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The emphasis of “MATLAB Simulations for Radar Systems Design” is on 
radar systems design. However, a strong presentation of the theory is provided 
so that the reader will be equipped with the necessary background to perform 
radar systems analysis. The organization of this book is intended to teach a 
conceptual design process of radars and related trade-off analysis and calcula-
tions. It is intended to serve as an engineering reference for radar engineers 

working in the field of radar systems. The MATLAB®1 code provided in this 
book is designed to provide the user with hands-on experience in radar sys-
tems, analysis and design. 

A radar design case study is introduced in Chapter 1 and carried throughout 
the text, where the authors’ view of how to design this radar is detailed and 
analyzed. Trade off analyses and calculations are performed. Additionally, sev-
eral mini design case studies are scattered throughout the book.    

“MATLAB Simulations for Radar Systems Design” is divided into two parts: 
Part I provides a comprehensive description of radar systems, analyses and 
design. A design case study, which is carried throughout the text, is introduced 
in Chapter 1. In each chapter the authors’ view of how to design the case-study 
radar is presented based on the theory covered up to that point in the book. As 
the material coverage progresses through the book, and new theory is dis-
cussed, the design case-study requirements are changed and/or updated, and of 
course the design level of complexity is also increased. This design process is 
supported by a comprehensive set of MATLAB 6 simulations developed for 
this purpose. This part will serve as a valuable tool to students and radar engi-
neers in helping them understand radar systems, design process. This includes 
1) learning how to go about selecting different radar parameters to meet the 
design requirements; 2) performing detailed trade-off analysis in the context of 
radar sizing, modes of operations, frequency selection, waveforms and signal 
processing; 3) establishing and developing loss and error budgets associated 
with the design; and 4) generating an in-depth understanding of radar opera-
tions and design philosophy. Additionally, Part I includes several mini design 
case studies pertinent to different chapters in order to help enhance understand-
ing of radar design in the context of the material presented in different chap-
ters. 

Part II includes few chapters that cover specialized radar topics, some of 
which is authored and/or coauthored by other experts in the field. The material 

1. MATLAB is a registered trademark of the The MathWorks, Inc. For product infor-
mation, please contact: The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 
01760-2098 USA. Web: www.mathworks.com.
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included in Part II is intended to further enhance the understanding of radar 
system analysis by providing detailed and comprehensive coverage of these 
radar related topics. For this purpose, MATLAB 6 code has also been devel-
oped and made available. 

All MATLAB programs and functions provided in this book can be down-
loaded from the CRC Press Web site (www.crcpress.com). For this purpose, 
follow this procedure: 1) from your Web browser type “http://www.crc-
press.com”, 2) click on “Electronic Products”, 3) click on “Download & 
Updates”, and finally 4) follow instructions of how to download a certain set 
of code off that Web page. Furthermore, this MATLAB code can also be down-
loaded from The MathWorks Web site by following these steps: 1) from your 
Web browser type: “http://mathworks.com/matlabcentral/fileexchange/”, 2) 
place the curser on “Companion Software for Books” and click on “Communi-
cations”. The MATLAB functions and programs developed in this book 
include all forms of the radar equation: pulse compression, stretch processing, 
matched filter, probability of detection calculations with all Swerling models, 
High Range Resolution (HRR), stepped frequency waveform analysis, ghk 
tracking filter, Kalman filter, phased array antennas, clutter calculations, radar 
ambiguity functions, ECM, chaff, and many more.

Chapter 1 describes the most common terms used in radar systems, such as 
range, range resolution, and Doppler frequency. This chapter develops the 
radar range equation. Finally, a radar design case study entitled “MyRadar 
Design Case Study” is introduced. Chapter 2 is intended to provide an over-
view of the radar probability of detection calculations and related topics. 
Detection of fluctuating targets including Swerling I, II, III, and IV models is 
presented and analyzed. Coherent and non-coherent integration are also intro-
duced. Cumulative probability of detection analysis is in this chapter. Visit 2 of 
the design case study “MyRadar”  is introduced. 

Chapter 3 reviews radar waveforms, including CW, pulsed, and LFM. High 
Range Resolution (HRR) waveforms and stepped frequency waveforms are 
also analyzed. The concept of the Matched Filter (MF) is introduced and ana-
lyzed. Chapter 4 presents in detail the principles associated with the radar 
ambiguity function. This includes the ambiguity function for single pulse, Lin-
ear Frequency Modulated pulses, train of unmodulated pulses, Barker codes, 
and PRN codes. Pulse compression is introduced in Chapter 5. Both the MF 
and the stretch processors are analyzed. 

Chapter 6 contains treatment of the concepts of clutter. This includes both 
surface and volume clutter. Chapter 7 presents clutter mitigation using Moving 
Target Indicator (MTI). Delay line cancelers implementation to mitigate the 
effects of clutter is analyzed.

Chapter 8 presents detailed analysis of Phased Arrays. Linear arrays are 
investigated and detailed and MATLAB code is developed to calculate and plot 
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the associated array patterns. Planar arrays, with various grid configurations, 
are also presented. 

Chapter 9 discusses target tracking radar systems. The first part of this chap-
ter covers the subject of single target tracking. Topics such as sequential lob-
ing, conical scan, monopulse, and range tracking are discussed in detail. The 
second part of this chapter introduces multiple target tracking techniques. 
Fixed gain tracking filters such as the  and the  filters are presented in 
detail. The concept of the Kalman filter is introduced. Special cases of the Kal-
man filter are analyzed in depth. 

Chapter 10 is coauthored with Mr. J. Michael Madewell from the US Army 
Space and Missile Defense Command, in Huntsville, Alabama. This chapter 
presents an overview of Electronic Counter Measures (ECM) techniques. Top-
ics such as self screening and stand off jammers are presented. Radar chaff is 
also analyzed and a chaff mitigation technique for Ballistic Missile Defense 
(BMD) is introduced.

Chapter 11 is concerned with the Radar Cross Section (RCS). RCS depen-
dency on aspect angle, frequency, and polarization is discussed. The target 
scattering matrix is developed. RCS formulas for many simple objects are pre-
sented. Complex object RCS is discussed, and target fluctuation models are 
introduced. Chapter 12 is coauthored with Dr. Brian Smith from the US Army 
Aviation and Missile Command (AMCOM), Redstone Arsenal in Alabama. 
This chapter presents the topic of Tactical Synthetic Aperture Radar (SAR). 
The topics of this chapter include: SAR signal processing, SAR design consid-
erations, and the SAR radar equation. Finally Chapter 13 presents an overview 
of signal processing. 

Using the material presented in this book and the MATLAB code designed 
by the authors by any entity or person is strictly at will. The authors and the 
publisher are neither liable nor responsible for any material or non-material 
losses, loss of wages, personal or property damages of any kind, or for any 
other type of damages of any and all types that may be incurred by using this 
book.

Bassem R. Mahafza
Huntsville, Alabama

July, 2003

Atef Z. Elsherbeni
Oxford, Mississippi

July, 2003
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1.1. Radar Classifications

The word radar is an abbreviation for RAdio Detection And Ranging. In 
general, radar systems use modulated waveforms and directive antennas to 
transmit electromagnetic energy into a specific volume in space to search for 
targets. Objects (targets) within a search volume will reflect portions of this 
energy (radar returns or echoes) back to the radar. These echoes are then pro-
cessed by the radar receiver to extract target information such as range, veloc-
ity, angular position, and other target identifying characteristics.

Radars can be classified as ground based, airborne, spaceborne, or ship 
based radar systems. They can also be classified into numerous categories 
based on the specific radar characteristics, such as the frequency band, antenna 
type, and waveforms utilized. Another classification is concerned with the 
mission and/or the functionality of the radar. This includes: weather, acquisi-
tion and search, tracking, track-while-scan, fire control, early warning, over 
the horizon, terrain following, and terrain avoidance radars. Phased array 
radars utilize phased array antennas, and are often called multifunction (multi-
mode) radars. A phased array is a composite antenna formed from two or more 
basic radiators. Array antennas synthesize narrow directive beams that may be 
steered mechanically or electronically. Electronic steering is achieved by con-
trolling the phase of the electric current feeding the array elements, and thus 
the name phased array is adopted. 

Radars are most often classified by the types of waveforms they use, or by 
their operating frequency. Considering the waveforms first, radars can be Con-
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tinuous Wave (CW) or Pulsed Radars (PR).1 CW radars are those that continu-
ously emit electromagnetic energy, and use separate transmit and receive 
antennas. Unmodulated CW radars can accurately measure target radial veloc-
ity (Doppler shift) and angular position. Target range information cannot be 
extracted without utilizing some form of modulation. The primary use of 
unmodulated CW radars is in target velocity search and track, and in missile 
guidance. Pulsed radars use a train of pulsed waveforms (mainly with modula-
tion). In this category, radar systems can be classified on the basis of the Pulse 
Repetition Frequency (PRF) as low PRF, medium PRF, and high PRF radars. 
Low PRF radars are primarily used for ranging where target velocity (Doppler 
shift) is not of interest. High PRF radars are mainly used to measure target 
velocity. Continuous wave as well as pulsed radars can measure both target 
range and radial velocity by utilizing different modulation schemes. 

Table 1.1 has the radar classifications based on the operating frequency. 

High Frequency (HF) radars utilize the electromagnetic waves’ reflection off 
the ionosphere to detect targets beyond the horizon. Very High Frequency 
(VHF) and Ultra High Frequency (UHF) bands are used for very long range 
Early Warning Radars (EWR). Because of the very large wavelength and the 
sensitivity requirements for very long range measurements, large apertures are 
needed in such radar systems. 

1. See Appendix 1A.

TABLE 1.1. Radar frequency bands.

Letter 
designation Frequency (GHz)

New band designation 
(GHz)

HF 0.003 - 0.03 A

VHF 0.03 - 0.3 A<0.25; B>0.25

UHF 0.3 - 1.0 B<0.5; C>0.5

L-band 1.0 - 2.0 D

S-band 2.0 - 4.0 E<3.0; F>3.0

C-band 4.0 - 8.0 G<6.0; H>6.0

X-band 8.0 - 12.5 I<10.0; J>10.0

Ku-band 12.5 - 18.0 J

K-band 18.0 - 26.5 J<20.0; K>20.0

Ka-band 26.5 - 40.0 K

MMW Normally >34.0 L<60.0; M>60.0
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Radars in the L-band are primarily ground based and ship based systems that 
are used in long range military and air traffic control search operations. Most 
ground and ship based medium range radars operate in the S-band. Most 
weather detection radar systems are C-band radars. Medium range search and 
fire control military radars and metric instrumentation radars are also C-band.

The X-band is used for radar systems where the size of the antenna consti-
tutes a physical limitation; this includes most military multimode airborne 
radars. Radar systems that require fine target detection capabilities and yet can-
not tolerate the atmospheric attenuation of higher frequency bands may also be 
X-band. The higher frequency bands (Ku, K, and Ka) suffer severe weather 
and atmospheric attenuation. Therefore, radars utilizing these frequency bands 
are limited to short range applications, such as police traffic radar, short range 
terrain avoidance, and terrain following radar. Milli-Meter Wave (MMW) 
radars are mainly limited to very short range Radio Frequency (RF) seekers 
and experimental radar systems. 

1.2. Range

Figure 1.1 shows a simplified pulsed radar block diagram. The time control 
box generates the synchronization timing signals required throughout the sys-
tem. A modulated signal is generated and sent to the antenna by the modulator/
transmitter block. Switching the antenna between the transmitting and receiv-
ing modes is controlled by the duplexer. The duplexer allows one antenna to be 
used to both transmit and receive. During transmission it directs the radar elec-
tromagnetic energy towards the antenna. Alternatively, on reception, it directs 
the received radar echoes to the receiver. The receiver amplifies the radar 
returns and prepares them for signal processing. Extraction of target informa-
tion is performed by the signal processor block. The target’s range, , is com-
puted by measuring the time delay, , it takes a pulse to travel the two-way 
path between the radar and the target. Since electromagnetic waves travel at 
the speed of light, , then

(1.1)

where  is in meters and  is in seconds. The factor of  is needed to 
account for the two-way time delay.

In general, a pulsed radar transmits and receives a train of pulses, as illus-
trated by Fig. 1.2. The Inter Pulse Period (IPP) is , and the pulsewidth is . 
The IPP is often referred to as the Pulse Repetition Interval (PRI). The inverse 
of the PRI is the PRF, which is denoted by ,

(1.2)
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During each PRI the radar radiates energy only for  seconds and listens for 
target returns for the rest of the PRI. The radar transmitting duty cycle (factor) 

 is defined as the ratio . The radar average transmitted power is

, (1.3)

where  denotes the radar peak transmitted power. The pulse energy is 
.

The range corresponding to the two-way time delay  is known as the radar 
unambiguous range, . Consider the case shown in Fig. 1.3. Echo 1 repre-
sents the radar return from a target at range  due to pulse 1. Echo 2 
could be interpreted as the return from the same target due to pulse 2, or it may 
be the return from a faraway target at range  due to pulse 1 again. In this 
case,

(1.4)

Signal
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Time
Control

Transmitter/
Modulator

Signal
processor Receiver
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Figure 1.1. A simplified pulsed radar block diagram.

Duplexer

$

dt dt $ T#=

Pav Pt dt"=

Pt
Ep Pt$ PavT Pav fr#= = =

T
Ru

R1 c! t 2#=

R2

R2
c! t
2

--------= or R2
c T ! t+% &

2
-----------------------=

time

time

transmitted pulses

received pulses

$
IPP

pulse 1

! t

pulse 3pulse 2

$
pulse 1 
echo

pulse 2 
echo

pulse 3 
echo

 Figure 1.2. Train of transmitted and received pulses.
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Clearly, range ambiguity is associated with echo 2. Therefore, once a pulse is 
transmitted the radar must wait a sufficient length of time so that returns from 
targets at maximum range are back before the next pulse is emitted. It follows 
that the maximum unambiguous range must correspond to half of the PRI,

(1.5)

1.3. Range Resolution

Range resolution, denoted as , is a radar metric that describes its ability 
to detect targets in close proximity to each other as distinct objects. Radar sys-
tems are normally designed to operate between a minimum range , and 
maximum range . The distance between  and  is divided into  
range bins (gates), each of width ,

(1.6)

Targets separated by at least  will be completely resolved in range. Targets 
within the same range bin can be resolved in cross range (azimuth) utilizing 
signal processing techniques. Consider two targets located at ranges  and 

, corresponding to time delays  and , respectively. Denote the difference 
between those two ranges as :

(1.7)

Now, try to answer the following question: What is the minimum  such 
that target 1 at  and target 2 at  will appear completely resolved in range 
(different range bins)? In other words, what is the minimum ?
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 Figure 1.3. Illustrating range ambiguity.
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First, assume that the two targets are separated by , where  is the 
pulsewidth. In this case, when the pulse trailing edge strikes target 2 the lead-
ing edge would have traveled backwards a distance , and the returned pulse 
would be composed of returns from both targets (i.e., unresolved return), as 
shown in Fig. 1.4a. However, if the two targets are at least  apart, then as 
the pulse trailing edge strikes the first target the leading edge will start to return 
from target 2, and two distinct returned pulses will be produced, as illustrated 
by Fig. 1.4b. Thus,  should be greater or equal to . And since the radar 
bandwidth  is equal to , then

(1.8)

In general, radar users and designers alike seek to minimize  in order to 
enhance the radar performance. As suggested by Eq. (1.8), in order to achieve 
fine range resolution one must minimize the pulsewidth. However, this will 
reduce the average transmitted power and increase the operating bandwidth. 
Achieving fine range resolution while maintaining adequate average transmit-
ted power can be accomplished by using pulse compression techniques.
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Figure 1.4. (a) Two unresolved targets. (b) Two resolved targets.
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1.4. Doppler Frequency

Radars use Doppler frequency to extract target radial velocity (range rate), as 
well as to distinguish between moving and stationary targets or objects such as 
clutter. The Doppler phenomenon describes the shift in the center frequency of 
an incident waveform due to the target motion with respect to the source of 
radiation. Depending on the direction of the target’s motion, this frequency 
shift may be positive or negative. A waveform incident on a target has 
equiphase wavefronts separated by , the wavelength. A closing target will 
cause the reflected equiphase wavefronts to get closer to each other (smaller 
wavelength). Alternatively, an opening or receding target (moving away from 
the radar) will cause the reflected equiphase wavefronts to expand (larger 
wavelength), as illustrated in Fig. 1.5.

Consider a pulse of width  (seconds) incident on a target which is moving 
towards the radar at velocity , as shown in Fig. 1.6. Define  as the distance 
(in meters) that the target moves into the pulse during the interval , 

 (1.9)

where  is equal to the time between the pulse leading edge striking the target 
and the trailing edge striking the target. Since the pulse is moving at the speed 
of light and the trailing edge has moved distance , then

(1.10)
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 Figure 1.5. Effect of target motion on the reflected equiphase waveforms.
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Dividing Eq. (1.11) by Eq. (1.10) yields,

(1.12)

which after canceling the terms  and  from the left and right side of Eq.
(1.12) respectively, one establishes the relationship between the incident an
reflected pulses widths as

(1.13)

In practice, the factor  is often referred to as the time dilation
factor. Notice that if , then . In a similar fashion, one can compute

 for an opening target. In this case,

(1.14)

To derive an expression for Doppler frequency, consider the illustra
shown in Fig. 1.7. It takes the leading edge of pulse 2  seconds to travel a
distance  to strike the target. Over the same time interval, the lead
edge of pulse 1 travels the same distance . More precisely, 

(1.15)

(1.16)

solving for  yields
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 Figure 1.6. Illustrating the impact of target velocity on a single pulse.
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(1.17)

(1.18)

The reflected pulse spacing is now  and the new PRF is , where

(1.19)

It follows that the new PRF is related to the original PRF by

(1.20)

However, since the number of cycles does not change, the frequency of the 
reflected signal will go up by the same factor. Denoting the new frequency by 

, it follows

(1.21)

where  is the carrier frequency of the incident signal. The Doppler frequency 
 is defined as the difference . More precisely,

(1.22)

but since  and , then

(1.23)

Eq. (1.23) indicates that the Doppler shift is proportional to the target velocity, 
and, thus, one can extract  from range rate and vice versa. 

The result in Eq. (1.23) can also be derived using the following approach: 
Fig. 1.8 shows a closing target with velocity . Let  refer to the range at 
time  (time reference); then the range to the target at any time  is

(1.24)

The signal received by the radar is then given by

(1.25)

where  is the transmitted signal, and

(1.26)

! t
c fr#

c v+
-----------=

d
cv fr#

c v+
-------------=

s d– fr )

s d– c
fr )
----- c! t

cv fr#

c v+
-------------–= =

fr )
c v+
c v–
----------- fr=

f0)

f0) c v+
c v–
----------- f0=

f0
fd f0) f0–

fd f0) f0– c v+
c v–
----------- f0 f0– 2v

c v–
----------- f0= = =

v c« c ( f0=

fd
2v
c

------ f0, 2v
(
------=

fd

v R0
t0 t

R t% & R0 v– t t0–% &=

xr t% & x t - t% &–% &=

x t% &

- t% & 2
c
--- R0 vt– vt0+% &=

© 2004 by Chapman & Hall/CRC CRC Press LLC



Substituting Eq. (1.26) into Eq. (1.25) and collecting terms yield

(1.27)

where the constant phase  is

(1.28)

Define the compression or scaling factor  by

(1.29)

Note that for a receding target the scaling factor is . Utilizing 
Eq. (1.29) we can rewrite Eq. (1.27) as

(1.30)

Eq. (1.30) is a time-compressed version of the return signal from a stationary 
target ( ). Hence, based on the scaling property of the Fourier transform, 
the spectrum of the received signal will be expanded in frequency to a factor of 

. 

Consider the special case when 

(1.31)

where  is the radar center frequency in radians per second. The received sig-
nal  is then given by

 (1.32)

The Fourier transform of Eq. (1.32) is

(1.33)
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where for simplicity the effects of the constant phase  have been ignored in 
Eq. (1.33). Therefore, the bandpass spectrum of the received signal is now cen-
tered at  instead of . The difference between the two values corresponds 
to the amount of Doppler shift incurred due to the target motion,

 (1.34)

 is the Doppler frequency in radians per second. Substituting the value of  
in Eq. (1.34) and using  yield

(1.35)

which is the same as Eq. (1.23). It can be shown that for a receding target the 
Doppler shift is . This is illustrated in Fig. 1.9. 

In both Eq. (1.35) and Eq. (1.23) the target radial velocity with respect to the 
radar is equal to , but this is not always the case. In fact, the amount of Dop-
pler frequency depends on the target velocity component in the direction of the 
radar (radial velocity). Fig. 1.10 shows three targets all having velocity : tar-
get 1 has zero Doppler shift; target 2 has maximum Doppler frequency as 
defined in Eq. (1.35). The amount of Doppler frequency of target 3 is 

, where  is the radial velocity; and  is the total angle 
between the radar line of sight and the target.

Thus, a more general expression for  that accounts for the total angle 
between the radar and the target is

(1.36)

and for an opening target

(1.37)

where . The angles  and  are, respectively, the eleva-
tion and azimuth angles; see Fig. 1.11.
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1.5. The Radar Equation

Consider a radar with an omni directional antenna (one that radiates energy 
equally in all directions). Since these kinds of antennas have a spherical radia-
tion pattern, we can define the peak power density (power per unit area) at any 
point in space as

(1.38)

The power density at range  away from the radar (assuming a lossless propa-
gation medium) is

(1.39)

where  is the peak transmitted power and  is the surface area of a 
sphere of radius . Radar systems utilize directional antennas in order to 
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Figure 1.10. Target 1 generates zero Doppler. Target 2 generates 
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 Figure 1.11. Radial velocity is proportional to the azimuth and elevation angles.
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increase the power density in a certain direction. Directional antennas are usu-
ally characterized by the antenna gain  and the antenna effective aperture . 
They are related by

 (1.40)

where  is the wavelength. The relationship between the antenna’s effective 
aperture  and the physical aperture  is

(1.41)

 is referred to as the aperture efficiency, and good antennas require . In 
this book we will assume, unless otherwise noted, that  and  are the same. 
We will also assume that antennas have the same gain in the transmitting and 
receiving modes. In practice,  is widely accepted. 

The gain is also related to the antenna’s azimuth and elevation beamwidths by

(1.42)

where  and depends on the physical aperture shape; the angles  and  
are the antenna’s elevation and azimuth beamwidths, respectively, in radians. 
An excellent approximation of Eq. (1.42) introduced by Stutzman and reported 
by Skolnik is 

(1.43)

where in this case the azimuth and elevation beamwidths are given in degrees. 

The power density at a distance  away from a radar using a directive 
antenna of gain  is then given by

(1.44)

When the radar radiated energy impinges on a target, the induced surface cur-
rents on that target radiate electromagnetic energy in all directions. The amount 
of the radiated energy is proportional to the target size, orientation, physical 
shape, and material, which are all lumped together in one target-specific 
parameter called the Radar Cross Section (RCS) denoted by . 

The radar cross section is defined as the ratio of the power reflected back to 
the radar to the power density incident on the target,
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(1.45)

where  is the power reflected from the target. Thus, the total power deliv-
ered to the radar signal processor by the antenna is 

(1.46)

Substituting the value of  from Eq. (1.40) into Eq. (1.46) yields

(1.47)

Let  denote the minimum detectable signal power. It follows that the 
maximum radar range  is

(1.48)

Eq. (1.48) suggests that in order to double the radar maximum range one must 
increase the peak transmitted power  sixteen times; or equivalently, one 
must increase the effective aperture four times.

In practical situations the returned signals received by the radar will be cor-
rupted with noise, which introduces unwanted voltages at all radar frequencies. 
Noise is random in nature and can be described by its Power Spectral Density 
(PSD) function. The noise power  is a function of the radar operating band-
width, . More precisely

(1.49)

The input noise power to a lossless antenna is

(1.50)

where  is Boltzman’s constant, and  
is the effective noise temperature in degrees Kelvin. It is always desirable that 
the minimum detectable signal ( ) be greater than the noise power. The 
fidelity of a radar receiver is normally described by a figure of merit called the 
noise figure  (see Appendix 1B for details). The noise figure is defined as

(1.51)

 and  are, respectively, the Signal to Noise Ratios (SNR) at the 
input and output of the receiver.  is the input signal power;  is the input 
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noise power.  and  are, respectively, the output signal and noise power. 
Substituting Eq. (1.50) into Eq. (1.51) and rearranging terms yields

(1.52)

Thus, the minimum detectable signal power can be written as 

(1.53)

The radar detection threshold is set equal to the minimum output SNR, 
. Substituting Eq. (1.53) in Eq. (1.48) gives

(1.54)

or equivalently,

(1.55)

In general, radar losses denoted as  reduce the overall SNR, and hence 

(1.56)

Although it may take on many different forms, Eq. (1.56) is what is widely 
known as the Radar Equation. It is a common practice to perform calculations 
associated with the radar equation using decibel (dB) arithmetic. A review is 
presented in Appendix A. 

MATLAB Function “radar_eq.m”

The function “radar_eq.m” implements Eq. (1.56); it is given in Listing 1.1 
in Section 1.10. The syntax is as follows:

[snr] = radar_eq (pt, freq, g, sigma, te, b, nf, loss, range)

where

Symbol Description Units Status

pt peak power Watts input

freq radar center frequency Hz input

g antenna gain dB input

sigma target cross section m2 input

te effective noise temperature Kelvin input

So No

Si kTeBF SNR% &o=

Smin kTeBF SNR% &omin
=

SNR% &omin

Rmax

PtG
2( 29

44% &3kTeBF SNR% &omin

-------------------------------------------------------
. /
: ;
: ;
0 11 4#

=

SNR% &omin

PtG
2( 29

44% &3kTeBFRmax
4

-------------------------------------------=

L

SNR% &o
PtG

2( 29

44% &3kTeBFLR4
-----------------------------------------=

© 2004 by Chapman & Hall/CRC CRC Press LLC



The function “radar_eq.m” is designed such that it can accept a single value 
for the input “range” , or a vector containing many range values. Figure 1.12 
shows some typical plots generated using MATLAB program “fig1_12.m”
which is listed in Listing 1.2 in Section 1.10. This program uses the function 
“radar_eq.m”, with the following default inputs: Peak power , 
operating frequency , antenna gain , effective tempera-
ture , radar losses , noise figure . The radar band-
width is . The radar minimum and maximum detection range are 

and . Assume target cross section . 

Note that one can easily modify the MATLAB function “radar_eq.m” so 
that it solves Eq. (1.54) for the maximum detection range as a function of the 
minimum required SNR for a given set of radar parameters. Alternatively, the 
radar equation can be modified to compute the pulsewidth required to achieve 
a certain SNR for a given detection range. In this case the radar equation can be 
written as

(1.57)

Figure 1.13 shows an implementation of Eq. (1.57) for three different detection 
range values, using the radar parameters used in MATLAB program 
“fig1_13.m”. It is given in Listing 1.3 in Section 1.10. 

When developing radar simulations, Eq. (1.57) can be very useful in the fol-
lowing sense. Radar systems often utilize a finite number of pulsewidths 
(waveforms) to accomplish all designated modes of operations. Some of these 
waveforms are used for search and detection, others may be used for tracking, 
while a limited number of wideband waveforms may be used for discrimina-
tion purposes. During the search mode of operation, for example, detection of a 
certain target with a specific RCS value is established based on a pre-deter-
mined probability of detection . The probability of detection, , is used to 
calculate the required detection SNR (this will be addressed in Chapter 2). 

b bandwidth Hz input

nf noise figure dB input

loss radar losses dB input

range target range (can be either a sin-
gle value or a vector)

meters input

snr SNR (single value or a vector, 
depending on the input range)

dB output

Symbol Description Units Status

Pt 1.5MW=
f0 5.6GHz= G 45dB=

Te 290K= L 6dB= F 3dB=
B 5MHz=

Rmin 25Km= Rmax 165Km= 9 0.1m2=

$
44% &3kTeFLR4SNR

PtG
2( 29

-------------------------------------------------=

PD PD
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 Figure 1.12a. SNR versus detection range for three different values of RCS.
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 Figure 1.12b. SNR versus detection range for three different values of radar 
peak power.
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Once the required SNR is computed, Eq. (1.57) can then be used to find the 
most suitable pulse (or waveform) that achieves the required SNR (or equiva-
lently the required ). Often, it may be the case that none of the available 
radar waveforms may be able to guarantee the minimum required SNR for a 
particular RCS value at a particular detection range. In this case, the radar has 
to wait until the target is close enough in range to establish detection, otherwise 
pulse integration (coherent or non-coherent) can be used. Alternatively, cumu-
lative probability of detection can be used. All these issues will be addressed in 
Chapter 2.

1.5.1.  Radar Reference Range

Many radar design issues can be derived or computed based on the radar ref-
erence range  which is often provided by the radar end user. It simply 
describes that range at which a certain SNR value, referred to as , has to 
be achieved using a specific reference pulsewidth  for a pre-determined 
target cross section, . Radar reference range calculations assume that the 
target is on the line defined by the maximum antenna gain within a beam 
(broad side to the antenna). This is often referred to as the radar line of sight, as 
illustrated in Fig. 1.14. 

The radar equation at the reference range is 

PD

 Figure 1.13. Pulsewidth versus required SNR for three different detection 
range values.

5 10 15 20
10

-1

10
0

10
1

10
2

10
3

Minimum required SN R  - dB

$ 
(p

ul
se

 w
id

th
) i

n 
< 

se
c

R  =  75 K m
R =  100 K m
R =  150 K m

Rref
SNRref

$ref
9ref

© 2004 by Chapman & Hall/CRC CRC Press LLC



(1.58)

The radar equation at any other detection range for any other combination of 
SNR, RCS, and pulsewidth can be given as 

(1.59)

where the additional loss term  is introduced to account for the possibility 
that the non-reference target may not be on the radar line of sight, and to 
account for other losses associated with the specific scenario. Other forms of 
Eq. (1.59) can be in terms of the SNR. More precisely,

(1.60)

As an example, consider the radar described in the previous section, in this 
case, define , , and . The reference 
pulsewidth is . Using Eq. (1.60) we compute the SNR at 

 for a target whose RCS is . Assume that  to 
be equal to . For this purpose, the MATLAB program 
“ref_snr.m” has been developed; it is given in Listing 1.4 in Section 1.10.

1.6. Search (Surveillance)

The first task a certain radar system has to accomplish is to continuously 
scan a specified volume in space searching for targets of interest. Once detec-
tion is established, target information such as range, angular position, and pos-
sibly target velocity are extracted by the radar signal and data processors. 
Depending on the radar design and antenna, different search patterns can be 

Rref

9ref
Radar line of sight

 Figure 1.14. Definition of radar line of sight and radar reference range.
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adopted. A two-dimensional (2-D) fan beam search pattern is shown in 
Fig.1.15a. In this case, the beamwidth is wide enough in elevation to cover the 
desired search volume along that coordinate; however, it has to be steered in 
azimuth. Figure 1.15b shows a stacked beam search pattern; here the beam has 
to be steered in azimuth and elevation. This latter kind of search pattern is nor-
mally employed by phased array radars.

Search volumes are normally specified by a search solid angle  in steradi-
ans. Define the radar search volume extent for both azimuth and elevation as 

 and . Consequently, the search volume is computed as 

(1.61)

where both  and  are given in degrees. The radar antenna  beam-
width can be expressed in terms of its azimuth and elevation  beamwidths  
and , respectively. It follows that the antenna solid angle coverage is  
and, thus, the number of antenna beam positions  required to cover a solid 
angle  is 

(1.62)

In order to develop the search radar equation, start with Eq. (1.56) which is 
repeated here, for convenience, as Eq. (1.63)

(1.63)

Using the relations  and , where  is the PRI and  is 
the pulsewidth, yields

(1.64)

=

> A > E

= > A> E% & 57.296% &2# steradians=

> A > E 3dB
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5e 5a5e
nB

=
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--------------------------------------------=
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 Figure 1.15. (a) 2-D fan search pattern; (b) stacked search pattern.
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Define the time it takes the radar to scan a volume defined by the solid angle 
 as the scan time . The time on target can then be expressed in terms of 
 as

(1.65)

Assume that during a single scan only one pulse per beam per PRI illuminates 
the target. It follows that  and, thus, Eq. (1.64) can be written as 

(1.66)

Substituting Eqs. (1.40) and (1.42) into Eq. (1.66) and collecting terms yield 
the search radar equation (based on a single pulse per beam per PRI) as

(1.67)

The quantity  in Eq. (1.67) is known as the power aperture product. In 
practice, the power aperture product is widely used to categorize the radar’s 
ability to fulfill its search mission. Normally, a power aperture product is com-
puted to meet a predetermined SNR and radar cross section for a given search 
volume defined by .

As a special case, assume a radar using a circular aperture (antenna) with 
diameter . The 3-dB antenna beamwidth  is 

(1.68)

and when aperture tapering is used, . Substituting Eq. (1.68) 
into Eq. (1.62) yields

(1.69)

For this case, the scan time  is related to the time-on-target by 

(1.70)

Substitute Eq. (1.70) into Eq. (1.64) to get 

 (1.71)

= Tsc
Tsc

Ti
Tsc

nB
-------

Tsc

=
-------5a5e= =

Ti T=

SNR
PavG

2( 29

44% &3kTeFLR4
-------------------------------------

Tsc

=
-------5a5e=

SNR
PavAe9

44kTeFLR4
-----------------------------

Tsc

=
-------=

PavA

=

D 53dB

53dB
(
D
----,

53dB 1.25( D#,

nB
D2

( 2
------ ==

Tsc

Ti
Tsc

nB
-------

Tsc(
2

D2=
--------------= =

SNR
PavG

2( 29

44% &3R4kTeFL
-------------------------------------

Tsc(
2

D2=
--------------=

© 2004 by Chapman & Hall/CRC CRC Press LLC



and by using Eq. (1.40) in Eq. (1.71) we can define the search radar equation 
for a circular aperture as

 (1.72)

where the relation  (aperture area) is used. 

MATLAB Function “power_aperture.m”

The function “power_aperture.m” implements the search radar equation 
given in Eq. (1.67); it is given in Listing 1.5 in Section 1.10. The syntax is as 
follows:

PAP = power_aperture (snr, tsc, sigma, range, te, nf, loss, az_angle, el_angle)

where

Plots of the power aperture product versus range and plots of the average 
power versus aperture area for three RCS choices are shown in Figure 1.16. 
MATLAB program “fig1_16.m” was used to produce these figures. It is given 
in Listing 1.6 in Section 1.10. In this case, the following radar parameters were 
used

Symbol Description Units Status

snr sensitivity snr dB input

tsc scan time seconds input

sigma target cross section m2 input

range target range (can be either sin-
gle value or a vector)

meters input

te effective temperature Kelvin input

nf noise figure dB input

loss radar losses dB input

az_angle search volume azimuth extent degrees input

el_angle search volume elevation extent degrees input

PAP power aperture product dB output

SNR
PavA9

16R4kTeLF
-----------------------------

Tsc

=
-------=

A 4D2 4#=

9 Tsc 5e 5a= R Te nf loss" snr

0.1 m2 2.5sec 2? 250Km 900K 13dB 15dB
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 Figure 1.16a. Power aperture product versus detection range.
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 Figure 1.16b. Radar average power versus power aperture product.

© 2004 by Chapman & Hall/CRC CRC Press LLC



 Example: 

Compute the power aperture product corresponding to the radar that has the 
following parameters: Scan time , Noise figure , losses 

, search volume , range of interest is , 
and the required SNR is . Assume that  and 

. 

Solution: 

Note that  corresponds to a search sector that is three 
fourths of a hemisphere. Thus, using Eq. (1.61) we conclude that  

and . Using the MATLAB function “power_aperture.m” with the fol-

lowing syntax: 

PAP = power_aperture(20, 2, 3.162, 75e3, 290, 8, 6, 180, 135)

we compute the power aperture product as 36.7 dB.

1.6.1. Mini Design Case Study 1.1

Problem Statement:
Design a ground based radar that is capable of detecting aircraft and mis-

siles at 10 Km and 2 Km altitudes, respectively. The maximum detection range 
for either target type is 60 Km. Assume that an aircraft average RCS is 6 dBsm, 
and that a missile average RCS is -10 dBsm. The radar azimuth and elevation 
search extents are respectively  and . The required scan 

rate is 2 seconds and the range resolution is 150 meters. Assume a noise figure 
F = 8 dB, and total receiver noise L = 10 dB. Use a fan beam with azimuth 
beamwidth less than 3 degrees. The SNR is 15 dB.

A Design:

The range resolution requirement is ; thus by using Eq. (1.8) we 
calculate the required pulsewidth , or equivalently require the 
bandwidth . The statement of the problem lends itself to radar siz-
ing in terms of power aperture product. For this purpose, one must first com-
pute the maximum search volume at the detection range that satisfies the 
design requirements. The radar search volume is 

(1.73)

At this point, the designer is ready to use the radar search equation (Eq. 
(1.67)) to compute the power aperture product. For this purpose, one can mod-

Tsc 2sec= F 8dB=

L 6dB= = 7.4 steradians= R 75Km=

20dB Te 290Kelvin=

9 3.162m2=

= 7.4 steradians=

5a 180?=

5e 135?=

> A 360?= > E 10?=

! R 150m=
$ 1<sec=

B 1MHz=

=
> A> E

57.296% &2
----------------------- 360 10"

57.296% &2
----------------------- 1.097 steradians= = =
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ify the MATLAB function “power_aperture.m” to compute and plot the power 
aperture product for both target types. To this end, the MATLAB program 
“casestudy1_1.m”, which is given in Listing 1.7 in Section 1.10, was devel-
oped. Use the parameters in Table 1.2 as inputs for this program. Note that the 
selection of  is arbitrary.

TABLE 1.2: Input parameters to MATLAB program “casestudy1_1.m”.

Figure 1.17 shows a plot of the output produced by this program. The same 
program also calculates the corresponding power aperture product for both 
the missile and aircraft cases, which can also be read from the plot,

(1.74)

Choosing the more stressing case for the design baseline (i.e., select the 
power-aperture-product resulting from the missile analysis) yields 

(1.75)

Choose  to calculate the average power as 

 (1.76)

and assuming an aperture efficiency of  yields the physical aperture 
area. More precisely,

(1.77)

Symbol Description Units Value

snr sensitivity snr dB 15

tsc scan time seconds 2

sigma_tgtm missile radar cross section dBsm -10

sigma_tgta aircraft radar cross section dBsm 6

rangem missile detection range Km 60

rangea aircraft detection range Km 60

te effective temperature Kelvin 290

nf noise figure dB 8

loss radar losses dB 10

az_angle search volume azimuth extent degrees 360

el_angle search volume elevation extent degrees 10

Te 290Kelvin=

PAPmissile 38.53dB=

PAPaircraft 22.53dB=

Pav Ae" 103.853 7128.53 Ae@ 7128.53
Pav

-------------------= = =

Ae 1.75m2=

Pav
7128.53

1.75
------------------- 4.073KW= =

6 0.8=

A
Ae

6
----- 1.75

0.8
---------- 2.1875m2= = =
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Use  as the radar operating frequency. Then by using 
 we calculate using Eq. (1.40) . Now one must deter-

mine the antenna azimuth beamwidth. Recall that the antenna gain is also 
related to the antenna 3-dB beamwidth by the relation

(1.78)

where  are the antenna 3-dB azimuth and elevation beamwidths, 
respectively. Assume a fan beam with    . It follows that

(1.79)

1.7.  Pulse Integration 

When a target is located within the radar beam during a single scan it may 
reflect several pulses. By adding the returns from all pulses returned by a given 
target during a single scan, the radar sensitivity (SNR) can be increased. The 
number of returned pulses depends on the antenna scan rate and the radar PRF. 
More precisely, the number of pulses returned from a given target is given by

(1.80)

 Figure 1.17. Power aperture product versus detection range for 
radar in mini design case study 1.1.
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where  is the azimuth antenna beamwidth,  is the scan time, and  is the 
radar PRF. The number of reflected pulses may also be expressed as 

 (1.81)

where  is the antenna scan rate in degrees per second. Note that when 
using Eq. (1.80),  is expressed in radians, while when using Eq. (1.81) it is 
expressed in degrees. As an example, consider a radar with an azimuth antenna 
beamwidth , antenna scan rate  (antenna scan time, 

), and a PRF . Using either Eq.s (1.80) or (1.81) 
yields  pulses. 

The process of adding radar returns from many pulses is called radar pulse 
integration. Pulse integration can be performed on the quadrature components 
prior to the envelope detector. This is called coherent integration or pre-detec-
tion integration. Coherent integration preserves the phase relationship between 
the received pulses. Thus a build up in the signal amplitude is achieved. Alter-
natively, pulse integration performed after the envelope detector (where the 
phase relation is destroyed) is called non-coherent or post-detection integra-
tion. 

Radar designers should exercise caution when utilizing pulse integration for 
the following reasons. First, during a scan a given target will not always be 
located at the center of the radar beam (i.e., have maximum gain). In fact, dur-
ing a scan a given target will first enter the antenna beam at the 3-dB point, 
reach maximum gain, and finally leave the beam at the 3-dB point again. Thus, 
the returns do not have the same amplitude even though the target RCS may be 
constant and all other factors which may introduce signal loss remain the same. 
This is illustrated in Fig. 1.18, and is normally referred to as antenna beam-
shape loss.

 

5a Tsc fr

nP
5afr
5· scan

------------=

5· scan

5a

5a 3?= 5· scan 45? sec#=
Tsc 8 ondssec= fr 300Hz=

nP 20=

time

am
pl

itu
de

antenna 3-dB beamwidth

 Figure 1.18. Pulse returns from a point target using a rotating 
(scanning) antenna
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Other factors that may introduce further variation to the amplitude of the 
returned pulses include target RCS and propagation path fluctuations. Addi-
tionally, when the radar employs a very fast scan rate, an additional loss term is 
introduced due to the motion of the beam between transmission and reception. 
This is referred to as scan loss. A distinction should be made between scan loss 
due to a rotating antenna (which is described here) and the term scan loss that 
is normally associated with phased array antennas (which takes on a different 
meaning in that context). These topics will be discussed in more detail in other 
chapters.

Finally, since coherent integration utilizes the phase information from all 
integrated pulses, it is critical that any phase variation between all integrated 
pulses be known with a great level of confidence. Consequently, target dynam-
ics (such as target range, range rate, tumble rate, RCS fluctuation, etc.) must be 
estimated or computed accurately so that coherent integration can be meaning-
ful. In fact, if a radar coherently integrates pulses from targets without proper 
knowledge of the target dynamics it suffers a loss in SNR rather than the 
expected SNR build up. Knowledge of target dynamics is not as critical when 
employing non-coherent integration; nonetheless, target range rate must be 
estimated so that only the returns from a given target within a specific range 
bin are integrated. In other words, one must avoid range walk (i.e., avoid hav-
ing a target cross between adjacent range bins during a single scan).

