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Preface

The emphasis dfMATLAB Simulations forRadar Systems Designs on
radar systems design. However, a strong presentation of the theory is provided
so that the reader will be equippediwihe necessary background to perform
radar systems analysis. The organizatiérthis book is intended to teach a
conceptual design process of radard eelated trade-off analysis and caleula
tions. It is intended to serve as angineering reference for radar engineers

working in the field ofradar systems. The MATLAB' code provided in this
book is designed to provide the usethMiands-on experience in radar-sys
tems, analysis and design.

A radar design case study is introduced in Chapter 1 and carried throughout
the text, where the authors’ view of how to design this radar is detailed and
analyzed. Trade off analyses and caltiates are performed. Additionally, sev
eral mini design case studies acattered throughout the book.

“MATLAB Simulations for Radar Systems Designdivided into two parts:
Part | provides a comprehensive dgstion of radar systems, analyses and
design. A design case study, which is carried throughout the text, is introduced
in Chapter 1. In each chapter the authegisiv of how to design the case-study
radar is presented based on the theory covered up to that point in the book. As
the material coverage progresses through the book, and new theory is dis
cussed, the design case-study requirements are changed and/or updated, and of
course the design level of complexityailso increased. This design process is
supported by a comprehensive set of MATLAB 6 simulations developed for
this purpose. This part will serve asauable tool to students and radar engi
neers in helping them understand radar systems, design process. This includes
1) learning how to go about selecting different radar parameters to meet the
design requirements; 2) performing detailed trade-off analysis in the context of
radar sizing, modes of operations, frequency selection, waveforms and signal
processing; 3) establishing and developing loss and error budgets associated
with the design; and 4) generating an in-depth understanding of radas opera
tions and design philosophy. Additionally, Part | includes several mini design
case studies pertinent to different chapters in order to help enhance understand
ing of radar design in the context oktmaterial presented in different chap
ters.

Part 1l includes few chapters thatveo specialized radar topics, some of
which is authored and/or aathored by other expertstime field. The material

1. MATLAB is a registered trademark of the The MathWorks, Inc. For product infor
mation, please contact: @MathWorks, Inc., 3 Apple Hill Drive, Natick, MA
01760-2098 USA. Webwww.mathworks.com
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included in Part Il is intended to further enhance the understanding of radar
system analysis by providing detailadd comprehensive coverage of these
radar related topics. For this purpose, MATLAB 6 code has also been devel
oped and made available.

All MATLAB programs and functions provided in this book can be down-
loaded from the CRC Press Web sienv.crcpress.cojm For this purpose,
follow this procedure: 1) from your Web browser tygatp://www.crc-
press.com; 2) click on“Electronic Products”, 3) click on“Download &
Updates”, and finally 4) follow instructions of how to download a certain set
of code off that Web page. Furthermore, this MATLAB code can also be-down
loaded from The MathWorks Web site fmflowing these steps: 1) from your
Web browser type’http://mathworks.com/madlbcentral/fieexchange/”,2)
place the curser diCompanion Software for Booksind click or*Communt
cations”. The MATLAB functions and programs developed in this book
include all forms of the radar equation: pulse compression, stretch processing,
matched filter, probability of detection calculations with all Swerling models,
High Range Resolution (HRR), stepgpé&equency waveform analysis, ghk
tracking filter, Kalman filter, phasedray antennas, clutter calculations, radar
ambiguity functions, ECM, chaff, and many more.

Chapter 1 describes the most common geused in radar systems, such as
range, range resolution, and Doppler frequency. This chapter develops the
radar range equation. Finally, a radar design case study efikitigRiadar
Design Case Studyis introduced. Chapter 2 is intended to provide an-over
view of the radar probability of detection calculations and related topics.
Detection of fluctuating targets including Swerling I, Il, lll, and IV models is
presented and analyzed. Codt& and non-coherent integration are also intro
duced. Cumulative probability of detectioredysis is in this chapter. Visit 2 of
the design case studylyRadar” is introduced.

Chapter 3 reviews radar waveforms, including CW, pulsed, and LFM. High
Range Resolution (HRR) waveforms and stepped frequency waveforms are
also analyzed. The concept of the Mead Filter (MF) is introduced and ana
lyzed. Chapter 4 presents in detail thwénciples associated with the radar
ambiguity function. This includes the ambiguity function for single pulse, Lin
ear Frequency Modulated pulses, trairuamodulated pulses, Barker codes,
and PRN codes. Pulse compression is introduced in Chapter 5. Both the MF
and the stretch processors are analyzed.

Chapter 6 contains treatment of threncepts of clutter. This includes both
surface and volume clutter. Chapter @gents clutter mitigation using Moving
Target Indicator (MTI). Delay line caelers implementation to mitigate the
effects of clutter is analyzed.

Chapter 8 presents detailed analysisPbfased Arrays. Linear arrays are
investigated and detailed and MATLAB codeleveloped to calculate and plot

© 2004 by Chapman & Hall/CRC CRC Press |



the associated array patterns. Planeaya; with various grid configurations,
are also presented.

Chapter 9 discusses target tracking rayatems. The first part of this chap
ter covers the subject of single targeicking. Topics such as sequential-lob
ing, conical scan, monopulse, and range tracking are discussed in detail. The
second part of this chapter introduces multiple target tracking techniques.

Fixed gain tracking filters such as tHe and the!"# filters are presented in

detail. The concept of the Kaan filter is introducedSpecial cases of the Kal
man filter are analyzed in depth.

Chapter 10 is coauthored with Mr.Michael Madewell from the US Army
Space and Missile Defense CommandHimtsville, Alabama. This chapter
presents an overview of Electronic @aer Measures (ECM) techniques. Top
ics such as self screening and starfdashmers are presented. Radar chaff is
also analyzed and a chaff mitigaticechnique for Ballistic Missile Defense
(BMD) is introduced.

Chapter 11 is concerned with the Radar Cross Section (RCS). RCS depen
dency on aspect angle, frequency, and polarization is discussed. The target
scattering matrix is developed. RCSrfuulas for manyimple objects are pre
sented. Complex object RCS is discussed, and target fluctuation models are
introduced. Chapter 12 is coauthored with Dr. Brian Smith from the US Army
Aviation and Missile Command (AMCOM), Redstone Arsenal in Alabama.
This chapter presents the topic of fleal Synthetic Aperture Radar (SAR).

The topics of this chapter include: SAR signal processing, SAR design-consid
erations, and the SAR radar equation. lyn@hapter 13 premts an overview
of signal processing.

Using the material presented in thisok and the MATLAB code designed
by the authors by any entity or person is strictly at will. The authors and the
publisher are neither liable nor respotesibor any material or non-material
losses, loss of wages, personal aspgerty damages of any kind, or for any
other type of damages of any and aflag that may be incurred by using this
book.

Bassem R. Mahafza
Huntsville, Alabama
July, 2003

Atef Z. Elsherbeni

Oxford, Mississippi
July, 2003
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Chapter 1 Introduction to Radar
Basics

1.1. Radar Classifications

The word radar is an abbreviation for RAdio Detection And Ranging. In
general, radar systems use modulateveforms and dirg¢ive antennas to
transmit electromagnetic energy int@gecific volume in space to search for
targets. Objects (targets) within a sgawolume will reflect portions of this
energy (radar returns or echoes) btckhe radar. These echoes are then pro
cessed by the radar receiver to extractetairgformation suclas range, velec
ity, angular position, and other target identifying characteristics.

Radars can be classified as grolrabsed, airborne, spaceborne, or ship
based radar systems. They can alscclassified intonumerous categories
based on the specific radar characteristiash as the frequency band, antenna
type, and waveforms utilized. Anothelassification is concerned with the
mission and/or the functionality of the radar. This includes: weather, acquisi
tion and search, tracking, track-while-scéine control, edy warning, over
the horizon, terrain following, and rtain avoidance radars. Phased array
radars utilize phased array antenrsag] are often called multifunction (multi
mode) radars. A phased array is a contp@ntenna formed from two or more
basic radiators. Array antennas synthesiarrow directive beams that may be
steered mechanically etectronically. Electronic string is achieved by cen
trolling the phase of the ettric current feedg the array elements, and thus
the name phased array is adopted.

Radars are most often classified bg thipes of waveforms they use, or by
their operating frequency. Considering thhaveforms first, radars can be €on
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tinuous Wave (CW) or Pulsed Radars (ﬁR)W radars are those that continu
ously emit electromagnetic energy, and use separate transmit and receive
antennas. Unmodulated CW radars can itely measure target radial veloc

ity (Doppler shift) and angular position. Target range information cannot be
extracted without utilizing some form of modulation. The primary use of
unmodulated CW radars is in targetogity search and track, and in missile
guidance. Pulsed radars use a train of pulsed waveforms (mainly with modula
tion). In this category, radar systems t@nclassified on the basis of the Pulse
Repetition Frequency (PRF) as low PRF, medium PRF, and high PRF radars.
Low PRF radars are primarily used fonging where target velocity (Doppler
shift) is not of interest. High PRF radaare mainly used to measure target
velocity. Continuous wave as well aslged radars can measure both target
range and radial velocity by utilizing different modulation schemes.

Table 1.1 has the radar classifications based on the operating frequency.

TABLE 1.1. Radar frequency bands.

Letter New band designation
designation Frequency (GHz) (GHz2)
HF 0.003 - 0.03 A

VHF 0.03-0.3 A<0.25; B>0.25

UHF 0.3-1.0 B<0.5; C>0.5
L-band 1.0-2.0 D
S-band 20-40 E<3.0; F>3.0
C-band 40-8.0 G<6.0; H>6.0
X-band 8.0-125 1<10.0; J>10.0
Ku-band 12.5-18.0 J
K-band 18.0-26.5 J<20.0; K>20.0
Ka-band 26.5 - 40.0 K

MMW Normally >34.0 L<60.0; M>60.0

High Frequency (HF) radars utilizeetlelectromagnetic waves’ reflection off
the ionosphere to detect targets beyond the horizon. Very High Frequency
(VHF) and Ultra High Frequency (UHF) bands are used for very long range
Early Warning Radars (EWR). Becausfethe very large wavelength and the
sensitivity requirements for very lomgnge measurements, large apertures are
needed in such radar systems.

1. See Appendix 1A.
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Radars in the L-band are primarily ground based and ship based systems that
are used in long range military and air traffic control search operations. Most
ground and ship based medium range radars operate in the S-band. Most
weather detection radar systems are fidb@adars. Medium range search and
fire control military radars and metric instrumentation radars are also C-band.

The X-band is used for radar systemhere the size of the antenna consti
tutes a physical limitation; this includes most military multimode airborne
radars. Radar systems that require farget detection capabilities and yet-can
not tolerate the atmospheric attenuatiomigher frequency bands may also be
X-band. The higher frequency bands (K4, and Ka) suffer severe weather
and atmospheric attenuation. Therefoaglars utilizing these frequency bands
are limited to short range plications, such as police traffic radar, short range
terrain avoidance, and terrain following radar. Milli-Meter Wave (MMW)
radars are mainly limited to very short range Radio Frequency (RF) seekers
and experimental radar systems.

1.2. Range

Figure 1.1 shows a simplified pulsed radar block diagram. The time control
box generates the synchronization timing signals required throughout the sys
tem. A modulated signal is generated and sent to the antenna by the modulator/
transmitter block. Switching the antea between the transmitting and reeeiv
ing modes is controlled by the duplexer. The duplexer allows one antenna to be
used to both transmit amdceive. During transmissiandirects the radar elec
tromagnetic energy towards the antendigernatively, onreception, it directs
the received radar echoes to the reaeifée receiver amplifies the radar
returns and prepares them for signalgaessing. Extraction of target informa
tion is performed by the signal processor block. The target’s rddgis, com
puted by measuring the time delay,, it takes a pulse to travel the two-way
path between the radar and the tar§atce electromagnetic waves travel at
the speed of lightg = 3" 10°m#seg then

R = %t (1)

where R is in meters and t is in seconds. The factor c% is needed to
account for the two-way time delay.

