Target Tracking

Track-while-scan radar systems sample each target once per scan interval,
and use sophisticated smoothing and prediction filters to estimate the target
parameters between scans. To this ¢mel Kalman filter and the Alpha-Beta-
Gamma (67 ) filter are commonly used. €@na particular target is detected,
the radar may transmit up to a few pulses to verify the target parameters, before
it establishes a track filer that target. Target pdion, velocity, and accelera-
tion comprise the major components of the data maintained by a track file.

The principles of recursive trackirend prediction filters are presented in
this part. First, an over@w of state representatidar Linear Time Invariant
(LTI) systems is discussed. Then, second and third order one-dimensional
fixed gain polynomial filter trackers adeveloped. These filters are, respec-
tively, known as the6 ané7 filte(also known as the g-h and g-h-k fil-
ters). Finally, the equations for ardimensional multi-st&t Kalman filter are
introduced and analyzed. As a mattemotation, small case letters, with an
underbar, are used.

9.5. Track-While-Scan (TWS)

Modern radar systems are designed to perform multi-function operations,
such as detection, trackinand discrimination. With the aid of sophisticated
computer systems, multi-function radar® capable of simultaneously track-
ing many targets. In this case, eadtyeh is sampled once (mainly range and
angular position) during a dwell interval (scan). Then, by using smoothing and
prediction techniques future samples can be estimated. Radar systems that can
perform multi-tasking and multi-target tracking are known as Track-While-
Scan (TWS) radars.

Once a TWS radar detects a new targatiitates a separate track file for
that detection; this enswrehat sequential detectiofrem that target are pro-
cessed together to estimate the target’s future parameters. Position, velocity,
and acceleration comprise the main cormgrds of the track file. Typically, at
least one other confirmation detection {fyedetection) is required before the
track file is established.

Unlike single target tracking systenT8/\/'S radars must decide whether each
detection (observation) belongs to a new target or belongs to a target that has
been detected in earlier scans. Andtider to accomplish this task, TWS radar
systems utilize correlation and assticia algorithms. In the correlation pro-
cess each new detection is correlated waittprevious detections in order to
avoid establishing redundant tracksalfertain detectiooorrelates with more
than one track, then agdetermined set of association rules is exercised so
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that the detection is assigned to gheper track. A simplified TWS data pro-
cessing block diagram is shown in Fig. 9.17.

Choosing a suitable tracking coordinate system is the first problem a TWS
radar has to confront. It is desirable thdixed reference of an inertial coordi-
nate system be adopted. The radar measents consist of target range, veloc-
ity, azimuth angle, and elevation angldhe TWS system places a gate around
the target position and attempts to track the signal within this gate. The gate
dimensions are normallgzimuth, elevation, and mge. Because of the uncer-
tainty associated with the exact target position during the initial detections, a
gate has to be large enough so thagets do not move appreciably from scan
to scan; more precisely, targets must stay within the gate boundary during suc-
cessive scans. After the target hagrb observed for several scans the size of
the gate is reduced considerably.

]
es;ﬁz“?;dgT > pre-processi &srr;:ggitstiir;% dfe||etitntg ﬁ|et5
coordinates gating | v ; of lost targets
correlation /

» L
| association

A \

establish
track files

L ]

Figure. 9.17. Simplified block diagram of TWS data processing.

Gating is used to decide whether an observation is assigned to an existing
track file, or to a new track file (nedetection). Gating algorithms are nor-
mally based on computing a statistieator distance between a measured and
an estimated radar observation. For eaelk file, an upper bound for this
error distance is normally set. If teemputed differencéor a certain radar
observation is less than the maximum etistance of a given track file, then
the observation is assigned to that track.

All observations that have an erdistance less than the maximum distance
of a given track are said tmrrelate with that track-or each observation that
does not correlate withng existing tracks, a new track file is established
accordingly. Since new detections (measuents) are compared to all existing
track files, a track file may then coratd with no observations or with one or
more observations. The correlation besén observations and all existing track
files is identified using a correlatiomatrix. Rows of the correlation matrix
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represent radar observations, while oohs represent track files. In cases
where several observations correlate witbre than one track file, a set of pre-
determined association rules can be utilized so that a single observation is
assigned to a single track file.

9.6. State Variable Representation of an LTI System

A linear time invariant system (continuous or discrete) can be described
mathematically using threeriables. They are the input, output, and the state
variables. In this representation, dfiyl system has observable or measurable
objects (abstracts). For exarapin the case of a radar system, range may be an
object measured or observed by the radaiking filter. States can be derived
in many different ways. For the scopetbis book, states of an object or an
abstract are the componewfsthe vector that contas the object and its time
derivatives. For example, a third-order one-dimensional (in this case range)
state vector representingnge can be given by

R
X=1R (9.23)
R

where R, R, andR are, respectivetile range measurement, range rate
(velocity), and acceleratiof.he state vector defined in Eq. (9.23) can be rep-
resentative of continuous or discretates. In this book, the emphasis is on
discrete time representation, since m@tar signal processing is executed
using digital computers. For this purpose, an n-dimensional state vector has the
following form:

t
X=X, %8 %% 8 X, % 8] (9.24)

where the superscript indicatibe transpose operation.

The LTI system of interest can be repented using the following state equa-
tions:

X#t $= A x#t $+ Bwit $ (9.25)

y# $= C x#$+ Dw# $ (9.26)

where:x is the value of the9 1  statector;y is the value of the91  out-
put vector;w is the value of th@9 1 input vectér; isredin maBix;
is ann9m matrix;C isp9n matrix; and is gn9m matrix. The
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homogeneous solution (i.ey = 0

initial condition x#0 $ at timet, , has the form

x#$= H-t M-, $

The matrix:
and is equal to

D -ty $=

At—t, $
e t

Eq. (9.28) can be expressed in series format as

. _ AHS _
._#t—to%[ozo—e -

Example:

2

2t
| +At+A z+8

) to this linear system, assuming known

(9.27)

is known as the state transition matrix, or fundamental matrix,

(9.28)

(9.29)

Compute the state transition matrix for an LTI system when

Solution:

A=|0 1
~0.5-1

}

The state transition matrix can be computed using Eq. (9.29). For this pur-

pose, comput@\2 and’8 . It follows
1
A2 = 2 -1 A2
A 11 A
2 2
Therefore,
1+0t—%-+5-+8
A 20 3
- 12 13
-t =t
1. .2 4
—St+ e+
0 2t 20 3 8

O+t——+=—+8

1

o NI

t2

2!

1.2

=t

2
Ty

13
2t

3!

3
Lo,
3!

8

The state transition matrix has the following properties (the proof is left as

an exercise):

1. Derivative property
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_it:_;/;lt—t0 $= A #-1,$ (9.30)

2. ldentity property

-t $= #0$= | (9.31)
3. Initial value property
= #t—to% =A (9.32)
=t— B
t=t,
4. Transition property
DA, -ty $= -t S -1 S V>t >t (9.33)
5. Inverse property
-1
- 8= A -t S (9.39)
6. Separation property
-1
D - $= S H# S (9.35)

The general solution to the system defined in Eq. (9.25) can be written as
t
X $= #—ty Sty B+ @#—?3_3w#?$i ? (9.36)
t0
The first term of the right-hand side of Eq. (9.36) represents the contribution
from the system response to the initial condition. The second term is the contri-

bution due to the driving forcey . By combining Egs. (9.26) and (9.36) an
expression for the output is computed as

t
y# $= QeM_t“$>_<#tO$+ @eé#t_?ss—DAM—?$@#?$l ? (9.37)
to
Note that the system impulse response is eqt@le@ct)B— DA# $

The difference equations describing a discrete time system, equivalent to
Egs. (9.25) and (9.26), are

xth+1$= A x#n$ Bw#n$ (9.38)

y#n$= C x#n$+ Dw#in $ (9.39)
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wheren defines the discrete tim8  afd is the sampling interval. All other
vectors and matrices were defined earlier. The homogeneous solution to the
system defined in Eq. (9.38), with initial conditig#in, $ , is

xt#n$= A" x#n, $ (9.40)
In this case the state transition matrix isrein matrix given by
LDy $= Hh-ng$= A" (9.41)
The following is the list of properties associated with the discrete transition
matrix
N+ 1-np$= Al - $ (9.42)
DNy $= #H0$= | (9.43)
D +1l-ng$= #LS= A (9.44)
D, —ng$= i, —ny S, -0y $ (9.45)
D #ng—ny $= _:_l#nl—n0$ (9.46)
Ly —ng$= i, $: N, $ (0.47)

The solution to the general case (i.e., non-homogeneous system) is given by
n-1
Xn$= -ny Iy S < A -m-1Bw#m$ (9.48)

m=rn,
It follows that the output is given by

n-1
yin$= C: —ny §#y $ < C @ M —m-1Bw#mE Dwin$ (9.49)
m=ry
where the system impulse response is given by
n-1
hin$= « C : #—m-1BAMS DANS (9.50)
m=ry
Taking the Z-transform for Eqgs. (9.38) and (9.39) yields
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2x#z$= Axttz$+ BwHz S+ zxH0 $ (9.51)
y#z $= Cx#z$+ Dw#z $ (9.52)

Manipulating Egs. (9.51) and (9.52) yields
x#z$= Bl— A CBwHz$ Bzl — A Czx0 $ (9.53)
y#2$= ECBzI— ACTB + D vz $+ CBzl— ACTzxi0 $ (9.54)

It follows that the state transition matrix is
. #$= 7z81-AT =B-7'ACT (9.55)

and the system impulse response in the z-domain is

h#z$= C. # $'B+D (9.56)

9.7. The LTI System of Interest

For the purpose of establishing tharfrework necessary for the Kalman fil-
ter development, consider the LTI st shown in Fig. 9.18. This system
(which is a special case of the systeraatibed in the previous section) can be
described by the following first order differential vector equations

Xt $= A xS utt $ (9.57)
y#$= G xS v $ (9.58)

wherey is the observable part of the eys{i.e., output)u is a driving force,
andv is the measurement noise. Thérites A andG  vary depending on the
system. The noise observatign is a&ssd to be uncorrelated. If the initial
condition vector isx#, $ , then from Eqg. (9.36) we get

t
X $= #t—t, Sty B @#—?@#?EBI ? (9.59)
to

The object (abstract) is observed only at discrete times determined by the
system. These observation times areated by discrete timaT where is
the sampling interval. Using the same notation adopted in the previous section,
the discrete time representatiai€qgs. (9.57) and (9.58) are

x#n$= A x#tn—1$+uin $ (9.60)
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yin$= G x#n$rvin$ (9.61)

The homogeneous solution to this system is given in Eq. (9.27) for continuous
time, and in Eq. (9.40) for discrete time.

(&)

I

Xty $ y
+ )
Jo g

A J|=—-

Figure 9.18. An LTI system.

The state transition matrix corresponding to this system can be obtained
using Taylor series expansion of the vector . More precisely,

T2
X = X+ Tx+—X+8
2!
X =X+Tx+8

X =X+8

(9.62)

It follows that the elements of tlsgate transition matrix are defined by

j—i . .
. B & \ITT CA-i$ 1>|[}>n}|¥| (9.63)
- H o j+i

Using matrix notation, the state transition matrix is then given by

T2
1T 58
= ~Jjo1 T8 (0.64)
00 18

8888

The matrix given in Eq. (9.64) is often called the Newtonian matrix.
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9.8. Fixed-Gain Tracking Filters

This class of filters (or estimators)asso known as “Fixed-Coefficient” fil-
ters. The most common examplegiut class of filters are theb argl’
filters and their variatins. The-6 and7  trackers are one-dimensional sec-
ond and third order filters, respectiveljhey are equivalertb special cases of
the one-dimensional Kalman filter. The gealestructure of this class of esti-
mators is similar to that of the Kalman filter.

The standard67 filter provides smoothed and predicted data for target
position, velocity (Dopplgr and acceleration. It & polynomial predictor/cor-
rector linear recursive filter. This fdt can reconstruct position, velocity, and
constant acceleration based on positiwasurements. Th&7  filter can also
provide a smoothed (corrected) estimatehe present position which can be
used in guidance and fire control operations.

Notation:

For the purpose of the discussion presented in the remainder of this chapter,
the following notation is adoptedk#n| m$ represents the estimate during the
nth sampling interval, using all data up to and including thth sampling
interval;y, isthenth measured veluande, is theath residual (error).

The fixed-gain filter equation is given by
x#n$= x#n-1n-1% KB/, —G: x#in—-1|n—-1$C (9.65)
Since the transition matrix assists in predicting the next state,
x#n+1lng= x#n$ (9.66)
Substituting Eq. (9.66) into Eq. (9.65) yields
x#n|n$= x#n|n—1 $+ KBy, — Gx#n| n—1 $C (9.67)

The term enclosed withithe brackets on the right hand side of Eq. (9.67) is
often called the residual (error) whichthe difference between the measured
input and predicted output. Eqg. (9.67) means that the estimaténdf is the
sum of the prediction and the whigd residual. The teri@x#n n—1$ repre-
sents the prediction state. In the cafthe-67 estimatorG is the row vector
given by

G=[1008] (9.68)

and the gain matriX is given by
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K=1|6(T (9.69)
7(T?

One of the main objectives of a trackifilter is to decrease the effect of the
noise observation on the measurement. this purpose the noise covariance
matrix is calculated. More preclgethe noise covariance matrix is

Ctn|n$= EEAHN N EInF vy, = v, (9.70)

whereE indicates the expedtvalue operator. Noise is assumed to be a zero
mean random process with variance equa{ﬁo . Additionally, noise measure-
ments are also assumed to be uncorrelated,

LAI\E n=m

EEv,v,F= ] (9.71)
HO nOm
Eq. (9.65) can be written as
x#|n$= Ax#n—1|n—1$+ Ky, (9.72)
where
A =#-KG$: (9.73)

Substituting Eqgs. (9.72) and (9.73) into Eq. (9.70) yields
CHn|n$= EE#AX#N—1|n—1$+ Ky, $Ax#n—1|n—1$+ Ky, $F  (0.74)
Expanding the right hand side of Eq. (9.74) and using Eq. (9.71) give
C#n|n$= ACHn—1|n—1 %'+ KNK' (9.75)
Under the steady state conditjdq. (9.75) collapses to
Ctin|n$= ACA +KNoK' (9.76)
whereC is the steady state noise c@rece matrix. In the steady state,
C#|n$= C#-1n-1%=C for any n (9.77)

Several criteria can be used to b#ith the performance of the fixed-gain
tracking filter. The mostommonly used technique te compute the Variance
Reduction Ratio (VRR). The VRR is defined only when the input to the tracker
is noise measurements. It follows tivathe steady state case, the VRR is the

© 2004 by Chapman & Hall/CRC CRC Press |



steady state ratio of the output varia(@eto-covariance) tthe input measure-
ment variance.

In order to determine the stability of the tracker under consideration, con-

sider the Z-transform for Eq. (9.72),

x#z$= AZ xHz$ Ky #2 $ (9.78)
Rearranging Eq. (9.78) yields théléaing system transfer functions:

xX#z $

e _AZ§'K 9.79)
n

h#z $=

where#l —AZz ' $ is called the characteristictma Note that the system trans-
fer functions can exist only when tloharacteristic matrixs a non-singular
matrix. Additionally, the system is stalifeand only if the roots of the charac-
teristic equation are withithe unit circle in the z-plane,

H—-AZ" $ =0 (9.80)

The filter’s steady state errors cand®ermined with the help of Fig. 9.19.
The error trangfr function is

__yms
ettz$= T+hizs (9.81)

and by using Abel’s theorem, the steady state error is

e = lim ets$= lim¥2=212 eirg 9.82)
' tP pil 20

Substituting Eg. (9.82) into (9.81) yields

e = lim z-1 y#z$
5T p1 oz 1+h#2$

(9.83)

y#z$ e#z$ x#2$

Figure 9.19. Steady state error computation.
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9.8.1. The-6 Filter

The -6 tracker produces, on tilth  sebvation, smoothed estimates for
position and velocity, and a predicted position for the- 1 $h observation.
Fig. 9.20 shows an implementation ofstfiilter. Note that the subscripte™
and 'S’ are used to indicate, respectivelye predicated and smoothed values.
The -6 tracker can follow an inputmg (constant velocity) with no steady
state errors. However, a steady etatror will accumulate when constant
acceleration is present in the input. Snhirtg is done to reduce errors in the
predicted position through adding aigleed difference between the measured
and predicted values to the predicted position, as follows:

X# $= x#n|n$= xS M $-x i 8 (9.84)
X0 $= X#|n$= xh-19r 2 ot $-x,0 (©.85)
Xo is the position input samples. The predicted position is given by
XM $= xMn—1%$= XM -1 Tx-1$ (9.86)
The initialization process is defined by

XHL $= x#2 $= x# $

x#1 $= 0
0 $- Xo#l
xR $= S0P T X $T_X° ¥

A general form for the covariance matvisas developed in the previous sec-
tion, and is given in Eq. (9.75). In general, a second order one-dimensional
covariance matrix (in #gncontext of the6  fitr) can be written as

C#n|n$= Cox Cax (9.87)
CXX CXX
where, in generalC,, is
C,, = EEXy F (9.88)
By inspection, the6 filter has
A= 1-- #--9d (9.89)
-6(T #1-69%
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K = { B } (9.90)
6(T

G = [1 cﬂ (9.91)

.= (1T (9.92)
- 0 1

+
+
Xst $ T

X $ T

/
deIay,Z_l

Figure 9.20. An implemetation of an -6 tracker.

'

Y

— 1o

Finally, using Egs. (9.89) through (9.912) Eq. (9.72) yields the steady state
noise covariance matrix,

¥ 2-2.3.6 +26 @
C= —— (9.93)
- #-2- 6 612- 6 $ 26°
T 7

It follows that the position and velociyRR ratios are, respectively, given by

2
WRR$ = C,, (N = 2_'#5_3—;5_22; (0.94)
> 1 262
A/RR$ = C == —=<2 9.95
$ XX(NV T2 _ M_z_ —6 $ ( )

The stability of the-6 filter is deterined from its system transfer func-

tions. For this purpose, compute the roots for Eq. (9.80) #ith from Eq.
(9.89),
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l-AZY = 1-#2—- —6g +#—- §°=0 (9.96)
Solving Eqg. (9.96) foz yields

- +6
2

and in order to guarantee stability

Ziyp = 1- Q% # -6 $-46 (9.97)

|Zip| + 1 (9.98)

Two cases are analyzed. Firsfg, are.reathis case (the details are left as
an exercise),

6 RO ; -R-6 (9.99)
The second case is when the rares complex; in this case we find
- RO (9.100)
The system transfer functions can derived by using Eqgs. (9.79), (9.89),
and (9.90),
1, # 6
h,#z 1 T —)
= (9.101)
h#z 7 —z#2—- -6%#—-- % 6z#z—1$
1
Up to this point all relevant relations concerning tiée filter were made

with no regard to how to choose the gain coefficients ( 6and ). Before con-
sidering the methodology of selecting these coefficients, consider the main
objective behind using this filter. The twofold purpose of tfe tracker can
be described as follows:

1. The tracker must reduce the measuent noise as much as possible.
2. The filter must be able to track maneuvering targets, with as little residual
(tracking error) as possible.

The reduction of measurement noise is normally determined by the VRR
ratios. However, the maneuverability parhance of the filter depends heavily
on the choice of the parameters  @nd

A special variation of the6  filter was developed by Benedict and Bord-
nert, and is often referred to as the Benedict-Bordner filter. The main advan-

1. Benedict, T. R. and Bordner, G. Wynhesis of an Optimal Set of Radar Track-
While-Scan Smoothing EquatiodRE Transaction on Automatic Control, AC-7,
July 1962, pp. 27-32.
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tage of the Benedict-Bordner is redugithe transient erre associated with

the -6 tracker. This filter uses both the position and velocity VRR ratios as
measures of performance. It computhe sum of the squared differences
between the input (position) and the output when the input has a unit step
velocity at time zero. Additionallyjt computes the squared differences
between the real velocity and the veloa@tytput when the input is as described
earlier. Both error diffeances are minimized when

2

2_.

6 = (9.102)

In this case, the position and velocRR ratios are, respectively, given by

#WRR$ = —'2#6_5' $ (9.103)
—8- +8
#A/RR$- 2 J;$ (9.104)
’_8- +8

Another important sub-class of th@ adker is the critically damped filter,
often called the fading memory filter. this case, the filtecoefficients are
chosen on the basis of a smoothing factor , wBere >1 . The gain coeffi-
cients are given by

- =1-, (9.105)
6 =#-,$ (9.106)
Heavy smoothing meansP 1  and little smoothing meaRs 0 . The ele-

ments of the covariance matfixr a fading memory filter are

Cp = =+ #1+4 +572$ [ (9.107)
M+, $
Cux = Cix = 1 1= #M+2 +3,°$ K (9.108)
Tw+, §
2 1-, 2
o = -, $ N (9.109)
T M+, $

9.8.2. The-67 Filter

The -67 tracker produces, for theh  observation, smoothed estimates of
position, velocity, and accelerationalso produces the predicted position and
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velocity for the#in + 1 $h observation implementation of the67  tracker
is shown in Fig. 9.21.

The-67 tracker will follow an input wiise acceleration is constant with no
steady state errors. Again, in orderremuce the error at the output of the
tracker, a weighted difference betwede measured and predicted values is
used in estimating the srathed positionyelocity, and accelation as follows:

X $= X, S+ o $- X (9.110)
X $= X #n—1 S Tx#n—1 $+ $ ot $- X, $ (9.111)
. o 27
X $= X —1 $F = #K# $- X, 8 (9.112)
T
T2
XA+ 1= x M T X $ > X $ (9.113)

and the initialization process is
XHL $= x#2 $= x# $
XML $= X H $= x#2$=0

Xof2 $-Xo#l $
T

X H2 $=

= @ o}
i i y *
Tz + delayZ

*+

Figure 9.21. An implemenation for an -67 tracker.
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XotB Bt Xo#l $- 2x,#H2 $
T2

X3 $=

Using Eq. (9.63) the state transition matrix for t6& filter is

(9.114)

The covariance matrix (which is symmejrcan be computed from Eq. (9.76).
For this purpose, note that

K=16(T (9.115)
7(T°
G = [1 0 d (9.116)
and
1--  #l—-F #—- F°(2
A=#-KGS$: =| 6(T -6+1 #M-602F (9.117)
27(T?  —27(T #M-7%

Substituting Eq. (9.117) into (9.76) and collecting terms the VRR ratios are
computed as

2
_26#2-°+26-36 % -#M-2- 6%
#RR$ = 9.118
¥ Hi—2- —6%2-6 +7 —27% (9-118)
3 2
WRRg = 46" —46°7+ 272 —- $ (0.119)

T#HA—2- —6%2-6 +7 —27%
- 467 (9.120)
T —2- —6%2-6 +7 —27%

As in the case of any discrete time system, this filter will be stable if and only if
all of its poles fall within the unit circle in the z-plane.

#RR$ =

The-67 characteristic equation is computed by setting
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l-azY = 0 (9.121)

Substituting Eq. (9.117) into (9.121) and collecting terms yield the following
characteristic function:

flr$= Z2+#-3- +6+TF +#3-6-2- +7§-#—- $ (9122

The -67 becomes a Benedig8ordner filter when

26—-} 6 +£02: 0 (9.123)

Note that for7 = 0 Eq. (9.123) reducesHq. (9.102). For aritically damped
filter the gain coefficients are

- =1-, (9.124)
6 = 1.5#1—, 2% —, $= 1.5#1—, $#l+, $ (9.125)
7=#-, ¢ (9.126)

Note that heavy smoothing takplace when P 1 , while = 0 means that
no smoothing is present.

MATLAB Function “ghk_tracker.m”

The function“ghk_tracker.m” implements the steady staté7 filter. It is
given in Listing 9.2 in Section 9.11. The syntax is as follows:

[residual, estimate] = ghk_tracker (X8moocof, inp, npts, T, nvar)

where
Symbol Description Status
X0 initial state vector input
smoocof desired smoothing coefficient input
inp array of position measurementg input
npts number of points imput position input
T sampling interval input
nvar desired noise variance input
residual array of position error (residual) output
estimate array of predicted position output
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Note that‘ghk_tracker.m” uses MATLAB's function‘normrnd.m” to gener-
ate zero mean Gaussian noise, whicbaig of MATLAB's Statistics Toolbox.
If this toolbox is not available to the user, tiighk_tracker.m” function-call
must be modified to

[residual, estimate] = ghk_trekerl (X0, smoocof, inp, npts, T)

which is also part of Listing 9.2. Inithcase, noise measurements are either to
be considered unavailable or aat of the position input array.

To illustrate how to use the functiogk_tracker.mand ghk_trackerl.m,
consider the inputs shown in Figs. 9.22 and 9.23. Fig. 9.22 assumes an input
with lazy maneuveringwhile Fig. 9.23 assumes an aggressive maneuvering
case. For this purpose, the program caffgf® 21.m” was written. It is given
in Listing 9.3 in Section 9.11.

Figs. 9.24 and 9.25 show the residual error and predicted position corre-
sponding (generated using the progréig9 _21.m") to Fig. 9.22 for two
cases: heavy smoothing and little smoothing with and without noise. The noise
is white Gaussian with zero meand variance oNs = 0.05 . Figs. 9. 26 and
9.27 show the residual error and poted position corresponding (generated
using the prograrffig9_20.m") to Fig. 9.23 with and without noise.

Position

. T L L L L L L L
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Sample number

Figure 9.22. Position (truh-data); lazy maneuvering.
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Figure 9.23. Position (truthdata); aggressive maneuvering.
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Figure 9.24a-1. Predicted and trugosition., = 0.1 (i.e., large gain

coefficients). No noise present.
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Figure 9.24a-2. Position residualerror). Large gain coefficients.
No noise. The error settles to zero fairly quickly.
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Figure 9.24b-1. Predicted andrue position. , = 0.9 (i.e., small

gain coefficients). No noise present.
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Figure 9.24b-2. Position residual (emr). Small gain coefficients. No noise.
It takes the filter longer time for the error to settle down.
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Figure 9.25a-1. Predicted andrue position., = 0.1 (i.e., large
gain coefficients). Noise is present.
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Residual error
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Figure 9.25a-2. Position reidual (error). Large gain coefficients Noise present.
The error settles down quickly. The variation is due to noise.
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Figure 9.25b-1. Predicted and tue position., = 0.9 (i.e., small gain

coefficients). Noise is present.

© 2004 by Chapman & Hall/CRC CRC Press |



Residual
~——]

0 500 1000 1500
Sample number

Figure 9.25b-2. Position residual (error) Small gain coefficients. Noise present.
The error requires more time before settling down. The
variation is due to noise.
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Figure 9.26a. Predictd and true position., = 0.1 (i.e., large gain

coefficients). Noise is present.
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Figure 9.26b. Position residual (erro}. Large gain coefficients. No noise.
The error settles down quickly.
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Figure 9.27a. Predicted and true positin., = 0.8 (i.e., small gan coefficients).
Noise is present.
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Figure 9.27b. Position residual (error) Small gain coefficients. Noise present. The
error stays fairly large; however, its average is around zero. The
variation is due to noise.

9.9. The Kalman Filter

The Kalman filter is a linear estimatthat minimizes the mean squared error
as long as the target dynamics are modeled accurately. All other recursive fil-
ters, such asthe&67  and the BenedictdBer filters, are special cases of the
general solution provided by the Kalman filter for the mean squared estimation
problem. Additionally, the Kalman filter has the following advantages:

1. The gain coefficients are computed dynamically. This means that the same
filter can be used for a variety ofaneuvering target environments.

2. The Kalman filter gain computation adapts to varying detection histories,
including missed detections.

3. The Kalman filter provides an accurate measure of the covariance matrix.
This allows for better implementation of the gating and association pro-
cesses.

4. The Kalman filter makes it possible to partially compensate for the effects
of mis-correlation and mis-association.

Many derivations of the Kalman filter exist in the literature; only results are
provided in this chapter. Fig. 9.28 shows a block diagram for the Kalman filter.
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The Kalman filter equations can be deduced from Fig. 9.28. The filtering equa-
tion is

x#n|n$= x#n $= x#n|n—1 $+ K#n B# $- Gx#n| n—1 $C (9.127)
The measurement vector is
yin$= Gx#n$ vin $ (9.128)

wherev#n $ is zero mean, white Gasian noise with covarian&®,

S. = EEy#n$y'# & (9.129)

1@
<
5
+
=
©
v
(o)
<
Ox

©
Ix
+
)
Y

Figure 9.28. Structure of the Kalman filter.

The gain (weight) vectds dynamically computed as

K# $= P#n[n—1S'BEP#N n-1%'+S, C (9.130)

where the measurement noise matfixrepresents the predictor covariance
matrix, and is equal to

P#n+1|n $= EExgn+1§T = :P#n[n$: +Q (9.131)
whereQ is the covarianeeatrix for the inputu ,

Q = EEu#n$ u'tn & (9.132)
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The corrector equatioftovariance of the smoothed estimate) is
P#nn$= B —-K#Hh & e#|n-1% (9.133)

Finally, the predictor equation is

x#+1n$= :x#n$ (9.134)

9.9.1. The Singer67 -Kalman Filter

The Singelr filter is a special case oféhKalman where the filter is gov-
erned by a specified target dynamiodel whose acceleratias a random pro-
cess with autocorrelation function given by

t
EE#t $x#t+t, = N e (9.135)

where?,, is the correlation time ofefacceleration due to target maneuvering

or atmospheric turbulenc&he correlation time?,, may vary from as low as

10 seconds for aggressive maneuvering to as large as 60 seconds for lazy
maneuvering cases.

Singer defined the random target accgien model by a first order Markov
process given by

xn+1$= || st J1-U, N, win$ (9.136)

wherew#n $ is a zero mean, Gaussiand@n variable with unity variance,
N,, is the maneuver standard deviatiand the maneuvering correlation coef-
ficient U,, is given by

U,=e " (9.137)

The continuous time domain system that corresponds to these conditions is the
same as the Wiener-Kolmogorov whitening filter which is defined by the dif-
ferential equation

d

dtV#t $= — QutSrwHt $ (9.138)

1. Singer, R. A., Estimating Optimal Tkdag Filter Performace for Manned Maneu-
vering TargetslEEE Transaction on Aerospace and Electronics, AES4ly, 1970,
pp. 473-483.
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where6,, is equal td (?, . The maneuverivariance using Singer's model
is given by

2

A
NG, = SUBL+ 4Py~ Po C (9.139)
Anax IS the maximum target acceleratiwith probability P,
P, defines the probability th#ite target has no acceleration.

and the term

The transition matrix that corresponds to the Singer filter is given by

[ 1
1T L#1+6,T+U,$
m
o= (9.140)
~"lo 1 Lwm-us
6m
0 0 U

m

Note that whenT6,, = T(?, is small (tharget has constant acceleration),
then Eqg. (9.140) reduces to Eq. (9.114). Typically, the sampling int&€rval is
much less than the maneuvering time constgnt  ; hence, Eq. (9.140) can be
accurately replaced by its second ordeproximation. More precisely,

1T T (2
=10 1 TA-T(27?, (9.141)
0 0 U

m

The covariance matrix was derivbed Singer, and it is equal to

2N2 Ci11 C12 Cy3
c=—""|c,C,C (9.142)
= 2 21 22 L23 :
C31 C32 C33
where
1 26, T 263 T3 -6, T
Ch= N = —5[1—e 426, T+omL _262T2_46 Te m} (0.143)
26, 3
Cpp= Cy = =B " +1-26 " +26,Te " —26,T+62T2 Co.144)
267
1 -26,,T -6, T
Ci3=0C5 = EBl—e —26,,Te C (9.145)
m
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C,, = %Ene_ﬁ’“T—3—e_26mT +26,TC (9.146)
262
Cpa= Cp= B " +1-2¢"" C (9.147)
262,
_ 1o 26T
Cys = 26mBL e C (9.148)

Two limiting cases are of interest:
1. The short sampling interval casé «?,, ),
o T°(20 T*(8 T°(6
i = 4 3 2
M, C=% | T T T (9.149)
T T°(2 T

and the state transition matisxcomputed from Eq. (9.141) as

1 T T2
lim : = 9.150
6,TP 0 — 01 T ( )
00 1
which is the same as the case for {6& filter (constant acceleration).

2. The long sampling intervall(» ?,, ). This condition represents the case

when acceleration is white noise process. €lcorresponding covariance
and transition matrices &, respectively, given by

3
T g2
3 m m
im C=Na|_, (9.151)
6l P T2, 2T%, 2n
?
m m
17T T2,
lim : = ? 9.152
TP = 01 2, (9.152)
0 0 O
Note that under the condition that> ?,, , the cross correlation t€yqs and

C,; become very small. It follows thastimates of acceleration are no longer
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available, and thus a twaase filter model can be used to replace the three state
model. In this case,

3 2
C = 2N§1?m[T2(3 T (2] (9.153)
T2 T
= {éq (9.154)
- 1

9.9.2. Relationship between Kalman an®7  Filters

The relationship between the Kalmalteii and the-67  filters can be easily
obtained by using the appropriate state transition matrix , and gain ¥ector
corresponding to the67  in Eq. (9.127). Thus,

X#n| n x#n|n—1 ky#n
x#n$ = [x|n—1$+ |k#h $B# $-x#n|n—1$C (9.155)
Xf|n Xin-1 kg#in

with (see Fig. 9.21)

2

x#n-1%$= x;M-1%T >'<s#n—1$+T§ X#n-1% (9.156)
xn—-1%$= x#-1&T K-1$ (9.157)
xn-1%$= x#-1$ (9.158)

Comparing the previous three equatiovith the-67 filter equations yields

=

(9.159)

LI~ Hio
1]

x X X
N

Additionally, the covariance matrix elemts are related to the gain coeffi-
cients by
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K, L
Ko| = C (9.160)
k3

Eqg. (9.160) indicates that the first gaiaefficient depenslon the estimation
error variance of the total residual \arce, while the otliegwo gain coeffi-
cients are calculated through the adsaces between the second and third
states and the first observed state.

MATLAB Function “kalman_filter.m”

The function‘kalman_filter.m” implements a state Singe8-7 Kalman fil-
ter. It is given in Listing 9.4 in Section 9.11. The syntax is as follows:

[residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar)

where

Symbol Description Status
npts number of points imput position input
T sampling interval input
X0 initial state vector input
inp input array input
R noise variance see Eq. (9-129) input
nvar desired state noise variance input
residual array of position error (residual) output
estimate array of predicted position output

Note that'kalman_filterm” uses MATLAB's functiorfnormrnd.m” to gener-
ate zero mean Gaussian noise, which is part of MATLAB's Statistics Toolbox.

To illustrate how to use the functionkalman_filter.m”,consider the inputs
shown in Figs. 9.22 and 9.23. Figs. 9.29 and 9.30 show the residual error and
predicted position corresponding to Figs. 9.22 and 9.23. These plots can be
reproduced using the prograffig9_28.m" given in Listing 9.5 in Section
9.11
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Figure 9.29a. True and pedicted positions. Lazy maeuvering. Pbt produced

Residual

using the function“kalman_filter.m”.
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Figure 9.29b. Residual corresponding to Fig. 9.29a.
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Figure 9.30a. True and predicted posions. Aggressive maneuvering. Plot
produced using the function“kalman_filter.m”.
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Figure 9.30b. Residual coesponding to Fig. 9.30a.
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9.10. “MyRadar” Design Case Study - Visit 9

9.10.1.Problem Statement

Implement a Kalmafilter tracker into the “MyRadar” design case study.

9.10.2. A Desigh

For this purpose, the MAAB GUI workspace entitledkalman_gui.m”
was developed. It is shown in Fig. 9.®1this design, the inputs can be initial-
ized to correspond to either targepey(aircraft and missile). For example,
when you click on the buttdiResetMissile,”the initialx-, y-,andz-detection
coordinates for the missilare loaded into thtStarting Location” field. The
corresponding target velocitig also loaded in thévelocity in x direction”
field. Finally, all other fields assoced with the Kalmatriilter are also loaded
using default values that are appropi&dr this design case study. Note that
the user can alter these entries as appropriate.