A comprehensive analysis of pulse integration should take into account 
issues such as the probability of detection , probability of false alarm , 
the target statistical fluctuation model, and the noise or interference statistical 
models. These topics will be discussed in Chapter 2. However, in this section 
an overview of pulse integration is introduced in the context of radar measure-
ments as it applies to the radar equation. The basic conclusions presented in 
this chapter concerning pulse integration will still be valid, in the general 
sense, when a more comprehensive analysis of pulse integration is presented; 
however, the exact implementation, the mathematical formulation, and /or the 
numerical values used will vary.   

1.7.1. Coherent Integration

In coherent integration, when a perfect integrator is used (100% efficiency), 
to integrate  pulses the SNR is improved by the same factor. Otherwise, 
integration loss occurs, which is always the case for non-coherent integration. 
Coherent integration loss occurs when the integration process is not optimum. 
This could be due to target fluctuation, instability in the radar local oscillator, 
or propagation path changes. 

Denote the single pulse SNR required to produce a given probability of 
detection as . The SNR resulting from coherently integrating  pulses 
is then given by 

PD Pfa

nP

SNR% &1 nP
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(1.82)

Coherent integration cannot be applied over a large number of pulses, partic-
ularly if the target RCS is varying rapidly. If the target radial velocity is known 
and no acceleration is assumed, the maximum coherent integration time is lim-
ited to 

(1.83)

where  is the radar wavelength and  is the target radial acceleration. Coher-
ent integration time can be extended if the target radial acceleration can be 
compensated for by the radar. 

1.7.2. Non-Coherent Integration

Non-coherent integration is often implemented after the envelope detector, 
also known as the quadratic detector. Non-coherent integration is less efficient 
than coherent integration. Actually, the non-coherent integration gain is always 
smaller than the number of non-coherently integrated pulses. This loss in inte-
gration is referred to as post detection or square law detector loss. Marcum and 
Swerling showed that this loss is somewhere between  and . DiFranco 
and Rubin presented an approximation of this loss as

(1.84)

Note that as  becomes very large, the integration loss approaches . 

The subject of integration loss is treated in great levels of detail in the litera-
ture. Different authors use different approximations for the integration loss 
associated with non-coherent integration. However, all these different approxi-
mations yield very comparable results. Therefore, in the opinion of these 
authors the use of one formula or another to approximate integration loss 
becomes somewhat subjective. In this book, the integration loss approximation 
reported by Barton and used by Curry will be adopted. In this case, the non-
coherent integration loss which can be used in the radar equation is 

(1.85)

It follows that the SNR when  pulses are integrated non-coherently is

(1.86)

1.7.3. Detection Range with Pulse Integration

The process of determining the radar sensitivity or equivalently the maxi-
mum detection range when pulse integration is used is as follows: First, decide 
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whether to use coherent or non-coherent integration. Keep in mind the issues 
discussed in the beginning of this section when deciding whether to use coher-
ent or non-coherent integration. 

Second, determine the minimum required  or  required for 
adequate detection and track. Typically, for ground based surveillance radars 
that can be on the order of 13 to 15 dB. The third step is to determine how 
many pulses should be integrated. The choice of  is affected by the radar 
scan rate, the radar PRF, the azimuth antenna beamwidth, and of course by the 
target dynamics (remember that range walk should be avoided or compensated 
for, so that proper integration is feasible). Once  and the required SNR are 
known one can compute the single pulse SNR (i.e., the reduction in SNR). For 
this purpose use Eq. (1.82) in the case of coherent integration. In the non-
coherent integration case, Curry presents an attractive formula for this calcula-
tion, as follows 

(1.87)

Finally, use  from Eq. (1.87) in the radar equation to calculate the 
radar detection range. Observe that due to the integration reduction in SNR the 
radar detection range is now larger than that for the single pulse when the same 
SNR value is used. This is illustrated using the following mini design case 
study.

1.7.4. Mini Design Case Study 1.2 

Problem Statement: 

A MMW radar has the following specifications: Center frequency 

, pulsewidth , peak power , azimuth cov-

erage , Pulse repetition frequency , noise figure 
; antenna diameter ; antenna gain ; radar cross 

section of target is ; system losses ; radar scan time 
. Calculate: The wavelength ; range resolution ; bandwidth 

; antenna half power beamwidth; antenna scan rate; time on target. Com-
pute the range that corresponds to 10 dB SNR. Plot the SNR as a function of 
range. Finally, compute the number of pulses on the target that can be used for 
integration and the corresponding new detection range when pulse integration 
is used, assuming that the SNR stays unchanged (i.e., the same as in the case of 
a single pulse). Assume .
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A Design: 

The wavelength  is 

The range resolution  is

Radar operating bandwidth  is 

The antenna 3-dB beamwidth is 

Time on target is

It follows that the number of pulses available for integration is calculated 
using Eq. (1.81), 

Coherent Integration case:
Using the radar equation given in Eq. (1.58) yields . The 

SNR improvement due to coherently integrating 94 pulses is 19.73dB. How-
ever, since it is requested that the SNR remains at 10dB, we can calculate the 
new detection range using Eq. (1.59) as

 

Using the MATLAB Function “radar_eq.m” with the following syntax 

[snr] = radar_eq (4, 94e9, 47, 20, 290, 20e6, 7, 10, 6.99e3)

yields SNR = -9.68 dB. This means that using 94 pulses integrated coherently 
at 6.99 Km where each pulse has a SNR of -9.68 dB provides the same detec-
tion criteria as using a single pulse with SNR = 10dB at 2.245Km. This is illus-
trated in Fig. 1.19, using the MATLAB program “fig1_19.m”, which is given in 
Listing 1.8 in Section 1.10. Figure 1.19 shows the improvement of the detection 
range if the SNR is kept constant before and after integration.
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Non-coherent Integration case:

Start with Eq. (1.87) with  and , 

Therefore, the single pulse SNR when 94 pulses are integrated non-coher-
ently is -4.16dB. You can verify this result by using Eq. (1.86). The integration 
loss  is calculated using Eq. (1.85). It is 

Therefore, the net non-coherent integration gain is 

and, consequently, the maximum detection range is 

This means that using 94 pulses integrated non-coherently at 5.073 Km where 
each pulse has SNR of -4.16dB provides the same detection criterion as using a 
single pulse with SNR = 10dB at 2.245Km. This is illustrated in Fig. 1.20, 
using the MATLAB program “fig1_19.m”.

 Figure 1.19. SNR versus detection range, using parameters from example.
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MATLAB Function “pulse_integration.m”

Figure 1.21 shows the SNR gain versus the number of integrated pulses for 
both coherent and non-coherent integration. This figure corresponds to param-
eters from the previous example at . Figure 1.22 shows the gen-
eral case SNR improvement versus number of integrated pulses. Both figures 
were generated using MATLAB program “fig1_21.m” which is given in List-
ing 1.9 in Section 1.10. For this purpose the MATLAB function 
“pulse_integration.m” was developed. It is given in Listing 1.10 in Section 
1.10. This function calculates the radar equation given in Eq. (1.56) with pulse 
integration. The syntax for MATLAB function “pulse_integration.m” is as fol-
lows

[snr] = pulse_integration (pt, freq, g, sigma, te, b, nf, loss, range, np, ci_nci)

where

Symbol Description Units Status

pt peak power Watts input

freq radar center frequency Hz input

g antenna gain dB input

sigma target cross section m2 input

te effective noise temperature Kelvin input

b bandwidth Hz input

 Figure 1.20. SNR versus detection range, for the same example.
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1.8. Radar Losses

As indicated by the radar equation, the receiver SNR is inversely propor-
tional to the radar losses. Hence, any increase in radar losses causes a drop in 
the SNR, thus decreasing the probability of detection, as it is a function of the 
SNR. Often, the principal difference between a good radar design and a poor 
radar design is the radar losses. Radar losses include ohmic (resistance) losses 
and statistical losses. In this section we will briefly summarize radar losses.

nf noise figure dB input

loss radar losses dB input

range target range (can be either a sin-
gle value or a vector)

meters input

np number of integrated pulses none input

ci_nci 1 for CI; 2 for NCI none input

snr SNR (single value or a vector, 
depending on the input range)

dB output

Symbol Description Units Status

 Figure 1.21. SNR improvement when integration is utilized. 
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1.8.1.  Transmit and Receive Losses

Transmit and receive losses occur between the radar transmitter and antenna 
input port, and between the antenna output port and the receiver front end, 
respectively. Such losses are often called plumbing losses. Typically, plumbing 
losses are on the order of 1 to 2 dB. 

1.8.2.  Antenna Pattern Loss and Scan Loss

So far, when we used the radar equation we assumed maximum antenna 
gain. This is true only if the target is located along the antenna’s boresight axis. 
However, as the radar scans across a target the antenna gain in the direction of 
the target is less than maximum, as defined by the antenna’s radiation pattern. 
The loss in SNR due to not having maximum antenna gain on the target at all 
times is called the antenna pattern (shape) loss. Once an antenna has been 
selected for a given radar, the amount of antenna pattern loss can be mathemat-
ically computed. 

For example, consider a  antenna radiation pattern as shown in Fig. 
1.23. It follows that the average antenna gain over an angular region of  
about the boresight axis is

(1.88)

 Figure 1.22. SNR improvement when integration is utilized. 
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where  is the aperture radius and  is the wavelength. In practice, Gaussian 
antenna patterns are often adopted. In this case, if  denotes the antenna 
3dB beamwidth, then the antenna gain can be approximated by 

(1.89)

If the antenna scanning rate is so fast that the gain on receive is not the same 
as on transmit, additional scan loss has to be calculated and added to the beam 
shape loss. Scan loss can be computed in a similar fashion to beam shape loss. 
Phased array radars are often prime candidates for both beam shape and scan 
losses. 

1.8.3.  Atmospheric Loss

Detailed discussion of atmospheric loss and propagation effects is in a later 
chapter. Atmospheric attenuation is a function of the radar operating frequency, 
target range, and elevation angle. Atmospheric attenuation can be as high as a 
few dB.

1.8.4.  Collapsing Loss

When the number of integrated returned noise pulses is larger than the target 
returned pulses, a drop in the SNR occurs. This is called collapsing loss. The 
collapsing loss factor is defined as

r (
53dB

G 5% & 2.77652

53dB
2

-------------------–
. /
: ;
0 1

exp=

Figure 1.23. Normalized (sin x / x) antenna pattern.
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(1.90)

where  is the number of pulses containing both signal and noise, while  is 
the number of pulses containing noise only. Radars detect targets in azimuth, 
range, and Doppler. When target returns are displayed in one coordinate, such 
as range, noise sources from azimuth cells adjacent to the actual target return 
converge in the target vicinity and cause a drop in the SNR. This is illustrated 
in Fig. 1.24.

1.8.5.  Processing Losses

a. Detector Approximation: 

The output voltage signal of a radar receiver that utilizes a linear detector is

 (1.91)

where  are the in-phase and quadrature components. For a radar using a 
square law detector, we have .

Since in real hardware the operations of squares and square roots are time 
consuming, many algorithms have been developed for detector approximation. 
This approximation results in a loss of the signal power, typically 0.5 to 1 dB.

b. Constant False Alarm Rate (CFAR) Loss: 

In many cases the radar detection threshold is constantly adjusted as a func-
tion of the receiver noise level in order to maintain a constant false alarm rate. 
For this purpose, Constant False Alarm Rate (CFAR) processors are utilized in 
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 Figure 1.24. Illustration of collapsing loss. Noise sources in cells 1, 2, 4, and 5 
converge to increase the noise level in cell 3.
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order to keep the number of false alarms under control in a changing and 
unknown background of interference. CFAR processing can cause a loss in the 
SNR level on the order of 1 dB. 

Three different types of CFAR processors are primarily used. They are adap-
tive threshold CFAR, nonparametric CFAR, and nonlinear receiver techniques. 
Adaptive CFAR assumes that the interference distribution is known and 
approximates the unknown parameters associated with these distributions. 
Nonparametric CFAR processors tend to accommodate unknown interference 
distributions. Nonlinear receiver techniques attempt to normalize the root 
mean square amplitude of the interference.

c. Quantization Loss:   

Finite word length (number of bits) and quantization noise cause an increase 
in the noise power density at the output of the Analog to Digital (A/D) con-
verter. The A/D noise level is , where  is the quantization level.q2 12# q

echo envelope

early sample late sample

on target sample

on target range
bin

echo envelope

early sample

late sampleon target sample

on target range
bin

(a) Target on the center of a range gate.

range gates

range gates

(b) Target on the boundary between two range gates.

Figure 1.25. Illustration of range gate straddling.
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d. Range Gate Straddle: 

The radar receiver is normally mechanized as a series of contiguous range 
gates (bins). Each range bin is implemented as an integrator matched to the 
transmitted pulsewidth. Since the radar receiver acts as a filter that smears 
(smooths), the received target echoes. The smoothed target return envelope is 
normally straddled to cover more than one range gate. 

Typically, three gates are affected; they are called the early, on, and late 
gates. If a point target is located exactly at the center of a range gate, then the 
early and late samples are equal. However, as the target starts to move into the 
next gate, the late sample becomes larger while the early sample gets smaller. 
In any case, the amplitudes of all three samples should always roughly add up 
to the same value. Fig. 1.25 illustrates the concept of range straddling. The 
envelope of the smoothed target echo is likely to be Gaussian shaped. In prac-
tice, triangular shaped envelopes may be easier and faster to implement. Since 
the target is likely to fall anywhere between two adjacent range bins, a loss in 
the SNR occurs (per range gate). More specifically, a target’s returned energy 
is split between three range bins. Typically, straddle loss of about 2 to 3 dB is 
not unusual.

Example: 

Consider the smoothed target echo voltage shown below. Assume  resis-
tance. Find the power loss due to range gate straddling over the interval 

.

Solution: 

The smoothed voltage can be written as

The power loss due to straddle over the interval  is 
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The average power loss is then 

and, for example, if , then .

e. Doppler Filter Straddle: 

Doppler filter straddle is similar to range gate straddle. However, in this case 
the Doppler filter spectrum is spread (widened) due to weighting functions. 
Weighting functions are normally used to reduce the sidelobe levels. Since the 
target Doppler frequency can fall anywhere between two Doppler filters, signal 
loss occurs. 

1.8.6.  Other Losses

Other losses may include equipment losses due to aging radar hardware, 
matched filter loss, and antenna efficiency loss. Tracking radars suffer from 
crossover (squint) loss.

1.9. “MyRadar” Design Case Study - Visit 1

In this section, a design case study, referred to as “MyRadar”  design case 
study, is introduced. For this purpose, only the theory introduced in this chapter 
is used to fulfill the design requirements. Note that since only a limited amount 
of information has been introduced in this chapter, the design process may 
seem illogical to some readers. However, as new material is introduced in sub-
sequent chapters, the design requirements are updated and/or new design 
requirements are introduced based on the particular material of that chapter. 
Consequently, the design process will also be updated to accommodate the new 
theory and techniques learned in that chapter. 

1.9.1. Authors and Publisher Disclaimer

The design case study “MyRadar”  is a ground based air defense radar 
derived and based on Brookner’s1 open literature source. However, the design 
approach introduced in this book is based on the authors’ point of view of how 
to design such radar. Thus, the design process takes on a different flavor than 
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that introduced by Brookner. Additionally, any and all design alternatives pre-
sented in this book are based on and can be easily traced to open literature 
sources. 

Furthermore, the design approach adopted in this book is based on modeling 
many of the radar system components with no regards to any hardware con-
straints nor to any practical limitations. The design presented in this book is 
intended to be tutorial and academic in nature and does not adhere to any other 
requirements. Finally, the MATLAB code presented in this book is intended to 
be illustrative and academic and is not designed nor intended for any other 
uses.   

Using the material presented in this book and the MATLAB code 
designed by the authors of this book by any entity or person is strictly at 
will. The authors and the publisher are neither liable nor responsible for 
any material or non-material losses, loss of wages, personal or property 
damages of any kind, or for any other type of damages of any and all types 
that may be incurred by using this book.

1.9.2. Problem Statement  

You are to design a ground based radar to fulfill the following mission: 
Search and Detection. The threat consists of aircraft with an average RCS of 6 
dBsm ( ), and missiles with an average RCS of -3 dBsm 
( ). The missile altitude is 2Km, and the aircraft altitude is about 7 
Km. Assume a scanning radar with 360 degrees azimuth coverage. The scan 
rate is less than or equal to 1 revolution every 2 seconds. Assume L to X band. 
We need range resolution of 150 m. No angular resolution is specified at this 
time. Also assume that only one missile and one aircraft constitute the whole 
threat. Assume a noise figure F = 6 dB, and total receiver loss L = 8 dB. For 
now use a fan beam with azimuth beamwidth of less than 3 degrees. Assume 
that 13 dB SNR is a reasonable detection threshold. Finally, assume flat earth. 

1.9.3.  A Design

The desired range resolution is . Thus, using Eq. (1.8) one calcu-
lates the required pulsewidth as , or equivalently the required band-
width . At this point a few preliminary decisions must be made. 
This includes the selection of the radar operating frequency, the aperture size, 
and the single pulse peak power. 

1. Brookner, Eli, Editor, Practical Phased Array Antenna Systems, Artech House, 
1991, Chapter 7.

9a 4m2=
9m 0.5m2=

! R 150m=
$ 1<sec=
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The choice of an operating frequency that can fulfill the design requirements 
is driven by many factors, such as aperture size, antenna gain, clutter, atmo-
spheric attenuation, and the maximum peak power, to name a few. In this 
design, an operating frequency  is selected. This choice is somewhat 
arbitrary at this point; however, as we proceed with the design process this 
choice will be better clarified. 

Second, the transportability (mobility) of the radar drives the designer in the 
direction of a smaller aperture type. A good choice would be less than 5 meters 
squared. For now choose . The last issue that one must consider is 
the energy required per pulse. Note that this design approach assumes that the 
minimum detection SNR (13 dB) requirement is based on pulse integration. 
This condition is true because the target is illuminated with several pulses dur-
ing a single scan, provided that the antenna azimuth beamwidth and the PRF 
choice satisfy Eq. (1.81).

The single pulse energy is . Typically, a given radar must be 
designed such that it has a handful of pulsewidths (waveforms) to choose from. 
Different waveforms (pulsewidths) are used for definite modes of operations 
(search, track, etc.). However, for now only a single pulse which satisfies the 
range resolution requirement is considered. To calculate the minimum single 
pulse energy required for proper detection, use Eq. (1.57). More precisely,

   (1.92)

All parameters in Eq. (1.92) are known, except for the antenna gain, the detec-
tion range, and the single pulse SNR. The antenna gain is calculated from

(1.93)

where the relation ( ) was used.

In order to estimate the detection range, consider the following argument. 
Since an aircraft has a larger RCS than a missile, one would expect an aircraft 
to be detected at a much longer range than that of a missile. This is depicted in 
Fig. 1.26, where  refers to the aircraft detection range and  denotes the 
missile detection range. As illustrated in this figure, the minimum search ele-
vation angle  is driven by the missile detection range, assuming that the mis-
siles are detected, with the proper SNR, as soon as they enter the radar beam. 
Alternatively, the maximum search elevation angle  is driven the aircraft’s 
position along with the range that corresponds to the defense’s last chance to 
intercept the threat (both aircraft and missile). This range is often called “keep-
out minimum range” and is denoted by . In this design approach, 
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 is selected. In practice, the keep-out minimum range is normally 
specified by the user as a design requirement.

The determination of  and  is dictated by how fast can a defense inter-
ceptor reach the keep-out minimum range and kill the threat. For example, 
assume that the threatening aircraft velocity is  and the threatening 
missile velocity is . Alternatively, assume that an interceptor average 
velocity is . It follows that, the interceptor time of flight, based on 

, is 

(1.94)

Therefore, an aircraft and a missile must be detected by the radar at

(1.95)

Note that these values should be used only as a guide. The actual detection 
range must also include a few more kilometers, in order to allow the defense 
better reaction time. In this design, choose . 
Therefore, the maximum PRF that guarantees an unambiguous range of at least 
90Km is calculated from Eq. (1.5). More precisely,

(1.96)

Since there are no angular resolution requirements imposed on the design at 
this point, then Eq. (1.96) is the only criterion that will be used to determine the 
radar operating PRF. Select, 

(1.97)

Rmin 30Km=

52
51

 Figure 1.26. Radar / threat geometry.
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 The minimum and maximum elevation angles are, respectively, calculated 
as

(1.98)

(1.99)

These angles are then used to compute the elevation search extent (remember 
that the azimuth search extent is equal to ). More precisely, the search vol-
ume  (in steradians) is given by

(1.100)

Consequently, the search volume is

(1.101)

The desired antenna must have a fan beam; thus using a parabolic rectangu-
lar antenna will meet the design requirements. Select ; the corre-
sponding antenna 3-dB elevation and azimuth beamwidths are denoted as 

, respectively. Select

(1.102)

The azimuth 3-dB antenna  beamwidth is calculated using Eq. (1.42) as

(1.103)

It follows that the number of pulses that strikes a target during a single scan is 
calculated using Eq. (1.81) as

(1.104)

The design approach presented in this book will only assume non-coherent 
integration (the reader is advised to re-calculate all results by assuming coher-
ent integration, instead). The design requirement mandates a 13 dB SNR for 
detection. By using Eq. (1.87) one calculates the required single pulse SNR, 

 (1.105)
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Furthermore the non-coherent integration loss associated with this case is com-
puted from Eq. (1.85), 

(1.106)

It follows that the corresponding single pulse energy for the missile and the 
aircraft cases are respectively given by

(1.107)

(1.108)

Hence, the peak power that satisfies the single pulse detection requirement for 
both target types is 

 (1.109)

The radar equation with pulse integration is

(1.110)

Figure 1.27 shows the SNR versus detection range for both target-types with 
and without integration. To reproduce this figure use MATLAB program 
“fig1_27.m” which is given in Listing 1.12 in Section 1.10. 

1.9.4. A Design Alternative 

One could have elected not to reduce the single pulse peak power, but rather 
keep the single pulse peak power as computed in Eq. (1.109) and increase the 
radar detection range. For example, integrating 7 pulses coherently would 
improve the radar detection range by a factor of 

(1.111)
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It follows that the new missile and aircraft detection ranges are 

(1.112)

Note that extending the minimum detection range for a missile to  
would increase the size of the extent of the elevation search volume. More pre-
cisely,

(1.113)

It follows that the search volume  (in steradians) is now 

(1.114)

Alternatively, integrating 7 pulses non-coherently with  
yields

(1.115)

and the integration loss is 

 Figure 1.27. SNR versus detection range for both target types with and 
without pulse integration.
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(1.116)

Then, the net non-coherent integration gain is 

(1.117)

Thus, the radar detection range is now improved due to a 7-pulse non-coherent 
integration to 

(1.118)

Again, the extent of the elevation search volume is changed to

(1.119)

It follows that the search volume  (in steradians) is now 

(1.120)

1.10. MATLAB Program and Function Listings

This section presents listings for all MATLAB functions and programs used 
in this chapter. Users are encouraged to vary the input parameters and rerun 
these programs in order to enhance their understanding of the theory presented 
in the text. All selected parameters and variables follow the same nomenclature 
used in the text; thus, understanding the structure and hierarchy of the pre-
sented code should be an easy task once the user has read the chapter. 

Note that all MATLAB programs and functions developed in this book can 
be downloaded from CRC Press Web Site “www.crcpress.com”. Additionally, 
all MATLAB code developed for this book was developed using MATLAB 6.5 
Release 13 for Microsoft Windows.

Listing 1.1. MATLAB Function “radar_eq.m”
function [snr] = radar_eq(pt, freq, g, sigma, te, b, nf, loss, range)
% This program implements Eq. (1.56)
c = 3.0e+8; % speed of light
lambda = c / freq; % wavelength
p_peak = 10*log10(pt); % convert peak power to dB
lambda_sqdb = 10*log10(lambda^2); % compute wavelength square in dB
sigmadb = 10*log10(sigma); % convert sigma to dB
four_pi_cub = 10*log10((4.0 * pi)^3); % (4pi)^3 in dB

LNCI 1.057dB=

NCIgain 10 7% &log" 1.057– 7.394dB= = NCIgain@ 5.488=
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k_db = 10*log10(1.38e-23); % Boltzman's constant in dB
te_db = 10*log10(te); % noise temp. in dB
b_db = 10*log10(b); % bandwidth in dB
range_pwr4_db = 10*log10(range.^4); % vector of target range^4 in dB
% Implement Equation (1.56)
num = p_peak + g + g + lambda_sqdb + sigmadb;
den = four_pi_cub + k_db + te_db + b_db + nf + loss + range_pwr4_db;
snr = num - den;
return

Listing 1.2. MATLAB Program “fig1_12.m”
% Use this program to reproduce Fig. 1.12 of text.
close all
clear all
pt = 1.5e+6; % peak power in Watts
freq = 5.6e+9; % radar operating frequency in Hz
g = 45.0; % antenna gain in dB
sigma = 0.1; % radar cross section in m squared
te = 290.0; % effective noise temperature in Kelvins
b = 5.0e+6; % radar operating bandwidth in Hz
nf = 3.0; %noise figure in dB
loss = 6.0; % radar losses in dB
range = linspace(25e3,165e3,1000); % traget range 25 -165 Km, 1000 points
snr1 = radar_eq(pt, freq, g, sigma, te, b, nf, loss, range);
snr2 = radar_eq(pt, freq, g, sigma/10, te, b, nf, loss, range);
snr3 = radar_eq(pt, freq, g, sigma*10, te, b, nf, loss, range);
% plot SNR versus range
figure(1)
rangekm  = range ./ 1000;
plot(rangekm,snr3,'k',rangekm,snr1,'k -.',rangekm,snr2,'k:')
grid
legend('\sigma = 0 dBsm','\sigma = -10dBsm','\sigma = -20 dBsm')
xlabel ('Detection range - Km');
ylabel ('SNR - dB');
snr1 = radar_eq(pt, freq, g, sigma, te, b, nf, loss, range);
snr2 = radar_eq(pt*.4, freq, g, sigma, te, b, nf, loss, range);
snr3 = radar_eq(pt*1.8, freq, g, sigma, te, b, nf, loss, range);
figure (2)
plot(rangekm,snr3,'k',rangekm,snr1,'k -.',rangekm,snr2,'k:')
grid
legend('Pt = 2.16 MW','Pt = 1.5 MW','Pt = 0.6 MW')
xlabel ('Detection range - Km');
ylabel ('SNR - dB');
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Listing 1.3. MATLAB Program “fig1_13.m”
% Use this program to reproduce Fig. 1.13 of text.
close all
clear all
pt = 1.e+6; % peak power in Watts
freq = 5.6e+9; % radar operating frequency in Hz
g = 40.0; % antenna gain in dB
sigma = 0.1; % radar cross section in m squared
te =300.0; % effective noise temperature in Kelvins
nf = 5.0; %noise figure in dB
loss = 6.0; % radar losses in dB
range = [75e3,100e3,150e3]; % three range values
snr_db = linspace(5,20,200); % SNR values from 5 dB to 20 dB 200 points
snr = 10.^(0.1.*snr_db); % convert snr into base 10
gain = 10^(0.1*g); %convert antenna gain into base 10
loss = 10^(0.1*loss); % convert losses into base 10
F = 10^(0.1*nf); % convert noise figure into base 10
lambda = 3.e8 / freq; % compute wavelength
% Implement Eq.(1.57)
den = pt * gain * gain * sigma * lambda^2;
num1 = (4*pi)^3 * 1.38e-23 * te * F * loss * range(1)^4 .* snr;
num2 = (4*pi)^3 * 1.38e-23 * te * F * loss * range(2)^4 .* snr;
num3 = (4*pi)^3 * 1.38e-23 * te * F * loss * range(3)^4 .* snr;
tau1 = num1 ./ den ;
tau2 = num2 ./ den;
tau3 = num3 ./ den;
% plot tau versus snr
figure(1)
semilogy(snr_db,1e6*tau1,'k',snr_db,1e6*tau2,'k -.',snr_db,1e6*tau3,'k:')
grid
legend('R = 75 Km','R = 100 Km','R = 150 Km')
xlabel ('Minimum required SNR - dB');
ylabel ('\tau (pulsewidth) in \mu sec');

Listing 1.4. MATLAB Program “ref_snr.m”
% This program implements Eq. (1.60)
clear all
close all
Rref = 86e3; % ref. range
tau_ref = .1e-6; % ref. pulsewidth
SNRref = 20.; % Ref SNR in dB
snrref = 10^(SNRref/10);
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Sigmaref = 0.1; % ref RCS in m^2
Lossp = 2; % processing loss in dB
lossp = 10^(Lossp/10);
% Enter desired value
tau = tau_ref;
R = 120e3;
rangeratio = (Rref / R)^4;
Sigma = 0.2; 
% Implement Eq. (1.60)
snr = snrref * (tau / tau_ref) * (1. / lossp) * ...
    (Sigma / Sigmaref) * rangeratio;
snr = 10*log10(snr) 

Listing 1.5. MATLAB Function “power_aperture.m”
function PAP = 

power_aperture(snr,tsc,sigma,range,te,nf,loss,az_angle,el_
angle)

% This program implements Eq. (1.67)
Tsc = 10*log10(tsc); % convert Tsc into dB
Sigma = 10*log10(sigma); % convert sigma to dB
four_pi = 10*log10(4.0 * pi); % (4pi) in dB
k_db = 10*log10(1.38e-23); % Boltzman's constant in dB
Te = 10*log10(te); % noise temp. in dB
range_pwr4_db = 10*log10(range.^4); % target range^4 in dB
omega = az_angle * el_angle / (57.296)^2; % compute search volume in stera-

dians
Omega = 10*log10(omega) % search volume in dB
% implement Eq. (1.67)
PAP = snr + four_pi + k_db + Te + nf + loss + range_pwr4_db + Omega ...
    - Sigma - Tsc;
return

Listing 1.6.  MATLAB Program “fig1_16.m”
% Use this program to reproduce Fig. 1.16 of text.
close all
clear all
tsc = 2.5; % Scan time is 2.5 seconds
sigma = 0.1; % radar cross section in m squared
te = 900.0; % effective noise temperature in Kelvins
snr = 15; % desired SNR in dB
nf = 6.0; %noise figure in dB
loss = 7.0; % radar losses in dB
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az_angle = 2; % search volume azimuth extent in degrees
el_angle = 2; % search volume elevation extent in degrees
range = linspace(20e3,250e3,1000); % range to target 20 Km 250 Km, 1000 

points
pap1 = power_aperture(snr,tsc,sigma/10,range,te,nf,loss,az_angle,el_angle);
pap2 = power_aperture(snr,tsc,sigma,range,te,nf,loss,az_angle,el_angle);
pap3 = power_aperture(snr,tsc,sigma*10,range,te,nf,loss,az_angle,el_angle);
% plot power aperture product versus range
% figure 1.16a
figure(1)
rangekm  = range ./ 1000;
plot(rangekm,pap1,'k',rangekm,pap2,'k -.',rangekm,pap3,'k:')
grid
legend('\sigma = -20 dBsm','\sigma = -10dBsm','\sigma = 0 dBsm')
xlabel ('Detection range in Km');
ylabel ('Power aperture product in dB');
% generate Figure 1.16b
lambda = 0.03; % wavelength in meters
G = 45; % antenna gain in dB
ae = linspace(1,25,1000);% aperture size 1 to 25 meter squared, 1000 points
Ae = 10*log10(ae);
range = 250e3; % range of interest is 250 Km
pap1 = power_aperture(snr,tsc,sigma/10,range,te,nf,loss,az_angle,el_angle);
pap2 = power_aperture(snr,tsc,sigma,range,te,nf,loss,az_angle,el_angle);
pap3 = power_aperture(snr,tsc,sigma*10,range,te,nf,loss,az_angle,el_angle);
Pav1 = pap1 - Ae;
Pav2 = pap2 - Ae;
Pav3 = pap3 - Ae;
figure(2)
plot(ae,Pav1,'k',ae,Pav2,'k -.',ae,Pav3,'k:')
grid
xlabel('Aperture size in square meters')
ylabel('Pav in dB')
legend('\sigma = -20 dBsm','\sigma = -10dBsm','\sigma = 0 dBsm')

Listing 1.7. MATLAB Program “casestudy1_1.m”
% This program is used to generate Fig. 1.17 
% It implements the search radar equation defined in Eq. 1.67
clear all
close all
snr = 15.0;          % Sensitivity SNR in dB
tsc = 2.;            % Antenna scan time in seconds
sigma_tgtm = -10;    % Missile RCS in dBsm
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sigma_tgta = 6;      % Aircraft RCS in dBsm
range = 60.0; % Sensitivity range in Km, 
te = 290.0;         % Effective noise temperature in Kelvins
nf = 8;             % Noise figure in dB
loss = 10.0;         % Radar losses in dB
az_angle = 360.0;   % Search volume azimuth extent in degrees
el_angle = 10.0;  % Search volume elevation extent in degrees
c = 3.0e+8;         % Speed of light
% Compute Omega in steradians
omega = (az_angle / 57.296) * (el_angle /57.296);
omega_db = 10.0*log10(omega); % Convert Omega to dBs
k_db = 10.*log10(1.38e-23);
te_db = 10*log10(te);
tsc_db = 10*log10(tsc);
factor = 10*log10(4*pi);
rangemdb = 10*log10(range * 1000.);
rangeadb = 10*log10(range * 1000.);
PAP_Missile = snr - sigma_tgtm - tsc_db + factor + 4.0 * rangemdb + ...
   k_db + te_db + nf + loss + omega_db
PAP_Aircraft = snr - sigma_tgta - tsc_db + factor + 4.0 * rangeadb + ...
   k_db + te_db + nf + loss + omega_db
index = 0;
% vary range from 2Km to 90 Km 
for rangevar = 2 : 1 : 90
   index = index + 1;
   rangedb = 10*log10(rangevar * 1000.0);
   papm(index) = snr - sigma_tgtm - tsc_db + factor + 4.0 * rangedb + ...
      k_db + te_db + nf + loss + omega_db;
  missile_PAP(index) = PAP_Missile;
  aircraft_PAP(index) = PAP_Aircraft;
   papa(index) = snr - sigma_tgta - tsc_db + factor + 4.0 * rangedb + ...
      k_db + te_db + nf + loss +omega_db;
end
var = 2 : 1 : 90;
figure (1)
plot (var,papm,'k',var,papa,'k-.')
legend ('Missile','Aircraft')
xlabel ('Range - Km');
ylabel ('Power Aperture Product - dB');
hold on
plot(var,missile_PAP,'k:',var,aircraft_PAP,'k:')
grid
hold off
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Listing 1.8. MATLAB Program “fig1_19.m”
% Use this program to reproduce Fig. 1.19 and Fig. 1.20 of text.
close all
clear all
pt = 4; % peak power in Watts
freq = 94e+9; % radar operating frequency in Hz
g = 47.0; % antenna gain in dB
sigma = 20; % radar cross section in m squared
te = 293.0; % effective noise temperature in Kelvins
b = 20e+6; % radar operating bandwidth in Hz
nf = 7.0; %noise figure in dB
loss = 10.0; % radar losses in dB
range = linspace(1.e3,12e3,1000); % range to target from 1. Km 12 Km, 1000 

points
snr1 = radar_eq(pt, freq, g, sigma, te, b, nf, loss, range);
Rnewci = (94^0.25) .* range;
snrCI = snr1 + 10*log10(94); % 94 pulse coherent integration
% plot SNR versus range
figure(1)
rangekm  = range ./ 1000;
plot(rangekm,snr1,'k',Rnewci./1000,snr1,'k -.')
axis([1 12 -20 45])
grid
legend('single pulse','94 pulse CI')
xlabel ('Detection range - Km');
ylabel ('SNR - dB');
% Generate Figure 1.20
snr_b10 = 10.^(snr1./10);
SNR_1 = snr_b10./(2*94) + sqrt(((snr_b10.^2) ./ (4*94*94)) + (snr_b10 ./ 

94)); % Equation 1.80 of text
LNCI = (1+SNR_1) ./ SNR_1; % Equation 1.78 of text
NCIgain = 10*log10(94) - 10*log10(LNCI);
Rnewnci = ((10.^(0.1*NCIgain)).^0.25) .* range;
snrnci = snr1 + NCIgain;
figure (2)
plot(rangekm,snr1,'k',Rnewnci./1000,snr1,'k -.', Rnewci./1000,snr1,'k:')
axis([1 12 -20 45])
grid
legend('single pulse','94 pulse NCI','94 pulse CI')
xlabel ('Detection range - Km');
ylabel ('SNR - dB');
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Listing 1.9. MATLAB Program “fig1_21.m”
%use this figure to generate Fig. 1.21 of text
clear all
close all
np = linspace(1,10000,1000);
snrci = pulse_integration(4,94.e9,47,20,290,20e6,7,10,5.01e3,np,1);
snrnci = pulse_integration(4,94.e9,47,20,290,20e6,7,10,5.01e3,np,2);
semilogx(np,snrci,'k',np,snrnci,'k:')
legend('Coherent integration','Non-coherent integration')
grid
xlabel ('Number of integrated pulses');
ylabel ('SNR - dB');

Listing 1.10. MATLAB Function “pulse_integration.m”
function [snrout] = pulse_integration(pt, freq, g, sigma, te, b, nf, loss, 

range,np,ci_nci)
 snr1 = radar_eq(pt, freq, g, sigma, te, b, nf, loss, range) % single pulse SNR
if (ci_nci == 1) % coherent integration
   snrout = snr1 + 10*log10(np);
else % non-coherent integration
    if (ci_nci == 2)
        snr_nci = 10.^(snr1./10);
        val1 = (snr_nci.^2) ./ (4.*np.*np);
        val2 = snr_nci ./ np;
        val3 = snr_nci ./ (2.*np);
        SNR_1 = val3 + sqrt(val1 + val2); % Equation 1.87 of text
        LNCI = (1+SNR_1) ./ SNR_1; % Equation 1.85 of text
        snrout = snr1 + 10*log10(np) - 10*log10(LNCI);
    end
end
return

Listing 1.11. MATLAB Program “myradarvisit1_1.m”
close all
clear all
pt = 724.2e+3; % peak power in Watts
freq = 3e+9; % radar operating frequency in Hz
g = 37.0; % antenna gain in dB
sigmam = 0.5; % missile RCS in m squared
sigmaa = 4.0; % aircraft RCS in m squared
te = 290.0; % effective noise temperature in Kelvins
b = 1.0e+6; % radar operating bandwidth in Hz
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nf = 6.0; %noise figure in dB
loss = 8.0; % radar losses in dB
range = linspace(5e3,125e3,1000); % range to target from 25 Km 165 Km, 

1000 points
snr1 = radar_eq(pt, freq, g, sigmam, te, b, nf, loss, range);
snr2 = radar_eq(pt, freq, g, sigmaa, te, b, nf, loss, range);
% plot SNR versus range
figure(1)
rangekm  = range ./ 1000;
plot(rangekm,snr1,'k',rangekm,snr2,'k:')
grid
legend('Misssile','Aircraft')
xlabel ('Detection range - Km');
ylabel ('SNR - dB');

Listing 1.12. MATLAB Program “fig1_27.m”
% Use this program to reproduce Fig. 1.27 of text.
close all
clear all
np = 7;
pt = 165.8e3; % peak power in Watts
freq = 3e+9; % radar operating frequency in Hz
g = 34.5139; % antenna gain in dB
sigmam = 0.5; % missile RCS m squared
sigmaa = 4; % aircraft RCS m squared
te = 290.0; % effective noise temperature in Kelvins
b = 1.0e+6; % radar operating bandwidth in Hz
nf = 6.0; %noise figure in dB
loss = 8.0; % radar losses in dB
% compute the single pulse SNR when 7-pulse NCI is used
SNR_1 = (10^1.3)/(2*7) + sqrt((((10^1.3)^2) / (4*7*7)) + ((10^1.3) / 7));
% compute the integration loss
LNCI = 10*log10((1+SNR_1)/SNR_1);
loss_total = loss + LNCI;
range = linspace(15e3,100e3,1000); % range to target from 15 to 100 Km, 

1000 points
% modify pt by np*pt to account for pulse integration
snrmnci = radar_eq(np*pt, freq, g, sigmam, te, b, nf, loss_total, range);
snrm = radar_eq(pt, freq, g, sigmam, te, b, nf, loss, range);
snranci = radar_eq(np*pt, freq, g, sigmaa, te, b, nf, loss_total, range);
snra = radar_eq(pt, freq, g, sigmaa, te, b, nf, loss, range);
% plot SNR versus range
rangekm  = range ./ 1000;
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figure(1)
subplot(2,1,1)
plot(rangekm,snrmnci,'k',rangekm,snrm,'k -.')
grid
legend('With 7-pulse NCI','Single pulse')
ylabel ('SNR - dB');
title('Missile case')
subplot(2,1,2)
plot(rangekm,snranci,'k',rangekm,snra,'k -.')
grid
legend('With 7-pulse NCI','Single pulse')
ylabel ('SNR - dB');
title('Aircraft case')
xlabel('Detection range - Km')
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Appendix 1A Pulsed Radar 

1A.1.  Introduction

Pulsed radars transmit and receive a train of modulated pulses. Range is 
extracted from the two-way time delay between a transmitted and received 
pulse. Doppler measurements can be made in two ways. If accurate range mea-
surements are available between consecutive pulses, then Doppler frequency 
can be extracted from the range rate . This approach works fine as 
long as the range is not changing drastically over the interval . Otherwise, 
pulsed radars utilize a Doppler filter bank. 

Pulsed radar waveforms can be completely defined by the following: (1) 
carrier frequency which may vary depending on the design requirements and 
radar mission; (2) pulsewidth, which is closely related to the bandwidth and 
defines the range resolution; (3) modulation; and finally (4) the pulse repeti-
tion frequency. Different modulation techniques are usually utilized to enhance 
the radar performance, or to add more capabilities to the radar that otherwise 
would not have been possible. The PRF must be chosen to avoid Doppler and 
range ambiguities as well as maximize the average transmitted power. 

Radar systems employ low, medium, and high PRF schemes. Low PRF 
waveforms can provide accurate, long, unambiguous range measurements, but 
exert severe Doppler ambiguities. Medium PRF waveforms must resolve both 
range and Doppler ambiguities; however, they provide adequate average trans-
mitted power as compared to low PRFs. High PRF waveforms can provide 
superior average transmitted power and excellent clutter rejection capabilities. 
Alternatively, high PRF waveforms are extremely ambiguous in range. Radar 
systems utilizing high PRFs are often called Pulsed Doppler Radars (PDR). 
Range and Doppler ambiguities for different PRFs are in Table 1A.1.

R· ! R ! t"=
! t
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Radars can utilize constant and varying (agile) PRFs. For example, Moving 
Target Indicator (MTI) radars use PRF agility to avoid blind speeds. This kind 
of agility is known as PRF staggering. PRF agility is also used to avoid range 
and Doppler ambiguities, as will be explained in the next three sections. Addi-
tionally, PRF agility is also used to prevent jammers from locking onto the 
radar’s PRF. These two latter forms of PRF agility are sometimes referred to as 
PRF jitter.