In general, a pulsed radar transnaited receives a train of pulses, as Hlus
trated by Fig. 1.2. The Inter Pulse Period (IPPJ jsand the pulsewidth i$.
The IPP is often referred to as the RuURepetition Interval (PRI). The inverse
of the PRI is the PRF, which is denotedfpy

(1.2)
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A

Figure 1.1. A simplified pulsed radar block diagram.

During each PRI the radardiates energy only fo seconds and listens for
target returns for the rest of the PRI. The radar transmitting duty cycle (factor)
d, is defined as the ratid, = $#T. The radar averageansmitted power is

P, = P."d, (1.3)

av

where P, denotes the radar peak tranted power. The pulse energy is
Ep =P$="P,T=P,#.

The range corresponding to the two-way time dglag known as the radar
unambiguous rangeR,. Consider the case shown in Fig. 1.3. Echo 1 repre
sents the radar return from a target at raRge c! t# due to pulse 1. Echo 2
could be interpreted as the return from the same target due to pulse 2, or it may
be the return from a faraway target at rafyedue to pulse 1 again. In this
case,

clt _cu+!t &

R, = = or R, = > (1.4)

transmitted pulses

puﬂa IPP |_| pulse 2 |_| pulse 3 |_| »time

I't Mpulse1 pulse 2 pulse 3 .
received pulses echo cho J LEChO L

Figure 1.2. Train of transmitted and received pulses.
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Clearly, range ambiguity is associateithaecho 2. Theref@, once a pulse is
transmitted the radar must wait a sufficient length of time so that returns from
targets at maximum range are back befbeenext pulse is emitted. It follows
that the maximum unambiguous range must correspond to half of the PRI,

R, =¢cz = = 1.5
4% %o (1.5)
t=0
t r
- >!

JH PRI

i pulse 1 |_| pulse 2 time or range
transmitted pulses >

) _juol ’ l echo 2 time or range
received pulse< '

clt |
2

A

-
|

A
\i

»
-

R,
Figure 1.3. lllustrating range ambiguity.

1.3. Range Resolution

Range resolution, denoted BR, is a radar metric that describes its ability
to detect targets in close proximitygach other as distinct objects. Radar sys
tems are normally designed ¢perate between a minimum rangg,,, and
maximum rangeR ... The distance betwed®;, andR_ . is divided intom
range bins (gates), each of widtR,

M = %R, .—Rpin & R (1.6)

Targets separated by at least will be completely resolved in range. Targets
within the same range bin can be resdhin cross range (azimuth) utilizing
signal processing techniques. Consider two targets located at repgesd
R, , corresponding to time delays andt, , respectively. Denote the difference
between those two ranges!'aR:

0 —t '
IR = Ry— Rl_c/Eé 1:(:5 (L.7)
Now, try to answer the following question: What is the minimumsuch
that target 1 aRr; and target 2 aR, will appear completely resolved in range
(different range bins)? In other words, what is the minimur?
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First, assume that the dwtargets are separated b$#4, where$ is the
pulsewidth. In this case, when the mutsailing edge strikes target 2 the lead
ing edge would have traveled backwards a distaficand the returned pulse
would be composed of returns from both targets (i.e., unresolved return), as
shown in Fig. 1.4a. However, tifie two targets are at least# apart, then as
the pulse trailing edge strikes the firageet the leading edgeill start to return
from target 2, and two distinct returnpdises will be produced, as illustrated
by Fig. 1.4b. Thus! R should be greater or equald$#2 . And since the radar
bandwidthB is equal tol #, then

_c$_c
'R=2 =2 (1.8)

In general, radar users and designers alike seek to minirRize order to
enhance the radar performance. As suggested by Eq. (1.8), in order to achieve
fine range resolution one must minimize the pulsewidth. However, this will
reduce the average transmitted powed arcrease the operating bandwidth.
Achieving fine range resolution whileaintaining adequate average transmit
ted power can be accomplished bingspulse compression techniques.

R, R,
incident plse - 3 »
’ c$
4
reflected pulse return return
+—1 totl tgt2
< - tgtl tgt2
3
___________ ®
shacekd area has returfiom both tagets
(@) R R
c$
2
reflected pulses retum retum
- tgtl tgt2
c$ c$
‘ gl > tgtl  tgt2
(b)

Figure 1.4.(a) Two unresolvel targets.(b) Two resolvel targets.
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1.4. Doppler Frequency

Radars use Doppler frequency to extrajetiradial velocity (range rate), as
well as to distinguish between moving and stationary targets or objects such as
clutter. The Doppler phenomenon describes the shift in the center frequency of
an incident waveform due to the targettion with respect to the source of
radiation. Depending on the direction thie target's motion, this frequency
shift may be positive or negative. waveform incident on a target has
equiphase wavefronts separated (bythe wavelength. A closing target will
cause the reflected equiphase wavefromtget closer to each other (smaller
wavelength). Alternatively, an opening or receding target (moving away from
the radar) will cause the reflectequiphase wavefronts to expand (larger
wavelength), as illustrated in Fig. 1.5.

( (e /

/ closing target

¢ (*0 (l\’%ﬁ?

radar \

NN N

( 0
/\ / opening target

€ o))

radar \/\

——» incident
reflectede — — -

Figure 1.5. Effect of target motionon the reflectedequiphase waveforms.

Consider a pulse of width (seconds) incident on a target which is moving
towards the radar at velocity, as shown in Fig. 1.6. Defirg as the distance
(in meters) that the target moves into the pulse during the interyal

d=wt (1.9)

where! t is equal to the time between thegmileading edge striking the target
and the trailing edge striking the targgince the pulse is mng at the speed
of light and the trailing edge has moved distacged, then

cE=clt+vlt (1.10)

and
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trailing leading

incident pulse edge
edge P 9 v
attimet = t, - L =c$ =34
] : s=cdt o —

- > !
: :< s=ct : >
|

) ! . d=ivt
attimet = ty+!t ' - L =c$ N

B i— reflected pulse —
leading trailing

Figure 1.6. lllustrating the impact of target velocity on a single pulse.

c$ =clt-vt (1.11)
Dividing Eq. (1.11) by Eq. (1.10) yields,

c$ _clt-vt

= 1.12
c$ clt+v!t (1.12)

which after canceling the termsand! t from the left and right side of Eq.
(1.12) respectively, one establishes tielationship between the incident and
reflected pulses widths as
= C-Vv
$) = c+ v$ (1.13)

In practice, the factowe—v &6+ v &s often referred to as the time dilation
factor. Notice that ifr = 0, then$) = $. In a similar fastdn, one can compute
$) for an opening target. In this case,

$) = \C’%\C/SB (1.14)

To derive an expression for Doppler frequency, consider the illustration
shown in Fig. 1.7. It takes the leading edge of pulse 2econds to travel a
distance% #, & to strike the target. Over the same time interval, the leading
edge of pulse 1 travels the same distatriae More precisely,

d=wvt (1.15)

S d=ct (1.16)
ff

solving for! t yields
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c$ c/fy
- > |- »- v
-
incident pulse 2 pulse 1 [=<33
— -
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c$ c$
- > +-—»  |[«——
pulse 1 has already come back
pulse 2 starts to strike the target pulse 1 pulse 2 =33
LE TE TE LE
s—d=c#’ c$ 2d
reflected pulse 1 pulse 2 [
- -
LE TE LE L =,
. LE: Pulse leading edge
! TE: Pulse trailing edge

Figure 1.7. lllustration of target motion effects on the radar pulses.
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It = C+:/ (1.17)
cv#
d= . (1.18)

The reflected pulse spacing is new d and the new PRF i), where

s—d= % -c't—CV#fr 1.19
Tf) T c+v (119)
It follows that the new PRF is related to the original PRF by
c+v
fr) = CTV fr (1.20)

However, since the number of cycles does not change, the frequency of the
reflected signal will go up by the same factor. Denoting the new frequency by
fo), it follows
_ctv
fo) = v fo (1.21)
wheref, is the carrier frequency of thecident signal. The Doppler frequency
fy is defined as the differendg)—f,. More precisely,

- _Ctyv _ 2V
fd = fo)—fo = a fo—fo = TV fO (1.22)
but sincev«c andc = (f, then
2 2y
fy, c fo = ( (1.23)

Eq. (1.23) indicates that the Doppler shift is proportional to the target velocity,
and, thus, one can extragtfrom range rate and vice versa.

The result in Eq. (1.23) can also @lerived using the following approach:
Fig. 1.8 shows a closing target with velocity Let R, refer to the range at
time t, (time reference); then the ramtp the target at any timeis

R% & R,-v%-—t, & (1.24)
The signal received by the radar is then given by
X% & x%-—- % & (1.25)

wherex% d&s the transmitted signal, and

-% & %%Eo—vﬁvt0 & (1.26)
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Ro

Figure 1.8. Closing target with velocityv.

Substituting Eq. (1.26) into Eg. (1.25) and collecting terms yield
X% & x991+ %Jt—- 7 .27

where the constant phasg is

2R

- A

o= —+= ¢ 1.28
0 c Tt b (1.28)
Define the compression or scaling fackoby

2=1+ gcl’ (1.29)

Note that for a receding tagthe scaling factor i2 = 1-9%v#c &Utilizing
Eq. (1.29) we can rewrite Eq. (1.27) as

X% & x%Bt—-, & (1.30)

Eq. (1.30) is a time-compressed version of the return signal from a stationary
target ¢ = 0). Hence, based on the scalingperty of the Fourier transform,

the spectrum of the received signal willdganded in frequency to a factor of

2.

Consider the special case when
X% & y% &s g (1.31)

where3,, is the radar center frequency in radians per second. The received sig
nal x.% d&s then given by

X% & yoBt—- ; G0% 28—- , & (1.32)

The Fourier transform of Eq. (1.32) is

1
X% & 2—20\(0% ~3414 Y?% +3,4 (1.33)
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where for simplicity the eéicts of the constant phasg have been ignored in
Eq. (1.33). Therefore, éhbandpass spectrum of the received signal is now cen
tered at23, instead of3,. The difference between the two values corresponds
to the amount of Doppler shift incurred due to the target motion,

34 = 30-23, (1.34)

3, is the Doppler frequency in radians per second. Substituting the vatue of
in Eq. (1.34) and using4f = 3 vyield

2v
fg= 2y = 2(—" (1.35)

which is the same as Eq. (1.23). It aenshown that for a receding target the
Doppler shift isf; = —2v#( . This is illustrated in Fig. 1.9.

-
»
|

amplitude
amplitude

-

frequency

fd|<, ~>|fd}<—
f . f,

C frequency
closing target receding target

Figure 1.9. Spectra of receivedignal showirg Doppler shift.

In both Eqg. (1.35) and Eq. (1.23) the &trgadial velocity with respect to the
radar is equal t@, but this is not always the @dn fact, the amount of Dep
pler frequency depends on the target velocity component in the direction of the
radar (radial velocity). Fig. 1.1ews three targets all having velocity tar
get 1 has zero Doppler shift; target 2 has maximum Doppler frequency as
defined in Eq. (1.35). The amount of Doppler frequency of target 3 is
fy = 2vcoss # , wherevcoss is the radial velocity; and is the total angle
between the radar line of sight and the target.