This program generates a fictitiousjactory for the selected target type.
This is accomplished using the functitmaketraj.m”. It is given in Listing
9.6 in Section 9.11. The user can eithse this program, or import their own
specific trajectory. The functiotmaketraj.m” assumes constant altitude, and
generates a manuevering trajectory inthglane, as shown in Fig. 9.32. This
trajectory can be changed using the different fields irittagectory Parame-
ter” fields.

Next the program corruptbe trajectory by adding white Guassian noise to
it. This is accomplished by the functiteddnoise.m” which is given in List-
ing 9.7 in Section 9.11. Asistate Kalman filter namettalfilt.m” is then uti-
lized to perform the tracking task. This function is given in Listing 9.8.

The azimuth, elevation, and range erm@ams input to the program using their
corresponding fields on the GUI. In théxample, these entries are assumed
constant throughout the simulation. In practice, this is not true and these values
will change. They are caluclated by tteglar signal processor on a “per pro-
cessing interval” basis and then are inpub the tracker. For example, the
standard deviation of the errim the range measurement is

N R -

_ C
R J29SNR 2B.J/29SNR

(9.161)

1. The MATLAB code in this section waswddoped by Mr. David H§ Consultant to
Decibel Research, Inc., Huntsville, Alabama.
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Figure 9.31. MATLAB GUI workspace associated with the “MyRadardesign

case study- visit 9.
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where' R is the range resolution, is the speed of light, is the bandwidth,
andSNR is the measurement SNR.

The standard deviation of the arin the velocity measurement is

Nv:

(9.162)

5
2?J/29 SNR

where5 is the wavelength ard  tie uncompressed pulsewidth. The stan-
dard deviation of the error in the angle measurement is

_ v
*  1.6J/29SNR

whereV is the antenna beamwidth of imgular coordinatef the measure-
ment (azimuth and elevation).

N (9.163)

In this example, the radar is locatedtally 2$= #0D0 D$ . This simulation
calculates and plots the following outputs:

TABLE 9.1. Output list generated by the*kalman_gui.m” simulation

Figure # Description
9.32 uncorrupted input trajectory
9.33 corrupted input trajectory
9.34 corrupted and uncorrupted x-position
9.35 corrupted and uncorrupted y-position
9.36 corrupted and uncorrupted z-position
9.37 corrupted and filteres-, y- and z-positions
9.38 predicted x-, y-, and z- velocities
9.39 position residuals
9.40 velocity residuals
9.41 covariance matrigomponents versus time
9.42 Kalman filter gais versus time

Fig. 9.32 through Fig. 9.42 shows typical outputs produced using this simu-
lation for the missile.
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Figure 9.33. Missile corrupted trajectory.
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Figure 9.35. Misdle y-position.
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Figure 9.37. Missile trajectay and filtered trajectory.
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Figure 9.38. Missile velocity filtered.
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Figure 9.42. Kalman filter gains versus time.

9.11. MATLAB Program and Function Listings

This section contains listings afl MATLAB programs and functions used
in this chapter. Users are encouragerktan this code with different inputs in
order to enhance their understanding of the theory.

Listing 9.1. MATLAB Function “mono_pulse.m”

function mono_pulse(phi0)
eps = 0.0000001;

angle = -pi:0.01:pi;

y1 = sinc(angle + phi0);

y2 = sinc((angle - phi0));
ysum =yl + y2;

ydif = -yl +y2;

figure (1)

plot (angle,y1,'k',angle,y2,'’k);
grid;

xlabel ('Angle - radians’)
ylabel ('Squinted patterns')
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figure (2)
plot(angle,ysum,'k");
grid;

xlabel (‘Angle - radians’)
ylabel (‘'Sum pattern’)
figure (3)

plot (angle,ydif,'k");

grid;

xlabel (‘Angle - radians’)
ylabel ('Difference pattern')
angle = -pi/4:0.01:pi/4;
y1 = sinc(angle + phi0);
y2 = sinc((angle - phi0));
ydif = -yl + y2;

ysum =yl + y2;

dovrs = ydif ./ ysum;
figure(4)

plot (angle,dovrs,'k’);
grid;

xlabel (‘Angle - radians’)
ylabel (‘'voltage gain’)

Listing 9.2. MATLAB Function “ghk_tracker.m”

function [residual, estimate] = ghk_tcker (X0, smoocof, inp, npts, T, nvar)
m=1,;
% read the initial estimte for the state vector
X = X0;
theta = smoocof;
%compute values for alpha, beta, gamma
wl = 1. - (theta"3);
w2 = 1.5 * (1. + theta) * ((1. - theta)"2) / T;
w3 = ((1. - theta)"3) / (T"2);
% setup the transition matrix PHI
PHI = [1. T (T~2)/2.;0. 1. T;0. 0. 1.];
while rn < npts ;
%use the transition matrix to predict the next state
XN = PHI * X;
error = (inp(rn) + normrnd(0,nvar)) - XN(1);
residual(rn) = error;
tmpl = w1l * error;
tmp2 = w2 * error;
tmp3 = w3 * error;
% compute the next state
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X(1) = XN(1) + tmp1;
X(2) = XN(2) + tmp2;
X(3) = XN(3) + tmp3;
estimate(rn) = X(1);
rnm=m+1,;

end

return

MATLAB Function “ghk_trackerl.m”

function [residual, estimate] = ghk dckerl (X0, smoocof, inp, npts, T)
rm=1;
% read the initial estimte for the state vector
X = XO0;
theta = smoocof;
%compute values for alpha, beta, gamma
wl = 1. - (theta"3);
w2 =1.5* (1. + theta) * ((1. - theta)*2) / T;
w3 = ((1. - theta)*3) / (T"2);
% setup the transition matrix PHI
PHI =[1. T (T"2)/2.;0. 1. T;0. 0. 1.];
while rn < npts ;
%use the transition matrix to predict the next state
XN = PHI * X;
error = inp(rn) - XN(1);
residual(rn) = error;
tmpl = w1l * error;
tmp2 = w2 * error;
tmp3 = w3 * error;
% compute the next state
X(1) = XN(1) + tmp1;
X(2) = XN(2) + tmp2;
X(3) = XN(3) + tmp3;
estimate(rn) = X(1);
m=m+1,;
end
return

Listing 9.3. MATLAB Program “fig9_21.m”"

clear all

eps = 0.0000001;
npts = 5000;

del =1./5000.;
t=0.:del:1,;
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% generate input sequence

inp = 1.+ t"3 +.5 *t./2 + cos(2.*pi*10 .* t) ;
% read the initial estimte for the state vector
X0 =[2,.1,.01];

% this is the update interval in seconds

T =100. * del;

% this is the value of the smoothing coefficient
xi = .91,

[residual, estimate] = ghk_trackeiX0, xi, inp, npts, T, .01);
figure(1)

plot (residual(1:500))

xlabel (‘'Sample number")

ylabel (‘Residual error’)

grid

figure(2)

NN =4999.;

n = 1:NN;

plot (n,estimate(1:NNb',n,inp(1:NN),'r")
xlabel (‘'Sample number")

ylabel (‘Position")

legend (‘Estimated','Input’)

Listing 9.4. MATLAB Function “kalman_filter.m”

function [residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar)
N = npts;

rm=1;

% read the initial estimte for the state vector

X = XO0;

% it is assumed that the measurement vector H=[1,0,0]
% this is the state noise variance

VAR = nvar;

% setup the initial value for the prediction covariance.
S=[1.1.1;1.1.1.;1. 1. 1.];

% setup the transition matrix PHI

PHI =[1. T (T*2)/2.;0.1.T;0.0. 1.];

% setup the state n@sovariance matrix

Q(1,1) = (VAR * (T"5)) / 20,;

Q(1,2) = (VAR * (T"4)) / 8,;

Q(1,3) = (VAR * (T"3)) / 6.;

Q(2,1) = Q(1,2);

Q(2,2) = (VAR * (T"3)) / 3,;

Q(2,3) = (VAR * (T"2)) / 2.;

Q(3,1) = Q(1,3);
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Q(3,2) = Q(2,3);

Q(3,3)=VAR*T;

while rn <N ;
%use the transition matrix to predict the next state
XN = PHI * X;
% Perform error covariance extrapolation
S=PHI*S*PHI' + Q;
% compute the Kalman gains
ak(1) =S(1,1)/(S(1,1) + R);
ak(2) =S(1,2) / (S(1,1) + R);
ak(3) =S(1,3)/(S(1,1) + R);
%perform state estimate update:
error = inp(rn) + normrnd(0,R) - XN(1);
residual(rn) = error;
tmpl = ak(1) * error;
tmp2 = ak(2) * error;
tmp3 = ak(3) * error;
X(1) = XN(1) + tmp1;
X(2) = XN(2) + tmp2;
X(3) = XN(3) + tmp3;
estimate(rn) = X(1);
% update the error covariance
S(1,1) = S(1,1) * (1. -ak(1));
S(1,2) = S(1,2) * (1. -ak(1));
S(1,3) = S(1,3) * (1. -ak(1));
S(2,1) = S(1,2);
S(2,2) = -ak(2) * S(1,2) + S(2,2);
S(2,3) = -ak(2) * S(1,3) + S(2,3);
S(3,1) = S(1,3);
S(3,3) = -ak(3) * S(1,3) + S(3,3);
nm=m+1,;

end

Listing 9.5. MATLAB Program “fig9_28.m”"

clear all

npts = 2000;

del = 1/2000;

t = 0:del:1;

inp=(1+.2 *t+ .1 .*t."2) + cos(2. * pi * 2.5 .* 1),

X0 =11,.1,.01];

% it is assumed that the measurement vector H=[1,0,0]
% this is the update interval in seconds

T=1,,
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% enter the measurement noise variance

R =.035;

% this is the state noise variance

nvar = .5;

[residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar);
figure(1)

plot(residual)

xlabel (‘Sample number")
ylabel (‘Residual’)
figure(2)

subplot(2,1,1)

plot(inp)

axis tight

ylabel (‘position - truth’)
subplot(2,1,2)
plot(estimate)

axis tight

xlabel (‘Sample number)
ylabel (‘Predicted position")

Listing 9.6. MATLAB Function “maketraj.m”

function [times , trajectory] = maketragtart_loc, xvelocity, yamp, yperiod,
zamp, zperiod, samplingtime, deltat)

% maketraj.m

% by David J. Hall

% for Bassem Mahafza

% 17 June 2003

% 17:01

% USAGE: [times, trajectory] = makefjatart_loc, xvelocl, yamp, yperiod,
zamp, zperiod, samplingtime, deltat)

% NOTE: all coordinates are in radar reference coordinates.

% INPUTS

% name dimension explanation units
0

% start loc 3 X1 starting location of target m
% xvelocity 1 velocity of target m/s

% yamp 1 amplitude of oscillation y direction m
% yperiod 1 period of oscillation y direction m
% zamp 1 amplitude of oscillation z direction m
% zperiod 1 period of oscillation z direction m
% samplingtime 1 length of interval of trajectory sec
% deltat 1 time between samples sec

%
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% OUTPUTS
%

% name dimension explanation units
0fg-=m===  mmmmmmmmem mmmmmmmmmmmmeen mmmeen

% times 1 X samplingtime/deltat vector of times

% corresponding to samples sec

% trajectory 3 X samplingtime/deltaajectory x,y,z m

%
times = 0: deltat: samplingtime ;
x = start_loc(1)+xvelocity.*times ;

if yperiod~=0

y = start_loc(2)+yamp*cos(2*pi*(1/yperiod).*times) ;
else

y = ones(1, length(times))*start_loc(2) ;
end
if zperiod~=0

z = start_loc(3)+zamp*cos(2*pi*(1/zperiod).*times) ;
else

z = ones(1, length(times))*start_loc(3) ;
end

trajectory =[x ;y ; z];

Listing 9.7. MATLAB Function “addnoise.m”

function [noisytraj ] = addnoise(trajectory, sigmaaz, sigmael, sigmarange )
% addnoise.m

% by David J. Hall

% for Bassem Mahafza

% 10 June 2003

% 11:46

% USAGE: [noisytraj ] = addnoise(trajectory, sigmaaz, sigmael, sigmarange )
% INPUTS

% name dimension explanation units

72—
% trajectory 3 X POINTS trajectory nadar reference coords [m;m;m]

% sigmaaz 1 standard deviation of azimuth error  radians
% sigmael 1 standard deviation of elevation error radians
% sigmarange 1 standard deviation of range error m

%

% OUTPUTS

% name dimension explanation units

0fg-mmm=  mmmmmm e e

% noisytraj 3 X POINTS noisy trajectory [m;m;m]
noisytraj = zeros(3, size(trajectory,2)) ;
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for loop = 1 : size(trajectory,2)
X = trajectory(1,loop);
y = trajectory(2,loop);
z = trajectory(3,loop);
azimuth_corrupted = atan2(y,x) + sigmaaz*randn(1) ;
elevation_corrupted = atan2(z, sqrt(x*2+y"2)) + sigmael*randn(1) ;
range_corrupted = sqrt(x"2+y"2+z"2) + sigmarange*randn(l) ;
X_corrupted =
range_corrupted*cos(elevation_corrupted)*cos(azimuth_corrupted) ;
y_corrupted =
range_corrupted*cos(elevation_corrupted)*sin(azimuth_corrupted) ;
z_corrupted = range_corrupted*sin(elevation_corrupted) ;
noisytraj(:,loop) = [x_corrupted ; y_corrupted; z_corrupted ] ;
end % next loop

Listing 9.8. MATLAB Function “kalfilt. m”

function [filtered, residuals , covariances, kalmgains] = kalfilt(trajectory, x0,
PO, phi, R, Q)

% kalfilt.m

% by David J. Hall

% for Bassem Mahafza

% 10 June 2003

% 11:46

% USAGE: [filtered, residuals , covariances, kalmgains] = kalfilt(trajectory,

x0, PO, phi, R, Q)

%

% INPUTS

% name dimension explanation units

% trajectory NUMMEASUREMENTSNUMPOINTS trajectory in radar

reference coords [m;m;m]

% x0 NUMSTATES X 1 initial estimate of state vector m,
m/s

% PO NUMSTATES X NUMSTATES initial estimate of covariance
matrix m, m/s

% phi NUMSTATES X NUMSTATES state transition matrix

% R NUMMEASUREMENTS X NUMMEASUREMENTS measurement

error covariance matrix m

% Q NUMSTATES X NUMSTATES  state error covariance matrix
m, m/s

%
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% OUTPUTS
% name dimension explanation units

% filtered NUMSTATES X NUMPOINTS filtered trajectory x,y,z pos, vel
[m; m/s; m; m/s; m; m/s]
% residuals NUMSTATES X NUMPOINTS residuals of filtering
[m;m;m]
% covariances NUMSTATES X NUMPOINTS diagonal of covariance
matrix [m;m;m]
% kalmgains (NUMSTATES X NUMMEASUREMENTS)
% X NUMPOINTS Kalman gain matrix -
NUMSTATES =6 ;
NUMMEASUREMENTS =3 ;
NUMPOINTS = size(trajectory, 2) ;
% initialize output matrices
filtered = zeros(NUMSTATES, NUMPOINTS) ;
residuals = zeros(NUMSTATES, NUMPOINTS) ;
covariances = zerosS(NUMSTATES, NUMPOINTS) ;
kalmgains = zeros(NUMSTATES*NMMEASUREMENTS, NUMPOINTS) ;
% set matrix relating measurements to states
H=[100000;001000;000010j
xhatminus = x0 ;
Pminus = PO ;
for loop = 1: NUMPOINTS
% compute the Kalman gain
K = Pminus*H"*inv(H*Pminus*H' + R) ;
kalmgains(:,loop) = reshape(K, NUMSTATES*NUMMEASUREMENTS, 1) ;
% update the estimatath the measurement z
z = trajectory(:,loop) ;
xhat = xhatminus + K*(z - H*xhatminus) ;
filtered(:,loop) = xhat ;
residuals(:,loop) = xhat - xhatminus ;
% update the error covariance for the updated estimate
P = (eye(NUMSTATES, NISTATES) - K*H)*Pminus ;
covariances(:,loop) = diag(P) ; % only save diagonal of covariance matrix
% project ahead
xhatminus_next = phi*xhat ;
Pminus_next = phi*P*phi' + Q ;
xhatminus = xhatminus_next ;
Pminus = Pminus_next ;
end
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Chapter 10 Electronic Countermeasures
(ECM)

This chapter is coauthoredwith J. Michael Madewellt

10.1. Introduction

Any deliberate electronic effort intended to disturb normal radar operation is
usually referred to as an Electronic Countermeasure (ECM). This may also
include chaff, radar decoys, radar R@8erations (e.g., radio frequency
absorbing materials), and, of course, radar jamming.

In general, ECM is used by the offense to accomplish one, several, or possi
bly all of the following objectives: (1) deny proper target detection; (2) gener
ate operator confusion and / or decepti8); force delays in detection and
tracking initiation; (4) generate false tracks of non-real targets; (5) overload
the radar computer with an excessivember of targets; (6) deny accurate
measurements of the target range amgearate; (7) force dropped tracks; and
(8) introduce errors in target positioncarange rate. Alternatively, the defense
may utilize Electronic counter-coumteeasures (ECCM) to overcome and
mitigate the effects of ECM on the radar. When deployed properly, ECCM
techniques and / or hardware can halre following efects: (1) prevent
receiver saturation; (2) maintain a reaable CFAR rate; (3) enhance the-sig
nal to jammer ratio; (4) properly idéfy and discriminate directional interfer
ence; (5) reject invalid targetsich (6) maintain true target tracks.

ECM techniques can be exploited by a radar system in many different ways
and can be categorized into two classes:

1. Mr. J. Michael Madewell is with the US Army Space and Missile Defense Com
mand in Huntsville, Alabama.
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1. Denial ECM techniques: Denial ECkchniques can be either active or
passive. Active denial ECM techniques include: CW, short pulse, long
pulse, spot noise, barrage noise, sitélobe repeaters. Passive ECM tech
nigues include chaff and Radar Absorbing Material (RAM).

2. Deception ECM techniques: Decepti®CM techniques are also broken
down into active and passive techrequActive deception ECM techniques
include repeater jammers and falseget generators. Passive deception
ECM include chaff and RAM.

10.2. Jammers

Jammers can be categorized into twoegal types: (1) barrage jammers and
(2) deceptive jammers (repeaters). Wlkong jamming is present, detection
capability is determined by receivergsal-to-noise plus interference ratio
rather than SNR. In fact, in most casdstection is established based on the
signal-to-interference ratio alone.

Barrage jammers attempt to increase tioise level across the entire radar
operating bandwidth. Consequlgnthis lowers the receer SNR, and, in turn,
makes it difficult to detect the desired targets. This is the reason why barrage
jammers are often called maskers (sinay timask the target returns). Barrage
jammers can be deployed in the magaim or in the sidelobes of the radar
antenna. If a barrage jammer is locatedhe radar main beam, it can take
advantage of the antenna maximum gain to amplify the broadcasted neise sig
nal. Alternatively, sidelobe barragemaers must either use more power, or
operate at a much shorter range than main beam jammers. Main beam barrage
jammers can be deployed either on-botirel attacking vehicle, or act as an
escort to the target. Sidelobe jammers are often deployed to interfere with a
specific radar, and since they do not sthyse to the target, they have a wide
variety of stand-off deployment options.

Repeater jammers carry receiving devioasboard in order to analyze the
radar’s transmission, and then send bfaige target-like signals in order to
confuse the radar. There are two comrtymes of repeater jammers: spot noise
repeaters and deceptive repeaters. Tloé rspise repeataneasures the trans
mitted radar signal bandwidth and then jams only a specific range of frequen
cies. The deceptive repeater sends keltdred signals that make the target
appear in some false position (ghosi)ese ghosts may appear at different
ranges or angles than the actual eard-urthermore, there may be several
ghosts created by a single jammer. By not having to jam the entire radar band
width, repeater jammers are able tokeanore efficient use of their jamming
power. Radar frequency agility may be the only way possible to defeat spot
noise repeaters.
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In general a jammer can be identifibd its effective operating bandwidth
B, and by its Effective Radiated Power (ERP), which is proportional to the
jammer transmitter powe?;. More precisely,

P3G,

J

ERP = (10.1)

where G; is the jammer antenna gain ahgl is the total jammer losses. The
effect of a jammer on a radar is meEsl by the Signal-to-Jammer ratio (S/J).

10.2.1. Self-Screéng Jammers (SSJ)

Self-screening jammers, also knownsa$f-protecting jammers and as main
beam jammers, are a class of ECM egwt carried on the vehicle they are-pro
tecting. Escort jammers (carried eehicles that acconamy the attacking
vehicles) can also be treated as SSJ®if Hppear at the same range as that of
the target(s).

Assume a radar with an antenna g&@inwavelength! , apertureA, , band
width B,, receiver lossed , and peak poweP,. The single pulse power
received by the radar from a target of RCSat rangeR, is

_ PG ¢
u$ RL

# is the radar pulsewidth. The poweceived by the radar from an SSJ jam
mer at the same range is

S (10.2)

;PG A
4$R? Bil,

whereP; G, B; L; are, respectively, the jammer’s peak power, antenna gain,
operating bandwidth, and losses. Using the relation

(10.3)

2

1°G
A == 10.4
T (oo
then Eq. (10.3) can be written as
P,G, 12
e 176G 1 (10.5)

- 4$R? 4% ByL,

Note thatB; ( B,. This is needed in order toropensate for the fact that the
jammer bandwidth is usually larger than the operating bandwidth of the radar.
Jammers are normally designed to operate against a wide variety of radar sys
tems with different bandwidths.
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Substituting Eq. (10.1) into Eq. (10.5) yields,

2

1°G 1
J = ERP = (10.6)
s & By
Thus, S/J ratio for a SSJ case is atgdifrom Egs. (10.6) and (10.2),
P#G" B
S0P 5y > (10.7)
J ERP ®W$ RL

and when pulse compression is used, with time-bandwidth-pr@shict then
Eqg. (10.7) can be written as

S P.G" B;Gpc

J 9ERP®W$ R°B,L

(10.8)

Note that to obtain Eq. (10.8), one must multiply Eq. (10.7) by the factor
B, )B, and use the fact th&@,. = B,#.

The jamming power reaches the rader a one-way transmission basis,
whereas the target echoesolve two-way transmission. Thus, the jamming
power is generally greater than the tagjghal power. In other words, the ratio
S) J is less than unity. However, as the target becomes closer to the radar,
there will be a certain nge such that the rati8) J is equal to unity. This
range is known as the cross-over manghe range window where the ratio
S) Jis sufficiently larger than unity is denoted as the detection range. In order
to compute the crossover ranBg,, setS) J to unity in Eq. (10.8) and solve
for range. It follows that

P.G"B; _1)2

0, = —
Rco &, 4738 [ERP & (10:9)

MATLAB Program “ssj_req.m”

The progranissj_req.m” implements Egs. (10.9); it is given in Listing 10.1
in Section 10.5. This program calc@atthe cross-over range and generates
plots of relativeS and J versus range normalized to the cross-over range, as
illustrated in Fig. 10.1a.

In this example, the follsing parameters were utilized: radar peak power
P, = 50KW, jammer peak poweP; = 200W, radar operating bandwidth
B, = 667KHz, jammer bandwidtiB; = 50MHz, radar and jammer losses
L, = 0.10dB, target cross sectiori = 1O.m2, radar antenna gain
35dB, jammer antenna gai@; = 10dB, the radar operating frequency
f = 5.6GHz. The syntax is as follows:

L
G
is
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[BR_range] = ssj_req (pt, g, freq, sigma, br, loss, pj, bj, gj, lossj)

where

Symbol Description Units Status
pt radar peak power W input

g radar antenna gain dB input
freq radar operating frequency Hz input
sigma target cross section m input
br radar operating bandwidth Hz input
loss radar losses dB input

pj jammer peak power W input

bj jammer bandwidth Hz input

gj jammer antenna gain dB input
lossj jammer losses dB input
BR_range Cross-over range Km output

40

T
| = Target echo |
-=. 88l

20

20 |---- ;

40 fende

Relative signal or jamming amplitude - dB

Range nommalized to cross-over range

Figure 10.1a. Target and jammer echaignals. Plots weregenerated using
the program “ssj_reg.m” and using the irput parameters
defined on the previous page.
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Figure 10.1b. Burn-through range versus jammer and radar peak powers
corresponding to example useth generating Fig. 10.1a.

Burn-through Range

If jamming is employed in the fornof Gaussian noise, then the radar
receiver has to deal with the jammingrsl the same way it deals with noise
power in the radar. Thus, detection, tracking, and other functions of the radar
signal and data processors are no longer dependent on the SNR. In this case,
the S/(J+N) ratio must be calculated. More precisely,

P.G" A#
SN
J+SN = %s 2& L (10.10)
,9ERP -
—2& +kTy
* 4$R°B, +

wherek is Boltzman’s constant arifi, is the effective noise temperature.

The S/(J+N) ratio should be used in place of the SNR when calculating the
the radar equation and when computing the probability of detection. Further
more, S/(J+N) must also be used iagd of the SNR when using coherent or
non-coherent pulse integration.
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The range at which the radar canedttand perform proper measurements
for a given S/(J+N) value is defined as the burn-through range. It is given by

1

5 1
2 [%ERP&,_2 PG" A# O/ERPA’;,S)Z

Rgr = 3 “BSBKT+ T s ~83BKT. A (10.11)
2 ["BSBKTo* e S o B8BKT,Z
0 %+Nl§<° 1

MATLAB Function “sir.m”

The MATLAB function “sirm” implements Eq. (10.10). It generates plots
of the S/(J+N) versus detection range and plots of the burn-through range ver
sus the jammer ERP. It is given in Listing 10.2 in Section 10.5. The syntax is as
follows:

[SIR] = sir (pt, g, sigma, freqau,TO, loss, R, pj, bj, gj, lossj)

where

Symbol Description Units Status
pt radar peak power W input

g radar antenna gain dB input
sigma target cross section m input
freq radar operating frequency Hz input
tau radar pulsewidth seconds input
TO effective noise temperature Kelvin input
loss radar losses dB input
R range. can be single value or a vector  Km input

pj jammer peak power w input

bj jammer bandwidth Hz input

gj jammer antenna gain dB input
lossj jammer losses dB input
SIR S/(J+N) dB output

Fig. 10.2 shows some typical outputs generated by this function when the
inputs are as follows:

Input Parameter Value
pt 50KW
g 35dB
sigma 10 square meters
freq 5.6 GHz
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Input Parameter Value

tau 50 micro-seconds

TO 290

loss 5dB
R linspace(10,400,5000) Km
pj 200 Watts

bj 50 MHz

gj 10dB

lossj 0.3dB

SiJ4N)in dB

s i i i ! i i i
o] =] 100 180 200 280 300 380 400
Detection range in Km

Figure 10.2. S/(J+N) versus detection range.

MATLAB Function “burn_thru.m”

The MATLAB function“burn_thru.m” implements Eq. (10.10) and (10.11).
It generates plots of the S/(J+N) versus detection range and plots of the burn-
through range versus the jammer ERRsIgiven in Listing 10.3 in Section
10.5. The syntax is as follows:

[Range] = burn_thru (pt, g, sigma, fretau, TO, loss, phj, gj, lossj, sir0,
ERP)
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where

Symbol Description Units Status
pt radar peak power W input

g radar antenna gain dB input
sigma target cross section m input
freq radar operating frequency Hz input
tau radar pulsewidth seconds input
TO effective noise temperature Kelvin input
loss radar losses dB input
pi jammer peak power W% input
bj jammer bandwidth Hz input
gj jammer antenna gain dB input
lossj jammer losses dB input
sir0 desired SIR dB input
ERP desired ERP. can be a vector Watts input
Range burn-through range Km output

Fig. 10.3 shows some typical outputs generated by this function when the
inputs are as follows:

Input Parameter Value
pt 50KW
g 35dB
sigma 10 square meters
freq 5.6 GHz
tau 0.5 milli-seconds
TO 290
loss 5dB
Pj 200 Watts
bj 500 MHz
0j 10dB
lossj 0.3dB
sir0 15dB
ERP linspace(1, 1000, 1000) W
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Figure 10.3. Burn-through range versus ERP. (S/(J+N) = 15 dB.

10.2.2. Stand-Off Jammers (SOJ)

Stand-off jammers (SOJ) emit ECM sas from long ranges which are
beyond the defense’s lethal capabilityhe power received by the radar from
an SOJ jammer at rand is

_PG; 1’67 1 _ERP!%G7 1
4$R§ 4% ByL, 4$R§ 4% B,

(10.12)

where all terms in Eq. (10.12) are thengaas those for the SSJ case except for
G7. The gain ternG7 represents the radar antenna gain in the direction of the
jammer and is normally considet to be the sidelobe gain.

The SOJ radar equation is then computed as

= o (10.13)

s _ P#G'R)"B,
J  4$%RP @R

and when pulse compression igdswith time-bandwidth-produd®, then
Eqg. (10.13) can be written as
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224
s. _PCR BJZPC (10.14)
J 4$%ERP @R'B,L
Again, the cross-over ranggethat corresponding t8 = J; it is given by
1)4
WReo &, = ,—PthRi" ByPec; ) (10.15)
COSOI ™ 4$%RP &B Ly '

MATLAB Program “soj_req.m”

The program‘soj_req.m” implements Eqgs. (10.15); it is given in Listing
10.4 in Section 10.5. The inputs to the progtan) req.m” are the same as in
the SSJ case, with two additional inputs: the radar antenna gain on the jammer
G7 and radar-to-jammer rand®,. This program generates the same types of
plots as in the case of the SSJ. Typical output is in Fig. 10.4 utilizing the same
parameters as those in the SSJ case, with jammer peak Peweb000WV,
jammer antenna gairG; = 30dB, radar antenna gain on the jammer
G7= 10dB, and radar to jammer randg = 22.2Km.

————————

_______

__________

Relative signal or jamming amplitude - dB

————————

420 R I
10 10° 10" 10° 10°
Range nomalized to cross-over range

Figure 10.4. Target and jammer echsignals. Plots were generated using
the program “soj_req.m”.
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Again if the jamming is employed ithhe form of Gaussian noise, then the
radar receiver has to deal with the jamgsignal the same way it deals with
noise power in the radar. In this case, the S/(J+N) is

P.G" A #
* 4+
J+SN .M &L (10.16)
y%2RP &G -
* 4$R]B; +

10.3. Range Reduction Factor

Consider a radar system whose detection ré&gethe absence of jamming
is governed by

2,2
p.G% 2"
BNRE= — > (10.17)
4
%4$ %T.B FLR

The term Range Reduction Factor (RRF) refers to the reduction in the radar
detection range due to jamming. Mgeecisely, in the presence of jamming
the effective radar detection range is

Ry = R 8 RRF (10.18)

In order to compute RRF, consider daacharacterized byqg. (10.17), and
a barrage jammer whose outmpgdwer spectral density i3, (i.e., Gaussian-
like). Then the amount of jammpower in the radar receiver is

J = kT;B, (10.19)

whereT; is the jammer effective temperature. It follows that the total jammer
plus noise power in the radar receiver is given by

N; +J = KT.B, + kT,B, (10.20)

In this case, the radar detection raigyaow limited by tle receiver signal-to-
noise plus interference ratio ratithan SNR. More precisely,

s, Pth! 2
\ -
J+N" oag %om, + T, BFLR

(10.21)

The amount of reduction in the signahioise plus intedrence ratio because
of the jammer effect can be comedtfrom the difference between Egs.
(10.17) and (10.21). It is expressed (in dB) by
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-
9 = 10.08log; 1+ ?i (10.22)

e
Consequently, the RRF is

-9

RRF = 10% (10.23)
MATLAB Function “range_red_factor.m”

The function‘range_red_factor.m”implements Egs. (10.22) and (10.23); it
is given in Listing 10.5 in Section 10.5. This function generates plots of RRF
versus: (1) the radar operating frequency; (2) radar to jammer range; and (3)
jammer power. Its syntax is as follows:

[RRF] =range_red_factor (te, pj, gj, 9, freq, bj, rangej, lossj)

where

Symbol Description Units Status

te radar effective temperature K input

pj jammer peak power W input

gj jammer antenna gain dB input

g radar antenna gain on jammef dB input

freq radar operating frequency Hz input

bj jammer bandwidth Hz input

rangej radar to jammer range Km input

lossj jammer losses dB input

The following values were used to produce Figs. 10.5 through 10.7.

Symbol Value
te 500 kelvin
pi 500 KW
0j 3dB
g 45 dB

freq 10 GHz

bj 10 MHZ

rangej 750 Km
lossj 1dB
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Figure 10.5. Range reduction factor vesus radar operating wavelength. This
plot was generated using the functionrange_red_factor.m’
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Figure 10.6. Range reduction factor versus radar to jammer range. This
plot was generated using the functiotirange_red_factor.m”.
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Figure 10.7. Range reduction factor vesus jammer peak power. This plot was
generated using the functiorfrange_red_factor.m”

10.4. Chaff

In principle, chaff is compsed of a large number siall RF reflectors that
have large RCS values. Chaff is usually deployed around the target as means of
ECM. Historically, chaff was made afuminum foil; however, in recent years
most chaff is made of the more rigid fiber glass with conductive coating.

Chaff can be categorizedtintwo types: (Y denial chaff and (2) deceptive
chaff. In the first case, the chaff ispleyed in order to screen targets that
reside within or near the deployed dhelbud. In the seand case, the chaff
cloud is dispersed to complicate andswerwhelm the trddng and processing
functions of the radar by luring the traclesvay from the target and/or creating
multiple false targets.

The maximum chaff RCS occurs whtre individual chaff-dipole length
is one half the radar wavelength. The average RCS for a single dipole when
viewed broadside is

" charn: 0.88 (10.24)
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and for an average aspect angle, it drops to

" charn 0.18 7 (10.25)

where the subscripthaffl is used to indicata single dipole, andl is the
radar wavelength. The total chaff RCS within a radar resolution volume is

£ 0.18 *NpVes
¢ LbeamVR

(10.26)

where Ny, is the total number of dipole¥ is the radar resolution cell vol
ume, Vg is the chaff scattering volume, aig,,,, is the radar antenna beam
shape loss for the chaff cloud.

Echoes from a chaff cloud are typically random and have thermal noise-like
characteristics because the individualtiglr components (scatterers) have ran
dom phases and amplitudes. Due to these characteristics, chaff is often statisti
cally described by a probability distribution function. The type of distribution
depends on the nature of the chaff cloud itself, radar operating parameters, and
the viewing angle of the radar. Thus, the signal-to-chaff ratio is given by

S_ - —CCR (10.27)
Cchaff c

where" is the target RCS andCR is the chaff-cancellation-ratio. The value

of CCR depends on the type of chaff mitigation techniques adopted by the
radar signal and data processors. Sictzaf is a form of volumetric clutter,
signal processing and MTI techniques developed for rain and other forms of
volumetric clutter can be ajipd to mitigate many of the effects of chaff. The
next section provides an example of one such chaff mitigation technique.

10.4.1. Multiple MTI Chaff Mitigation Techniqué

In this section, an algorithmic (schajrapproach for detecting and tracking
targets in highly cluttered environmeigspresented. The approach is to accu
rately track the centroid of the chaffoud using a combination of medium
band (MB) and wide-band (WB) range resolution radar waveforms.

At moderate Pulse Repetition FrequesdiBRFs), differential target veleci
ties (about the centroid of the chaff clowd® detected and tracked via Doppler
banks of transversal filtetthat are tuned to detect the target velocity differ

1. This section is extracted from the paper: J. Michael Madeviilfjating the Effects
of Chaff in Ballistic Missile Defens2DQ03 IEEE Radar Confence, Huntsville, AL,
May 2003.
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ences. Through sensitivity analysis models, the theoretical lower bound on

detectable differential target velocig a function of the chaff cloud composi
tion (e.g., clutter cross séam, clutter spectral width, number of dipoles, and
clutter velocity standard deviation) dmadar related parameters (e.g., wave
form frequency, bandwidth, integratiotimes, PRFs, and signal-to-clutter
ratio) are analyzed.

Overview

A five-step approach for detecting atrdcking targets in highly cluttered
environments has been déyged. The five steps are:

1. Utilize a 1 to 5 percent MB bandwidth, high PRF radar waveform, te mea
sure the chaff cloud rargextent, centroid, angelocity growth rate.