Fig. 1A.1 shows a simplified pulsed radar block diagram. The range gates 
can be implemented as filters that open and close at time intervals that corre-
spond to the detection range. The width of such an interval corresponds to the 
desired range resolution. The radar receiver is often implemented as a series of 
contiguous (in time) range gates, where the width of each gate is matched to 
the radar pulsewidth. The NBF bank is normally implemented using an FFT, 
where bandwidth of the individual filters corresponds to the FFT frequency 
resolution.

1A.2.  Range and Doppler Ambiguities

As explained earlier, a pulsed radar can be range ambiguous if a second 
pulse is transmitted prior to the return of the first pulse. In general, the radar 
PRF is chosen such that the unambiguous range is large enough to meet the 
radar’s operational requirements. Therefore, long-range search (surveillance) 
radars would require relatively low PRFs.

The line spectrum of a train of pulses has  envelope, and the line 
spectra are separated by the PRF, , as illustrated in Fig. 1A.2. The Doppler 
filter bank is capable of resolving target Doppler as long as the anticipated 
Doppler shift is less than one half the bandwidth of the individual filters (i.e., 
one half the width of an FFT bin). Thus, pulsed radars are designed such that

 (1A.1)

where  is the maximum anticipated target Doppler frequency,  is the 
maximum anticipated target radial velocity, and  is the radar wavelength. 

TABLE 1A.1. PRF ambiguities.

PRF Range Ambiguous Doppler Ambiguous

Low PRF No Yes

Medium PRF Yes Yes

High PRF Yes No

x x"sin
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If the Doppler frequency of the target is high enough to make an adjacent spec-
tral line move inside the Doppler band of interest, the radar can be Doppler 
ambiguous. Therefore, in order to avoid Doppler ambiguities, radar systems 
require high PRF rates when detecting high speed targets. When a long-range 
radar is required to detect a high speed target, it may not be possible to be both 
range and Doppler unambiguous. This problem can be resolved by using multi-
ple PRFs. Multiple PRF schemes can be incorporated sequentially within each 
dwell interval (scan or integration frame) or the radar can use a single PRF in 
one scan and resolve ambiguity in the next. The latter technique, however, may 
have problems due to changing target dynamics from one scan to the next.

1A.3. Resolving Range Ambiguity 

Consider a radar that uses two PRFs,  and , on transmit to resolve 
range ambiguity, as shown in Fig. 1A.3. Denote  and  as the unambigu-
ous ranges for the two PRFs, respectively. Normally, these unambiguous 
ranges are relatively small and are short of the desired radar unambiguous 
range  (where ). Denote the radar desired PRF that corre-
sponds to  as .
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 Figure 1A.1. Pulsed radar block diagram.
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We choose  and  such that they are relatively prime with respect to one 
another. One choice is to select  and  for some 
integer . Within one period of the desired PRI ( ) the two PRFs 

 and  coincide only at one location, which is the true unambiguous target 
position. The time delay  establishes the desired unambiguous range. The 
time delays  and  correspond to the time between the transmit of a pulse on 
each PRF and receipt of a target return due to the same pulse. 

Let  be the number of PRF1 intervals between transmit of a pulse and 
receipt of the true target return. The quantity  is similar to  except it is 
for PRF2. It follows that, over the interval  to , the only possible results 
are  or . The radar needs only to measure  and 

. First, consider the case when . In this case,

(1A.2)

for which we get

(1A.3)

where  and . It follows that the round trip time to the 
true target location is

fr

f0-1-2  1  2

fdfd
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 Figure 1A.2. Spectra of transmitted and received waveforms, and Doppler 
bank. (a) Doppler is resolved.   (b) Spectral lines have moved 
into the next Doppler filter. This results in an ambiguous Dop-
pler measurement. 
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(1A.4)

and the true target range is 

(1A.5)

Now if , then

(1A.6)

Solving for  we get

(1A.7)

and the round-trip time to the true target location is

(1A.8)
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 Figure 1A.3. Resolving range ambiguity.
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and in this case, the true target range is

(1A.9)

Finally, if , then the target is in the first ambiguity. It follows that

(1A.10)

and

(1A.11)

Since a pulse cannot be received while the following pulse is being transmit-
ted, these times correspond to blind ranges. This problem can be resolved by 
using a third PRF. In this case, once an integer  is selected, then in order to 
guarantee that the three PRFs are relatively prime with respect to one another. 
In this case, one may choose , , and 

.

1A.4. Resolving Doppler Ambiguity

The Doppler ambiguity problem is analogous to that of range ambiguity. 
Therefore, the same methodology can be used to resolve Doppler ambiguity. In 
this case, we measure the Doppler frequencies  and  instead of  and 

.

If , then we have

(1A.12)

And if ,

(1A.13)

and the true Doppler is 

(1A.14)

Finally, if , then

(1A.15)

Again, blind Doppler can occur, which can be resolved using a third PRF.
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Example: 

A certain radar uses two PRFs to resolve range ambiguities. The desired 
unambiguous range is . Choose . Compute , , 

, and . 

Solution: 

First let us compute the desired PRF, 

It follows that

.

Example: 

Consider a radar with three PRFs; , , and 
. Assume . Calculate the frequency position of each 

PRF for a target whose velocity is . Calculate  (Doppler frequency) 
for another target appearing at , , and  for each PRF.

Solution: 

The Doppler frequency is

Then by using Eq. (1A.14)  where , we can write

We will show here how to compute , and leave the computations of  and 
 to the reader. First, if we choose , that means , which 

cannot be true since  cannot be greater than . Choosing  is also 

Ru 100Km= N 59= fr1 fr2
Ru1 Ru2

frd

frd
c

2Ru
--------- 3 108+

200 103+
----------------------- 1.5KHz= = =

fr1 Nfrd 59' ( 1500' ( 88.5KHz= = =

fr2 N 1+' ( frd 59 1+' ( 1500' ( 90KHz= = =

Ru1
c

2fr1
--------- 3 108+

2 88.5 103++
---------------------------------- 1.695Km= = =

Ru2
c

2fr2
--------- 3 108+

2 90 103++
------------------------------ 1.667Km= = =

fr1 15KHz= fr2 18KHz=
fr3 21KHz= f0 9GHz=

550m s" fd
8KHz 2KHz 17KHz

fd 2
vf0
c

------- 2 550 9 109+++

3 108+
------------------------------------------ 33KHz= = =

ni fri fdi+ fd= i 1 2 3, ,=

n1fr 1 fd1+ 15n1 fd1+ 33= =

n2fr 2 fd2+ 18n2 fd2+ 33= =

n3fr 3 fd3+ 21n3 fd3+ 33= =

n1 n2
n3 n1 0= fd1 33KHz=

fd1 fr1 n1 1=
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invalid since  cannot be true either. Finally, if we choose 
 we get , which is an acceptable value. It follows that the 

minimum  that may satisfy the above three relations are , 
, and . Thus, the apparent Doppler frequencies are 

, , and .

Now for the second part of the problem. Again by using Eq. (1A.14) we have

fd1 18KHz=
n1 2= fd1 3KHz=

n1 n2 n3, , n1 2=
n2 1= n3 1=
fd1 3KHz= fd2 15KHz= fd3 12KHz=

KHz

5            10          15          20           25          30          35

fr1fd1

3

KHz

5            10          15          20           25          30          35

fr2fd2

18

KHz

5            10          15          20           25          30          35

fr 3fd3

12

n1fr 1 fd1+ fd 15n1 8+= =

n2fr 2 fd2+ fd 18n2 2+= =

n3fr3 fd3+ fd 21n3 17+= =
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We can now solve for the smallest integers  that satisfy the above 
three relations. See the table below.

Thus, , and , and the true target Doppler is 
. It follows that 

n 0 1 2 3 4

 from 8 23 38 53 68

 from 2 20 38 56

 from 17 38 39

n1 n2 n3, ,

fd
fr1

fd fr2

fd fr3

n1 2 n2= = n3 1=
fd 38KHz=

vr 38000 0.0333
2

----------------+ 632.7 m
sec
-----------= =
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1B.1. Noise Figure

Any signal other than the target returns in the radar receiver is considered to 
be noise. This includes interfering signals from outside the radar and thermal 
noise generated within the receiver itself. Thermal noise (thermal agitation of 
electrons) and shot noise (variation in carrier density of a semiconductor) are 
the two main internal noise sources within a radar receiver. 

The power spectral density of thermal noise is given by 

(1B.1)

where  is the absolute value of the frequency in radians per second,  is the 
temperature of the conducting medium in degrees Kelvin,  is Boltzman’s 
constant, and  is Plank’s constant ( ). When 
the condition  is true, it can be shown that Eq. (1B.1) is approxi-
mated by 

(1B.2)

This approximation is widely accepted, since, in practice, radar systems oper-
ate at frequencies less than ; and, for example, if , then 

. 

Sn !" # ! h

$ ! h
2$kT
-------------% &

' (exp 1–

----------------------------------------------=

! T
k

h h 6.625 1034–) joule ondssec=
! 2$kT h*«

Sn !" # 2kT+

100 GHz T 290K=
2$kT h* 6000 GHz+
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The mean square noise voltage (noise power) generated across a  
resistance is then

(1B.3)

where  is the system bandwidth in hertz.

Any electrical system containing thermal noise and having input resistance 
 can be replaced by an equivalent noiseless system with a series combina-

tion of a noise equivalent voltage source and a noiseless input resistor  
added at its input. This is illustrated in Fig. 1B.1.

The amount of noise power that can physically be extracted from  is one 
fourth the value computed in Eq. (1B.3). The proof is left as an exercise.

Consider a noisy system with power gain , as shown in Fig. 1B.2. The 
noise figure is defined by

(1B.4)

More precisely,

1 ohm

n2, - 1
2$
------ 2kT !d

2$B–

2$B

. 4kTB= =

B

Rin
Rin

noiseless
systemn2, - 4kTBRin=

Rin

Figure 1B.1. Noiseless system with an input noise
                                         voltage source. 

n2, -

AP

FdB 10 total noise power out
noise power out due to Rin alone
--------------------------------------------------------------------------------------------------log=

Rin

n2, -

AP

Figure 1B.2. Noisy amplifier replaced by its noiseless equivalent
       and an input voltage source in series with a resistor.
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(1B.5)

where  and  are, respectively, the noise power at the output and input of 
the system.

If we define the input and output signal power by  and , respectively, 
then the power gain is

(1B.6)

It follows that

(1B.7)

where

(1B.8)

Thus, it can be said that the noise figure is the loss in the signal-to-noise ratio 
due to the added thermal noise of the amplifier .

We can also express the noise figure in terms of the system’s effective tem-
perature . Consider the amplifier shown in Fig. 1B.2, and let its effective 
temperature be . Assume the input noise temperature is . Thus, the input 
noise power is 

(1B.9)

and the output noise power is

(1B.10)

where the first term on the right-hand side of Eq. (1B.10) corresponds to the 
input noise, and the latter term is due to thermal noise generated inside the sys-
tem. It follows that the noise figure can be expressed as

(1B.11)

Equivalently, we can write 

(1B.12)

FdB 10
No

Ni Ap
---------------log=

No Ni

Si So

AP
So

Si
-----=

FdB 10
Si Ni*

So No*
----------------% &

' (log
Si

Ni
-----% &

' (
dB

So

No
------% &

' (
dB

–= =

Si

Ni
-----% &

' (
dB

So

No
------% &

' (
dB

/

SNR" #o SNR" #i F in dB–=" #

Te
Te To

Ni kToB=

No kToB Ap kTeB Ap+=

F
SNR" #i

SNR" #o
------------------

Si

kToB
------------ kBAp

To Te+

So
----------------- 1

Te

To
-----+= = =

Te F 1–" #To=
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Example: 

An amplifier has a 4dB noise figure; the bandwidth is . Cal-
culate the input signal power that yields a unity SNR at the output. Assume 

 degrees Kelvin and an input resistance of one ohm.

Solution: 

The input noise power is

Assuming a voltage signal, then the input noise mean squared voltage is 

 

From the noise figure definition we get

and 

Finally,

Consider a cascaded system as in Fig. 1B.3. Network 1 is defined by noise 
figure , power gain , bandwidth , and temperature . Similarly, net-
work 2 is defined by , , , and . Assume the input noise has temper-
ature .

B 500 KHz=

To 290=

kToB 1.38 10 23–) 290 500 103))) 2.0 10 15–) w= =

ni
2, - kToB 2.0 10 15–) v2= =

F 100.4 2.51= =

Si

Ni
----- F

So

No
------% &

' ( F= =

si
2, - F ni

2, - 2.51 2.0 1015–)) 5.02 10 15–) v2= = =

si
2, - 70.852nv=

F1 G1 B Te1
F2 G2 B Te2

T0

network 2

Te2 G2; F2;Te1 G1 F1;;
Si

Ni No

So

Figure 1B.3. Cascaded linear system.

network 1
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The output signal power is 

(1B.13)

The input and output noise powers are, respectively, given by

(1B.14)

(1B.15)

where the three terms on the right-hand side of Eq. (1B.15), respectively, corre-
spond to the input noise power, thermal noise generated inside network 1, and 
thermal noise generated inside network 2.

Now if we use the relation  along with Eq. (1B.13) and Eq. 
(1B.14), we can express the overall output noise power as

(1B.16)

It follows that the overall noise figure for the cascaded system is 

(1B.17)

In general, for an n-stage system we get

(1B.18)

Also, the n-stage system effective temperatures can be computed as 

(1B.19)

As suggested by Eq. (1B.18) and Eq. (1B.19), the overall noise figure is mainly 
dominated by the first stage. Thus, radar receivers employ low noise power 
amplifiers in the first stage in order to minimize the overall receiver noise fig-
ure. However, for radar systems that are built for low RCS operations every 
stage should be included in the analysis.

Example: 

A radar receiver consists of an antenna with cable loss , an 
RF amplifier with , and gain , followed by a mixer 
whose noise figure is  and conversion loss , and finally, 
an integrated circuit IF amplifier with  and gain . Find 
the overall noise figure.

So SiG1G2=

Ni kToB=

No kT0BG1G2 kTe1BG1G2 kTe2BG2+ +=

Te F 1–" #T0=

No F1NiG1G2 F2 1–" #NiG2+=

F
Si Ni*" #

So No*" #
-------------------- F1

F2 1–

G1
---------------+= =

F F1
F2 1–

G1
---------------

F3 1–

G1G2
--------------- 0 0 0

Fn 1–

G1G2G3 Gn 1–0 0 0
----------------------------------------------------------+ + + +=

Te Te1
Te2

G1
--------

Te3

G1G2
--------------

Ten

G1G2G3 Gn 1–0 0 0
----------------------------------------------------------+0 0 0+ + +=

L 1dB F1= =
F2 6dB= G2 20dB=

F3 10dB= L 8dB=
F4 6dB= G4 60dB=
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Solution: 

From Eq. (1B.18) we have

It follows that

F F1
F2 1–

G1
---------------

F3 1–

G1G2
---------------

F4 1–

G1G2G3
---------------------+ + +=

G1 G2 G3 G4 F1 F2 F3 F4

1dB– 20dB 8dB– 60dB 1dB 6dB 10dB 6dB

0.7943 100 0.1585 106 1.2589 3.9811 10 3.9811

F 1.2589 3.9811 1–
0.7943

------------------------- 10 1–
100 0.7943)
------------------------------- 3.9811 1–

0.158 100) 0.7943)
---------------------------------------------------+ + + 5.3629= =

F 10 5.3628" #log 7.294dB= =
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Chapter 2 Radar Detection

2.1. Detection in the Presence of Noise

A simplified block diagram of a radar receiver that employs an envelope 
detector followed by a threshold decision is shown in Fig. 2.1. The input signal 
to the receiver is composed of the radar echo signal  and additive zero 
mean white Gaussian noise , with variance . The input noise is 
assumed to be spatially incoherent and uncorrelated with the signal. 

The output of the bandpass IF filter is the signal , which can be written 
as

(2.1)

where  is the radar operating frequency,  is the envelope of 
, the phase is , and the subscripts , respectively, 

refer to the in-phase and quadrature components. 

A target is detected when  exceeds the threshold value , where the 
decision hypotheses are

s t! "
n t! " # 2

v t! "

v t! " vI t! " $ 0tcos vQ t! " $ 0tsin+ r t! " $ 0t % t! "–! "cos= =

vI t! " r t! " % t! "cos=

vQ t! " r t! " % t! "sin=

$ 0 2&f0= r t! "
v t! " % t! " vQ vI'! "atan= I Q(

r t! " VT

s t! " n t! "+ VT) Detection
n t! " VT) False alarm
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The case when the noise subtracts from the signal (while a target is present) to 
make  smaller than the threshold is called a miss. Radar designers seek to 
maximize the probability of detection for a given probability of false alarm. 

The IF filter output is a complex random variable that is composed of either 
noise alone or noise plus target return signal (sine wave of amplitude ). The 
quadrature components corresponding to the first case are

 (2.2)

and for the second case,

(2.3)

where the noise quadrature components  and  are uncorrelated zero 
mean low pass Gaussian noise with equal variances, . The joint Probability 
Density Function (pdf) of the two random variables  is

 (2.4)

The pdfs of the random variables  and , respectively, represent the 
modulus and phase of . The joint pdf for the two random variables 

 is given by

(2.5)

where  is a matrix of derivatives defined by

From antenna
and low noise Band Pass

Filter (IF)
Envelope
Detector

Low Pass
Filter

Threshold VT

Threshold
Detector to display

devices
v t! "

r t! "
Amp.

 Figure 2.1. Simplified block diagram of an envelope detector and threshold 
receiver.

r t! "

A

vI t! " nI t! "
vQ t! " nQ t! "

=
=

vI t! " A nI t! "+ r t! " % t! "cos= = nI t! "* r t! " % t! "cos A–=

vQ t! " nQ t! " r t! " % t! "sin= =

nI t! " nQ t! "
# 2

nI nQ;

f nI nQ(! " 1

2&#2
-------------

nI
2 nQ

2+

2# 2
-----------------–

+ ,
- .
/ 0

exp

1

2&#2
------------- r %cos A–! "2 r %sin! "2+

2# 2
-----------------------------------------------------------–

+ ,
- .
/ 0

exp

=

=

r t! " % t! "
v t! "

r t! " % t! ";

f r %(! " f nI nQ(! " J=

J1 2
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(2.6)

The determinant of the matrix of derivatives is called the Jacobian, and in this 
case it is equal to

(2.7)

Substituting Eqs. (2.4) and (2.7) into Eq. (2.5) and collecting terms yield

(2.8)

The pdf for  alone is obtained by integrating Eq. (2.8) over 

(2.9)

where the integral inside Eq. (2.9) is known as the modified Bessel function of 
zero order,

(2.10)

Thus,

(2.11)

which is the Rician probability density function. If  (noise alone), 
then Eq. (2.11) becomes the Rayleigh probability density function

(2.12)

Also, when  is very large, Eq. (2.11) becomes a Gaussian probability 
density function of mean  and variance :

J1 2 r3
3nI

%3
3nI

r3
3nQ

%3
3nQ

%cos r %sin–
%sin r %cos

= =

J r t! "=

f r %(! " r

2&#2
------------- r2 A2+

2# 2
-----------------–

+ ,
- .
/ 0 rA %cos

# 2
-------------------

+ ,
/ 0expexp=

r %

f r! " f r %(! " %d

0

2&

4
r

# 2
------ r2 A2+

2# 2
-----------------–

+ ,
- .
/ 0 1

2&
------ rA %cos

# 2
-------------------+ ,

/ 0exp %d

0

2&

4exp= =

I0 5! " 1
2&
------ e5 6cos 6d

0

2&

4=

f r! " r

# 2
------I0

rA

# 2
------

+ ,
/ 0 r2 A2+

2# 2
-----------------–

+ ,
- .
/ 0

exp=

A # 2' 0=

f r! " r

# 2
------ r2

2# 2
---------–

+ ,
- .
/ 0

exp=

A # 2'! "
A # 2
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(2.13)

Fig. 2.2 shows plots for the Rayleigh and Gaussian densities. For this purpose, 
use MATLAB program “fig2_2.m”  given in Listing 2.1 in Section 2.11. This 
program uses MATLAB functions “normpdf.m” and “raylpdf.m” . Both func-
tions are part of the MATLAB Statistics toolbox. Their associated syntax is as 
follows

normpdf(x,mu,sigma)

raylpdf(x,sigma)

“x”  is the variable, “mu” is the mean, and “sigma”  is the standard deviation.

The density function for the random variable  is obtained from

(2.14)

While the detailed derivation is left as an exercise, the result of Eq. (2.14) is 

(2.15)

f r! " 1

2&#2
----------------- r A–! "2

2# 2
-------------------–

+ ,
- .
/ 0

exp7

 Figure 2.2. Gaussian and Rayleigh probability densities.

%

f %! " f r %(! " rd

0

r

4=

f %! "
1

2&
------ A2–

2# 2
---------

+ ,
- .
/ 0

exp
A %cos

2&#2
----------------- A %sin! "2–

2# 2
--------------------------

+ ,
- .
/ 0

exp F
A %cos

#
----------------+ ,

/ 0+=
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where

(2.16)

The function  can be found tabulated in most mathematical formula refer-
ence books. Note that for the case of noise alone ( ), Eq. (2.15) collapses 
to a uniform pdf over the interval .

One excellent approximation for the function  is

(2.17)

and for negative values of 

(2.18)

MATLAB Function “que_func.m”

The function “que_func.m” computes  using Eqs. (2.17) and (2.18) and 
is given in Listing 2.2 in Section 2.11. The syntax is as follows:

fofx = que_func (x)

2.2.  Probability of False Alarm

The probability of false alarm  is defined as the probability that a sample 
 of the signal  will exceed the threshold voltage  when noise alone is 

present in the radar,

(2.19a)

(2.19b)

Fig. 2.3 shows a plot of the normalized threshold versus the probability of false 
alarm. It is evident from this figure that  is very sensitive to small changes 
in the threshold value. This figure can be reproduced using MATLAB program 
“fig2_3.m”  given in Listing 2.3 in Section 2.11.

The false alarm time  is related to the probability of false alarm by

F x! " 1

2&
---------- e 8– 2 2' 9d

:–

x

4=

F x! "
A 0=

0 2&(; <

F x! "

F x! " 1 1

0.661x 0.339 x2 5.51++
--------------------------------------------------------------

+ ,
- .
/ 0 1

2&
----------e x2 2'––= x 0=

x

F x–! " 1 F x! "–=

F x! "

Pfa
R r t! " VT

Pfa
r

# 2
------ r2

2# 2
---------–

+ ,
- .
/ 0

exp rd

VT

:

4
VT

2–

2# 2
---------

+ ,
- .
/ 0

exp= =

VT 2# 2 1
Pfa
-------

+ ,
/ 0ln=

Pfa

Tfa
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(2.20)

where  represents the radar integration time, or the average time that the 
output of the envelope detector will pass the threshold voltage. Since the radar 
operating bandwidth  is the inverse of , then by substituting Eq. (2.19) 
into Eq. (2.20) we can write  as 

(2.21)

Minimizing  means increasing the threshold value, and as a result the radar 
maximum detection range is decreased. Therefore, the choice of an acceptable 
value for  becomes a compromise depending on the radar mode of opera-
tion. 

Fehlner1 defines the false alarm number as

(2.22)

1. Fehlner, L. F., Marcum’s and Swerling’s Data on Target Detection by a Pulsed 
Radar, Johns Hopkins University, Applied Physics Lab. Rpt. # TG451, July 2, 1962, 
and Rpt. # TG451A, September 1964.

VT

2# 2
--------------

 Figure 2.3. Normalized detection threshold versus probability of false alarm.

1 Pfa'! "log

Tfa tint Pfa'=

tint

B tint
Tfa

Tfa
1
B
---

VT
2

2# 2
---------

+ ,
- .
/ 0

exp=

Tfa

Tfa

nfa
2! "ln–

1 Pfa–! "ln
--------------------------= 2! "ln

Pfa
-------------7
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Other slightly different definitions for the false alarm number exist in the liter-
ature, causing a source of confusion for many non-expert readers. Other than 
the definition in Eq. (2.22), the most commonly used definition for the false 
alarm number is the one introduced by Marcum (1960). Marcum defines the 
false alarm number as the reciprocal of . In this text, the definition given in 
Eq. (2.22) is always assumed. Hence, a clear distinction is made between Mar-
cum’s definition of the false alarm number and the definition in Eq. (2.22). 

2.3.  Probability of Detection

The probability of detection  is the probability that a sample  of  
will exceed the threshold voltage in the case of noise plus signal,

(2.23)

If we assume that the radar signal is a sine waveform with amplitude , then its 
power is . Now, by using  (single-pulse SNR) and 

, then Eq. (2.23) can be rewritten as

(2.24)

(2.25)

 is called Marcum’s Q-function. When  is small and  is relatively 
large so that the threshold is also large, Eq. (2.24) can be approximated by

(2.26)

where  is given by Eq. (2.16). Many approximations for computing Eq. 
(2.24) can be found throughout the literature. One very accurate approximation 
presented by North (see bibliography) is given by

(2.27)

where the complementary error function is 
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(2.28)

MATLAB Function “marcumsq.m”

The integral given in Eq. (2.24) is complicated and can be computed using 
numerical integration techniques. Parl1 developed an excellent algorithm to 
numerically compute this integral. It is summarized as follows:

(2.29)

 (2.30)

(2.31)

(2.32)

(2.33)

 (2.34)

, , and . The recursive Eqs. (2.30) through (2.32) 
are computed continuously until  for values of . The accuracy of 
the algorithm is enhanced as the value of  is increased. The MATLAB func-
tion “marcumsq.m” given in Listing 2.4 in Section 2.11 implements Parl’s 
algorithm to calculate the probability of detection defined in Eq. (2.24). The 
syntax is as follows:

Pd = marcumsq (alpha, beta)
where alpha and beta are from Eq. (2.25). Fig. 2.4 shows plots of the probabil-
ity of detection, , versus the single pulse SNR, with the  as a parameter. 
This figure can be reproduced using the MATLAB program “prob_snr1.m”
given in Listing 2.5 in Section 2.11.

1. Parl, S., A New Method of Calculating the Generalized Q Function, IEEE Trans. 
Information Theory, Vol. IT-26, No. 1, January 1980, pp. 121-124.
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2.4. Pulse Integration

Pulse integration was discussed in Chapter 1 in the context of radar measure-
ments. In this section a more comprehensive analysis of this topic is introduced 
in the context of radar detection. The overall principles and conclusions pre-
sented earlier will not change; however, the mathematical formulation and spe-
cific numerical values will change. Coherent integration preserves the phase 
relationship between the received pulses, thus achieving a build up in the sig-
nal amplitude. Alternatively, pulse integration performed after the envelope 
detector (where the phase relation is destroyed) is called non-coherent or post-
detection integration. 

2.4.1. Coherent Integration

In coherent integration, if a perfect integrator is used (100% efficiency), then 
integrating  pulses would improve the SNR by the same factor. Otherwise, 
integration loss occurs which is always the case for non-coherent integration. 
In order to demonstrate this signal buildup, consider the case where the radar 
return signal contains both signal plus additive noise. The  pulse is

 Figure 2.4. Probability of detection versus single pulse SNR, for several 
values of .Pfa
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 (2.35)

where  is the radar return of interest and  is white uncorrelated addi-
tive noise signal. Coherent integration of  pulses yields

(2.36)

The total noise power in  is equal to the variance. More precisely,

 (2.37)

where  is the expected value operator. It follows that

(2.38)

where  is the single pulse noise power and  is equal to zero for  
and unity for . Observation of Eqs. (2.36) and (2.38) shows that the 
desired signal power after coherent integration is unchanged, while the noise 
power is reduced by the factor . Thus, the SNR after coherent integration 
is improved by . 

Denote the single pulse SNR required to produce a given probability of 
detection as . Also, denote  as the SNR required to produce 
the same probability of detection when  pulses are integrated. It follows that

(2.39)

The requirements of knowing the exact phase of each transmitted pulse as well 
as maintaining coherency during propagation is very costly and challenging to 
achieve. Thus, radar systems would not utilize coherent integration during 
search mode, since target micro-dynamics may not be available.    

2.4.2. Non-Coherent Integration

Non-coherent integration is often implemented after the envelope detector, 
also known as the quadratic detector. A block diagram of radar receiver utiliz-
ing a square law detector and non-coherent integration is illustrated in Fig. 2.5. 
In practice, the square law detector is normally used as an approximation to the 
optimum receiver.
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The pdf for the signal  was derived earlier and it is given in Eq. (2.11). 
Define a new dimensionless variable  as

(2.40)

and also define 

(2.41)

It follows that the pdf for the new variable is then given by

(2.42)

 The output of a square law detector for the  pulse is proportional to the 
square of its input, which, after the change of variable in Eq. (2.40), is propor-
tional to . Thus, it is convenient to define a new change variable,

 (2.43)

The pdf for the variable at the output of the square law detector is given by

(2.44)

Non-coherent integration of  pulses is implemented as 

(2.45)

Since the random variables  are independent, the pdf for the variable  is

from antenna
and low noise Matched

Filter
Square Law
 Detector

Threshold VT

Threshold
Detectorr t! "

x t! "IAmp.

 Figure 2.5. Simplified block diagram of a square law detector and 
non-coherent integration.
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(2.46)

The operator  symbolically indicates convolution. The characteristic 
functions for the individual pdfs can then be used to compute the joint pdf in 
Eq. (2.46). The details of this development are left as an exercise. The result is 

(2.47)

 is the modified Bessel function of order . Therefore, the probabil-
ity of detection is obtained by integrating  from the threshold value to 
infinity. Alternatively, the probability of false alarm is obtained by letting  
be zero and integrating the pdf from the threshold value to infinity. Closed 
form solutions to these integrals are not easily available. Therefore, numerical 
techniques are often utilized to generate tables for the probability of detection. 

Improvement Factor and Integration Loss

Denote the SNR that is required to achieve a specific  given a particular 
 when  pulses are integrated non-coherently by . And thus, 

the single pulse SNR, , is less than . More precisely, 

(2.48)

where  is called the integration improvement factor. An empirically 
derived expression for the improvement factor that is accurate within  is 
reported in Peebles1 as

 (2.49)

Fig. 2.6a shows plots of the integration improvement factor as a function of the 
number of integrated pulses with  and  as parameters, using Eq. (2.49). 
This plot can be reproduced using the MATLAB program “fig2_6a.m” given 
in Listing 2.6 in Section 2.11. Note this program uses the MATLAB function 
“improv_fac.m”, which is given in Listing 2.7 in Section 2.11.

MATLAB Function “improv_fac.m”

The function “improv_fac.m” calculates the improvement factor using Eq. 
(2.49). It is given in Listing 2.7 in Section 2.11. The syntax is as follows:

[impr_of_np] = improv_fac (np, pfa, pd)

1. Peebles Jr., P. Z., Radar Principles, John Wiley & Sons, Inc., 1998.
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 Figure 2.6a. Improvement factor versus number of non-coherently integrated 
pulses.

 Figure 2.6b. Integration loss versus number of non-coherently integrated 
pulses.
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where

The integration loss is defined as 

(2.50)

Figure 2.6b shows a plot of the integration loss versus . This figure can be 
reproduced using MATLAB program “fig2_6b.m” given in Listing 2.8 in Sec-
tion 2.11. It follows that, when non-coherent integration is utilized, the corre-
sponding SNR required to achieve a certain  given a specific  is now 
given by

(2.51)

which is very similar to Eq. (1.86) derived in Chapter 1.

2.4.3. Mini Design Case Study 2.1

An L-band radar has the following specifications: operating frequency 
, operating bandwidth , noise figure , 

system losses , time of false alarm , detection 

range , the minimum required SNR is , antenna 

gain , and target RCS . (a) Determine the PRF , the 

pulsewidth , the peak power , the probability of false alarm , the corre-

sponding , and the minimum detectable signal level . (b) How can you 

reduce the transmitter power to achieve the same performance when 10 pulses 
are integrated non-coherently? (c) If the radar operates at a shorter range in 
the single pulse mode, find the new probability of detection when the range 
decreases to .

A Solution

Assume that the maximum detection corresponds to the unambiguous range. 
From that the PRF is computed as

Symbol Description Units Status

np number of integrated pulses none input

pfa probability of false alarm none input

pd probability of detection none input

impr_of_np improvement factor output dB

LNCI nP I nP! "'=

nP

PD Pfa

SNR! "NCI nP SNR! "? 1! " LNCI'=

f0 1.5GHz= B 2MHz= F 8dB=

L 4dB= Tfa 12 minutes=

R 12Km= SNR 13.85dB=

G 5000= P 1m2= fr

Q Pt Pfa

PD Smin

9Km
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The pulsewidth is proportional to the inverse of the bandwidth,

The probability of false alarm is 

It follows that by using MATLAB function“marcumsq.m”the probability of 
detection is calculated from

 

with the following syntax 

marcumsq(alpha, beta)

where

Remember that . Thus, the detection probability is 

Using the radar equation one can calculate the radar peak power. More pre-
cisely,

And the minimum detectable signal is 

fr
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When 10 pulses are integrated non-coherently, the corresponding improvement 
factor is calculated from the MATLAB function “improv_fac.m” using the fol-
lowing syntax

improv_fac (10,1e-11,0.5)

which yields . Consequently, by keeping the probability 
of detection the same (with and without integration) the SNR can be reduced by 
a factor of almost 6 dB (13.85 - 7.78). The integration loss associated with a 
10-pulse non-coherent integration is calculated from Eq. (2.50) as

Thus the net single pulse SNR with 10-pulse non-coherent integration is

.

Finally, the improvement in the SNR due to decreasing the detection range to 9 
Km is

. 

2.5.  Detection of Fluctuating Targets 

So far the probability of detection calculations assumed a constant target 
cross section (non-fluctuating target). This work was first analyzed by Mar-
cum.1 Swerling2 extended Marcum’s work to four distinct cases that account 
for variations in the target cross section. These cases have come to be known as 
Swerling models. They are: Swerling I, Swerling II, Swerling III, and Swerling 
IV. The constant RCS case analyzed by Marcum is widely known as Swerling 
0 or equivalently Swerling V. Target fluctuation lowers the probability of 
detection, or equivalently reduces the SNR. 

1. Marcum, J. I., A Statistical Theory of Target Detection by Pulsed Radar, IRE Trans-
actions on Information Theory. Vol IT-6, pp 59-267. April 1960.

2. Swerling, P., Probability of Detection for Fluctuating Targets, IRE Transactions on 
Information Theory. Vol IT-6, pp 269-308. April 1960.
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Swerling I targets have constant amplitude over one antenna scan; however, 
a Swerling I target amplitude varies independently from scan to scan according 
to a Chi-square probability density function with two degrees of freedom. The 
amplitude of Swerling II targets fluctuates independently from pulse to pulse 
according to a Chi-square probability density function with two degrees of 
freedom. Target fluctuation associated with a Swerling III model is similar to 
Swerling I, except in this case the target power fluctuates independently from 
pulse to pulse according to a Chi-square probability density function with four 
degrees of freedom. Finally, the fluctuation of Swerling IV targets is from 
pulse to pulse according to a Chi-square probability density function with four 
degrees of freedom. Swerling showed that the statistics associated with Swer-
ling I and II models apply to targets consisting of many small scatterers of 
comparable RCS values, while the statistics associated with Swerling III and 
IV models apply to targets consisting of one large RCS scatterer and many 
small equal RCS scatterers. Non-coherent integration can be applied to all four 
Swerling models; however, coherent integration cannot be used when the tar-
get fluctuation is either Swerling II or Swerling IV. This is because the target 
amplitude decorrelates from pulse to pulse (fast fluctuation) for Swerling II 
and IV models, and thus phase coherency cannot be maintained. 

The Chi-square pdf with  degrees of freedom can be written as

(2.52)

where  is the average RCS value. Using this equation, the pdf associated with 
Swerling I and II targets can be obtained by letting , which yields a 
Rayleigh pdf. More precisely, 

(2.53)

Letting  yields the pdf for Swerling III and IV type targets, 

(2.54)

The probability of detection for a fluctuating target is computed in a similar 
fashion to Eq. (2.23), except in this case  is replaced by the conditional pdf

. Performing the analysis for the general case (i.e., using Eq. (2.47)) 
yields 

(2.55)
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To obtain  use the relations

(2.56)

(2.57)

Finally, using Eq. (2.56) in Eq. (2.57) produces

(2.58)

where  is defined in Eq. (2.55) and  is in either Eq. (2.53) or 
(2.54). The probability of detection is obtained by integrating the pdf derived 
from Eq. (2.58) from the threshold value to infinity. Performing the integration 
in Eq. (2.58) leads to the incomplete Gamma function.

2.5.1. Threshold Selection

When only a single pulse is used, the detection threshold  is related to the 
probability of false alarm  as defined in Eq. (2.19). DiFranco and Rubin1

derived a general form relating the threshold and  for any number of pulses 
when non-coherent integration is used. It is

(2.59)

where  is used to denote the incomplete Gamma function. It is given by

(2.60)

Note that the limiting values for the incomplete Gamma function are

(2.61)

For our purposes, the incomplete Gamma function can be approximated by

(2.62)

1. DiFranco, J. V. and Rubin, W. L., Radar Detection, Artech House, 1980.
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The threshold value  can then be approximated by the recursive formula 
used in the Newton-Raphson method. More precisely,

(2.63)

The iteration is terminated when . The 
functions  and  are 

(2.64)

(2.65)

The initial value for the recursion is

(2.66)

MATLAB Function “incomplete_gamma.m”

In general, the incomplete Gamma function for some integer  is

(2.67)

The function “incomplete_gamma.m” implements Eq. (2.67). It is given in 
Listing 2.9 in Section 2.11. Note that this function uses the MATLAB function 
“factor.m”  which is given in Listing 2.10. The function “factor.m”  calculates 
the factorial of an integer. Fig. 2.7 shows the incomplete Gamma function for 

. This figure can be reproduced using the MATLAB program 
“fig2_7.m”  given in Listing 2.11. The syntax for this function is as follows:

[value] = incomplete_gamma (x, N)

where 

Symbol Description Units Status

x variable input to units of x input

N variable input to none / integer input

value none output
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MATLAB Function “threshold.m”

The function “threshold.m” calculates the threshold using the recursive for-
mula used in the Newton-Raphson method. It is given in Listing 2.12 in Sec-
tion 2.11. The syntax is as follows:

[pfa, vt] = threshold (nfa, np)

where

Fig. 2.8 shows plots of the threshold value versus the number of integrated 
pulses for several values of ; remember that . This figure 
can be reproduced using MATLAB program “fig2_8.m”  given in Listing 2.13. 
This program uses both “threshold.m” and “incomplete_gamma”.

Symbol Description Units Status

nfa Marcum’s false alarm number none input

np number of integrated pulses none input

pfa probability of false alarm none output

vt threshold value none output

 Figure 2.7. The incomplete Gamma function for four values of N.

nfa Pfa 2! "ln nfa'7
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2.6. Probability of Detection Calculation

Marcum defined the probability of false alarm for the case when  as 

(2.68)

The single pulse probability of detection for non-fluctuating targets is given in 
Eq. (2.24). When , the probability of detection is computed using the 
Gram-Charlier series. In this case, the probability of detection is 

(2.69)

where the constants , , and  are the Gram-Charlier series coefficients, 
and the variable  is 

(2.70)

In general, values for , , , and  vary depending on the target fluctu-
ation type.

 Figure 2.8. Threshold  versus  for several values of .VT np nfa
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2.6.1. Detection of Swerling V Targets

For Swerling V (Swerling 0) target fluctuations, the probability of detection 
is calculated using Eq. (2.69). In this case, the Gram-Charlier series coeffi-
cients are

(2.71)

(2.72)

(2.73)

(2.74)

MATLAB Function “pd_swerling5.m”

The function “pd_swerling5.m” calculates the probability of detection for 
Swerling V targets. It is given in Listing 2.14. The syntax is as follows:

[pd] = pd_swerling5 (input1, indicator, np, snr)

where

Fig. 2.9 shows a plot for the probability of detection versus SNR for cases 
. This figure can be reproduced using the MATLAB program 

“fig2_9.m”.  It is given in Listing 2.15 in Section 2.11.

Note that it requires less SNR, with ten pulses integrated non-coherently, to 
achieve the same probability of detection as in the case of a single pulse. 
Hence, for any given  the SNR improvement can be read from the plot. 
Equivalently, using the function “improv_fac.m” leads to about the same 
result. For example, when  the function “improv_fac.m” gives an 
SNR improvement factor of . Fig. 2.9 shows that the ten pulse 
SNR is about . Therefore, the single pulse SNR is about (from Eq. 
(2.49)) , which can be read from the figure. 

Symbol Description Units Status

input1 Pfa, or nfa none input

indicator 1 when input1 = Pfa

2 when input1 = nfa

none input

np number of integrated pulses none input

snr dB input

pd probability of detection none output
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2.6.2.  Detection of Swerling I Targets

The exact formula for the probability of detection for Swerling I type targets 
was derived by Swerling. It is

(2.75)

(2.76)

MATLAB Function “pd_swerling1.m”

The function “pd_swerling1.m” calculates the probability of detection for 
Swerling I type targets. It is given in Listing 2.16 in Section 2.11. The syntax is 
as follows:

[pd] = pd_swerling1 (nfa, np, snr) 

 Figure 2.9. Probability of detection versus SNR, , and non-
coherent integration.
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where

Fig. 2.10 shows a plot of the probability of detection as a function of SNR 
for  and  for both Swerling I and V type fluctuations. Note 
that it requires more SNR, with fluctuation, to achieve the same  as in the 
case with no fluctuation. This figure can be reproduced using MATLAB pro-
gram “fig2_10.m” given in Listing 2.17.

Fig. 2.11a shows a plot of the probability of detection versus SNR for 
, where . Fig. 2.11b is similar to Fig. 2.11a; in 

this case . These figures can be reproduced using MATLAB pro-
gram “fig2_11ab.m” given in Listing 2.18. 

Symbol Description Units Status

nfa Marcum’s false alarm number none input

np number of integrated pulses none input

snr dB input

pd probability of detection none output

SNR

np 1= Pfa 10 9–=
PD

nP 1 10 50 100( ( (= Pfa 10 8–=
Pfa 10 11–=

 Figure 2.10. Probability of detection versus SNR, single pulse. .Pfa 10 9–=
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 Figure 2.11a. Probability of detection versus SNR. Swerling I. .Pfa 10 8–=

 Figure 2.11b. Probability of detection versus SNR. Swerling I. .Pfa 10 11–=

© 2004 by Chapman & Hall/CRC CRC Press LLC



2.6.3. Detection of Swerling II Targets

In the case of Swerling II targets, the probability of detection is given by

(2.77)

For the case when  Eq. (2.69) is used to compute the probability of 
detection. In this case,

(2.78)

(2.79)

(2.80)

MATLAB Function “pd_swerling2.m”

The function “pd_swerling2.m” calculates  for Swerling II type targets. 
It is given in Listing 2.19 in Section 2.11. The syntax is as follows:

[pd] = pd_swerling2 (nfa, np, snr)

where

Fig. 2.12 shows a plot of the probability of detection as a function of SNR 
for , where . This figure can be reproduced 
using MATLAB program “fig2_12.m” given in Listing 2.20.