Thus, a more general expression fgrthat accounts for the total angle
between the radar and the target is

fy = %\-/0035 (1.36)
and for an opening target
fy = :(Z—Vcos‘s (1.37)

wherecoss = cos5, coss,. The angles, and5, are, respectively, the eleva
tion and azimuth angles; see Fig. 1.11.
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Figure 1.10. Target 1 generates r@ Doppler. Target 2 generates
maximum Doppler. Target 3 is in between.

\J

Figure 1.11. Radial velody is proportional to the azimuth and elevation angles.

1.5. The Radar Equation

Consider a radar with an omni dirextal antenna (one that radiates energy
equally in all directions). Since these kinds of antennas have a spherical radia
tion pattern, we can define the peak power density (power per unit area) at any
point in space as

_ Peak transmitted power watts

P,
D area of a sphere m2

(1.38)

The power density at range away from the radar (assuming a lossless propa
gation medium) is

P, = i (1.39)

where P, is the peak transmitted power andRr’ is the surface area of a
sphere of radiuR. Radar systems utilize dirémbal antennas in order to
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increase the power density in a certaireclion. Directional antennas are usu
ally characterized by the antenna gairand the antenna effective apertage
They are related by

_44A,
T2
(
where ( is the wavelength. The relationghbetween the antenna’s effective
apertureA, and the physical apertureis

(1.40)

A, = 6A (1.41)
07671

6 is referred to as the aperturéi@éncy, and good antennas requix@ 1. In

this book we will assume, unless otherwise noted,Ahahd A, are the same.

We will also assume that antennas have the same gain in the transmitting and
receiving modes. In practicé,= 0.7 is widely accepted.

The gain is also related to the antéaaimuth and eleation beamwidths by

G—k44

= kg5 (1.42)

wherek7 1 and depends on the physieplerture shape; the anglgsand5,
are the antenna’s elevatiamd azimuth beamwidths,spectively, in radians.
An excellent approximation of Eq. (1.4&roduced by Stutzman and reported
by Skolnik is

26000
’ sesa

(1.43)

where in this case the azimuth and atéan beamwidths are given in degrees.

The power density at a distanée away from a radar using a directive
antenna of gairG is then given by
PG
Pp = — (1.44)

44R°

When the radar radiated energy impingesa target, the induced surface-cur
rents on that target radiate electromdgnenergy in all directions. The amount

of the radiated energy is proportional to the target size, orientation, physical
shape, and material, which are all lwdptogether in one target-specific
parameter called the Radar Cross Section (RCS) denoted by

The radar cross section is defined asrdttio of the power reflected back to
the radar to the power density incident on the target,
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Pr 2
9 = Ec-) m (1.45)
where P, is the power reflected from the target. Thus, the total power-deliv
ered to the radar signalqmessor by the antenna is
P,G9
Por = >3 A (1.46)
UWAR™ &

Substituting the value of, from Eq. (1.40) into Eqg. (1.46) yields

2,2

_pGA%
-

"o W

Let S,,;, denote the minimum detectablgrsal power. It follows that the
maximum radar rangB

(1.47)

max IS

Roay = 0PG (o ™ (1.48)
max :%4 %mm} :
Eq. (1.48) suggests that in order to double the radar maximum range one must
increase the peak transmitted powr sixteen times; or equivalently, one
must increase the effecéaperture four times.

In practical situations the returnedysals received by the radar will be €or
rupted with noise, which introduces unvied voltages at all radar frequencies.
Noise is random in nature and can beatlided by its Power Spectral Density
(PSD) function. The noise power is a function of the radar operating band
width, B. More precisely

N = Noise PSD B (1.49)

The input noise power to a lossless antenna is
N, = kT,B (1.50)

wherek = 1.38" 102 joule#degreeKelvin is Boltzman’'s constant, ant,

is the effective noise temperature in degg Kelvin. It is always desirable that
the minimum detectable signasy(;,) be greater than the noise power. The
fidelity of a radar receivas normally described bg figure of merit called the
noise figureF (see Appendix 1B for details). The noise figure is defined as

£ _ BNR& S,
T BNR& SN,

(1.51)

98NR;&and 9%6NR &are, respectively, the Signal Noise Ratios (SNR) at the
input and output of the receives, is the input signal powery; is the input
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noise powers, andN, are, respectively, the output signal and noise power.
Substituting Eq. (1.50) into Eqg. (1.51) and rearranging terms yields

S = kT.BF%NR & (1.52)
Thus, the minimum detectablegysal power can be written as
Smin = KTBF9BNRE - (1.53)

The radar detection threshold is set equal to the minimum output SNR,
%BNR& . Substituting Eq. (1.53) in Eq. (1.48) gives

0 2.2 11#4
Rimax = PO LS (1.54)
“044 %(TeBF%NRd&J

or equivalently,

9SNR & = P‘GZ( 0 (1.55)
B 944 %TBFR' '
e ax

In general, radar losses denoted aseduce the overall SNR, and hence
P.G*(%9
%BNRf= ————— (1.56)
%44 KT BFLR

Although it may take on many different forms, Eq. (1.56) is what is widely
known as the Radar Equation. It is@nmon practice to perform calculations
associated with the radar equationngsdecibel (dB) arithmetic. A review is
presented in Appendix A.

MATLAB Function “radar_eq.m”

The function‘radar_eqg.m” implements Eq. (1.56); it is given in Listing 1.1
in Section 1.10. The syntax is as follows:

[snr] =radar_eq (pt, freq, g, sigma, te, b, nf, loss, range)

where
Symbol Description Units Status
pt peak power Watts input
freq radar center frequency Hz input
g antenna gain dB input
sigma target cross section n? input
te effective noise temperature Kelvin input
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Symbol Description Units Status

b bandwidth Hz input
nf noise figure dB input
loss radar losses dB input
range target range (can be either a sin  meters input

gle value or a vector)

snr SNR (single value or a vector, dB output
depending on the input range)

The functionfradar_eq.m” is designed such that it can accept a single value
for the input‘range”, or a vector containing many range values. Figure 1.12
shows some typical plots generated using MATLAB progféigll_12.m”
which is listed in Listing 1.2 in Seomm 1.10. This program uses the function
“radar_eg.m”, with the following default inputs: Peak powef = 1.5MW,
operating frequency, = 5.6GHz, antenna gailG = 45dB, effective tempera
ture T, = 290K, radar losses = 6dB, noise figurer = 3dB. The radar banrd
width is B = 5MHz. The radar minimum and maximum detection range are
Rpin = 25KmandR,, = 165Km. Assume target cross sectiorn= 0.1m° .

Note that one can easily modify the MATLAB functitiadar_eq.m” so
that it solves Eg. (1.54) for the maximum detection range as a function of the
minimum required SNR for a given set of radar parameters. Alternatively, the
radar equation can be modified to compute the pulsewidth required to achieve
a certain SNR for a given detection rangehis case the radar equation can be
written as

5o 2 %T,FLR'SNR
P.G’(%9

(1.57)

Figure 1.13 shows an implementation of Eg57) for three different detection
range values, using the radar parameters used in MATLAB program
“figl_13.m". Itis given in Listing 1.3 in Section 1.10.

When developing radar simulations, Eqg. (1.57) can be very useful in the fol
lowing sense. Radar systems often utilize a finite number of pulsewidths
(waveforms) to accomplish all designateddes of operations. Some of these
waveforms are used for search and detacothers may be used for tracking,
while a limited number of wideband waveforms may be used for discAmina
tion purposes. During the search mode of operation, for example, detection of a
certain target with a specific RCS valis established based on a pre-deter
mined probability of detectioR, . The probability of detectiorR , is used to
calculate the required detection SNRigtwill be addressed in Chapter 2).

© 2004 by Chapman & Hall/CRC CRC Press |



—— 9 =0dBsm
— 9 = -10dBsm
— — 9 =-20dBsm

T
|
|
|

180

160

140

Detection range - Km

Figure 1.12a. SNR versusletection range for three different values of RCS.
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Figure 1.12b. SNR versus detection rage for three different values of radar

peak power.
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Once the required SNR is computed, Bg57) can then be used to find the
most suitable pulse (or waveform) that achieves the required SNR (or-equiva
lently the requiredPy ). Often, it may be the case that none of the available
radar waveforms may be able to guarantee the minimum required SNR for a
particular RCS value at a particular elgton range. In this case, the radar has
to wait until the target is close enough in range to establish detection, otherwise
pulse integration (coherent or non-coherent) can be used. Alternatively, cumu
lative probability of detection can be usédl these issues will be addressed in
Chapter 2.

H
15}
I

$(pulse width) in < sec

15
Minimum required SNR - dB

Figure 1.13. Pulsewidth versus required SNR for three different detection
range values.

1.5.1. Radar Reference Range

Many radar design issues can be derived or computed based on the radar ref
erence rangeR ; which is often provided by the radar end user. It simply
describes that range at which ataegr SNR value, referred to &NR,;, has to
be achieved using a specific reference pulsewgith for a pre-determined
target cross sectiory, ;. Radar reference range calculations assume that the
target is on the line defined by the maximum antenna gain within a beam
(broad side to the antenna). This is often referred to as the radar line of sight, as
illustrated in Fig. 1.14.

The radar equation at the reference range is

© 2004 by Chapman & Hall/CRC CRC Press |



Radar line of sight

Figure 1.14. Definition of radar line of sight and radar reference range.

2,2 1#4
_ 0 PtG ( 9ref$ref 1

f_ . b
" loaa T FLBNR &/

(1.58)
The radar equation at any other detection range for any other combination of

SNR, RCS, and pulsewidth can be given as

R = R Oi 9 SNRef 111#4
ef'$ref 9ref SNR Lp/

(1.59)

where the additional loss tertn, is introduced to account for the possibility
that the non-reference target may not be on the radar line of sight, and to
account for other losses associated lith specific scenaridOther forms of

Eqg. (1.59) can be in ternod the SNR. More precisely,

9 oRrerf’

s R/ (1.60)

- $ 1
SNR SN%f $ref I-p ref’
As an example, consider the radar désiin the previous section, in this
case, defined, ,; = 0.7, R.e; = 86Km, and SNR; = 20dB. The reference
pulsewidth is $,.¢ = 0.1<sec. Using Eq. (1.60) wecompute the SNR at
R = 120Km for a target whose RCS # = 0.2m?. Assume that,, = 2dB to
be equal to%NR &, = 15.2dB. For this purpose, the MATLAB program
“ref_snr.m” has been developed; it is given in Listing 1.4 in Section 1.10.

1.6. Search (Surveillance)

The first task a certain radar systéras to accomplish is to continuously
scan a specified volume in space seaglior targets of interest. Once detec
tion is established, target information such as range, angular position, and pos
sibly target velocity are extracted blye radar signal and data processors.
Depending on the radar design and argemtifferent search patterns can be
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adopted. A two-dimensional (2-D) fabeam search pattern is shown in
Fig.1.15a. In this case, the beamwidtlvide enough in eletion to cover the
desired search volume along that coordinate; however, it has to be steered in
azimuth. Figure 1.15b shovasstacked beam search patt here the beam has

to be steered in azimuth and elevationisTatter kind of search pattern is nor
mally employed by phased array radars.

Search volumes are normally sged by a search solid angte in steradi
ans. Define the radar searvolume extent for bothzimuth and elevation as
>, and>_. Consequently, the search volume is computed as

= =% ,>c &57.296 & steradians (1.61)

where both>, and>_ are given in degrees. The radar ante@tB beam
width can be expressed in terms sfdzimuth and elevation beamwidths
and5,, respectively. It follows that the antenna solid angle coveraggsis
and, thus, the number of antenna beam positigneequired to cover a solid
angle= is

Ng = —————— (1.62)
%,5, &57.296%

In order to develop the search radar equation, start with Eq. (1.56) which is
repeated here, for convenience, as Eqg. (1.63)

P,G(%9
SNR= (1.63)

984 ¥T BFLR'

Using the relations = 1#8 and P, = P, T#, whereT is the PRI andb is
the pulsewidth, yields

2,2
sNR= I PG (9%

1.64
$ 084 &TFLR .