2. Establish track on the centroid okthhaff cloud with the MB waveform.

3. Based on course track information obtained in steps 1) and 2), implement

WB track (10% or greater bandwidth waveform) on the cloud centroid.

4. Design a doppler bank of Moving Taftgindicator (MTI) transversal filters
to provide adequate gain at specifetocity increments about the WB cen
troid track.

5. Process the Multiple MTI (l%) doppler filters in parallel to detect differ
ences in target Doppler {tlr respect to the cloucentroid track velocity).
Targets are detected when integnatiat the correct Doppler difference
occurs.

Operational concerns that have beeentdfied for implenentation of this
approach include: (1) the idity of a radar to adequely track the centroid of
the chaff cloud (i.e., track ecision); (2) the ability of radar to detect small
differences in target Doppler relativette chaff cloud centid (i.e., Doppler
precision); and (3) the ability of a filtein this case, a bank of MTI's) to
achieve the necessary procesgjain to detect the target

Theoretical tracking accuracy of a chaff cloud

The single pulse thermal-noise erfgr in a velocity tacking measurement
for optimum processing can be described by

" 1

" 181#./28SNR

where# is the pulsewidth an8NR s that for the target in track. To detect tar
gets in clutter, substitute the @ifence-channel chaff-to-signal ratio 8NR.
More precisely,

(10.28)

.o 1
=
1.81#,/28 Coparf) S

(10.29)

© 2004 by Chapman & Hall/CRC CRC Press |



Fig. 10.8 shows a graph fdr; versusC,,;)S and#. This figure can be
reproduced using MATLAB prograrffiglO_8.m” given in Listing 10.6 in
Section 10.5. This graph will be utilized in the analysis and of the expe@ted M
signal processing performance.

RMS themmal errorin Hz

Pulsewidth in Milliseconds

Figure 10.8. Single pulse thermal noise error versu€, ;) S and #.

Multiple MTI (M 2) Doppler Filter Design

The M Doppler filter design is derived from the theoretical N-tap delay line
MTI canceller. The general formula foretimprovement factowas derived in
Chapter 7 (Section 7.7.2). A bank bf MTI Doppler filtersthat cover the fre
quency range from 0 to the PRF will achieve performance beyond that of a
conventional MTI. The weights are given by:

2%%-1 &
_ K)N
W, = e (10.30)

where the indeX is between 0 to N-1 and corresponds tokh&TI Doppler
filter bank. In this design, a 5-tap delaye MTI filter is considered. The trans
fer function for the overall Doppler bank is
N
HYop & - %28 B-1&T-KN & (1031)

i=1
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where

T = 1)PRF (10.32)

It follows that the magnitude of the frequency response is

|Hk%|&: ‘sip%N%T— k) Ngf( (10.33)
sin9$ 96T — k) N

The impulse response forkdh 5-tap MTI filter is

v ob & v, % &5v,%-T &10v,%—2T & (10.34)
10v,%—3T &5v,%—4T &v,%-5T &

v, is the input signal. The casponding transfer function is

Yoh & 259%in%fT & (10.35)

Fig. 10.9 shows a block diagram for thé filter. Since each filter occupies
approximately% )N t& the clutter and signal hdwidth, the combined per
formance of the M Doppler filter performance is greater than that of a single
delay-line canceller that does not utilReppler information. The clutter miti
gation performance of the 4\/Dopp|er filter, however, will likely be deter
mined by the coherence times of the target and/or the clutter.

\%
Delay by T Delayby 71 < Delay by T

5-tap MTI 5-tap MTI < 5-tap MTI

\a l Yzl YNL

Amplitude

-4/NT -3/NT -2/NT -1/NT 0 1/NT 2/NT 3/NT 4/NT

Figure 10.9. Block diagram for the M algorithm, and corresponding
frequency response ofhe MTI filters (N=8).
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Processor Implementatiodnd Simulated Results

The M filter approach outlined in thigstion requires a very accurate track
of the centroid of the chaff cloud beipgobed. As described earlier, initiation
of track on the chaff cloud centroid &hieved with a MB range resolution
waveform (step 1). As an example, assume that an X-band radar (10 GHz) is
engaging one or more ballistic targets enveloped in a chaff cloud that contains
1 million dipoles occupying a 1-kilometer range extent. Assuming that the
chaff cloud velocity disthution can be accurately modeled by Gaussian statis
tics, approximately 67% of these dipoledl reside in 333 meters of range
extent. With these assumptions, thenbined average RCS of the dipoles
(RCS,)) contained within a radar range resolution cell of this length (333 m)
can be approximated by

RCS, = 0.18Np! * = 0.188 670 00® 0.03 = 108.54= 20.4dBsm (10.36)

The RCS of a typical ballistic Reentvgghicle (RV) at forward aspect view
ing angles can be20dBsmor smaller. Therefore, the MB,,+)S for a typ
ical RV enveloped by the chaffarld assumed above can approd€dB or
greater. Using an 8-msec pulsewidth @&@diB C,,;)S, the theoretical, sin
gle pulse, minimum rms track error is approximatgly= 1Hz. At X-band
frequencies, this translatesd®ingle pulse velocity error of

|
v, = fe— = 0.015m)s (10.37)

e
Note that for a train of pulses, this veity error can be readed by a factor of
10 or more. Thus, for a typical X-bandlea, theory suggests that the track pre
cision of the chaff cloudentroid can approach 0.0015 m/s or better. This track
precision is much less than the WB range resolution capability of the radar and
therefore can be utilized to bootstitiye WB tracker (steps 2 and 3).

Assume a Gaussian chaff clutter velocity distribution and denatg. itf
Vg = 1.8m)s (>0.9m)s relative to the cloud cémid velocity), the mini
mum PRF required to meet the Nyquist sampling criterion is

2V,
PRF = fr?2879 = 240Hz (10.38)

Also, assume that a bank of Doppler MTI's (step 4) can be formed to cover this
frequency range. Note that 256 is the clos&stiltiple for implementation

with the Fast Fourier Transform (FFT)sing a 256 point FFT design, each fil

ter will contain approximately 1/256 of the total clutter velocities (about 0.03
m/s of velocity clutter per MTI Doppler filter). In addition, by utilizing the WB
track waveform, a very precise rangegpter image can b®rmed (with each
range-Doppler resolution cell containing approximately 15 cm by 0.03 m/s of
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clutter). This design effectively reductse amount of clutter that competes
with an individual target scatter by a factor of more than 40 dB, thus reducing
the C.pa5)S by this same amount.

For extreme chaff cases where the initial WB range-Doppler image S/C is
negative, an N-pulse coherent sliding window routine can be applied to the
data prior to implementing theMIgorithm. For exampl a 16 pulse coherent
sliding window can provide up to 12 dB &) G,,,; improvement. One
should ensure that the number of pulses integrated is less than the coherency
time of the target and clutteDther constraints in implementing this approach
are to ensure that the target phasesdu#t deviate very much during the inte
gration period (to ensure optimum coherent processing gain) and the target
position does not migrate to another raramd/or Doppler cell (often referred
to as range-Doppler walk). The zerogpter filter (and/omear zero Doppler
filters) can be used to perform statistarsthe clutter and to adaptively adjust
the optimal threshold setting to obtain low false alarms and high probabilities
of detection over time.

A model for the M signal processor has been developed using MATLAB.
Fig. 10.10 shows a plot of the amplitude versus range and Doppler (256x256
range-Doppler image) of three constaB® dBsm target scatterers that are
embedded in approximately -15 dBsm Gaussian white noise. In this figure, the
noise completely envelops the sigrihese modeling results are comparable
to the output of a typical range Doppler imaging radar. Fig. 10.11 shows the
results obtained by executing the first two blocks of tHesinal processor.

As expected, the three scatterers fieen above the noise and now have an
S) Gonats ratio of approximately 7 dB.

Finally, Fig. 10.12 shows the results obtained by implementing the entire top
portion of the M signal processing chain. Natempt was made to optimize
the threshold level. Instead, the threshold was manually set to -43 dB to allow
for some of the higher false alarms togeen in the figure. The largest ampli
tude false alarms are approximately el Meanwhile, the amplitudes of the
target returns have been reduced (less than 1 dB) from that of Fig. 10.11.
Therefore, theS) G, improvement in Fig. 10.12 over that shown in Fig.
10.11 is approximately 8 to 9 dB. Hence, the processing gain attributed to the
M2 signal processor is more than 20a®ve that of traditional range Doppler
processing.

In summary, one concludes that the Kignal processing algorithm for
detecting and tracking ballistic missile targets in highly cluttered environments
can provide better than 20 dB) G.,,,:; improvement over that of traditional
range Doppler processing techniques alone.
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Figure 10.10. Range -Dopgr image for three targets embedded in chaff.
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Figure 10.11. Image from Fig. 10.10fter a 16-point sliding window coherent
integration process.
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Figure 10.12. Image from Fig.10.11 after applying the M algorithm.

10.5. MATLAB Program and Function Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is advised tourethese programs with different input
parameters.

Listing 10.1. MATLAB Function “ssj_req.m”
function [BR_range] = ssj_req (py, freq, sigma, b, loss, ...
pi, bj, gj, lossj)
% This function implements Eq. (10.9)
c = 3.0e+8§;
lambda = c / freq;
lambda_db = 10*log10(lambda”2);

if (loss == 0.0)
loss = 0.000001;

end

if (lossj ==0.0)
lossj =0.000001;

end

sigmadb =10*log10(sigma);
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pt_db = 10*log10(pt);
b_db = 10*log10(b);
bj_db = 10*log10(bj);
pi_db = 10*log10(pj);
factor = 10*1og10(4.0 *pi);

BR_range = sqrt((pt * (10”(g/10)) * sigma * bj * (10™(lossj/10))) / ...

(4.0 * pi * pj * (107(gj/10)) * b * ...
(107(loss/10)))) / 1000.0
s_at br=pt_db +2.0* g+ lambda_db + sigmadb - ...
3.0 * factor - 4.* 10*log10(BR_range) - loss
index =0;
for ran_var = .1:10:10000
index = index + 1;
ran_db = 10*log10(ran_var * 1000.0);

ssj(index) = pj_db + gj + lambda_db + g + b_db - 2.0 * factor - ...

2.0*ran_db - bj_db - lossj + s_at_br;
s(index) = pt_db + 2.0 * g + lambda_db + sigmadb - ...
3.0 *factor - 4.*ran_db - loss + s_at_br;

end
ranvar = .1:10:10000;
ranvar = ranvar ./ BR_range;
semilogx (ranvar,s,'k',ranvar,ssj,'k-.");
axis([.1 1000 -90 40])
xlabel ('(Range normalized to cross-over range’);
legend('Target echo','SSJ")
ylabel (‘Relative signal or jamming amplitude - dB');
grid
pj_var = 1:1:1000;
BR_pj = sqrt((pt * (10*(g/10)) * sigma * bj * (10*(lossj/10))) ...

J (4.0 * pi .* pj_var * (107(gj/10)) * b * (10”(loss/10)))) ./ 1000;
pt_var = 1000:100:10e6;
BR_pt = sqrt((pt_var * (107(g/10)) * sigma * bj * (10"(lossj/10))) ...

J (4.0 * pi .* pj * (107(gj/10)) * b * (10”(loss/10)))) ./ 1000;
figure (2)
subplot (2,1,1)
semilogx (BR_pj,'k")
xlabel (‘fJammer peak power - Watts');
ylabel ('Burn-through range - Km")
grid
subplot (2,1,2)
semilogx (BR_pt,'k")
xlabel (‘'Radar peak power - KW")
ylabel ('Burn-through range - Km")
grid
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Listing 10.2. MATLAB Function “sir.m”

function [SIR] = sir (pt, g, freq, sigmaau,TO, loss, Ryj, bj, gj, l0ss));
c = 3.0e+8§;

k = 1.38e-23;

%R = linspace(rmin, rmax, 1000);
range = R .* 1000;

lambda = c / freq;

gj = 107%(gj/10);

G = 107(g/10);

ERP1 = pj * gj / lossj;

ERP_db = 10*log10(ERP1);

% Calculate Eq. (10.10)

Ar = lambda *lambda * G / 4 /pi;
numl = pt * tau * G * sigma * Ar;
demol = 472 * pi*2 * loss .* range.M4;
demo2 =4 * pi * bj .* range."2;
num2 = ERP1 * Ar,

valll = numl ./ demol,;

val2l = num2 ./demoz2;

sir =valll ./ (val21 + k * TO);

SIR = 10*1og10(sir);

figure (1)

plot (R, SIR,'K")

xlabel (‘Detection range in Km');
ylabel ('S/(J+N) in dB")

grid

Listing 10.3. MATLAB Function “burn_thru.m”

function [Range] = burn_thru (pt, g, freq, sigma, tau, TO, loss, pj, bj, gi,
lossj,sir0,ERP);

c = 3.0e+8;

k =1.38e-23;

%R = linspace(rmin, rmax, 1000);
sir0 = 107(sir0/10);

lambda = c / freq;

gj = 107(gj/10);

G =107(g/10);

Ar = lambda *lambda * G / 4 /pi;
%ERP = linspace(1,1000,5001);
num32 = ERP .* Ar;

demo3 =8 *pi *bj *k * TO;
demo4 = 472 * pir2 * k * TO * sir0;
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vall = (hum32 ./ demo3).72;

val2 = (pt * tau * G * sigma * Ar)/(4"2 * pi*2 * loss * sir0 * k *T0);
val3 = sqgrt(vall + val2);

val4 = (ERP .* Ar) ./ demo3;

Range = sqrt(val3 - val4) ./ 1000;

figure (1)

plot (10*log10(ERP), Range,'k")

xlabel (" Jammer ERP in dB')

ylabel (‘Burnthrough range in Km")

grid

Listing 10.4. MATLAB Function “soj_req.m”

function [BR_range] = soj_req (pt, g, sigma, b, freq, loss, range, ...

pj, bj,gj, lossj, gprime, rangej)
% This function implements equations for SOJs
c = 3.0e+8;
lambda = c / freq;
lambda_db = 10*log10(lambda”2)

if (loss == 0.0)
loss = 0.000001;

end

if (lossj == 0.0)
lossj =0.000001;

end

sigmadb = 10*log10(sigma);

range_db = 10*log10(range * 1000.);

rangej_db = 10*log10(rangej * 1000.)

pt_db = 10*log10(pt);

b_db = 10*log10(b);

bj_db = 10*log10(bj);

pj_db = 10*log10(pj);

factor = 10*1og10(4.0 *pi);

BR_range = ((pt * 107(2.0*g/10) * sigma * bj * 10”(lossj/10) * ...
(rangej)”2) / (4.0 * pi * pj * 10”(gj/10) * 10" (gprime/10) * ...
b * 107(loss/10)))*.25 / 1000.

s_at br=pt_db+2.0*g+lambda_db + sigmadb - ...
3.0 * factor - 4.0 * 10*log10(BR_range) - loss

index =0;

for ran_var = .1:1:1000;
index = index + 1;
ran_db = 10*log10(ran_var * 1000.0);
s(index) = pt_db + 2.0 * g + lambda_db + sigmadb - ...

3.0 *factor - 4.0 *ran_db - loss + s_at_br;
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soj(index) =s_at_br-s_at_br;
end
ranvar = .1:1:1000;
%ranvar = ranvar ./BR_range;
semilogx (ranvar,s,'k',ranvar,soj,'k-.");
xlabel ('(Range normalized to cross-over range’);
legend('Target echo’,'SOJ")
ylabel (‘Relative signal or jamming amplitude - dB');

Listing 10.5. MATLAB Function “range_red_factor.m”

function RRF =range_red_factor (te, jgjj, g, freq, bj, rangej, lossj)
% This function computes the range reduction factor and produces
% plots of RRF versus wavelength, radar to jammer range, and jammer power
c = 3.0e+8;
k = 1.38e-23;
lambda = c / freq;
0j_10 = 107( gj/10);
g_10 = 107( g/10);
lossj_10 = 10”(lossj/10);
index = 0;
for wavelength = .01:.001:1
index = index +1;
jamer_temp = (pj * gj_10 * g_10 *wavelength*2) / ...
(4.0"2 * pi*2 * k * bj * lossj_10 * (rangej * 1000.0)"2);
delta =10.0 * 1og10(1.0 + (jamer_temp / te));
rrf(index) = 10”(-delta /40.0);
end
w =0.01:.001:1;
figure (1)
semilogx(w,rrf,'k")
grid
xlabel (‘Wavelength in meters")
ylabel ('Range reduction factor’)
index = 0;
for ran =rangej*.3:1:rangej*2
index = index + 1;
jamer_temp = (pj * gj_10 * g_10 *wavelength”*2) / ...
(4.0n2 * pir2 * k * bj * lossj_10 * (ran * 1000.0)"2);
delta =10.0 * 1og10(1.0 + (jamer_temp / te));
rrfl(index) = 10”(-delta /40.0);
end
figure(2)
ranvar = rangej*.3:1:rangej*2 ;
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plot(ranvar,rrfl,'k’)
grid
xlabel ('Radar to jammer range - Km’)
ylabel (‘Range reduction factor’)
index = 0O;
for pjvar = pj*.01:1:pj*2
index = index + 1,
jamer_temp = (pjvar * gj_10 * g_10 *wavelength"2) / ...
(4.0n2 * pi"2 * k * bj * lossj_10 * (rangej * 1000.0)"2);
delta =10.0 * 1og10(1.0 + (jamer_temp / te));
rrf2(index) = 10~(-delta /40.0);
end
figure(3)
pjvar = pj*.01:1:pj*2;
plot(pjvar,rrf2,'k")
grid
xlabel (‘fJammer peak power - Watts")
ylabel (‘Range reduction factor’)
%%6%%%%%%% %% %% %% % %% %% %% %% %% %% %% %
% Use this input file to reproduce Figs. 10.5 through 10.7
clear all
te =500.0; % radar effective temp. in Kelvin
pj= 500; % jammer peak power in W
gj=3.0; % jammer antenna gain in dB
g=45.0; % radar antenna gain
freq = 10.0e+9;% radar operating frequency in Hz
bj=10.0e+6; % radar operating bandwidth in Hz
rangej = 750.0;% radar to jammer range in Km
lossj=1.0; % jammer losses in dB

Listing 10.6. MATLAB Program “fig10_8.m”

% Use this program to reproduce Fig. 10.8 in the text
clear all
close all
tau = linspace(.25,10,500);
taum = tau .* 1e-3;
C_S=[-20-100 10};
c_s=10C_S./10);
for n = 1:size(C_S,2)
vall =1/ (1.81*sqrt(2*c_s(n)));
sigma(n,:) = vall ./ taum;
end
figure (1)
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semilogy(tau,sigma(l,:),'k',tau,sigmaf2k-- ',tau,sigma(3,:),'k-.", ...
tau,sigma(4,:),'k:";

xlabel('Pulsewidth in Milliseconds')

ylabel('RMS thermal error in Hz")

legend('-20 dB C/S','-10 dB €/'0 dB C/S','10 dB C/S")

grid
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Chapter 11 Radar Cross Section
(RCS)

In this chapter, the phenomenon of target scattering and methods of RCS
calculation are examined. Target RCS fliations due to aect angle, fre-
guency, and polarization are presenteddar cross section characteristics of
some simple and complex targets are also introduced.

11.1. RCS Definition

Electromagnetic waves, with any sgdéa polarization, are normally dif-
fracted or scattered in alirections when inciderdn a target. These scattered
waves are broken down into two paffhe first part is made of waves that
have the same polarization as the réogi antenna. The other portion of the
scattered waves will have a diffetepolarization to which the receiving
antenna does not respond. The two polarizations are orthogonal and are
referred to as the Principal Polarization (PP) and Orthogonal Polarization
(OP), respectively. The intensity of thackscattere@nergy that has the same
polarization as the radar’s receiving amta is used to define the target RCS.
When a target is illuminated by RFezgy, it acts like an antenna, and will
have near and far fields. Waves reflecdad measured in theear field are, in
general, spherical. Alternatively, ithe far field the wavefronts are decom-
posed into a linear comlation of plane waves.

Assume the power density of a waveident on a target located at rarige
away from the radar iBy; , as illustrated=ig. 11.1. The amount of reflected
power from the target is

P, = ! Pp (11.1)
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scattering object

radar
Figure 11.1. Scattering object located at rang&®

I denotes the target cross section. Defihg as the power density of the
scattered waves at the receiving antenna. It follows that

Py, = P, " R°$ (11.2)
Equating Egs. (11.1) and (11.2) yields

2 PDr)
I = 4"R}V—, (11.3)
o

and in order to ensure that the radeareiving antenna is in the far field (i.e.,
scattered waves received by the anteamegplanar), Eq. (11.3) is modified

P
I = 4"R%Iim (=29,
R+ * Di

The RCS defined by Eqg. (11.4) is oftesferred to as #ier the monostatic
RCS, the backscattered RCS, or simply target RCS.

(11.4)

The backscattered RCS is measured fafilwaves scattered in the direction
of the radar and has the same poldioraas the receiving antenna. It repre-

sents a portion of the total scattered target RCS |, wheré . Assuming a
spherical coordinate system definieg (-Q /0 ), then at range - the target
scattered cross section is a function.d ( ). Let the ang|65( ) define the
direction of propagation of the incident waves. Also, let the anglg¥ { )

define the direction of propagation thfe scattered waves. The special case,
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when. = ., and ( =/, , defines the matatic RCS. The RCS measured
by the radar at angleg1.; andl1/ is called the bistatic RCS.

The total target scattered RCS is given by

o
L= 2 D1#0 $in d d (11.5)
14=0.4=0

The amount of backscattered waves from a target is proportional to the ratio
of the target extent (size) to the wavejth, 3 , of the incident waves. In fact, a
radar will not be able to detect targets much smaller than its operating wave-
length. For example, if weather radars use L-band frequency, rain drops
become nearly invisible tthe radar since they emuch smaller than the
wavelength. RCS measurements ie thhequency region, where the target
extent and the wavelength are compberalre referred to as the Rayleigh
region. Alternatively, the frequencygien where the target extent is much
larger than the radar operating wavelénigtreferred to athe optical region.

In practice, the majority of radar apgations fall within the optical region.

The analysis presented in this book mainly assumes far field monostatic
RCS measurements in the optical oegiNear field RCS, bistatic RCS, and
RCS measurements in the Rayleigh oegwill not be considered since their
treatment falls beyond this book’s intéed scope. Additionally, RCS treatment
in this chapter is mainly concernedtiwiNarrow Band (NB) cases. In other
words, the extent of the target und@ensideration falls within a single range
bin of the radar. Wide Band (WB) R@%asurements will be briefly addressed
in a later section. Wide band radar rargns are small (typically 10 - 50 cm);
hence, the target under consideration may cover many range bins. The RCS
value in an individual range bin corresponds to the portion of the target falling
within that bin.

11.2. RCS Prediction Methods

Before presenting the fikrent RCS calculation methods, it is important to
understand the significance of RCS peéidn. Most radar systems use RCS as
a means of discrimination. Therefore, aete prediction of t@et RCS is crit-
ical in order to design and develagbust discrimination algorithms. Addition-
ally, measuring and identifying the adtering centers (sources) for a given
target aid in developing RCS reduction techniques. Another reason of lesser
importance is that RCS calculationsquire broad and extensive technical
knowledge; thus, many scientists and scholars find the subject challenging and
intellectually motivating. Two categories of RCS prediction methods are avail-
able: exact and approximate.
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Exact methods of RCS prediction are very complex even for simple shape
objects. This is because they require s@\gither differential or integral equa-
tions that describe the scattered waves from an object under the proper set of
boundary conditions. Such boundary conditions are governed by Maxwell’s
equations. Even when exact solutions achievable, they are often difficult to
interpret and to program using digital computers.

Due to the difficulties associated ttvithe exact RCS prediction, approxi-
mate methods become the viable alternative. The majority of the approximate
methods are valid in the optical regi@nd each has its own strengths and lim-
itations. Most approximate methods can predict RCS within few dBs of the
truth. In general, such variation is quite acceptabby radar engineers and
designers. Approximate methods araially the main source for predicting
RCS of complex and extended targets sashaircrafts, ships, and missiles.
When experimental results are availaltkey can be used to validate and ver-
ify the approximations.

Some of the most commonly used approximate methods are Geometrical
Optics (GO), Physical Optics (PO), @wretrical Theory of Diffraction (GTD),
Physical Theory of Diffraction (PTD)and Method of Equivalent Currents
(MEC). Interested readers may consult Knott or Ruck (see bibliography) for
more details on these and other approximate methods.

11.3. Dependency on Aspect Angle and Frequency

Radar cross section fluctuates asuacfion of radar aspect angle and fre-
guency. For the purpose of illustratideptropic point scatterers are consid-
ered. An isotropic scatterer is one tkattters incident waves equally in all
directions. Consider the geometry shown in Fig. 11.2. In this case, two unity
(1m2) isotropic scatterers are aligned and placed along the radar line of sight
(zero aspect angle) at a far field rarigeThe spacing between the two scatter-
ers is 1 meter. The radar aspect angthes changed from zero to 180 degrees,
and the composite RCS of the two scatterers measured by the radar is com-
puted.

This composite RCS consists of the superposition of the two individual radar
. . . 2 .
cross sections. At zero aspect anghe, composite RCS i8m”~ . Taking scat-
terer-1 as a phase reference, whenas$gect angle is varied, the composite
RCS is modified by the phase that corresponds to the electrical spacing
between the two scatterers. For examn@t aspect angl#04 , the electrical
spacing between the two scatterers is
25#1.05 cos#101 $$

elec-spacing= 3 (11.6)

3 is the radar operating wavelength.
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radar line of sight S¢atl scat2
(@) ¢ =T o - .

radar ‘<T>
1
(b) ‘>~— fadar ine of sight__ _ -~ 0.707m
radar o N B

Figure 11.2. RCS dependency on aspectgle. (a) Zero aspect angle, zero
electrical spacing.(b) 454 aspect angle1.4143 electrical spacing.

Fig. 11.3 shows the composite RCS corresponding to this experiment. This
plot can be reproduced using MATLAB functithas_aspect.m”given in List-
ing 11.1 in Section 11.9. Adearly indicated by Fig. 11.3, RCS is dependent
on the radar aspect angle; thus, knowledge of this constructive and destructive
interference between the indiial scatterers can be very critical when a radar
tries to extract the RCS of complex oraneuvering targets. This is true
because of two reasons. First, theeg$@ngle may be continuously changing.
Second, complex target RCS can be viewed to be made up from contributions
of many individual scattering points disiuted on the target surface. These
scattering points are often called sedhg centers. Many approximate RCS
prediction methods generate a set of scattering centers that define the back-
scattering characteristics sfich complex targets.

MATLAB Function “rcs_aspect.m”

The function“rcs_aspect.m”computes and plots the RCS dependency on
aspect angle. Ityatax is as follows:

[res] = rcs_aspect (scat_spacing, freq)

where
Symbol Description Units Status
scat_spacing scatterer spacing meters input
freq radar frequency Hz input
rcs array of RCS versus dBsm output
aspect angle
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Frequency is 8GHz; scatterrer spacing is 0.25m
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Figure 11.3. lllustration of RCS dependency oraspect angle.

Next, to demonstrate RCS dependepecyfrequency, coider the experi-
ment shown in Fig. 11.4. In this caseptfar field unity isotropic scatterers are
aligned with radar line of sight, arile composite RCS is measured by the
radar as the frequency is varied from 8 GHz to 12.5 GHz (X-band). Figs. 11.5
and 11.6 show the composite RCS versus frequency for scatterer spacing of

0.25 and 0.75 meters.

Figure 11.4. Experiment setup which demonstrates RCS
dependency on frequencygdist = 0.1, or 0.7 m.
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X=Band; scatterer spacing is 0.25m

Aot

RCS in dBsm

g a5 9 a5 10 10.5 1 11.5 12 12.5
Frequency - GHz

Figure 11.5. lllustration of RCS dependency on frequency.

X=Band; scatterer spacing is 0.75m

A RIETRT e ekt

2o H----f--f-- AR R -

RCS in dBsm

- i i i i
8 85 o 9.5 10 106 1 116 12 1256
Frequency - GHz

Figure 11.6. lllustration of RCS dependency on frequency.
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The plots shown in Figs. 11.5 and 11.6 can be reproduced using MATLAB
function“rcs_frequency.m”given in Listing 11.2 in Section 11.9. From those
two figures, RCS fluctuation as a functiohfrequency is evident. Little fre-
quency change can cause serious RCS$uation when the scatterer spacing is
large. Alternatively, when scattering ters are relatively close, it requires
more frequency variation to produce significant RCS fluctuation.

MATLAB Function “rcs_frequency.m”

The function“rcs_frequency.m”computes and plots the RCS dependency
on frequency. Its syntax is as follows:

[rcs] = res_frequency (sdaspacing, frequ, freql)

where
Symbol Description Units Status
scat_spacing scatterer spacing meters input
freql start of frequency band Hz input
frequ end of frequency band Hz input
rcs array of RCS versus dBsm output
aspect angle

Referring to Fig. 11.2, assume that the two scatterers complete a full revolu-
tion about the radar line of sight 1, = 3sec . Furthermore, assume that an
X-band radar f; = 9GHz ) is used to eet (observe) those two scatterers
using a PRF, = 300Hz for a period of 3 seconds. Finally, assume a NB
bandwidthBygz = 1IMHz and a WB bandwid®,,z; = 2GHz . It follows that
the radar's NB and WB range resolutions are respectively equal to
6Ryg = 150m and6Rg = 7.5cm .

Fig. 11.7 shows a plot of the detected range history for the two scatterers
using NB detection. Clearly, the two scatterers are completely contained within
one range bin. Fig. 11.8 shows the same; however, in this case WB detection is
utilized. The two scattere@me now completely resa@d as two distinct scat-
terers, except during the times where both point scatterers fall within the same
range bin.

11.4. RCS Dependency on Polarization

The material in this section covers tvapics. First, a review of polarization
fundamentals is presented. Second,decept of the target scattering matrix
is introduced.
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Figure 11.7. NB detection of théwo scatterers shown in Fig. 11.2.

100

200

20 40 80 0
range bins

Figure 11.8. WB detection of théwo scatterers shown in Fig. 11.2.
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11.4.1. Polarization

The x and y electric field components for a wave traveling along the positive
z direction are given by

E, = E;sin#rt—kz$ (11.7)

E, = E;sin#7t—-kz+8$ (11.8)

wherek = 2" % ,7 is the wave frequency, the angle is the time phase
angle whichg, lead&, , and, finalllg; andE, are, respectively, the wave
amplitudes along the x and y directioMghen two or more electromagnetic
waves combine, their electric fields antegrated vectorially at each point in
space for any specified time. In genethE combined vector traces an ellipse
when observed in the x-y plane. This is illustrated in Fig. 11.9.

The ratio of the major to the minor axes of the polarization ellipse is called
the Axial Ratio (AR). When AR is unityhe polarization ellipse becomes a cir-
cle, and the resultant wave is thedlezh circularly polaized. Alternatively,
whenE; = 0 andAR = * the wave becomes linearly polarized.

Egs. (11.7) and (11.8) can be combinedjive the instantaneous total elec-

tric field,
E = aE, Sin#7 t —kz $ éyEzsin#Y t—kz+8% (11.9)
Y
E2
A >
E
- X

N\

4 E,

Figure 11.9. Electric field compomnts along the x and y directions.
The positive z directian is out of the page.
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WherefiX ancﬁy are unit vectors along thand y directions, respectively. At
z=0, E,=E;sin#7t$ and E, = E,sin#/t+8$, then by replacing
sin#7 t $by the ratioE, %, and by using trigonometry properties Eq. (11.9)
can be rewritten as

2 2
Ex_2EECO8 B _ ing @ (11.10)

2 EE B
Note that Eq. (11.10) has no dependency on

In the most general case, the polarization ellipse may have any orientation,
as illustrated in Fig. 11.10. The and@le s called the tilt angle of the ellipse. In
this case, AR is given by

OA
AR = =— #: AR * 11.11
OB $ (11.12)

WhenE; = 0, the wave is said to be linearly polarized in the y direction,
while if E, = 0 the wave is said to Henearly polarizedn the x direction.
Polarization can also be lineat an angle of454 wherkE; = E, and
9 = 454. WhenE,; = E, and8 = 904 , the wave is said to be Left Circu-
larly Polarized (LCP), while iB = —904 the wave is said to Right Circularly
Polarized (RCP). It is a common notatito call the lineapolarizations along
the x and y directions by the names horizontal and vertical polarizations,
respectively.

Figure 11.10. Polarizatiorellipse in the general case.
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In general, an arbitrarily polarizeceetric field may be written as the sum of
two circularly polarizedields. More precisely,
> - -
E=E+E (11.12)

— —
where E; andg; are the RCP and LCEIds, respectively. Similarly, the
RCP and LCP waves can be written as

e
Er = Ey+jEy (11.13)
- = =

E. = E,—jE, (11.14)

— —
where E, andE, are the fields withrtieal and horizoral polarizations,
respectively. Combining Egs. (11.13) and (11.14) yields

Eg = @ (11.15)
J2

E = Eq+IEy (11.16)
J2

Using matrix notation Egs. (11.15) and (11.16) can be rewritten as

Erl _ 1|14 EH:.<EH
Sty -
Bal = 1|1 1||Er _ .1 1|En
H i ﬁL‘ J M ! [EV] e

For many targets the scattered waves kdlle different polarization than the
incident waves. This phenomenon is known as depolarization or cross-polar-
ization. However, perfect flectors reflect waves in su@hfashion that an inci-
dent wave with horizontal polarization remains horizontal, and an incident
wave with vertical polarization rerms vertical but is phase shiftet804
Additionally, an incident wave whitis RCP becomes LCP when reflected,
and a wave which is LCP becomes Ré&iter reflection from a perfect reflec-
tor. Therefore, when a radar usesR_@aves for transmission, the receiving
antenna needs to be RCP polarizedriter to capture the PP RCS, and LCR to
measure the OP RCS.
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Example:
Plot the locus of the electricefd vector for the following cases:

Y 2"p » o

casel:E#0z $= axcos&] ot + ?Z) + ayﬁcos&(7 ot + ?Z)
D2 e o '~ o

case 2: E#0z$= aXcosggj ot + ?Z) + aysmg] ot + ?Z)

2 - 2"2 - 2"
case 3: E#0z$= axcosg] ot + ?Z) + aycosgj t+ ==+ )
case 4E#0z$= a cos&? ot + —Z) + ayﬁcosgj ot + ZL + 1),
Solution:

The MATLAB program “examplell_I'iwas developed to calculate and
plot the loci of the electric fields. Figs. 11.11 through 11.14 show the desired
electric fields’ loci. See ltthg 11.3 in Section 11.9.

Elecmc Field Locus; case 1

Figure 11.11. Linearly polarized electric field.
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Electric Field Locus; case 2
e R
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Figure 11.12. Circularly polarized electric field.

Electric Field Locus; case 3

I‘\,_

=]
o

Figure 11.13. Elliptically polarized electric field.
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Figure 11.14. Elliptically polarized electric field.

11.4.2. Target Scattering Matrix

Target backscattered RCS is commonly described by a matrix known as the
scattering matrix, and is denoted < When an arbitrariljinearly polarized
wave is incident on a target, the backscattered field is then given by

ES E. E
Y=Y = S11 512 ! (11.19)
E; E, S21 S22 | E,

The superscripts ansl  denote incidantl scattered fids. The quantities

s; are in general complex and the suriygts 1 and 2 represent any combina-
tion of orthogonal polarizations. More precisely,= HOR , @d VOL
From Eq. (11.3), the backattered RCS is related to the scattering matrix com-
ponents by the following relation:

TP 2||s |2|S |2
= 4" R°| P P12 (11.20)
I 2 2
21 22 |321| |322|
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It follows that once a scattering matiix specified, the target backscattered
RCS can be computed for any combinatid transmitting ad receiving polar-

izations. The reader is advised to seelRfor ways to calculate the scattering
matrix ; S<.