2.6.4. Detection of Swerling III Targets

The exact formulas, developed by Marcum, for the probability of detection 
for Swerling III type targets when  is

 (2.81)

Symbol Description Units Status

nfa Marcum’s false alarm number none input

np number of integrated pulses none input

snr dB input

pd probability of detection none output
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For  the expression is

(2.82)

MATLAB Function “pd_swerling3.m”

The function “pd_swerling3.m” calculates  for Swerling III type targets. 
It is given in Listing 2.21 in Section 2.11. The syntax is as follows:

[pd] = pd_swerling3 (nfa, np, snr) 

where

Symbol Description Units Status

nfa Marcum’s false alarm number none input

np number of integrated pulses none input

snr dB input

pd probability of detection none output

 Figure 2.12. Probability of detection versus SNR. Swerling II. .Pfa 10 10–=
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Fig. 2.13 shows a plot of the probability of detection as a function of SNR 
for , where . This figure can be reproduced 
using MATLAB program “fig2_13.m” given in Listing 2.22.

2.6.5. Detection of Swerling IV Targets

The expression for the probability of detection for Swerling IV targets for 
 is 

(2.83)

where

 (2.84)

By using the recursive formula

(2.85)

then only  needs to be calculated using Eq. (2.84) and the rest of  are cal-
culated from the following recursion:

nP 1 10 50 100( ( (= Pfa 10 9–=

 Figure 2.13. Probability of detection versus SNR. Swerling III. .Pfa 10 9–=
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(2.86)

(2.87)

(2.88)

(2.89)

For the case when , the Gram-Charlier series and Eq. (2.69) can be 
used to calculate the probability of detection. In this case,

(2.90)

(2.91)

(2.92)

(2.93)

MATLAB Function “pd_swerling4.m”

The function “pd_swerling4.m” calculates  for Swerling IV type targets. 
It is given in Listing 2.23 in Section 2.11. The syntax is as follows:

[pd] = pd_swerling4 (nfa, np, snr)

where

Figure 2.14 shows a plot of the probability of detection as a function of SNR 
for , where . This figure can be reproduced 
using MATLAB program “fig2_14.m” given in Listing 2.24.

Symbol Description Units Status

nfa Marcum’s false alarm number none input

np number of integrated pulses none input

snr dB input

pd probability of detection none output
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2.7. The Radar Equation Revisited

The radar equation developed in Chapter 1 assumed a constant target RCS 
and did not account for integration loss. In this section, a more comprehensive 
form of the radar equation is introduced. In this case, the radar equation is 
given by

(2.94)

where  is the average transmitted power,  is the peak transmit-
ted power,  is pulsewidth,  is PRF,  is transmitting antenna gain,  is 
receiving antenna gain,  is wavelength,  is target cross section,  is 
improvement factor,  is the number of integrated pulses,  is Boltzman’s 
constant,  is effective noise temperature,  is the system noise figure,  is 
receiver bandwidth,  is total system losses including integration loss,  is 
loss due to target fluctuation, and  is the minimum single pulse SNR 
required for detection. 

The fluctuation loss, , can be viewed as the amount of additional SNR 
required to compensate for the SNR loss due to target fluctuation, given a spe-
cific  value. This was demonstrated for a Swerling I fluctuation in Fig. 

 Figure 2.14. Probability of detection versus SNR. Swerling IV. .Pfa 10 9–=
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2.10. Kanter1 developed an exact analysis for calculating the fluctuation loss. 
In this text the authors will take advantage of the computational power of 
MATLAB and the MATLAB functions developed for this text to numerically 
calculate the amount of fluctuation loss with an accuracy of  or better. 
For this purpose the MATLAB function “fluct_loss.m” was developed. It is 
given in Listing 2.25 in Section 2.11. Its syntax is as follows:

[Lf, Pd_Sw5] = fluct_loss(pd, pfa, np, sw_case)
where

For example, using the syntax 

[Lf,Pd_Sw5]=fluct_loss(0.65, 1e-9, 10,1)

will calculate the  corresponding to both Swerling V and Swerling I fluc-
tuation when the desired probability of detection  and probability 
of false alarm  and 10 pulses of non-coherent integration. The fol-
lowing is a reprint of the output:

PD_SW5 = 0.65096989459928
SNR_SW5 = 5.52499999999990
PD_SW1 = 0.65019653294095
SNR_SW1 = 8.32999999999990

Lf = 2.80500000000000

Note that a negative value for  indicates a fluctuation SNR gain instead of 
loss. Finally, it must be noted that the function “fluct_loss.m” always assumes 
non-coherent integration. Fig. 2.15 shows a plot for the additional SNR (or 
fluctuation loss) required to achieve a certain probability of detection. This fig-
ure can be reproduced using MATLAB program “fig2_16.m” given in Listing 
2.26 in Section 2.11. 

1. Kanter, I., Exact Detection Probability for Partially Correlated Rayleigh Targets, 
IEEE Trans, AES-22, pp. 184-196, March 1986.

Symbol Description Units Status

pd desired probability of detection none input

pfa probability of false alarm none input

np number of pulses none input

sw_case 1, 2, 3, or 4 depending on the 
desired Swerling case

none input

Lf fluctuation loss dB output

Pd_Sw5 Probability of detection correspond-
ing to a Swerling V case

none output

0.005dB

SNR
PD 0.65=

Pfa 10 9–=

Lf
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2.8.  Cumulative Probability of Detection

Denote the range at which the single pulse SNR is unity (0 dB) as , and 
refer to it as the reference range. Then, for a specific radar, the single pulse 
SNR at  is defined by the radar equation and is given by

(2.95)

The single pulse SNR at any range  is 

(2.96)

Dividing Eq. (2.96) by Eq. (2.95) yields

(2.97)

Therefore, if the range  is known then the SNR at any other range  is 

 Figure 2.15. Fluctuation loss versus probability of detection.
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Also, define the range  as the range at which . Normally, 
the radar unambiguous range  is set equal to .

The cumulative probability of detection refers to detecting the target at leas
once by the time it is at range . More precisely, consider a target closing on
scanning radar, where the target is illuminated only during a scan (frame). A
the target gets closer to the radar, its probability of detection increases since th
SNR is increased. Suppose that the probability of detection during the  
frame is ; then, the cumulative probability of detecting the target at leas
once during the  frame (see Fig. 2.16) is given by

(2.99)

 is usually selected to be very small. Clearly, the probability of not detect-
ing the target during the  frame is . The probability of detection for 
the  frame, , is computed as discussed in the previous section.

2.8.1. Mini Design Case Study 2.2

 A radar detects a closing target at , with probability of detection 
 equal to . Assume . Compute and sketch the single loo

probability of detection as a function of normalized range (with respec
), over the interval . If the range between two succes-

sive frames is , what is the cumulative probability of detection a
?

SNR! "dB 40
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Ru 2R50

R

nth
PDn

nth

PCn
1 1 PDi

–! "

i 1=

n

Z–=

PD1

nth 1 PCn
–

ith PDi

Figure 2.16. Detecting a target in many frames.
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A Solution:

From the function “marcumsq.m” the SNR corresponding to  and 
 is approximately 12dB. By using a similar analysis to that which 

led to Eq. (2.98), we can express the SNR at any range  as

By using the function “marcumsq.m” we can construct the following table:

where  is very small. A sketch of  versus normalized range is shown in 
Fig. 2.17.

The cumulative probability of detection is given in Eq. (2.95), where the proba-
bility of detection of the first frame is selected to be very small. Thus, we can 
arbitrarily choose frame 1 to be at . Note that selecting a different 
starting point for frame 1 would have a negligible effect on the cumulative 
probability (we only need  to be very small). Below is a range listing for 
frames 1 through 9, where frame 9 corresponds to . The cumulative 

probability of detection at 8 Km is then

 

R Km (SNR) dB

2 39.09 0.999

4 27.9 0.999

6 20.9 0.999

8 15.9 0.999

9 13.8 0.9

10 12.0 0.5

11 10.3 0.25

12 8.8 0.07

14 6.1 0.01

16 3.8

20 0.01

frame 1 2 3 4 5 6 7 8 9

range in Km 16 15 14 13 12 11 10 9 8

PD 0.5=
Pfa 10 7–=

R

SNR! "R SNR! "10 40 10
R
------log+ 52 40 Rlog–= =

PD
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[ PD

R 16Km=

PD1

R 8Km=

PC9
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2.9.  Constant False Alarm Rate (CFAR)

The detection threshold is computed so that the radar receiver maintains a 
constant pre-determined probability of false alarm. Eq. (2.19b) gives the rela-
tionship between the threshold value  and the probability of false alarm 

, and for convenience is repeated here as Eq. (2.100):

(2.100)

If the noise power  is assumed to be constant, then a fixed threshold can sat-
isfy Eq. (2.100). However, due to many reasons this condition is rarely true. 
Thus, in order to maintain a constant probability of false alarm the threshold 
value must be continuously updated based on the estimates of the noise vari-
ance. The process of continuously changing the threshold value to maintain a 
constant probability of false alarm is known as Constant False Alarm Rate 
(CFAR). 

Three different types of CFAR processors are primarily used. They are adap-
tive threshold CFAR, nonparametric CFAR, and nonlinear receiver techniques. 
Adaptive CFAR assumes that the interference distribution is known and 
approximates the unknown parameters associated with these distributions. 
Nonparametric CFAR processors tend to accommodate unknown interference 
distributions. Nonlinear receiver techniques attempt to normalize the root 
mean square amplitude of the interference. In this book only analog Cell-Aver-
aging CFAR (CA-CFAR) technique is examined. The analysis presented in this 
section closely follows Urkowitz1.

1. Urkowitz, H., Decision and Detection Theory, unpublished lecture notes. Lockheed 
Martin Co., Moorestown, NJ.

R 10'
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 Figure 2.17. Cumulative probability of detection versus normalized range.
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2.9.1. Cell-Averaging CFAR (Single Pulse)

The CA-CFAR processor is shown in Fig. 2.18. Cell averaging is performed 
on a series of range and/or Doppler bins (cells). The echo return for each pulse 
is detected by a square law detector. In analog implementation these cells are 
obtained from a tapped delay line. The Cell Under Test (CUT) is the central 
cell. The immediate neighbors of the CUT are excluded from the averaging 
process due to a possible spillover from the CUT. The output of  reference 
cells (  on each side of the CUT) is averaged. The threshold value is 
obtained by multiplying the averaged estimate from all reference cells by a 
constant  (used for scaling). A detection is declared in the CUT if

(2.101)

Cell-averaging CFAR assumes that the target of interest is in the CUT and all 
reference cells contain zero mean independent Gaussian noise of variance . 
Therefore, the output of the reference cells, , represents a random variable 
with gamma probability density function (special case of the Chi-square) with 

 degrees of freedom. In this case, the gamma pdf is 

(2.102)

 

The probability of false alarm corresponding to a fixed threshold was 
derived earlier. When CA-CFAR is implemented, then the probability of false 
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 Figure 2.18. Conventional CA-CFAR.
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alarm can be derived from the conditional false alarm probability, which is 
averaged over all possible values of the threshold in order to achieve an uncon-
ditional false alarm probability. The conditional probability of false alarm 
when  can be written as 

(2.103)

It follows that the unconditional probability of false alarm is

(2.104)

where  is the pdf of the threshold, which except for the constant  is the 
same as that defined in Eq. (2.102). Therefore,

(2.105)

Performing the integration in Eq. (2.104) yields   

(2.106)

Observation of Eq. (2.106) shows that the probability of false alarm is now 
independent of the noise power, which is the objective of CFAR processing.

2.9.2. Cell-Averaging CFAR with Non-Coherent Integration

In practice, CFAR averaging is often implemented after non-coherent inte-
gration, as illustrated in Fig. 2.19. Now, the output of each reference cell is the 
sum of  squared envelopes. It follows that the total number of summed ref-
erence samples is . The output  is also the sum of  squared enve-
lopes. When noise alone is present in the CUT,  is a random variable whose 
pdf is a gamma distribution with  degrees of freedom. Additionally, the 
summed output of the reference cells is the sum of  squared envelopes. 
Thus,  is also a random variable which has a gamma pdf with  degrees 
of freedom.

The probability of false alarm is then equal to the probability that the ratio 
 exceeds the threshold. More precisely,

(2.107)

y VT=

Pfa VT y=! " e y 2# 2'–=

Pfa Pfa VT y=! "f y! " yd

0

:

4=

f y! " K0

f y! " yM 1– e
y 2K0# 2'–! "

2K0# 2! "
M

T M! "
---------------------------------------= ; y 0=

Pfa
1

1 K0+! "M
------------------------=

nP
MnP Y1 nP

Y1
2np

MnP
Z 2MnP

Y1 Z'

Pfa Prob Y1 Z' K1); <=

© 2004 by Chapman & Hall/CRC CRC Press LLC



Eq. (2.107) implies that one must first find the joint pdf for the ratio . 
However, this can be avoided if  is first computed for a fixed threshold 
value , then averaged over all possible values of the threshold. Therefore, 
let the conditional probability of false alarm when  be . It 
follows that the unconditional false alarm probability is given by

(2.108)

where  is the pdf of the threshold. In view of this, the probability density 
function describing the random variable  is given by

(2.109)

It can be shown that in this case the probability of false alarm is independent 
of the noise power and is given by

(2.110)
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 Figure 2.19. Conventional CA-CFAR with non-coherent integration. 
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which is identical to Eq. (2.106) when  and . 

2.10. “MyRadar” Design Case Study - Visit 21

2.10.1. Problem Statement

Modify the design introduced in Chapter 1 for the “MyRadar” design case 
study so that the effects of target RCS fluctuations are taken into account. For 
this purpose modify the design such that: The aircraft and missile target types 
follow Swerling I and Swerling III fluctuations, respectively. Also assume that 
a  is required at maximum range with  or better. You 
may use either non-coherent integration or cumulative probability of detection. 
Also, modify any other design parameters if needed.

2.10.2. A Design

The missile and the aircraft detection ranges were calculated in Chapter 1. 
They are  for the aircraft and  for the missile. First, 
determine the probability of detection for each target type with and without the 
7-pulse non-coherent integration. For this purpose, use MATLAB program 
“myradar_visit2_1.m” given in Listing 2.27. This program first computes the 
improvement factor and the associated integration loss. Second it calculates the 
single pulse SNR. Finally it calculates the SNR when non-coherent integration 
is utilized. Executing this program yields:

SNR_single_pulse_missile = 5.5998 dB
SNR_7_pulse_NCI_missile = 11.7216 dB
SNR_single_pulse_aircraft = 6.0755 dB 
SNR_7_pulse_NCI_aircrfat = 12.1973 dB 

Using these values in functions “pd_swerling1.m” and “pd_swerling3.m”
yields

Pd_single_pulse_missile = 0.013
Pd_7_pulse_NCI_missile= 0.9276
Pd_single_pulse_aircraft = 0.038
Pd_7_pulse_NCI_aircraft = 0.8273

Clearly in all four cases, there is not enough SNR to meet the design require-
ment of . 

1. Please read disclaimer in Section 1.9.1.

K1 K0= nP 1=

PD 0.995= Pfa 10 7–=

Ra 90Km= Rm 55Km=

PD 0.995=
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 Instead, resort to accomplishing the desired probability of detection by using 
cumulative probabilities. The single frame increment for the missile and air-
craft cases are

(2.111)

 (2.112)

2.10.2.1 Single Pulse (Per Frame) Design Option

As a first design option, consider the case where during each frame only a 
single pulse is used for detection (i.e., no integration). Consequently, if the sin-
gle pulse detection does not achieve the desired probability of detection at 90 
Km for the aircraft or at 55 Km for the missile, then non-coherent integration 
of a few pulses per frame can then be utilized. Keep in mind that only non-
coherent integration can be used in the cases of Swerling type I and III fluctua-
tions (see Section 2.4). 

Assume that the first frame corresponding to detecting the aircraft is 106 
Km. This assumption is arbitrary and it provides the designer with 21 frames. 
It follows that the first frame, when detecting the missile, is at 61 Km. Further-
more, assume that the SNR at  is , for the 
aircraft case. And, for the missile case assume that at  the corre-
sponding SNR is . Note that these values are simply edu-
cated guesses, and the designer may be required to perform several iterations in 
order to accomplish the desired cumulative probability of detection, 

. In order to calculate the cumulative probability of detection at a 
certain range, the MATLAB program “myradar_visit2_2.m” was developed. 
This program is given in Listing 2.28 in Section 2.11.

Initialization of the program “myradar_visit2_2.m” includes entering the 
following inputs: The desired ; the number of pulses to be used for non-
coherent integration per frame; the range at which the desired cumulative oper-
ability of detection must be achieved; the frame size; and finally the target fluc-
tuation type. For notational purposes, denote the range at which the desired 
cumulative probability of detection must be achieved as . Then for each 
frame, the following list includes the outputs of this program: SNR, probability 
of detection, fluctuation loss, and cumulative probability of detection. 

The logic used by this program for calculating the proper probability of 
detection at each frame and for computing the cumulative probability of detec-
tion is described as follows:

1. Initialize the program, by entering the desired input values. Assume Swer-
ling V fluctuation and use Eq. (2.98) to calculate the frame-SNR, . 

RMissile scan rate vm? 2 150? 300m= = =

RAircraft scan rate va? 2 400? 800m= = =

R 90Km= SNR! "aircraft 8.5dB=
R 55Km=

SNR! "missile 9dB=

PD 0.995=

Pfa

R0

SNR! "i
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1.1. For the “MyRadar”  design case study, use , , and 

. Alternatively use  and 

 for the missile case. Note that the selected SNR 

values are best estimates or  educated guesses, and it may require going 
through few iterations before finally selecting an acceptable set. 

2. The program will then calculate the number of frames and their associated 
ranges. The program uses the function “fluct_loss.m” to calculate the 
Swerling V  at each frame and the additional SNR required to accom-

plish the same probability of detection when target fluctuation is included. 

3. Depending on the fluctuation type, the program will then use the proper 
MATLAB function to calculate the probability of detection for each frame, 

.

3.1. For the “MyRadar”  design case study, these functions are 
“pd_swerling1.m” and “pd_swerling 3.m”.

4. Finally, the program uses Eq. (2.99) to compute the cumulative probability 
of detection, .

A Graphical User Interface (GUI) has been developed for this program; Fig. 
2.20 shows its associated GUI workspace. To use this GUI, from the MATLAB 
command window type “myradar_visit2_2_gui”. Executing the program 
“myradar_visit2_2.m” using the input values stated above yields the following 
cumulative probabilities of detection for the aircraft and missile cases, 

These results clearly satisfy the design requirement of . However, 
one must re-validate the peak power requirement for the design. To do that, go 
back to Eq.s (1.107) and (1.108), and replace the SNR values used in Chapter 1 
by the values adopted in this chapter (i.e.,  and 

). It follows that the corresponding single pulse energy 
for the missile and the aircraft cases are respectively given by

(2.113)

 (2.114)

nP 1= R0 90Km=

SNR0! "aircraft 8.5dB= R0 55Km=

SNR! "missile 9dB=

PD

PDi

PDn

PDCMissile
0.99872=

PDCaircraft
0.99687=

PD 0.995=

SNR0! "aircraft 8.5dB=
SNR! "missile 9dB=

Em 0.1658 100.9

100.56
-------------? 0.36273Joules= =

Ea 0.1487 100.85

100.56
-------------? 0.28994Joules= =
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This indicates that the stressing single pulse peak power requirement (i.e., mis-
sile detection) exceeds . This value for the single pulse peak power is 
high for a mobile ground based air defense radar and practical constraints 
would require using less peak power. 

In order to bring the single pulse peak power requirement down, one can use 
non-coherent integration of a few pulses per frame prior to calculating the 
frame probability of detection. For this purpose, the program 
“myradar_visit2_2.m” can be used again. However, in this case . This is 
analyzed in the next section.

2.10.2.2.  Non-Coherent Integration Design Option

The single frame probability of detection can be improved significantly 
when pulse integration is utilized. One may use coherent or non-coherent inte-
gration to improve the frame cumulative probability of detection. In this case, 
caution should be exercised since coherent integration would not be practical 

 Figure 2.20. GUI workspace associated with program “myradar_visit2_2_gui.m”.
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when the target fluctuation type is either Swerling I or Swerling III. Alterna-
tively, using non-coherent integration will always reduce the minimum 
required SNR.

Rerun the MATLAB program “myradar_visit2_2_gui”. Use  and 
use  (single pulse) for both the missile and aircraft single pulse 
SNR1 at their respective reference ranges,  and 

. The resulting cumulative probabilities of detection are

which are both within the desired design requirements. It follows that the cor-
responding minimum required single pulse energy for the missile and the air-
craft cases are now given by

(2.115)

 (2.116)

Thus, the minimum single pulse peak power (assuming the same pulsewidth as 
that given in Section1.9.2) is 

(2.117)

Note that the peak power requirement will be significantly reduced while 
maintaining a very fine range resolution when pulse compression techniques 
are used. This will be discussed in a subsequent chapter. 

Fig. 2.21 shows a plot of the SNR versus range for both target types. This 
plot assumes 4-pulse non-coherent integration. It can be reproduced using 
MATLAB program “fig2_21.m”. It is given in Listing 2.29 in Section 2.11.

2.11. MATLAB Program and Function Listings

This section presents listings for all MATLAB programs/functions used in 
this chapter. The user is advised to rerun these programs with different input 
parameters. 

1. Again these values are educated guesses. The designer my be required to go through 
a few iterations before arriving at an acceptable set of design parameters. 

nP 4=
SNR 4dB=

R0missile
55Km=

R0aircraft
90Km=

PDCMissile
0.99945=

PDCaircraft
0.99812=

Em 0.1658 100.4

100.56
-------------? 0.1147Joules= =

Ea 0.1487 100.4

100.56
-------------? 0.1029Joules= =

Pt
0.1147

1 10? 6–
------------------- 114.7KW= =

© 2004 by Chapman & Hall/CRC CRC Press LLC



Listing 2.1. MATLAB Program “fig2_2.m”
% This program can be used to reproduce Figure 2.2 of the text
clear all
close all
xg = linspace(-6,6,1500); % random variable between -6 and 6
xr = linspace(0,6,1500); % random variable between 0 and 6
mu = 0; % zero mean Gaussian pdf mean
sigma = 1.5; % standard deviation (sqrt(variance))
ynorm = normpdf(xg,mu,sigma); % use MATLAB function normpdf
yray = raylpdf(xr,sigma); % use MATLAB function raylpdf
plot(xg,ynorm,'k',xr,yray,'k-.');
grid
legend('Gaussian pdf','Rayleigh pdf')
xlabel('x')

 Figure 2.21. SNR versus detection range for both target types. The 4-pulse 
NCI curves correspond to 21 frame cumulative detection with  
the last frame at: 55 Km for the missile and 90 Km for the 
aircraft.

© 2004 by Chapman & Hall/CRC CRC Press LLC



ylabel('Probability density')
gtext('\mu = 0; \sigma = 1.5')
gtext('\sigma =1.5')

Listing 2.2. MATLAB Function “que_func.m”
function fofx = que_func(x)
% This function computes the value of the Q-function
% listed in Eq.(2.16). It uses the approximation in Eqs. (2.17) and (2.18)
if (x >= 0) 
    denom = 0.661 * x + 0.339 * sqrt(x^2 + 5.51);
   expo = exp(-x^2 /2.0);
   fofx = 1.0 - (1.0 / sqrt(2.0 * pi)) * (1.0 / denom) * expo;
else
   denom = 0.661 * x + 0.339 * sqrt(x^2 + 5.51);
   expo = exp(-x^2 /2.0);
   value = 1.0 - (1.0 / sqrt(2.0 * pi)) * (1.0 / denom) * expo;
   fofx = 1.0 - value;
end

Listing 2.3. MATLAB Program “fig2_3.m”
%This program generates Figure 2.3.
close all
clear all
logpfa = linspace(.01,250,1000);
var = 10.^(logpfa ./ 10.0);
vtnorm =  sqrt( log (var));
semilogx(logpfa, vtnorm,'k')
grid

Listing 2.4. MATLAB Function “marcumsq.m”
function Pd = marcumsq (a,b)
% This function uses Parl's method to compute PD
max_test_value = 5000.; 
if (a < b)
   alphan0 = 1.0;
   dn = a / b;
else
   alphan0 = 0.;
   dn = b / a;
end
alphan_1 = 0.;
betan0 = 0.5;
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betan_1 = 0.;
D1 = dn;
n = 0;
ratio = 2.0 / (a * b);
r1 = 0.0;
betan = 0.0;
alphan = 0.0;
while betan < 1000.,
   n = n + 1;
   alphan = dn + ratio * n * alphan0 + alphan;
   betan = 1.0 + ratio * n * betan0 + betan;
   alphan_1 = alphan0;
   alphan0 = alphan;
   betan_1 = betan0;
   betan0 = betan;
   dn = dn * D1;
end
PD = (alphan0 / (2.0 * betan0)) * exp( -(a-b)^2 / 2.0);
if ( a >= b)
   PD = 1.0 - PD;
end
return

Listing 2.5. MATLAB Program “prob_snr1.m”
% This program is used to produce Fig. 2.4
close all
clear all
for nfa = 2:2:12
   b = sqrt(-2.0 * log(10^(-nfa)));
   index = 0;
   hold on
   for snr = 0:.1:18
      index = index +1;
      a = sqrt(2.0 * 10^(.1*snr));
      pro(index) = marcumsq(a,b);
   end
   x = 0:.1:18;
   set(gca,'ytick',[.1 .2 .3 .4 .5 .6  .7 .75 .8 .85 .9 ...
         .95 .9999])
   set(gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18])

   loglog(x, pro,'k');
end
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hold off
xlabel ('Single pulse SNR - dB')
ylabel ('Probability of detection')
grid

Listing 2.6. MATLAB program “fig2_6a.m” 
% This program is used to produce Fig. 2.6a
% It uses the function "improv_fac"
clear all
close all
pfa1 = 1.0e-2;
pfa2 = 1.0e-6;
pfa3 = 1.0e-10;
pfa4 = 1.0e-13;
pd1 = .5;
pd2 = .8;
pd3 = .95;
pd4 = .999;
index = 0;
for np = 1:1:1000
   index = index + 1;
   I1(index) = improv_fac (np, pfa1, pd1);
   I2(index) = improv_fac (np, pfa2, pd2);
   I3(index) = improv_fac (np, pfa3, pd3);
   I4(index) = improv_fac (np, pfa4, pd4);
end
np = 1:1:1000;
semilogx (np, I1, 'k', np, I2, 'k--', np, I3, 'k-.', np, I4, 'k:')
xlabel ('Number of pulses');
ylabel ('Improvement factor I - dB')
legend ('pd=.5, nfa=e+2','pd=.8, nfa=e+6','pd=.95, nfa=e+10','pd=.999, 
nfa=e+13');
grid

Listing 2.7. MATLAB Function “improv_fac.m”
function impr_of_np = improv_fac (np, pfa, pd)
% This function computes the non-coherent integration improvement
% factor using the empirical formula defined in Eq. (2.49)
fact1 = 1.0 + log10( 1.0 / pfa) / 46.6;
fact2 = 6.79 * (1.0 + 0.235 * pd);
fact3 = 1.0 - 0.14 * log10(np) + 0.0183 * (log10(np))^2;
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impr_of_np = fact1 * fact2 * fact3 * log10(np);
return

Listing 2.8. MATLAB Program “fig2_6b.m”
% This program is used to produce Fig. 2.6b
% It uses the function "improv_fac". 
clear all
close all
pfa1 = 1.0e-12;
pfa2 = 1.0e-12;
pfa3 = 1.0e-12;
pfa4 = 1.0e-12;
pd1 = .5;
pd2 = .8;
pd3 = .95;
pd4 = .99;
index = 0;
for np = 1:1:1000
    index = index+1;
    I1 = improv_fac (np, pfa1, pd1);
    i1 = 10.^(0.1*I1);
    L1(index) = -1*10*log10(i1 ./ np);
    I2 = improv_fac (np, pfa2, pd2);
    i2 = 10.^(0.1*I2);
    L2(index) = -1*10*log10(i2 ./ np);
    I3 = improv_fac (np, pfa3, pd3);
    i3 = 10.^(0.1*I3);
    L3(index) = -1*10*log10(i3 ./ np);
    I4 = improv_fac (np, pfa4, pd4);
    i4 = 10.^(0.1*I4);
    L4 (index) = -1*10*log10(i4 ./ np);
end
np = 1:1:1000;
semilogx (np, L1, 'k', np, L2, 'k--', np, L3, 'k-.', np, L4, 'k:')
axis tight
xlabel ('Number of pulses');
ylabel ('Integration loss - dB')
legend ('pd=.5, nfa=e+12','pd=.8, nfa=e+12','pd=.95, nfa=e+12','pd=.99, 
nfa=e+12');
grid
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Listing 2.9. MATLAB Function “incomplete_gamma.m”
function [value] = incomplete_gamma ( vt, np)
% This function implements Eq. (2.67) to compute the Incomplete Gamma 
Function
% This function needs "factor.m" to run
format long
eps = 1.000000001;
% Test to see if np = 1
if (np == 1)
   value1 = vt * exp(-vt);
   value = 1.0 - exp(-vt);
   return
end
sumold = 1.0;
sumnew =1.0;
calc1 = 1.0;
calc2 = np;
xx = np * log(vt+0.0000000001) - vt - factor(calc2);
temp1 = exp(xx);
temp2 = np / (vt+0.0000000001);
diff = .0;
ratio = 1000.0;
if (vt >= np)
   while (ratio >= eps)
      diff = diff + 1.0;
      calc1 = calc1 * (calc2 - diff) / vt ;
      sumnew = sumold + calc1;
      ratio = sumnew / sumold;
      sumold = sumnew;
   end
   value = 1.0 - temp1 * sumnew * temp2; 
   return  
else
   diff = 0.;
   sumold = 1.;
   ratio = 1000.;
   calc1 = 1.;
   while(ratio >= eps)
      diff = diff + 1.0;
      calc1 = calc1 * vt / (calc2 + diff);
      sumnew = sumold + calc1;
      ratio = sumnew / sumold;
      sumold = sumnew;
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   end
   value = temp1 * sumnew;
end

Listing 2.10. MATLAB Function “factor.m”
function [val] = factor(n)
% Compute the factorial of n using logarithms to avoid overflow.
format long
n = n + 9.0;
n2 = n * n;
temp = (n-1) * log(n) - n + log(sqrt(2.0 * pi * n)) ...
   + ((1.0 - (1.0/30. + (1.0/105)/n2)/n2) / 12) / n;
val = temp - log((n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6) ...
   *(n-7)*(n-8));
return 

Listing 2.11. MATLAB Program “fig2_7.m”
% This program can be used to reproduce Fig. 2.7
close all
clear all
format long
ii = 0;
for x = 0:.1:20
   ii = ii+1;
   val1(ii) = incomplete_gamma(x , 1);
   val2(ii) = incomplete_gamma(x , 3);
   val = incomplete_gamma(x , 6);
   val3(ii) = val;
   val = incomplete_gamma(x , 10);
   val4(ii) = val;
end
xx = 0:.1:20;
plot(xx,val1,'k',xx,val2,'k:',xx,val3,'k--',xx,val4,'k-.')
legend('N = 1','N = 3','N = 6','N = 10')
xlabel('x')
ylabel('Incomplete Gamma function (x,N)')
grid

Listing 2.12. MATLAB Function “threshold.m”
function [pfa, vt] = threshold (nfa, np)
% This function calculates the threshold value from nfa and np.
% The Newton-Raphson recursive formula is used (Eqs. (2-63) through (2-66))
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% This function uses "incomplete_gamma.m".
delmax = .00001;
eps = 0.000000001;
delta =10000.;
pfa = np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
   igf = incomplete_gamma(vt0,np);
   num = 0.5^(np/nfa) - igf;
   temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1);
   deno = exp(temp);
   vt = vt0 + (num / (deno+eps));
   delta = abs(vt - vt0) * 10000.0; 
   vt0 = vt;
end

Listing 2.13. MATLAB Program “fig2_8.m”
% Use this program to reproduce Fig. 2.8 of text
clear all
for n= 1: 1:150
   [pfa1 y1(n)] = threshold(1000,n);
   [pfa2 y3(n)] = threshold(10000,n);
   [pfa3 y4(n)] = threshold(500000,n);
end
n =1:1:150;
loglog(n,y1,'k',n,y3,'k--',n,y4,'k-.');
axis([0 200 1 300])
xlabel ('Number of pulses');
ylabel('Threshold')
legend('nfa=1000','nfa=10000','nfa=500000')
grid

Listing 2.14. MATLAB Function “pd_swerling5.m”
function pd = pd_swerling5 (input1, indicator, np, snrbar)
% This function is used to calculate the probability of 
% for Swerling 5 or 0 targets for np>1.
if(np == 1)
   'Stop, np must be greater than 1'
   return
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end
format long
snrbar = 10.0.^(snrbar./10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
if (indicator ~=1)
   nfa = input1;
   pfa =  np * log(2) / nfa;
else
   pfa = input1;
   nfa = np * log(2) / pfa;
end
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
   igf = incomplete_gamma(vt0,np);
   num = 0.5^(np/nfa) - igf;
   temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1);
   deno = exp(temp);
   vt = vt0 + (num / (deno+eps));
   delta = abs(vt - vt0) * 10000.0; 
   vt0 = vt;
end
% Calculate the Gram-Charlier coefficients
temp1 = 2.0 .* snrbar + 1.0;
omegabar = sqrt(np .* temp1);
c3 = -(snrbar + 1.0 / 3.0) ./ (sqrt(np) .* temp1.^1.5);
c4 = (snrbar + 0.25) ./ (np .* temp1.^2.);
c6 = c3 .* c3 ./2.0;
V = (vt - np .* (1.0 + snrbar)) ./ omegabar;
Vsqr = V .*V;
val1 = exp(-Vsqr ./ 2.0) ./ sqrt( 2.0 * pi);
val2 = c3 .* (V.^2 -1.0) + c4 .* V .* (3.0 - V.^2) -...
   c6 .* V .* (V.^4 - 10. .* V.^2 + 15.0);
q = 0.5 .* erfc (V./sqrt(2.0));
pd =  q - val1 .* val2;
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Listing 2.15. MATLAB Program “fig2_9.m”
% This program is used to produce Fig. 2.9
close all
clear all
pfa = 1e-9;
nfa = log(2) / pfa;
b = sqrt(-2.0 * log(pfa));
index = 0;
for snr = 0:.1:20
   index = index +1;
   a = sqrt(2.0 * 10^(.1*snr));
   pro(index) = marcumsq(a,b);
   prob205(index) =  pd_swerling5 (pfa, 1, 10, snr);
end
x = 0:.1:20;
plot(x, pro,'k',x,prob205,'k:');
axis([0 20 0 1])
xlabel ('SNR - dB')
ylabel ('Probability of detection')
legend('np = 1','np = 10')
grid

Listing 2.16. MATLAB Function “pd_swerling1.m”
function pd = pd_swerling1 (nfa, np, snrbar)
% This function is used to calculate the probability of  detection
% for Swerling 1 targets.
format long
snrbar = 10.0^(snrbar/10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
pfa =  np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
   igf = incomplete_gamma(vt0,np);
   num = 0.5^(np/nfa) - igf;
   temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1);
   deno = exp(temp);
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   vt = vt0 + (num / (deno+eps));
   delta = abs(vt - vt0) * 10000.0; 
   vt0 = vt;
end
if (np == 1)
   temp = -vt / (1.0 + snrbar);
   pd = exp(temp);
   return
end
   temp1 = 1.0 + np * snrbar;
   temp2 = 1.0 / (np *snrbar);
   temp = 1.0 + temp2;
   val1 = temp^(np-1.);
   igf1 = incomplete_gamma(vt,np-1);
   igf2 = incomplete_gamma(vt/temp,np-1);
   pd = 1.0 - igf1 + val1 * igf2 * exp(-vt/temp1);

Listing 2.17. MATLAB Program “fig2_10.m”
% This program is used to reproduce Fig. 2.10
close all
clear all
pfa = 1e-9;
nfa = log(2) / pfa;
b = sqrt(-2.0 * log(pfa));
index = 0;
for snr = 0:.1:22
   index = index +1;
   a = sqrt(2.0 * 10^(.1*snr));
   pro(index) = marcumsq(a,b);
   prob(index) =  pd_swerling1 (nfa, 1, snr);
end
x = 0:.1:22;
plot(x, pro,'k',x,prob,'k:');
axis([2 22 0 1])
xlabel ('SNR - dB')
ylabel ('Probability of detection')
legend('Swerling V','Swerling I')
grid
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Listing 2.18. MATLAB Program “fig2_11ab.m”
% This program is used to produce Fig. 2.11a&b
clear all
pfa = 1e-11;
nfa = log(2) / pfa;
index = 0;
for snr = -10:.5:30
   index = index +1;
   prob1(index) =  pd_swerling1 (nfa, 1, snr);
   prob10(index) =  pd_swerling1 (nfa, 10, snr);
   prob50(index) =  pd_swerling1 (nfa, 50, snr);
   prob100(index) =  pd_swerling1 (nfa, 100, snr);
end
x = -10:.5:30;
plot(x, prob1,'k',x,prob10,'k:',x,prob50,'k--', ...
   x, prob100,'k-.');
axis([-10 30 0 1])
xlabel ('SNR - dB')
ylabel ('Probability of detection')
legend('np = 1','np = 10','np = 50','np = 100')
grid

Listing 2.19. MATLAB Function “pd_swerling2.m”
function pd = pd_swerling2 (nfa, np, snrbar)
% This function is used to calculate the probability of  detection
% for Swerling 2 targets.
format long
snrbar = 10.0^(snrbar/10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
pfa =  np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
   igf = incomplete_gamma(vt0,np);
   num = 0.5^(np/nfa) - igf;
   temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1);
   deno = exp(temp);
   vt = vt0 + (num / (deno+eps));
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   delta = abs(vt - vt0) * 10000.0; 
   vt0 = vt;
end
if (np <= 50)
   temp = vt / (1.0 + snrbar);
   pd = 1.0 - incomplete_gamma(temp,np);
   return
else
   temp1 = snrbar + 1.0;
   omegabar = sqrt(np) * temp1;
   c3 = -1.0 / sqrt(9.0 * np);
   c4 = 0.25 / np;
   c6 = c3 * c3 /2.0;
   V = (vt - np * temp1) / omegabar;
   Vsqr = V *V;
   val1 = exp(-Vsqr / 2.0) / sqrt( 2.0 * pi);
   val2 = c3 * (V^2 -1.0) + c4 * V * (3.0 - V^2) - ... 
      c6 * V * (V^4 - 10. * V^2 + 15.0);
   q = 0.5 * erfc (V/sqrt(2.0));
   pd =  q - val1 * val2;
end

Listing 2.20. MATLAB Program “fig2_12.m”
% This program is used to produce Fig. 2.12
clear all
pfa = 1e-10;
nfa = log(2) / pfa;
index = 0;
for snr = -10:.5:30
   index = index +1;
   prob1(index) =  pd_swerling2 (nfa, 1, snr);
   prob10(index) =  pd_swerling2 (nfa, 10, snr);
   prob50(index) =  pd_swerling2 (nfa, 50, snr);
   prob100(index) =  pd_swerling2 (nfa, 100, snr);
end
x = -10:.5:30;
plot(x, prob1,'k',x,prob10,'k:',x,prob50,'k--', ...
   x, prob100,'k-.');
axis([-10 30 0 1])
xlabel ('SNR - dB')
ylabel ('Probability of detection')
legend('np = 1','np = 10','np = 50','np = 100')
grid
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Listing 2.21. MATLAB Function “pd_swerling3.m”
function pd = pd_swerling3 (nfa, np, snrbar)
% This function is used to calculate the probability of  detection
% for Swerling 3 targets.
format long
snrbar = 10.0^(snrbar/10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
pfa =  np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
   igf = incomplete_gamma(vt0,np);
   num = 0.5^(np/nfa) - igf;
   temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1);
   deno = exp(temp);
   vt = vt0 + (num / (deno+eps));
   delta = abs(vt - vt0) * 10000.0; 
   vt0 = vt;
end
temp1 = vt / (1.0 + 0.5 * np *snrbar);
temp2 = 1.0 + 2.0 / (np * snrbar);
temp3 = 2.0 * (np - 2.0) / (np * snrbar);
ko = exp(-temp1) * temp2^(np-2.) * (1.0 + temp1 - temp3);
if (np <= 2)
   pd = ko;
   return
else
   temp4 = vt^(np-1.) * exp(-vt) / (temp1 * exp(factor(np-2.)));
   temp5 =  vt / (1.0 + 2.0 / (np *snrbar));
   pd = temp4 + 1.0 - incomplete_gamma(vt,np-1.) + ko * ...
      incomplete_gamma(temp5,np-1.);
end

Listing 2.22. MATLAB Program “fig2_13.m”
% This program is used to produce Fig. 2.13
clear all
pfa = 1e-9;
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nfa = log(2) / pfa;
index = 0;
for snr = -10:.5:30
   index = index +1;
   prob1(index) =  pd_swerling3 (nfa, 1, snr);
   prob10(index) =  pd_swerling3 (nfa, 10, snr);
   prob50(index) =  pd_swerling3(nfa, 50, snr);
   prob100(index) =  pd_swerling3 (nfa, 100, snr);
end
x = -10:.5:30;
plot(x, prob1,'k',x,prob10,'k:',x,prob50,'k--', ...
   x, prob100,'k-.');
axis([-10 30 0 1])
xlabel ('SNR - dB')
ylabel ('Probability of detection')
legend('np = 1','np = 10','np = 50','np = 100')
grid