(a) (b)

Figure 1.15. (a) 2-D fan search gtern; (b) stacked search pattern.
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Define the time it takes the radar to scan a volume defined by the solid angle
= as the scan tim&,.. The time on target can thée expressed in terms of
T, as

(1.65)

Assume that during a single scan only one pulse per beam per PRI illuminates
the target. It follows thaf; = T and, thus, Eq. (1.64) can be written as

2,2
PG ("9 T

SNR= S
984 XT FLR' =

a5e (1.66)

Substituting Egs. (1.40) and (1.42) into Eq. (1.66) and collecting terms yield
the search radar equation (basedaingle pulse per beam per PRI) as

PA9 T
SNR= _Paed Tec (1.67)

44KT FLR* =

The quantityP, A in Eq. (1.67) is known as the power aperture product. In
practice, the power apertupgoduct is widely used to categorize the radar’s
ability to fulfill its search mission. Normally, a power aperture product is.com
puted to meet a predetermad SNR and radar cross section for a given search
volume defined by .

As a special case, assume a radarguairtircular aperte (antenna) with
diameterD . The 3-dB antenna beamwidsh,g is

5348 % (1.68)

and when aperture tapering is uségz, 1.25 #D. Substituting Eq. (1.68)
into Eqg. (1.62) yields

ng = — = (1.69)

T, = =°= T (1.70)

Substitute Eq. (1.70) into Eq. (1.64) to get

2,2 2
P.G(% T
SNR= —2&Y 4( SZC( (1.71)
44 ®'KTFLD*=
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and by using Eq. (1.40) in Eq. (1.71) wan define the search radar equation
for a circular aperture as

Pa9 Tec

SNR= —2
16R'KT,LF =

(1.72)

where the relatiom = 4D%# (aperture area) is used.
MATLAB Function “power_aperture.m”

The function“power_aperture.m” implements the search radar equation
given in Eq. (1.67); it is given in Listinl.5 in Section 1.10. The syntax is as
follows:

PAP = power_aperture (shr, tsc, signtange, te, nf, loss, az_angle, el_angle)

where
Symbol Description Units Status
snr sensitivity snr dB input
tsc scan time seconds input
sigma target cross section e input
range target range (can be either sin  meters input
gle value or a vector)

te effective temperature Kelvin input

nf noise figure dB input
loss radar losses dB input
az_angle search volume azimuth extent degrees input
el_angle | search volume elevation extent degrees input
PAP power aperture product dB output

Plots of the power aperture product versus range and plots of the average
power versus aperture area for thRE@S choices are shown in Figure 1.16.
MATLAB program“figl_16.m" was used to produce these figures. It is given
in Listing 1.6 in Section 1.10. In thease, the following radar parameters were
used

sc R T nf" loss snr

01m? | 25sec | 27 250Km | 900K 13dB 15dB
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Figure 1.16a. Power aperturgproduct versus detection range.
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Figure 1.16b. Radar average poweversus power aperture product.
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Example:

Compute the power aperture product corresponding to the radar that has the
following parameters: Scan timg,, = 2seg Noise figureF = 8dB, losses
L = 6dB, search volume = 7.4 steradians range of interest iR = 75Km,
and the required SNR is20dB. Assume thatT, = 290Kelvin and

9 = 3.16217°.
Solution:

Note that= = 7.4 steradianscorresponds to a search sector that is three
fourths of a hemisphere. Thus, using Eqg. (1.61) we concludesjhat180?

and5, = 135?. Using the MATLAB function “power_aperture.m” with the-fol
lowing syntax:
PAP = power_aperture(20, 2, 3.2675e3, 290, 8, 6, 180, 135)

we compute the power aperture product as 36.7 dB.

1.6.1. Mini Design Case Study 1.1

Problem Statement:

Design a ground based radar that is capable of detecting aircraft and mis
siles at 10 Km and 2 Km altitudes, respectively. The maximum detection range
for either target type is 60 Km. Assume that an aircraft average RCS is 6 dBsm,
and that a missile average RCS is -10 dBsm. The radar azimuth and elevation
search extents are respectively = 360? and > = 10?. The required scan

rate is 2 seconds and the range resalntis 150 meters. Assume a noise figure
F = 8 dB, and total receiver noise L 0 dB. Use a fan beam with azimuth
beamwidth less than 3 degrees. The SNR is 15 dB.

A Design:

The range resolution requirement!i® = 150m; thus by using Eq. (1.8) we
calculate the required pulsewidtl$ = 1<sec, or equivalently require the
bandwidthB = 1MHz. The statement of the probldemds itself to radar siz
ing in terms of power aperture product. For this purpose, one must first com
pute the maximum search volume a tetection range that satisfies the
design requirements. The radar search volume is

>A”E _ 360" 10
057.296% 957.296%

= 1.097 steradians (1.73)

At this point, the designer is ready to use the radar search equation (Eq.
(1.67)) to compute the power aperture product. For this purpose, one can mod
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ify the MATLAB function “power_aperture.m” to compute and plot the power
aperture product for both target types. To this end, the MATLAB program
“casestudyl 1.m”, which is given insting 1.7 in Setion 1.10, was devel
oped. Use the parameters in Table 1.2 as inputs for this program. Note that the
selection ofT, = 290Kelvin is arbitrary.

TABLE 1.2: Input parameters to MATLAB prograncésestudyl 1.m".

Symbol Description Units Value
snr sensitivity snr dB 15
tsc scan time seconds 2
sigma_tgtm missile radar cross section dBsm -10
sigma_tgta aircraft radar cross section dBsm 6
rangem missile detection range Km 60
rangea aircraft detection range Km 60
te effective temperature Kelvin 290
nf noise figure dB 8
loss radar losses dB 10
az_angle search volume azimuth extent degrees 360
el_angle | search volume elevation extent degrees 10

Figure 1.17 shows a plot of the output produced by this program. The same
program also calculates the corresponding power aperture product for both
the missile and aircraft cases, which can also be read from the plot,

PAP, issile = 38.53B
(1.74)
PAP, i craft = 22.531B

Choosing the more stressing case floe design baseline (i.e., select the
power-aperture-product resulting from the missile analysis) yields

3.853 _ _ 7128.53

P " As = 10 = 7128.53@ A, =Py (1.75)
ChooseA, = 1.75m° to calculate the average power as
7128.53
P,, = ——=— = 4.07XW 1.76
av = 175 79

and assuming an aperture efficiencyef 0.8 yields the physical aperture
area. More precisely,

A= —=f===21875m @.77)
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Figure 1.17. Power aperture poduct versus detection range for
radar in mini design case study 1.1.

Use f, = 2.0GHz as the radar operating frequency. Then by using
A, = 1. 75m we calculate using Eq. (1.4@ = 29.9dB. Now one must deter
mine the antenna azimuth beamwidth. Recall that the antenna gain is also
related to the antenna 3-dB beamwidth by the relation

(1.78)

where %_A5, &are the antenna 3-dB azimuth and elevation beamwidths,
respectively. Assume a fan beam with,= > = 15?. It follows that

26000_ _ 26000

5&
5,G 10" 977.38

=2.66?@5, = 46.43nrad (1.79)

1.7. Pulse Integration

When a target is located within thedes beam during a single scan it may
reflect several pulses. By adding the returns from all pulses returned by a given
target during a single scan, the radars#itvity (SNR) can be increased. The
number of returned pulses depends on the antenna scan rate and the radar PRF.
More precisely, the number of pulses returned from a given target is given by

5Tf

~a scr

1.80
P 24 (1.80)

© 2004 by Chapman & Hall/CRC CRC Press |



where5, is the azimuth antenna beamwidty,, is the scan time, anfd is the
radar PRF. The number of reflected pulses may also be expressed as

5.f
np = —2- (1.81)

5scan

where 55,5 is the antenna scan rate in degrees per second. Note that when
using Eq. (1.80)5, is expressed in radians, while when using Eq. (1.81) it is
expressed in degrees. As an examplasicter a radar with an azimuth antenna
beamwidth5, = 3?, antenna scan ratc,, = 45?#sec (antenna scan time,

T, = 8semnds), and a PRH, = 300Hz. Using either Eq.s (1.80) or (1.81)
yields n, = 20 pulses.

The process of adding radar returns from many pulses is called radar pulse
integration. Pulse integiah can be performed on the quadrature components
prior to the envelope detector. This is called coherent integration or pre-detec
tion integration. Coherent integratioregerves the phase relationship between
the received pulses. Thus a build up in the signal amplitude is achieved. Alter
natively, pulse integratioperformed after the envelope detector (where the
phase relation is destroyed) is calleah-coherent or post-detection integra
tion.

Radar designers should exercise caution when utilizing pulse integration for
the following reasons. First, during a scan a given target will not always be
located at the center of the radar bgam, have maximum gain). In fact, dur
ing a scan a given target will first enttne antenna beam at the 3-dB point,
reach maximum gain, and filhaleave the beam at tf8dB point again. Thus,
the returns do not have the same amplitude even though the target RCS may be
constant and all other factors which niatyoduce signal loss remain the same.
This is illustrated in Fig. 1.18, and is normally referred to as antenna beam
shape loss.

,_antenna 3-dB beamwidth

~i~

amplitude

A1 h]\ ;

time

Figure 1.18. Pulse returns froma point target using a rotating
(scanning) antenna
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Other factors that may introduce further variation to the amplitude of the
returned pulses include target RCS and propagation path fluctuations. Addi
tionally, when the radar employs a very fast scan rate, an additional loss term is
introduced due to the motion of theam between transmission and reception.
This is referred to as scan loss. A distinction should be made between scan loss
due to a rotating antenna (which is described here) and the term scan loss that
is normally associad with phased array antenn@ghich takes on a different
meaning in that context). These topics will be discussed in more detail in other
chapters.

Finally, since coherent integration utilizes the phase information from all
integrated pulses, it is critical that any phase variation between all integrated
pulses be known with a great levelooihfidence. Consequently, target dyram
ics (such as target range, range rate, tumble rate, RCS fluctuation, etc.) must be
estimated or computed acctealy so that coherent integration can be meaning
ful. In fact, if a radar coherently integges pulses from targets without proper
knowledge of the target dynamics itffeus a loss in SNR rather than the
expected SNR build up. Knowledge of targlynamics is nads critical when
employing non-coherent integration; nonetheless, target range rate must be
estimated so that only the returns frangiven target within a specific range
bin are integrated. In other words, one must avoid range walk (i.e., aveid hav
ing a target cross between adjaaamge bins during a single scan).

A comprehensive analysis of pulse integration should take into account
issues such as the probability of detectity, probability of false alarn®;,,
the target statistical fluctuation modehd the noise or intkerence statistical
models. These topics will be discussed in Chapter 2. However, in this section
an overview of pulse integration is introduced in the context of radar measure
ments as it applies to the radar equation. The basic conclusions presented in
this chapter concerning pulse integration will still be valid, in the general
sense, when a more comprehensive aigabfspulse integration is presented,;
however, the exact implementation, thetinemnatical formulation, and /or the
numerical values used will vary.

1.7.1. Coherent Integration

In coherent integration, when a perfetegrator is usefL00% efficiency),
to integraten, pulses the SNR is improved ltye same factor. Otherwise,
integration loss occurs, which is always the case for non-coherent integration.
Coherent integration loss occurs when the integration process is not optimum.
This could be due to target fluctuation, instability in the radar local oscillator,
or propagation path changes.