Rewriting Eqg. (11.20) in terms of the different possible orthogonal polariza-
tions yields

ESH = {SHH SHV] EI_H (11.21)
SvH Sw | Ey,

s i
Er — [SRR SRL} Er (11.22)

SR SLL E:_

By using the transformation matrii<  in Eq. (11.17), the circular scattering
elements can be computed froine linear scattering elements

|:SRR Sﬂ - .T<|:SHH SHV] [1 0]1'(1 (11.23)
SLR SLL Syn Swy| [0 -1

and the individual components are

_ ~Swt S~ ity tsun$

SRR >
s = Syt Syp + ity —Syu $
RL = >
) (11.24)
_ Syt Sun =iy =Sy $
SR = )
_ Switsyutitbyytsi$
S = >

Similarly, the linear scattang elements are given by

|:SHH SHV] _ ;T<—1|:SRR SRIE| {1 0};T< (11.25)
Svh Svy Str S 10 -1

and the individual components are
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s = —Sgr*T SRt SlR—SLL
HH =
2

Syu = j’tsRR_SLR; SrL—S.L P

. (11.26)
_ —IBrrt SlR—SrL—S.L $
Svv = 5

SRrY SLL TISRL T SR

Syv = >

11.5. RCS of Simple Objects

This section presents examples afckscattered radar cross section for a
number of simple shape objects. Incdkes, except for the perfectly conduct-
ing sphere, only optical region approximations are presented. Radar designers
and RCS engineers consider the perfectly conducting sphere to be the simplest
target to examine. Even this case, the complexitf the exact solution, when
compared to the optical region appmxition, is overwhelming. Most formu-
las presented are Physical Optics (RPproximation forthe backscattered
RCS measured by a far field radar ie thirection (@ ), adllustrated in Fig.
11.15.

In this section, it is assumed that the radar is always illuminating an object
from the positive z-direction.

Direction to
" receiving radar

Figure 11.15. Direction of antena receiving backscattered waves.
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11.5.1. Sphere

Due to symmetry, waves scattered from a perfectly conducting sphere are
co-polarized (have the same polarizatiasith the incident waves. This means
that the cross-polarizedbkscattered waves are pieally zero. For example,
if the incident waves were Left CirculpiPolarized (LCP), then the backscat-
tered waves will also be LCP. However, because of the opposite direction of
propagation of the backscattered wavksy are considered to be Right Circu-
larly Polarized (RCP) by the receiviramtenna. Therefore, the PP backscat-
tered waves from a sphere are LCP, while the OP backscattered waves are
negligible.

The normalized exact backscattered RiGSa perfectly conducting sphere
is a Mie series given by

*

I i ( krd,_,#kr $-nJ #kr $)
— = Sgﬂ?).f_) #1 §#2n+1%_ = j;l%( > (11.27)
r &krH, i#kr $-nH; HKr $

n=1

>

(Jptkr $)}
<§J—|ﬁl§qkr $

wherer is the radius of the spheke= 2" % , 3 is the wavelengthl,, is the
spherical Bessel of the first kind ofder n, and—lﬂEl$ is the Hankel function of
order n, and is given by

Hf?:;kr $= JHKkr $+jY Hkr $ (11.28)

Y, is the spherical Bessel function oeteecond kind of order n. Plots of the
normalized perfectly conducting sphere R&a function of its circumference

in wavelength units are shown in Figs. 11.16a and 11.16b. These plots can be
reproduced using the functidrcs_sphere.m”given in Listing 11.4 in Section

11.9.

In Fig. 11.16, three regions are idemdi First is the optical region (corre-
sponds to a large sphere). In this case,

I ="r r»3 (11.29)

Second is the Rayleigh regionr(all sphere). In this case,

I @"r r $ r«3 (11.30)

The region between the optical and Rayleigh regions is oscillatory in nature
and is called the Mie or resonance region.
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Figure 11.16a. Normalized backscattered RCS for a perfectly conducting

sphere.
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Figure 11.16b. Normalized bakscattered RCS for a perfectly

conducting sphere using semi-log scale.
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The backscattered RCS for a perfectiynaocting sphere is constant in the
optical region. For this reason, radar designers typically use spheres of known
cross sections to experimentally cadite radar systems. For this purpose,
spheres are flown attached to balloons. In order to obtain Doppler shift,
spheres of known RCS are dropped out of an airplane and towed behind the
airplane whose velocity is known to the radar.

11.5.2. Ellipsoid

An ellipsoid centered at (0,0,0) is shown in Fig. 11.17. It is defined by the
following equation:

g—;).z + %).2 + @.2 =1 (11.31)

One widely accepted approxation for the ellipsoibackscattered RCS is
given by
w2122
| = abc (11.32)
taZusin, $rcos $+ biasin. $usin/ §+cPcos. §

Whena = b, the ellipsoid becomes roll symmetric. Thus, the RCS is inde-
pendent of , and Eq. (11.32) is reduced to

Direction to
( receiving radar

R
N
N
.
.
/,/ \
N

Figure 11.17. Ellipsoid.
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n b402
I = (11.33)
Hal#sin, §+ cZ#cos. §§

and for the case whem= b = ¢ ,

1o="¢? (11.34)

Note that Eq. (11.34) defines the backscattered RCS of a sphere. This should
be expected, since under the coiodi a = b = ¢ the ellipsoid becomes a
sphere. Fig. 11.18a shows the backspadt&kCS for an ellipsoid versus  for

| = 454, This plot can be generated using MATLAB progrdigll_18a.m”

given in Listing 11.5 in Section 11.9. Note that at normal incidence @04 )
the RCS corresponds to that of a sphemadiusc , and is often referred to as

the broadside specular RCS value.

Ellipsoid with (a,b,c) =(0.15, 0.2, 0.95) meter

10 T T T T T T T T
; ' : : ; ; — ohi="
(- A ST SN S 0, S S L phi =457 |
=== phi=a0"

RCS - dBsm

20 a0 80 B0 100 120 140 180 120
Aspect angle, Theta[Degrees]

Figure 11.18a. Ellipsoid backsattered RCS versus aspect angle.

MATLAB Function “rcs_ellipsoid.m”

The function“rcs_ellipsoid.m” computes and plots the RCS of an ellipsoid
versus aspect angle. Itgéven in Listing 11.6 in Section 11.9, and its syntax is
as follows:

[res] = res_ellipsoid (a, b, ¢, phi)
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where

Symbol Description Units Status
a ellipsoid a-radius meters input
b ellipsoid b-radius meters input
c ellipsoid c-radius meters input
phi ellipsoid roll angle degrees input
rcs array of RCS versus dBsm output
aspect angle

Fig. 11.18b shows thGUI workspace associatedtiwvfunction. To execute
this GUI type“rcs_ellipsoid_gui” from the MATLAB Command window.

RCE -dBsm

25
o]

20 40 B0 80 100 120 140 180 180
Aspect angle - degrees

elipsoid a-radius - m | 25 ellipsoid c-radius - m | 335
elipzoid b-radius - m | -20 roll angle - deg. | 45.

Figure 11.18b. GUI workspaceassociated with the functiorf'rcs_ellipsoid.m”.

11.5.3. Circular Flat Plate

Fig. 11.19 shows a circular flat plate of radius , centered at the origin. Due
to the circular symmetry, the backscette RCS of a circular flat plate has no
dependency ot . The RCS is only aspect angle dependent. For normal inci-
dence (i.e., zero aspect andieg backscattered RCS for a circular flat plate is
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43"
I == . =04 (11.35)
3
For non-normal incidencewo approximations fothe circular flat plate
backscattered RCS for any lineapglarized incident wave are

| = 3 (11.36)
8" sin #tant $§
2J,#2krsin. $2
L=kt 1—§ #eos. $ (11.37)

2Kkrsin.

wherek = 2" % , and);#A$ is the first ordspherical Bessel function evalu-
ated atA . The RCS corresponding to Egs. (11.35) through (11.37) is shown in
Fig. 11.20. These plots can be reproduced using MATLAB function
“rcs_circ_gui.m”.

Direction to
z A . receiving radar

Figure 11.19. Circular flat plate.

MATLAB Function “rcs_circ_plate.m”

The function‘rcs_circ_plate.m” calculates and plots the backscattered RCS
from a circular plate. It is given in ltiag 11.7 in Section 11.9; its syntax is as

follows:
[rcs] = res_circ_plate (r, freq)
where
Symbol Description Units Status
r radius of circular plate meters input
freq frequency Hz input
rcs array of RCS versus aspect angle dBsn outpyit
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Freguency =10 GHz
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- - - - : — Using Eq.(11.37)
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Figure 11.20. Backscattered RCS for a circular flat plate.

11.5.4. Truncated Cone (Frustum)

Figs. 11.21 and 11.22 show the geometry associated with a frustum. The half
cone angleB is given by

-1 $_ 1y
L

tanB = (11.38)

Define the aspect angle at normal derice with respect to the frustum’s
surface (broadside) as, . Thus, wherdrustum is illuminated by a radar
located at the same side as the cone’s small end, the.gngle  is

.n = 904-B (11.39)
Alternatively, normal incidence occurs at

.n =904+ B (11.40)

At normal incidence, ongpproximation for the baskattered RCS of a trun-
cated cone due to a lineapylarized incident wave is
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Figure 11.21. Trurcated cone (frustum).

Figure 11.22. Definitionof half cone angle.
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39 39
8" ﬂz - Zl % .
I = ——=——=——tanB#sin. ,— cos. ,tanB 11.41
o 93sin. n n $ (L4

where3 is the wavelength, ag z,  are defined in Fig. 11.21. Using trigo-
nometric identities, Eq. {141) can be reduced to

R
" 93 #eosB §

For non-normal incidence, the backiseeed RCS due to a linearly polarized
incident wave is

(11.42)

. _ 2
_ 3ztant‘SS|n. cos. tarB) (11.43)

" 8"sin &sin. tarB + cos.

wherez is equal to eithezy @,  depending on whether the RCS contribu-
tion is from the small or the large end of the cone. Again, using trigonometric
identities Eq. (11.43) (assuming the radar illuminates the frustum starting from
the large end) is reduced to

_ 3ztanB

| =
' 8" sin

#an#t B 9% (11.44)

When the radar illuminates the frustwtarting from the small end (i.e., the
radar is in the negative z direction in Fig. 11.21), Eq. (11.44) should be modi-
fied to

_ 3ztanB

| =
' 8" sin

#antt +B 8% (11.45)

For example, consider a frustum defined b = 20.94%cm .
r, = 2.057cm, r, = 5.75&m. It follows that the half cone angle 194
Fig. 11.23a shows a plot of its RCS when illuminated by a radar in the positive
z direction. Fig. 11.23b shows the sathimg, except in this case, the radar is
in the negative z direction. Note tHat the first case, manal incidence occur
at 1004, while for the second case it oczat804 . These plots can be repro-
duced using MATLAB functiorfrcs_frustum_gui.m”given in Listing 11.8 in
Section 11.9.

MATLAB Function “rcs_frustum.m”

The function‘rcs_frustum.m” computes and plots the backscattered RCS of
a truncated conic sectionhe syntax is as follows:

[res] = res_frustum (rl, r2, freq, indicator)
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Viewing from large end
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Figure 11.23a. Backscattered RCS for a frustum.
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Figure 11.23b. Backscattered RCS for a frustum.
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where

Symbol Description Units Status
rl small end radius meters input
r2 large end radius meters input

freq frequency Hz input
indicator indicator = 1 when viewing from none input
large end
indicator = 0 when viewing from
small end
rcs array of RCS verswaspect angle dBsm output

11.5.5. Cylinder

Fig. 11.24 shows the geometry assadatvith a finite length conducting
cylinder. Two cases are presented: fitke general case of an elliptical cross
section cylinder; second, the case ofraudar cross section cylinder. The nor-
mal and non-normal incidence backsa&iteRCS due to a linearly polarized
incident wave from an elliptical cylinder with minor and major radii beipg
andr, are, respectively, given by

222
2"Hror
L= 21 — (11.46)
3;ritcog $+rosin/ $<
2.2 .
3rsrisin.
| = 21! (11.47)

8" #cos §;rf#cos/ §+r§#sin/ §<°

For a circular cylinder of radius ,eh due to roll symmetry, Eqgs. (11.46)
and (11.47), respectively, reduce to

w12
p = 2HT (11.48)
“n 3
| = 3rsin. (11.49)
8" #icos §

Fig. 11.25a shows a plot of the cyer backscattered RCS for a symmetri-
cal cylinder. Fig. 11.25b shows the bacattered RCS for aglliptical cylin-
der. These plots can be reproduced using MATLAB functios cylinder.m”
given in Listing 11.9 in Section 11.9.
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Figure 11.24. (a) Ellipticalcylinder; (b) circular cylinder.

Circular Cylinder at Frequency = 3.5 GHz
10 T T T T T T T T

RCS - dBsm

0 20 40 80 B0 100 120 140 180 180
Aspect angle - degrees

Figure 11.25a. Backscattered RC®r a symmetrical cylinder,r = 0.125m
andH = 1m.

© 2004 by Chapman & Hall/CRC CRC Press |



Elliptic Cylinder at Frequency = 3.5 GHz
20 T T T T T T T T

RCS - dBsm
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o 20 40 A0 0 100 120 140 160 120
Aspect angle - degrees

Figure 11.25b. Backscattered RC$or an elliptical cylinder, r; = 0.125m,
r,=0.05m,andH = 1m.

MATLAB Function “rcs_cylinder.m”

The function'‘rcs_cylinder.m” computes and plotsetbackscattered RCS of
a cylinder. The syaix is as follows:

[rcs] = res_cylinder(rl, r2, h, freq, phi, CylinderType)

where

Symbol Description Units Status

rl radius rl1 meters input

r2 radius r2 meters input

h length of cylinder meters input

freq frequency Hz input

phi roll viewing angle degrees input
CylinderType ‘Circular,’ i.e., r; =1, none input

‘Elliptic,” i.e., ry 11,
rcs array of RCS versus aspect angle dBsm outpLPt
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11.5.6. Rectangular Flat Plate

Consider a perfectly conducting rectangukan flat platein the x-y plane as
shown in Fig. 11.26. The two sides of the plate are denot@aby 2kand . For
a linearly polarized incide wave in the x-z plane, the horizontal and vertical
backscattered RCS are, respectively, given by

b? 1 Fov |2
P s LA b T (11.50)
b2 1 ] 1 2
"=t n ! ZH[E_%# an ! 4H% h (11.51)
wherek = 2" % and
| ,, = costkasin $- jsmt%% #,,€ (11.52)
Jka="%s
b, == (11.53)
2V [
J2" #ka g%
. —jkasin.
|y = #1 + sin. $ (11.54)
#—sin. $
. jkasin.
Ly = #—sin. " (11.55)
# +sin. $

z A

radar

Figure 11.26. Rectangular flat plate.
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ej#Zka—" 92 $

gy =1 o kol (11.56)
jtka+" %4 $
= 4 - (11.57)
J2" #a$
e—jkasin
! = 11.58
8H ™ 1 _sin. (11.58)
ejkasin.
! = 11.59
4H 7 1+ sin. (11.59)
ej#Qka+#‘ 92
! 5H — l—m (11.60)

Egs. (11.50) and (11.51) are valéhd quite accuratéor aspect angles
04: .. 80. For aspect angles ne@®4 Rosbtained by extensive fitting
of measured data an empirical eagsion for the RCS. It is given by

I + 0

2
. @:114_—_}*_[1_—_] _3_") | (11.61)
ly = F cosy2ka G
3 2#22.98 $ 22298 $ Séz 5 E

The backscattered RCS for a perfectiynducting thin rectangular plate for
incident waves at any( can be approximated by

_ 4" a’b’(sintaksin. cos/$ sin#bksin. sin/ $2
g & aksin. o3 bksin s/ - feos $ e

Eq. (11.62) is independent of the polarization, and is only valid for aspect
angles. : 204 . Fig. 11.27 shows an exdenfor the backscattered RCS of a
rectangular flat plate, foboth vertical (Fig. 11.27a) and horizontal (Fig.
11.27b) polarizations, using Egs. (11.5@)1.51), and (11.62). In this example,

a = b =10.1&m and wavelength3 = 3.3%m . This plot can be repro-
duced using MATLAB functiorircs_rect_plate” given in Listing 11.10.

MATLAB Function “rcs_rect_plate.m”

The function‘rcs_rect_plate.m”calculates and plots the backscattered RCS
of a rectangular flat platéts syntax is as follows:

[rcs] = res_rect_plate (a, b, freq)

1. Ross, R. A., Radar CrosscBen of Rectangular Flat &8e as a Function of Aspect
Angle, IEEE Trans, AP-14,320, 1966.
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Verical Polarization, Freguency =9 GHz, a=01016m b=01016m
10 T T T T T T

'— Eq.(1l1.50)
— - Eq.ii1.62)

RCS dBsm

Aspect angle - deg

Figure 11.27a. Backscattered RC®r a rectangular flat plate.

Horizontal Folarization, Freguency =9 GHz, a =01016m b=01016m
10 : : . . . : ; ;
— Eq.(11.51)
— - Eq.(11.62)

RCS dBsm

-60 1 1 1 i| 1 1 1

Aspect angle - deg

Figure 11.27b. Backscattered RC$or a rectangular flat plate.
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where

Symbol Description Units Status
a short side of plate meters input
b long side of plate meters input
freq frequency Hz input
rcs array of RCS verswsspect angle dBsm output

Fig. 11.27c shows the GUI worlage associated with this function.

Go | it

o IR
I -
e CTC

Figure 11.27c. GUI workspacessociated with the functiorf'rcs_rect_plate.m”.

11.5.7. Triangular Flat Plate

Consider the triangular flat plate defthby the isosceles triangle as oriented
in Fig. 11.28. The backscattered R€C& be approximated for small aspect

angles (. : 304 ) by

4" A
32

#eos. $! 0

_ i#sinB $—#sintA0R $8< + 1 o,
B2-#\% $

0

1 o, = 0.254sin/ $;#2a % $os /sinA—sin/ sin2B<

whereB = kasin. co$ ,A = kbsin. sif , andA = ab%
dentin the plané = 0 , the RCS reduces to
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(11.64)

(11.65)

. For waves inci-



Figure 11.28. Coordinates for a perfety conducting isosceles triangular plate.

" p2 i i
= s §{#S|n?§+#sm28—428 ﬂ (11.66)
3 B 4B

and for incidence in the plarie =" 92

(11.67)

2 .
_4"A #sin#A 92 36
= T #cos §| B

3 #oa $

Fig. 11.29 shows a plot for the naatized backscattered RCS from a per-
fectly conducting isosceles triangulflat plate.In this examplea = 0.2m,
b = 0.75m. This plot can be reproduced using MATLAB function
“rcs_isosceles.m'given in Listing 11.11 in Section 11.9.

MATLAB Function “rcs_isosceles.m”

The function“rcs_isosceles.m’calculates and plots the backscattered RCS
of a triangular flat plate. Its syntax is as follows:

[rcs] = rcs_isosceles (a, b, freq, phi)

where
Symbol Description Units Status
a height of plate meters input
b base of plate meters input
freq frequency Hz input
phi roll angle degrees input
rcs array of RCS verswsspect angle dBsm output
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Figure 11.29. Backscattered RCS fa perfectly conducting triangular
flat plate, a = 20cm andb = 75cm .

11.6. Scattering Frona Dielectric-Capped Wedge

The geometry of a dielectric-capped wedge is shown in Fig. 11.30. It is
required to find to the field expressiofts the problem of scattering by a 2-D
perfect electric conducting (PEC) wedgapped with a dielectric cylinder.
Using the cylindrical coordinates systethe excitation due to an electric line
current of complex amplitudg, located at# 0/ , $ results in TMncident
field with the electric field expression given by

E, J KIE!TUO HE |1 KL $ (11.68)

The problem is divided into three reg#on, II, and Il shown in Fig. 11.30.
The field expressions may be assumed to take the following forms:
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Figure 11.30.Scattering from dielectric-capped wedge.

E.J? a,J #k# $inv K% $nv $#K% $
nJO

E' 37 fo, 3, #k¢ e, H2 et $Binvs KoeBsiny 8, K06 § (11.69)

nJo

EM 37 d H?% $inv §K% $nv $iK% $

nJo

where

vJ ni&

28K A< (170

while J # $is the Bessel function of order and argument lsifrf%&S is the
Hankel function of the second kind of order and argument . From Max-
well's equations, the magnetic field componéit is related to the electric
field component, for a TKwave by

H, J _1 &, (11.71)
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Thus, the magnetic field componeH} in the various regions may be written
as

Hg J Jlkl ') a, JRtk# $inv $K% $nv $HK% $

nJo
(11.72)

Hg J _IL? #&)HJB#I#&C”HF“% $sinv#$ Kv%ekinv § Ko $
J* Ho nao

HY J _'L? d,H” Pt Binv §K% $nv $HK% $
J- nJO

Where the prime indicated deatives with respect to the full argument of the

function. The boundary conditions require that the tangential electric field

components vanish at the PEC surfatiso, the tangential field components

should be continuous across the aeleltric interface and the virtual bound-

ary between region Il andl]lexcept for the discontinuity of the magnetic field
at the source point. Thus,

E,JOat $J%2&K ' (11.73)
ElJE g ot 41a (11.74)
HeJH! g

Ell J E|||

o at #I# (11.75)

Hg KHg J K.JEQ

The current density, may be given in Fourier series expansion as

I,
J.J e K sm" Koo 35in" K% )
(¢$ $, $J2&K%< i Hrookin" £ K%$ 1176

The boundary condition on the PEC surfecautomatically satisfied by thie
dependence of the electric field Eqg. (11.72). From the boundary conditions in
Eqg. (11.73)

? a J #ka$in v EK% $nv $FK% B
n30 (11.77)

2 1, 3, #kad\ ¢ H % kalBin Vs KoBinv & K% $

nJo
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L’) a,JRtk a$in v $K% $nv Sk B

il
J' Uo nJo (11.78)

WL? #anvF#ka$\l G I—FZ*#ka&in W K%Einv § K% $
J' UO nJo
From the boundary conditions in Eq. (11.75), we have

? 1,3, e, e HZ e, Binvis K%eSinv §, K% 9
nJo ) (11.79)
? d H”%i $inv $K% $nv $§K% $

nJO

k

"

? #an\E#I#O e, HP Pt &inv#’p K%Sinv §, K6 §
no . (11.80)
_L? d,H” Pt $inv $K% $nv k% $
J' |vlo nJo
2 I

— D sSin"#H KWNEBin" B K%
28KUK " # 5o in " % K% $

Since Egs. (11.77) and (11.80) hold for/all , the series on the left and right
hand sides should be equal term by term. More precisely,

a,J, ikl b JF k&N ¢ H'E K§ (11.81)
E)aan#lga& :)i b J8kadN ¢ HFH k£ (11.82)
b,J,# K% $NC, H> ik, $ 3 HI* £1e, $ (11.83)
$ Zj)o Ie
b, IRk e HP2Pet $3d, H? Bt wmlg (11.84)
From Eqgs. (11.81and (11.83), we have
1
a,J mﬁnﬂ J,#kadN ¢ H2 %% ke (11.85)
Jvim"ﬂ (11.86)

T
\Y 0
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Multiplying Eqg. (11.83) b)A-Li’E2$ and Eq. (11.84) Wﬁf2$ , and by subtraction
and using the Wronskian of the Bessel and Hankel functions, we get

JK_Fole (11.87)
"7 2K UK fiet, §
Substitutingb,, in Egs. (11.81) and (11.82) and solvingcfor  yield

¢ g &l (os, o KPSl KaB k] #a Pia § o
" 28K UK Y " kHPBika$), & a$ k H% ke P ik A

From Egs. (11.86) through (11.88),  may be given by

dnJ &'pﬂle Ig{i&%()(o kJ\F#ka$;L #ka& K‘J #a $3 Kia &J #l# %11.89)
28K A kHETa$), ka® K H kb Pika$ W

which can be written as

HkJ #Igaﬁ?,?#ka %k KHBka P, #, ng

|
Q

4 g &l Q kIR aRH"Hka #, B, K F$2$#|4¢0%8(11'90)
" 28K UK KH?P#a$l, % a i k H% keb P #k a$ %
o Q
S 2

Substituting for the Hankel function in terms of Bessel and Neumann func-
tions, Eq. (11.90) reduces to

ngv#lga‘I;ﬁzR kd Y #,9KY. Ba § 1 ¥, $K b
4, k)&l g k Ik adpy #a Q) # K9, katy $|#ow1.91)
28K ' kH”Pka$, #%a® k H % ke P #k a$ Q

With these closed form expressions for the expansion coeffiedgnts,
c, andd, , the field components, i, can be determined from Eq.
(11.69) and Eq. (11.72), respectivelyteknatively, the magnetic field compo-
nentH. can be computed from

1 1,
j7M - Oy

H.J

(11.92)
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Thus, theH_ expressions for the three regions defined in Fig. 11.30 become

H! JK#? avJ,(k-)cosw B )siny( &K )
7M- nJO

HY JK=E9 vl (k)N 6 HY(k ) Sosv 18 )sin o & ) %7

~ nJo

H J K9 d.vH? (k-)cosv( & )sinv( &K )
J7M- 350
11.6.1. Far Scattered Field

In region lll, the scattered field mde found as the difference between the
total and incident fields. Thus, using Eqgs. (11.68) and (11.69) and considering

the far field condition{ + * ) we get

EMJENEJ / é“k#’? d, I sin \$ K%9sinv §, K%)

10 (11.94)

. ,— 1 1,
EJKI— i7M - O

Note thatd,, can be written as

d J K%&f (11.95)
where
l—kJiIgaﬂIR\Hkaﬂ Y & IKY #ka] 11 W§ 9K b
#3 48 Q kJPtkafpy tka § # K9, katY $|#°#§§§11-96)

28K ' kHZPika$), % a i k H% kb P #k a$ Q

Substituting Eq. (11.95) into Eq. (11.94), the scattered figldb is
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—7M,| P
S = —0e _2J_ k-
z ] k- € (11.97)

( )
27 danSinZ#/ -B $inZ#/0—B$e”‘ oCosH 0},;

& -0 '

11.6.2. Plane Wave Excitation

For plane wave excitam (-,+ * ), the expression in Egs. (11.87) and
(11.88) reduce to

| . i
b, JK &! gl j 2 K
286K %K ' &,

o3 8l o [P o WPaS) Kl k] Ha P Ha
"T28KUK U\ &, kHPPika$), K a k HH ke Pk a$

where the complex amplitude of the incident plane w&ye, , can be given by

én.gs)

E,J Kle% Ae"jk'o (11.99)
4\ "k,

In this case, the field components can be evaluated in regions | and Il only.

11.6.3. Special Cases

Case I: B = A (reference at bisectorfhe definition ofZ reduces to

3 n&
2HK "' $

and the same expression will hold for the coefficients (Bith A ).

(11.100)

Case Il: B = 0 (reference at face); thefdetion of Z takes on the form

" n& (11.101)
2&K"

and the same expression will hold for the coefficients (Bite O ).

Case lll: k; + * (PEC cap); Fields at regidrwill vanish, and the coeffi-
cients will be given by

© 2004 by Chapman & Hall/CRC CRC Press |



b, KA Hole pesye ¢

" 2RK UK
&l esy, o) #al
%9 2ekonc T g 10
&lpl, Y#kadl # 81, KA S E $ |
" ek o HP%ka $
1
aJ m$lﬁq1~lv#ka$\l G H* % kgl 0

Note that the expressionsbf aggd  will yield zero tangential electric field
at- = a when substituted in Eq.(11.69).

Case IV: a+ 0 (no cap); The expressions thie coefficients in this case
may be obtained by settinky = k , or by taking the limitaas  approaches
zero. Thus,

6.3 &', 5!#%& kIPtka$l #a k) Ha P KA %0
28KAK 'y kH”Pka$l, *a 6 kH*% ke P #ka )

|
b, JK—ttole sy o

28K UK
1
a,J Wéﬁ)ﬂ\lv#ka&l G H* % ke b
11.103
e aBP tha $7% b, KH Pka 8, #, § 'Q( )
TR ka1, 80, 14 1% §O
"7 2K g kH?Pka$] % a$ k H ke P #k a$ Q
o) Q
9 e

|
Ikl ;¢
28K A

Case V:a+ 0 andB =A = 0 (semi-infinite PE@lane); In this case, the
coefficients in Eq. (11.103) become valid with the exception that the values of
v reduce ton9% . Once, the electrielfi componentE, in the different
regions is computed, the corresponding magnetic field compdhent can be
computed using Eq. (11.71) and the magnetic field compoHent may be
computed as

H ok 1
j7M - oY

(11.104)
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MATLAB Program “Capped_WedgeTM.m”

The MATLAB program"Capped_WedgeTM.ngiven in listing 11.12, along
with the following associated functioriBielCappedWedgeTMFields_Ls.m"
“DielCappedWedgeTMFields_PW"polardb.m", "dbesselj.m;'"dbesselh.m",
and "dbessely.m'given in the following listings, calculates and plots the far
field of a capped wedge ithe presence of an eldctline source field. The
near field distribution is also computed for both line source or plane wave exci-
tation. All near field components aremsputed and displayed, in separate win-
dows, using 3-D output format. The program is also capable of analyzing the
field variations due to the cap parders. The user can execute this MATLAB
program from the MATLAB command wilow and manually change the input
parameters in the designated section in the program in order to perform the
desired analysis. Alternatively, ti€apped_Wedge GUI.nfunction along
with the"Capped_Wedge_GUIL.figllle can be used to simplify the data entry
procedure.

A sample of the data entry screen of tBapped_Wedge GUIrogram is
shown in Fig. 11.31 for the case of a line source exciting a sharp conducting
wedge. The corresponding far field pattern is shown in Fig. 11.32. When keep-
ing all the parameters in Fig. 11.3kthame except that selecting a dielectric
or conducting cap, one obtains the far field patterns in Figs. 11.33 and 11.34,
respectively. It is clear from theseytires how the cap parameters affect the
direction of the maximum radiation ofdHine source in the presence of the
wedge. The distribution of the componenfsthe fields in the near field for
these three cases (sharp edge, diétecapped edge, and conducting capped
edge) is computed and shown in Figs. 11.35 to 11.43. The near field distribu-
tion for an incident plane wave fielth these three types of wedges is also
computed and shown in Figs. 11.44 to 11.52. These near field distributions
clearly demonstrated the effect or capgpaeters in altering the sharp edge sin-
gular behavior. To further illustrateisheffect, the following set of figures
(Figs. (11.53) to (11.55)) presents thear field of the electric component of
plane wave incident on a half planétwa sharp edge, dielectric capped edge,
and conducting capped edge.

The user is encouraged to experimeith this program as there are many
parameters that can be altered tongegathe near and far field characteristic
due to the scattering fromwedge structure.
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Electromagnetic Scattering from a Capped Wedge {TMz)

— Input-Data ———— — Souce-Type
Reference N ¥-axis = & Line Source Far Fiokd ez
Alpha 0 Degrees
o Nesar Field -
Bets i Dearess FEE R
Cap radius 013 Lambda
—— Mear Field Region
Rho_0 05 Lambda
wdimension 15 a0
[Lambdal Nz
PH_D 150 Degrees
yedimension 1 N &0
{Lambda] y
Frequency 3.0e+8 Hz
epst 3 — Cap-Type
] " Dielectric
Lty
© Conductor
le 10 Ampere
& Hone Plot

Figure 11.31. The parameters for computing the far field pattern of a 60 degrees
wedge excited by a line source

Total Far Field (Ez) [dB]
20

150

210

Figure 11.32. The far field pattern ofa line source near a conducting wedge
with sharp edge charaterized by the parameters in Fig. 11.31.
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Total Far Field (Ez) [dB]

Figure 11.33. The far fieldpattern of a line source near a conducting wedge with
a dielectric capped edge characterized by the parameters in Fig.
11.31

Tatal Far Field (Ez) [dB]

180

Figure 11.34. The far field pattern of a line source near a conducting wedge with
a conducting capped edge characterized by the parameters in Fig.
11.31.
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Ez [Line source excitation]

Figure 11.35. TheE, near field pattern of a line source near a conducting wedge
with a sharp edge characterized byhe parameters in Fig. 11.31.

T, Hp [Line source excitation)

Figure 11.36. TheH_ near field pattern of a line source near a conducting wedge
with a sharp edge characterized byhe parameters in Fig. 11.31.
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M, Hé: [Line source excitation]

Figure 11.37. TheH, near field pattern of a line source near a conducting wedge
with a sharp edge characterized byhe parameters in Fig. 11.31.

Ez [Line source excitation]

Figure 11.38. TheE, near field pattern of a line source near a conducting wedge
with a dielectric cap edgecharacterized by Fig. 11.31.
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M, Hp [Line source excitation)

Figure 11.39. TheH_ near field patterrof a line source near a conducting wedge
with a dielectric cap edgecharacterized by Fig. 11.31.

M, H¢: [Line source excitation]

Figure 11.40. TheH, near field pattern of line source near a conducting wedge
with a dielectric cap edgecharacterized by Fig. 11.31.
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Ez [Line source excitation]

Figure 11.41. TheE, near field pattern of a line source near a conducting wedge
with a conducting capped edge characterized by Fig. 11.31.

Ez [Line source excitation]

Figure 11.42. TheH_ near field patterrof a line source near a conducting wedge
with a conducting capped edge characterized by Fig. 11.31.
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M, Hé: [Line source excitation]

Figure 11.43. TheH, near field pattern of a line source near a conducting wedge
with a conducting capped edge characterized by Fig. 11.31.

Mear Field (Ez) [Flane wave excitation]

Figure 11.44. TheE, neafield pattern of a plane waveincident on a conducting
wedge with a sharp edge dracterized by Fig. 11.31.

© 2004 by Chapman & Hall/CRC CRC Press |



", HR [Plane wave excitation]

Figure 11.45. TheH_ near field patterrof a plane wave incident on a conducting
wedge with a sharp edge dracterized by Fig. 11.31.

M, H¢ [Plane wave excitation]

2.5

Figure 11.46. TheH, near field pattern of plane wave incident on a conducting
wedge with a sharp edge dracterized by Fig. 11.31.
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Mear Field (Ez) [Flane wave excitation]

Figure 11.47. TheE, near field patterrof a plane wave incident on a conducting
wedge with a dielectric edge characterized by Fig. 11.31.

T, HP [Plane wave excitation]

0.5

Figure 11.48. TheH_ near field patterrof a plane wave incident on a conducting
wedge with a dielectric edge characterized by Fig. 11.31.
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7, He [Plane wave excitation]

2.5

0.5

Figure 11.49. TheH, near field pattern ok plane wave incident on a conducting
wedge with dielectric capped edge characterized by Fig. 11.31.

Mear Field (Ez) [Flane wave excitation]

Figure 11.50. TheE, near field patterrof a plane wave incident on a conducting
wedge with a conducting capped edgeharacterized by Fig. 11.31.
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", HR [Plane wave excitation]

Figure 11.51. TheH_ near field patterrof a plane wave incident on a conducting
wedge with a conducting capped edgeharacterized by Fig. 11.31.

M, H¢ [Plane wave excitation]

Figure 11.52. TheH, near field pattern of plane wave incident on a conducting
wedge with a conducting capped edgeharacterized by Fig. 11.31.

© 2004 by Chapman & Hall/CRC CRC Press |



Mear Field (Ez) [Flane wave excitation]
-1.8 | 1.4

—

0
¥

Figure 11.53. TheE, near field pattern of plane wave incident on a half plane
with sharp edge. All other paraneters are as in Fig. 11.31.

-1

0.5

0.5 0.5

42
.

=

=

Mear Field (Ez) [Plane wave excitation]

Figure 11.54.E, near field pattern of gplane wave incident on a half plane with
a dielectric capped edge. All other parameters are as in Fig. 11.31.
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Mear Field (Ez) [Flane wave excitation]

0.5

4 05 0 05
y

Figure 11.55.E, near field pattern of glane wave incident on a half plane with
a conducting capped edge. All otheparameters are as in Fig. 11.31.