Listing 2.23. MATLAB Function “pd_swerling4.m”
function pd = pd_swerling4 (nfa, np, snrbar)
% This function is used to calculate the probability of  detection
% for Swerling 4 targets.
format long
snrbar = 10.0^(snrbar/10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
pfa =  np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
   igf = incomplete_gamma(vt0,np);
   num = 0.5^(np/nfa) - igf;
   temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1);
   deno = exp(temp);
   vt = vt0 + (num / (deno+eps));
   delta = abs(vt - vt0) * 10000.0; 
   vt0 = vt;
end
h8 = snrbar /2.0;
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beta = 1.0 + h8;
beta2 = 2.0 * beta^2 - 1.0;
beta3 = 2.0 * beta^3;
if (np >= 50)
   temp1 = 2.0 * beta -1;
   omegabar = sqrt(np * temp1);
   c3 = (beta3 - 1.) / 3.0 / beta2 / omegabar;
   c4 = (beta3 * beta3 - 1.0) / 4. / np /beta2 /beta2;
   c6 = c3 * c3 /2.0;
   V = (vt - np * (1.0 + snrbar)) / omegabar;
   Vsqr = V *V;
   val1 = exp(-Vsqr / 2.0) / sqrt( 2.0 * pi);
   val2 = c3 * (V^2 -1.0) + c4 * V * (3.0 - V^2) - ... 
      c6 * V * (V^4 - 10. * V^2 + 15.0);
   q = 0.5 * erfc (V/sqrt(2.0));
   pd =  q - val1 * val2;
   return
else
   snr = 1.0;
   gamma0 = incomplete_gamma(vt/beta,np);
   a1 = (vt / beta)^np / (exp(factor(np)) * exp(vt/beta));
   sum = gamma0;
   for i = 1:1:np
      temp1 = 1;
      if (i == 1)
         ai = a1;
      else
         ai = (vt / beta) * a1 / (np + i -1);
      end
      a1 = ai;
      gammai = gamma0 - ai;
      gamma0 = gammai;
      a1 = ai;
      for ii = 1:1:i
         temp1 = temp1 * (np + 1 - ii);
      end
      term = (snrbar /2.0)^i * gammai * temp1 / exp(factor(i));
      sum = sum + term;
   end
   pd = 1.0 - sum / beta^np;
end
pd = max(pd,0.);
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Listing 2.24. MATLAB Program “fig2_14.m”
% This program is used to produce Fig. 2.14
clear all
pfa = 1e-9;
nfa = log(2) / pfa;
index = 0;
for snr = -10:.5:30
   index = index +1;
   prob1(index) =  pd_swerling4 (nfa, 1, snr);
   prob10(index) =  pd_swerling4 (nfa, 10, snr);
   prob50(index) =  pd_swerling4(nfa, 50, snr);
   prob100(index) =  pd_swerling4 (nfa, 100, snr);
end
x = -10:.5:30;
plot(x, prob1,'k',x,prob10,'k:',x,prob50,'k--', ...
   x, prob100,'k-.');
axis([-10 30 0 1.1])
xlabel ('SNR - dB')
ylabel ('Probability of detection')
legend('np = 1','np = 10','np = 50','np = 100')
grid
axis tight

Listing 2.25. MATLAB Function “fluct_loss.m”
function [Lf,Pd_Sw5] = fluct_loss(pd, pfa, np, sw_case)
% This function calculates the SNR fluctuation loss for Swerling models
% A negative Lf value indicates SNR gain instead of loss 
format long
% compute the false alarm number
nfa =  log(2) / pfa;
% *************** Swerling 5 case ****************
% check to make sure that np>1
if (np ==1)
    b = sqrt(-2.0 * log(pfa));
    Pd_Sw5 = 0.001;
    snr_inc = 0.1 - 0.005;
    while(Pd_Sw5 <= pd)
        snr_inc = snr_inc + 0.005;
        a = sqrt(2.0 * 10^(.1*snr_inc));
        Pd_Sw5 = marcumsq(a,b);
    end
    PD_SW5 = Pd_Sw5
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    SNR_SW5 = snr_inc
else
    % np > 1 use MATLAB function pd_swerling5.m
    snr_inc = 0.1 - 0.005;
    Pd_Sw5 = 0.001;
    while(Pd_Sw5 <= pd)
        snr_inc = snr_inc + 0.005;
        Pd_Sw5 = pd_swerling5(pfa, 1, np, snr_inc);
    end
    PD_SW5 = Pd_Sw5
    SNR_SW5 = snr_inc
end
if sw_case == 5
    Lf = 0.
    return
end
% *************** End Swerling 5 case ************
% *************** Swerling 1 case ****************
if (sw_case == 1)
    Pd_Sw1 = 0.001;
    snr_inc = 0.1 - 0.005;
    while(Pd_Sw1 <= pd)
        snr_inc = snr_inc + 0.005;
        Pd_Sw1 = pd_swerling1(nfa, np, snr_inc);
    end
    PD_SW1 = Pd_Sw1
    SNR_SW1 = snr_inc
    Lf = SNR_SW1 - SNR_SW5
end
% *************** End Swerling 1 case ************
% *************** Swerling 2 case ****************
if (sw_case == 2)
    Pd_Sw2 = 0.001;
    snr_inc = 0.1 - 0.005;
    while(Pd_Sw2 <= pd)
        snr_inc = snr_inc + 0.005;
        Pd_Sw2 = pd_swerling2(nfa, np, snr_inc);
    end
    PD_SW2 = Pd_Sw2
    SNR_SW2 = snr_inc
    Lf = SNR_SW2 - SNR_SW5
end
% *************** End Swerling 2 case ************
% *************** Swerling 3 case ****************
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if (sw_case == 3)
    Pd_Sw3 = 0.001;
    snr_inc = 0.1 - 0.005;
    while(Pd_Sw3 <= pd)
        snr_inc = snr_inc + 0.005;
        Pd_Sw3 = pd_swerling3(nfa, np, snr_inc);
    end
    PD_SW3 = Pd_Sw3
    SNR_SW3 = snr_inc
    Lf = SNR_SW3 - SNR_SW5
end
% *************** End Swerling 3 case ************
% *************** Swerling 4 case ****************
if (sw_case == 4)
    Pd_Sw4 = 0.001;
    snr_inc = 0.1 - 0.005;
    while(Pd_Sw4 <= pd)
        snr_inc = snr_inc + 0.005;
        Pd_Sw4 = pd_swerling4(nfa, np, snr_inc);
    end
    PD_SW4 = Pd_Sw4
    SNR_SW4 = snr_inc
    Lf = SNR_SW4 - SNR_SW5
end
% *************** End Swerling 4 case ************
return

Listing 2.26. MATLAB Program “fig2_15.m”
% Use this program to reproduce Fig. 2.15 of text
clear all
close all
index = 0.;
for pd = 0.01:.05:1
    index = index + 1;
    [Lf,Pd_Sw5] = fluct_loss(pd, 1e-9,1,1);
    Lf1(index) = Lf;
    [Lf,Pd_Sw5] = fluct_loss(pd, 1e-9,1,4);
    Lf4(index) = Lf;    
end
pd = 0.01:.05:1;
figure (2)
plot(pd, Lf1, 'k',pd, Lf4,'K:')
xlabel('Probability of detection')
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ylabel('Fluctuation loss - dB')
legend('Swerling I & II','Swerling III & IV')
title('Pfa=1e-9, np=1')
grid

Listing 2.27. MATLAB Program “myradar_visit2_1.m”
% Myradar design case study visit 2_1
close all
clear all
pfa = 1e-7;
pd = 0.995;
np = 7;
pt = 165.8e3; % peak power in Watts
freq = 3e+9; % radar operating frequency in Hz
g = 34.5139; % antenna gain in dB
sigmam = 0.5; % missile RCS m squared
sigmaa = 4; % aircraft RCS m squared
te = 290.0; % effective noise temperature in Kelvins
b = 1.0e+6; % radar operating bandwidth in Hz
nf = 6.0; %noise figure in dB
loss = 8.0; % radar losses in dB
% compute the improvement factor due to 7-pulse non-coherent integration
Improv = improv_fac (np, pfa, pd);
% calculate the integration loss
lossnci = 10*log10(np) - Improv;
% calculate net gain in SNR due to integration
SNR_net = Improv - lossnci;
loss_total = loss + lossnci;
rangem = 55e3;
rangea = 90e3;
SNR_single_pulse_missile = radar_eq(pt, freq, g, sigmam, te, b, nf, loss, ran-
gem)
SNR_7_pulse_NCI_missile = SNR_single_pulse_missile + SNR_net 
SNR_single_pulse_aircraft = radar_eq(pt, freq, g, sigmaa, te, b, nf, loss, ran-
gea)
SNR_7_pulse_NCI_aircraft = SNR_single_pulse_aircraft + SNR_net

Listing 2.28. MATLAB Program “myradar_visit2_2.m”
%clear all
% close all
% swid = 3;
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% pfa = 1e-7;
% np = 1;
% R_1st_frame = 61e3; % Range for first frame
% R0 = 55e3; % range to last frame 
% SNR0 = 9; % SNR at R0
% frame = 0.3e3; % frame size
nfa = log(2) / pfa;
range_frame = R_1st_frame:-frame:R0; % Range to each frame
% implement Eq. (2.98)
SNRi = SNR0 + 40 .* log10((R0 ./ range_frame)); 
% calculate the Swerling 5 Pd at each frame
b = sqrt(-2.0 * log(pfa));
if np ==1
    for frame = 1:1:size(SNRi,2)
        a = sqrt(2.0 * 10^(.1*SNRi(frame)));
        pd5(frame) = marcumsq(a,b);
   end
else
   [pd5] = pd_swerling5(pfa, 1, np, SNRi); 
end
% compute additional SNR needed due to fluctuation
for frame = 1:1:size(SNRi,2)
    [Lf(frame),Pd_Sw5] = fluct_loss(pd5(frame), pfa, np, swid); 
end
% adjust SNR at each frame
SNRi = SNRi - Lf;
% compute the frame Pd
for frame = 1:1:size(SNRi,2)
    if(swid==1)
        Pdi(frame) = pd_swerling1 (nfa, np, SNRi(frame));
    end
     if(swid==2)
        Pdi(frame) = pd_swerling2 (nfa, np, SNRi(frame));
    end 
    if(swid==3)
        Pdi(frame) = pd_swerling3 (nfa, np, SNRi(frame));
    end 
    if(swid==4)
        Pdi(frame) = pd_swerling4 (nfa, np, SNRi(frame));
    end
     if(swid==5)
        Pdi(frame) = pd5(frame);
    end
end
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Pdc(1:size(SNRi,2)) = 0;
Pdc(1) = 1 - Pdi(1);
% compute the cumulative Pd
for frame = 2:1:size(SNRi,2)
    Pdc(frame) = (1-Pdi(frame)) * Pdc(frame-1);
end
PDC = 1 - Pdc(21)

Listing 2.29. MATLAB Program “fig2_21.m”
% Use this program to reproduce Fig. 2.20 of text.
close all
clear all
np = 4;
pfa = 1e-7;
pdm = 0.99945;
pda = 0.99812;
% calculate the improvement factor
Im = improv_fac(np,pfa, pdm);
Ia = improv_fac(np, pfa, pda);
% caculate the integration loss
Lm = 10*log10(np) - Im;
La = 10*log10(np) - Ia;
pt = 114.7e3; % peak power in Watts
freq = 3e+9; % radar operating frequency in Hz
g = 34.5139; % antenna gain in dB
sigmam = 0.5; % missile RCS m squared
sigmaa = 4; % aircraft RCS m squared
te = 290.0; % effective noise temperature in Kelvins
b = 1.0e+6; % radar operating bandwidth in Hz
nf = 6.0; % noise figure in dB
loss = 8.0; % radar losses in dB
losstm = loss + Lm; % total loss for missile
lossta = loss + La; % total loss for aircraft
range = linspace(20e3,120e3,1000); % range to target from 20 to 120 Km, 
1000 points
% modify pt by np*pt to account for pulse integration
snrmnci = radar_eq(np*pt, freq, g, sigmam, te, b, nf, losstm, range);
snrm = radar_eq(pt, freq, g, sigmam, te, b, nf, loss, range);
snranci = radar_eq(np*pt, freq, g, sigmaa, te, b, nf, lossta, range);
snra = radar_eq(pt, freq, g, sigmaa, te, b, nf, loss, range);
% plot SNR versus range
rangekm  = range ./ 1000;
figure(1)
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subplot(2,1,1)
plot(rangekm,snrmnci,'k',rangekm,snrm,'k -.')
grid
legend('With 4-pulse NCI','Single pulse')
ylabel ('SNR - dB');
title('Missile case')
subplot(2,1,2)
plot(rangekm,snranci,'k',rangekm,snra,'k -.')
grid
legend('With 4-pulse NCI','Single pulse')
ylabel ('SNR - dB');
title('Aircraft case')
xlabel('Detection range - Km')
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 Choosing a particular waveform type and a signal processing technique in a 
radar system depends heavily on the radar’s specific mission and role. The cost 
and complexity associated with a certain type of waveform hardware and soft-
ware implementation constitute a major factor in the decision process. Radar 
systems can use Continuous Waveforms (CW) or pulsed waveforms with or 
without modulation. Modulation techniques can be either analog or digital. 
Range and Doppler resolutions are directly related to the specific waveform 
frequency characteristics. Thus, knowledge of the power spectrum density of a 
waveform is very critical. In general, signals or waveforms can be analyzed 
using time domain or frequency domain techniques. This chapter introduces 
many of the most commonly used radar waveforms. Relevant uses of a spe-
cific waveform will be addressed in the context of its time and frequency 
domain characteristics. In this book, the terms waveform and signal are used 
interchangeably to mean the same thing.

3.1.  Low Pass, Band Pass Signals, and Quadrature 
Components

Signals that contain significant frequency composition at a low frequency 
band including DC are called Low Pass (LP) signals. Signals that have signifi-
cant frequency composition around some frequency away from the origin are 
called Band Pass (BP) signals. A real BP signal  can be represented math-
ematically by

(3.1)

x t! "

x t! " r t! " 2#f0t $x t! "+! "cos=
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where  is the amplitude modulation or envelope,  is the phase modu-
lation,  is the carrier frequency, and both  and  have frequency com-
ponents significantly smaller than . The frequency modulation is

(3.2)

and the instantaneous frequency is

(3.3)

If the signal bandwidth is , and if  is very large compared to , the signal 
 is referred to as a narrow band pass signal. 

Band pass signals can also be represented by two low pass signals kno
the quadrature components; in this case Eq. (3.1) can be rewritten as

(3.4)

where  and  are real LP signals referred to as the quadrature com-
nents and are given, respectively, by

(3.5)

Fig. 3.1 shows how the quadrature components are extracted.
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Figure 3.1. Extraction of quadrature components.
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3.2.  The Analytic Signal

The sinusoidal signal  defined in Eq. (3.1) can be written as the real part 
of the complex signal . More precisely, 

(3.6)

Define the “analytic signal” as

 (3.7)

where

(3.8)

and

(3.9)

 is the Fourier transform of  and  is the Fourier transform of 
. Eq. (3.9) can be written as 

(3.10)

where  is the step function in the frequency domain. Thus, it can be 
shown that  is

(3.11)

 is the Hilbert transform of . 

Using Eqs. (3.6) and (3.11), one can then write (shown here without proof)

(3.12)

which is similar to Eq. (3.4) with . 

Using Parseval’s theorem it can be shown that the energy associated with the 
signal  is 

(3.13)
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3.3. CW and Pulsed Waveforms 

The spectrum of a given signal describes the spread of its energy in the fre-
quency domain. An energy signal (finite energy) can be characterized by its 
Energy Spectrum Density (ESD) function, while a power signal (finite power) 
is characterized by the Power Spectrum Density (PSD) function. The units of 
the ESD are Joules per Hertz and the PSD has units Watts per Hertz.

The signal bandwidth is the range of frequency over which the signal has a 
nonzero spectrum. In general, any signal can be defined using its duration 
(time domain) and bandwidth (frequency domain). A signal is said to be band-
limited if it has finite bandwidth. Signals that have finite durations (time-lim-
ited) will have infinite bandwidths, while band-limited signals have infinite 
durations. The extreme case is a continuous sine wave, whose bandwidth is 
infinitesimal.

A time domain signal  has a Fourier Transform (FT)  given by

(3.14)

where the Inverse Fourier Transform (IFT) is 

(3.15)

The signal autocorrelation function  is

(3.16)

The asterisk indicates the complex conjugate. The signal amplitude spectrum is 
. If  were an energy signal, then its ESD is ; and if it were a 

power signal, then its PSD is  which is the FT of the autocorrelation 
function

(3.17)

First, consider a CW waveform given by
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(3.18)

The FT of  is 

(3.19)

where  is the Dirac delta function, and . As indicated by 
the amplitude spectrum shown in Fig. 3.2, the signal  has infinitesimal 
bandwidth, located at .

Next consider the time domain signal  given by

(3.20)

It follows that the FT is 

(3.21)

where

(3.22)

The amplitude spectrum of  is shown in Fig. 3.3. In this case, the band-
width is infinite. Since infinite bandwidths cannot be physically implemented, 
the signal bandwidth is approximated by  radians per second or  
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2#f0tcos

..–

f0– f00
 Figure 3.2. Amplitude spectrum for a continuous sine wave.
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Hertz. In practice, this approximation is widely accepted since it accounts for 
most of the signal energy. 

Now consider the coherent gated CW waveform  given by

(3.23)

Clearly  is periodic, where  is the period (recall that  is the 
PRF). Using the complex exponential Fourier series we can rewrite  as

(3.24)

where the Fourier series coefficients  are given by

(3.25)

It follows that the FT of  is

frequency
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 Figure 3.3. Amplitude spectrum for a single pulse, or a 
train of non-coherent pulses.
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(3.26)

The amplitude spectrum of  is shown in Fig. 3.4. In this case, the spectrum 
has a  envelope that corresponds to . The spacing between the spec-
tral lines is equal to the radar PRF, . 

Finally, define the function  as 

(3.27)

Note that  is a limited duration of . The FT of  is

(3.28)

where the operator  indicates convolution. The spectrum in this case is 
shown in Fig. 3.5. The envelope is still a  which corresponds to the 
pulsewidth. But the spectral lines are replaced by  spectra that corre-
spond to the duration . 
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 Figure 3.4. Amplitude spectrum for a coherent pulse train of infinite length.
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3.4. Linear Frequency Modulation Waveforms

 Frequency or phase modulated waveforms can be used to achieve much 
wider operating bandwidths. Linear Frequency Modulation (LFM) is com-
monly used. In this case, the frequency is swept linearly across the pulsewidth, 
either upward (up-chirp) or downward (down-chirp). The matched filter band-
width is proportional to the sweep bandwidth, and is independent of the pulse-
width. Fig. 3.6 shows a typical example of an LFM waveform. The pulsewidth 
is , and the bandwidth is .

The LFM up-chirp instantaneous phase can be expressed by

(3.29)

where  is the radar center frequency, and  is the LFM coeffi-
cient. Thus, the instantaneous frequency is 

(3.30)

Similarly, the down-chirp instantaneous phase and frequency are given, respec-
tively, by

 Figure 3.5. Amplitude spectrum for a coherent pulse train of finite length.
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(3.31)

(3.32)

A typical LFM waveform can be expressed by 

(3.33)

where  denotes a rectangular pulse of width . Eq. (3.33) is then 
written as 

(3.34)

where

(3.35)

is the complex envelope of .
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Figure 3.6. Typical LFM waveforms. (a) up-chirp; (b) down-chirp.
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The spectrum of the signal  is determined from its complex envelope 
. The complex exponential term in Eq. (3.34) introduces a frequency shift 

about the center frequency . Taking the FT of  yields

(3.36)

Let , and perform the change of variable

(3.37)

Thus, Eq. (3.36) can be written as

(3.38)

(3.39)

where

(3.40)

(3.41)

The Fresnel integrals, denoted by  and , are defined by

(3.42)

(3.43)
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Fresnel integrals are approximated by 

(3.44)

(3.45)

Note that  and . Fig. 3.7 shows a plot of both 
 and  for . This figure can be reproduced using MATLAB 

program “fig3_7.m”  given in Listing 3.1 in Section 3.12.

Using Eqs. (3.42) and (3.43) into (3.39) and performing the integration yield

(3.46)

Fig. 3.8 shows typical plots for the LFM real part, imaginary part, and ampli-
tude spectrum. The square-like spectrum shown in Fig. 3.8c is widely known 
as the Fresnel spectrum. This figure can be reproduced using MATLAB pro-
gram “fig3_8.m” , given in Listing 3.2 in Section 3.12. 

A MATLAB GUI (see Fig. 3.8d) was developed to input LFM data and dis-
play outputs as shown in Fig. 3.8. It is called “LFM_gui.m”. Its inputs are the 
uncompressed pulsewidth and the chirp bandwidth.
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 Figure 3.7. Fresnel integrals. 
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 Figure 3.8a. Typical LFM waveform, real part.

 Figure 3.8b. Typical LFM waveform, imaginary part.
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3.5. High Range Resolution 

An expression for range resolution  in terms of the pulsewidth  was 
derived in Chapter 1. When pulse compression is not used, the instantaneous 
bandwidth  of radar receiver is normally matched to the pulse bandwidth, 

 Figure 3.8c. Typical spectrum for an LFM waveform.

 Figure 3.8d. GUI workspace “LFM_gui.m ”.
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and in most radar applications this is done by setting . Therefore, 
range resolution is given by

(3.47)

Radar users and designers alike seek to accomplish High Range Resolution 
(HRR) by minimizing . However, as suggested by Eq. (3.47) in order to 
achieve HRR one must use very short pulses and consequently reduce the aver-
age transmitted power and impose severe operating bandwidth requirements. 
Achieving fine range resolution while maintaining adequate average transmit-
ted power can be accomplished by using pulse compression techniques, which 
will be discussed in Chapter 5. By means of frequency or phase modulation, 
pulse compression allows us to achieve the average transmitted power of a rel-
atively long pulse, while obtaining the range resolution corresponding to a very 
short pulse. As an example, consider an LFM waveform whose bandwidth is  
and un-compressed pulsewidth (transmitted) is . After pulse compression the 
compressed pulsewidth is denoted by , where , and the HRR is 

(3.48)

Linear frequency modulation and Frequency-Modulated (FM) CW wave-
forms are commonly used to achieve HRR. High range resolution can also be 
synthesized using a class of waveforms known as the “Stepped Frequency 
Waveforms” (SFW). Stepped frequency waveforms require more complex 
hardware implementation as compared to LFM or FM-CW; however, the radar 
operating bandwidth requirements are less restrictive. This is true because the 
receiver instantaneous bandwidth is matched to the SFW sub-pulse bandwidth 
which is much smaller than the LFM or FM-CW bandwidth. A brief discussion 
of SFW waveforms is presented in the following section. 

3.6.  Stepped Frequency Waveforms 

Stepped Frequency Waveforms (SFW) produce Synthetic HRR target pro-
files because the target range profile is computed by means of Inverse Discrete 
Fourier Transformation (IDFT) of frequency domain samples of the actual tar-
get range profile. The process of generating a synthetic HRR profile is 
described in Wehner.1 It is summarized as follows:

1. A series of  narrow-band pulses are transmitted. The frequency from 
pulse to pulse is stepped by a fixed frequency step . Each group of  
pulses is referred to as a burst.

1. Wehner, D. R., High Resolution Radar, second edition, Artech House, 1993.
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2. The received signal is sampled at a rate that coincides with the center of 
each pulse. 

3. The quadrature components for each burst are collected and stored.
4. Spectral weighting (to reduce the range sidelobe levels) is applied to the 

quadrature components. Corrections for target velocity, phase, and ampli-
tude variations are applied.

5. The IDFT of the weighted quadrature components of each burst is calcu-
lated to synthesize a range profile for that burst. The process is repeated for 

 bursts to obtain consecutive synthetic HRR profiles.

Fig. 3.9 shows a typical SFW burst. The Pulse Repetition Interval (PRI) is 
, and the pulsewidth is . Each pulse can have its own LFM, or other type of 

modulation; in this book LFM is assumed. The center frequency for the  
step is 

 (3.49)

Within a burst, the transmitted waveform for the  step can be described as

 (3.50)
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 Figure 3.9. Stepped frequency waveform burst.
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where  are the relative phases and  are constants. The received signal from 
a target located at range  at time  is then given by

(3.51)

where  are constant and the round trip delay  is given by

(3.52)

 is the speed of light and  is the target radial velocity. 

The received signal is down-converted to base-band in order to extract the 
quadrature components. More precisely,  is mixed with the signal 

(3.53)

After low pass filtering, the quadrature components are given by

(3.54)

where  are constants, and 

(3.55)

where now . For each pulse, the quadrature components are then sam-
pled at 

(3.56)

 is the time delay associated with the range that corresponds to the start of 
the range profile.

The quadrature components can then be expressed in complex form as

(3.57)

Eq. (3.57) represents samples of the target reflectivity, due to a single burst, in 
the frequency domain. This information can then be transformed into a series 
of range delay reflectivity (i.e., range profile) values by using the IDFT. It fol-
lows that 
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(3.58)

Substituting Eqs. (3.57) and (3.55) into (3.58) and collecting terms yield

(3.59)

By normalizing with respect to  and by assuming that  and that the 
target is stationary (i.e., ), then Eq. (3.59) can be written as

(3.60)

Using  inside Eq. (3.60) yields

(3.61)

which can be simplified to

(3.62)

where

(3.63)

Finally, the synthesized range profile is 

(3.64)

3.6.1. Range Resolution and Range Ambiguity in SFW

As usual, range resolution is determined from the overall system bandwidth. 
Assuming a SFW with  steps, and step size , then the corresponding range 
resolution is equal to 
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(3.65)

Range ambiguity associated with a SFW can be determined by examining 
the phase term that corresponds to a point scatterer located at range . More 
precisely,

(3.66)

It follows that

(3.67)

or equivalently,

(3.68)

It is clear from Eq. (3.68) that range ambiguity exists for . 
Therefore,

(3.69)

and the unambiguous range window is

(3.70)

Hence, a range profile synthesized using a particular SFW represents the rel-
ative range reflectivity for all scatterers within the unambiguous range win-
dow, with respect to the absolute range that corresponds to the burst time delay. 
Additionally, if a specific target extent is larger than , then all scatterers fall-
ing outside the unambiguous range window will fold over and appear in the 
synthesized profile. This fold-over problem is identical to the spectral fold-
over that occurs when using a Fast Fourier Transform (FFT) to resolve certain 
signal frequency contents. For example, consider an FFT with frequency reso-
lution , and size . In this case, this FFT can resolve 
frequency tones between  and . When this FFT is used to 
resolve the frequency content of a sine-wave tone equal to , fold-over 
occurs and a spectral line at the fourth FFT bin (i.e., ) appears. There-
fore, in order to avoid fold-over in the synthesized range profile, the frequency 
step  must be 
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Stepped Frequency Waveforms 159

(3.71)

where  is the target extent in meters. 

Additionally, the pulsewidth must also be large enough to contain the whole 
target extent. Thus, 

(3.72)

and, in practice, 

 (3.73)

This is necessary in order to reduce the amount of contamination of the synthe-
sized range profile caused by the clutter surrounding the target under consider-
ation. 

MATLAB Function “hrr_profile.m”

The function “hrr_profile.m”  computes and plots the synthetic HRR profile 
for a specific SFW. It is given in Listing 3.3 in Section 3.12. This function uti-
lizes an Inverse Fast Fourier Transform (IFFT) of a size equal to twice the 
number of steps. Hamming window of the same size is also assumed. The syn-
tax is as follows:

[hl] = hrr_profile (nscat, scat_range, scat_rcs, n, deltaf, prf, v, r0, winid)

where

Symbol Description Units Status

nscat number of scatterers that make up 
the target

none input

scat_range vector containing range to individ-
ual scatterers

meters input

scat_rcs vector containing RCS of individual 
scatterers

meter square input

n number of steps none input

deltaf frequency step Hz input

prf PRF of SFW Hz input

v target velocity meter/second input

r0 profile starting range meters input

winid number>0 for Hamming window

 number < 0 for no window

none input

hl range profile dB output

J f c 2EA9

E

J f 1 0'A9

J f 1 20'A9
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160      MATLAB Simulations for Radar Systems Design

For example, assume that the range profile starts at  and that

In this case, 

Thus, scatterers that are more than 0.235 meters apart will appear as distinct 
peaks in the synthesized range profile. Assume two cases; in the first case, 

[scat_range] = [908, 910, 912] meters, and in the second case, [scat_range] = 
[908, 910, 910.2] meters. In both cases, let [scat_rcs] = [100, 10, 1] meters 
squared.

Fig. 3.10 shows the synthesized range profiles generated using the function 
“hrr_profile.m” and the first case when the Hamming window is not used. Fig. 
3.11 is similar to Fig. 3.10, except in this case the Hamming window is used. 
Fig. 3.12 shows the synthesized range profile that corresponds to the second 
case (Hamming window is used). Note that all three scatterers were resolved in 
Figs. 3.10 and 3.11; however, the last two scatterers are not resolved in Fig. 
3.12, since they are separated by less than .

nscat tau n deltaf prf v

3 64 0.0

R0 900m=

100Fsec 10MHz 10KHz

J R 3 108O

2 64O 10 106OO
------------------------------------------ 0.235m= =

Ru
3 108O

2 10 106OO
------------------------------ 15m= =

J R

 Figure 3.10. Synthetic range profile for three resolved scatterers. No window.
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 Figure 3.11. Synthetic range profile for three scatterers. Hamming window.

 Figure 3.12. Synthetic range profile for three scatterers. Two are unresolved.
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162      MATLAB Simulations for Radar Systems Design

Next, consider another case where [scat_range] = [908, 912, 916] meters. 
Fig. 3.13 shows the corresponding range profile. In this case, foldover occurs, 
and the last scatterer appears at the lower portion of the synthesized range pro-
file. Also, consider the case where

[scat_range] = [908, 910, 923] meters

Fig. 3.14 shows the corresponding range profile. In this case, ambiguity is 
associated with the first and third scatterers since they are separated by . 
Both appear at the same range bin.

3.6.2. Effect of Target Velocity 

The range profile defined in Eq. (3.64) is obtained by assuming that the tar-
get under examination is stationary. The effect of target velocity on the synthe-
sized range profile can be determined by substituting Eqs. (3.55) and (3.56) 
into Eq. (3.58), which yields

(3.74)
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 Figure 3.13. Synthetic range profile for three scatterers. Third scatterer folds 
over.
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Stepped Frequency Waveforms 163

The additional phase term present in Eq. (3.74) distorts the synthesized range 
profile. In order to illustrate this distortion, consider the SFW described in the 
previous section, and assume the three scatterers of the first case. Also, assume 
that . Fig. 3.15 shows the synthesized range profile for this case. 
Comparisons of Figs. 3.11 and 3.15 clearly show the distortion effects caused 
by the uncompensated target velocity. Figure 3.16 is similar to Fig. 3.15 except 
in this case, . Note in either case, the targets have moved from 
their expected positions (to the left or right) by  (1.28 
m).

This distortion can be eliminated by multiplying the complex received data 
at each pulse by the phase term

(3.75)

 and  are, respectively, estimates of the target velocity and range. This pro-
cess of modifying the phase of the quadrature components is often referred to 
as “phase rotation.” In practice, when good estimates of  and  are not avail-
able, then the effects of target velocity are reduced by using frequency hopping 
between the consecutive pulses within the SFW. In this case, the frequency of 
each individual pulse is chosen according to a predetermined code. Waveforms 
of this type are often called Frequency Coded Waveforms (FCW). Costas 
waveforms or signals are a good example of this type of waveform. 

 Figure 3.14. Synthetic range profile for three scatterers. The first and third 
scatterers appear in the same FFT bin.
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 Figure 3.15. Illustration of range profile distortion due to target velocity.

 Figure 3.16. Illustration of range profile distortion due to target velocity.
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The Matched Filter 165

Figure 3.17 shows a synthesized range profile for a moving target whose 
RCS is  and . The initial target range is at . All 
other parameters are as before. This figure can be reproduced using the MAT-
LAB program “fig3_17.m” given in Listing 3.4 in Section 3.12.

3.7. The Matched Filter

The most unique characteristic of the matched filter is that it produces the 
maximum achievable instantaneous SNR at its output when a signal plus addi-
tive white noise is present at the input. The noise does not need to be Gaussian. 
The peak instantaneous SNR at the receiver output can be achieved by match-
ing the radar receiver transfer function to the received signal. We will show 
that the peak instantaneous signal power divided by the average noise power at 
the output of a matched filter is equal to twice the input signal energy divided 
by the input noise power, regardless of the waveform used by the radar. This is 
the reason why matched filters are often referred to as optimum filters in the 
SNR sense. Note that the peak power used in the derivation of the radar equa-
tion (SNR) represents the average signal power over the duration of the pulse, 
not the peak instantaneous signal power as in the case of a matched filter. In 
practice, it is sometimes difficult to achieve perfect matched filtering. In such 

Q 10m2= v 15m sA= R 912m=

 Figure 3.17. Synthesized range profile for a moving target (4 seconds long).
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cases, sub-optimum filters may be used. Due to this mismatch, degradation in 
the output SNR occurs.

Consider a radar system that uses a finite duration energy signal . 
Denote the pulsewidth as , and assume that a matched filter receiver is uti-
lized. The main question that we need to answer is: What is the impulse, or fre-
quency, response of the filter that maximizes the instantaneous SNR at the 
output of the receiver when a delayed version of the signal  plus additive 
white noise is at the input?

The matched filter input signal can then be represented by 

(3.76)

where  is a constant,  is an unknown time delay proportional to the target 
range, and  is input white noise. Since the input noise is white, its corre-
sponding autocorrelation and Power Spectral Density (PSD) functions are 
given, respectively, by

(3.77)

(3.78)

where  is a constant. Denote  and  as the signal and noise filter 
outputs, respectively. More precisely, we can define

 (3.79)

where

(3.80)

(3.81)

The operator ( ) indicates convolution, and  is the filter impulse 
response (the filter is assumed to be linear time invariant). 

Let  denote the filter autocorrelation function. It follows that the output 
noise autocorrelation and PSD functions are 

(3.82)

(3.83)
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The Matched Filter 167

where  is the Fourier transform for the filter impulse response, . The 
total average output noise power is equal to  evaluated at . More 
precisely,

(3.84)

The output signal power evaluated at time  is , and by using Eq. 
(3.80) we get

(3.85)

A general expression for the output SNR at time  can be written as

(3.86)

Substituting Eqs. (3.84) and (3.85) into Eq. (3.86) yields

(3.87)

The Schwartz inequality states that

(3.88)

where the equality applies only when , where  is a constant and can 
be assumed to be unity. Then by applying Eq. (3.88) on the numerator of Eq. 
(3.87), we get

(3.89)
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Eq. (3.89) tells us that the peak instantaneous SNR occurs when equality is 
achieved (i.e., from Eq. (3.88) ). More precisely, if we assume that 
equality occurs at , and that , then

(3.90)

and the maximum instantaneous SNR is 

(3.91)

Eq. (3.91) can be simplified using Parseval’s theorem, 

(3.92)

where  denotes the energy of the input signal; consequently we can write the 
output peak instantaneous SNR as

(3.93)

Thus, we can draw the conclusion that the peak instantaneous SNR depends 
only on the signal energy and input noise power, and is independent of the 
waveform utilized by the radar.

Finally, we can define the impulse response for the matched filter from Eq. 
(3.90). If we desire the peak to occur at , we get the non-causal matched 
filter impulse response,

(3.94)

Alternatively, the causal impulse response is

(3.95)

where, in this case, the peak occurs at . It follows that the Fourier 
transforms of  and  are given, respectively, by

(3.96)

(3.97)
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where  is the Fourier transform of . Thus, the moduli of  and 
 are identical; however, the phase responses are opposite of each other.

Example: 

Compute the maximum instantaneous SNR at the output of a linear filter 
whose impulse response is matched to the signal .

Solution: 

The signal energy is

It follows that the maximum instantaneous SNR is 

where  is the input noise power spectrum density.

3.8. The Replica

Again, consider a radar system that uses a finite duration energy signal , 
and assume that a matched filter receiver is utilized. The input signal is given 
in Eq. (3.76) and is repeated here as Eq. (3.98), 

(3.98)

The matched filter output  can be expressed by the convolution integral 
between the filter’s impulse response and ,

(3.99)

Substituting Eq. (3.95) into Eq. (3.99) yields

(3.100)

where  is a cross-correlation between  and . Therefore, 
the matched filter output can be computed from the cross-correlation between 
the radar received signal and a delayed replica of the transmitted waveform. If 
the input signal is the same as the transmitted signal, the output of the matched 
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filter would be the autocorrelation function of the received (or transmitted) sig-
nal. In practice, replicas of the transmitted waveforms are normally computed 
and stored in memory for use by the radar signal processor when needed. 

3.9. Matched Filter Response to LFM Waveforms

In order to develop a general expression for the matched filter output when 
an LFM waveform is utilized, we will consider the case when the radar is 
tracking a closing target with velocity . The transmitted signal is 

(3.101)

The received signal is then given by 

(3.102)

(3.103)

where  is the time corresponding to the target initial detection range, and  is 
the speed of light. Using Eq. (3.103) we can rewrite Eq. (3.102) as

(3.104)

and

(3.105)

is the scaling coefficient. Substituting Eq. (3.101) into Eq. (3.104) yields

(3.106)

which is the analytical signal representation for . The complex envelope 
of the signal  is obtained by multiplying Eq. (3.106) by . 
Denote the complex envelope by ; then after some manipulation we get 

(3.107)

The Doppler shift due to the target motion is
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(3.108)

and since , we get

(3.109)

Using the approximation  and Eq. (3.109), Eq. (3.107) is rewritten as

(3.110)

where

(3.111)

 is given in Eq. (3.101). The matched filter response is given by the con-
volution integral

(3.112)

For a non-causal matched filter the impulse response  is equal to ; it 
follows that

(3.113)

Substituting Eq. (3.111) into Eq. (3.113), and performing some algebraic 
manipulations, we get

 (3.114)

Finally, making the change of variable  yields

(3.115)

It is customary to set . It follows that 

(3.116)
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where we used the notation  to indicate that the output is a function of 
both time and Doppler frequency. 

3.10. Waveform Resolution and Ambiguity

As indicated by Eq. (3.93) the radar sensitivity (in the case of white additive 
noise) depends only on the total energy of the received signal and is indepen-
dent of the shape of the specific waveform. This leads us to ask the following 
question: If the radar sensitivity is independent of the waveform, then what is 
the best choice for a transmitted waveform? The answer depends on many fac-
tors; however, the most important consideration lies in the waveform’s range 
and Doppler resolution characteristics.

As discussed in Chapter 1, range resolution implies separation between dis-
tinct targets in range. Alternatively, Doppler resolution implies separation 
between distinct targets in frequency. Thus, ambiguity and accuracy of this 
separation are closely associated terms. 

3.10.1. Range Resolution

Consider radar returns from two stationary targets (zero Doppler) separated 
in range by distance . What is the smallest value of  so that the returned 
signal is interpreted by the radar as two distinct targets? In order to answer this 
question, assume that the radar transmitted pulse is denoted by , 

(3.117)

where  is the carrier frequency,  is the amplitude modulation, and  is 
the phase modulation. The signal  can then be expressed as the real part of 
the complex signal , where

(3.118)

and 

(3.119)

It follows that 

(3.120)

The returns from both targets are respectively given by

(3.121)
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where  is the difference in delay between the two returns. One can assume 
that the reference time is , and thus without any loss of generality one may 
set . It follows that the two targets are distinguishable by how large or 
small the delay  can be. 

In order to measure the difference in range between the two targets consider 
the integral square error between  and . Denoting this error as , 
it follows that

(3.123)

Eq. (3.123) can be written as

(3.124)

Using Eq. (3.118) into Eq. (3.124) yields

(3.125)

The first term in the right hand side of Eq. (3.125) represents the signal energy, 
and is assumed to be constant. The second term is a varying function of  with 
its fluctuation tied to the carrier frequency. The integral inside the right-most 
side of this equation is defined as the “range ambiguity function,”

(3.126)

The maximum value of  is at . Target resolvability in range is 
measured by the squared magnitude . It follows that if 

for some nonzero value of , then the two targets are indistin-
guishable. Alternatively, if  for some nonzero value of , then 
the two targets may be distinguishable (resolvable). As a consequence, the 
most desirable shape for  is a very sharp peak (thumb tack shape) cen-
tered at  and falling very quickly away from the peak. 
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The time delay resolution is 

(3.127)

Using Parseval’s theorem, Eq. (3.127) can be written as

(3.128)

The minimum range resolution corresponding to  is 

(3.129)

However, since the signal effective bandwidth is 

(3.130)

the range resolution is expressed as a function of the waveform’s bandwidth as

(3.131)

The comparison between Eqs. (3.116) and (3.126) indicates that the output 
of the matched filter and the range ambiguity function have the same envelope 
(in this case the Doppler shift  is set to zero). This indicates that the matched 
filter, in addition to providing the maximum instantaneous SNR at its output, 
also preserves the signal range resolution properties. 

3.10.2. Doppler Resolution

It was shown in Chapter 1 that the Doppler shift corresponding to the target 
radial velocity is

(3.132)

where  is the target radial velocity,  is the wavelength,  is the frequency, 
and  is the speed of light.  
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Let

(3.133)

Due to the Doppler shift associated with the target, the received signal spec-
trum will be shifted by . In other words the received spectrum can be repre-
sented by . In order to distinguish between the two targets located at 
the same range but having different velocities, one may use the integral square 
error. More precisely,

(3.134)

Using similar analysis as that which led to Eq. (3.125), one should minimize

(3.135)

By using the analytic signal in Eq. (3.118) it can be shown that

(3.136)

Thus, Eq. (3.135) becomes

(3.137)

The complex frequency correlation function is then defined as

(3.138)

and the Doppler resolution constant  is 

(3.139)
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Finally, one can define the corresponding velocity resolution as

(3.140)

Again observation of Eqs. (3.138) and (3.116) indicate that the output of the 
matched filter and the ambiguity function (when ) are similar to each 
other. Consequently, one concludes that the matched filter preserves the wave-
form Doppler resolution properties as well.

3.10.3. Combined Range and Doppler Resolution

In this general case, one needs to use a two-dimensional function in the pair 
of variables ( ). For this purpose, assume that the complex envelope of the 
transmitted waveform is 

(3.141)

Then the delayed and Doppler-shifted signal is

(3.142)

Computing the integral square error between Eqs. (3.142) and (3.141) yields

(3.143)

which can be written as

(3.144)

Again, in order to maximize this squared error for  one must minimize the 
last term of Eq. (3.144). 
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the matched filter in Eq. (3.116) is identical to that given in Eq. (3.145). This 
means that the output of the matched filter exhibits maximum instantaneous 
SNR as well as the most achievable range and Doppler resolutions.

3.11. “MyRadar” Design Case Study - Visit 3

3.11.1. Problem Statement

Assuming a matched filter receiver, select a set of waveforms that can meet 
the design requirements as stated in the previous two chapters. Assume linear 
frequency modulation. Do not use more than a total of 5 waveforms. Modify the 
design so that the range resolution  during the search mode, and 

 during tracking. 

3.11.2. A Design

The major characteristics of radar waveforms include the waveform’s 
energy, range resolution, and Doppler (or velocity) resolution. The pulse 
(waveform) energy is 

 (3.146)

where  is the peak transmitted power and  is the pulsewidth. Range resolu-
tion is defined in Eq. (3.131), while the velocity resolution is in Eq. (3.140).