Denote the single pulse SNR required to produce a given probability of
detection a96NR & The SNR resulting from coherently integratimg pulses
is then given by
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9BNR& = Np9NR & (1.82)

Coherent integration cannot be applied over a large number of pulses, partic
ularly if the target RCS is varying rapydIf the target radial velocity is known
and no acceleration is assumed, the maxn coherent integration time is im
ited to

te, = J(#2a (1.83)

T

where( is the radar wavelength ad is the target radial acceleration. Ceher
ent integration time can be extendedhé target radial acceleration can be
compensated for by the radar.

1.7.2. Non-Coherent Integration

Non-coherent integration is often implemented after the envelope detector,
also known as the quadratic detector. Noherent integration is less efficient
than coherent integration. Actually, the non-coherent integration gain is always
smaller than the number of non-coherently integrated pulses. This loss in inte
gration is referred to as post detect@rsquare law detector loss. Marcum and
Swerling showed that thisss is somewhere betweein, andng . DiFranco
and Rubin presented an approximation of this loss as

Lyci = 10log%/n, &5.5 dB (1.84)
Note that as\, becomes very large, the integration loss approag’h_gs

The subject of integration loss is treated in great levels of detail in the litera
ture. Different authors use differenpmoximations for the integration loss
associated with non-coherent integratiblowever, all these different approxi
mations yield very comparable resulBherefore, in the opinion of these
authors the use of one formula or drestto approximate integration loss
becomes somewhat subjective this book, the integration loss approximation
reported by Barton and used by Curry will be adopted. In this case, the non-
coherent integration loss which can be used in the radar equation is

_1+9NR&
Lner = TBNRE (1.85)

It follows that the SNR when, pulses are integradi non-coherently is

Np%BNR & 9BNR &

WBNR Gy = = — = IBNRE ogapey

(1.86)
I‘NCI

1.7.3. Detection Range with Pulse Integration

The process of determining the radar sensitivity or equivalently the- maxi
mum detection range when pulse integration is used is as follows: First, decide
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whether to use coherent or non-coherent integration. Keep in mind the issues
discussed in the beginning of this section when deciding whether to use coher
ent or non-coherent integration.

Second, determine the minimum requifgiNR & or %8NR &, required for
adequate detection and track. Typically, for ground based surveillance radars
that can be on the order of 13 to 15 dB. The third step is to determine how
many pulses should be integrated. The choiceyofs affected by the radar
scan rate, the radar PRF, the azimutterama beamwidth, and of course by the
target dynamics (remember that rangékvedould be avoided or compensated
for, so that proper integration is feasible). Omgeand the required SNR are
known one can compute theagle pulse SNR (i.e., the reduction in SNR). For
this purpose use Eq. (1.82) in the ca$ecoherent integration. In the non-
coherent integration case, Curry presamtattractive formla for this calcula
tion, as follows

(1.87)
2Np an3 Np

0, 0, 0,
BNR = 5NR§Q,+J5NR§E,+ BNR &,

Finally, use%NR &from Eqg. (1.87) in the radar equation to calculate the
radar detection range. Observe that duthe integration reduction in SNR the
radar detection range is now larger tiizat for the single pulse when the same
SNR value is used. This is illustrated using the following mini design case
study.

1.7.4. Mini Design Case Study 1.2

Problem Statement:

A MMW radar has the following spifications: Center frequency
f = 94GHz, pulsewidth$ = 50" 10 sec, peak poweP, = 4W, azimuth cov
erage !B = C120?, Pulse repetition frequenciRF = 10KHz, noise figure
F = 7dB; antenna diameteb = 12in; antenna gainG = 47dB; radar cross
section of target is9 = 20m°; system losses = 10dB; radar scan time
T, = 3sec Calculate: The wavelength; range resolution! R; bandwidth

B; antenna half power beamwidth; antenna scan rate; time on target- Com
pute the range that corresponds to 10 dB SNR. Plot the SNR as a function of
range. Finally, compute the number of pulses on the target that can be used for
integration and the corresponding new detection range when pulse integration

is used, assuming that the SNR stays unchanged (i.e., the same as in the case of
a single pulse). Assunig = 290 Kelvin.
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A Design:

The wavelengtlg is

The range resolutioh R is

w18 w19
c$ _ 98" 10 %0" 10 & 75m

IR=
2 2

Radar operating bandwidtB is

The antenna 3-dB beamwidth is
5395 = 1.255 = 0.749%

Time on target is

Sscan
It follows that the number of pulses available for integration is calculated

using Eqg. (1.81),

5 _
np = =98¢ = 938" 10°" 10" 10°@ 94 pulses

55can

Coherent Integration case:
Using the radar equation given in Eq. (1.58) yieRlg; = 2.245%m. The
SNR improvement due to coherently integrating 94 pulses is 19.73dB. How

ever, since it is requested that the SidRains at 10dB, we can calculate the
new detection range using Eg. (1.59) as

Rel = 2.245" 994" = 6.9Km
n, =94

Using the MATLAB Function “radar_eq.m” with the following syntax
[snr] = radar_eq (4, 94e9, 47, 20, 290, 20e6, 7, 10, 6.99e3)

yields SNR = -9.68 dB. This means that using 94 pulses integrated coherently
at 6.99 Km where each pulse has a SNR of -9.68 dB provides the same detec
tion criteria as using a single pulse with SNR = 10dB at 2.245Km. This is illus
trated in Fig. 1.19, using the MATLAB program “figl_19.m”, which is given in
Listing 1.8 in Section 1.10. Figure 1.19 shows the improvement of the detection
range if the SNR is kept constant before and after integration.

© 2004 by Chapman & Hall/CRC CRC Press |



: : : : : : : : . .
! ! ! ! ! ! ! ! — single pulse
I I I I I I I I [ [
N | | | | | | | | |
{ I I I I I I I I I
W ———l——t-——F-——d-———+-————d-——f-——-——+—-——-
PN I I I I I I I I
| S | | | | | | | |
| I~ | | | | | | |
] A L L [t Sy W PR U] N —
I I I~ I I I I I I
@ I I I I~ 1 I I I I I
° | | | I _ | | | | |
z T N T S
7 I I I I I [ I | |
I I I I I T e I
I I I I I I I I —— 1
3 N [ A N
I | I I | I I I I I
I I I I I I I I I
I I I I I I I I I
Mol — o UTS_____L______1___]
I I I | I I ! I I |
I I I I I I I I I
I I I I I I I I I
1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12

Detection range - Km

Figure 1.19. SNR versusletection range, using parameters from example.

Non-coherent Integration case:

Start with Eq. (1.87) with6NR &, = 10dB andn, = 94,

_10 , [%40% 10 _ 0.38366@ — 4.16B

9BNR &= >

Therefore, the single pulse SNR when 94 pulses are integrated non-coher
ently is -4.16dB. You can verify this result by using Eq. (1.86). The integration
loss Ly, is calculated usig Eq. (1.85). Itis

1+ 0.38366
Lye = ———2299909- 3 5065@ 5.571B
NCI 0.38366

Therefore, the net non-coherent integration gain is
10" log9®4 &5.571 = 14.16dB @ 26.06422

and, consequently, the maximum detection range is

Ruc = 2.245" 926.06422¢" = 5.07Km
np = 94

This means that using 94 pulses intggd non-coherently at 5.073 Km where
each pulse has SNR of -4.16dB provides the same detection criterion as using a
single pulse with SNR = 10dB at 2.245Km. This is illustrated in Fig. 1.20,
using the MATLAB program “figl_19.m”".
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Figure 1.20. SNR versus detection range, for the same example.

MATLAB Function “pulse_integration.m”

Figure 1.21 shows the SNR gain versus tiamber of integted pulses for
both coherent and non-coherent integmatiThis figure corresponds to param
eters from the prégus example aR = 5.01Km. Figure 1.22 shows the gen
eral case SNR improvement versus nundfentegrated pulses. Both figures
were generated using MATLAB progratfigl_21.m” which is given in List
ing 1.9 in Section 1.10. For this purpose the MATLAB function
“pulse_integration.m” was developed. It is given in Listing 1.10 in Section
1.10. This function calculates the radar equation given in Eq. (1.56) with pulse
integration. The syntax for MATLAB functiofpulse_integration.m”is as fot
lows

[snr] = pulse_integration (pt, freq, g, sigma, te, b, nf, loss, range, np, ci_nci)

where
Symbol Description Units Status
pt peak power Watts input
freq radar center frequency Hz input
g antenna gain dB input
sigma target cross section n? input
te effective noise temperature Kelvin input
b bandwidth Hz input
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Symbol Description Units Status

nf noise figure dB input

loss radar losses dB input

range target range (can be either a sif  meters input
gle value or a vector)

np number of integrated pulses none input

ci_nci 1 for CI; 2 for NCI none input

snr SNR (single value or a vector, dB output

depending on the input range)

SNR -dB

Number of integrated pulses

Figure 1.21. SNR improvementvhen integration is utilized.

1.8. Radar Losses

As indicated by the radar equatidhe receiver SNR is inversely propor
tional to the radar losses. Hence, amyrease in radar losses causes a drop in
the SNR, thus decreasing the probabilitydefection, as it is a function of the
SNR. Often, the principalifference between a good radar design and a poor
radar design is the radar losses. Radar losses include ohmic (resistance) losses
and statistical losses. In this sectioa will briefly summarize radar losses.
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Figure 1.22. SNR improvementvhen integration is utilized.

1.8.1. Transmit and Receive Losses

Transmit and receive losses occur bedw the radar transmitter and antenna
input port, and between the antennapat port and the receiver front end,
respectively. Such losses are oftedathplumbing losses. Typically, plumbing
losses are on the order of 1 to 2 dB.

1.8.2. Antenna Pattern Loss and Scan Loss

So far, when we used the radaguation we assumed maximum antenna
gain. This is true only if the target is located along the antenna’s boresight axis.
However, as the radar scans across a téngedntenna gain in the direction of
the target is less than maximum, as defined by the antenna’s radiation pattern.
The loss in SNR due to not having maximum antenna gain on the target at all
times is called the antenna patterhafse) loss. Once an antenna has been
selected for a given radar, the amounduatienna pattern loss can be mathemat
ically computed.

For example, consider sinx# antenna radiation pattern as shown in Fig.
1.23. It follows that the average antenna gain over an angular reg@df
about the boresight axis is

22
1_04;'-/1 5_ (1.88)

Gavs (! 3

(o2}
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wherer is the aperture radius argdis the wavelength. In practice, Gaussian
antenna patterns are oftedoated. In this case, B,,; denotes the antenna
3dB beamwidth, then the antengain can be approximated by

2.776°1

2 )
53dB /

0
G% & exp:—

(1.89)

If the antenna scanning rate is so fast the gain on receive is not the same
as on transmit, additionatan loss has to be calculated and added to the beam
shape loss. Scan loss can be computedsimilar fashion to beam shape loss.

Phased array radars are often primedadates for both beam shape and scan
losses.

Nomnalized antenna pattem -dB

Angle - radians

Figure 1.23. Normalized (& x / x) antenna pattern.

1.8.3. Atmospheric Loss

Detailed discussion of atmospheric l@®l propagation effects is in a later
chapter. Atmospheric attenuation is a function of the radar operating frequency,

target range, and elevation angle. Atptosric attenuation can be as high as a
few dB.

1.8.4. Collapsing Loss

When the number of integrated returned noise pulses is larger than the target
returned pulses, a drop in the SNR aschis is called collapsing loss. The
collapsing loss factor is defined as
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6. = (1.90)

wheren is the number of pulses containing both signal and noise, white
the number of pulses ca@ibing noise only. Radars detect targets in azimuth,
range, and Doppler. When target retuamne displayed in one coordinate, such
as range, noise sources from azimuth cdliigcent to the actual target return
converge in the target vicinity and cawsdrop in the SNR. This is illustrated
in Fig. 1.24.