11.7. RCS of Complex Objects

A complex target RCS is normally computed by coherently combining the
cross sections of the simple shapes tinakke that target. In general, a complex
target RCS can be modeled as a groumdifvzidual scattering centers distrib-
uted over the target. The scatteringtees can be modeled as isotropic point
scatterers (N-point model) or as simhape scatterers (N-shape model). In
any case, knowledge of the scattering centers’ locations and strengths is critical
in determining complex target RCS. Tléstrue, because as seen in Section
11.3, relative spacing and aspect angles of the individual scattering centers
drastically influence the overall targeCS. Complex targets that can be mod-
eled by many equal scattering centans often called Swerling 1 or 2 targets.
Alternatively, targets that have one dominant scattering center and many other
smaller scattering centers are known as Swerling 3 or 4 targets.

In NB radar applications, contributioffiiom all scatterig centers combine
coherently to produce a single value foe target RCS at every aspect angle.
However, in WB applications, a targefy straddle mangsange bins. For each
range bin, the average RCS extractedhgyradar represents the contributions
from all scattering centers that fall within that bin.
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As an example, consider a circutadinder with two perfectly conducting
circular flat plates on both end&ssume linear polarization and ldt = 1m
andr = 0.125m . The backscattered RCS fdstbbject versus aspect angle is
shown in Fig. 11.56. Note that aspect angles close @3  ah804 the RCS
is mainly dominated by the circular patwhile at aspect angles close to nor-
mal incidence, the RCS is dominatedtbg cylinder broadside specular return.
The reader can reproduced thigot using the MATLAB program
“rcs_cyliner_complex.m’'given in Listing 11.19 in Section 11.9.
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Figure 11.56. Backscattered RC$®r a cylinder with flat plates.

11.8. RCS Fluctuations and Statistical Models

In most practical radar systems there is relative motion between the radar
and an observed target. Therefores RCS measured by the radar fluctuates
over a period of time as a function of frequency and the target aspect angle.
This observed RCS is referred to as the radar dynamic cross section. Up to this
point, all RCS formulas discussed in thlsapter assumed a stationary target,
where in this case, the backscattered RCS is often called static RCS.

Dynamic RCS may fluctuate in amplitudad/or in phase. Phase fluctuation
is called glint, while amplitude flucttian is called scintillation. Glint causes
the far field backscattered wavefronts from a target to be non-planar. For most
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radar applications, glint introduces linearors in the radar measurements, and
thus it is not of a major concern. Wever, in cases where high precision and
accuracy are required, glican be detrimental. Examples include precision
instrumentation tracking radar systemmsssile seekers, and automated aircraft
landing systems. For more details on glint, the reader is advised to visit cited
references listed in the bibliography.

Radar cross-section scintillation can vary slowly or rapidly depending on the
target size, shape, dynamics, and its relative motion with respect to the radar.
Thus, due to the wide variety of RCS scintillation sources, changes in the radar
cross section are modeled statisticallyy random processes. The value of an
RCS random process at any given time defines a random variable at that time.
Many of the RCS scintillation models were developed and verified by experi-
mental measurements.

11.8.1. RCS Statistical Miels - Scintillation Models

This section presents the most comiyiarsed RCS statistical models. Sta-
tistical models that apply to sea, land, and volume clutter, such as the Weibull
and Log-normal distributions, will be discussed in a later chapter. The choice
of a particular model depends heavily on the nature of the target under exami-
nation.

Chi-Square of Degree2m

The Chi-square distribution applies to a wide range of targepxffits given
by

m &Aﬂ 'm‘le—m! %4y

f# $:m

'\ 0 (11.105)

tav

where[ #m $ is the gamma function wigngumentm , and ,, is the average
value. As the degree gets larger the distribution corresponds to constrained
RCS values (narrow range of valjeBhe limitm+ * corresponds to a con-
stant RCS target (steady-target case).

Swerling | and Il (Chi-Square of Degree 2)
In Swerling |, the RCS samples mee=d by the radar are correlated

throughout an entire scan, but are uncoteeldrom scan to scan (slow fluctu-
ation). In this case, thedfis

f# $= '—1-expg(— 'L-). '\ 0 (11.106)
v !

av

where! ., denotes the average RCS oVéaadet fluctuation. Swerling Il tar-
get fluctuation is more rapid than S\weg |, but the measements are pulse to
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pulse uncorrelated. Swerlings | and Il apply to targets consisting of many inde-
pendent fluctuating point scatterers of approximately equal physical dimen-
sions.

Swerling Il and IV (Chi-Square of Degree 4)
Swerlings Il and IV have the samédf, and it is given by

f# $= %exp&— 'Z—I '\ 0 (11.107)
! *av

Tav

The fluctuations in Swerling Il are similar to Swerling I; while in Swerling
IV they are similar to Serling Il fluctuations. Swédings Il and IV are more
applicable to targets that can benesented by one dominant scatterer and
many other small reflectors. Fig. 11.57 shows a typical plot opttie for
Swerling cases. This plot can be reproduced using MATLAB program
“Swerling_models.m'given in Listing 11.20 in Section 11.9.
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Figure 11.57. Probability densities for Swerling targets.

11.9. MATLAB Program and Function Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is advised tourethese programs with different input
parameters.
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Listing 11.1. MATLAB Function “rcs_aspect.m”

function [rcs] = rcs_aspect (scat_spacing, freq)
% This function demonstrates the effect of aspect angle on RCS.
% Plot scatterers separated by scat_spacing meter. Initially the two scatterers
% are aligned with radar line of sight. The aspect angle is changed from
% 0 degrees to 180 degrees and the equivalent RCS is computed.
% Plot of RCS versus aspect is generated.
eps = 0.00001;
wavelength = 3.0e+8 / freq;
% Compute aspect angle vector
aspect_degrees = 0.:.05:180.;
aspect_radians = (pi/180) .* aspect_degrees;
% Compute electrical scatterepacing vector in wavelength units
elec_spacing = (11.0 * scat_spacing / wavelength) .* cos(aspect_radians);
% Compute RCS (rcs = RCS_scatl + RCS_scat?)
% Scatl is taken as phase reference point
rcs = abs(1.0 + cos((11.0 * pi) .* elec_spacing) ...
+i*sin((11.0 * pi) .* elec_spacing));
ICS = rcs + eps;
rcs = 20.0*log10(rcs); % RCS in dBsm
% Plot RCS versus aspect angle
figure (1);
plot (aspect_degrees,rcs,'k');
grid;
xlabel (‘aspect angle - degrees");
ylabel (RCS in dBsm);
%title (' Frequency is 3GHz; scatterer spacing is 0.5m’);

Listing 11.2. MATLAB Function “rcs_frequency.m”

function [rcs] = rcs_frequency (scat_spacing, frequ, freql)
% This program demonstrates the dependency of RCS on wavelength
eps = 0.0001;
freq_band = frequ - freql;
delfreq = freq_band / 500.;
index = 0;
for freq = freql: delfreq: frequ
index = index +1;
wavelength(index) = 3.0e+8 / freq;
end
elec_spacing = 2.0 * scat_spacing ./ wavelength;
rcs = abs (1 + cos((11.0 * pi) .* elec_spacing) ...
+i*sin((11.0 * pi) .* elec_spacing));
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rcs = rcs + eps;

rcs = 20.0*log10(rcs); % RCS ins dBsm
% Plot RCS versus frequency

freq = freql:delfreq:frequ;

plot(freq,rcs);

grid;

xlabel('Frequency");

ylabel('RCS in dBsm’);

Listing 11.3. MATLAB Program “example11l_1.m”

clear all

close all

N = 50;

wct = linspace(0,2*pi,N);

% Case 1

ax1 = cos(wct);

ayl = sqrt(3) .* cos(wct);

M1 = moviein(N);

figure(1)

xc =0;

yc=0;

axis image

hold on

forii = 1:N
plot(axl(ii),ayl(ii),>r");
line([xc ax1(ii)],[yc ay1(ii)]);
plot(axl,ayl,'g9";
M1(ii) = getframe;

end

grid

xlabel('Ex’)

ylabel('Ey")

title('Electric Field Locus; casel')

% case 2

ax3 = cos(wct);

ay3 = sin(wct);

M3 = moviein(N);

figure(3)

axis image

hold on

forii = 1:N
plot(ax3(ii),ay3(ii),>r");
line([xc ax3(ii)],[yc ay3(ii)]);
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plot(ax3,ay3,'d";
M3(ii) = getframe;
end
grid
xlabel('Ex")
ylabel('Ey")
title('Electric Field Locus; case 2')
rho = sqrt(ax3.22 + ay3./2);
major_axis = 2*max(rho);
minor_axis = 2*min(rho);
aspect3 = 10*log10(major_axis/minor_axis)
alpha3 = (180/pi) * atan2(ay3(1),ax3(1))
% Case 3
ax4 = cos(wct);
ay4 = cos(wct+(pi/6));
M4 = moviein(N);
figure(4)
axis image
hold on
forii= 1:N
plot(ax4(ii),ay4(ii),>r");
line([xc ax4(ii)],[yc ay4(i)]);
plot(ax4,ay4,'g")
MA4(ii) = getframe;
end
grid
xlabel('EXx")
ylabel('Ey")
title('"Electric Field Locus; case 3)
rho = sqrt(ax4.2 + ay4."2);
major_axis = 2*max(rho);
minor_axis = 2*min(rho);
aspect4 = 10*log10(major_axis/minor_axis)
alpha4 = (180/pi) * atan2(ay4(1),ax4(1))
end
% Case 4
ax6 = cos(wct);
ay6 = sqrt(3) .* cos(wct+(pi/3));
M6 = moviein(N);
figure(6)
axis image

hold on
forii= 1:N
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plot(ax6(ii),ay6(ii),>r");
line([xc ax6(ii)],[yc ay6(ii)]);
plot(ax6,ay6,'g")
M6(ii) = getframe;
end
grid
xlabel('Ex")
ylabel('Ey")
title('Electric Field Locus; case 4")
rho = sqrt(ax6.22 + ay6."2);
major_axis = 2*max(rho);
minor_axis = 2*min(rho);
aspect6 = 10*log10(major_axis/minor_axis)
alpha6 = (180/pi) * atan2(ay6(1),ax6(1))

Listing 11.4. MATLAB Program “rcs_sphere.m”

% This program calculates the back-scattered RCS for a perfectly
% conducting sphere using Eq.(11.7), and produces plots similar to Fig.2.9
% Spherical Bessel functions are computed using series approximation and
recursion.
clear all
eps =0.00001;
index = 0;
% kr limits are [0.05 - 15] ===> 300 points
for kr = 0.05:0.05:15
index = index + 1,
sphere_rcs =0. + 0.%;

fl =0.+1.7%;
f2 =1.+0.%;
m =1;
n =0;
q =-1;

% initially set del to huge value
del =100000+100000%i;
while(abs(del) > eps)

a =-q;

n =n+1;

m =m+2;

del = (11.*n-1) * 2 / kr-f1,;
fl =1f2;

f2 =del;

del =g *m/(f2 * (kr * f1 - n * f2));
sphere_rcs = sphere_rcs + del;
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end
rcs(index) = abs(sphere_rcs);
sphere_rcsdb(index) = 10. * log10(rcs(index));
end
figure(1);
n=0.05:.05:15;
plot (n,rcs,'k");
set (gca,'xtick',[1 234567891011 12 13 14 15]);
%xlabel ('Sphere circumference in wavelengths');
%ylabel (‘'Normalized sphere RCS");
grid;
figure (2);
plot (n,sphere_rcsdb,'k");
set (gca,'xtick',[1 234567891011 12 13 14 15]);
xlabel (‘Sphere circumfence in wavelengths');
ylabel (‘Normalized sphere RCS - dB");
grid;
figure (3);
semilogx (n,sphere_rcsdb,'k");
xlabel (‘Sphere circumfence in wavelengths');
ylabel (‘Normalized sphere RCS - dB");

Listing 11.5. MATLAB Function “rcs_ellipsoid.m”

function [rcs] = rcs_ellipsoid (a, b, ¢, phi)
% This function computes and plots the ellipsoid RCS versus aspect angle.
% The roll angle phi is fixed,
eps = 0.00001;
sin_phi_s = sin(phi)*2;
cos_phi_s = cos(phi)*2;
% Generate aspect angle vector
theta = 0.:.05:180.0;
theta = (theta .* pi) ./ 180.;
ifa~=b&a~=c)

rcs = (pi * a2 * b"2 * ¢c"2) ./ (a2 * cos_phi_s .* (sin(theta)."2) + ...

b2 * sin_phi_s .* (sin(theta).”2) + ...

c"2 .* (cos(theta).”2))."2 ;
else

ifa==b&a~=c)

rcs = (pi * b * ¢72) ./ (b2 .* (sin(theta).~2) + ...
c"2 .* (cos(theta).”2))."2 ;

else
if (@==b & a==c)
rcs = pi * ¢"2;
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end

end
end
rcs_db = 10.0 * log10(rcs);
figure (1);
plot ((theta * 180.0 / pi),rcs_db,'k");
xlabel (‘Aspect angle - degrees');
ylabel (RCS - dBsm’);
%title ('phi = 45 deg, (a,lz) = (.15,.20,.95) meter’)
grid;

Listing 11.6. MATLAB Program “figl1_18a.m”

% Use this program to reproduce Fig. 11.18a

%This program computes the back-scattered RCS for an ellipsoid.
% The angle phi is fixed to three values 0, 45, and 90 degrees

% The angle theta is varied from 0-180 deg.

% A plot of RCS versus theta is generated

% Last modified on July 16, 2003

clear all;

% === Input parameters ===
a=.15; % 15 cm

b =.20; % 20 cm

c=.95; % 95 cm

% === End of Input parameters ===

as = num2str(a);
bs = num2str(b);
€S = num2str(c);
eps = 0.00001;
dtr = pi/180;
forq=1:3
ifg==1
phir=0; % the first valuef the angle phi
elseif q ==
phir = pi/4; %the second valuef the angle phi
elseif q ==
phir = pi/2; % the third value of the angle phi
end
sin_phi_s = sin(phir)"2;
cos_phi_s = cos(phin"2;
% Generate aspect angle vector
theta = 0.:.05:180;
thetar = theta * dtr;
ifa~=b&a~=c¢)
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rcs(qg,:) = (pi * a*2 * b"2 * ¢"2) ./ (a2 * cos_phi_s .* (sin(thetar).”2) + ...

b2 * sin_phi_s .* (sin(thetar)."2) + ...
c"2 .* (cos(thetar).*2))."2 ;
elseif@a==b &a~=c¢)
rcs(g,:) = (pi * b * ¢2) ./ ( b"2 .* (sin(thetar).”2) + ...
c"2 .* (cos(thetar).*2))."2 ;
elseif (a ==b & a ==c)
rcs(q,:) = pi * c"2;
end
end
rcs_db = 10.0 * log10(rcs);
figure (1);
plot(theta,rcs_db(1,:),'b',theta,rcs_db(2r:',theta,rcs_db8,:),'g--",'line-
width',1.5);
xlabel (‘Aspect angl, Theta [Degrees]');
ylabel (RCS - dBsm);
title (['Ellipsoid with (a,b,c) = (', [as],’, ', [bs],’, ', [cs], ) meterT])
legend (‘phi = 0"0','phi = 45"0','phi = 90"0")
grid;

Listing 11.7. MATLAB Function “rcs_circ_plate.m”

function [rcsdb] = rcs_circ_plate (r, freq)
% This program calculates and plots the backscattered RCS of
% circular flat plate of radius .
eps = 0.000001;
% Compute aspect angle vector
% Compute wavelength
lambda = 3.e+8 / freq; % X-Band
index = 0;
for aspect_deg = 0.:.1:180
index = index +1;
aspect = (pi /180.) * aspect_deg;
% Compute RCS using Eg. (2.37)
if (aspect == 0 | aspect == pi)
rcs_po(index) = (4.0 * pi"3 * r*4 [ lambda”2) + eps;
rcs_mu(index) = rcs_po(1);
else
X = (4. * pi *r / lambda) * sin(aspect);
vall = 4. * pi*3 * r*4 [ lambda2;
val2 = 2. * besselj(1,x) / x;
rcs_po(index) = vall * (val2 * cos(aspect))*2 + eps;
% Compute RCS using Eq. (2.36)
vallm = lambda * r;
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val2m = 8. * pi * sin(aspect) * (tan(aspect)*2);
rcs_mu(index) = vallm / val2m + eps;
end
end
% Compute RCS using Eq. (2.35) (theta=0,180)
rcsdb = 10. * log10(rcs_po);
rcsdb_mu = 10 * log10(rcs_mu);
angle = 0:.1:180;
plot(angle,rcsdb,'k',angle,rcsdb_mu,'k-."
grid;
xlabel (‘Aspect angle - degrees');
ylabel (RCS - dBsm’);
legend('Using Eq.(11.37Jsing Eq.(11.36)")
freqGH = num2str(freq*1.e-9);
title ([Frequency =",[freqGH]," GHz"));

Listing 11.8. MATLAB Function “rcs_frustum.m”

function [rcs] = res_frustum (rl, r2, h, freq, indicator)

% This program computes the monostatic RCS for a frustum.
% Incident linear Polezation is assumed.

% To compute RCP or LCP RCS one must use Eq. (11.24)
% When viewing from the small end of the frustum

% normal incidence occurs at aspect pi/2 - half cone angle
% When viewing from the large@&mormal incidence occurs at
% pi/2 + half cone angle.

% RCS is computed using Eq. (11.43). This program assumes a geometry
format long

index = 0;

eps = 0.000001;

lambda = 3.0e+8 /freq;

% Enter frustum's small end radius

%r1 =.02057;

% Enter Frustum's large end radius

%r2 = .05753;

% Compute Frustum's length

%h = .20945;

% Comput half cone angle, alpha

alpha = atan(( r2 - r1)/h);

% Compute z1 and z2

z2 =r2 / tan(alpha);

z1 =r1/tan(alpha);

delta = (z2"1.5 - z171.5)2;

factor = (8. * pi * delta) / (9. * lambda);
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%(‘enter 1 to view frustum from large end, O otherwise")
large_small_end = indicator;
if(large_small_end == 1)
% Compute normal incidence, large end
normal_incedence = (180./pi) * ((pi /2) + alpha)
% Compute RCS from zero aspect to normal incidence
for theta = 0.001:.1:normal_incedence-.5
index = index +1;
theta = theta * pi /180.;
rcs(index) = (lambda * z1 * tan(alpha) *(tan(theta - alpha))*2) / ...
(8. * pi *sin(theta)) + eps;
end
%Compute broadside RCS
index = index +1,;
rcs_normal = factor * sin(alpha) / ((cos(alpha))™4) + eps;
rcs(index) = rcs_normal;
% Compute RCS from broad side to 180 degrees
for theta = normb incedence+.5:.1:180
index = index + 1,
theta = theta * pi/ 180. ;
rcs(index) = (lambda * z2 * tan(alpha) *(tan(theta - alpha))*2) / ...
(8. * pi *sin(theta)) + eps;
end
else
% Compute normal incidence, small end
normal_incedence = (180./pi) * ((pi /2) - alpha)
% Compute RCS from zero aspect to normal incidence (large end of frustum)
for theta = 0.001:.1:normal_incedence-.5
index = index +1;
theta = theta * pi /180.;
rcs(index) = (lambda * z1 * tan(alpha) *(tan(theta + alpha))*2) / ...
(8. * pi *sin(theta)) + eps;
end
%Compute broadside RCS
index = index +1,;
rcs_normal = factor * sin(alpha) / ((cos(alpha))™4) + eps;
rcs(index) = rcs_normal;
% Compute RCS from broad side to 180 degrees (small end of frustum)
for theta = normb incedence+.5:.1:180
index = index + 1,
theta = theta * pi/ 180. ;
rcs(index) = (lambda * z2 * tan(alpha) *(tan(theta + alpha))*2) / ...
(8. * pi *sin(theta)) + eps;
end
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end
% Plot RCS versus aspect angle
delta = 180 /index;
angle = 0.001:delta:180;
plot (angle,10*log10(rcs));
grid;
xlabel (‘Aspect angle - degrees');
ylabel (RCS - dBsm’);
if(indicator ==1)

title ("Viewing from large end’);
else

title ("Viewing from small end");
end

Listing 11.9. MATLAB Function “rcs_cylinder.m”

function [rcs] = res_cylinder(rl, r2, h, freq, phi, CylinderType)
% rcs_cylinder.m
% This program computes monostatic RCS for a finite length
% cylinder of either curriculaor elliptical cross-section.
% Plot of RCS versus aspect angle theta is generated at a specified
% input angle phi
% Last modified on July 16, 2003
r=ril; % radius of the circular cylinder
eps =0.00001;
dtr = pi/180;
phir = phi*dtr;
freqGH = num2str(freq*1.e-9);
lambda = 3.0e+8 /freq; % wavelength
% CylinderType="Elliptic’; % 'Elliptic' or 'Circular'
switch CylinderType
case 'Circular'
% Compute RCS from 0 to (90-.5) degrees
index = 0;
for theta = 0.0:.1:90-.5
index = index +1;
thetar = theta * dtr;
rcs(index) = (lambda * r * sin(thetar) / ...
(8. * pi * (cos(thetar))"2)) + eps;

end
% Compute RCS for broadside specular at 90 degree
thetar = pi/2;

index = index +1;
rcs(index) = (2. * pi * h"2 * r / lambda )+ eps;
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% Compute RCS from (90+.5) to 180 degrees
for theta = 90+.5:.1:180.
index = index + 1,
thetar = theta * dtr;
rcs(index) = ( lambda * r * sin(thetar) / ...
(8. * pi * (cos(thetar))*2)) + eps;
end
case 'Elliptic’
r12 =rl*ri;
r22 = r2*r2;
h2 = h*h;
% Compute RCS from 0 to (90-.5) degrees
index = 0;
for theta = 0.0:.1:90-.5
index = index +1;
thetar = theta * dtr;
rcs(index) = lambda * r12 * r22 * sin(thetar) / ...
( 8*pi* (cos(thetar)*2)* ( (r12*cos(phir)*2 + r22*sin(phir)*2)1.5
)+ eps;
end
% Compute RCS for broadside specular at 90 degree
index = index +1,;
rcs(index) = 2. *pi*h2 *rl2 *r22 / ...
(lambda*( (rl2f@s(phir)*2 + r22*sin(phir)*2)"1.5 ))+ eps;
% Compute RCS from (90+.5) to 180 degrees
for theta = 90+.5:.1:180.
index = index + 1,
thetar = theta * dtr;
rcs(index) = lambda * r12 * r22 * sin(thetar) / ...
( 8*pi* cos(thetar)"2* ( (r12*cos(phir)*2 + r22*sin(phir)"2)"1.5 ))+
eps;
end
end
% Plot the results
delta= 180/(index-1);
angle = 0:delta:180;
plot(angle,10*log10(rcs),'k', linewidth',1.5);
grid;
xlabel (‘Aspect anglélheta [Degrees]’);;
ylabel (RCS - dBsm);
title ([[CylinderType],' Cylinder',' at Frequency = ',[freqGH]," GHZz']);
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Listing 11.10. MATLAB Function “rcs_rect_plate.m”

function [rcsdb_h,rcsdb_v] = rcs_rect_plate(a, b, freq)

% This program computes the backscattered RCS for a rectangular

% flat plate. The RCS is computed for vertical and horizontal

% polarization based on Eq.s(11.50)through (11.60). Also Physical

% Optics approximation Eq.(11.62) is computed.

% User may vary frequency, or the plate's dimensions.

% Default values are a=b=10.16cm; lambda=3.25cm.

eps = 0.000001,;

% Enter a, b, and lambda

lambda = .0325;

ka=2.*pi*a/lambda;

% Compute aspect angle vector

theta_deg = 0.05:0.1:85;

theta = (pi/180.) .* theta_deg;

sigmalv = cos(ka .*sin(theta)) - i Sin(ka .*sin(theta)) ./ sin(theta);

sigma2v = exp(i * ka - (pi /4)) / (sgrt(2 * pi) *(ka)*1.5);

sigma3v = (1. + sin(theta)) .* exp * ka .* sin(theta)) ./ ...
(1. - sin(theta)).”2;

sigmadv = (1. - sin(theta)) .* efip* ka .* sin(theta)) ./ ...
(1. + sin(theta)).”2;

sigmabv = 1. - (exp(i * 2. * ka - (pi/ 2)) / (8. * pi * (ka)*3));

sigmalh = cos(ka .*sin(theta)) + i .* sin(ka .*sin(theta)) ./ sin(theta);

sigmazh = 4. * exp(i * ka * (pi / 4.)) / (sqrt(2 * pi * ka));

sigma3h = exp(-i * ka .* sin(theta)) ./ (1. - sin(theta));

sigmadh = exp(i * ka * sin(theta)) ./ (1. + sin(theta));

sigmabh = 1. - (exp(j * 2. * ka + (pi / 4.)) / 2. * pi * ka);

% Compute vertical polarization RCS

rcs_v = (b"2 / pi) .* (abs(sigmalv - sigma2v .*((1. ./ cos(theta)) ...
+ .25 .* sigma2v .* (sigma3v + sigmadv)) .* (sigmabv).”-1))."2 + eps;

% compute horizontal polarization RCS

rcs_h = (b"2 / pi) .* (abs(sigmalh - sigma2h .*((1. ./ cos(theta)) ...
- .25 .* sigma2h .* (sigma3h + sigma4h)) .* (sigmab5h).*-1)).2 + eps;

% Compute RCS from Physical Optics, Eq.(11.62)

angle = ka .* sin(theta);

rcs_po = (4. * pi* a2 * b"2 / lambda”2 ).* (cos(theta)).”2 .* ...
((sin(angle) ./ angle).~2) + eps;

rcsdb_v = 10. .*log10(rcs_v);

rcsdb_h = 10. .*log10(rcs_h);

rcsdb_po = 10. .*log10(rcs_po);

figure(2)

plot (theta_deg, rcsdb_v,'k',theta_deg,rcsdb_po,'k -.";

set(gca,'xtick’,[10:10:85]);
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freqGH = num2str(freq*1.e-9);

A = num2str(a);

B = num2str(b);

title (['Vertical Polarization, '/'Frequency =',[freqGH]," GHz,",' a="
m' b ="[B].' m]);

ylabel (RCS -dBsm’);

xlabel (‘Aspect angle - deg");

legend('Eq.(11.50)','Eq.(11.62)")

figure(3)

plot (theta_deg, rcsdb_h,'k',theta_deg,rcsdb_po,'k -.");
set(gca,'xtick’,[10:10:85]);

title ([Horizontal Polarization, ','Frequecy = ',[freqGH]," GHz,',' a="
[AL ' m', b="[B] m]);

ylabel (RCS -dBsm’);

xlabel (‘Aspect angle - deg");
legend('Eq.(11.51)','Eq.(11.62)")

Listing 11.11. MATLAB Function “rcs_isosceles.m”

function [rcs] = rcs_isosceles (a, b, freq, phi)

% This program calculates the backscattered RCS for a perfectly
% conducting triangular flat plate, using Egs. (11.63) through (11.65)
% The default case is to assume phi = pi/2. These equations are
% valid for aspect angles less than 30 degrees

% compute area of plate

A=a*b/2,;

lambda = 3.e+8 / freq;

phi =pi/2.;

ka = 2. * pi / lambda;

kb = 2. *pi / lambda;

% Compute theta vector

theta_deg = 0.01:.05:89;

theta = (pi /180.) .* theta_deg;

alpha = ka * cos(phi) .* sin(theta);

beta = kb * sin(phi) .* sin(theta);

if (phi ==pi/ 2)

rcs = (4. * pi * A2 [ lambda2) .* cos(theta).”2 .* (sin(beta ./ 2)).74 ...

[ (beta./2)."4 + eps;
end
if (phi == 0)
rcs = (4. * pi * A2 [ lambda”2) .* cos(theta)."2 .* ...
((sin(alpha).”4 ./ alpha.*4) + (sin(2 .* alpha) - 2.*alpha).”2 ...
[ (4 * alpha."4)) + eps;
end
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if (phi ~= 0 & phi ~= pi/2)
sigmaol = 0.25 *sin(phi)*2 .* ((11. * a / b) * cos(phi) .* ...
sin(beta) - sin(phi) .* sin(11. .* alpha)).”2;
factl = (alpha).”2 - (.5 .* beta).”2;
fact2 = (sin(alpha).”2 - sin(.5 .* beta)."2).”2;
sigmao = (fact2 + sigmaol) ./ factl,
rcs = (4. * pi * A"2 [ lambda”?2) .* cos(theta).”2 .* sigmao + eps;
end
rcsdb = 10. *log10(rcs);
plot(theta_deg,rcsdb,'k")
xlabel (‘Aspect angle - degrees');
ylabel (RCS - dBsm')
%title (‘freq = 9.5GHz, phi = pi/2";
grid;

Listing 11.12. MATLAB Program “Capped_WedgeTM.m”

% Program to calculate the near field of a sharp conducting wedge
% due to an incident field from a line source or a plane wave
% By: Dr. Atef Elsherbeni -- atef@olemiss.edu
% This program uses 6 other functions
% Last modified July 24, 2003

clear all

close all

img = sqrt(-1);

rtd = 180/pi; dtr = pi/180;

mu0 = 4*pi*le-7; % Permeability of free space

eps0 = 8.854e-12; % Permittivity of free space

% ===== Input parameters =====

alphad = 30; % above x Wedge angle

betad = 30; % Below x wedge angle

reference = 'on x-axis'; % Reference condition 'top face' or 'bisector' or
‘'on x-axis'

CapType = 'Diel’; % Cap Type 'Cond’, 'diel' or 'None'

ar = .15; % Cap radius in lambda

rhop = 0.5; % radial Position of the line source in terms of lambda
phipd = 180; % angular position of the line source

le =.001; % Amplitude of the current source

freq = 2.998e8; % frequency

mur =1,

epsr =1,

ax=15; by=1; % area for near field calculations

nx = 30; ny = 20; % Number of points for near field calculations
% ===== End of Input Data =====
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alpha = alphad*dtr;
beta = betad *dtr;

switch reference
case 'top face'
alpha = 0;
Vi = pi/(2*pi-beta);
case 'bisector'
beta = alpha;
Vi = pi/(2*pi-2*beta);
case 'on x-axis'
vi = pi/(2*pi-alpha-beta);
end
phip = phipd*dtr;
etar = sqrt(mur/epsr);
mu = muO*mur,;
eps = epsO*epsr;
lambda = 2.99e8/freq;

k = 2*pi/lambda; % free space wavenumber

ka = k*ar;

k1 = k*sgrt(mur*epsr); % wavenumber inside dielectric
kla = k1*ar;

krhop = k*rhop;
omega =2*pi*freq;
% <<< Far field Calculations of Ez component >>>
% === Line source excitation ===
Nc =round(1+2*k*rhop); % number of terms for series summation
Term = pi*omega*mu0/(2*pi-alpha-beta);
TermOD = img*4*pi/(2*pi-alpha-beta);
TermOC = -img*4*pi/(2*pi-alpha-beta);
TermO0 =  4*pi/(2*pi-alpha-beta);
for ip = 1:360
phii = (ip -1)*dtr;
xphi(ip) = ip-1;
if phii > alpha & phii < 2*pi-beta % outside the wedge region
EzFLs(ip) = 0;
for m = 1:Nc
V = m*vi;
ssterm = (img”v¥tn(v*(phip-alpha))*sin(v*(phii-alpha));
switch CapType
case 'Diel'
Aterm = k Besselj(v,k1la)*(dbesseljka)*bessely(v,krhop)...
-dbessely(v,ka)*besselj(v,krhop)) ...
+k1*dbesselj(v,k1la)*( bessely(v,ka)*besselj(v,krhop)...
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-besselj(v,ka)*bessely(v,krhop));
Bterm =k*dbesselh(v,2,ka)*besselj(v,k1a) ...
-k1*besselh(v,2,ka)*dbesselj(v,k1a);
EzLS(m) = TermOD*ssterm*Aterm/Bterm;
case 'Cond'
Aterm = bessely(v,ka)*besselj(v,krhop) ...
- besselj(v,ka)*bessely(v,krhop);
Bterm = besselh(v,2,ka);
BzS(m) = TermOC*ssterm*Aterm/Bterm;
case 'None'
EzLS(m) = TermO*ssterm*besselj(v,krhop);
end
end
EzFLs(ip) = abs(sum(EzLS));
else
EzFLs(ip)=0;
end
end
EzFLs = EzFLs/max(EzFLs);

figure(1);

plot(xphi,EzFLs,'linewidth',1.5);
xlabel('Observation angle \phi*o");

ylabel('EZz");

axis ([0 360 0 1])

title(‘'Total Far Field (Ez) [Line source excitation]");

figure(2)
polardb(xphi*dtr,EzFLs,'k")
title (‘'Total Far Field (Ez) [dB])

% <<< Near field observation points >>>
delx = 2*ax/nx; dely = 2*by/ny;
Xi = -ax; yi=-by; % Initial values for x and y
fori= 1:nx
forj=1l:ny
x(i,J) = xi + (i-1)*delx;
y(i.j) = yi + (-1) *dely;
rho(i.j) = sart(x(i,j)"2+y(i.)"2);
phi(i.j)= atan2(y(i,j).x(i.j));

if phii,j) <0
phi(i,j) = phi(i,j) + 2*pi;
end

if rho(i,j) <= 0.001
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rho(i,j) = 0.001;
end
end
end

% Line source excitation, near field calculations

% ==== Line source coefficients ====
Nc =round(1+2*k*max(max(rho))); % number of terms for series sum-
mation
Term = le*pi*omega*mu0/(2*pi-alpha-beta);
form = 1:Nc

V = m*vi;

switch CapType

case 'Diel'

b(m) = -Term * besselh(v,2,krhop);

c(m) = -b(m) * (k*dbesselj(v,ka)*besselj(v,k1a) ...
-k1*besselj(v,ka)*dbesselj(v,k1a)) ...
/(k*dbesselh(v,2,ka)*besselj(v,k1a) ...
-k1*besselh(v,2,ka)*dbesselj(v,k1a));

d(m) = c¢(m) + b(m) * besselj(v,krhop) ...

/ besselh(v,2,krhop);
a(m) = ( b(m) * besselj(v,ka)+c(m) ...
* besselh(v,2,ka))/besselj(v,k1a);
case 'Cond'

b(m) = -Term * besselh(v,2,krhop);

c(m) = -b(m) * besselj(v,ka)/besselh(v,2,ka);

d(m) = c¢(m) + b(m) * besselj(v,krhop) ...