Close attention should be paid to the selection process of the pulsewidth. In 
this design we will assume that the pulse energy is the same as that computed 
in Chapter 2. The radar operating bandwidth during search and track are calcu-
lated from Eq. (3.131) as 

(3.147)

Since the design calls for a pulsed radar, then for each pulse transmitted (one 
PRI) the radar should not be allowed to receive any signal until that pulse has 
been completely transmitted. This limits the radar to a minimum operating 
range defined by

(3.148)

In this design choose . It follows that the minimum acceptable 
pulsewidth is . 
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For this design select 5 waveforms, one for search and four for track. Typi-
cally search waveforms are longer than track waveforms; alternatively, track-
ing waveforms require wider bandwidths than search waveforms. However, in 
the context of range, more energy is required at longer ranges (for both track 
and search waveforms), since one would expect the SNR to get larger as range 
becomes smaller. This was depicted in the example shown in Fig. 1.13 in 
Chapter 1. 

Assume that during search and initial detection the single pulse peak power 
is to be kept under 10 KW (i.e., ). Then by using the single pulse 
energy calculated using Eq. (2.115) in Chapter 2, one can compute the mini-
mum required pulsewidth as

(3.149)

Choose , with bandwidth  and use LFM modulation. 
Fig. 3.18 shows plots of the real part, imaginary part, and the spectrum of this 
search waveform. This figure was produced using the GUI workspace 
“LFM_gui.m”. As far as the track waveforms, choose four waveforms of the 
same bandwidth ( ) and with the following pulsewidths.

Note that  refers to the initial range at which track has been initiated. Fig. 
3.19 is similar to Fig. 3.18 except it is for .

For the waveform set selected in this design option, the radar duty cycle var-
ies from 1.25% to 2.0%. Remember that the PRF was calculated in Chapter 1 
as ; thus the PRI is . 

At this point of the design, one must verify that the selected waveforms pro-
vide the radar with the desired SNR that meets or exceeds what was calculated 
in Chapter 2, and plotted in Fig. 2.21. In other words, one must now re-run 
these calculations and verify that the SNR has not been degraded. This task 
will be postponed until Chapter 5, where the radar equation with pulse com-
pression is developed.

TABLE 3.1. “MyRadar”  design case study track waveforms.

Pulsewidth Range window
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 Figure 3.18a. Real part of search waveform.

 Figure 3.18b. Imaginary part of search waveform.
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Figure 3.18c. Amplitude spectrum.

 Figure 3.19a. Real part of waveform.
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 Figure 3.19b. Imaginary part of waveform.

 Figure 3.19c. Amplitude spectrum.
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3.12. MATLAB Program and Function Listings

This section presents listings for all MATLAB programs/functions used in 
this chapter. 

Listing 3.1. MATLAB Program “fig3_7.m”
% Use this program to reproduce Fig 3.7 from text
clear all
close all
n = 0;
 for x = 0:.05:4
    n = n+1;
   sx(n) = quadl('fresnels',.0,x);
   cx(n) = quadl('fresnelc',.0,x);
end
 plot(cx)
 x=0:.05:4; 
 plot(x,cx,'k',x,sx,'k--')
 grid
 xlabel ('x')
 ylabel ('Fresnel integrals: C(x); S(x)')
 legend('C(x)','S(x)')

Listing 3.2. MATLAB Program “fig3_8.m”
% Use this program to reproduce Fig. 3.8 of text
close all
clear all
eps = 0.000001;
%Enter pulsewidth and bandwidth
B = 200.0e6; %200 MHZ bandwidth
T = 10.e-6; %10 micro second pulse;
% Compute alpha
mu = 2. * pi * B / T;
% Determine sampling times
delt = linspace(-T/2., T/2., 10001); % 1 nano second sampling interval
% Compute the complex LFM representation
Ichannal = cos(mu .* delt.^2 / 2.); % Real part
Qchannal = sin(mu .* delt.^2 / 2.); % Imaginary Part
LFM = Ichannal + sqrt(-1) .* Qchannal; % complex signal
%Compute the FFT of the LFM waveform
LFMFFT = fftshift(fft(LFM));
% Plot the real and Imaginary parts and the spectrum

© 2004 by Chapman & Hall/CRC CRC Press LLC



MATLAB Program and Function Listings 183

freqlimit = 0.5 / 1.e-9;% the sampling interval 1 nano-second
freq = linspace(-freqlimit/1.e6,freqlimit/1.e6,10001);
figure(1)
plot(delt*1e6,Ichannal,'k');
axis([-1 1 -1 1])
grid
xlabel('Time - microsecs')
ylabel('Real part')
title('T = 10 Microsecond, B = 200 MHz')
figure(2)
plot(delt*1e6,Qchannal,'k');
axis([-1 1 -1 1])
grid
xlabel('Time - microsecs')
ylabel('Imaginary part')
title('T = 10 Microsecond, B = 200 MHz')
figure(3)
plot(freq, abs(LFMFFT),'k');
%axis tight
grid
xlabel('Frequency - MHz')
ylabel('Amplitude spectrum')
title('Spectrum for an LFM waveform and T = 10 Microsecond, ... 
B = 200 MHZ')

Listing 3.3. MATLAB Function “hrr_profile.m”
function [hl] = hrr_profile (nscat, scat_range, scat_rcs, n, deltaf, prf, v, 

rnote,winid)
% Range or Time domain Profile
% Range_Profile returns the Range or Time domain plot of a simulated 
% HRR SFWF returning from a predetermined number of targets with a prede-

termined
% RCS for each target.
c=3.0e8;  % speed of light (m/s)
num_pulses   = n;
SNR_dB = 40;
nfft = 256;
%carrier_freq = 9.5e9; %Hz (10GHz)
freq_step    = deltaf; %Hz (10MHz)
V = v;  % radial velocity (m/s)  -- (+)=towards radar (-)=away
PRI = 1. / prf; % (s)
if (nfft > 2*num_pulses)
    num_pulses = nfft/2;
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end
Inphase = zeros((2*num_pulses),1);
Quadrature = zeros((2*num_pulses),1);
Inphase_tgt    = zeros(num_pulses,1);
Quadrature_tgt = zeros(num_pulses,1);
IQ_freq_domain = zeros((2*num_pulses),1);
Weighted_I_freq_domain = zeros((num_pulses),1);
Weighted_Q_freq_domain = zeros((num_pulses),1);
Weighted_IQ_time_domain = zeros((2*num_pulses),1);
Weighted_IQ_freq_domain = zeros((2*num_pulses),1);
abs_Weighted_IQ_time_domain = zeros((2*num_pulses),1);
dB_abs_Weighted_IQ_time_domain = zeros((2*num_pulses),1);
taur = 2. * rnote / c;
for jscat = 1:nscat
   ii = 0;
   for i = 1:num_pulses
      ii = ii+1;
      rec_freq = ((i-1)*freq_step);
      Inphase_tgt(ii) = Inphase_tgt(ii) + sqrt(scat_rcs(jscat)) * cos(-

2*pi*rec_freq*...
         (2.*scat_range(jscat)/c - 2*(V/c)*((i-1)*PRI + taur/2 + 

2*scat_range(jscat)/c)));
      Quadrature_tgt(ii) = Quadrature_tgt(ii) + sqrt(scat_rcs(jscat))*sin(-

2*pi*rec_freq*...
         (2*scat_range(jscat)/c - 2*(V/c)*((i-1)*PRI + taur/2 + 

2*scat_range(jscat)/c)));
   end
end
if(winid >= 0)
    window(1:num_pulses) = hamming(num_pulses);
else
    window(1:num_pulses) = 1;
end
Inphase = Inphase_tgt;
Quadrature = Quadrature_tgt;
Weighted_I_freq_domain(1:num_pulses) = Inphase(1:num_pulses).* window';
Weighted_Q_freq_domain(1:num_pulses) = Quadrature(1:num_pulses).* win-

dow';
Weighted_IQ_freq_domain(1:num_pulses)= Weighted_I_freq_domain + ...
   Weighted_Q_freq_domain*j;
Weighted_IQ_freq_domain(num_pulses:2*num_pulses)=0.+0.i;
Weighted_IQ_time_domain = (ifft(Weighted_IQ_freq_domain));
abs_Weighted_IQ_time_domain = (abs(Weighted_IQ_time_domain));
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dB_abs_Weighted_IQ_time_domain = 
20.0*log10(abs_Weighted_IQ_time_domain)+SNR_dB;

% calculate the unambiguous range window size
Ru = c /2/deltaf;
hl = dB_abs_Weighted_IQ_time_domain;
numb = 2*num_pulses;
delx_meter = Ru / numb;
xmeter = 0:delx_meter:Ru-delx_meter;
plot(xmeter, dB_abs_Weighted_IQ_time_domain,'k')
xlabel ('relative distance - meters')
ylabel ('Range profile - dB')
grid

Listing 3.4. MATLAB Program “fig3_17.m”
% use this program to reproduce Fig. 3.17 of text
clear all
close all
nscat = 1;
scat_range = 912;
scat_rcs = 10;
n =64;
deltaf = 10e6;
prf = 10e3;
v = 15;
rnote = 900,
winid = 1;
count = 0;
for time = 0:.05:3
    count = count +1;
    hl = hrr_profile (nscat, scat_range, scat_rcs, n, deltaf, prf, v, rnote,winid);
    array(count,:) = transpose(hl);
    hl(1:end) = 0;
    scat_range =  scat_range - 2 * n * v / prf;
end
figure (1)
 numb = 2*256;% this number matches that used in hrr_profile. 
 delx_meter = 15 / numb;
 xmeter = 0:delx_meter:15-delx_meter;
 imagesc(xmeter, 0:0.05:4,array)
 colormap(gray)
ylabel ('Time in seconds')
xlabel('Relative distance in meters')
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4.1. Introduction

The radar ambiguity function represents the output of the matched filter, and 
it describes the interference caused by the range and/or Doppler shift of a tar-
get when compared to a reference target of equal RCS. The ambiguity function 
evaluated at  is equal to the matched filter output that is 
matched perfectly to the signal reflected from the target of interest. In other 
words, returns from the nominal target are located at the origin of the ambigu-
ity function. Thus, the ambiguity function at nonzero  and  represents 
returns from some range and Doppler different from those for the nominal tar-
get.

The radar ambiguity function is normally used by radar designers as a means 
of studying different waveforms. It can provide insight about how different 
radar waveforms may be suitable for the various radar applications. It is also 
used to determine the range and Doppler resolutions for a specific radar wave-
form. The three-dimensional (3-D) plot of the ambiguity function versus fre-
quency and time delay is called the radar ambiguity diagram. The radar 
ambiguity function for the signal  is defined as the modulus squared of its 
2-D correlation function, i.e., . More precisely, 

(4.1)

In this notation, the target of interest is located at , and the 
ambiguity diagram is centered at the same point. Note that some authors define 
the ambiguity function as . In this book,  is called the uncer-
tainty function. 
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Denote  as the energy of the signal ,

(4.2)

The following list includes the properties for the radar ambiguity function:

1) The maximum value for the ambiguity function occurs at  
and is equal to ,

(4.3)

(4.4)

2) The ambiguity function is symmetric,

(4.5)

3) The total volume under the ambiguity function is constant,

(4.6)

4) If the function  is the Fourier transform of the signal , then by using 
Parseval’s theorem we get

(4.7)

4.2. Examples of the Ambiguity Function

The ideal radar ambiguity function is represented by a spike of infinitesi-
mally small width that peaks at the origin and is zero everywhere else, as illus-
trated in Fig. 4.1. An ideal ambiguity function provides perfect resolution 
between neighboring targets regardless of how close they may be to each other. 
Unfortunately, an ideal ambiguity function cannot physically exist. This is 
because the ambiguity function must have finite peak value equal to  
and a finite volume also equal to . Clearly, the ideal ambiguity function 
cannot meet those two requirements.

4.2.1.  Single Pulse Ambiguity Function

Consider the normalized rectangular pulse  defined by
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(4.8)

From Eq. (4.1) we have

 (4.9)

Substituting Eq. (4.8) into Eq. (4.9) and performing the integration yield

(4.10)

MATLAB Function “single_pulse_ambg.m”

The function “single_pulse_ambg.m” implements Eq. (4.10). It is given in 
Listing 4.1 in Section 4.6. The syntax is as follows:

single_pulse_ambg [taup]

taup is the pulsewidth. Fig 4.2 (a-d) show 3-D and contour plots of single pulse 
uncertainty and ambiguity functions. These plots can be reproduced using 
MATLAB program “fig4_2.m”  given in Listing 4.2 in Section 4.6.

The ambiguity function cut along the time delay axis  is obtained by setting 
. More precisely,

(4.11)

!
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Figure 4.1. Ideal ambiguity function.
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 Figure 4.2a. Single pulse 3-D uncertainty plot. Pulsewidth is 2 seconds. 

 Figure 4.2b. Contour plot corresponding to Fig. 4.2a.
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 Figure 4.2c. Single pulse 3-D ambiguity plot. Pulsewidth is 2 seconds. 

 Figure 4.2d. Contour plot corresponding to Fig. 4.2c.

© 2004 by Chapman & Hall/CRC CRC Press LLC



Note that the time autocorrelation function of the signal  is equal to 
. Similarly, the cut along the Doppler axis is

(4.12)

Figs. 4.3 and 4.4, respectively, show the plots of the uncertainty function 
cuts defined by Eqs. (4.11) and (4.12). Since the zero Doppler cut along the 
time delay axis extends between  and , then, close targets would be 
unambiguous if they are at least  seconds apart.

s t# $
% ! 0;# $

%0 fd;# $2 '! 'fdsin
'! 'fd

-------------------
2

=

! '– ! '
! '

! '!– ' !

amplitude

Figure 4.3. Zero Doppler uncertainty function cut along the time delay axis.

 

 Figure 4.4. Uncertainty function of a single frequency pulse (zero delay). This 
plot can be reproduced using MATLAB program “fig4_4.m”  given 
in Listing 4.3 in Section 4.6.
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The zero time cut along the Doppler frequency axis has a  shape. 
It extends from  to . The first null occurs at . Hence, it is 
possible to detect two targets that are shifted by , without any ambiguity. 

We conclude that a single pulse range and Doppler resolutions are limited by 
the pulsewidth . Fine range resolution requires that a very short pulse be 
used. Unfortunately, using very short pulses requires very large operating 
bandwidths, and may limit the radar average transmitted power to impractical 
values.

4.2.2.  LFM Ambiguity Function

Consider the LFM complex envelope signal defined by

(4.13)

In order to compute the ambiguity function for the LFM complex envelope, we 
will first consider the case when . In this case the integration limits 
are from  to . Substituting Eq. (4.13) into Eq. (4.9) yields

(4.14)

It follows that

(4.15)

Finishing the integration process in Eq. (4.15) yields

(4.16)

Similar analysis for the case when  can be carried out, where in 
this case the integration limits are from  to . The same result 
can be obtained by using the symmetry property of the ambiguity function 
( ). It follows that an expression for  that is 
valid for any  is given by
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(4.17)

and the LFM ambiguity function is

(4.18)

Again the time autocorrelation function is equal to . The reader can 
verify that the ambiguity function for a down-chirp LFM waveform is given by

(4.19)

MATLAB Function “lfm_ambg.m”

The function “lfm_ambg.m” implements Eqs. (4.18) and (4.19). It is given 
in Listing 4.4 in Section 4.6. The syntax is as follows:

lfm_ambg [taup, b, up_down]

where

Fig. 4.5 (a-d) shows 3-D and contour plots for the LFM uncertainty and ambi-
guity functions for

These plots can be reproduced using MATLAB program “fig4_5.m”  given in 
Listing 4.5 in Section 4.6. This function generates 3-D and contour plots of an 
LFM ambiguity function. 

Symbol Description Units Status

taup pulsewidth seconds input

b bandwidth Hz input

up_down up_down = 1 for up chirp

up_down = -1 for down chirp

none input

taup b up_down
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 Figure 4.5a. Up-chirp LFM 3-D uncertainty plot. Pulsewidth is 1 second; and 
bandwidth is 10 Hz. 

 Figure 4.5b. Contour plot corresponding to Fig. 4.5a.
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 Figure 4.5c. Up-chirp LFM 3-D ambiguity plot. Pulsewidth is 1 second; and 
bandwidth is 10 Hz. 

 Figure 4.5d. Contour plot corresponding to Fig. 4.5c.
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The up-chirp ambiguity function cut along the time delay axis  is

(4.20)

Fig. 4.6 shows a plot for a cut in the uncertainty function corresponding to 
Eq. (4.20). Note that the LFM ambiguity function cut along the Doppler fre-
quency axis is similar to that of the single pulse. This should not be surprising 
since the pulse shape has not changed (we only added frequency modulation). 
However, the cut along the time delay axis changes significantly. It is now 
much narrower compared to the unmodulated pulse cut. In this case, the first 
null occurs at

(4.21)

which indicates that the effective pulsewidth (compressed pulsewidth) of the 
matched filter output is completely determined by the radar bandwidth. It fol-
lows that the LFM ambiguity function cut along the time delay axis is narrower 
than that of the unmodulated pulse by a factor 
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 Figure 4.6. Zero Doppler uncertainty of an LFM pulse ( , 

). This plot can be reproduced using MATLAB 
program “fig4_6.m”  given in Listing 4.6 in Section 4.6.
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(4.22)

 is referred to as the compression ratio (also called time-bandwidth product 
and compression gain). All three names can be used interchangeably to mean 
the same thing. As indicated by Eq. (4.22) the compression ratio also increases 
as the radar bandwidth is increased.

Example: 

Compute the range resolution before and after pulse compression corre-
sponding to an LFM waveform with the following specifications: Bandwidth 

; and pulsewidth .

Solution: 

The range resolution before pulse compression is

Using Eq. (4.21) yields

.

4.2.3. Coherent Pulse Train Ambiguity Function

Fig. 4.7 shows a plot of a coherent pulse train. The pulsewidth is denoted as 
 and the PRI is . The number of pulses in the train is ; hence, the train’s 

length is  seconds. A normalized individual pulse  is defined by

(4.23)
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Figure 4.7. Coherent pulse train. N=5.
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When coherency is maintained between the consecutive pulses, then an expres-
sion for the normalized train is 

(4.24)

The output of the matched filter is

 (4.25)

Substituting Eq. (4.24) into Eq. (4.25) and interchanging the summations and 
integration yield

(4.26)

Making the change of variable  yields

(4.27)

The integral inside Eq. (4.27) represents the output of the matched filter for a 
single pulse, and is denoted by . It follows that

(4.28)

When the relation  is used, then the following relation is true:1

(4.29)

   Using Eq. (4.29) into Eq. (4.28) gives

1. Rihaczek, A. W., Principles of High Resolution Radar, Artech House, 1994. 
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(4.30)

Setting , and using the relation

(4.31)

yield

(4.32)

Using Eq. (4.32) in Eq. (4.30) yields two complementary sums for positive and 
negative . Both sums can be combined as

 (4.33)

Finally, the ambiguity function associated with the coherent pulse train is com-
puted as the modulus square of Eq. (4.33). For , the ambiguity func-
tion reduces to 

(4.34)

Thus, the ambiguity function for a coherent pulse train is the superposition 
of the individual pulse’s ambiguity functions. The ambiguity function cuts 
along the time delay and Doppler axes are, respectively, given by

(4.35)

% ! fd;# $ 1
N
---- %1 ! qT– fd;# $ e

j 2' fdiT

i 0=

N 1– q–

9
< =
> >
? @
> >
A B

1
N
---- e

j2' fdqT
%1 ! qT– fd;# $ e

j2' fdjT

j 0=

N 1– q–

9
< =
> >
? @
> >
A B

q 1=

N 1–

9+

q N 1–# $–=

0

9=

z j2' fdT# $exp=

zj

j 0=

N 1– q–

9 1 zN q––
1 z–

----------------------=

e
j2' fdiT

i 0=

N 1– q–

9 e
j ' fd N 1– q T–# $: ; ' fd N 1– q T–# $: ;sin

' fdT# $sin
------------------------------------------------------=

q

% ! fd;# $ 1
N
---- %1 ! qT– fd;# $e

j ' fd N 1– q+# $T: ; ' fd N q T–# $: ;sin
' fdT# $sin

---------------------------------------------

q N 1–# $–=

N 1–

9=

!4 T 21C

% ! fd;# $ 1
N
---- %1 ! qT– fd;# $ ' fd N q T–# $: ;sin

' fdT# $sin
---------------------------------------------

q N 1–# $–=

N 1–

9=

% ! 0;# $2 1 q
N
-----–- .

/ 0 1 ! qT–
!4

------------------–- .
/ 0

q N 1–# $–=

N 1–

9
2

= ! qT– !4C;

© 2004 by Chapman & Hall/CRC CRC Press LLC



(4.36)

MATLAB Function “train_ambg.m”

The function “train_ambg.m” implements Eq. (4.34). It is given in Listing 
4.7 in Section 4.6. The syntax is as follows:

train_ambg [taup, n, pri]

Fig. 4.8 (a-d) shows typical outputs of this function, for 

Symbol Description Units Status

taup pulsewidth seconds input

n number of pulses in train none input

pri pulse repetition interval seconds input

taup n pri

0.2 5 1

%0 fd;# $2 1
N
----

' fd!4# $sin
' fd!4

-------------------------
' fdNT# $sin
' fdT# $sin

----------------------------
2

=

 Figure 4.8a. Three-dimensional ambiguity plot for a five pulse equal amplitude 
coherent train. Pulsewidth is 0.2 seconds; and PRI is 1 second, 
N=5. This plot can be reproduced using MATLAB program 
“fig4_8.m” given in Listing 4.8 in Section 4.6. 
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 Figure 4.8b. 3-D plot corresponding to Fig. 4.8a.
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 Figure 4.8c. Zero Doppler cut corresponding to Fig. 4.8a.
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 Figure 4.8d. Zero delay cut corresponding to Fig. 4.8a. 
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4.3. Ambiguity Diagram Contours

Plots of the ambiguity function are called ambiguity diagrams. For a given 
waveform, the corresponding ambiguity diagram is normally used to determine 
the waveform properties such as the target resolution capability, measurement 
(time and frequency) accuracy, and its response to clutter. Three-dimensional 
ambiguity diagrams are difficult to plot and interpret. This is the reason why 
contour plots of the 3-D ambiguity diagram are often used to study the charac-
teristics of a waveform. An ambiguity contour is a 2-D plot (frequency/time) of 
a plane intersecting the 3-D ambiguity diagram that corresponds to some 
threshold value. The resultant plots are ellipses. It is customary to display the 
ambiguity contour plots that correspond to one half of the peak autocorrelation 
value. 

Fig. 4.9 shows a sketch of typical ambiguity contour plots associated with a 
gated CW pulse. It indicates that narrow pulses provide better range accuracy 
than long pulses. Alternatively, the Doppler accuracy is better for a wider pulse 
than it is for a short one. This trade-off between range and Doppler measure-
ments comes from the uncertainty associated with the time-bandwidth product 
of a single sinusoidal pulse, where the product of uncertainty in time (range) 
and uncertainty in frequency (Doppler) cannot be much smaller than unity. 
Note that an exact plot for Fig. 4.9 can be obtained using the function 
“single_pulse_ambg.m” and the MATLAB command contour. 

Multiple ellipses in an ambiguity contour plot indicate the presence of multi-
ple targets. Thus, it seems that one may improve the radar resolution by 
increasing the ambiguity diagram threshold value. This is illustrated in Fig. 

time

frequency frequency

time

!4 !4

1 !411 !41

long pulse short pulse

Figure 4.9. Ambiguity contour plot associated with a sinusoid
   modulated gated CW pulse. See Fig. 4.2.
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4.10. However, in practice this is not possible for two reasons. First, in the 
presence of noise we lack knowledge of the peak correlation value; and sec-
ond, targets in general will have different amplitudes.

Now consider the case of a coherent pulse train described in Fig. 4.7. For a 
pulse train, range accuracy is still determined by the pulsewidth, in the same 
manner as in the case of a single pulse, while Doppler accuracy is determined 
by the train length. Thus, time and frequency measurements can be made inde-
pendently of each other. However, additional peaks appear in the ambiguity 
diagram which may cause range and Doppler uncertainties (see Fig. 4.11).

time

frequency

time

frequency

low threshold value high threshold value

Figure 4.10. Effect of threshold value on resolution.

frequency

time

1
T
---T

!4

f
˜

f
˜

1 N 1–# $T1=

 Figure 4.11. Ambiguity contour plot corresponding to Fig. 4.7. For an exact 
plot see Fig. 4.8a.
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As one would expect, high PRF pulse trains (i.e., small ) lead to extreme 
uncertainty in range, while low PRF pulse trains have extreme ambiguity in 
Doppler. Medium PRF pulse trains have moderate ambiguity in both range and 
Doppler, which can be overcome by using multiple PRFs. It is possible to 
avoid ambiguities caused by pulse trains and still have reasonable independent 
control on both range and Doppler accuracies by using a single modulated 
pulse with a time-bandwidth product that is much larger than unity. Fig. 4.12 
shows the ambiguity contour plot associated with an LFM waveform. In this 
case,  is the pulsewidth and  is the pulse bandwidth. The exact plots can be 
obtained using the function “lfm_ambg.m”. 

4.4. Digital Coded Waveforms

In this section we will briefly discuss the digital coded waveform. We will 
determine the waveform range and Doppler characteristics on the basis of its 
autocorrelation function, since in the absence of noise, the output of the 
matched filter is proportional to the code autocorrelation. 

4.4.1.  Frequency Coding (Costas Codes)

Construction of Costas codes can be understood from the construction pro-
cess of Stepped Frequency Waveforms (SFW) described in Chapter 3. In SFW, 
a relatively long pulse of length  is divided into  subpulses, each of width 

 ( ). Each group of  subpulses is called a burst. Within each burst 
the frequency is increased by  from one subpulse to the next. The overall 
burst bandwidth is . More precisely,

T

!4 B

time

frequency

1 !41

1 B1
 Figure 4.12. Ambiguity contour plot associated with an up-chirp LFM 

waveform. For an exact plot see Fig. 4.5b.
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(4.37)

and the frequency for the  subpulse is

(4.38)

where  is a constant frequency and . It follows that the time-band-
width product of this waveform is

(4.39)

Costas signals (or codes) are similar to SFW, except that the frequencies for 
the subpulses are selected in a random fashion, according to some predeter-
mined rule or logic. For this purpose, consider the  matrix shown in Fig. 
4.13b. In this case, the rows are indexed from  and the columns 
are indexed from . The rows are used to denote the 
subpulses and the columns are used to denote the frequency. A “dot”  indicates 
the frequency value assigned to the associated subpulse. In this fashion, Fig. 
4.13a shows the frequency assignment associated with a SFW. Alternatively, 
the frequency assignments in Fig. 4.13b are chosen randomly. For a matrix of 
size , there are a total of  possible ways of assigning the “dots”  (i.e., 

 possible codes). 
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 Figure 4.13. Frequency assignment for a burst of N subpulses. (a) SFW (stepped 
LFM); (b) Costas code of length Nc = 10. 
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The sequences of “dot”  assignments for which the corresponding ambiguity 
function approaches an ideal or a “thumbtack” response are called Costas 
codes. A near thumbtack response was obtained by Costas1 using the following 
logic: there is only one frequency per time slot (row) and per frequency slot 
(column). Therefore, for an  matrix the number of possible Costas codes 
is drastically less than .   For example, there are  possible Costas 
codes for , and  possible codes for . It can be shown 
that the code density, defined as the ratio , gets significantly smaller as 

 becomes larger. 

There are numerous analytical ways to generate Costas codes. In this section 
we will describe two of these methods. First, let  be an odd prime number, 
and choose the number of subpulses as

 (4.40)

Define  as the primitive root of . A primitive root of  (an odd prime num-
ber) is defined as  such that the powers  modulo  generate 
every integer from  to . 

In the first method, for an  matrix, label the rows and columns, respec-
tively, as

(4.41)

Place a dot in the location  corresponding to  if and only if

 (4.42)

In the next method, Costas code is first obtained from the logic described 
above; then by deleting the first row and first column from the matrix a new 
code is generated. This method produces a Costas code of length .

Define the normalized complex envelope of the Costas signal as

(4.43)

(4.44)

1. Costas, J. P., A Study of a Class of Detection Waveforms Having Nearly Ideal 
Range-Doppler Ambiguity Properties, Proc. IEEE 72, 1984, pp. 996-1009.
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Costas showed that the output of the matched filter is 

(4.45)

(4.46)

(4.47)

(4.48)

Three-dimensional plots of the ambiguity function of Costas signals show 
the near thumbtack response of the ambiguity function. All sidelobes, except 
for few around the origin, have amplitude . Few sidelobes close to the ori-
gin have amplitude , which is typical of Costas codes. The compression 
ratio of a Costas code is approximately . 

4.4.2. Binary Phase Codes

Consider the case of binary phase codes in which a relatively long pulse of 
width  is divided into  smaller pulses; each is of width . Then, 
the phase of each sub-pulse is randomly chosen as either  or  radians rela-
tive to some CW reference signal. It is customary to characterize a sub-pulse 
that has  phase (amplitude of +1 Volt) as either “1” or “+.” Alternatively, a 
sub-pulse with phase equal to  (amplitude of -1 Volt) is characterized by 
either “0” or “-.” The compression ratio associated with binary phase codes is 
equal to , and the peak value is  times larger than that of the long 
pulse. The goodness of a compressed binary phase code waveform depends 
heavily on the random sequence of the phases of the individual sub-pulses. 

One family of binary phase codes that produces compressed waveforms with 
constant sidelobe levels equal to unity is the Barker code. Fig. 4.14 illustrates a 
Barker code of length seven. A Barker code of length  is denoted as . 
There are only seven known Barker codes that share this unique property; they 
are listed in Table 4.1. Note that  and  have complementary forms that 
have the same characteristics. Since there are only seven Barker codes, they 
are not used when radar security is an issue.

% ! fD"# $ 1
N
---- j2' lfD!# $exp F ll ! fD"# $ Flq ! l q–# $!1– fD"# $

q 0=

q lG

N 1–

9+

< =
> >
> >
? @
> >
> >
A B

l 0=

N 1–

9=

F lq ! fD"# $ !1
!
! 1
-----–- .

/ 0 Hsin
H

----------- j I– j2' fq!–# $exp= ! ! 1,,

H ' fl fq– fD–# $ !1 !–# $=

I ' fl fq– fD–# $ !1 !+# $=

1 N1
2 N1

N

! ' N 7! ! ' N1=
0 '

0
'

6 ! ' 7!1= N

n Bn

B2 B4

© 2004 by Chapman & Hall/CRC CRC Press LLC



In general, the autocorrelation function (which is an approximation of the 
matched filter output) for a  Barker code will be  wide. The main 
lobe is  wide; the peak value is equal to . There are  side-
lobes on either side of the main lobe. This is illustrated in Fig. 4.15 for a . 
Notice that the main lobe is equal to 13, while all sidelobes are unity.

The most sidelobe reduction offered by a Barker code is , which 
may not be sufficient for the desired radar application. However, Barker codes 
can be combined to generate much longer codes. In this case, a  code can be 
used within a  code (  within ) to generate a code of length . The 

TABLE 4.1. Barker codes.

Code 
symbol

Code 
length Code elements

Side lode 
reduction (dB)

2 1 -1

1 1

6.0

3 1 1 -1 9.5

4 1 1 -1 1

1 1 1 -1

12.0

5 1 1 1 -1 1 14.0

7 1 1 1 -1 -1 1 -1 16.9

11 1 1 1 -1 -1 -1 1 -1 -1 1 -1 20.8

13 1 1 1 1 1 -1 -1 1 1 -1  1 -1 1 22.3

 +        +       +       -        -        +       +   

Figure 4.14. Binary phase code of length 7. 
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compression ratio for the combined  code is equal to . As an example, 
a combined  is given by 

(4.49)

and is illustrated in Fig. 4.16. Unfortunately, the sidelobes of a combined 
Barker code autocorrelation function are no longer equal to unity. 

Bmn mn
B54

B54 11101 11101 00010 11101" " "* +=

 + + + + + - - + + - + - +

137! ! '=

7!

1

13

7!7!– 137!13– 7!

 Figure 4.15. Barker code of length 13, and its corresponding 
autocorrelation function.

+   +   +  -   +   +  +   +   -   +  -   -    -   +  -   +  +   +   -   +

B4

+                      +                       -                      +

B54

Figure 4.16. A combined  Barker code.B54
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MATLAB Function “barker_ambig.m”

The MATLAB function “barker_ambig.m” calculates and plots the ambigu-
ity function for Barker code. It is given in Listing 4.9 in Section 4.6. The syn-
tax as follows:

[ambiguity] = barker_ambig(u)

where u is a vector that defines the input code in terms of “1’s”  and “-1’s.”  For 
example, using  as an input, the function will cal-
culate and plot the ambiguity function corresponding to . Fig. 4.17 shows 
the output of this function when  is used as an input. Fig. 4.18 is similar to 
Fig. 4.17, except in this case  is used as an input.

u 1 1 1 1– 1– 1 1–: ;=
B7

B13
B7

 Figure 4.17a. Ambiguity function for  Barker code.B13
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 Figure 4.17b. Zero Doppler cut for the  ambiguity function.B13

 Figure 4.17c. Contour plot corresponding to Fig. 4.17a.
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 Figure 4.18a. Ambiguity function for  Barker code.B7

 Figure 4.18b. Zero Doppler cut for the  ambiguity function.B7
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4.4.3. Pseudo-Random Number (PRN) Codes

Pseudo-Random Number (PRN) codes are also known as Maximal Length 
Sequences (MLS) codes. These codes are called pseudo-random because the 
statistics associated with their occurrence are similar to that associated with the 
coin-toss sequences. Maximum length sequences are periodic. The MLS codes 
have the following distinctive properties:

1. The number of ones per period is one more than the number of minus-ones.

2. Half the runs (consecutive states of the same kind) are of length one and 
one fourth are of length two.

3. Every maximal length sequence has the “shift and add” property. This 
means that, if a maximal length sequence is added (modulo 2) to a shifted 
version of itself, then the resulting sequence is a shifted version of the orig-
inal sequence.

4. Every n-tuple of the code appears once and only once in one period of the 
sequence. 

5. The correlation function is periodic and is given by 

 Figure 4.18c. Contour plot corresponding to Fig. 4.18a.

© 2004 by Chapman & Hall/CRC CRC Press LLC



(4.50)

Fig. 4.19 shows a typical sketch for an MLS autocorrelation function. Clearly 
these codes have the advantage that the compression ratio becomes very large 
as the period is increased. Additionally, adjacent peaks (grating lobes) become 
farther apart.

Linear Shift Register Generators

There are numerous ways to generate MLS codes. The most common is to 
use linear shift registers. When the binary sequence generated using a shift reg-
ister implementation is periodic and has maximal length it is referred to as an 
MLS binary sequence with period , where 

(4.51)

 is the number of stages in the shift register generator. 

A linear shift register generator basically consists of a shift register with 
modulo-two adders added to it. The adders can be connected to various stages 
of the register, as illustrated in Fig. 4.20 for  (i.e., ). Note that 
the shift register initial state cannot be “zero.” 

J n# $
L n 0 L 2L D"2"2"=

1– elsewhere=
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L

 Figure 4.19. Typical autocorrelation of an MLS code of length L.
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 Figure 4.20. Circuit for generating an MLS sequence of length .L 15=
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 The feedback connections associated with a shift register generator deter-
mine whether the output sequence will be maximal or not. For a given size 
shift register, only few feedback connections lead to maximal sequence out-
puts. In order to illustrate this concept, consider the two 5-stage shift register 
generators shown in Fig. 4.21. The shift register generator shown in Fig. 4.21a 
generates a maximal length sequence, as clearly depicted by its state diagram. 
However, the shift register generator shown in Fig. 4.21b produces three non-
maximal length sequences (depending on the initial state).

1 2 3 4 5

K

start

00001
16 48 9181 26 613 251920

27 1222 172429 7 3115 28303

23 2111 51014 2

10000
01000

1 2 3 4 5

K

(a)

start

00001
16 48 1721 12 196 20924

3 157 30 2629 102131

L 31=

start

00001
16 48 1721 12 196 20924

3 157 30 2629 102131

27 2213

14 11 185 282523

L 21=

L 3=

L 7=

 Figure 4.21. (a) A 5-stage shift register generator. (b) Non-maximal length 
5 stage shift register generator.

(b)

start

start
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Given an n-stage shift register generator, one would be interested in knowing 
how many feedback connections will yield maximal length sequences. Zierler1

showed that the number of maximal length sequences possible for a given n-
stage linear shift register generator is given by

(4.52)

where  is the Euler’s totient (or Euler’s phi) function. Euler’s phi function is 
defined by

(4.53)

where  are the prime factors of . Note that when  has multiples, then 
only one of them is used (see example in Eq. (4.56)). Also note that when  is 
a prime number, then the Euler’s phi function is 

(4.54)

For example, a 3-stage shift register generator will produce

(4.55)

and a 6-stage shift register,

(4.56)

Maximal Length Sequence Characteristic Polynomial

Consider an n-stage maximal length linear shift register whose feedback 
connections correspond to . This maximal length shift register can 
be described using its characteristic polynomial defined by

(4.57)

where the additions are modulo 2. Therefore, if the characteristic polynomial 
for an n-stage shift register is known, one can easily determine the register 
feedback connections and consequently deduce the corresponding maximal 
length sequence. For example, consider a 6-stage shift register whose charac-
teristic polynomial is 

1. Zierler, N., Several Binary-Sequence Generators, MIT Technical Report No. 95, 
Sept. 1955.
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(4.58)

It follows that the shift register which generates a maximal length sequence is 
shown in Fig. 4.22.

One of the most important issues associated with generating a maximal 
length sequence using a linear shift register is determining the characteristic 
polynomial. This has been and continues to be a subject of research for many 
radar engineers and designers. It has been shown that polynomials which are 
both irreducible (not factorable) and primitive will produce maximal length 
shift register generators. 

A polynomial of degree n is irreducible if it is not divisible by any polyno-
mial of degree less than n. It follows that all irreducible polynomials must have 
an odd number of terms. Consequently, only linear shift register generators 
with an even number of feedback connections can produce maximal length 
sequences. An irreducible polynomial is primitive if and only if it divides 

 for no value of  less than .

MATLAB Function “prn_ambig.m” 

The MATLAB function “prn_ambig.m” calculates and plots the ambiguity 
function associated with a given PRN code. It is given in Listing 4.10 in Sec-
tion 4.6. The syntax is as follows:

[ambiguity] = prn_ambig(u)

where u is a vector that defines the input maximal length code (sequence) in 
terms of “1’s”  and “-1’s.”  Fig. 4.23 shows the output of this function for 

u31 = [1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 -1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 1 1 -1 1 -1 -1]

Fig. 4.24 is similar to Fig. 4.23, except in this case the input maximal length 
sequence is 

u15=[1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1]

x6 x5 1+ +

1 2 3 4 5 6

K

output

 Figure 4.22. Linear shift register whose characteristic polynomial is 

.x6 x5 1+ +

xn 1– n 2n 1–
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 Figure 4.23a. Ambiguity function corresponding to a 31-bit PRN code.

 Figure 4.23b. Zero Doppler cut corresponding to Fig. 4.23a. 
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 Figure 4.23c. Contour plot corresponding to Fig. 4.23a. 

 Figure 4.24a. Ambiguity function corresponding to a 15-bit PRN code.
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 Figure 4.24b. Zero Doppler cut corresponding to Fig. 4.24a. 

 Figure 4.24c. Contour plot corresponding to Fig. 4.24a. 
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4.5. “MyRadar” Design Case Study - Visit 4

4.5.1. Problem Statement

Generate the ambiguity plots for the waveforms selected in Chapter 3 for 
this design case study. 

4.5.2. A Design

In this section we will show the 3-D ambiguity diagram and the correspond-
ing contour plot for only the search waveform. The user is advised to do the 
same for the track waveforms. For this purpose, use the MATLAB program 
“myradar_visit4.m”. It is given in Listing 4.11 in Section 4.6. 

Figs. 4.25 and 4.26 show the output figures produced by the program 
“myradar_visit4.m” that correspond to the search waveform. 

 Figure 4.25. Ambiguity plot for “MyRadar” search waveform.
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4.6.  MATLAB Program and Function Listings

This section presents listings for all MATLAB programs/functions used in 
this chapter. The user is strongly advised to rerun the MATLAB programs in 
order to enhance his understanding of this chapter’s material.