Figure 1.24. lllustration of collapsing loss. Noise sources in cells 1, 2, 4, and 5
converge to increase the noise level in cell 3.

1.8.5. Processing Losses
a. Detector Approximation:

The output voltage signal of a radaceiver that utilizes a linear detector is

Vb & V{% &va% & (1.91)

where%,A/, &re the in-phase and guadrature components. For a radar using a
square law detector, we havé & v:% &vé% &

Since in real hardware the operations of squares and square roots are time
consuming, many algorithms have beveloped for detector approximation.
This approximation results in a loss of the signal power, typically 0.5 to 1 dB.

b. Constant False Alarm Rate (CFAR) Loss

In many cases the radar detection thoésls constantly adjusted as a func
tion of the receiver noise level in order to maintain a constant false alarm rate.
For this purpose, Constant False AlarmieR&FAR) processotare utilized in
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order to keep the number of false alarms under control in a changing and
unknown background of interference. CFARCessing can cause a loss in the
SNR level on the order of 1 dB.

Three different types of CFAR processare primarily used. They are adap
tive threshold CFAR, nonparametric CFA&d nonlinear receiver techniques.
Adaptive CFAR assumes that the nfiéeence distribution is known and
approximates the unknown parameters associated with these distributions.
Nonparametric CFAR processors tendaccommodate unknown interference
distributions. Nonlinear receiver techjpes attempt to normalize the root
mean square amplitude of the interference.

c. Quantization Loss:

Finite word length (number of bits) and quantization noise cause an increase
in the noise power density at the output of the Analog to Digital (A/D) con
verter. The A/D noise level isz #12, whereq is the quantization level.

on target sample echo envelope

e

late sample

»

range gates
on target range
bin

(a) Target on the center of a range gate.

echo envelope

late sample
early sample

-

range gates
on target range
bin

(b) Target on the boundary between two range gates.

Figure 1.25. lllustration of range gate straddling.
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d. Range Gate Straddle:

The radar receiver is northamechanized as a ses of contiguous range
gates (bins). Each range bin is implemented as an integrator matched to the
transmitted pulsewidth. 8¢e the radar receiver acts as a filter that smears
(smooths), the received target echoes $imoothed target return envelope is
normally straddled to cover more than one range gate.

Typically, three gates are affectedpyhare called the early, on, and late
gates. If a point target is located exactythe center of a range gate, then the
early and late samples are equal. However, as the target starts to move into the
next gate, the late sample becomes larger while the early sample gets smaller.
In any case, the amplitudes of all three samples should always roughly add up
to the same value. Fig. 1.25 illustrates the concept of range straddling. The
envelope of the smoothed target echo is likely to be Gaussian shaped-In prac
tice, triangular shaped envelopes mayehbsier and faster implement. Since
the target is likely to fall anywhere toeeen two adjacent range bins, a loss in
the SNR occurs (per range gate). Mspecifically, a target’s returned energy
is split between three range bins. Typica#ifraddle loss of about 2 to 3 dB is
not unusual.

Example:

Consider the smoothed target echo voltage shown below. Adsumesis
tance. Find the power loss due to range gate straddling over the interval

DOAS E
V(t) A

Solution:
The smoothed voltage can be written as

L M
=K+0K;1/]t ,t+(]I
vib & J K
lk-0kx1y . g
%/
G H

The power loss due to straddle over the inte & Eis
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2 2
Vg _,0K*+1g oK+17°2
LS—K2—1 2 K$/1[+_ 5/t

The average power loss is then

1 g

$#2
-o_2 oK+17 , oK+142.2
LS_$N.01_2. K$/]t+. K$/ Y
0

_K+1,9%+1%
2K 1aK?

=1

and, for example, iK = 15, thenLg = 2.5dB.
e. Doppler Filter Straddle:

Doppler filter straddle is similar to range gate straddle. However, in this case
the Doppler filter spectrum is spre@gidened) due to weighting functions.
Weighting functions are normally used to reduce the sidelobe levels. Since the
target Doppler frequency can fall anywhere between two Doppler filters, signal
loss occurs.

1.8.6. Other Losses

Other losses may include equipment losses due to aging radar hardware,
matched filter loss, and antenna efficierlogs. Tracking radars suffer from
crossover (squint) loss.

1.9. “MyRadar” Design Case Study - Visit 1

In this section, a design & study, referred to dMyRadar” design case
study, is introduced. For this purpose, only the theory introduced in this chapter
is used to fulfill the design requirements. Note that since only a limited amount
of information has been introduced tinis chapter, the design process may
seem illogical to some readers. Howewasrnew material is introduced in sub
sequent chapters, the design requéeets are updated and/or new design
requirements are introduced based onpgasicular material of that chapter.
Consequently, the design process walabe updated to accommodate the new
theory and techniquesdrned in that chapter.

1.9.1. Authors and Publisher Disclaimer

The design case studyMyRadar” is a ground based air defense radar
derived and based on Brooknéripen literature source. However, the design
approach introduced in this book is basedhe authors’ point of view of how
to design such radar. Thus, the design process takes on a different flavor than
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that introduced by Brookner. Additionally, any and all design alternatives pre
sented in this book are $d on and can be easthaced to open literature
sources.

Furthermore, the design approach adopted in this book is based on modeling
many of the radar systeoomponents with no regards to any hardware con
straints nor to any practical limitation§he design presented in this book is
intended to be tutorial and academic itun@ and does not adhere to any other
requirements. Finally, the MATLAB codegsented in this book is intended to
be illustrative and academic and is not designed nor intended for any other
uses.

Using the material presented inthis book and the MATLAB code
designed by the authors of this book by any entity or person is strictly at
will. The authors and the publisher areneither liable nor responsible for
any material or non-mateial losses, loss of wage personal or property
damages of any kind, or for any othettype of damages of any and all types
that may be incurred by using this book.

1.9.2. Problem Statement

You are to design a ground based radar to fulfill the following mission:
Search and Detection. The threat consists of aircraft with an average RCS of 6
dBsm @, = 4m2), and missiles with an average RCS of -3 dBsm
9y = 0.5m2). The missile altitude is 2Km, and the aircraft altitude is about 7
Km. Assume a scanning radar with 360 degrees azimuth coverage. The scan
rate is less than or equal to 1 revolution every 2 seconds. Assume L to X band.
We need range resolution of 150 m. No angular resolution is specified at this
time. Also assume that only one missile and one aircraft constitute the whole
threat. Assume a noise figure F = 6 dB, and total receiver loss L = 8 dB. For
now use a fan beam with azimuth beamwidth of less than 3 degrees. Assume
that 13 dB SNR is a reasonable detection threshold. Finally, assume flat earth.

1.9.3. A Design

The desired range resolution!i® = 150m. Thus, using Eq. (1.8) one calcu
lates the required pulsewidth s= 1<sec, or equivalently the required band
width B = 1MHz. At this point a few preliminary decisions must be made.
This includes the selection of the radgerating frequency, the aperture size,
and the single pulse peak power.

1. Brookner, Eli, EditorPractical Phased Array Antenna Systeddech House,
1991, Chapter 7.
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The choice of an operating frequency that can fulfill the design requirements
is driven by many factors, such asgpre size, antenna gain, clutter, atmo
spheric attenuation, and the maximum peak power, to name a few. In this
design, an opeting frequencyf = 3GHz is selected. This choice is somewhat
arbitrary at this point; however, age proceed with the design process this
choice will be better clarified.

Second, the transportability (mobility) of the radar drives the designer in the
direction of a smaller aperture type. A good choice would be less than 5 meters
squared. For now choogg = 2.25m° . The last issue that one must consider is
the energy required per pulse. Note tthég design approach assumes that the
minimum detection SNR (13 dB) requirement is based on pulse integration.
This condition is true because the target is illuminated with several pulses dur
ing a single scan, provided that theéeamma azimuth beamwidth and the PRF
choice satisfy Eq. (1.81).

The single pulse energy iE = P$. Typically, a given radar must be
designed such that it has a handfubolsewidths (waveforms) to choose from.
Different waveforms (pulsewidths) areeasfor definite modes of operations
(search, track, etc.). Howaydor now only a single pulse which satisfies the
range resolution requirement is considered. To calculate the minimum single
pulse energy required for proper detection, use Eq. (1.57). More precisely,

944 %T_FLR'SNR
E=P$= ) (1.92)
G°(“9
All parameters in Eq. (1.92) are knovwaxcept for the antea gain, the detec
tion range, and the single pulse SNR. The antenna gain is calculated from

0 44A ; 1
Gz ——e-44"225_ 28274 @G = 34.508 (1.93)

where the relation(( = c#) was used.

In order to estimate the detection range, consider the following argument.
Since an aircraft has a larger RCS thamissile, one would expect an aircraft
to be detected at a much longer range thahof a missile. This is depicted in
Fig. 1.26, wherer, refers to the aircraft detection range agg denotes the
missile detection range. As illustratedthis figure, the minimum search ele
vation angles; is driven by the missile detection range, assuming that the mis
siles are detected, with tipeoper SNR, as soon as they enter the radar beam.
Alternatively, the maximmn search elevation angk, is driven the aircraft's
position along with the ramgthat correspordto the defense’s last chance to
intercept the threat (bothraraft and missile). Thigeange is often called “keep-
out minimum range” and is denoted W¥,;,. In this design approach,
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Rnqin = 30Km is selected. In practice, thedp-out minimum range is normally
specified by the user as a design requirement.

Figure 1.26. Radar / threat geometry.

The determination oR, andR,, is dictated by how fast can a defense inter
ceptor reach the keep-out minimum range and kill the threat. For example,
assume that the threatening aircraft velocity@®m#s and the threatening
missile velocity is150m#s. Alternatively, assume that an interceptor average
velocity is 250m#s. It follows that, the interceptor time of flight, based on
Rpin = 30Km, is

T _ 30" 10

interceptor — T 554 = 120sec (1.94)

Therefore, an aircraft and a missiheist be detected by the radar at

R, = 30Km +120" 400= 78Km

a
R 30Km +120" 150= 48Km

m

(1.95)

Note that these values should be used only as a guide. The actual detection
range must also include a few more Rileters, in order to allow the defense
better reaction time. In this design, chodgg = 55Km; and R = 90Km.
Therefore, the maximum PRFRat guarantees an unambous range of at least
90Km is calculated from Eq. (1.5). More precisely,
" 8
7S = 310

u 2" 90" 10
Since there are no angular resolution requirements imposed on the design at
this point, then Eqg. (1.96) is the only criterion that will be used to determine the
radar operating PRF. Select,

= 1.67KHz (1.96)

f, = 1000Hz 1.97)
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The minimum and maximum elevationgges are, respectively, calculated
as

_ 21 _
5, = atan?SE{ = 2.08 (1.98)

_ 71 _
5, = ata .3_(11‘ 13.13 (1.99)

These angles are then used to comfhaeelevation searabxtent (remember
that the azimuth sear@xtent is equal t860?). More precisely, the search vol
ume= (in steradians) is given by

52_51
= = —=—2"360 (1.100)
957.296 %
Consequently, the search volume is
5,-5 _
= = 360" —2—1 = 360 22:13-208_ 4 515 steradians  (1.101)
957.296 % 957.296 &

The desired antenna must have a fan beam; thus using a parabolic rectangu
lar antenna will meet the sign requirements. Selesy, = 2.25m° ; the corre
sponding antenna 3-dB elevation and azimuth beamwidths are denoted as
5.5, , respectively. Select

5, = 5,—5; = 13.13- 2.08= 11.05? (1.102)
The azimuth 3-dB antenna beamwidk calculated using Eq. (1.42) as