/ besselh(v,2,krhop);

a(m) =0;
case 'None'
b(m) = -Term * besselh(v,2,krhop);
c(m) = 0;
d(m) = -Term * besselj(v,krhop);
a(m) = b(m);
end

end
termhphi = sqgrt(-1)*omega*mu0;
termhrho = -termhphi;

fori=1:nx
forj=1:ny
for m = 1:Nc

v = m*vi; % Equation
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[Ezt,Hphit,Hrhot] =
DielCappedWedgeTMFields_Ls(v,m,rho(i,j),phi(i,j),rhop, ...
phip,ar,k,k1,alpha,beta,a,b,c,d);
Eztt(m) = Ezt;
Hphitt(m) = Hphit;
Hrhott(m) = Hrhot;
end
SEz(i,j) = sum(Eztt);
SHphi(i,j) = sum(Hphitt)/termhphi;
SHrho(i,j) = sum(Hrhott)/termhrho;
end
end
figure(3);
surf(x,y,abs(SEz));
axis (‘equal’);
view(45,60);
shading interp;
xlabel('x");
ylabel('y’);
zlabel('E_2z");
title('Ez [Line source excitation]');
colorbar; colormap(coppr); % colormap(jet);
figure(4);
surf(x,y,377*abs(SHrho));
axis (‘equal’);
view(45,60);
shading interp;
xlabel('x");
ylabel('y’);
zlabel(\eta_o H\rho");
title(\eta_o H\rho [Line source excitation]’);
colorbar; colormap(coppr); % colormap(jet);
figure(5);
surf(x,y,377*abs(SHphi));
axis (‘equal’);
view(45,60);
shading interp;
xlabel('x");
ylabel('y’);
zlabel(\eta_o H\phi*);
title(\eta_o H\phi [Line source excitation]")
colorbar; colormap(coppr); % colormap(jet);
% === Plane wave excitatiomear field calculations ===
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Nc =round(1+2*k*max(max(rho))); % number of terms for series sum-
mation
Term = 4*pi/(2*pi-alpha-beta);
form = 1:Nc
V = m*vi;
switch CapType
case 'Diel'
b(m) = Term * img”v;
c(m) = -b(m) * (k*dbesselj(v,ka)*besselj(v,k1a)...
-k1*besselj(v,ka)*dbesselj(v,k1a)) ...
/ (k*dbesselh(v,2,ka)*besselj(v,k1a) ...
-k1*besselh(v,2,ka)*dbesselj(v,k1a));
a(m) = ( b(m) * besk,ka)+c(m) * besselh(?,ka))/besselj(v,k1a);
case 'Cond'
b(m) = -Term * img”v;
c(m) = -b(m) * besselj(v,ka)/besselh(v,2,ka);

a(m) =0;
case 'None'
b(m) = -Term * img”v;
c(m) = 0;
a(m) = b(m);
end
end

termhphi = sqgrt(-1)*omega*muo0;
termhrho = -termhphi;

fori=1:nx
forj=1:mny
for m = 1:Nc

v = m*vi; % Equation
[Ezt,Hphit,Hrhot] =
DielCappedWedgeTMFields_PW(v,m,rho(i,j),phi(i,j), ..
phip,ar,k,k1,alpha,beta,a,b,c);
Eztt(m) = Ezt;
Hphitt(m) = Hphit;
Hrhott(m) = Hrhot;
end
EzPW(i,j) = sum(Eztt);
HphiPW(i,j) = sum(Hphitt)/termhphi;
HrhoPW(i,j) = sum(Hrhott)/termhrho;
end
end
figure(6);
surf(x,y,abs(EzPW));
axis (‘equal’);
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view(45,60);

shading interp;

xlabel('x");

ylabel('y’);

Zlabel('E_2z");

colorbar; colormap(coppr); % colormap(jet);
title('Near Field (EzJPlane wave excitation]’);
figure(7);

surf(x,y,377*abs(HrhoPW));

axis (‘equal');

view(45,60);

shading interp;

xlabel('x");

ylabel('y’);

zlabel(\eta_o H\rho");

title(\eta_o H\rho [Plane wave excitation]');
colorbar; colormap(coppr); % colormap(jet);
figure(8);

surf(x,y,377*abs(HphiPW));

axis (‘equal’);

view(45,60);

shading interp;

xlabel('x");

ylabel('y’);

zlabel(\eta_o H\phi');

title(\eta_o Hphi [Plane wave excitation]');
colorbar; colormap(coppr); % colormap(jet);

Listing 11.13. MATLAB Function
"DielCappedWedgeTMFields_Ls.m"

function [Ezt,Hphit,Hrhot] =
DielCappedWedgeTMFields_Ls(v,m,rhaliiij,rhop,phip,ar,k,k1,alpha,beta,a,
b,c,d);
% Function to calculate the near field components of a capped wedge
% with a line source excitation at one near field point
% This function is to be called by the Main program:
Diel_Capped_WedgeTM.m
% By: Dr. Atef Elsherbeni -- atef@olemiss.edu
% Last modified July 23, 2003
Ezt = 0; Hrhot =0; Hphit=0; % Initialization
if phiij > alpha & phiij < 2*pi-beta % outside the wedge region

krho = k*rhoij;

k1rho = k1*rhoij;
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jvkrho = besselj(v,krho);
hvkrho = besselh(v,2,krho);
jvk1rho = besselj(v,k1rho);
djvkrho = dbesselj(v,krho);
djvk1rho = dbesselj(v,k1rho);
dhvkrho = dbesselh(v,2,krho);
ssterm = sin(v*(phi@lpha))*sin(v*(phiij-alpha));
scterm = sin(v*(phip-alpha))*cos(v*(phiij-alpha));
if rhoij <=ar % field point location is inside the cap region
Ezt = a(m)*jvk1lrho*ssterm;
Hphit = k1*a(m)*djvk1lrho*ssterm;
Hrhot = v*a(m)*jvk1rho*scterm/rhoij;
elseif rhoij <=rhop % field point location is between cap and the line
source location
Ezt = (b(m)*jvkrho+c(m)*hvkrho)*ssterm;
Hphit = k*(b(m)*djvkrho+c(m)*dhvkrho)*ssterm;
Hrhot = v*(b(m)jvkrho+c(m)*hvkrho)*scterm/rhoij;
elseif rhoij > rhop % field point location is greater than the line source loca-
tion
Ezt = d(m)*hvkrho*ssterm;
Hphit = k*d(m)*dhvkrho*ssterm;
Hrhot = v*d(m)*hvkrho*scterm/rhoij;
end
else
Ezt =0; Hrhot=0; Hphit=0; % inside wedge region
End

Listing 11.14. MATLAB Function
"DielCappedWedgeTMFields_PW.m"

function [Ezt,Hphit,Hrhot] =
DielCappedWedgeTMFields_PW/(v,m,rhoij,phiij,phip,ar,k,k1,alpha,beta,a,b,c)

% Function to calculate the near field components of a capped wedge
% with a line source excitation at one near field point
% This function is to be called by the Main program:
Diel_Capped_WedgeTM.m
% By: Dr. Atef Elsherbeni -- atef@olemiss.edu
% Last modified July 23, 2003
Ezt = 0; Hrhot = 0; Hphit=0; % Initialization
if phiij > alpha & phiij < 2*pi-beta % outside the wedge region
krho = k*rhoij;
k1rho = k1*rhoij;
jvkrho = besselj(v,krho);
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hvkrho = besselh(v,2,krho);
jvk1rho = besselj(v,k1rho);
djvkrho = dbesselj(v,krho);
djvk1rho = dbesselj(v,k1rho);
dhvkrho = dbesselh(v,2,krho);
ssterm = sin(v*(phi@lpha))*sin(v*(phiij-alpha));
scterm = sin(v*(phip-alpha))*cos(v*(phiij-alpha));
if rhoij <= ar % field point location is inside the cap region
Ezt = a(m)*jvklrho*ssterm;
Hphit = k1*a(m)*djvk1lrho*ssterm;
Hrhot = v*a(m)*jvk1rho*scterm/rhoij;
else % field point location is between the cap and the line source location
Ezt = (b(m)*jvkrho+c(m)*hvkrho)*ssterm;
Hphit = k*(b(m)*djvkrho+c(m)*dhvkrho)*ssterm;
Hrhot = v*(b(m)jvkrho+c(m)*hvkrho)*scterm/rhoij;
end
else
Ezt =0; Hrhot=0; Hphit=0; % inside wedge region
End

Listing 11.15. MATLAB Function "polardb.m"

function polardb(theta,rho,line_style)
% POLARDB Polar coordinate plot.
% POLARDB(THETA, RHO) makes a plot using polar coordinates of
% the angle THETA, in radians, versus the radius RHO in dB.
% The maximum value of RHO slibnot exceed 1. It should not be
% normalized, however (i.e., its max. value may be less than 1).
% POLAR(THETA,RHO,S) uses the linestyle specified in string S.
% See PLOT for a description of legal linestyles.
if nargin < 1

error('Requires 2 or 3 input arguments.")
elseif nargin ==

if isstr(rho)

line_style = rho;

rho = theta;
[mr,nr] = size(rho);
if mr==
theta = 1:nr;
else
th = (L:mr)";
tieta = th(:,ones(1,nr));
end
else
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line_style = 'auto’;

end
elseif nargin ==
line_style = 'auto’;
rho = theta;
[mr,nr] = size(rho);
if mr==
theta = 1:nr;
else
th = (1:mr)";
theta = th(:,ones(1,nr));
end
end

if isstr(theta) | isstr(rho)
error('Input arguments must be numeric.");
end
if ~isequal(size(theta),size(rho))
error('THETA and RHO must be the same size.");
end
% get hold state
cax = newplot;
next = lower(get(cax,'NextPlot");
hold_state = ishold;
% get x-axis text color sgrid is in same color
tc = get(cax,'xcolor";
Is = get(cax,'gridlinestyle’);
% Hold on to current Text defaults, reset them to the
% Axes' font attributes so tick marks use them.
fAngle = get(cax, 'BfaultTextFontAngle");
fName = get(cax, 'DefaultTextFontName);
fSize = get(cax, 'DefaultTextFontSize");
fWeight = get(cax, 'BfaultTextFontWeight');
fUnits = get(cax, 'DefaultTextUnits'");
set(cax, 'DefaultTextbthtAngle', get(cax, 'FontAngle'), ...
'‘DefaultTextFontName' get(cax, 'FontName’), ...
'‘DefaultTextFontSize', get(cax, 'FontSize'"), ...
'‘DefaultTextFontWeightget(cax, 'FontWeight'), ...
'‘DefaultTextUnits','data’)
% make a radial grid
hold on;
maxrho =1,
hhh=plot([-maxrho -maxrho maxrho maxrho],[-maxrho maxrho maxrho -
maxrho]);
set(gca,'dataaspectratio’,fiL 1],'plotboxaspectratiomode’,'auto’)
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v = [get(cax,'xlim") get(cax,'ylim")];
ticks = sundet(cax,'ytick")>=0);
delete(hhh);

% check radial limits and ticks
rmin = 0; rmax = v(4); rticks = max(ticks-1,2);
if rticks >5 % see if we can reduce the number

if rem(rticks,2) == 0
rticks = rticks/2;
elseif rem(rticks,3) == 0
rticks = rticks/3;
end
end

% only do grids if hold is off

if ~hold_state

% define a circle
th = 0:pi/50:2*pi;

Xunit = cos(th);
yunit = sin(th);

% now really force points ox/y axes to lie on them exactly
inds = 1:(length(th)-1)/4:length(th);
xunit(inds(2:2:4)) = zeros(2,1);
yunit(inds(1:2:5)) = zeros(3,1);

% plot background if necessary
if ~isstr(get(cax,'color")),

patch('xdata’,xunit*rmax,'ydata’,yunit*rmax, ...
‘edgecolatc,'facecolor',gdfca,'color’),...
‘handlevisibility','off");
end

% draw radial circles with dB ticks
€82 = cos(82*pi/180);
s82 = sin(82*pi/180);
rinc = (rmax-rmin)/rticks;
tickdB=-10*(rticks-1); % the innermost tick dB value
for i=(rmin+rinc):rinc:rmax

hhh = plot(xunit*i,yunit*i,Is,'color',tc, linewidth',1,...
‘handlevisibility','off");
text((i+rinc/20)*c82*0,-(i+rinc/20)*s82, ...
[ " num2str(tickdB) ' dB','verticalalignment','bottom’,...
‘handlevisibility','off")
tickdB=tickdB+10;
end
set(hhh,'linestyle','-") % Make outer circle solid

% plot spokes

th = (1:6)*2*pi/12;
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cst = cos(th); snt = sin(th);
cs = [-cst; cst];
sn = [-snt; snt];
plot(rmax*cs,rmax*sngl,'color',tc, linewidth',1,...
‘handlevisibility',"off")
% annotate spokes in degrees
rt = 1.1*rmax;
for i = 1:length(th)
text(rt*cst(i),rt*snt(i),int2str(i*30),...
'horizontalalignment’,'center’, ...
‘handlevisibility','off");
if i == length(th)
loc = int2str(0);
else
loc = int2str(180+i*30);
end
text(-rt*c#(i),-rt*snt(i),loc,'horizontalalignment','center’,...
‘handlevisibility','off")
end
% set view to 2-D
view(2);
% set axis limits
axis(rmax*[-1 1 -1.15 1.15]);
end
% Reset defaults.
set(cax, 'DefaultTextFontAngle', fAngle , ...
'DefaultTextFontName', fName, ...
'‘DefaultTextFontSize', fSize, ...
'‘DefaultTextFontWeight', fWeight, ...
'‘DefaultTextUnits',fUnits );
% Tranfrom data to dB scale
rmin = 0; rmax=1;
rinc = (rmax-rmin)/rticks;
rhodb=zeros(1,length(rho));
for i=1:length(rho)
if rho(i)==0
rhodb(i)=0;
else
rhodb(i)=rmax+2*log10(rho(i))*rinc;
end
if rhodb(i)<=0
rhodb(i)=0;
end
end
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% transform data to Cartesian coordinates.
xx = rhodb.*cos(theta);
yy = rhodb.*sin(theta);
% plot data on top of grid
if stremp(line_style,'auto’)

q = plot(xx,yy);
else

g = plot(xx,yy,lie_style,'linevudth’,1.5);
end
if nargout > 0

hpol = q;
end
if ~hold_state

set(gca,'dataaspectratio’,[1 1)1jpxis off; setfax,'NextPlot',next);
end
set(get(gca,'xlabel'),'visible','on")
set(get(gca,'ylabel'),'visible','on")

Listing 11.16. MATLAB Function "dbesselj.m"

function [ res ] = dbesselj( nu,z)
res=besselj(nu-1,z)dsselj(nu,z)*nu/z;

Listing 11.17. MATLAB Function "dbessely.m"

function [ res ] = dbessely( nu,z)
res=bessely(nu-1,z)-bessely(nu,z)*nu/z;

Listing 11.18. MATLAB Function "dbesselh.m"

function [ res ] = dbesselh(nu,kind,z)
res=besselh(nu-1,kind,zebselh(nu,kind,z)*nu/z;

Listing 11.19. MATLAB Progran “rcs_cylinder_complex.m”

% This program computes thedb@cattered RCS for a cylinder
% with flat plates.

clear all

index = 0;

eps =0.00001;

al =.125;

h=1.;

lambda = 3.0e+8 /9.5e+9;

lambda = 0.00861;

index = 0O;
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for theta = 0.0:.1:90-.1
index = index +1,;
theta = theta * pi /180.;
rcs(index) = (lambda * al * sin(theta) / ...
(8 * pi * (cos(theta))"2)) + eps;

end
theta*180/pi;
theta = pi/2;

index = index +1,;
rcs(index) = (2 * pi * "2 * al / lambda )+ eps;
for theta = 90+.1:.1:180.
index = index + 1,
theta = theta * pi/ 180.;
rcs(index) = (lambda * al * sin(theta) / ...
(8 * pi * (cos(theta))"2)) + eps;
end
r=al;
index = 0;
for aspect_deg = 0.:.1:180
index = index +1,;
aspect = (pi /180.) * aspect_deg;
% Compute RCS using Eq. (11.37)
if (aspect == 0 | aspect == pi)
rcs_po(index) = (4.0 * pi*3 * r*4 [ lambda2) + eps;
rcs_mu(index) = rcs_po(1);
else
X = (4. * pi *r / lambda) * sin(aspect);
vall = 4. * pi*3 * r*4 [ lambda”2;
val2 = 2. * besselj(1,x) / x;
rcs_po(index) = vall * (val2 * cos(aspect))"2 + eps;
end
end
rcs_t =(rcs_po + rcs);
angle = 0:.1:180;
plot(angle,10*log10(rcs_1(1:1801)),'k");
grid;
xlabel (‘Aspect angle -degrees’);
ylabel (RCS -dBsm);

Listing 11.20. MATLAB Program “Swerling_models.m”

% This program computes and plots Swerling statistical models
% sigma_bar = 1.5;
clear all
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sigma = 0:0.001:6;

sigma_bar = 1.5;

swer_3 4 =(4./sigma_bar"2) .* sigma .* ...
exp(-2. * (sigma ./ sigma_bar));

%t.*exp(-(t.2)./2.

swer_1 2 =(1./sigma_bar) .* exp( -sigma ./ sigma_bar);

plot(sigma,swer_1_2,'k',sigma,swer_3_4,'k");

grid;

gtext (‘'Swerling 1,1I");

gtext (‘Swerling II1,1V");

xlabel ('sigma);

ylabel (‘Probability density");

title ('sigma-bar = 1.5";
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Chapter 12 High Resolution Tactical
Synthetic Aperture Radar
(TSAR)

This chapter is coauthoed with Brian J. Smitht

This chapter provides an introduction to Tactical Synthetic Aperture Radar
(TSAR). The purpose of this chaptertasfurther develop the readers’ under
standing of SAR by taking a closer look at high resolution spotlight SAR
image formation algorithms, motionropensation techniques, autofocus algo
rithms, and performance metrics.

12.1. Introduction

Modern airborne radar systems are geed to perform a large number of
functions which range from detection and discrimination of targets to mapping
large areas of ground terrain. This mapping can be performed by the Synthetic
Aperture Radar (SAR). Through illuminating the ground with coherent-radia
tion and measuring the echo signals, SAR can produce high resolution two-
dimensional (and in some cases threaatisional) imagery of the ground sur
face. The quality of ground maps genedaty SAR is determined by the size
of the resolution cell. A resolution ceédl specified by both range and azimuth
resolutions of the system. Other factoifeeting the size of the resolution cells
are (1) size of the processed map ahe amount of signal processing
involved; (2) cost consideration; and) (§ize of the objects that need to be
resolved in the map. For example, maygpgross features of cities and ceast
lines does not require as much resolution when compared to resolving houses,
vehicles, and streets.

1. Dr. Brian J. Smith is with the US Ay Aviation and Missile Command (AMCOM),
Redstone Arsenal, Alabama.
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SAR systems can produce maps of reflectivity versus range and Doppler
(cross range). Range resolution is ampbshed through range gating. Fine
range resolution can be accomplishedubing pulse compression techniques.
The azimuth resolution depends on antenna size and radar wavelength. Fine
azimuth resolution is enhanced by taking advantage of the radar motion in
order to synthesize a lagantenna aperture. L&, denote the number of
range bins and leil, denote the number of azimuth cells. It follows that the
total number of resolution cells in the magN&N,, . SAR systems that are gen
erally concerned wh improving azimuth resolution are often referred to as
Doppler Beam-Sharpening (DBS) SARs.this case, each range bin is pro
cessed to resolve targets in Doppler which correspond to azimuth. This chapter
is presented in the context of DBS.

Due to the large amount of signal pessing required in SAR imagery, the
early SAR designs implemented opticabgessing techniqueslthough such
optical processors can produce high quality radar images, they have several
shortcomings. They can be very cosdlyd are, in general, limited to making
strip maps. Motion compensation is not easy to implement for radars that uti
lize optical processors. With the recedivances in solid state electronics and
Very Large Scale Integration (VLSI) technologies, digital signal processing in
real time has been made possible in SAR systems.

12.2. Side Looking SAR Geometry

Fig. 12.1 shows the geometry of the standard side looking SAR. We wiill
assume that the platform carrying the radar maintains both fixed altitaael
velocity v. The antenn@dB beamwidth is! , and the elew@n angle (mea
sured from the z-axis to the antenna axis) isThe intersection of the antenna
beam with the ground defines a footprint. As the platform moves, the footprint
scans a swath on the ground.

%
The radar position with respect to the absolute or@ir $0#0 # Yat any
time, is the vecto&$t %The velocity vectod'$ %s

A% % 0&a,+v&a +0&a, 12.1)

The Line of Sight (LOS) for # current footprint centered é&c %s defined
by the vect0r§$tc oywheret, denotes the central time of the observation inter
val T, (coherent integration interval). More precisely,

T T
®=t,+t. % —7‘“" t ?Ob (12.2)
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Figure 12.1. Side looking SAR geometry.
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wheret, andt are the absolute and relatiimes, respectively. The vectﬁrg
defines the ground projection of the antenna at central time. The minimum
slant range to the swath i&,;,, and the maximum range is denofeg,,, as
illustrated by Fig. 12.2. It follows that

Rmin = h(cos$' ! (2%
Rnax = h(cos$" +! (2% (12.3)

_R>$tc+V: h (cos'

Notice that the elevation angleis equal to

" =90-) 9 (12.4)

where) , is the grazing angle. The size of the footprint is a function of the
grazing angle and the antenna beamwidth, as illustrated in Fig. 12.3. The SAR
geometry described in this section ifereed to as SAR “strip mode” of opera

tion. Another SAR mode of operation, which will not be discussed in this
chapter, is called “spot-light modegwhere the antenna steered (mechani

cally or electronically) to continuously illuminate one spot (footprint) on the
ground. In this case, one high resolution image of the current footprint-is gen
erated during an obsvation interval.

radar

Figure 12.2. Definition of minimum and maximum range.

12.3. SAR Design Considerations

The quality of SAR images is heavilgpendent on the size of the map reso
lution cell shown in Fig. 12.4. The range resolutiviR, is computed on the
beam LOS, and is given by

*R = $c+ Y2 (12.5)
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Figure 12.4a. Definitionof a resolution cell.
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Figure 12.4b. Definitionof a resolution cell.

where + is the pulsewidth. From the geometn Fig. 12.5 the extent of the
range cell ground projectionR; is computed as

*Ry = C—2+sec) g (12.6)

The azimuth or cross range redan for a real antenna with 3dB beam
width I (radians) at rangR is

*A = IR 12.7)

However, the antenna beamwidtlpi®portional to the aperture size,

I - (12.8)

L
where, is the wavelength and is the aperture length. It follows that

R
*A = — 12.9
L (12.9)

And since the effective synthetic apertsiee is twice that of a real array, the
azimuth resolution for a synthetic array is then given by
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Figure 12.5. Definition of a range cell on the ground.

*A = R (12.10)
2L
Furthermore, since the msthetic aperture lengti is equal tovT,,, Eq.

(12.10) can be rewritten as

*A —_— 3 R
2vT,,

(12.11)

The azimuth resolution can be greatlymoved by taking advantage of the
Doppler variation within a footprint (or a beam). As the radar travels along its
flight path the radial velocity to a ground scatterer (point target) within a foot
print varies as a function of the radar radial velocity in the direction of that
scatterer. The variation of Doppler freqag for a certain scatterer is called the
“Doppler history.”

Let R$t %denote the range to a scatterer at timandv, be the correspond
ing radial velocity; thus the Doppler shift is

2RE % 2,

fg = — (12.12)
where R& %s the range rate to the scatterer. ,etindt, be the times when

the scatterer enters and leaves the radar beam, respectively, @nthe time

that corresponds to minimum range. Fig. 12.6 shows a sketch of the corre
spondingR$t %Since the radial velocity can bemputed as the derivative of
R$t %with respect to timepne can clearly see th@bppler frequency is maxi
mum att, , zero att,, and minimum at,, as illustrated in Fig. 12.7.
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R$t %

Figure 12.6. Sketch of rangeersus time for a scatterer.

scatterer Doppler histody

—————— maximum Doppler

time

minimum Dopplerf - - - - ==

Figure 12.7. Point scterer Doppler history.

In general, the radar maximum PRF, , must be low enough to avoid
range ambiguity. Alternatively, the minimum PFfF, , must be high enough
to avoid Doppler ambiguity. SAR unambiguous range must be at least as wide
as the extent of a footprint. More pregly, since target returns from maximum
range due to the current pulse mustréeeived by the radar before the next
pulse is transmitted, it follows that SAR unambiguous range is given by

Ru = Rmax_ Rmin (12.13)

An expression for unambiguous range was derived in Chapter 1, and is

repeated here as Eq. (12.14),

R, = = (12.14)
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Combining Eq. (12.14) and Eq. (12.13) yields

. C

f —_— 12.15
fmax 2$Rmax_ Rmin % ( )

SAR minimum PRFf, , is selected so that Doppler ambiguity is avoided.
In other words,f, must be greater than the maximum expected Doppler
spread within a footprmt From the geometry of Fig. 12.8, the maximum and
minimum Doppler frequencies are, respectively, given by

fdmax: = smOZ%sm ;at (12.16)
fdmm:——v smOZ%sm" ;at t (12.17)

It follows that the maximum Doppler spread is

*fy =1y (12.18)

max dmin

Substituting Egs. (12.16) and (12.17oifEq. (12.18) and applying the proper
trigonometric identities yield

*fy = v sin"é sin” (12.19)

Finally, by using the small angle approximation we get

|
*fy- av 2sm A I sirf (12.20)

Therefore, the minimum PRF is

2V

f 4— I sint (12.21)

Tmin

Combining Egs. (11.15) and (11.21) we get

C 2v
—_— 4f 4 — Isid 12.22
2$Qmax_ Rmm % " ( )

It is possible to resolvadjacent scatterers at the same range within a foot
print based only on the difference of their Doppler histories. For this purpose,
assume that the two scatterers are withinkitterange bin.
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Figure 12.8. Doppler history computation. (a) Full view; (b) top view.
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Denote their angular displacement*ds, and let* fd be the minimum
Doppler spread between the two scattesersh that they will appear in two
distinct Doppler filters. Using the same methodology that led to Eq. (12.20) we
get

Ty = 2v *1osif (12.23)

where"  is the elevation angle corresponding to kile range bin.

The bandwidth of the individual Doppler filters must be equal to the inverse of
the coherent integration interva, (i.e.,*fy = 1(Tgp). It follows that

*| _— (12.24)
T T obSIN" i

SubstitutingL for vT,, yields

*l= L (12.25)
2Lsin"
Therefore, the SAR azimuth resolution (within #id range bin) is
* = *| = 2
Ay 'R, = Ry 2Lsin, (12.26)

Note that whert', = 905, Eq. (12.26) is identical to Eq. (12.10).

12.4. SAR Radar Equation

The single pulse radar equation was derived in Chapter 1, and is repeated
here as Eq. (12.27),

2 2
SNR= ;tf’ 6 (12.27)
$47 IRKTBL oss

where:P, is peak power( is antenna gain; is wavelength6 is radar cross
section;R, is radar slant range to tlik¢h range bink is Boltzman’s constant;

T, is receiver noise temperatui®;is receiver bandwidth; and, .. is radar
losses. The radar cross section is a function of the radar resolution cell-and ter
rain reflectivity. More precisely,

6=6"R*A, = 6% AL seq (12.28)

2
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where6° is the clutter scattering coefficieritA, is the azimuth resolution,
and Eq. (12.6) was used to replace treugd range resolution. The number of
coherently integrated pulses within an observation interval is

fL

n="fTy= v (12.29)

where L is the synthetic aperture size. Using Eq. (12.26) in Eq. (12.29) and
rearranging terms yield

n=_-——-— csc' (12.30)

The radar average power over the observation interval is

Pa = (B % (12.31)
The SNR forn coherently integrated pulses is then
P.G’, %6
4
$M7 IRIKT,BL ooc

Substituting Egs. (11.31), (11.30), afid..28) into Eq. (12.32) and performing
some algebraic manipulations give the SAR radar equation,

$SNR%= nSNR= n

(12.32)

2 3.0
P..G", 76 *R
&y — cscy (12.33)

$SNRYp= —S——
$47 &RkkTOLLoss 2v

Eq. (12.33) leads to theonclusion that in SARystems the SNR is (1)
inversely proportional to the third powef range; (2) independent of azimuth
resolution; (3) function of the ground range resolution; (4) inversely propor
tional to the velocity ; and (5) proportional to the third power of wavelength.

12.5. SAR Signal Processing

There are two signal prosging techniques to segptially produce a SAR

map or image; they are line-by-line processing and Doppler processing. The
concept of SAR line-by-line processiiggas follows: Through the radar linear
motion a synthetic array is formed, whéne elements of the current synthetic
array correspond to the position of thetenna transmissions during the last
observation interval. Azimuth resolution is obtained by forming narrow syn
thetic beams through combinations of the last observation interval returns. Fine
range resolution is accomplished igal time by utilizing range gating and
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pulse compression. For eadnge bin and each of th@nsmitted pulses dur

ing the last observation interval, the metsiare recorded in a two-dimensional
array of data that is updated for every pulse. Denote the two-dimensional array
of data asVAP.

To further illustrate the concept ohé&-by-line processing, consider the case
where a map of siz®, &N, is to be produced, whei¢, is the number of azi
muth cells andN, is the number of range bins. HenddAP is of size
N, &N, , where the columns refer to rangesiand the rows refer to azimuth
cells. For each transmittqulilse, the echoes from gecutive range bins are
recorded sequentiallin the first row of MAP. Once the first row is com
pletely filled (i.e.,returns from all range bins habeen received), all data (in
all rows) are shifted downward one rowfdre the next pulse is transmitted.
Thus, one row oMAP is generated for every transmitted pulse. Consequently,
for the current observation interval, returns from the first transmitted pulse will
be located in the bottom row ®iAP, and returns from the last transmitted
pulse will be in the first row oMAP.

In SAR Doppler processing, the arrdAP is updated once evely pulses
so that a block ofN columns is generated simultaneously. In this cake,
refers to the number of transmissions dgran observation interval (i.e., size
of the synthetic array). From an antenna point of view, this is equivalent to
havingN adjacent synthetic beams forniacparallel through electronic steer

ing.

12.6. Side Looking SAR Doppler Processing

Consider the geometry shown in Fig. 12.9, and assume that the sdajterer
is located within thékth range bin. The scatterer amith and elevation angles
are 8; and",, respectively. The scatterer elevation ariglés assumed to be
equal to",, the range bin elevation angl€his assumption is true if the
ground range resolutior’; Ry, is small; otherwise;'; = ", +9 for some
small 9, ; in this chapte®, = 0.

The normalized transmittedgsial can be represented by
s$t % cosR7fyt—: ;% (12.34)

where f, is the radar operating frequency, angl denotes the transmitter
phase. The returned radar signal fr@mis then equal to

SHHB; Y= A COS 27T & — HB/#8, We < (12.35)

where +8#8; %s the round-trip delay to the scatterer, afdincludes scat
terer strength, range attenuation, and antenna gain. The round-trip delay is
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kth
range bin

projection of
radar LOS

Figure 12.9. A scattererC; within the Kth range bin.

2r §H8. %
+HHH#8; Y= @ ’ (12.36)

wherec is the speed of light ang$®#8; %s the scattereraht range. From the
geometry in Fig. 12.9, one can writeetbxpression for the slant range to the
ith scatterer within th&th range bin as

r 8#8; % Lg 1—2TVtco§' cos8;sin"; +%Fco§' g (12.37)

And by using Eq. (12.36) the round-trip delay can be written as

2 h 2Vt ' " 2 Vi ' 3
+ . 0, _—— —_ —
|$#8| Y= M/l | cos'; COS8 sin +0| COS (12.38)

The round-trip delay can be approximated using a two-dimensional second
order Taylor series expansion about the reference &t#8eYs $0#0 % Per
forming this Taylor series expansion yields
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2
+R/H8, %+ (gr Bt +Hy % (12.39)

where the over-bar indicates evaluation at the sia#@ %and the subscripts
denote partial derivatives. For examptg, means

_2
T8 = S HH8, %{3#8%&0#0% (12.40)

The Taylor series coefficients are

2 -22h3 1
+= 52 oo (12.41)
+Hg = %%\-/%Sm"i (12.42)

(12.43)

Note that other Taylor series coefficiear either zeros or very small. Hence,
they are neglected. Fingliwe can rewrite the returned radar signal as

S8#8; % A;cos, )"i$t#8i % o<
. - P (12.44)
) 1 $#8, %% 271<0[$1_+t88i % T #tﬂ

Observation of Eq. (12.44) indicatesathihe instantaneous frequency for the

ith scatterer varies as a linear functafitime due to the second order phase
term 27f0$1ttt2 (2 %(this confirms the result we concluded about a scatterer
Doppler history). Furthermore, since this phase term is range-bin dependent
and not scatterer dependent, all scatsevathin the same range bin produce
this exact second order phase term. It follows that scatterers within a range bin
have identical Doppler histories. These Doppler histories are separated by the
time delay required to fly between them, as illustrated in Fig. 12.10.

Suppose that there arescatterers within th&th range bin. In this case, the
combined returns for this cell are thersof the individual returns due to each
scatterer as defined by Eq. (12.44). In other words, superposition holds, and the
overall echo signal is

|
SE % > 8, % (12.45)

i=1
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Figure 12.10. Doppler histories for sevelascatterers within the same range bin.

A signal processing block diagram for tkeh range bin is illustrated in Fig.
12.11. It consists of the following stegdsirst, heterodyning with the carrier
frequency is performed to eatt the quadrature components.

This is followed by LP filtering and A/D conversion. Next, deramping or
focusing to remove the second order ghtesm of the quadrature components
is carried out using a phase rotationtmixa The last stage of the processing
includes windowing, performing an FFh the windowed quadrature compo
nents, and scaling the amplitude spectrum to account for range attenuation and
antenna gain.

The discrete quadrat components are

%%, % X % Acos) L #8 % <

. B . (12.46)
Xo¥t, %= X8 %= Asing) (§,#8, % <

) SLHB, U IR HB, % 271, (12.47)

andt, denotes theth sampling time (remember thal,, (2" t, T,,(2).
The quadrature components after deramping (i.e., removal of the phase
) =4 f0+ttt§) are given by

X9 % _ [oos) —sin)} X % (12.48)
Xgt %6 [sin) cog) ||Xo% %
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Doppler histories
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Figure 12.11. Signal procssing block diagram for thek™ range bin.
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12.7. SAR Imaging Using Doppler Processing

It was mentioned earlier that SAR imaging is performed using two orthogo
nal dimensions (range and azimuth). Range resolution is controlled by the
receiver bandwidth and pulse compressiAzimuth resolution is limited by
the antenna beamwidth. A one-to-azm@respondence between the FFT bins
and the azimuth resolution cells can be established by utilizing the signal
model described in the previous sewtidlherefore, thegroblem of target
detection is transformed into a spectahblysis problemwhere detection is
based on the amplitude spectrum of tieturned signal. The FFT frequency
resolution* f is equal to the inverse of the observation inteffygl. It follows
that a peak in the amplitude spectrunkgtf indicates the presence of a scat
terer at frequencyy, = k;*f.

For an example, consider the scatte@erwithin the kth range bin. The
instantaneous frequendy; corresponding to this scatterer is

1d - 2v_. .
This is the same result derived in Eq. (12.23), vith= *! . Therefore, the
scatterers separated in Doppler by more tharcan then be resolved.

Fig. 12.12 shows a two-dimensional BAmage for three point scatterers
located 10 Km down-rangé this case, the azimu#dnd range resolutions are
equal to 1 m and the operating frequency is 35GHz. Fig. 12.13 is similar to Fig.
12.12, except in this case the resoluticell is equal to 6 inches. One can
clearly see the blurring that occurstire image. Figs. 12.12 and 12.13 can be
reproduced using the prografigl2 12 13.m"given in Listing 12.1 in Sec

tion 12.10.

12.8. Range Walk

As shown earlier, SAR Doppt processing is achieved in two steps: first,
range gating and second, azimuth compoessithin each bin at the end of the
observation intervaFor this purpose, azimuth mpression assumes that each
scatterer remains within the same range bin during the observation interval.
However, since the range gates are defingh respect to a radar that is mov
ing, the range gate grid is also moving relative to the ground. As a resuk a scat
terer appears to be moving within its range bin. This phenomenon is known as
range walk. A small amount of range walk does not bother Doppler processing
as long as the scatterer remains within the same range bin. However, range
walk over several range bins can constitute serious problems, where in this
case Doppler procesg is meaningless.
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Figure 12.13. Three point scatterer imageResolution cell is squared inches.
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12.9. A Three-DimensionabAR Imaging Technique

This section presents a new thremeénsional (3-D) Synthetic Aperture
Radar (SAR) imaging techniq&dt utilizes a linear aay in transverse motion
to synthesize a two-dimensional (2-D) synthetic array. Elements of the linear
array are fired sequentially (one elemana time), while all elements receive
in parallel. A 2-D information sequence is computed from the equiphase two-
way signal returns. A signal model based on a third-order Taylor series expan
sion about incremental relative time, aztmuelevation, and target height is
used. Scatterers are detected as peaks in the amplitude spectrum of the infor
mation sequence. Detection is performed in two stages. First, all scatterers
within a footprint are detected using an incomplete signal model where target
height is set to zero. Then, processirsing the complete signal model is per
formed only on range bins containing significant scatterer returns. The differ
ence between the two images is usedmeasure target height. Computer
simulation shows that this techniqueaiscurate and virtually impulse invari
ant.

12.9.1. Background

Standard Synthetic Aperture Radar (SAR) imaging systems are generally
used to generate high resolution tdimensional (2-D) images of ground-ter
rain. Range gating determines resolution along the first dimension. Pulse com
pression techniques are usually used to achieve fine range resolution. Such
techniques require the use of wide baecdeiver and display devices in order
to resolve the time structure in the meied signals. The width of azimuth cells
provides resolution along the other dimension. Azimuth resolution is limited
by the duration of the observation interval.