Listing 4.1. MATLAB Function “single_pulse_ambg.m”

function x = single_pulse_ambg (taup)
colormap (gray(1))
eps = 0.000001;
i = 0;
taumax = 1.1 * taup;
taumin = -taumax;
for tau = taumin:.05:taumax
   i = i + 1;
   j = 0;
   for fd = -5/taup:.05:5/taup %-2.5:.05:2.5
      j = j + 1;

 Figure 4.26. Contour of the ambiguity plot for “MyRadar” search 
waveform.
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      val1 = 1. - abs(tau) / taup;
      val2 = pi * taup * (1.0 - abs(tau) / taup) * fd;
      x(j,i) = abs( val1 * sin(val2+eps)/(val2+eps));
   end
end

Listing 4.2. MATLAB Program “fig4_2.m”

% Use this program to reproduce Fig. 4.2 of text
close all
clear all
eps = 0.000001;
taup = 2.;
taumin = -1.1 * taup;
taumax = -taumin;
x = single_pulse_ambg(taup);
taux = taumin:.05:taumax;
fdy = -5/taup:.05:5/taup;
figure(1)
mesh(taux,fdy,x);
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')
zlabel ('Ambiguity function')
colormap([.5 .5 .5])
colormap (gray)
figure(2)
contour(taux,fdy,x);
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')
colormap([.5 .5 .5])
colormap (gray)
grid
y = x.^2;
figure(3)
mesh(taux,fdy,y);
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')
zlabel ('Ambiguity function')
colormap([.5 .5 .5])
colormap (gray)
figure(4)
contour(taux,fdy,y);
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')
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colormap([.5 .5 .5])
colormap (gray)
grid

Listing 4.3. MATLAB Program “fig4_4.m”

% Use this program to reproduce Fig 4.4 of text
close all
clear all
eps = 0.0001;
taup = 2.;
fd = -10./taup:.05:10./taup;
uncer = abs( sinc(taup .* fd));
ambg = uncer.^2;
plot(fd, ambg,'k')
xlabel ('Frequency - Hz')
ylabel ('Ambiguity - Volts')
grid
figure(2)
plot (fd, uncer,'k');
xlabel ('Frequency - Hz')
ylabel ('Uncertainty - Volts')
grid

Listing 4.4. MATLAB Function “lfm_ambg.m”

ffunction x = lfm_ambg(taup, b, up_down)
eps = 0.000001;
i = 0;
mu = up_down * b / 2. / taup;
delt = 2.2*taup/250;
delf = 2*b /250;
for tau = -1.1*taup:.05:1.1*taup
   i = i + 1;
   j = 0;
   for fd = -b:.05:b
      j = j + 1;
      val1 = 1. - abs(tau) / taup;
      val2 = pi * taup * (1.0 - abs(tau) / taup);
      val3 = (fd + mu * tau);
      val = val2 * val3;
      x(j,i) = abs( val1 * (sin(val+eps)/(val+eps))).^2;
   end
end
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Listing 4.5. MATLAB Program “fig4_5.m”

% Use this program to reproduce Fig. 4.5 of text
close all
clear all
eps = 0.0001;
taup = 1.;
b =10.;
up_down = 1.;
x = lfm_ambg(taup, b, up_down);
taux = -1.1*taup:.05:1.1*taup;
fdy = -b:.05:b;
figure(1)
mesh(taux,fdy,x)
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')
zlabel ('Ambiguity function')
figure(2)
contour(taux,fdy,x)
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')
y = sqrt(x);
figure(3)
mesh(taux,fdy,y)
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')
zlabel ('Uncertainty function')
figure(4)
contour(taux,fdy,y)
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')

Listing 4.6. MATLAB Program “fig4_6.m”

% Use this program to reproduce Fig. 4.6 of text
close all
clear all
taup = 1;
b =20.;
up_down = 1.;
taux = -1.5*taup:.01:1.5*taup;
fd = 0.;
mu = up_down * b / 2. / taup;
ii = 0.;
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for tau = -1.5*taup:.01:1.5*taup
   ii = ii + 1;
   val1 = 1. - abs(tau) / taup;
   val2 = pi * taup * (1.0 - abs(tau) / taup);
   val3 = (fd + mu * tau);
   val = val2 * val3;
   x(ii) = abs( val1 * (sin(val+eps)/(val+eps)));
end
figure(1)
plot(taux,x)
grid
xlabel ('Delay - seconds')
ylabel ('Uncertainty')
figure(2)
plot(taux,x.^2)
grid
xlabel ('Delay - seconds')
ylabel ('Ambiguity')

Listing 4.7. MATLAB Function “train_ambg.m”

function x = train_ambg (taup, n, pri)
if( taup > pri / 2.)
   'ERROR. Pulsewidth must be less than the PRI/2.'
   return
end
gap = pri - 2.*taup;
eps = 0.000001;
b = 1. / taup;
ii = 0.;
for q = -(n-1):1:n-1
   tauo = q - taup ;
   index = -1.;
   for tau1 = tauo:0.0533:tauo+gap+2.*taup
      index = index + 1;
      tau = -taup + index*.0533;
      ii = ii + 1;
      j = 0.;
      for fd = -b:.0533:b
         j = j + 1;
         if (abs(tau) <= taup)
            val1 = 1. -abs(tau) / taup;
            val2 = pi * taup * fd * (1.0 - abs(tau) / taup);
            val3 = abs(val1 * sin(val2+eps) /(val2+eps)); 
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            val4 = abs((sin(pi*fd*(n-abs(q))*pri+eps))/(sin(pi*fd*pri+eps)));
            x(j,ii)=  val3 * val4 / n;
         else
            x(j,ii) = 0.;
         end
      end
   end
end

Listing 4.8. MATLAB Program “fig4_8.m”

% Use this program to reproduce Fig. 4.8 of text
close all
clear all
taup =0.2;
pri=1;
n=5;
x = train_ambg (taup, n, pri);
figure(1)
mesh(x)
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')
zlabel ('Ambiguity function')
figure(2)
contour(x);
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')

Listing 4.9. MATLAB Function “barker_ambig.m”

function [ambig] = barker_ambig(uinput)
% Compute and plot the ambiguity function for a Barker code
%Compute the ambiguity function
% by utilizing the FFT through combining multiple range cuts
N = size(uinput,2);
tau = N;
Barker_code = uinput;
samp_num = size(Barker_code,2) *10;
n = ceil(log(samp_num) / log(2));
nfft = 2^n;
u(1:nfft) = 0;
j = 0;
for index = 1:10:samp_num
    index;
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    j = j+1;
    u(index:index+10-1) = Barker_code(j);
end
v = u;
delay = linspace(-tau, tau, nfft);
freq_del = 12 / tau /100;
j = 0;
vfft = fft(v,nfft);
for freq = -6/tau:freq_del:6/tau;
    j = j+1;
    exf = exp(sqrt(-1) * 2. * pi * freq .* delay);
    u_times_exf = u .* exf;
    ufft = fft(u_times_exf,nfft);
    prod = ufft .* conj(vfft);
    ambig(:,j) = fftshift(abs(ifft(prod))');
end
freq = -6/tau:freq_del:6/tau;
delay = linspace(-N,N,nfft);
figure (1)
mesh(freq,delay,ambig ./ max(max(ambig)))
colormap([.5 .5 .5])
colormap(gray)
axis tight
xlabel('frequency')
ylabel('delay')
zlabel('ambiguity function')
figure (2)
value = 10 * N ;
plot(delay,ambig(:,51)/value,'k')
xlabel('delay')
ylabel('normalized amibiguity cut for f=0')
grid
axis tight
figure (3)
contour(freq,delay,ambig ./ max(max(ambig)))
colormap([.5 .5 .5])
colormap (gray)
xlabel('frequency')
ylabel('delay')
grid on

Listing 4.10. MATLAB Function “prn_ambig.m”

function [ambig] = prn_ambig(uinput)
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% Compute and plot the ambiguity function for a PRN code
% Compute the ambiguity function by utilizing the FFT 
% through combining multiple range cuts

N = size(uinput,2);
tau = N;
PRN = uinput;
samp_num = size(PRN,2) * 10;
n = ceil(log(samp_num) / log(2));
nfft = 2^n;
u(1:nfft) = 0;
j = 0;
for index = 1:10:samp_num
    index;
    j = j+1;
    u(index:index+10-1) = PRN(j);
end
% set-up the array v
v = u;
delay = linspace(0,5*tau,nfft);
freq_del = 8 / tau /100;
j = 0;
vfft = fft(v,nfft);
for freq = -4/tau:freq_del:4/tau;
    j = j+1;
    exf = exp(sqrt(-1) * 2. * pi * freq .* delay);
    u_times_exf = u .* exf;
    ufft = fft(u_times_exf,nfft);
    prod = ufft .* conj(vfft);
    ambig(:,j) = fftshift(abs(ifft(prod))');
end
freq = -4/tau:freq_del:4/tau;
delay = linspace(-N,N,nfft);
figure(1)
mesh(freq,delay,ambig ./ max(max(ambig)))
colormap([.5 .5 .5])
colormap(gray)
axis tight
xlabel('frequency')
ylabel('delay')
zlabel('ambiguity function a PRN code')
figure(2)
plot(delay,ambig(:,51)/(max(max(ambig))),'k')
xlabel('delay')
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ylabel('normalized amibiguity cut for f=0')
grid
axis tight
figure(3)
contour(freq,delay,ambig ./ max(max(ambig)))
axis tight
colormap([.5 .5 .5])
colormap(gray)
xlabel('frequency')
ylabel('delay')

Listing 4.11. MATLAB Program “myradar_visit4.m”

% Use this program to reproduce Figs. 4.25 to 4.27 of the text
close all
clear all
eps = 0.0001;
taup = 20.e-6;
b =1.e6;
up_down = 1.;
i = 0;
mu = up_down * b / 2. / taup;
delt = 2.2*taup /250;
delf = 2*b /300;
for tau = -1.1*taup:delt:1.1*taup
   i = i + 1;
   j = 0;
   for fd = -b:delf:b
      j = j + 1;
      val1 = 1. - abs(tau) / taup;
      val2 = pi * taup * (1.0 - abs(tau) / taup);
      val3 = (fd + mu * tau);
      val = val2 * val3;
      x(j,i) = abs( val1 * (sin(val+eps)/(val+eps))).^2;
   end
end
taux = linspace(-1.1*taup,1.1*taup,251).*1e6;
fdy = linspace(-b,b,301) .* 1e-6;
figure(1)
mesh(taux,fdy,sqrt(x))
xlabel ('Delay - Micro-seconds')
ylabel ('Doppler - MHz')
zlabel ('Ambiguity function')
figure(2)
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contour(taux,fdy,sqrt(x))
xlabel ('Delay - Micro-seconds')
ylabel ('Doppler - MHz')
grid
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Range resolution for a given radar can be significantly improved by using 
very short pulses. Unfortunately, utilizing short pulses decreases the average 
transmitted power, which can hinder the radar’s normal modes of operation, 
particularly for multi-function and surveillance radars. Since the average trans-
mitted power is directly linked to the receiver SNR, it is often desirable to 
increase the pulsewidth (i.e., increase the average transmitted power) while 
simultaneously maintaining adequate range resolution. This can be made pos-
sible by using pulse compression techniques. Pulse compression allows us to 
achieve the average transmitted power of a relatively long pulse, while obtain-
ing the range resolution corresponding to a short pulse. In this chapter, we will 
analyze analog and digital pulse compression techniques.

Two LFM pulse compression techniques are discussed in this chapter. The 
first technique is known as “correlation processing” which is predominantly 
used for narrow band and some medium band radar operations. The second 
technique is called “stretch processing” and is normally used for extremely 
wide band radar operations.

5.1. Time-Bandwidth Product

Consider a radar system that employs a matched filter receiver. Let the 
matched filter receiver bandwidth be denoted as . Then the noise power 
available within the matched filter bandwidth is given by

(5.1)

B

Ni 2
N0

2
------ B=
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where the factor of two is used to account for both negative and positive fre-
quency bands, as illustrated in Fig. 5.1. The average input signal power over a 
pulse duration  is

(5.2)

 is the signal energy. Consequently, the matched filter input SNR is given by

(5.3)

The output peak instantaneous SNR to the input SNR ratio is

(5.4)

The quantity  is referred to as the “time-bandwidth product” for a given 
waveform or its corresponding matched filter. The factor  by which the 
output SNR is increased over that at the input is called the matched filter gain, 
or simply the compression gain. 

In general, the time-bandwidth product of an unmodulated pulse approaches 
unity. The time-bandwidth product of a pulse can be made much greater than 
unity by using frequency or phase modulation. If the radar receiver transfer 
function is perfectly matched to that of the input waveform, then the compres-
sion gain is equal to . Clearly, the compression gain becomes smaller than 

 as the spectrum of the matched filter deviates from that of the input signal. 

5.2. Radar Equation with Pulse Compression

The radar equation for a pulsed radar can be written as

B B

N0 2!

0

noise PSD

frequency

Figure 5.1. Input noise power.
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(5.5)

where  is peak power,  is pulsewidth,  is antenna gain,  is target RCS, 
 is range,  is Boltzman’s constant,  is effective noise temperature,  is 

noise figure, and  is total radar losses.

Pulse compression radars transmit relatively long pulses (with modulation) 
and process the radar echo into very short pulses (compressed). One can view 
the transmitted pulse as being composed of a series of very short subpulses 
(duty is 100%), where the width of each subpulse is equal to the desired com-
pressed pulsewidth. Denote the compressed pulsewidth as . Thus, for an 
individual subpulse, Eq. (5.5) can be written as

(5.6)

The SNR for the uncompressed pulse is then derived from Eq. (5.6) as

(5.7)

where  is the number of subpulses. Equation (5.7) is denoted as the radar 
equation with pulse compression.

Observation of Eqs. (5.5) and (5.7) indicates the following (note that both 
equations have the same form): For a given set of radar parameters, and as long 
as the transmitted pulse remains unchanged, the SNR is also unchanged 
regardless of the signal bandwidth. More precisely, when pulse compression is 
used, the detection range is maintained while the range resolution is drastically 
improved by keeping the pulsewidth unchanged and by increasing the band-
width. Remember that range resolution is proportional to the inverse of the sig-
nal bandwidth,

(5.8)

5.3.  LFM Pulse Compression

Linear FM pulse compression is accomplished by adding frequency modula-
tion to a long pulse at transmission, and by using a matched filter receiver in 
order to compress the received signal. As a result, the matched filter output is 
compressed by a factor , where  is the pulsewidth and  is the 
bandwidth. Thus, by using long pulses and wideband LFM modulation large 
compression ratios can be achieved. 
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Figure 5.2 shows an ideal LFM pulse compression process. Part (a) shows 
the envelope for a wide pulse, part (b) shows the frequency modulation (in this 
case it is an upchirp LFM) with bandwidth . Part (c) shows the 
matched filter time-delay characteristic, while part (d) shows the compressed 
pulse envelope. Finally part (e) shows the Matched filter input / output wave-
forms.

 Fig. 5.3 illustrates the advantage of pulse compression using more realistic 
LFM waveform. In this example, two targets with RCS  and 

 are detected. The two targets are not separated enough in time to 
be resolved. Fig. 5.3a shows the composite echo signal from those targets. 

B f2 f1–=

(a)

(b)

(c)

(d)

(e)

Matched Filter

" '

f2

f1

) t

) t t1–

f1 f2

"

" ' "

 Figure 5.2 Ideal LFM pulse compression.
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Clearly, the target returns overlap and, thus, they are not resolved. However, 
after pulse compression the two pulses are completely separated and are 
resolved as two distinct targets. In fact, when using LFM, returns from neigh-
boring targets are resolved as long as they are separated in time by , the 
compressed pulsewidth. This figure can be reproduced using MATLAB pro-
gram “fig5_3.m”  given in Listing 5.1 in Section 5.5.

" n1

 Figure 5.3a. Composite echo signal for two unresolved targets.

 Figure 5.3b. Composite echo signal corresponding to Fig. 5.3a, after 
pulse compression. 
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5.3.1. Correlation Processor

Radar operations (search, track, etc.) are usually carried out over a specified 
range window, referred to as the receive window and defined by the difference 
between the radar maximum and minimum range. Returns from all targets 
within the receive window are collected and passed through matched filter cir-
cuitry to perform pulse compression. One implementation of such analog pro-
cessors is the Surface Acoustic Wave (SAW) devices. Because of the recent 
advances in digital computer development, the correlation processor is often 
performed digitally using the FFT. This digital implementation is called Fast 
Convolution Processing (FCP) and can be implemented at base-band. The fast 
convolution process is illustrated in Fig. 5.4

Since the matched filter is a linear time invariant system, its output can be 
described mathematically by the convolution between its input and its impulse 
response, 

(5.9)

where  is the input signal,  is the matched filter impulse response 
(replica), and the  operator symbolically represents convolution. From the 
Fourier transform properties, 

(5.10)

and when both signals are sampled properly, the compressed signal  can 
be computed from

(5.11)

where  is the inverse FFT. When using pulse compression, it is desir-
able to use modulation schemes that can accomplish a maximum pulse com-
pression ratio, and can significantly reduce the sidelobe levels of the 
compressed waveform. For the LFM case the first sidelobe is approximately 

 below the main peak, and for most radar applications this may not be 

FFT multiplier

FFT of

Inv. FFT

input
signal

matched filter
     output

Figure 5.4. Computing the matched filter output  using an FFT.
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sufficient. In practice, high sidelobe levels are not preferable because noise 
and/or jammers located at the sidelobes may interfere with target returns in the 
main lobe. 

Weighting functions (windows) can be used on the compressed pulse spec-
trum in order to reduce the sidelobe levels. The cost associated with such an 
approach is a loss in the main lobe resolution, and a reduction in the peak value 
(i.e., loss in the SNR). Weighting the time domain transmitted or received sig-
nal instead of the compressed pulse spectrum will theoretically achieve the 
same goal. However, this approach is rarely used, since amplitude modulating 
the transmitted waveform introduces extra burdens on the transmitter.

Consider a radar system that utilizes a correlation processor receiver (i.e., 
matched filter). The receive window in meters is defined by 

(5.12)

where  and , respectively, define the maximum and minimum range 
over which the radar performs detection. Typically  is limited to the extent 
of the target complex. The normalized complex transmitted signal has the form 

(5.13)

 is the pulsewidth, , and  is the bandwidth. 

The radar echo signal is similar to the transmitted one with the exception of a 
time delay and an amplitude change that correspond to the target RCS. Con-
sider a target at range . The echo received by the radar from this target is 

(5.14)

where  is proportional to target RCS, antenna gain, and range attenuation. 
The time delay  is given by 

 (5.15)

The first step of the processing consists of removing the frequency . This 
is accomplished by mixing  with a reference signal whose phase is . 
The phase of the resultant signal, after low pass filtering, is then given by 

(5.16)

and the instantaneous frequency is

(5.17)
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The quadrature components are

(5.18)

Sampling the quadrature components is performed next. The number of sam-
ples, , must be chosen so that foldover (ambiguity) in the spectrum is 
avoided. For this purpose, the sampling frequency,  (based on the Nyquist 
sampling rate), must be

(5.19)

and the sampling interval is 

(5.20)

Using Eq. (5.17) it can be shown that (the proof is left as an exercise) the fre-
quency resolution of the FFT is

(5.21)

The minimum required number of samples is

(5.22)

Equating Eqs. (5.20) and (5.22) yields

(5.23)

Consequently, a total of  real samples, or  complex samples, is suf-
ficient to completely describe an LFM waveform of duration  and bandwidth 

. For example, an LFM signal of duration  and bandwidth 
 requires 200 real samples to determine the input signal (100 

samples for the I-channel and 100 samples for the Q-channel). 

For better implementation of the FFT  is extended to the next power of 
two, by zero padding. Thus, the total number of samples, for some positive 
integer , is 

(5.24)

The final steps of the FCP processing include: (1) taking the FFT of the sam-
pled sequence; (2) multiplying the frequency domain sequence of the signal 
with the FFT of the matched filter impulse response; and (3) performing the 
inverse FFT of the composite frequency domain sequence in order to generate 
the time domain compressed pulse (HRR profile). Of course, weighting, 
antenna gain, and range attenuation compensation must also be performed. 
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Assume that  targets at ranges , , and so forth are within the receive 
window. From superposition, the phase of the down-converted signal is 

(5.25)

The times  represent the two-way time delays, 
where  coincides with the start of the receive window. 

 MATLAB Function “matched_filter.m”

The function “matched_filter.m” performs fast convolution processing. It is 
given in Listing 5.2 in Section 5.5. The syntax is as follows:

[y] = matched_filter(nscat, taup, b, rrec, scat_range, scat_rcs, win)

where

The user can access this function either by a MATLAB function call, or by 
executing the MATLAB program “matched_filter_gui.m” which utilizes a 
MATLAB based GUI. The work space associated with this program is shown 
in Fig. 5.5. The outputs for this function include plots of the compressed and 
uncompressed signals as well as the replica used in the pulse compression pro-
cess. This function utilizes the function “power_integer_2.m” which imple-
ments Eq. (5.24). It is given in Listing 5.3 in Section 5.5. 

Symbol Description Units Status

nscat number of point scatterers within the 
received window

none input

rrec  receive window size m input

taup uncompressed pulsewidth seconds input

b chirp bandwidth Hz input

scat_range vector of scatterers’ relative range 
(within the receive window)

m input

scat_rcs vector of scatterers’ RCS m2 input

win 0 = no window

 1 = Hamming 

2 = Kaiser with parameter pi

3 = Chebychev - sidelobes at -60dB

none input

y normalized compressed output volts output

I R1 R2
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/
2
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2 3

i 1=

I
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As an example, consider the case where

Note that the compressed pulsed range resolution, without using a window, 
is . Figs. 5.6 shows the real part and the amplitude spectrum for 
the replica used in the pulse compression. Fig. 5.7 shows the uncompressed 
echo, while Fig. 5.8 shows the compressed MF output. Note that the scatterer 
amplitude attenuation is a function of the inverse of the scatterer’s range within 
the receive window. 

nscat 3

rrec 200 m

taup 0.005 ms

b 100e6 Hz

scat_range [10 75 120] m

scat_rcs [1 2 1]m2

win 2

 Figure 5.5. GUI workspace associated with the function “matched_filter_gui.m”.

) R 1.5m=
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 Figure 5.6. Real part and amplitude spectrum of replica. 

 Figure 5.7. Uncompressed echo signal. Scatterers are not resolved. 
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Fig. 5.9 is similar to Fig. 5.8, except in this case the first and second scatter-
ers are less than 1.5 meter apart (they are at 70 and 71 meters within the receive 
window).

 Figure 5.8. Compressed echo signal corresponding to Fig. 5.7. 
Scatterers are completely resolved. 

 Figure 5.9. Compressed echo signal of three scatterers, two of 
which are not resolved. 
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5.3.2.  Stretch Processor

Stretch processing, also known as “active correlation,” is normally used to 
process extremely high bandwidth LFM waveforms. This processing technique 
consists of the following steps: First, the radar returns are mixed with a replica 
(reference signal) of the transmitted waveform. This is followed by Low Pass 
Filtering (LPF) and coherent detection. Next, Analog to Digital (A/D) conver-
sion is performed; and finally, a bank of Narrow Band Filters (NBFs) is used in 
order to extract the tones that are proportional to target range, since stretch pro-
cessing effectively converts time delay into frequency. All returns from the 
same range bin produce the same constant frequency. Fig. 5.10a shows a block 
diagram for a stretch processing receiver. The reference signal is an LFM 
waveform that has the same LFM slope as the transmitted LFM signal. It exists 
over the duration of the radar “receive-window,” which is computed from the 
difference between the radar maximum and minimum range. Denote the start 
frequency of the reference chirp as .

Consider the case when the radar receives returns from a few close (in time 
or range) targets, as illustrated in Fig. 5.10a. Mixing with the reference signal 
and performing low pass filtering are effectively equivalent to subtracting the 
return frequency chirp from the reference signal. Thus, the LPF output consists 
of constant tones corresponding to the targets’ positions. The normalized trans-
mitted signal can be expressed by

(5.26)

where  is the LFM coefficient and  is the chirp start frequency. 
Assume a point scatterer at range . The signal received by the radar is

(5.27)

where  is proportional to target RCS, antenna gain, and range attenuation. 
The time delay  is 

(5.28)

The reference signal is 

(5.29)

The receive window in seconds is 

(5.30)
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It is customary to let . The output of the mixer is the product of the 
received and reference signals. After low pass filtering the signal is 

(5.31)

Substituting Eq. (5.28) into (5.31) and collecting terms yield

(5.32)

and since , Eq. (5.32) is approximated by

(5.33)

The instantaneous frequency is

(5.34)

which clearly indicates that target range is proportional to the instantaneous 
frequency. Therefore, proper sampling of the LPF output and taking the FFT of 
the sampled sequence lead to the following conclusion: a peak at some fre-
quency  indicates presence of a target at range 

(5.35)

Assume  close targets at ranges , , and so forth ( ). 
From superposition, the total signal is

(5.36)

where  are proportional to the targets’ cross sections, 
antenna gain, and range. The times  represent 
the two-way time delays, where  coincides with the start of the receive win-
dow. Using Eq. (5.32) the overall signal at the output of the LPF can then be 
described by 

(5.37)

And hence, target returns appear as constant frequency tones that can be 
resolved using the FFT. Consequently, determining the proper sampling rate 
and FFT size is very critical. The rest of this section presents a methodology 
for computing the proper FFT parameters required for stretch processing.
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Assume a radar system using a stretch processor receiver. The pulsewidth is 
 and the chirp bandwidth is . Since stretch processing is normally used in 

extreme bandwidth cases (i.e., very large ), the receive window over which 
radar returns will be processed is typically limited to from a few meters to pos-
sibly less than 100 meters. The compressed pulse range resolution is computed 
from Eq. (5.8). Declare the FFT size to be  and its frequency resolution to be 

. The frequency resolution can be computed using the following procedure: 
consider two adjacent point scatterers at range  and . The minimum fre-
quency separation, , between those scatterers so that they are resolved can 
be computed from Eq. (5.34). More precisely,

 (5.38)

Substituting Eq. (5.8) into Eq. (5.38) yields

(5.39)

The maximum frequency resolvable by the FFT is limited to the region 
. Thus, the maximum resolvable frequency is 

 (5.40)

Using Eqs. (5.30) and (5.39) into Eq. (5.40) and collecting terms yield

(5.41)

For better implementation of the FFT, choose an FFT of size 

(5.42)

 is a nonzero positive integer. The sampling interval is then given by

(5.43)

MATLAB Function “stretch.m”

The function “stretch.m” presents a digital implementation of stretch pro-
cessing. It is given in Listing 5.4 in Section 5.5. The syntax is as follows:

[y] = stretch (nscat, taup, f0, b, scat_range, rrec, scat_rcs, win)

where
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The user can access this function either by a MATLAB function call or by exe-
cuting the MATLAB program “stretch_gui.m” which utilizes MATLAB based 
GUI and is shown in Fig. 5.10b. The outputs of this function are the complex 
array  and plots of the uncompressed and compressed echo signal versus 
time. As an example, consider the case where

Note that the compressed pulse range resolution, without using a window, is 
. Figs. 5.11 and 5.12, respectively, show the uncompressed and 

compressed echo signals corresponding to this example. Fig. 5.13 is similar to 
Figs. 5.11 and 5.12 except in this case two of the scatterers are less than 15 cm 
apart (i.e., unresolved targets at ).

Symbol Description Units Status

nscat number of point scatterers within the 
received window

none input

taup uncompressed pulsewidth seconds input

f0 chirp start frequency Hz input

b chirp bandwidth Hz input

scat_range vector of scatterers’ range m input

rrec range receive window m input

scat_rcs vector of scatterers’ RCS m2 input

win 0 = no window

 1 = Hamming 

2 = Kaiser with parameter pi

3 = Chebychev - sidelobes at -60dB

none input

y compressed output volts output

nscat 3

taup 10 ms

f0 5.6 GHz

b 1 GHz

rrec 30 m

scat_range  [2 5 10] m

scat_rcs [1, 1, 2] m2

win 2 (Kaiser)

y

) R 0.15m=

Rrelative 3 3.1;A Bm=
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 Figure 5.10b. GUI workspace associated with the function “stretch_gui.m”.

 Figure 5.11. Uncompressed echo signal. Three targets are unresolved. 

© 2004 by Chapman & Hall/CRC CRC Press LLC



 Figure 5.12. Compressed echo signal. Three targets are resolved. 

 Figure 5.13a. Uncompressed echo signal. Three targets. 
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5.3.3. Distortion Due to Target Velocity 

Up to this point, we have analyzed pulse compression with no regard to tar-
get velocity. In fact, all analyses provided assumed stationary targets. Uncom-
pensated target radial velocity, or equivalently Doppler shift, degrades the 
quality of the HRR profile generated by pulse compression. In Chapter 3, the 
effects of radial velocity on SFW were analyzed. Similar distortion in the HRR 
profile is also present with LFM waveforms when target radial velocity is not 
compensated for. 

The two effects of target radial velocity (Doppler frequency) on the radar 
received pulse were developed in Chapter 1. When the target radial velocity is 
not zero, the received pulsewidth is expanded (or compressed) by the time dila-
tion factor. Additionally, the received pulse center frequency is shifted by the 
amount of Doppler frequency. When these effects are not compensated for, the 
pulse compression processor output is distorted. This is illustrated in Fig. 5.14. 
Fig. 5.14a shows a typical output of the pulse compression processor with no 
distortion. Alternatively, Figs. 5.14b, 5.14c, and 5.14d show the output of the 
pulse compression processor when 5% shift of the chirp center frequency, 10% 
time dilation, and both are present. 

 Figure 5.13b. Compressed echo signal. Three targets, two are not 
resolved. 
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 Figure 5.14a. Compressed pulse output of a pulse compression processor. No 
distortion is present. This figure can be reproduced using 
MATLAB program “fig5_14”  given in Listing 5.5 in Section 5.5.
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 Figure 5.14b. Mismatched compressed pulse; 5% Doppler shift.
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 Figure 5.14c. Mismatched compressed pulse; 10% time dilation.
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 Figure 5.14d. Mismatched compressed pulse; 10% time dilation and 5% 
Doppler shift.
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Correction for the distortion caused by the target radial velocity can be over-
come by using the following approach. Over a period of a few pulses, the radar 
data processor estimates the radial velocity of the target under track. Then, the 
chirp slope and pulsewidth of the next transmitted pulse are changed to 
account for the estimated Doppler frequency and time dilation. 

5.4. “MyRadar” Design Case Study - Visit 5

5.4.1. Problem Statement

Assume that the threat may consist of multiple aircraft and missiles. Show 
how the matched filter receiver can resolve multiple targets with a minimum 
range separation of 50 meters. Also verify that the waveforms selected in 
Chapter 3 are adequate to maintain proper detection and tracking (i.e., pro-
vide sufficient SNR). 

5.4.2. A Design

It was determined in Chapter 3 that the pulsed compressed range resolutions 
during search and track are respectively given by 

(5.44)

(5.45)

It was also determined that a single search waveform and 4 track waveforms 
would be used. 

Assume that track is initiated once detection is declared. Aircraft target type 
are detected at  while the missile is detected at . 
It was shown in Section 2.10.2.2 that the minimum SNR at these ranges for 
both target types is  when 4-pulse non-coherent integration is uti-
lized along with cumulative detection. It was also determined that a single 
pulse option was not desirable since it required prohibitive values for the peak 
power. At this point one should however take advantage of the increased SNR 
due to pulse compression. From Chapter 3, the pulse compression gain, for the 
selected waveforms, is equal to 100 (10 dB). One should investigate this SNR 
enhancement in the context of eliminating the need for pulse integration.

The pulsed compressed SNR can be computed using Eq. (5.7), which is 
repeated here as Eq. (5.46)

(5.46)
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where , , , , , 
, , and  (from Chapter 3). The search 

pulsewidth is  and the track waveforms are . 
First consider the missile case. The single pulse SNR at the maximum detec-
tion range  is given by

(5.47)

Alternatively, the single pulse SNR, with pulse compression, for the aircraft is

(5.48)

Using these calculated SNR values into the MATLAB program 
“myradar_visit2_2.m” (see Chapter 2) yields

(5.49)

which clearly satisfies the design requirement of . 

Next, consider the matched filter and its replicas and pulsed compressed out-
puts (due to different waveforms). For this purpose use the program 
“matched_filter_gui.m”. Assume a receive window of 200 meters during 
search and 50 meters during track. 

Fig. 5.15 shows the replica and the associated uncompressed and com-
pressed signals. The targets consist of two aircraft separated by 50 meters. Fig. 
5.16 is similar to Fig. 5.15, except it is for track waveform number 4 and the 
target separation is 20 m.
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 Figure 5.15a. Replica associated with search waveform. 

 Figure 5.15b. Uncompressed signal of two aircraft separated by 50 m.
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 Figure 5.15c. Compressed signal corresponding to Fig. 5.15b. No window.

 Figure 5.16a. Replica associated with track waveform number 4.
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 Figure 5.16b. Uncompressed signal of two aircraft separated by 20 m.

 Figure 5.16b. Compressed signal of two aircraft separated by 20 m.
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5.5. MATLAB Program and Function Listings

This section presents listings for all MATLAB programs/functions used in 
this chapter. The user is strongly advised to rerun the MATLAB programs in 
order to enhance his understanding of this chapter’s material.

Listing 5.1. MATLAB Program “fig5_3.m”
% use this program to reproduce Fig. 5.3 of text
clear all
close all
nscat = 2; %two point scatterers
taup = 10e-6; % 10 microsecond uncompressed pulse
b = 50.0e6; % 50 MHz bandwidth
rrec = 50 ; % 50 meter processing window
scat_range = [15 25] ; % scatterers are 15 and 25 meters into window
scat_rcs = [1 2]; % RCS 1 m^2 and 2m^2
winid = 0; %no window used
[y] = matched_filter(nscat,taup,b,rrec,scat_range,scat_rcs,winid);

Listing 5.2. MATLAB Function “matched_filter.m”
function [y] = matched_filter(nscat,taup,b,rrec,scat_range,scat_rcs,winid)
eps = 1.0e-16;
% time bandwidth product
time_B_product = b * taup;
if(time_B_product < 5 )
    fprintf('********** Time Bandwidth product is TOO SMALL *********')
    fprintf('\n Change b and or taup')
    return
end
% speed of light
c = 3.e8; 
% number of samples
n = fix(5 * taup * b)
% initialize input, output and replica vectors
x(nscat,1:n) = 0.;
y(1:n) = 0.;
replica(1:n) = 0.;
% determine proper window
if( winid == 0.)
   win(1:n) = 1.;
   win =win';
else
   if(winid == 1.)
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      win = hamming(n);
   else
      if( winid == 2.)
         win = kaiser(n,pi);
      else
         if(winid == 3.)
            win = chebwin(n,60);
         end
      end
   end
end
% check to ensure that scatterers are within receive window
index = find(scat_range > rrec);
if (index ~= 0)
    'Error. Receive window is too large; or scatterers fall outside window'
   return
end
% calculate sampling interval
t = linspace(-taup/2,taup/2,n);
replica = exp(i * pi * (b/taup) .* t.^2);
figure(1)
subplot(2,1,1)
plot(t,real(replica))
ylabel('Real (part) of replica')
xlabel('time in seconds')
grid
subplot(2,1,2)
sampling_interval = taup / n;
freqlimit = 0.5/ sampling_interval;
freq = linspace(-freqlimit,freqlimit,n);
plot(freq,fftshift(abs(fft(replica))));
ylabel('Spectrum of replica')
xlabel('Frequency in Hz')
grid
 for j = 1:1:nscat
    range = scat_range(j) ;;
    x(j,:) = scat_rcs(j) .* exp(i * pi * (b/taup) .* (t +(2*range/c)).^2) ;
    y = x(j,:)  + y;
end
figure(2)
plot(t,real(y),'k')
xlabel ('Relative delay - seconds')
ylabel ('Uncompressed echo')
grid

© 2004 by Chapman & Hall/CRC CRC Press LLC



out =xcorr(replica, y);
out = out ./ n;
s = taup * c /2;
Npoints = ceil(rrec * n /s);
dist =linspace(0, rrec, Npoints);
delr = c/2/b
figure(3)
plot(dist,abs(out(n:n+Npoints-1)),'k')
xlabel ('Target relative position in meters')
ylabel ('Compressed echo')
grid

Listing 5.3. MATLAB Function “power_integer_2.m”
function n = power_integer_2 (x)
m = 0.;
for j = 1:30
   m = m + 1.;
   delta = x - 2.^m;
   if(delta < 0.)
      n = m;
      return
   else
   end
end

Listing 5.4. MATLAB Function “stretch.m”
function [y] = stretch(nscat,taup,f0,b,rrec,scat_range,scat_rcs,winid)
eps = 1.0e-16;
htau = taup / 2.;
c = 3.e8;
trec = 2. * rrec / c;
n = fix(2. * trec * b);
m = power_integer_2(n);
nfft = 2.^m;
x(nscat,1:n) = 0.;
y(1:n) = 0.;
if(winid == 0.)
   win(1:n) = 1.;
   win =win';
else
   if(winid == 1.)
      win = hamming(n);
   else
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      if( winid == 2.)
         win = kaiser(n,pi);
      else
         if(winid == 3.)
            win = chebwin(n,60);
         end
      end
   end
end
deltar = c / 2. / b;
max_rrec = deltar * nfft / 2.;
maxr = max(scat_range);
if(rrec > max_rrec | maxr >= rrec )
   'Error. Receive window is too large; or scatterers fall outside window'
   return
end
t = linspace(0,taup,n);
for j = 1:1:nscat
    range = scat_range(j);% + rmin;
   psi1 = 4. * pi * range * f0 / c - ...
      4. * pi * b * range * range / c / c/ taup;
   psi2 = (2*4. * pi * b * range / c / taup) .* t;
   x(j,:) = scat_rcs(j) .* exp(i * psi1 + i .* psi2);
   y = y + x(j,:);
end
figure(1)
plot(t,real(y),'k')
xlabel ('Relative delay - seconds')
ylabel ('Uncompressed echo')
ywin = y .* win';
yfft = fft(y,n) ./ n;
out= fftshift(abs(yfft));
figure(2)
delinc = rrec/ n;
%dist = linspace(-delinc-rrec/2,rrec/2,n);
dist = linspace((-rrec/2), rrec/2,n);
plot(dist,out,'k')
xlabel ('Relative range in meters')
ylabel ('Compressed echo')
axis auto
grid
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Listing 5.5. MATLAB Program “fig5_14.m”
% use this program to reproduce Fig. 5.14 of text
clear all
eps = 1.5e-5;
t = 0:0.001:.5;                 
y = chirp(t,0,.25,20);
figure(1)
plot(t,y);
yfft = fft(y,512) ;
ycomp = fftshift(abs(ifft(yfft .* conj(yfft))));
maxval = max (ycomp);
ycomp = eps + ycomp ./ maxval; 
figure(1)
del = .5 /512.;
tt = 0:del:.5-eps;
plot (tt,ycomp,'k')
axis tight
xlabel ('Relative delay - seconds');
ylabel('Normalized compressed pulse')
grid
y1 = chirp (t,0,.25,21); % change center frequency
y1fft = fft(y1,512);
y1comp = fftshift(abs(ifft(y1fft .* conj(yfft))));
maxval = max (y1comp);
y1comp = eps + y1comp ./ maxval; 
figure(2)
plot (tt,y1comp,'k')
axis tight
xlabel ('Relative delay - seconds');
ylabel('Normalized compressed pulse')
grid
t = 0:0.001:.45; % change pulsewidth                
y2 = chirp (t,0,.225,20);
y2fft = fft(y2,512);
y2comp = fftshift(abs(ifft(y2fft .* conj(yfft))));
maxval = max (y2comp);
y2comp = eps + y2comp ./ maxval; 
figure(3)
plot (tt,y2comp,'k')
axis tight
xlabel ('Relative delay - seconds');
ylabel('Normalized compressed pulse')
grid
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6.1. Clutter Definition

Clutter is a term used to describe any object that may generate unwanted 
radar returns that may interfere with normal radar operations. Parasitic returns 
that enter the radar through the antenna’s main lobe are called main lobe clut-
ter; otherwise they are called sidelobe clutter. Clutter can be classified into two 
main categories: surface clutter and airborne or volume clutter. Surface clutter 
includes trees, vegetation, ground terrain, man-made structures, and sea sur-
face (sea clutter). Volume clutter normally has a large extent (size) and 
includes chaff, rain, birds, and insects. Surface clutter changes from one area 
to another, while volume clutter may be more predictable.  

Clutter echoes are random and have thermal noise-like characteristics 
because the individual clutter components (scatterers) have random phases and 
amplitudes. In many cases, the clutter signal level is much higher than the 
receiver noise level. Thus, the radar’s ability to detect targets embedded in 
high clutter background depends on the Signal-to-Clutter Ratio (SCR) rather 
than the SNR. 

White noise normally introduces the same amount of noise power across all 
radar range bins, while clutter power may vary within a single range bin. Since 
clutter returns are target-like echoes, the only way a radar can distinguish tar-
get returns from clutter echoes is based on the target RCS , and the antici-
pated clutter RCS  (via clutter map). Clutter RCS can be defined as the 
equivalent radar cross section attributed to reflections from a clutter area, . 
The average clutter RCS is given by 

(6.1)

! t
! c

Ac

! c ! 0Ac=
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where  is the clutter scattering coefficient, a dimensionless quan-
tity that is often expressed in dB. Some radar engineers express  in terms of 
squared centimeters per squared meter. In these cases,  is  higher than 
normal.

6.2. Surface Clutter

Surface clutter includes both land and sea clutter, and is often called area 
clutter. Area clutter manifests itself in airborne radars in the look-down mode. 
It is also a major concern for ground-based radars when searching for targets at 
low grazing angles. The grazing angle  is the angle from the surface of the 
earth to the main axis of the illuminating beam, as illustrated in Fig. 6.1.

Three factors affect the amount of clutter in the radar beam. They are the 
grazing angle, surface roughness, and the radar wavelength. Typically, the clut-
ter scattering coefficient  is larger for smaller wavelengths. Fig. 6.2 shows a 
sketch describing the dependency of  on the grazing angle. Three regions 
are identified; they are the low grazing angle region, flat or plateau region, and 
the high grazing angle region.

! 0 m2 m2"# $
! 0

! 0 40dB

%g

%gearth surface

Figure 6.1. Definition of grazing angle.
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 Figure 6.2. Clutter regions.
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The low grazing angle region extends from zero to about the critical angle. 
The critical angle is defined by Rayleigh as the angle below which a surface is 
considered to be smooth, and above which a surface is considered to be rough; 
Denote the root mean square (rms) of a surface height irregularity as , 
then according to the Rayleigh criteria the surface is considered to be smooth if

(6.2)

Consider a wave incident on a rough surface, as shown in Fig. 6.3. Due to 
surface height irregularity (surface roughness), the “rough path” is longer than 
the “smooth path” by a distance . This path difference translates 
into a phase differential :

(6.3)

The critical angle  is then computed when  (first null), thus 

(6.4)

or equivalently,

(6.5)

In the case of sea clutter, for example, the rms surface height irregularity is
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 Figure 6.3. Rough surface definition.
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(6.6)

where  is the sea state, which is tabulated in several cited references. The 
sea state is characterized by the wave height, period, length, particle velocity, 
and wind velocity. For example,  refers to a moderate sea state, 
where in this case the wave height is approximately between 

, the wave period 6.5 to 4.5 seconds, wave length 
, wave velocity , and wind 

velocity . 

Clutter at low grazing angles is often referred to as diffuse clutter, where 
there are a large number of clutter returns in the radar beam (non-coherent 
reflections). In the flat region the dependency of  on the grazing angle is 
minimal. Clutter in the high grazing angle region is more specular (coherent 
reflections) and the diffuse clutter components disappear. In this region the 
smooth surfaces have larger  than rough surfaces, opposite of the low graz-
ing angle region.

6.2.1.  Radar Equation for Area Clutter - Airborne Radar

Consider an airborne radar in the look-down mode shown in Fig. 6.4. The 
intersection of the antenna beam with the ground defines an elliptically shaped 
footprint. The size of the footprint is a function of the grazing angle and the 
antenna 3dB beamwidth , as illustrated in Fig. 6.5. The footprint is 
divided into many ground range bins each of size , where  is 
the pulsewidth.

From Fig. 6.5, the clutter area  is 

(6.7)
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Figure 6.4. Airborne radar in the look-down mode.

Ac

footprint

R

- 3dB

© 2004 by Chapman & Hall/CRC CRC Press LLC



The power received by the radar from a scatterer within  is given by the 
radar equation as

(6.8)

where, as usual,  is the peak transmitted power,  is the antenna gain,  is 
the wavelength, and  is the target RCS. Similarly, the received power from 
clutter is

(6.9)

where the subscript  is used for area clutter. Substituting Eq. (6.1) for  
into Eq. (6.9), we can then obtain the SCR for area clutter by dividing Eq. (6.8) 
by Eq. (6.9). More precisely,

(6.10)

Example: 

Consider an airborne radar shown in Fig. 6.4. Let the antenna 3dB beam-
width be , the pulsewidth , range , and 
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grazing angle . The target RCS is . Assume that the clut-
ter reflection coefficient is  . Compute the SCR.