5, op = ————— = 13% (1.103)
e 2827.4" 47" 11

It follows that the number of pulses ttstitikes a target during a single scan is
calculated using Eq. (1.81) as

5_f "
n 720 - 1.33" 1000_ 7.39@n_ =7 (1.104)
P 55can 180 P

The design approach presented in this book will only assume non-coherent
integration (the reader is advised to re-calculate all results by assuming coher
ent integration, instead). The design requirement mandates a 13 dB SNR for
detection. By using Eq. (1.87) one calculates the required single pulse SNR,

1.3 1.3 2 1.3
osNR@= 20+ /A0~ & 10 _ 34350 o5NR &= 5.6dB (1.105)
2 " 7 4" 72 7
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Furthermore the non-coherent integration loss associated with this case is com
puted from Eq. (1.85),

L -1+3635
NCI™ 3635

=127@ Ly, = 1.0561B (1.106)

It follows that the correspondirgjngle pulseenergy for the missile and the
aircraft cases are respectively given by

w4 %(TQFLan%NRf&@
G*(%9,,
(1.107)
_ %4 ®4.38" 102 @90 @0*® @o®® w5" 10° 0>

E = 0.1658 Joules
" 98827.4R0.1 RO.5 &
. T FLRIBNR £
) G*(%9 @
a (1.108)
w 123 0.8 o 0.6 " 4, 0.56
£ - %4 %38 107 @90 @0*® @0*® 0" 10° @0 _ 11400 joules

2 98827.47%0.1 24 &

Hence, the peak power that satisfies $ingle pulse detection requirement for
both target types is

p, = £ = 01658 _ 165 gcw (1.109)

The radar equation with pulse integration is

1.2,2
PG(%9  n
SNR= #4 —P. (1.110)
944 &T BFLR' Lnci

Figure 1.27 shows the SNR versus detection range for both target-types with
and without integration. To reproduce this figure use MATLAB program
“figl_27.m" which is given in Listing 1.12 in Section 1.10.

1.9.4. A Design Alternative

One could have elected not to reducedingle pulse peak power, but rather
keep the single pulse peak power asipoted in Eq. (1.109) and increase the
radar detection range. For example, integrating 7 pulses coherently would
improve the radar detection range by a factor of

5
Rimp = % & = 1.63 (1.111)
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Figure 1.27. SNR versus detection range for both target types with and
without pulse integration.

It follows that the new missiland aircraft detection ranges are

R, = 78" 1.63= 126.%Km
R, = 48" 1.63= 78.0Km

Note that extending the minimum detection range for a missitg,te 78Km
would increase the size of the extenttaf elevation searclolume. More pre
cisely,

(1.112)

_ 21 _
5, = atan_o78 = 1.47 (1.113)
It follows that the search volume (in steradians) is now

5,-5 _
= = 360" —2 2L - ggor 1318 147_ 4 509 steradians  (1.114)
957.296 % 957.296 %

Alternatively, integrating 7 pulses non-coherently WiiNR &, = 13dB
yields

96NR &= 5.6dB (1.115)

and the integration loss is
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Lyey = 1.057dB (1.116)
Then, the net non-coherent integration gain is

NClgain = 10" log% &1.057=7.394B@ NCl,;, = 5.488 (1.117)

Thus, the radar detection range is now improved due to a 7-pulse non-coherent
integration to

R. = 78" 9%.488%%° = 119.3&m

a

(1.118)

R. = 48" 96.488%° = 73.46Km

m

Again, the extent of the elevan search volume is changed to

_ 2 _1_
5, = atar973_461, = 1.5 (1.119)

It follows that the search volume (in steradians) is now

5,-5 ~
= = 360" —2—1_ = 360 2313 196_ 4 569 steradians  (1.120)

957.296 % 957.296 %

1.10. MATLAB Program and Function Listings

This section presents listings falt MATLAB functions and programs used
in this chapter. Users are encouragedary the input parameters and rerun
these programs in order to enhancerthederstanding of the theory presented
in the text. All selected parameters and variables follow the same nomenclature
used in the text; thus, understanding the structure and hierarchy of the pre
sented code should be an easy taste the user has read the chapter.

Note that all MATLAB programs and functions developed in this book can
be downloaded from CRC Press Web Sitevw.crcpress.com”. Additionally,
all MATLAB code developed for this book was developed using MATLAB 6.5
Release 13 for Microsoft Windows.

Listing 1.1. MATLAB Function “radar_eq.m”

function [snr] = radar_eq(pt, freq, g, sigma, te, b, nf, loss, range)

% This program implements Eq. (1.56)

¢ = 3.0e+8; % speed of light

lambda = c / freq; % wavelength

p_peak = 10*log10(pt); % convert peak power to dB

lambda_sqgdb = 10*log10(lambda”2); % compute wavelength square in dB
sigmadb = 10*log10(sigma); % convert sigma to dB

four_pi_cub = 10*1og10((4.0 * pi)"3); % (4pi)*3 in dB
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k_db = 10*1og10(1.38e-23); % Boltzman's constant in dB

te_db = 10*log10(te); % noise temp. in dB

b_db = 10*log10(b); % bandwidth in dB

range_pwr4_db = 10*log10(range.”4); % vector of target range”4 in dB
% Implement Equation (1.56)

num = p_peak + g + g + lambda_sqdb + sigmadb;

den = four_pi_cub + k_db +te_db + b_db + nf + loss + range_pwr4_db;
snr =num - den;

return

Listing 1.2. MATLAB Program “figl_12.m”

% Use this program to reproduce Fig. 1.12 of text.

close all

clear all

pt = 1.5e+6; % peak power in Watts

freq = 5.6e+9; % radar operating frequency in Hz

g = 45.0; % antenna gain in dB

sigma = 0.1; % radar crss section in m squared

te = 290.0; % effective noigemperature in Kelvins

b = 5.0e+6; % radar operating bandwidth in Hz

nf = 3.0; %noise figure in dB

loss = 6.0; % radar losses in dB

range = linspace(25e3,165e3,1000); %det range 25 -165 Km, 1000 points
snrl = radar_eq(pt, freq, g, sigma, te, b, nf, loss, range);
snr2 = radar_eq(pt, freq, g, sigma/10, te, b, nf, loss, range);
snr3 = radar_eq(pt, freq, g, sigma*10, te, b, nf, loss, range);
% plot SNR versus range

figure(1)

rangekm = range ./ 1000;
plot(rangekm,snr3,'k',rangekm,snrl,'k -.",rangekm,snr2,'k:")
grid

legend("\sigma = 0 dBsm',"\sigma = -10dBsm’,"\sigma = -20 dBsm")
xlabel ('Detection range - Km');

ylabel ('SNR - dB");

snrl = radar_eq(pt, freq, g, sigma, te, b, nf, loss, range);
snr2 = radar_eq(pt*.4, freq, g, sigma, te, b, nf, loss, range);
snr3 = radar_eq(pt*1.8, freq, g, sigma, te, b, nf, loss, range);
figure (2)

plot(rangekm,snr3,'k',rangekm,snrl,'k -.",rangekm,snr2,'k:")
grid

legend('Pt =2.16 MW','Pt = 1.5 MW','Pt = 0.6 MW')

xlabel ('Detection range - Km');

ylabel ('SNR - dB");

© 2004 by Chapman & Hall/CRC CRC Press |



Listing 1.3. MATLAB Program “figl_13.m”

% Use this program to reproduce Fig. 1.13 of text.

close all

clear all

pt = 1.e+6; % peak power in Watts

freq = 5.6e+9; % radar operating frequency in Hz

g = 40.0; % antenna gain in dB

sigma = 0.1; % radar crses section in m squared

te =300.0; % effective noise temperature in Kelvins

nf = 5.0; %noise figure in dB

loss = 6.0; % radar losses in dB

range = [75e3,100e3,150e3]; % three range values

snr_db = linspace(5,20,200); % SNR values from 5 dB to 20 dB 200 points
snr = 10./(0.1.*snr_db); % convert snr into base 10

gain = 107(0.1*g); %convert antenna gain into base 10

loss = 10*(0.1*loss); % convert losses into base 10

F = 107(0.1*nf); % convert noise figure into base 10

lambda = 3.e8 / freg% compute wavelength

% Implement Eq.(1.57)

den = pt * gain * gain * sigma * lambda”2;

numl = (4*pi)*3 * 1.38e-23 * te * F * loss * range(1)"4 .* snr;
numz2 = (4*pi)*3 * 1.38e-23 * te * F * loss * range(2)"4 .* snr;
numa3 = (4*pi)*3 * 1.38e-23 * te * F * loss * range(3)"4 .* snr;
taul = numl ./ den;

tau2 = num2 ./ den;

tau3 = num3 ./ den;

% plot tau versus snr

figure(1)

semilogy(snr_db,1le6*taul,'k’,snr_db,1e6*tau2,'k -.",snr_db,1e6*tau3,'k:")
grid

legend('R = 75 Km','R = 100 Km','R = 150 Km')

xlabel (‘Minimum required SNR - dB");

ylabel (\tau (pulsewidth) in \mu sec');

Listing 1.4. MATLAB Program “ref_snr.m”

% This program implements Eq. (1.60)
clear all

close all

Rref = 86e3; % ref. range

tau_ref = .1e-6; % ref. pulsewidth
SNRref = 20.; % Ref SNR in dB

snrref = 10"(SNRref/10);
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Sigmaref = 0.1; % ref RCS in m"2

Lossp = 2; % processing loss in dB

lossp = 10" (Lossp/10);

% Enter desired value

tau = tau_ref;

R =120e3;

rangeratio = (Rref / R)"4;

Sigma = 0.2;

% Implement Eq. (1.60)

snr = snrref * (tau / tau_ref) * (1. / lossp) * ...
(Sigma / Sigmaref) * rangeratio;

snr = 10*log10(snr)

Listing 1.5. MATLAB Function “power_aperture.m”

function PAP =
power_aperture(snr,tsc,sigma,range,te,nf,loss,az_angle,el_
angle)

% This program implements Eq. (1.67)

Tsc = 10*log10(tsc); % convert Tsc into dB

Sigma = 10*log10(sigma); % convert sigma to dB

four_pi = 10*log10(4.0 * pi); % (4pi) in dB

k_db = 10*log10(1.38e-23); % Boltzman's constant in dB

Te = 10*log10(te); % noise temp. in dB

range_pwr4_db = 10*log10(range.”4); % target range”4 in dB

omega = az_angle * el_angle / (57.296)"2; % compute search volume in stera
dians

Omega = 10*log10(omega) % search volume in dB

% implement Eq. (1.67)

PAP = snr + four_pi + k_db + Te + nf + loss + range_pwr4_db + Omega ...