This section presents a three-dimensional (3-D) SAR imaging technique
based on Discrete Fourier Transform (DFT) processing of equiphase data col
lected in sequential modé@OFTSQM). It uses a lwar array in transverse
motion to synthesize a 2-D synthetic array. A 2-D information sequence is
computed from the equiphase two-way sigeturns. To this end, a new signal
model based on a third-order Taylories expansion about incremental rela
tive time, azimuth, elevation, and tardetight is introduced. Standard SAR
imaging can be achieved ogian incomplete signal rdel where target height
is set to zero. Detection is performedwo stages. First, adicatterers within a
footprint are detected usiram incomplete signal model, where target height is
set to zero. Then, processing using the complete signal model is performed

1. This section is extracted from: MahafBaR. and SajjadiM., Three-Dimensional
SAR Imaging Using a Linearrfay in Transverse MotiohEEE - AES Trans\ol.
32, No. 1, January 1996, pp. 499-510.
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only on range bins containing sigmidint scatterer returns. The difference
between the two images is used adratication of target height. Computer
simulation shows that this techniqueaiscurate and virtually impulse invari
ant.

12.9.2. DFTSQM Operation and Signal Processing
Linear Arrays

Consider a linear array of si2¢, uniform elenent spacingd, and wave
length , . Assume a far field scatterd? located at direction-sinein”,.
DFTSQM operation for this array can tescribed as follows. The elements
are fired sequentially, one at a time, \eldlll elements receive in parallel. The
echoes are collected and integrated cottBreon the basis of equal phase to
compute a complex farmation sequenceé®$mm = 0#2N—-1 A The x-
coordinates, ind -units, of thext" element with respect to the center of the
array is

Xn:%_—N;1+n3n:O#? N-1 (12.50)

The electric fied rﬁceived by the<t2h element due to the firing of thélh, and
reflection by the'" far field scattereP, is

R. 42
ESx#x,s % G235, %ﬁo% JB1 exmbiBiX#x,;s %6 (12.51)
BSX,#y5 U 2L 9
X9 Y= — X, + X, Hy % (12.52)
s = sin", (12.53)

where J@, is the target cross sectioB2$s %s the two-way element gain, and
R, (R %is the range attenuation with respect to reference Bpg&he scat
terer phase is assumed to be zero; hew#could be easily included. Assum
ing multiple scatterers in the arrayp®©V, the cumulative ektric field in the
pathx,; C X, due to reflections from all scatterers is

ESx#x, % > B &X#X,5 % JEqE#X)s % (12.54)
all |
where the subscript#i#Q %denote the quadratureroponents. Note that the
variable part of the phase given in Efj2.52) is proportional to the integers
resulting from the suméix,; + x,, %M 1#n2 % 0#? N—1 Aln the far field

operation there are a total &N — 1 %distinct $,; + X, #sums. Therefore,
the electric fields wittpaths of the saméx,; + x,, %sums can be collected
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coherently. In this manner the information seque@itdm %m = 0#2N -1 As
computed, wherd®2N —1 %s set to zero. At the same time one forms the
sequence@$m9ym = 0#? 2N -2 Awhich keeps track of the number of
returns that have the saméX,;+Xx,, % sum. More precisely, for
m=nl+n2; MN2% DIN-1

b$m % b$m % E$x, ,#X,, % (12.55)

ch% cm% 1 (12.56)

It follows that

\IJEm+1;m:O#?N—2 E
@My =0#? 2N-2 A~ N : m= N-1 E (1257)
EON-1-m m= N#2 2N-25

which is a triangudr shape sequence.

The processing of the sequen@@$m %Ais performed as follows: (1) the
weighting takes the sequen@$m %Anto account; (2) the complex sequence
@%$m YAs extended to sizBl., a power integer of two, by zero padding; (3)
the DFT of the extended sequer@$m 9 = O#N. —1 As computed,

Ne—1
B$ % > b'ﬂ:‘rn%exr%—jzﬂl\fm%q = 0#? N-1 (12.58)
F
m=20

and, (4) after compensatidar antenna gain and range attenuation, scatterers
are detected as peaks in the amplitude spectBSn% Note that step (4) is
true only when

in" . = -9g. = —

sin" 2Nd’q o#? 2N-1 (12.59)
where sin" ; denotes the direction-sine of th scatterer, antNz = 2N is
implied in Eq. (12.59).

The classical approach to multiple targletection is to use a phased array
antenna with phase shifting and tepg hardware. The array beamwidth is
proportional to$ (Nd %and the first sidelobe is at about -13 dB. On the other
hand, multiple target detection using DFTSQM provides a beamwidth propor
tional to $ (2Nd %as indicated by (Eqg. (12.59), which has the effect of dou
bling the array’s resolution. The first sidelobe is at about -27 dB due to the
triangular sequence@$m %A Additionally, no phase shifting hardware is
required for detection of targets wiitha single elemes field of view.

© 2004 by Chapman & Hall/CRC CRC Press |



Rectangular Arrays

DFTSQM operation and signal processfog2-D arrays can be described as
follows. Consider arN, &N, rectangular array. AIN,N, elements are fired
sequentially, one at a timé\fter each firing, all the\,N, array elements
receive in parallel. Thus\,N, samples of the quadrature components are col
lected after each firing, and a total$,N, %samples will be collected. How
ever, in the far field ogration, there are onlfN, —1 % &N, — 1 %distinct
equiphase returns. Therefore, the coidctiata can be added coherently to
form a 2-D information array of siz&N, -1 % ®N,-1% The two-way
radiation pattern is computed as the modulus of the 2-D amplitude spectrum of
the information array. The processing includes 2-D windowing, 2-D Discrete
Fourier Transformation, antenna gaamd range attenuation compensation.
The field of view of the 2-D array is determined by the 3 dB pattern of a single
element. All the scatterers within this field will be detected simultaneously as
peaks in the amplitude spectrum.

Consider a rectangular array of sike& N, with uniform element spacing
d, = d, = d, and wavelength . The coordinates of the" element, ind-

units, are
2 N-1 3 _ _
X, = —2 +n1 n=0#? N-1 (12.60)
Y, = %—NT_1+n% ‘n=0#? N—1 (12.61)

Assume a far field poinP defined by the azimuth and elevation angles
L #' %In this case, the one-wayametric phase for an element is

M$xty %6 2—7;xsin" cod +ysin" sirL < (12.62)

Therefore, the two-way genetric phase between tie#y, Yand$.#y, Yele
ments is

M #y, K, ¥ ¥ 2sin" ;B + X, Bos b Py, +y, ®in & (12.63)
The two-way electric field for theh scatterer afl #'| %s

R..4
ESaix, #: YoiL#'| % G?§' %’ﬁof J61 exp BBy, %, Y b (12.64)

Assuming multiple scatterers within the array’s FOV, then the cumulative elec
tric field for the two-way pati$x,#y, % $,#y, %s given by

© 2004 by Chapman & Hall/CRC CRC Press |



E$x#x, #, ¥ % > E$x#x, #, ¥h;L#' | % (12.65)
all scatterers
All formulas for the 2-D case reduce t@#e of a linear array case by setting
N, = 1 andL = 0.

The variable part of the phase given in Eq. (12.63) is proportional to the inte
gers$, + x, ¥and %y, +y, %Therefore, after compien of the sequential fir
ing, electric fields wth paths of the sam@# %sums, where

@=Xpp + Xyl =-N-1% IN-1%A (12.66)
@=Yn1+ Yol =-N-1% N-19%A (12.67)

can be collected coherdn In this manner the 2-D information array
@$m#Am, B #m, % O#? 2N -1 Ais computed. The coefficient sequence
@$mgm, BmH#m, % 0#? 2N -2 As also computed. More precisely,

for m,=nl+n2 and m, = nl+n2 (12.68)
nl=0#? N-1 #and M2 = O#? N-1
b$m#m, %= bSm#m, % ESX,1#yn Ko Yo % (12.69)

It follows that
cdm#m, % N, —|m, — N, — 1 Y& N, —|m — N, -1 98  (12.70)

The processing of the coreg 2-D information array@$mg#m, %Ais simk
lar to that of the linear case with theception that one should use a 2-D DFT.
After antenna gain and range attenuatiompensation, scatterers are detected
as peaks in the 2-D amplitude spectrafrthe information array. A scatterer
located at angle§L #', %will produce a peak itthe amplitude spectrum at
DFT indexes$p#q, %where

L, = ata q'i’ (12.72)

P

» By — » G
2NdcosL;  2NdsinL,

sin", = (12.72)

Derivation of Eq. (12.71) is in Section 12.9.7.

12.9.3. Geometry for DFTSQM SAR Imaging

Fig. 12.14 shows the geometry of the DFTSQM SAR imaging system. In
this casef, denotes the central time thfe observation intervaD,,,. The air
craft maintains both constant velocityand heighth. The origin for the rela
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tive system of coordinates is denotedCasThe vectorOM defines the radar
location at timet,. The transmitting antenna cortsi®of a linear real array
operating in the sequential mode. The real array is off¢izelement spacing
d, and the radiators are ailar dishes of diametdd = d. Assuming that the
aircraft scandM transmitting locations along tlfiéght path, thera rectangular
array of sizeN & M is synthesized, as illustrated in Fig. 12.15.

a8, %
7 footprint _ ~
s
/ /
, e
Y /
7/

Figure 12.14. Geometry fo D/FTSQM imaging system.

Figure 12.15. Synthesized 2-D array.
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The vectorg$t, Yaefines the center of the 3 dB footprint at titpeThe cen
ter of the array coincides with the flight path, and it is assumed to be perpen
dicular to both the flight path and the line of sigit, % The unit vectora
along the real array is

a = cos'Na +sin" Ny, (12.73)

where "N is the elevation angle, or theraplement of the depression angle,
for the center of the footprint at central time

12.9.4. Slant Range Equation

Consider the geometry shown in Fig. 12.16 and assume that there is a scat
tererC; within thekth range cell. This scatterer is defined by

@mpltiudet phasé elevatio@f azimutht height (12.74)
@#B #, & ht A
The scattere€; (assuming rectangular coordinates) is given by
Ci = htan" cos8;a, + htan";sing;a, + hid, (12.75)
="t 9 (12.76)

where" , denotes the eletian angle for thek!" range cell at the center of the
observation interval anél is an incremental angle. L&e, refer to the vector
between thent" array element and the poiﬁt, then

%
Figure 12.16. ScattererC; within a range cell.
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Oe, = D,cos' N, +vta, +$D sin" N+ h @, (12.77)

1-N o
D, = g > +n13d n=0#? N-1 (12.78)

The range between a scattemwithin thekth range cell and thath element
of the real array is

r284#948 KD, % D2+ V22 +$h—h %+ 2D, sin" Ngh—h %

(12.79)
htan$', + 9 Yhtan$' , + 9% 2D, cos' Ncos8 — 2vtsin8<

It is more practical to use thecatterer's elevation and azimuth direction-

sines rather than the correspondingréments. Therefore, define the scat
terer's azimuth and eleva direction-sines as

s = sin8

(12.80)
u = sin9 (12.81)
Then, one can rewrite Eq. (12.79) as
r2Ss # #D, % DZ+ V22 +$h— h G+ h2f23u % (12.82)
2D,,sin" Ngh — h % $2D, hcos’ Nigu 9f1 — 52 — 2vhti$u %%
fou % tan$ '+ asinu % (12.83)

Expandingr,, as a third order Taylor series expansion about incremental
$#s #1 H%ields

~ ) ) 62 o~ 2
r&i#s #i #D % T+r:h+r,u+ My +i; hu+T sy TraSt+ (12.84)
2 h® h?u ~ . hu?
rnE + ruu? + rﬁﬁﬂg + rﬁfw7 + I‘~ hSt +T- v +
_ hs? . ug’ s, th® ~—u2 = ud
rﬁss—z— +Tss > + g StU+T, +r, - +

suu o 2 thh 2 rut'[? +ruuu€
where subscripts denote partial derivasipand the over-bar indicates evalua
tion at the stat@t#s #1 #% $0#0# B%Note that

ht = Msu = Tu =g = Mhbe =Thsu =Mhey = (12.85)
Fsss= Isst= Mgyt = Tire = Mtsu = OA

1
=
|

Section 12.9.8 has detailed expressiofsll non-zero Taylor series coeffi
cients for thekth range cell.

Even at the maximum incremertis#s,,, #,, Efmx, the terms:
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IJh3 h2u, hu?  hs?

Hrﬁhh G#rﬁﬁu 2 Thuu 2 Rss o 2 (12.86)

SR th> . ut2  , u3G

Muss 2 #rstuStu#rsuu_z_ Eﬁﬁ? fit 7 Py EE

are small and can beglected. Thus, the rangg is approximated by
Flz -
r§i#s # #D % T +r1- h+r Jut rhhz +i: hu+ (12.87)
s? t2 ; u2
552 +TgSt+ rtt2 ““E +rﬁsthst

Consider the following two-way path: tlé" element transmitting, scatterer
Ci reflecting, and then{h element receiving. It follows that the round trip
delay corresponding to this two-way path is

$r Sst #D, %, St#s i #D, %o (12.88)

n1”2

wherec is the speed of light.

12.9.5. Signal Synthesis

The observation interval is divided intdM subintervals of width
*t = $D,,PM % During each subinterval, theeal array is operated in
sequential mode, and an array lengti2if is synthesized. The number of sub
intervals M is computed such thdtt is large enough to allow sequential
transmission for the real array witltocausing range ambiguities. In other
words, if the maximum range is denotedRs, then

2R
*t/ N%‘ (12.89)

Each subinterval is then partitioned inkb sampling subintervals of width
2R« (c. The locationt,,, represents the sampling time at which e ele
ment is transmitting during theth subinterval.

The normalized transmitdesignal during themt" subinterval for thenth
element is defined as

S, ¥ cosR7ft,,+ Q% (12.90)

where Q denotes the transmitter phase, dpdis the system operating fre
quency. Assume that there is only one scatt&erwithin the kth range cell
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defined by$a#B, % & h#%The returned signal at thg" element due to fir
ing from thenih element and reflection from ti@& scatterer is

syt % aG?$sin”; % @&t % | %o (12.91)
cos; 27f 8y =+ 0, B Q B

where G? represents the two-way antenna gain, and the $yf, % . %0
denotes the range attenuation at kHerange cell. The analysis in this paper
will assume hereon th& andB, are both equal to zeroes.

Suppose that there aMg, scatterers within th&" range cellwith angular
locations given by

@a#Bis, #; I %= 142 N, A (12.92)

The composite returned signal at tir’qﬁn‘l within this range cell due to the
pathéh, C all CiC n,%s

N,

s$yny ity % > syt % (12.93)
i=1
The platform motion synthesizes rectangular array of sizd & M, where
only one column olN elements exists at a time. HoweveMif= 2N and the
real array is operated in the sequentimde, a square planar array of size
2N & 2N is synthesized. The element spacialong the flight path is

dy = vDg, (M.

Consider thek™h range bin. The corresponding two-dimensional information
sequence@, $#m ¥n#m % 0#? 2N -2 Bonsists of 2N similar vectors.
Themth vector represents the returnsedo the sequential firing of aN ele
ments during them!h subinterval. Each vector h&N — 1 %rows, and it is
extended, by adding zeroes, to the next power of two. For example, consider
the mth subinterval, and e = 2N = 4. Then, the elements of the extended
column @, $¥m %lare

@, $0HmM U, S1#m Yo, F2#m U, F3#m o, $4#m b, $64#m % (12.94)
by $6#m o, $7#M % = @IOHO;L,,  HsSOH Lt % SHIHOL,, , A
SSOH2;ty, W SELHLL,,, %o SRHOL, , HsSOHB;L,,, % SEIH2L,, %o
sRAHLL,, % sEHOL,, HsELH3 L., % sRHA2L,, %
SEH Lt ,, HSTRH3 L, Yo SBIH2,, WSS, UDA
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12.9.6. Electronic Processing

Consider again th&th range cell during thent" subinterval, and the two-
way path:n{" element transmitting andi" element receiving. The analog
quadrature components corresponding to this two-way path are

sR$,#in,;t % Bceos) R (12.95)

s§$n,#n,;t %= Bsin) R (12.96)

J ~
R = 27f0L|t - %[2? +§: 8D, %D, Wb+&F D, %r D, R+ (12.97)

"2
77 8Dn, % 18D, Wg + 5, 80, %1 D, %t +
] W+ o1 2
i{‘r‘SS$Dnl % rSSST:Dnz 9 ; + 21 St+ 2rtt—2— +

2 ~
8D, % 1,8, g + F; D, % 1 D, ist< A

hst

whereB denotes antenna gain, range attenuation, and scatterers' strengths. The
subscripts fort have been dropped for notation simplicity. Rearranging Eq.
(12.97) and collecting terms yields

LT o o
)R = —C'h@c—,2rsts+$rr~1st$3n1 %P 9D, Rtst—Ft2 A (12.98)

[2r + 9D, % 9D, %b+H 9D, % 1,9, Rb+
2 -2
5.0, 501,10, 4350, 50150, -

~ 241G
ﬂyﬁu@nl % Ffm$3n2 %tu + ﬂTss$3n1 % Fss$3n2 ()/%:I E

After analog to digital (A/D) conversion, deramping of the quadrature compo
nents to cancel the quadratic pha&@7f,r t? (c %s performed. Then, the
digital quadrature components are

s, #n,;t 9% Bcos) (12.99)

Son#n,;t % Bsin) (12.100)
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2
) =) R—271‘0t+27f0rtt% (12.101)

The instantaneous frequency for tiie scatterer within the&th range cell is
computed as

_1d _f

— 0.5, . P ”
fg = > Gt - —C,2rsts+ $rhst$3nl%rhst$3n2 Ots< (12.102)
Substituting the actual values fag,, 7 3D, %r; $D, %and collecting
terms yields
2vsin" 2 hs a3
fy = _02— $h+$D, + D, %in NosT (12.103)
. Tocdts, % 1

Note that ifﬁ = 0, then

fy = 2 sin", sing (12.104)

which is the Doppler value corresponglito a ground patch (see Eq. (12.49)).

The last stage of the processing cassidg three steps: (1) two-dimensional
windowing; (2) performing a two-dimensional DFT on the windowed quadra
ture components; and (3) scaling tamgensate for antenna gain and range
attenuation.

12.9.7. Derivation of Eq. (12.71)

Consider a rectangular array of sike& N, with uniform element spacing
d, = d, = d, and wavelength . Assume sequential mode operation where
elements are fired sequentjalbne at a time, while all elements receive in par
allel. Assume far field observation fiteed by azimuth and elevation angles
HL#' %The unit vectom on the line of sight, with respectﬁ, is given by

o = sin"cod a, +sin"sirL a, +cos' a, (12.105)
The $h#in, 4 element of the array cde defined by the vector
2 N-1 N—1
esndin, % gn—=—= Hoa+dn - ~ Hoa (12.106)

wherefh#in, = 0#? N -1 %The one-way geometric phase for this element is

Mindn, % kb UBbn#n, %o (12.107)
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wherek = 27 (, is the wave-number, and the operagfolJ %ndicates dot
product. Therefore, the two-way geometric phase betweefnifn, ; %and
. #n,, Yelements is

Min, #n, #,, #, % Kk OU@Sn#n,, % e$n,#n, , YA (12.108)
The cumulative two-way mmalized electric field due all transmissions is
E$u % E S B R % (12.109)

where the subscripts and r, respectively, refer to the transmitted and
received electric fields. More precisely,

N-1 N-1

ER% > > windn, Exp jkauU's gin, %A (12.110)
Ng=0 n,=0
N-1 N-1

ER% > > win#n, ®xp jkauus p#n, %A (12.111)
n,=0 n,=0

Xt yr

In this case,w$ng#n, %denotes the tapering sequence. Substituting Egs.
(12.108), (12.110), and (12.111) into.E#2.109) and grouping all fields with
the same two-way geometric phase yields

N,—1 N,-1

ESu% &V>s > wiwn®xp jkdsin® $mcosl +nsinL % (12.112)

m=0 n=0
N, = 2N-1 (12.113)
m = n,+ng,m= 0#? 2N-2 (12.114)
n=n,+n,n = O#? 2N-2 (12.115)
V= %izin"%&\l—l %cos B sinL % (12.116)

The two-way array pattern is then computed as
N,—1 N,-1
[ESu 0= |> > wamwn®xp jkdsin" $mcosL + nsinl (12.117)
m=0 n=0

Consider the two-dimensional DFT transforrid/$p#qg % of the array
wngin, %
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W Htq % (12.118)

N,—1N,-1

S > WWn%xp%—j%ﬂpm+ an%p#q = 0#2 N,—1
a

m=0n=0

Comparison of Egs. (12.117) and Eqg. (12.118) indicated E$atdois equal to
|W $p#q Yoif

—%il—:%p - gdsin" cot (12.119)
2213 = Zgsin' si (12.120)
ROl
It follows that
L = tarr%g% (12.121)

12.9.8. Non-Zero Taylor Sees Coefficients for the R Range Cell

F = /D2+h2$l + tan”, % 2hD,sin" N— 2hD,cos’' Man", = O, %h2.122)

ro= (2)‘?1%1;“ D, sin"Nog (12.123)
P, = (Z)F Ty Shtan", - D, cos' N% (12.124)
p. = 213_213g in" No
Fro = Or 1~ Grat + D, sin"No% (12.125)
ey = %r_la%%?ﬁ“’ D,tan"N%htan" , — D, cos'N% (12.126)
k
- 2713, 213$htan —D,cos'N% (12.127)
T 04r3170 : '
o 2—13n "
fs = g7 1Vtan' (12.128)
2
fy = (12.129)
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ro—2_h 2 " ‘No
fuu = O cog” ]311]—Pr 2cos, %tan «—D,cos' N%

. . G
3+ 2tan” sin"  3—2sin" D, cos’ NF

0051‘ 1 B

P =23 g2l -
Mhfh = orgiﬁﬂ' D,sin N({%rz%l?w D, sin" N%- 1}

F~~ = Z.L "o ] 3 o n
Mhhu = 0F3co§"k%$htan x—Dycos N%%l%J' D, sin" N&+ 1}

hvtan"
ZTL(%Fn + D, sin"N%

rﬁst = 0
. - 238 h* - . ,
Thou = 0f5 ]Ocos“"kl%w D,sin" N@htan", —D,cos' N%
rﬁss = OF:;:]?_Qﬂan k—DnCOS' N%]+ Dns|n N%

(12.130)

(12.131)

(12.132)

(12.133)

(12.134)

(12.135)

Muss = 2_nh %&Dncos' N%le l%tan" «— D, cos' N@htan", % 1} (12.136)

—htan"
r 2—3£’dﬁtan"k—D cos' N9

Pot
"~ Or3cog",
hD_cos' Ny htan"
= —_ 2_=n 2 k " .
f'suu = @ Fcog” 0 r2 iﬁqtan «—D,,cos'N% 1:|
o _2.V 2h " ,
it = Orcogr, %tan «—Dpcos' N

LN VR .
Orcos™ 7 8htan"  + sir?"  $h — D,cos' N% 2D ,cos’ N<+

(12.137)

(12.138)

(12.139)

(12.140)

3h?
tan",—D cos"N%[z— tan" , — D, cos' N%
0rc§"3$FI K Orcs5"%ﬁI k™ 0
2_1 D e N . No
02003,k+$ﬂtan x—Dpcos 9}1 Ors %tan «—Dpcos'N%
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12.10. MATLAB Programs and Functions

Listing 12.1. MATLAB Program “figl2_12-13.m”

% Figures 12.12 and 12.13
% Program to do Spotlight SAR using the rectangular format and
% HRR for range compression.

% 13 June 2003

% Dr. Brian J. Smith

clear all;

%%%%%%%%% SAR Image Resolution %%%%
dr = .50;

da=.10;

% dr = 6*2.54/100;

% da = 6*2.54/100;

%%%%%%%%% Scatter Locations %%%%%%%
xn = [10000 10015 9985]; % Scatter Location, x-axis

yn = [0 -20 20]; % Scatter Location, y-axis
Num_Scatter = 3; % Number of Scatters
Rnom = 10000;

%%%%%%%%% Radar Parameters %%%%%%%%
f 0= 35.0e9; % Lowest Freg. in the HRR Waveform
df = 3.0e6; % Freq. step size for HRR, Hz
c= 3e8; % Speed of light, m/s
Kr=1.33;
Num_Pulse = 2"\(rountt{g2 (Kr*c/(2*dr*df))));
Lambda = c¢/(f_0 + Num_Pulse*df/2);
%%%%%%%%% Synthetic Array Parameters %%%%%%%
du=0.2;
L = round(Kr*Lambda*Rnom/(2*da));
U = -(L/2):du:(L/2);
Num_du = length(U);
%%%%%%%%% This section generates the target returns %%%%%%
Num_U = round(L/du);
|_Temp =0;
Q_Temp = 0;
for I = 1:Num_U
for J = 1:Num_Pulse
for K = 1:Num_Scatter

Yr =yn(K) - ((I-1)*du - (L/2));

Rt = sgrt(xn(K)"2 + Yr"2);

F_ci=f 0+ (J-1)*df;

PHI = -4*pi*Rt*F_ci/c;

I_Temp = cos(PHI) + |_Temp;
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Q_Temp = sin(PHI) + Q_Temp;

end;
IQ_Raw(J,l) =I_Temp + i*Q_Temp;
|_Temp = 0.0;
Q_Temp =0.0;
end;

end;
%%%%%%%%%% End target return section %%%%%
%%%%%%%%%% Range Compression %%%%%%%%%%%%%
Num_RB = 2*Num_Pulse;
WR = hamming(Num_Pulse);
for I = 1:Num_U
Range_Compressed(:,l) = fftshift(ifft(IQ_Raw(:,I).*WR,Num_RB));
end;
%%%%%%%%%% Focus Range @pressed Data %%%%
dn = (1:Num_U)*du - L/2;
PHI_Focus = -2*pi*(dn.*2)/(Lambda*xn(1));
for I = 1:Num_RB
Temp = angle(Range_Compressed(l,:)) - PHI_Focus;
Focused(l,:) = abs(Ramrg Compressed(l,:)).*exp(i*Temp);
end;
%Focused = Range_Compressed;
%%%%%%%%%% Azimuth Compression %%%%%%%%%%%%
WA = hamming(Num_U);
for I = 1:Num_RB
AZ_Compressed(l,:) = fi#t(ifft(Focusedl,:).*WA"));
end;
SAR_Map = 10*log10(abs(AZ_Compressed));
Y_Temp = (1:Num_RB)*(c/(2*Num_RB*df));
Y = Y_Temp - max(Y_Temp)/2;
X_Temp = (L:length(IQ_Raw))*(Lambda*xn(1)/(2*L));
X = X_Temp - max(X_Temp)/2;
image(X,Y,20-SAR_Map); %
%image(X,Y,5-SAR_Map); %
axis([-25 25 -25 25]); axigqual; colormap(gray(64));
xlabel('Cross Range (m)%¥jabel('Down Range (m)");
grid
%print -djpeg .jpg
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Chapter 13 Signal Processing

13.1. Signal and System Classifications

In general, electrical signals can regmgseither current or voltage, and may
be classified into two main categaieenergy signals and power signals.
Energy signals can be deterministic or random, while power signals can be
periodic or random. A signal is said to be random if it is a function of a random
parameter (such as random phase or random amplitude). Additionally, signals
may be divided into low pass or band pass signals. Signals that contain very
low frequencies (close to DC) are called low pass signals; otherwise they are
referred to as band pass signalscoligh modulation, low pass signals can be
mapped into band pass signals.

The average powd? for the currenbr voltage signak! t' over the interval
It,#t," across dl$ resistor is

t
1 2
P=——04t" dt 13.1
tz—tl% | (13.1)
ty
The signalx!t" is said to be a power signal over a very large interval
T = t,—t,, if and only if it has finite power; it must satisfy the following
relation:
T(2
. 1 2
0' lim = Ofx!t]” dt ' & 13.2
T & T /(li( | (13.2
—-T(2

Using Parseval’s theorem, the eneigydissipated by theurrent or voltage
signalx!t' across d$ resistor, over the intervéat,#.," , is
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t,
E = (%jt‘l2 dt (13.3)
ty

The signalx!t" is said to be an energy signal if and only if it has finite
energy,

&
E= O 2 d & (13.4)
-&

A signalx!'t" is said to be periodic with period if and only if

X" = xt+nT' for all t (13.5)
wheren is an integer.
Example:

Classify each of the following signals as an energy signal, as a power signal,
or as neither. All signals are defined over the interdal& ' t &":
X " = cost+ cos, x,!t" = exp!—=* 2P

Solution:

T(2
Py, = _%_ %cost +cosa"’dt = 1+ power signal

-T(2
Note that since the cosine function is periodic, the limit is not necessary

2

& &
.22 2 .22 A 1 :
E, = 0% ""dt =20g tdt:2—’:—£ + energy signal
3 /(? % 2@* *
& 0

Electrical systems can Himear or nonlinear. Funermore, linear systems
may be divided into continuous or disiereA system is linear if the input sig
nal x,!t" producesy,!t" andx,!t" producesy,!t"; then for some arbitrary
constantsa; anda, the input signala;x,!t" + a,x,!t" produces the output
a.y,!t" + a,y,!t" . A linear system is said to be shift invariant (or time invari
ant) if a time shift at its input product®e same shift at its output. More pre
cisely, if the input signak! " producesy!t" then the delayed signal t— t,"
produces the outpyt t—t," . The impulse response ai_inear Time Invariant
(LT1) system,h!t", is defined to be the system’s output when the input is an
impulse (delta function).
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13.2. The Fourier Transform
The Fourier Transform (FT) of the signdlt” is

&
F-xit. = XU/ " = Qe ot (13.6)
—&
or
&
F-xIt. = XIf' = %t“e_jz’ gt (13.7)
—&
and the Inverse Fourier Transform (IFT) is
&
FLXI/" =Xt = Zi 0%/ e (13.8)
&
or
&
Fhxir = xt = Qffd”™ df (13.9)
-&

where, in generalt represents time, whil¢ = 2, f and f represent fre
quency in radians per second and Hertz, respectively. In this book we will use
both notations for the transform, as appropriate X#.," and X! f").

A detailed table of the FT pairs istksl in Appendix 13A. The FT properties
are (the proofs are left as an exercise):

1. Linearity:
F-apx " +ax,!t". = a X!/ "+a,X,!/ " (13.10)

2. Symmetry: IfF-x!t". = X!/ " then

&
2, Xl " = %t"e‘” 't (13.11)
&

3. Shifting: For any real time,

F-x!t0t,". = e foxiy (13.12)
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4. Scaling: IfF-x!t". = X!/ " then

=134
F-xtat'. = |alx1a2

5. Central Ordinate:
&

X1o" = % t'dt
-&

&
w1 "
x!0" = 2 %/ o/

-&

6. Frequency Shift: IF-x!t". = X!/ " then

0/ ot

F-e “xIt. =X/ §

7. Modulation: If F-x!t". = X!/ " then

F-xit'cod gt = %m/ A oS X A 8
i P § " "
F-x!t'sinl/ t". = 2—J.7X!/ 4 X!/ 4 )8
8. Derivatives:
= n >
Frd ) = 17 "y -
9dt" :

(13.13)

(13.14)

(13.15)

(13.16)

(13.17)

(13.18)

(13.19)

9. Time Convolution: ik!t* and h!t" have Fourier transform¥!/ " and

H!/ ", respectively, then

& >

F %?'h!t—?'d?<@ Xt/ "H1/ "

@

Q@

0-&
10. Frequency Convolution:

&
wprpn = L , "
F-xIt'h!t". = 2. %!?‘ H!/ =2 "d?

—&
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11. Autocorrelation:

=& >
F- %?'XA!?—t"d?<@ XU XA = X2 (13.22)
g °

12. Parseval's Theorem: The energgsociated with the signal t" is

& &
E = %l f'2|dt = %!/ "|2d/ (13.23)
—& —&
13. Moments: Thenth moment is
&
dn
m, = q?ddt"dt = —XI/"|, _q (13.24)
d/
0

13.3. The Fourier Series

A set of functionsS = -B_!t" ; n= 1#C #. is said to be orthogonal over
the intervall t,#t," if and only if

t2 t2
O Nt'B;!t"dt = Oy t"BAt"dt =

4y ty

=0 |D]>

§Ei - J< (13.25)

where the asterisk indicatasomplex conjugate, and; are constants. If
E = 1 foralli, then the se§ is said to be an orthonormal set.

An electrical signalx!t' can be expressed over the intervglt," as a
weighted sum of a set of orthogonal functions as

N
Xt G | XB,!t" (13.26)
n=1

where X, are, in general, complex constants, and the orthogonal functions
B,!t" are called basis functions. If thei@gral-square error over the interval
It,#t," is equal to zero a¥ approaches infinity, i.e.,

t, N 2
lim O t' — X B It" dt =0 13.27
N) & F n-n ( )
ty n=1
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then the seB = -B,!t". is said to be complete, and Eq. (13.26) becomes an
equality. The constants, are computed as

t
O/ t'B AL dlt
X, = — (13.28)

t2
0/8.!t"|*dt
2=

Let the signak!t" be periodic with period , and let the complete orthogo

nal setS be
[2.nt
= T >
S=:e 7 N= —&#H&< (13.29)
9 :
Then the complex exponential Fourier serieg!df is
& j2.nt
Xt = | X.e T (13.30)
n=-&
Using Eq. (13.28) yields
1 T( —j2, nt
_ 1 wo T
X, = = O/élt e dt (13.31)
-T(2
The FT of Eq. (13.30) is given by
(13.32)

&
wo_ 2, N4
Xit=2, F XH/ -5
n=-&
| " is delta function. When the signellt" is real we can compute

whereH
its trigonometric Fourier series from Eq. (13.30) as
" o_ , Nty . 32, Nty
Xt = a,+ = ancoﬁz—T >t F b”S'nl_T 5 (13.33)

n=1 n=1
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8 = Xo
T(2
1 nt
a, = =0 x!t"cosgz’—- t
" T_/P(z 1T 2 (13.34)
T2

_1 w32, Nt
b, = T% X!t siny=—= %jt
—T(2

The coefficientsa,, are all zeros when the signglt* is an odd function of
time. Alternatively, wherthe signal is an evenftigtion of time, then alb,, are
equal to zero.

Consider the periodic energy signal defined in Eq. (13.33). The total energy
associated with this signal is then given by

to+ T &

2 2 2
_ 1— w24 _ Qo 34, bn4
E_T%(!t|dt_Z+F -+ (13.35)
to

13.4. Convolution and Correlation Integrals
The convolutiond,,!t" between the signabd t* andh!t" is defined by

&
Juplt" = xtt" Kh!'t" = %?'h!t—?'d? (13.36)
-&

where ? is a dummy variableand the operatoK is used to symbolically
describe the convolution integral. Convolution is commutative, associative,
and distributive. More precisely,

x!I't" Kh!t" = hit" Kx!'t"
(13.37)
It Kh!t" Kg!'t' = IxIt" Kh!t"™ Kg!'t" = x!'t" KIh!t* Kg!t*"

For the convolution integral to be finite at least one of the two signals must be
an energy signal. The convolution between two signals can be computed using
the FT

It = F XU HY (13.38)

Consider an LTI system with impulse respomdé' and input signak!t". It
follows that the output signaf!t" is equal to the convolution between the
input signal and the system impulse response,
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& &
yit' = %?'h!t—?'d? = %?‘x!t—?'d? (13.39)
—-& —&
The cross-correlation fution between the signaldt' andg!t" is defined
as

&
Re!t" = 0/6“\! ?'glt+ 2°d? (13.40)
-&
Again, at least one of thevo signals should be anengy signal for the corre
lation integral to be finite. The crossirelation function measures the similar
ity between the two signals. The peak valueRpf!t" and its spread around

this peak are an indicatiai how good this similantis. The cross-correlation
integral can be computed as

Rg't" = F - XA "G/ ", (13.41)
Whenx!t" = g!'t" we get the autocorrelation integral,

&
R/t" = %!?‘x!w ?'d? (13.42)
-&
Note that the autocorreian function is denoted bR !t" rather tharR!t".