Solution: 

The SCR is given by Eq. (6.10) as

It follows that

Thus, for reliable detection the radar must somehow increase its SCR by at 
least , where  is on the order of  or better.

6.2.2. Radar Equation for Area Clutter - Ground Based Radar

Again the received power from clutter is also calculated using Eq. (6.9). 
However, in this case the clutter RCS  is computed differently. It is

(6.11)

where  is the main beam clutter RCS and  is the sidelobe clutter 
RCS, as illustrated in Fig. 6.6. 
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 Figure 6.6. Geometry for ground based radar clutter
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In order to calculate the total clutter RCS given in Eq. (6.11), one must first 
compute the corresponding clutter areas for both the main beam and the side-
lobes. For this purpose, consider the geometry shown in Fig. 6.7. The angles 

 represent the antenna 3-dB azimuth and elevation beamwidths, 
respectively. The radar height (from the ground to the phase center of the 
antenna) is denoted by , while the target height is denoted by . The radar 
slant range is , and its ground projection is . The range resolution is  
and its ground projection is . The main beam clutter area is denoted by 

 and the sidelobe clutter area is denoted by .
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 Figure 6.7. Clutter geometry for ground based radar. Side view and 
top view.
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From Fig. 6.7 the following relations can be derived

(6.12)

(6.13)

(6.14)

where  is the radar range resolution. The slant range ground projection is

(6.15)

It follows that the main beam and the sidelobe clutter areas are

(6.16)

(6.17)

Assume a radar antenna beam  of the form

(6.18)

(6.19)

Then the main beam clutter RCS is 

(6.20)

and the sidelobe clutter RCS is

(6.21)

where the quantity  is the root-mean-square (rms) for the antenna side-
lobe level.

Finally, in order to account for the variation of the clutter RCS versus range, 
one can calculate the total clutter RCS as a function of range. It is given by

(6.22)
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(6.23)

where  is the Earth’s radius equal to . The denominator in Eq. 
(6.22) is put in that format in order to account for refraction and for round 
(spherical) Earth effects.  

The radar SNR due to a target at range  is 

(6.24)

where, as usual,  is the peak transmitted power,  is the antenna gain,  is 
the wavelength,  is the target RCS,  is Boltzman’s constant,  is the 
effective noise temperature,  is the radar operating bandwidth,  is the 
receiver noise figure, and  is the total radar losses. Similarly, the Clutter-to-
Noise (CNR) at the radar is

(6.25)

where the  is calculated using Eq. (6.21).

When the clutter statistic is Gaussian, the clutter signal return and the noise 
return can be combined, and a new value for determining the radar measure-
ment accuracy is derived from the Signal-to-Clutter+Noise-Ratio, denoted by 
SIR. It is given by

(6.26)

Note that the  is computed by dividing Eq.(6.24) by Eq. (6.25).

MATLAB Function “clutter_rcs.m”

The function “clutter_rcs.m” implements Eq. (6.22); it is given in Listing 
6.1 in Section 6.6. It also generates plots of the clutter RCS and the CNR ver-
sus the radar slant range. Its outputs include the clutter RCS in dBsm and the 
CNR in dB. The syntax is as follows:

[sigmaC,CNR] = clutter_rcs(sigma0, thetaE, thetaA, SL, range, hr, ht, pt, f0, b, 
t0, f, l, ant_id)   

where
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A GUI called “clutter_rcs_gui” was developed for this function. Executing 
this GUI generates plots of the  and  versus range. Figure 6.8 shows 
typical plots produced by this GUI using the antenna pattern defined in Eq. 
(6.18). Figure 6.9 is similar to Fig. 6.8 except in this case Eq. (6.19) is used for 
the antenna pattern. Note that the dip in the clutter RCS (at very close range) 
occurs at the grazing angle corresponding to the null between the main beam 
and the first sidelobe. Fig. 6.9c shows the GUI workspace associated with this 
function.

In order to reproduce those two figures use the following MATLAB calls:

[sigmaC,CNR] = clutter_rcs(-20, 2, 1, -20, linspace(2,50,100), 3, 100, 75, 
5.6e9, 1e6, 290, 6, 10, 1) (6.27)

[sigmaC,CNR] = clutter_rcs(-20, 2, 1, -25, linspace(2,50,100), 3, 100, 100, 
5.6e9, 1e6, 290, 6, 10, 2) (6.28)

Symbol Description Units Status

sigma0 clutter back scatterer coefficient dB input

thetaE antenna 3dB elevation beamwidth degrees input

thetaA antenna 3dB azimuth beamwidth degrees input

SL antenna sidelobe level dB input

range range; can be a vector or a single value Km input

hr radar height meters input

ht target height meters input

pt radar peak power KW input

f0 radar operating frequency Hz input

b bandwidth Hz input

t0 effective noise temperature Kelvins input

f noise figure dB input

l radar losses dB input

ant_id 1 for (sin(x)/x)^2 pattern

2 for Gaussian pattern 

none input

sigmac clutter RCS; can be either vector or sin-
gle value depending on “range”

dB output

CNR clutter to noise ratio; can be either vec-
tor or single value depending on 

“range”

dB output

! c CNR
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 Figure 6.8a. Clutter RCS versus range using the function call in Eq. (6.27).

 Figure 6.8b. CNR versus range using the function call in Eq. (6.27).
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 Figure 6.9a. Clutter RCS versus range using the function call in Eq. (6.28).

 Figure 6.9b. CNR versus range using the function call in Eq. (6.28).
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 Figure 6.9c. GUI workspace for “clutter_rcs_gui.m”.

© 2004 by Chapman & Hall/CRC CRC Press LLC



6.3. Volume Clutter

Volume clutter has large extents and includes rain (weather), chaff, birds, 
and insects. The volume clutter coefficient is normally expressed in square 
meters (RCS per resolution volume). Birds, insects, and other flying particles 
are often referred to as angle clutter or biological clutter. 

As mentioned earlier, chaff is used as an ECM technique by hostile forces. It 
consists of a large number of dipole reflectors with large RCS values. Histori-
cally, chaff was made of aluminum foil; however, in recent years most chaff is 
made of the more rigid fiberglass with conductive coating. The maximum chaff 
RCS occurs when the dipole length  is one half the radar wavelength. 

Weather or rain clutter is easier to suppress than chaff, since rain droplets 
can be viewed as perfect small spheres. We can use the Rayleigh approxima-
tion of a perfect sphere to estimate the rain droplets’ RCS. The Rayleigh 
approximation, without regard to the propagation medium index of refraction 
is:

(6.29)

where , and  is radius of a rain droplet.

Electromagnetic waves when reflected from a perfect sphere become 
strongly co-polarized (have the same polarization as the incident waves). Con-
sequently, if the radar transmits, for example, a right-hand-circular (RHC) 
polarized wave, then the received waves are left-hand-circular (LHC) polar-
ized, because they are propagating in the opposite direction. Therefore, the 
back-scattered energy from rain droplets retains the same wave rotation (polar-
ization) as the incident wave, but has a reversed direction of propagation. It 
follows that radars can suppress rain clutter by co-polarizing the radar transmit 
and receive antennas. 

Denote  as RCS per unit resolution volume . It is computed as the sum 
of all individual scatterers RCS within the volume,

(6.30)

where  is the total number of scatterers within the resolution volume. Thus, 
the total RCS of a single resolution volume is 

(6.31)
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A resolution volume is shown in Fig. 6.10, and is approximated by

(6.32)

where ,  are, respectively, the antenna azimuth and elevation beamwidths 
in radians,  is the pulsewidth in seconds,  is speed of light, and  is range.

Consider a propagation medium with an index of refraction . The  rain 
droplet RCS approximation in this medium is

 (6.33)

where 

(6.34)

and  is the  droplet diameter. For example, temperatures between  
and  yield

(6.35)

and for ice Eq. (6.33) can be approximated by

(6.36)

Substituting Eq. (6.33) into Eq. (6.30) yields
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 Figure 6.10. Definition of a resolution volume.
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(6.37)

where the weather clutter coefficient  is defined as 

(6.38)

In general, a rain droplet diameter is given in millimeters and the radar reso-
lution volume is expressed in cubic meters; thus the units of  are often 
expressed in .

6.3.1. Radar Equation for Volume Clutter

The radar equation gives the total power received by the radar from a  tar-
get at range  as

 (6.39)

where all parameters in Eq. (6.39) have been defined earlier. The weather clut-
ter power received by the radar is

(6.40)

Using Eq. (6.31) and Eq. (6.32) in Eq. (6.40) and collecting terms yield

(6.41)

The SCR for weather clutter is then computed by dividing Eq. (6.39) by Eq. 
(6.41). More precisely, 

(6.42)

where the subscript  is used to denote volume clutter.
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Example: 

A certain radar has target RCS , pulsewidth , 
antenna beamwidth . Assume the detection range to 
be , and compute the SCR if .

Solution: 

From Eq. (6.42) we have

Substituting the proper values we get

.

6.4. Clutter Statistical Models

Since clutter within a resolution cell or volume is composed of a large num-
ber of scatterers with random phases and amplitudes, it is statistically 
described by a probability distribution function. The type of distribution 
depends on the nature of clutter itself (sea, land, volume), the radar operating 
frequency, and the grazing angle. 

If sea or land clutter is composed of many small scatterers when the proba-
bility of receiving an echo from one scatterer is statistically independent of the 
echo received from another scatterer, then the clutter may be modeled using a 
Rayleigh distribution,

(6.43)

where  is the mean squared value of . 

The log-normal distribution best describes land clutter at low grazing angles. 
It also fits sea clutter in the plateau region. It is given by

(6.44)
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where  is the median of the random variable , and  is the standard devi-
ation of the random variable .

The Weibull distribution is used to model clutter at low grazing angles (less 
than five degrees) for frequencies between  and . The Weibull proba-
bility density function is determined by the Weibull slope parameter  (often 
tabulated) and a median scatter coefficient , and is given by

(6.45)

where  is known as the shape parameter. Note that when  the 
Weibull distribution becomes a Rayleigh distribution.

6.5. “MyRadar” Design Case Study - Visit 6

6.5.1. Problem Statement

Analyze the impact of ground clutter on “MyRadar” design case study. 
Assume a Gaussian antenna pattern. Assume that the radar height is 5 meters. 
Consider an antenna sidelobe level  and a ground clutter coef-
ficient . What conclusions can you draw about the radar’s 
ability to maintain proper detection and track of both targets? Assume a radar 
height .

6.5.2. A Design

From the design processes established in Chapters 1 and 2, it was determined 
that the minimum single pulse SNR required to accomplish the design objec-
tives was  when non-coherent integration (4 pulses) and cumula-
tive detection were used. Factoring in the surface clutter will degrade the SIR. 
However, one must maintain  in order to achieve the desired prob-
ability of detection. 

Figure 6.11 shows a plot of the clutter RCS versus range corresponding to 
“MyRadar”  design requirements. This figure can be reproduced using the 
MATLAB GUI “clutter_rcs_gui” with the following inputs:

Symbol Value Units

sigma0 -15 dB

thetaE 11 (see page 45) degrees

xm x !
x# $ln

1 10GHz
a

! 0

f x# $ bxb 1–

! 0

-------------- xb

! 0

-----–2 3
6 7 x 0B;exp=

b 1 a"= b 2=

SL 20 dB–=
! 0 15 dBsm–=

hr 5mB

SNR 4dBB

SIR 4dBB

© 2004 by Chapman & Hall/CRC CRC Press LLC



thetaA 1.33 (see page 45) degrees

SL -20 dB

range linspace(10,120,1000) Km

hr 5 meter

ht 2000 for missile; 10000 for aircraft meter

pt 20 KW

f0 3e9 Hz

b 5e6 Hz

t0 290 Kelvins

f 6 dB

l 8 dB

ant_id 2 for Gaussian pattern none

Symbol Value Units

 Figure 6.11a. Clutter RCS entering the radar for the missile case.
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The MATLAB program “myradar_visit6.m” was developed to calculate and 
plot the CNR and SIR for “MyRadar”  design case study. It is given in Listing 
6.2 in Section 6.6. This program assumes the design parameters derived in 
Chapters 1 and 2. More precisely: 

Symbol Description Value

clutter backscatter coefficient -15 dBsm

SL antenna sidelobe level -20 dB

missile RCS

aircraft RCS

antenna elevation beamwidth 11 deg

antenna azimuth beamwidth 1.33 deg

hr radar height 5 m

hta target height (aircraft) 10 Km

htm target height (missile) 2 Km

 Figure 6.11b. Clutter RCS entering the radar for the aircraft case.

! 0
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 Figure 6.12 shows a plot of the CNR and the SIR associated with the mis-
sile. Figure 6.13 is similar to Fig. 6.12 except it is for the aircraft case. It is 
clear from these figures that the required SIR has been degraded significantly 
for the missile case and not as much for the aircraft case. This should not be 
surprising, since the missile’s altitude is much smaller than that of the aircraft. 
Without clutter mitigation, the missile would not be detected at all. Alterna-
tively, the aircraft detection is compromised at . Clutter mitigation 
is the subject of the next chapter.

radar peak power 20 KW

radar operating frequency 3GHz

effective noise temperature 290 degrees Kelvin

noise figure 6 dB

L radar total losses 8 dB

Uncompressed pulsewidth 20 microseconds

Symbol Description Value

Pt

f0

T0

F

.C

R 80Km8

 Figure 6.12. SNR, CNR, and SIR versus range for the missile case.
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6.6. MATLAB Program and Function Listings

This section presents listings for all MATLAB programs/functions used in 
this chapter. The user is advised to rerun these programs with different input 
parameters. 

Listing 6.1. MATALB Function “clutter_rcs.m”
function [sigmaC,CNR] = clutter_rcs(sigma0, thetaE, thetaA, SL, range, hr, ht, 
pt, f0, b,  t0, f, l,ant_id)
% This function calculates the clutter RCS and the CNR for a ground based 
radar.
clight = 3.e8; % speed of light in meters per second
lambda = clight /f0;
thetaA_deg = thetaA;
thetaE_deg = thetaE;
thetaA = thetaA_deg * pi /180; % antenna azimuth beamwidth in radians
thetaE = thetaE_deg * pi /180.; % antenna elevation beamwidth in radians
re = 6371000; % earth radius in meters
rh = sqrt(8.0*hr*re/3.); % range to horizon in meters

 Figure 6.13. SNR, CNR and SIR versus range for the aircraft case.
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SLv = 10.0^(SL/10); % radar rms sidelobes in volts
sigma0v = 10.0^(sigma0/10); % clutter backscatter coefficient 
tau = 1/b; % pulsewidth  
deltar = clight * tau / 2.; % range resolution for unmodulated pulse
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
range_m = 1000 .* range;  % range in meters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
thetar = asin(hr ./ range_m);
thetae = asin((ht-hr) ./ range_m);
propag_atten = 1. + ((range_m ./ rh).^4); % propagation attenuation due to 
round earth
Rg = range_m .* cos(thetar);
deltaRg = deltar .* cos(thetar);
theta_sum = thetae + thetar;
% use sinc^2 antenna pattern when ant_id=1
% use Gaussian antenna pattern when ant_id=2
if(ant_id ==1) % use sinc^2 antenna pattern
    ant_arg = (2.78 * theta_sum ) ./ (pi*thetaE);
    gain = (sinc(ant_arg)).^2;
else
    gain = exp(-2.776 .*(theta_sum./thetaE).^2);
end
% compute sigmac
sigmac = (sigma0v .* Rg .* deltaRg) .* (pi * SLv * SLv + thetaA .* gain.^2) ./ 
propag_atten;
sigmaC = 10*log10(sigmac);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (size(range,2)==1)
    fprintf('Sigma_Clutter='); sigmaC
else
    figure(1)
    plot(range, sigmaC)
    grid
    xlabel('Slant Range in Km')
    ylabel('Clutter RCS in dBsm')
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate CNR
pt = pt * 1000;
g = 26000 / (thetaA_deg*thetaE_deg); % antenna gain
F = 10.^(f/10); % noise figure is 6 dB
Lt = 10.^(l/10); % total radar losses 13 dB
k = 1.38e-23; % Boltzman’s constant
T0 = t0; % noise temperature 290K
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argnumC = 10*log10(pt*g*g*lambda*lambda*tau .* sigmac);
argdem = 10*log10(((4*pi)^3)*k*T0*Lt*F .*(range_m).^4);
CNR = argnumC - argdem;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (size(range,2) ==1)
     fprintf('Cluuter_to_Noise_ratio='); CNR
 else
     figure(2)
     plot(range, CNR,'r')
     grid
     xlabel('Slant Range in Km')
     ylabel('CNR in dB')
 end

Listing 6.2. MATLAB Program “myradar_visit6.m”
clear all
close all
thetaA= 1.33; % antenna azimuth beamwidth in degrees
thetaE = 11; % antenna elevation beamwidth in degrees
hr = 5.; % radar height to center of antenna (phase reference) in meters
htm = 2000.; % target (missile) high in meters
hta = 10000.; % target (aircraft) high in meters
SL = -20; % radar rms sidelobes in dB
sigma0 = -15; % clutter backscatter coefficient 
b = 1.0e6; %1-MHz bandwidth 
t0 = 290; % noise temperature 290 degrees Kelvin
f0 = 3e9; % 3 GHz center frequency
pt = 114.6; % radar peak power in KW
f = 6; % 6 dB noise figure
l = 8; % 8 dB radar losses
range = linspace(25,120,500); % radar slant range 25 to 120 Km, 500 points
% calculate the clutter RCS and the associated CNR for both targets
[sigmaCa,CNRa] = clutter_rcs(sigma0, thetaE, thetaA, SL, range, hr, hta, pt, 
f0, b, t0,  f, l, 2);
[sigmaCm,CNRm] = clutter_rcs(sigma0, thetaE, thetaA, L, range, hr, htm, pt, 
f0, b, t0, f, l, 2);
close all
%%%%%%%%%%%%%%%%%%%%%%%%
np = 4;
pfa = 1e-7;
pdm = 0.99945;
pda = 0.99812;
% calculate the improvement factor
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Im = improv_fac(np,pfa, pdm);
Ia = improv_fac(np, pfa, pda);
% calculate the integration loss
Lm = 10*log10(np) - Im;
La = 10*log10(np) - Ia;
pt = pt * 1000; % peak power in watts
range_m = 1000 .* range; % range in meters
g = 34.5139; % antenna gain in dB
sigmam = 0.5; % missile RCS m squared
sigmaa = 4; % aircraft RCS m squared
nf = f; %noise figure in dB
loss = l; % radar losses in dB
losstm = loss + Lm; % total loss for missile
lossta = loss + La; % total loss for aircraft
% modify pt by np*pt to account for pulse integration
SNRm = radar_eq(np*pt, f0, g, sigmam, t0, b, nf, losstm, range_m);
SNRa = radar_eq(np*pt, f0, g, sigmaa, t0, b, nf, lossta, range_m);
snrm = 10.^(SNRm./10);
snra = 10.^(SNRa./10);
cnrm = 10.^(CNRm./10);
cnra = 10.^(CNRa./10);
SIRm = 10*log10(snrm ./ (1+cnrm));
SIRa = 10*log10(snra ./ (1+cnra));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(3)
plot(range, SNRm,'k', range, CNRm,'k :', range,SIRm,'k -.')
grid
legend('Desired SNR; from Chapter 5','CNR','SIR')
xlabel('Slant Range in Km')
ylabel('dB')
title('Missile case; 21-frame cumulative detection')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%
figure(4)
plot(range, SNRa,'k', range, CNRa,'k :', range,SIRa,'k -.')
grid
legend('Desired SNR; from Chapter 5','CNR','SIR')
xlabel('Slant Range in Km')
ylabel('dB')
title('Aircraft case; 21-frame cumulative detection')
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7.1. Clutter Spectrum

The power spectrum of stationary clutter (zero Doppler) can be represented 
by a delta function. However, clutter is not always stationary; it actually exhib-
its some Doppler frequency spread because of wind speed and motion of the 
radar scanning antenna. In general, the clutter spectrum is concentrated around 

 and integer multiples of the radar PRF , and may exhibit a small 
amount of  spreading. 

The clutter power spectrum can be written as the sum of fixed (stationary) 
and random (due to frequency spreading) components. For most cases, the ran-
dom component is Gaussian. If we denote the stationary-to-random power 
ratio by , then we can write the clutter spectrum as

(7.1)

where  is the radar operating frequency in radians per second,  
is the rms frequency spread component (determines the Doppler frequency 
spread), and  is the Weibull parameter. 

The first term of the right-hand side of Eq. (7.1) represents the PSD for sta-
tionary clutter, while the second term accounts for the frequency spreading. 
Nevertheless, since most of the clutter power is concentrated around zero Dop-
pler with some spreading (typically less than 100 Hz), it is customary to model 
clutter using a Gaussian-shaped power spectrum (which is easier to analyze 
than Eq. (7.1)). More precisely,
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(7.2)

where  is the total clutter power;  and  were defined earlier. Fig. 7.1 
shows a typical PSD sketch of radar returns when both target and clutter are 
present. Note that the clutter power is concentrated around DC and integer 
multiples of the PRF.

7.2. Moving Target Indicator (MTI)

The clutter spectrum is normally concentrated around DC ( ) and mul-
tiple integers of the radar PRF , as illustrated in Fig. 7.2a. In CW radars, clut-
ter is avoided or suppressed by ignoring the receiver output around DC, since 
most of the clutter power is concentrated about the zero frequency band. 
Pulsed radar systems may utilize special filters that can distinguish between 
slowly moving or stationary targets and fast moving ones. This class of filter is 
known as the Moving Target Indicator (MTI). In simple words, the purpose of 
an MTI filter is to suppress target-like returns produced by clutter, and allow 
returns from moving targets to pass through with little or no degradation. In 
order to effectively suppress clutter returns, an MTI filter needs to have a deep 
stop-band at DC and at integer multiples of the PRF. Fig. 7.2b shows a typical 
sketch of an MTI filter response, while Fig. 7.2c shows its output when the 
PSD shown in Fig. 7.2a is the input. 

MTI filters can be implemented using delay line cancelers. As we will show 
later in this chapter, the frequency response of this class of MTI filter is peri-
odic, with nulls at integer multiples of the PRF. Thus, targets with Doppler fre-
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 Figure 7.1. Typical radar return PSD when clutter and target are present.
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quencies equal to  are severely attenuated. Since Doppler is proportional to 
target velocity ( ), target speeds that produce Doppler frequencies 
equal to integer multiples of  are known as blind speeds. More precisely,

(7.3)

Radar systems can minimize the occurrence of blind speeds by either 
employing multiple PRF schemes (PRF staggering) or by using high PRFs 
where in this case the radar may become range ambiguous. The main differ-
ence between PRF staggering and PRF agility is that the pulse repetition inter-
val (within an integration interval) can be changed between consecutive pulses 
for the case of PRF staggering.

nfr
fd 2v -.=

fr

vblind

- fr

2
------- n 0/;=

noise level

frequencytarget
return

frf 0=fr–

clutter returns

MTI filter
response

frequencyfrf 0=fr–

input to 
MTI filter

MTI filter
output

frequencyfrf 0=fr–

                
                   

(a)    

(c)    

(b)    

 Figure 7.2. (a) Typical radar return PSD when clutter and target are 
present. (b) MTI filter  frequency response. (c) Output from an 
MTI filter.
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Fig. 7.3 shows a block diagram of a coherent MTI radar. Coherent transmis-
sion is controlled by the STAble Local Oscillator (STALO). The outputs of the 
STALO, , and the COHerent Oscillator (COHO), , are mixed to produce 
the transmission frequency, . The Intermediate Frequency (IF), 

, is produced by mixing the received signal with . After the IF 
amplifier, the signal is passed through a phase detector and is converted into a 
base band. Finally, the video signal is inputted into an MTI filter.

7.3. Single Delay Line Canceler

A single delay line canceler can be implemented as shown in Fig. 7.4. The 
canceler’s impulse response is denoted as . The output  is equal to the 
convolution between the impulse response  and the input . The single 
delay canceler is often called a “two-pulse canceler” since it requires two dis-
tinct input pulses before an output can be read.

The delay  is equal to the PRI of the radar ( ). The output signal  
is 

(7.4)

The impulse response of the canceler is given by 

(7.5)

fLO fC
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fC fd0 fLO

Pulse modulator

duplexer power amplifier

mixer mixerSTALO
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phase detector MTI
to detector

fLO fC+

fLO

fLO fC fd0+

fC

fLO fC+

fLO

fC

fC fd0

fd

fC fd0

Figure 7.3. Coherent MTI radar block diagram.
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where  is the delta function. It follows that the Fourier transform (FT) 
of  is 

(7.6)

where .

In the z-domain, the single delay line canceler response is 

(7.7)

The power gain for the single delay line canceler is given by

(7.8)

It follows that

(7.9)

and using the trigonometric identity  yields

(7.10)

MATLAB Function “single_canceler.m”

The function “single_canceler.m” computes and plots (as a function of ) 
the amplitude response for a single delay line canceler. It is given in Listing 7.1 
in Section 7.11. The syntax is as follows:

[resp] = single_canceler (fofr)

where fofr is the number of periods desired. Typical output of the function 
“single_canceler.m” is shown in Fig. 7.5. Clearly, the frequency response of a 
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Figure 7.4. Single delay line canceler.
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single canceler is periodic with a period equal to . The peaks occur at 
, and the nulls are at , where .

In most radar applications the response of a single canceler is not acceptable 
since it does not have a wide notch in the stop-band. A double delay line can-
celer has better response in both the stop- and pass-bands, and thus it is more 
frequently used than a single canceler. In this book, we will use the names “sin-
gle delay line canceler” and “single canceler” interchangeably.

7.4. Double Delay Line Canceler

Two basic configurations of a double delay line canceler are shown in Fig. 
7.6. Double cancelers are often called “three-pulse cancelers” since they 
require three distinct input pulses before an output can be read. The double line 
canceler impulse response is given by

(7.11)

Again, the names “double delay line” canceler and “double canceler” will be 
used interchangeably. The power gain for the double delay line canceler is

fr
f 2n 1+" # 2fr" #.= f nfr= n 0/

 Figure 7.5. Single canceler frequency response.
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(7.12)

where  is the single line canceler power gain given in Eq. (7.10). It 
follows that

 (7.13)

And in the z-domain, we have 

(7.14)

MATLAB Function “double_canceler.m”

The function “double_canceler.m” computes and plots (as a function of 
) the amplitude response for a double delay line canceler. It is given in 

Listing 7.2 in Section 7.11. The syntax is as follows:

[resp] = double_canceler (fofr)

where fofr is the number of periods desired.

Fig. 7.7 shows typical output from this function. Note that the double can-
celer has a better response than the single canceler (deeper notch and flatter 
pass-band response).
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Figure 7.6. Two configurations for a double delay line canceler.
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7.5. Delay Lines with Feedback (Recursive Filters)

Delay line cancelers with feedback loops are known as recursive filters. The 
advantage of a recursive filter is that through a feedback loop we will be able 
to shape the frequency response of the filter. As an example, consider the sin-
gle canceler shown in Fig. 7.8. From the figure we can write

(7.15)

(7.16)

(7.17)

Applying the z-transform to the above three equations yields

(7.18)

(7.19)

(7.20)

 Figure 7.7. Normalized frequency responses for single and double cancelers.
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Solving for the transfer function  yields

(7.21)

The modulus square of  is then equal to 

(7.22)

Using the transformation  yields 

(7.23)

Thus, Eq. (7.22) can now be rewritten as 

(7.24)

Note that when , Eq. (7.24) collapses to Eq. (7.10) (single line can-
celer). Fig. 7.9 shows a plot of Eq. (7.24) for . Clearly, by 
changing the gain factor  one can control the filter response. 

In order to avoid oscillation due to the positive feedback, the value of  
should be less than unity. The value  is normally equal to the number 
of pulses received from the target. For example,  corresponds to ten 
pulses, while  corresponds to about fifty pulses.
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Figure 7.8. MTI recursive filter.
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7.6. PRF Staggering

Target velocities that correspond to multiple integers of the PRF are referred 
to as blind speeds. This terminology is used since an MTI filter response is 
equal to zero at these values (see Fig. 7.7). Blind speeds can pose serious limi-
tations on the performance of MTI radars and their ability to perform adequate 
target detection. Using PRF agility by changing the pulse repetition interval 
between consecutive pulses can extend the first blind speed to tolerable values. 
In order to show how PRF staggering can alleviate the problem of blind 
speeds, let us first assume that two radars with distinct PRFs are utilized for 
detection. Since blind speeds are proportional to the PRF, the blind speeds of 
the two radars would be different. However, using two radars to alleviate the 
problem of blind speeds is a very costly option. A more practical solution is to 
use a single radar with two or more different PRFs. 

For example, consider a radar system with two interpulse periods  and 
, such that

 Figure 7.9. Frequency response corresponding to Eq. (7.24). This 
plot can be reproduced using MATLAB program 
“fig7_9.m”  given in Listing 7.3 in Section 7.11.

T1
T2
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(7.25)

where  and  are integers. The first true blind speed occurs when

 (7.26)

This is illustrated in Fig. 7.10 for  and . Note that if 
, then the process of PRF staggering is similar to that discussed in 

Chapter 3. The ratio 

(7.27)

is known as the stagger ratio. Using staggering ratios closer to unity pushes the 
first true blind speed farther out. However, the dip in the vicinity of  
becomes deeper, as illustrated in Fig. 7.11 for stagger ratio . In 
general, if there are  PRFs related by

(7.28)

and if the first blind speed to occur for any of the individual PRFs is , 
then the first true blind speed for the staggered waveform is

(7.29)

7.7. MTI Improvement Factor

In this section two quantities that are normally used to define the perfor-
mance of MTI systems are introduced. They are “Clutter Attenuation (CA)” 
and the MTI “Improvement Factor.” The MTI CA is defined as the ratio 
between the MTI filter input clutter power  to the output clutter power ,

 (7.30)

The MTI improvement factor is defined as the ratio of the Signal to Clutter 
(SCR) at the output to the SCR at the input, 

(7.31)

which can be rewritten as
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 Figure 7.10. Frequency responses of a single canceler. Top plot 
corresponds to T1, middle plot corresponds to T2, 
bottom plot corresponds to stagger ratio T1/T2 = 4/3. 
This plot can be reproduced using MATLAB program 
“fig7_10.m” given in Listing 7.4 in Section 7.11.
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(7.32)

The ratio  is the average power gain of the MTI filter, and it is equal to 
. In this section, a closed form expression for the improvement factor 

using a Gaussian-shaped power spectrum is developed. A Gaussian-shaped 
clutter power spectrum is given by
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 Figure 7.11. MTI responses, staggering ratio 63/64. This plot can be 
reproduced using MATLAB program “fig7_11.m” given 
in Listing 7.5 in Section 7.11.
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(7.33)

where  is the clutter power (constant), and  is the clutter rms frequency 
(which describes the clutter spectrum spread in the frequency domain). It is 
given by

(7.34)

 is the standard deviation for the clutter spectrum spread due to wind veloc-
ity;  is the standard deviation for the clutter spectrum spread due to antenna 
scanning; and  is the standard deviation for the clutter spectrum spread due 
to the radar platform motion (if applicable). It can be shown that1

(7.35)

(7.36)

(7.37)

where  is the wavelength and  is the wind rms velocity;  is the antenna 
3-db azimuth beamwidth (in radians);  is the antenna scan time;  is the 
platform velocity; and  is the azimuth angle (in radians) relative to the direc-
tion of motion. 

The clutter power at the input of an MTI filter is

 (7.38)

Factoring out the constant  yields

(7.39)

It follows that 

1. Berkowtiz, R. S., Modern Radar, Analysis, Evaluation, and System Deign, John 
Wiley & Sons, New York, 1965. 
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(7.40)

The clutter power at the output of an MTI is

(7.41)

7.7.1. Two-Pulse MTI Case 

In this section we will continue the analysis using a single delay line can-
celer. The frequency response for a single delay line canceler is given by Eq. 
(7.6). The single canceler power gain is given in Eq. (7.10), which will be 
repeated here, in terms of  rather than , as Eq. (7.42),

(7.42)

It follows that

(7.43)

Now, since clutter power will only be significant for small , then the ratio 
 is very small (i.e., ). Consequently, by using the small angle 

approximation, Eq. (7.43) is approximated by

(7.44)

which can be rewritten as

(7.45)

The integral part in Eq. (7.45) is the second moment of a zero mean Gaussian 
distribution with variance . Replacing the integral in Eq. (7.45) by  
yields

(7.46)

Substituting Eqs. (7.46) and (7.40) into Eq. (7.30) produces
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(7.47)

It follows that the improvement factor for a single canceler is

(7.48)

The power gain ratio for a single canceler is (remember that  is periodic 
with period )

(7.49)

Using the trigonometric identity  yields

(7.50)

It follows that

(7.51)

The expression given in Eq. (7.51) is an approximation valid only for 
. When the condition  is not true, then the autocorrelation func-

tion needs to be used in order to develop an exact expression for the improve-
ment factor. 

Example: 

A certain radar has . If the clutter rms is  (wooded 
hills with ), find the improvement factor when a single 
delay line canceler is used.
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7.7.2. The General Case

A general expression for the improvement factor for the n-pulse MTI (shown 
for a 2-pulse MTI in Eq. (7.51)) is given by

(7.52)

where the double factorial notation is defined by

(7.53)

(7.54)

Of course ;  is defined by

(7.55)

where  are the Binomial coefficients for the MTI filter. It follows that  
for a 2-pulse, 3-pulse, and 4-pulse MTI are respectively 

(7.56)

Using this notation, then the improvement factor for a 3-pulse and 4-pulse 
MTI are respectively given by

(7.57)

(7.58)

7.8. “MyRadar” Design Case Study - Visit 7

7.8.1. Problem Statement

The impact of surface clutter on the “MyRadar” design case study was ana-
lyzed. Assume that the wind rms velocity . Propose a clutter 
mitigation process utilizing a 2-pulse and a 3-pulse MTI. All other parameters 
are as calculated in the previous chapters. 
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7.8.2. A Design

In earlier chapters we determined that the wavelength is , the PRF 
is , the scan rate is , and the antenna azimuth 3-db 
beamwidth is . It follows that 

(7.59)

(7.60)

Thus, the total clutter rms spectrum spread is

(7.61)

The expected clutter attenuation using a 2-pulse and a 3-pulse MTI are 
respectively given by 

(7.62)

(7.63)

To demonstrate the effect of a 2-pulse and 3-pulse MTI on “MyRadar” 
design case study, the MATLAB program “myradar_visit7.m” has been devel-
oped. It is given in Listing 7.6 in Section 7.5. This program utilizes the radar 
equation with pulse compression. In this case, the peak power was established 
in Chapter 5 as . Figs. 7.12 and 7.13 show the desired SNR and the 
calculated SIR using a 2-pulse and a 3-pulse MTI filter respectively, for the 
missile case. Figs. 7.14 and 7.15 show similar output for the aircraft case. 

One may argue, depending on the tracking scheme adopted by the radar, that 
for a tracking radar 

(7.64)

since  for a radar that employes a monopulse tracking option. In this 
design, we will assume a Kalman filter tracker. For more details the reader is 
advised to visit Chapter 9. 
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 Figure 7.12. SIR for the missile case using a 2-pulse MTI filter.

 Figure 7.13. SIR for the missile case using a 3-pulse MTI filter.
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 Figure 7.14. SIR for the aircraft case using a 2-pulse MTI filter.

 Figure 7.15. SIR for the aircraft case using a 3-pulse MTI filter.
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As clearly indicated by the previous four figures, a 3-pulse MTI filter would 
provide adequate clutter rejection for both target types. However, if we assume 
that targets are detected at maximum range (90 Km for aircraft and 55 Km for 
missile) and then are tracked for the rest of the flight, then 2-pulse MTI may be 
adequate. This is true since the SNR would be expected to be larger during 
track than it is during detection, especially when pulse compression is used. 
Nonetheless, in this design a 3-pulse MTI filter is adopted.

7.9. MATLAB Program and Function Listings

This section contains listings of all MATLAB programs and functions used 
in this chapter. Users are encouraged to rerun this code with different inputs in 
order to enhance their understanding of the theory.

Listing 7.1. MATLAB Function “single_canceler.m”
function [resp] = single_canceler (fofr1)
eps = 0.00001;
fofr = 0:0.01:fofr1;
arg1 = pi .* fofr;
resp = 4.0 .*((sin(arg1)).^2);
max1 = max(resp);
resp = resp ./ max1;
subplot(2,1,1)
plot(fofr,resp,'k')
xlabel ('Normalized frequency - f/fr')
ylabel( 'Amplitude response - Volts')
grid
subplot(2,1,2)
resp=10.*log10(resp+eps);
plot(fofr,resp,'k');
axis tight
grid
xlabel ('Normalized frequency - f/fr')
ylabel( 'Amplitude response - dB')

Listing 7.2. MATLAB Function “double_canceler.m”
function [resp] = double_canceler(fofr1)
eps = 0.00001;
fofr = 0:0.01:fofr1;
arg1 = pi .* fofr;
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resp = 4.0 .* ((sin(arg1)).^2);
max1 = max(resp);
resp = resp ./ max1;
resp2 = resp .* resp;
subplot(2,1,1);
plot(fofr,resp,'k--',fofr, resp2,'k');
ylabel ('Amplitude response - Volts')
resp2 = 20. .* log10(resp2+eps);
resp1 = 20. .* log10(resp+eps);
subplot(2,1,2)
plot(fofr,resp1,'k--',fofr,resp2,'k');
legend ('single canceler','double canceler')
xlabel ('Normalized frequency f/fr')
ylabel ('Amplitude response - dB')

Listing 7.3. MATLAB Program “fig7_9.m”
clear all
fofr = 0:0.001:1;
arg = 2.*pi.*fofr;
nume = 2.*(1.-cos(arg));
den11 = (1. + 0.25 * 0.25);
den12 = (2. * 0.25) .* cos(arg);
den1 = den11 - den12;
den21 = 1.0 + 0.7 * 0.7;
den22 = (2. * 0.7) .* cos(arg);
den2 = den21 - den22;
den31 = (1.0 + 0.9 * 0.9);
den32 = ((2. * 0.9) .* cos(arg));
den3 = den31 - den32;
resp1 = nume ./ den1;
resp2 = nume ./ den2;
resp3 = nume ./ den3;
plot(fofr,resp1,'k',fofr,resp2,'k-.',fofr,resp3,'k--');
xlabel('Normalized frequency')
ylabel('Amplitude response')
legend('K=0.25','K=0.7','K=0.9')
grid
axis tight

Listing 7.4. MATLAB Program “fig7_10.m”
clear all
fofr = 0:0.001:1;
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f1 = 4.0 .* fofr;
f2 = 5.0 .* fofr;
arg1 = pi .* f1;
arg2 = pi .* f2;
resp1 = abs(sin(arg1));
resp2 = abs(sin(arg2));
resp = resp1+resp2;
max1 = max(resp);
resp = resp./max1;
plot(fofr,resp1,fofr,resp2,fofr,resp);
xlabel('Normalized frequency f/fr')
ylabel('Filter response')

Listing 7.5. MATLAB Program “fig7_11.m”
clear all
fofr = 0.01:0.001:32;
a = 63.0 / 64.0;
term1 = (1. - 2.0 .* cos(a*2*pi*fofr) + cos(4*pi*fofr)).^2;
term2 = (-2. .* sin(a*2*pi*fofr) + sin(4*pi*fofr)).^2;
resp = 0.25 .* sqrt(term1 + term2);
resp = 10. .* log(resp);
plot(fofr,resp);
axis([0 32 -40 0]);
grid

Listing 7.6. MATLAB Program “myradar_visit7.m”
clear all
close all
clutter_attenuation = 28.24;
thetaA= 1.33; % antenna azimuth beamwidth in degrees
thetaE = 11; % antenna elevation beamwidth in degrees
hr = 5.; % radar height to center of antenna (phase reference) in meters
htm = 2000.; % target (missile) height in meters
hta = 10000.; % target (aircraft) height in meters
SL = -20; % radar rms sidelobes in dB
sigma0 = -15; % clutter backscatter coefficient in dB
b = 1.0e6; %1-MHz bandwidth 
t0 = 290; % noise temperature 290 degrees Kelvin
f0 = 3e9; % 3 GHz center frequency
pt = 114.6; % radar peak power in KW
f = 6; % 6 dB noise figure
l = 8; % 8 dB radar losses
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range = linspace(25,120,500); % radar slant range 25 to 120 Km, 500 points
% calculate the clutter RCS and the associated CNR for both targets
[sigmaCa,CNRa] = clutter_rcs(sigma0, thetaE, thetaA, SL, range, hr, hta, pt, 
f0, b, t0, f, l,2);
[sigmaCm,CNRm] = clutter_rcs(sigma0, thetaE, thetaA, SL, range, hr, htm, pt, 
f0, b, t0, f, l,2);
close all
%%%%%%%%%%%%%%%%%%%%%%%%
np = 4;
pfa = 1e-7;
pdm = 0.99945;
pda = 0.99812;
% calculate the improvement factor
Im = improv_fac(np,pfa, pdm);
Ia = improv_fac(np, pfa, pda);
% caculate the integration loss
Lm = 10*log10(np) - Im;
La = 10*log10(np) - Ia;
pt = pt * 1000; % peak power in watts
range_m = 1000 .* range; % range in meters
g = 34.5139; % antenna gain in dB
sigmam = 0.5; % missile RCS m squared
sigmaa = 4; % aircraft RCS m squared
nf = f; %noise figure in dB
loss = l; % radar losses in dB
losstm = loss + Lm; % total loss for missile
lossta = loss + La; % total loss for aircraft
% modify pt by np*pt to account for pulse integration
SNRm = radar_eq(np*pt, f0, g, sigmam, t0, b, nf, losstm, range_m);
SNRa = radar_eq(np*pt, f0, g, sigmaa, t0, b, nf, lossta, range_m);
snrm = 10.^(SNRm./10);
snra = 10.^(SNRa./10);
CNRm = CNRm - clutter_attenuation;
CNRa = CNRa - clutter_attenuation;
cnrm = 10.^(CNRm./10);
cnra = 10.^(CNRa./10);
SIRm = 10*log10(snrm ./ (1+cnrm));
SIRa = 10*log10(snra ./ (1+cnra));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(3)
plot(range, SNRm,'k', range, CNRm,'k :', range,SIRm,'k -.')
grid
legend('Desired SNR; from Chapter 5','CNR','SIR with 3-pulse','MTI filter')
xlabel('Slant Range in Km')
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ylabel('dB')
title('Missile case;  21-frame cumulative detection')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(4)
plot(range, SNRa,'k', range, CNRa,'k :', range,SIRa,'k -.')
grid
legend('Desired SNR; from Chapter 5','CNR','SIR with 3-pulse','MTI filter')
xlabel('Slant Range in Km')
ylabel('dB')
title('Aircraft case; 21-frame cumulative detection')
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