When the signalx!t" and g!t" are power signals, ¢hcorrelation integral
becomes infinite and, thus, time averggmust be included. More precisely,

T(2
_ ) 1
Relt" = | = A ?'glt+?2'd? 13.4
gl t Tl)m&TO/e; g't d (13.43)
-T(2

13.5. Energy and Power Spectrum Densities

Consider an energy signalt*. From Parseval's theorem, the total energy
associated with this signal is

& &
_ 02y _ 1 w2
E = %!fl dt = > %!/ |“df (13.44)
—& —&

Whenx!'t" is a voltage signal, the amount of energy dissipated by this signal
when applied across a network of resistaRcis
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& &
1 2 1 2
= = Q/kIt" = —— "
E R%'” dt 2. R%./ |“d/ (13.45)
& -&
Alternatively, whenx!t" is a current signal we get
& &
E = ROy t%dt = = Ojg!/ "%l (13.46)
2. ! .
—-& —&

The quantity%!/ "|2d/ represents the amountefiergy spread per unit fre
quency across a$ resistor; therefore, thEnergy Spectrum Density (ESD)
function for the energy signal t* is defined as

ESD = | X/ "|? (13.47)
The ESD at the output of an LTI system whed' is at its input is

VIERENYERETEE (13.48)

whereH!/ " is the FT of the system impulse resporigd’, . It follows that the
energy present at the output of the system is

&
1 " "
E, = Z%!/ RENERC (13.49)
&

Example:

The voltage signak!t" = e ; tL O is applied to the input of a low pass

LTI system. The system bandwidtlbidz, and its input resistance 8% . If
H!/ " = 1 over the interval-10, '/ * 10, " and zero elsewhere, compute
the energy at the output.
Solution:
From Egs. (13.45) and (13.49) we get
10,
1 " "
E =5R Op X/ TIHY "Pd
/ = -10,

Using Fourier transform tables and substitutiRg= 5 yield

10,
1 1

E, = 5 O/rz_'_zsd/

0
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Completing the integration yields

E, = %7atanh 2,"—atanH 0 8= 0.01799 Joules

Note that an infinite bandwidth would git#& = 0.02, only 11% larger.

The total power associated with a power sigyid! is

T(2
. 1 2
P=Im = OA4p't'| dt 13.50
Ty & T Aﬁ | ( )
-T(2
Define the Power Spectrum Density (PSD) function for the sighél as
St ", where
T(2 &
. 1 2 1
= = It = = 1"
P Th)m& = %jg.tl dt > %./ d/ (13.51)
-T(2 -&

It can be shown that (see Problem 1.13)

N IV
= lim ——- 13.52
. T) & T ( )
Let the signalx!t" and g!t" be two periodic signals with periodl. The
complex exponential Fourier series empians for those signals are, respec

tively, given by

&

j2, nt
Xit'= F X.e T (13.53)
n=-&
& j2, mt
git' = | Gpe T (13.54)
m=-&

The power cross-correlation functi@@xl t" was given in Eq. (13.43), and is
repeated here as Eq. (13.55),

T(2
Rgult" = % %A! 'xIt+?2'd? (13.55)
-T(2

Note that because both signals areiquic the limit is no longer necessary.
Substituting Egs. (13.53) and (13.54) into Eq. (13.55), collecting terms, and
using the definition of orthogonality, we get
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& j2n. t
Rpdt' = | GAX,e T (13.56)
n=-&

Whenx!t" = g!'t", Eq. (13.56) becomes the power autocorrelation function,

& i2n.t & i2n.t
RI"= | X0 T = |XJ*+2F [X)% ' (13.57)
n=-& n=1

The power spectrum and cross-power spectrum density functions are then
computed as the FT of Egs. (13.57)4h3.56), respectively. More precisely,

&
i =2 o -20-4

n=-&
&

_ " 2n,
S/ =2 F GnAXnH%/——_T_—‘Zl

n=-&

(13.58)

The line (or discrete) power spectrum is defined as the plo¢.pf versusn,

where the lines aréf = 1(T apart. The DC power ip(o|2, and the total
&
poweris = |Xn|2.

n=-&

13.6. Random Variables

Consider an experiment with outcomes defined by a certain sample space.
The rule or functional relationship thataps each point in this sample space
into a real number is called “randovariable.” Random variables are desig
nated by capital letters (e.X#Y# ), and a particular value of a random vari
able is denoted by a lowercase letter (edgy,# ).

The Cumulative Distribution Functioedf) associated with the random vari
able X is denoted a&4!x", and is interpreted as the total probability that the
random variableX is less or equal to the vale More precisely,

Fy!X" = Pr-XNx (13.59)

The probability thathe random variabl& is in the intervall x,;#x," is then
given by
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Fy! X" —Fy!X" = Pr-x; NX Nx,. (13.60)

Thecdfhas the following properties:

ONF,!x" N1
Fyl-&" = 0

(13.61)
Fyl&" =

Fylx," NFy X" O X, NX,

It is often practical to describe a random variable by the derivative aiffjts
which is called the Probability Density Functifpdf). The pdf of the random

variableX is
f IX" = %FX!X"
(13.62)
or, equivalently,
X
Fy!IX' = Pr-XNx = Ofg!E'dE (13.63)
—&

The probability that a random variab¥e has values in the intervak,#x," is
X2

Fu! X" =Fy X" = Pr-x; NX Nx,. = 0}/@' X"dx (13.64)
Xy

Define thenth moment for the random variab}e as
&
E7X"8= X" = %‘fxlx"dx (13.65)
-&

The first momentE7X § is called the mean value, while the second moment,
E7X°§ is called the mean squaredlua When the random variabl¥
represents an electrical signal acrodsbaresistor, therE7X 8is the DC com
ponent, anE7X’ 8is the total average power.

The nth central moment is defined as

&

EAX-X"8=IX-X" = ()/fd—k'“fx.lx"dx (13.66)

—&
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and, thus, the first central momenkero. The second central moment is called
the variance and is denoted by the sym%f@]

P2 = 1X-x" (13.67)
Appendix 13B has some commpdfs and their means and variances.

In practice, the random nature ah electrical signal may need to be
described by more than one random variable. In this case, thedbanidpdf
functions need to be considered. The jouitandpdf for the two random vari
ablesX andY are, respectively, defined by

Fyy!X#y' = Pr- XNXx; YNy (13.68)
fuy! Xy = iF Iy 13.69
XY y| Q(Q/ XY y ( )

The marginatdfs are obtained as follows:

& x
0Qfgv! u#v'dudv = Fy x#&"

-&-&
&y

Fyly" = Offgv!u#v'dvdu

-&-&

If the two random variables are stétally independent, then the joiodfs and
pdfs are, respectively, given by

Fy! X"

(13.70)

Fyy! &#y"

Fuy!Xiy' = FyIX'F ly" (13.71)
Ty X#y' = f X' ly" (13.72)

Let us now consider a case when the two random variablesd Y are
mapped into two new variabldd andV through some transformatioriy
and T, defined by

u
\Y

T, I XHY"

(13.73)
T, XH#Y"

The jointpdf, f,,/!u#v', may be computed based on the invariance of proba
bility under the transformation. One must first compute the matrix of deriva
tives; then the new joirgdf is computed as

fovluitv' = Ty Ity (13.74)
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PR
QQ

|| = (13.75)
Y Y
Q Qv
where the determinant oféhmatrix of derivative$]| is called the Jacobian.
The characteristic function for the random variaXlés defined as

&
c /" =E7d *8= %!x"e“ Xdx (13.76)
=

The characteristic function cdre used to compute tipelf for a sum of inde
pendent random variables. More precisely, let the random vaNabke equal

to

Y = X +X,+C +X (13.77)
where-X; ; i =1#C N. is a set of independent random variables. It can be
shown that

Cyl/ " = Cy ! "Cy !/ "C Cy 1] ™ (13.78)

and thepdf f,!y" is computed as the ints® Fourier transform o, !/ " (with
the sign ofy reversed),

&
fly" = Zi 0%/ ne ! Vg (13.79)
—&

The characteristic function majso be used to compute théh moment for

the random variabl&X as

n

E7X 8= 1 d_nCX!/ " (13.80)
/=0

13.7. Multivariate Gaussian Distribution

Consider a joint probability fom random variablesX;#X, #£ ¥,,. These
variables can be represented as components ofRf& random column vec
tor, X. More precisely,
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X = [Xl X, C an (13.81)

where the superscript indicate® tiranspose operation. The jopudf for the
vector X is

fIX" = fmg e 2 XiPG R (13.82)

The mean vector is defined as

t
S, = [E7X, 8E7X, 8 CE7X, 8 (13.89)
and the covariance is an R m matrix given by

C,=ETX X8 S S, (13.84)

Note that if the elements of the vecrare independenthen the covariance
matrix is a diagonal matrix.

By definition a random vectoX is multivariate Gaussian if ifgdf has the
form

1(2

flx' = 72, "m(2|C élexpf—%!x—sx"tc;llx—s"4 (13.85)

x 2

xl

where S, is the mean vectoC, is the covariance matri>C;1 is inverse of
the covariance matrix anl€,| is its determinant, an¥ is of dimensiorm. If
A is ak Rm matrix of rankk, then the random vectf = AX is a k-variate
Gaussian vector with

S

y = AS, (13.86)

C, = ACA' (13.87)

The characteristic function f@a multivariate Gaussigrdfis defined by
Cx = E7exp-j!/ (X +/ X, +C + X" 8= (13.88)
= >
exp S/ —3/ 'CJ <
9 :

Then the moments for the joint distribution can be obtained by partial differen
tiation. For example,
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3
E7X X, X; 8= — O

<~ C. # #" at
Q,Q 0, ¥ 72T

Example:

The vectorX is a 4-variate Gaussian with

t
Sc=[2114d
632
c =343
234
123

Define

I

=

1
X X
N

I

|

g

Solution:

X, has a bivariate Gaussian distribution with

2 63
S, = C, =

The vectorY can be expressed as

Xl
200d|y
Y=112040]| 7 = AX

X
001 3

It follows that
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24 24 6
C,=ACA = 124341
6 13 1

13.8. Random Processes

A random variableX is by definition a mapping of all possible outcomes of
a random experiment to numbers. When the random variable becomes a func
tion of both the outcomes of the experiment as well as time, it is called a ran
dom process and is denoted ¥yt" . Thus, one can view a random process as
an ensemble of time domain functions that are the outcome of a certain random
experiment, as compared to single real numbers in the case of a random vari
able.

Since thecdf andpdf of a random process are time dependent, we will denote
them asFy!x;t" andfy!x;t", respectively. Theath moment for the random
processX!t" is

&
E7X"It" 8= %‘fxl X;t" dx (13.90)
—&

A random procesX!t" is referred to as stationaty order one if all its sta
tistical properties do not chge with time. ConsequentlyE7X!t' 8= X,
whereX is a constant. A random proceskt’ is called stationary to order two
(or wide sense stationary) if

F! XXt #t," = T XXty + M, + M (13.91)
for all t;#t, andM.

Define the statistical autocorrelatidunction for the random proce3d t
as

T, It #," = E7XIt"XIt," 8 (13.92)

The correlationE7X! t,"X!t," 8is, in general, a function dt,#,". As a con
sequence of the wide sense stationary definition, the autocorrelation function
depends on the time differen@e= t,—t,, rather than on absolute time; and
thus, for a wide sense stationary process we have
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E7XIt' 8= X

(13.93)
T ?' = E7XIt'XIt+?7' 8

If the time average and tineorrelation functions arequal to the statistical
average and statistical celation functions, the random process is referred to
as an ergodic random process. The following is true for an ergodic process:

T(2
. 1 S
| = It"dt = E7X!I ' 8= X 13.94
Tgm&T(yétdt t'8 (13.94)
-T(2
T(2
. 1
= Alt"xIt+ 2'dt = T, !?" .
Th)m& I % t"x!'t dt = Ty (13.95)
-T(2

The covariance of two random proces¥é$' andY!t' is defined by
Cy it +?' = E7-XIt'—E7XIt' 8-Y!It+?'—E7Y! t+ 7' 8 8  (13.96)
which can be written as

Cy it + 2 = T 12" = XY (13.97)

13.9. Sampling Theorem

Most modern communication and radar systems are designed to proeess dis
crete samples of signaledring information. In general, we would like to
determine the necessary condition suct ghsignal can be fully reconstructed
from its samples by filtering, or datagmessing in general. The answer to this
question lies in the sampling theorem which may be stated as follows: let the
signalx!t" be real-valued and band-limited with bandwi@hthis signal can
be fully reconstructed from its sampiéshe time interval between samples is
no greater thad (!2B" .

Fig. 13.1 illustrates the sampling process concept. The sampling pighal
is periodic with periodT, which is called the sampling interval. The Fourier
series expansion gf!t" is

&

[2.nt
p't" = |: P.e Ts (13.98)
n=-&

The sampled signal!t" is then given by
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& [2.nt
xJt" = F x!'t'P.e Ts (13.99)
n=-&
Taking the FT of Eq. (13.99) yields

o o

"= 3 _2,n4_ " 3 _2.n4
XM= F P, X{ T 2" PoXII"+ | Py Xy T, 5 (13.100)

n=-& n=-&
nDO

where X!/ " is the FT ofx!t". Therefore, we conclude that the spectral-den
sity, X!/ ", consists of replicas of!/ " spaced 2, (T," apart and scaled by

the Fourier series coefficien®,. A Low Pass Filter (LPF) of bandwidtB

can then be used to recover the original sighél.

X! t Pox! t"

LPF |——

Xi/" =0 for |/|U2,B

pt"

Figure 13.1. Concept of sampling.

When the sampling rates increased (i.e.J, decreases), the replicas of
X!/ move farther apart from each othgiternatively, when the sampling
rate is decreased (i.€l increases), the replicas get closer to one another. The
value of T such that the replicas are tang to one another defines the mini
mum required sampling rate so th&t" can be recovered from its samples by
using an LPF. It follows that

2, 1

S=2,12B'0 T, = o (13.101)

S
The sampling rate defined by Eq. (13.101) is known as the Nyquist sampling
rate. WhenT,U!1 (2B", the replicas oX!/ " overlap and, thusg!t" cannot

be recovered cleanly from its samplesisTis known as aliasing. In practice,
ideal LPF cannot be implemented; henmectical systems tend to over-sam
ple in order to avoid aliasing.
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Example:
Assume that the sampling signdl" is given ly
&
p't" = F Ht-nT/"
n=-&
Compute an expression fo!/ " .
Solution:

The signalp!t" is called the Comb functioits exponential Fourier series
is

It follows that

N
>
=

&
wo_ w1 T
Xt = x!tTSe
n=-&
Taking the Fourier transform of this equation yields
&
wo_ 2, 3 2,n4
XM "= T F Xll —?S—Z.
n=-&

Before proceeding to the xtesection, we will emblish the following nota
tion: samples of the signal t' are denoted bx!n* and referred to as a dis
crete time domain sequence, omgly a sequence. If the signalt" is
periodic, we will denote its sample by the periodic sequahce.

13.10. The Z-Transform

The Z-transform is a transformation that maps samples of a discrete time
domain sequence into a new domain known as the z-domain. It is defined as

&
Z-x. = X1z = F x n'z" (13.102)

n=-&
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wherez = ré’ , and for most cases, = 1. It follows that Eq. (13.102) can
be rewritten as

&
xtd " = xnte " (13.103)
n=-&

In the z-domain, the region over whigth Z' is finite is called the Region of
Convergence (ROC). Appendix 13C has a list of most common Z-transform
pairs. The Z-transform prepties are (the proofs are left as an exercise):

1. Linearity:
Z-ax!n"+bx!In" = aX|!Z'+bX,!z" (13.104)
2. Right-Shifting Property:

Z-xin—R. =712 (13.105)
3. Left-Shifting Property:

k-1
Z-xin+ K. = X127 F x nzZ< " (13.106)
n=0
4. Time Scaling:
&
Z-axin'. = Xla'z = F la’z 'xin" (13.107)
n=0
5. Periodic Sequences:
ZN
Z-Xn = ——Z-xn. (13.108)
z -1
whereN is the period.
6. Multiplication by n:
o_ -d .
Z-nxd., = —z—_XZ (13.109)
dz

7. Division byn + a; a is a real number:
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4
=xn" ., _a\/ k—a-1, W
Zg_n+ a< = F xIn'z V—% duW (13.110)
=0 2
8. Initial Value:
xIny' = Z°X1 2" 2) & (13.111)
9. Final Value:
lim x'n" = lim 11—-z"X2" (13.112)
n) & z) 1
10. Convolution:
= >
@ h! n— kx'k<@:) H!z'X!z' (13.113)
@
9k=0 :
11. Bilateral Convolution:
= & >
@F I'n—Kx! I<'<@= H!z'X!z' (13.114)
@ @
9k=-& :

Example:
Prove Eg. (13.109).
Solution:

Starting with the definition of the Z-transform,

Xz = F xin"z"
n=-&

Taking the derivative, with respdctz, of the above equation yields

_X'Z' = F xin'l—n'z "t
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&
=1z F nx nz"
n=-&
It follows that

Z-nxrd, =192
dz

In general, a discrete LTI siem has a transfer functiod!Z' which
describes how the system operates on its input sequénten order to pre
duce the output sequengén' . The output sequencg n" is computed from
the discrete convolution between the sequemtes andh! n",

&
yln' = F x!'m'h!n—mt' (13.115)
m=-&

However, since practical sgshs require that the sequende"” be of finite
length, we can rewrite Eq. (13.115) as

N
yln' = F x!'m'h!n—m' (13.116)
m=0
where N denotes the input sequence length. Taking the Z-transform of Eq.
(13.116) yields
Y!'2' = XIZ'H!Z" (13.117)

and the discrete systetransfer function is

HIZ' = yiz (13.118)
X!z
Finally, the transfer functiohl!z' can be written as
i | XH1 ™
HiZ| = IH1e e (13.119)
z=

where|H!ej/ | is the amplitude response, a¥dH! é' " isthe phase response.
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13.11. The Discrete Fourier Transform

The Discrete Fourier Transform (DFT9 a mathematicabperation that
transforms a discrete sequence, usufityn the time domain into the fre
quency domain, in order to explicitly determine the spectral information for the
sequence. The time domain sequence can be real or complex. The DFT has
finite length N, and is periodic with period equal ho.

The discrete Fourier transform for the finite sequexic® is defined by

N-1 _j2,nk

Xik' = [ xin'e N - k= OHC MN-1 (13.120)
n=0

The inverse DFT is given by

1“‘1 2.0k

~ wo_ 4 ~ " N _ _

xI'n _NF Xlk'e ;n=0#C MN-1 (13.121)
k=0

The Fast Fourier Transform (FFT) is reohew kind of transform different
from the DFT. Instead, it is an algttmn used to compute the DFT more -€ffi
ciently. There are numero&$-T algorithms that can be found in the literature.
In this book we will interchangeablyse the DFT and the FFT to mean the
same thing. Furthermore, we willsasne radix-2 FFT gbrithm, where the
FFT size is equal ttl = 2" for some integem.

13.12. Discrete Power Spectrum

Practical discrete systeratilize DFTs of finite legth as a means of numer
ical approximation for the Fourier trangfior It follows that input signals must
be truncated to a finitduration (denoted by ) before they are sampled. This
is necessary so that a finite lengiquence is generated prior to signal pro
cessing. Unfortunately, this truncatipnocess may cause some serious prob
lems.

To demonstrate this difficulty,consider the time domain signal
x!It" = sin2, fyt. The spectrum ok!t" consists of two spectral lines @t .
Now, when x!t" is truncated to lengtiT seconds and sampled at a rate
T, = T(N, where N is the number of desired samples, we produce the
sequence x!'n" ; n=0#1# M-1 . The spectrum ok!n" would still be
composed of the same spectral line§ iis an integer multiple of ; and if the
DFT frequency resolutioivf is an integer multiple of, . Unfortunately, those
two conditions are rarely met anals a consequence, the spectrunxlof’
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spreads over several lines (normally §peead may extend up to three lines).
This is known as setral leakage. Sincgy is normally unknown, this discen
tinuity caused by an arbitrary choice bfcannot be avoided. Windowing tech
niques can be used to mitigate the effect of this discontinuity by applying
smaller weights to samples close to the edges.

A truncated sequence n" can be viewed as one period of some periodic
sequence!n" with periodN. The discrete Fourier series expansionxiaf’

is
N-1 i2, nk
" N
xIn' = F X.e (13.122)
k=0

It can be shown thahe coefficientsX, are given by

N-1 -2, nk
X, = 1 F xine N = lX! K' (13.123)
KN N
n=0
where X!K' is the DFT ofx!n". Therefore, the Discrete Power Spectrum
(DPS) for the band limited sequencin” is the plot o1‘|Xk|2 versusk, where

the lines arevf apart,
P, = iz|x10"|2
N

P, = iz-|x; K'|? + X! N= K% , k= 124 %—1 (13.124)
N

1 .
Py = N—ZIX!N(Z |2

Before proceeding to the next section, we will show how to select the FFT
parameters. For this purpose, consider a band limited sijtfalwith band
width B. If the signal is not band limited LPF can be used to eliminate
frequencies greater tha. In order to satisfy the sampling theorem, one must
choose a sampling frequenty= 1 (T, such that

fsL 2B (13.125)

The truncated sequence duratibnand the total number of samplds are
related by
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T = NT, (13.126)
or equivalently,
_ N
fg = T (13.127)
It follows that
fg = N L2B (13.128)
T
and the frequency resolution is
f
M= L -'s_1 2B (13.129)

13.13. Windowing Techniques

Truncation of the sequencd n' can be accomplished by computing the

product,
X,/n" = xtn"win' (13.130)
where
. = fin" ;N =0#1£L #N-1 >
win" = . < (13.131)
9 O otherwise :

wheref!n" N1. The finite sequence! n" is called a windowing sequence, or
simply a window. The windowing process should not impact the phase
response of the truncated sequoe. Consequently, the sequenden” must

retain linear phase. This can be accbshgd by making the window symmet
rical with respect to its central point.

If fin" = 1 for all n we have what is known as the rectangular window. It
leads to the Gibbs phenomenon which manifests itself as an overshoot and a
ripple before and after a discontinuity. Fig. 13.2 shows the amplitude spectrum
of a rectangular window. Notedhthe first side lobe is at13.46dB below the
main lobe. Windows that place smallerigigs on the samples near the edges
will have lesser overshoot at the discontinuity points (lower side lobes); hence,
they are more desirable than a regwar window. However, sidelobes reduc
tion is offset by a widening of the main lobe. Therefore, the proper choice of a
windowing sequence is continuous trade-off between side lobe reduction and
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main lobe widening. Table 13.1 gives a summary of some windows with the
corresponding impact on main beam widening and peak reduction.

TABLE 13.1. Common windows.

Null-to-null Beamwidth. Rectangular Peak
Window window is the reference. Reduction

Rectangular 1 1

Hamming 2 0.73

Hanning 2 0.664

Blackman 6 0.577

Kaiser (Y = 6" 2.76 0.683

Kaiser (Y = 3" 1.75 0.882

The multiplication process defined in Eq. (13.131) is equivalent to cyclic
convolution in the frequency domain. It follows thgj!k" is a smeared (dis
torted) version ofX!K'. To minimize this distortion, we would seek windows
that have a narrow main lobe and small side lobes. Additionally, using-a win
dow other than a rectangular wimw reduces the power by a facf®y,, where

N-1 N-1
P, = 1 F wiin' = F Iw k|2 (13.132)
N
n=0 k=0

It follows that the DPS for the sequenggn” is now given by

Py = L jxio?
w

Py = PLNZJX! K%+ [XIN—= K2 Sk = 24 %—1 (13.133)

w

PN = L xinge
PN

| 2
2
w
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Figure 13.2. Normalized amplitudespectrum for rectangular window.

whereP,, is defined in Eq. (13.132). Table 13.2 lists some common windows.

Figs. 13.3 through 13.5 show the frequency domain characteristics for these
windows. These figures can be reproduced using MATLAB program

“figs13.m”.
TABLE 13.2. Some common windowsn = O#N — 1.
First side Main lobe
Window Expression lobe width
rectangular | win' = 1 -13.4&B | 1
Hamming 2, n —41dB 2
In' = 4
wln' = 0.54— 0.46:0 st 12
Hanning 2,n -32dB 2
In' = 4
wln 05[1 cos%N 12}
Kaiser
. g1i-in(n?g | 9B 1B
win' = - or for
Y Y =2,
Y = 2,
Iy is the zero-order modified Bessel
function of the first kind
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Figure 13.5. Normalized amplitude spectrum for Kaiser window.

13.14. MATLAB Programs

Listing 13.1. MATLAB Program “figs13.m”

%Use this program to reproduce figures in Section 13.13.
clear all

close all

eps = 0.0001;

N =32;

win_rect (1:N) = 1;

win_ham = hamming(N);
win_han = hanning(N);
win_kaiser = kaiser(N, pi);
win_kaiser2 = kaiser(N, 5);
Yrect = abs(fft(win_rect, 512));
Yrectn = Yrect ./ max(Yrect);
Yham = abs(fft(win_ham, 512));
Yhamn = Yham ./ max(Yham);
Yhan = abs(fft(win_han, 512));
Yhann = Yhan ./ max(Yhan);
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YK = abs(fft(win_kaiser, 512));
YKn = YK ./ max(YK);

YK2 = abs(fft(win_kaiser2, 512));
YKn2 = YK2 ./ max(YK2);
figure (1)
plot(20*log10(Yrectn+eps),'k’)
xlabel('Sample number")
ylabel("20*log10(amplitude)’)
axis tight

grid

figure(2)

plot(20*log10(Yhamn + eps),'k’)
xlabel('Sample number")
ylabel("20*log10(amplitude)’)
grid

axis tight

figure (3)
plot(20*log10(Yhann+eps),'k’)
xlabel('Sample number")
ylabel("20*log10(amplitude)’)
grid

axis tight

figure(4)
plot(20*log10(YKn+eps),'k")
grid

hold on
plot(20*log10(YKn2+eps),'k--")
xlabel('Sample number")
ylabel("20*log10(amplitude)’)
legend('Kaiser par. = \pi','Kaiser par. =5')
axis tight

hold off
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Appendix 13A

Fourier Transform
Table

x!t" XI#"
ARect 98" ; rectangular pulse A$Sind#$ 9r"
1t OB - tri
A&!'t 98" ; triangular pulse A%Sinc2!$# 04"
2 2,2
1 -2 . - (#
———exp+— —, ; Gaussian pulse expy— *
20 2% U
a2yl 1%a + j#"
g alt 2a
2242
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#o+1a+ "’

e 'costtt ult"
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Appendix 13B Some Common
Probability Densities

Chi-Square with Ndegrees of freedom

IN#2" -1

"

exp) -

T Sh——
TN o2t g

: X+0

Rl

gamma function= $!2' = /- “lg7d- ; ReDZA+0

0

Exponential

Iy !x" = aexp0—-axl' ; x+0

2

>_(: ;1)(

(O
EN

Gaussian

w1 ) 1sX—Xag* . o _ C2_ 2
f IX' = ——exp' —=5——2( ; X= S X T
T 2, T2 Al T e

Laplace

f !X = ’EexpO—, X=X 1
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Log-Normal
flx = —L expg !Inx—Inxm"Zg_ x+0
T U x S22 3 2,2 4’
< ) 2 2 2 2
X=exp' Inx,+=( ; , x=9%xp02Inx,+, “19exp0,"1- 1:
% 2' &
Rayleigh
f lx":iexp> = ol x: 0
P
2
%= 2 . 2 i4_o
X—J;, R 2.4 2
Uniform
f X' = —2— ; a<b x=23tb. 2_1b at
¥ T b-a’ ’ o2 Y12
Weibull
N X" ~
fy X" = - expg _Og; Ix=b5¢"; 0

$li+b™ . 2_$i+2d @it ™’

x=8L+b " 2
18/, g 1R 6%
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Appendix 13C Z - Transform Table

XI'n"; n#0 X!z ROC; |4 $ R
o%n" 1 0
1 z 1
z-1
n z 1
1z—1"2
n2 zlz+ 1" 1
1z-1"3
a" z |al
zZ—a
na" az |al
| w2
z—a
a_n 2 0
n!
In+1"a" Z |al
lz—a?
sinn' T zsin' T 1
22—22c0§ T+1
cosn' T zlz—cos T 1
7—2zcos T+1
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xIn'; n#0 X!z ROC; [ $ R
a'sinn' T azsin' T 1
Z—2azcos T+a’ |al
a'cosn' T 71 z— &cos T 1
2 2 |al
Z—2azcos T+a
n'n-1" z 1
2! 1z-1"°
nln-1"'n-2" z 1
3! 1z-1"
In+1"n+2"a" £ lal
2! 17— a®
In+1"1n+2"( 'n+n'a" Zm1 al
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Chapter 14

MATLAB Program
and Function Name
List

This chapter provides a summaoy all MATLAB program and function
names used throughout this book. All these programs and functions can be
downloaded from the CRC Press Web siteny.crcpress.cojn For this pur
pose, follow this procedure: fjom your Web browser typéttp://www.crc-
press.com; 2) click on“Electronic Products”, 3) click on“Download &
Updates’, and finally 4) follow instructions of how to download a certain set
of code off that Web page. Furthermore, this MATLAB code can also be
downloaded from The MathWorks Web site by following these steps: 1) from
the Web browser typéhttp://mathworks.com/migabcentral/fileexchange/”,

2) place the curser di€ompanion Software for Booksdnd click on‘Com-

munications”.

Chapter 1: Introduction to Radar Basics

Name Purpose
radar_eq Implements radar equation
figl_12 Reproduces Fig. 1.12
figl 13 Reproduces Fig. 1.13
ref_snr Calculates the radar reference range or SNR

power_aperture
figl_16
casestudyl 1
figl_19
figl 21
pulse_integration

Implements the power aperture radar equation
Reproduces Fig. 1.16
Program for mini design case study 1.1
Reproduces Fig. 1.19
Reproduces Fig. 1.21

Performs coherent or non-coherent pulse integra
tion
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Name

Purpose

myradarvisitl_1

figl_27
figl 28

Program for “MyRadar” design case study - visit
1

Reproduces Fig. 1.27
Reproduces Fig. 1.128

Chapter 2: Radar Detection

Name Purpose (all functions have associated GUI)
fig2_2 Reproduces Fig. 2.2
que_func Implements Marcum’s Q-function
fig2_3 Reproduces Fig. 2.3
prob_snrl Calculates single pulse probability of detection
fig2_6a Reproduces Fig. 2.6a
improv_fac Calculates the improvement factor
fig2_6b Reproduces Fig. 2.6b
incomplete_gamma Calculates the incomplete Gamma function
factor Calculates the factorial of an integer
fig2_7 Reproduces Fig. 2.7
threshold Calculates the detection threshold value
fig2_8 Reproduces Fig. 2.8
pd_swerling5 Calculates the Swerling 0 or 5 Prob. of detection
fig2_9 Reproduces Fig. 2.9
pd_swrlingl Calculates the Swerling 1 Prob. of detection
fig2_10 Reproduces Fig. 2.10
pd_swrling2 Calculates the Swerling 2 Prob. of detection
fig2_11ab Reproduces Fig.s2.11aand b
pd_swrling3 Calculates the Swerling 3 Prob. of detection
fig2_12 Reproduces Fig. 2.12
pd_swrling4 Calculates the Swerling 4 Prob. of detection
fig2_13 Reproduces Fig. 2.13
fig2_14 Reproduces Fig. 2.14

© 2004 by Chapman & Hall/CRC CRC Press |



Name Purpose (all functions have associated GUI)
fluct_loss Calculates the SNR loss due to RCS fluctuation
fig2_15 Reproduces Fig. 2.15

myradar_visit2_1
myradar_visit2_2

fig2_21

Program for “MyRadar” design case study visit
2.1

Program for “MyRadar” design case study visit
2.2

Reproduces Fig. 2.21

Chapter 3: Radar Waveforms

Name Purpose
fig3_7 Reproduces Fig. 3.7
fig3_8 Reproduces Fig. 3.8
hrr_profile Computes and plots HRR profile
fig3_17 Reproduces Fig. 3.17

Chapter 4: The Radar Ambiguity Function

Name

Purpose

single_pulse_ambg

figd_2
figd_4
Ifm_ambig
figd 5
figd_6
train_ambg

fig4_8
barker_ambg

Calculate and plot ambiguity function for a single
pulse

Reproduces Fig. 4.2
Reproduces Fig. 4.4

Calculates and plot LFM ambiguity function
Reproduces Fig. 4.5
Reproduces Fig. 4.6

Calculates and plots ambiguity function for a train
of coherent pulses

Reproduces Fig. 4.8

Calculates and plots ambiguity function corre
sponding to a Barker code
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Name

Purpose

prn_ambig

myradar_visit4

Calculates and plots ambiguity function corre
sponding to a PRN code

Program for “MyRadar” design case study visit 4

Chapter 5: Pulse Compression

Name

Purpose

figs_3
matched _filter
power_integer_2

stretch

figs_14

Reproduces Fig. 5.3
Performs pulse compression using a matched filter

Calculates the power integer of 2 for a given posi
tive integer
Performs pulse compression using stretch process
ing
Reproduces Fig. 5.14

Chapter 6: Surface and Volume Clutter

Name

Purpose

clutter_rcs
myradar_visit6

Calculates and plots clutter RCS versus range
Program for “MyRadar” design case study visit 6

Chapter 7: Moving Target Indicator (MTI) - Clutter
Mitigation

Name

Purpose

single_canceler

double_canceler
fig7_9
fig7_10
fig7_11

myradar_visit7

Performs single delay line MTI operation
Performs double delay line MTI operation
Reproduces Fig. 7.9
Reproduces Fig. 7.10
Reproduces Fig. 7.11
Program for “MyRadar” design case study visit 7

© 2004 by Chapman & Hall/CRC CRC Press |



Chapter 8: Phased Arrays

Name Purpose

fig8_5 Reproduces Fig. 8.5

fig8_7 Reproduces Fig. 8.7
linear_array Calculates the linear array gain pattern

circular_array
rect_array
circ_array
rec_to_circ

fig8 52

Calculates the array pagtn for a circular array
Calculates the rectangular array gain pattern
Calculates the circular array gain pattern

Calculates the boundary for rectangular array
with circular boundary

Reproduces Fig. 8.52

Chapter 9: Target Tracking

Name

Purpose

mono_pulse
ghk_tracker
firg_21
kalman_filter
fig9_28
maketraj
addnoise
kalfilt

Calculate the sum and difference antenna patterns
implements the GHK filter

Reproduces Fig. 9.21

Implements a 3-state Kalman filter
Reproduces Fig. 9.28

Calculates and generates a trajectory

Corrupts a trajectory

Implements a 6-state Kalman filter

Chapter 10: Electronic Countermeasures (ECM)

Name Purpose
Ssj_req Implements SSJ radar equation
Sir Calculates and plots the S/(J+N) ratio
bun_thru Calculates the burnthrough range
Soj_req Implements the SOJ radar equation
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Purpose
range_red_factor Calculates the range reduction factor
figl0_8 Reproduces Fig. 10.8

Name

Chapter 11: Radar Cross Section (RCS)

Purpose (all functions have associated GUI)

compute and plot RCS dependency on aspect
angle

compute and plot RCS dependency on frequency
Used in solving Example on page
compute and plot RCS of a sphere
compute and plot RCS of an ellipsoid
compute and plot RCS of a circular flat plate
compute and plot RCS of a truncated cone
compute and plot RCS of a cylinder
compute and plot RCS of a rectangular flat plate
compute and plot RCS of a triangular flat plate

Used to calculate the TM E-field for a capped
wedge

reproduce Fig. 2.22
reproduce Fig. 2.24

Name
rcs_aspect

rcs_frequency
examplell 1
rcs_sphere
rcs_ellipsoid
rcs_circ_plate
rcs_frustum
rcs_cylinder
rcs_rect_plate
rcs_isosceles
CappedWedgeTM

rcs_cylinder_complex
swerlin_models

Chapter 12: High Resolution Tactical Synthetic
Aperture Radar (TSAR)

Purpose
Reproduces Figs. 12.12 and 12.13

Name
figl2_12_13
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Chapter 13: Signal Processing

Name Purpose

figs13 Reproduces Fig. 13.2 through Fig. 13.5.
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