- Sigma - Tsc;
return

Listing 1.6. MATLAB Program “figl_16.m”"

% Use this program to reproduce Fig. 1.16 of text.
close all

clear all

tsc = 2.5; % Scan time is 2.5 seconds

sigma = 0.1; % radar cres section in m squared

te = 900.0; % effective noigemperature in Kelvins
snr = 15; % desired SNR in dB

nf = 6.0; %noise figure in dB

loss = 7.0; % radar losses in dB
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az_angle = 2; % search volume azimuth extent in degrees

el_angle = 2; % search voine elevation extent in degrees

range = linspace(20e3,250e3,1000); % range to target 20 Km 250 Km, 1000
points

papl = power_aperture(snrtsc,sigma/10,range,te,nf,loss,az_angle,el_angle);

pap2 = power_aperture(snrtsc,sigmange,te,nf,loss,az_angle,el_angle);

pap3 = power_aperture(snrtsc,sigma*10,range,te,nf,loss,az_angle,el_angle);

% plot power aperture product versus range

% figure 1.16a

figure(1)

rangekm =range ./ 1000;

plot(rangekm,papl,'k’,rangekm,pap2,'k -."rangekm,pap3,'k:")

grid

legend('\sigma = -20 dBsm','\sigma = -10dBsm’,'\sigma = 0 dBsm")

xlabel (‘Detection range in Km");

ylabel (‘Power aperture product in dB");

% generate Figure 1.16b

lambda = 0.03; % wavelength in meters

G = 45; % antenna gain in dB

ae = linspace(1,25,1000);% aperture size 1 to 25 meter squared, 1000 points

Ae = 10*log10(ae);

range = 250e3; % range of interest is 250 Km

papl = power_aperture(snrtsc,sigma/10,range,te,nf,loss,az_angle,el_angle);

pap2 = power_aperture(snrtsc,sigmange,te,nf,loss,az_angle,el_angle);

pap3 = power_aperture(snrtsc,sigma*10,range,te,nf,loss,az_angle,el_angle);

Pavl = papl - Ae;

Pav2 = pap2 - Ae;

Pav3 = pap3 - Ae;

figure(2)

plot(ae,Pavl, 'k',ae,R&, 'k -.',ae,Pav3,'k:")

grid

xlabel('Aperture size in square meters')

ylabel('Pav in dB')

legend('\sigma = -20 dBsm','\sigma = -10dBsm’,'\sigma = 0 dBsm")

Listing 1.7. MATLAB Program “casestudyl_1.m”

% This program is used to generate Fig. 1.17
% It implements the search radar equation defined in Eq. 1.67

clear all

close all

snr = 15.0; % Sensitivity SNR in dB

tsc =2, % Antenna scan time in seconds

sigma_tgtm =-10; % Missile RCS in dBsm
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sigma_tgta=6; % Aircraft RCS in dBsm
range = 60.0; % Sensitivity range in Km,

te = 290.0; % Effective noise temperature in Kelvins
nf = 8; % Noise figure in dB
loss = 10.0; % Radar losses in dB

az_angle = 360.0; % Search volume azimuth extent in degrees
el_angle =10.0; % Search volume elevation extent in degrees
c = 3.0e+8; % Speed of light

% Compute Omega in steradians

omega = (az_angle / 57.296) * (el_angle /57.296);

omega_db = 10.0*log10(omega); % Convert Omega to dBs
k_db =10.*log10(1.38e-23);

te_db = 10*log10(te);

tsc_db = 10*log10(tsc);

factor = 10*log10(4*pi);

rangemdb = 10*log10(range * 1000.);

rangeadb = 10*log10(range * 1000.);

PAP_Missile = snr - sigma_tgtm - tsc_db + factor + 4.0 * rangemdb + ...

k_db + te_db + nf + loss + omega_db
PAP_Aircraft = snr - sigma_tgta - tsc_db + factor + 4.0 * rangeadb + ...
k_db + te_db + nf + loss + omega_db
index = 0O;
% vary range from 2Km to 90 Km
for rangevar=2:1:90
index = index + 1,
rangedb = 10*log10(rangevar * 1000.0);

papm(index) = snr - sigma_tgtm - tsc_db + factor + 4.0 * rangedb + ...

k_db + te_db + nf + loss + omega_db;
missile_PAP(index) = PAP_Missile;
aircraft_PAP(index) = PAP_Aircraft;
papa(index) = snr - sigma_tgta - tsc_db + factor + 4.0 * rangedb + ...

k_db +te_db + nf + loss +omega_db;

end
var=2:1:90;
figure (1)

plot (var,papm,'k’,var,papa,'k-."

legend ('Missile','Aircraft’)

xlabel (‘'Range - Km");

ylabel (‘Power Aperture Product - dB");

hold on
plot(var,missile_PAP,'k:",var,aircraft_PAP,'k:")
grid

hold off
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Listing 1.8. MATLAB Program “figl_19.m”

% Use this program to reproduce Fig. 1.19 and Fig. 1.20 of text.

close all

clear all

pt = 4; % peak power in Watts

freq = 94e+9; % radar operating frequency in Hz

g = 47.0; % antenna gain in dB

sigma = 20; % radar cross section in m squared

te = 293.0; % effective noigemperature in Kelvins

b = 20e+6; % radar operating bandwidth in Hz

nf = 7.0; %noise figure in dB

loss = 10.0; % radar losses in dB

range = linspace(1.e3,12e3,1000); % range to target from 1. Km 12 Km, 1000
points

snrl = radar_eq(pt, freq, g, sigma, te, b, nf, loss, range);

Rnewci = (9470.25) .* range;

snrCl = snrl + 10*log10(94); % 94 pulse coherent integration

% plot SNR versus range

figure(1)

rangekm =range ./ 1000;

plot(rangekm,snrl,'k',Rnewci./1000,snr1,'k -.")

axis([1 12 -20 45])

grid

legend('single pulse','94 pulse CI")

xlabel ('Detection range - Km");

ylabel ('SNR - dB");

% Generate Figure 1.20

snr_b10 = 10.~(snrl1./10);

SNR_1 =snr_b10./(2*94) + sqgrt(((snr_b10.72) ./ (4*94*94)) + (snr_b10 ./
94)); % Equation 1.80 of text

LNCI = (1+SNR_1) ./ SNR_1; % Equation 1.78 of text

NClgain = 10*log10(94) - 10*log10(LNCI);

Rnewnci = ((10.~(0.1*NClgain))."0.25) .* range;

snrnci = snrl + NClgain;

figure (2)

plot(rangekm,snrl,'k',Rnewnci./1000,snr1,'k -.", Rnewci./1000,snr1,'k:")

axis([1 12 -20 45])

grid

legend('single pulse','94 pulse NCI','94 pulse CI")

xlabel ('Detection range - Km');

ylabel ('SNR - dB");
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Listing 1.9. MATLAB Program “figl_21.m”

%use this figure to generate Fig. 1.21 of text

clear all

close all

np = linspace(1,10000,1000);

snrci = pulse_integration(4,94.e97,20,290,20e6,7,10,5.01e3,np,1);
snrnci = pulse_integration(4,94.¢97,20,290,20e6,7,10,5.01e3,np,2);
semilogx(np,snrci,'k',np,snrnci,'k:")

legend('Coherent integration’,'Non-coherent integration")

grid

xlabel (‘Number of integrated pulses’);

ylabel ('SNR - dB");

Listing 1.10. MATLAB Function “pulse_integration.m”

function [snrout] = pulse_integration(pt, freq, g, sigma, te, b, nf, loss,
range,np,ci_nci)
snrl = radar_eq(pt, freq, g, sigma, te, b, nf, loss, range) % single pulse SNR
if (ci_nci == 1) % coherent integration
snrout = snrl + 10*log10(np);
else % non-coherent integration
if (ci_nci == 2)
snr_nci = 10.~(snrl1./10);
vall = (snr_nci.*2) ./ (4.*np.*np);
val2 = snr_nci ./ np;
val3 = snr_nci ./ (2.*np);
SNR_1 =val3 + sqgrt(vall + val2); % Equation 1.87 of text
LNCI = (1+SNR_1) ./ SNR_1; % Equation 1.85 of text
snrout = snrl + 10*log10(np) - 10*log10(LNCI);
end
end
return

Listing 1.11. MATLAB Program “myradarvisitl_1.m”

close all

clear all

pt = 724.2e+3; % peak power in Watts

freq = 3e+9; % radar operating frequency in Hz

g = 37.0; % antenna gain in dB

sigmam = 0.5; % missile RCS in m squared
sigmaa = 4.0; % aircraft RCS in m squared

te = 290.0; % effective noigemperature in Kelvins
b = 1.0e+6; % radar operating bandwidth in Hz
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nf = 6.0; %noise figure in dB

loss = 8.0; % radar losses in dB

range = linspace(5e3,125e3,1000); % range to target from 25 Km 165 Km,
1000 points

snrl = radar_eq(pt, freq, g, sigmam, te, b, nf, loss, range);

snr2 = radar_eq(pt, freq, g, sigmaa, te, b, nf, loss, range);

% plot SNR versus range

figure(1)

rangekm =range ./ 1000;

plot(rangekm,snrl,'k',rangekm,snr2,'k:")

grid

legend('Misssile','Aircraft’)

xlabel ('Detection range - Km);

ylabel ('SNR - dB");

Listing 1.12. MATLAB Program “figl_27.m”

% Use this program to reproduce Fig. 1.27 of text.

close all

clear all

np=7,

pt = 165.8e3; % peak power in Watts

freq = 3e+9; % radar operating frequency in Hz

g = 34.5139; % antenna gain in dB

sigmam = 0.5; % missile RCS m squared

sigmaa = 4; % aircraft RCS m squared

te = 290.0; % effective noigemperature in Kelvins

b = 1.0e+6; % radar operating bandwidth in Hz

nf = 6.0; %noise figure in dB

loss = 8.0; % radar losses in dB

% compute the single pulse BMhen 7-pulse NCI is used

SNR_1 = (1071.3)/(2*7) + sqrt((((10"1.3)"2) / (4*7*7)) + ((10"1.3) / 7));

% compute the integration loss

LNCI = 10*log10((1+SNR_1)/SNR_1);

loss_total = loss + LNCI,

range = linspace(15e3,100e3,1000); % range to target from 15 to 100 Km,
1000 points

% modify pt by np*pt to account for pulse integration

snrmnci = radar_eq(np*pt, freq, g, sigmam, te, b, nf, loss_total, range);

snrm = radar_eq(pt, freq, g, sigmam, te, b, nf, loss, range);

snranci = radar_eq(np*pt, freq, g, sigmaa, te, b, nf, loss_total, range);

snra = radar_eq(pt, freq, g, sigmaa, te, b, nf, loss, range);

% plot SNR versus range

rangekm = range ./ 1000;
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figure(1)

subplot(2,1,1)
plot(rangekm,snrmnci,'k’,rangekm,snrm,'k -.")
grid

legend('With 7-pulse NCI','Single pulse’)
ylabel (‘'SNR - dB");

title('Missile case’)

subplot(2,1,2)
plot(rangekm,snranci,'k',rangekm,snra,'k -.")
grid

legend('With 7-pulse NCI','Single pulse’)
ylabel ('SNR - dB");

title(‘Aircraft case’)

xlabel('Detection range - Km’)
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Appendix 1A Pulsed Radar

1A.1. Introduction

Pulsed radars transmit and receiv&ran of modulated pulses. Range is
extracted from the two-way time dgldetween a transmitted and received
pulse. Doppler measurements can be niadl®o ways. If accurate range mea
surements are available between corseepulses, then Doppler frequency
can be extracted from the range r&te ! R"! t. This approach works fine as
long as the range is not changing drastically over the inténvaDtherwise,
pulsed radars utilize a Doppler filter bank.

Pulsed radar waveforms can be completely defined by the following: (1)
carrier frequency which may vary depending on the design requirements and
radar mission; (2) pulsewidth, which is closely related to the bandwidth and
defines the range resolution; (3) modulation; and finally (4) the pulse-repeti
tion frequency. Different modulation tegiques are usualiytilized to enhance
the radar performance, or to add moagpabilities to the radar that otherwise
would not have been possible. The PRF must be chosen to avoid Doppler and
range ambiguities as well as maze the average transmitted power.

Radar systems employ low, medium, and high PRF schemes. Low PRF
waveforms can provide accurate, longambiguous rang@easurements, but
exert severe Doppler ambiguities. Medium PRF waveforms must resolve both
range and Doppler ambiguities; howevbgy provide adequate average trans
mitted power as compared to low PRFs. High PRF waveforms can provide
superior average transmitt@ower and excellent dber rejection capabilities.
Alternatively, high PRF waveforms aextremely ambiguous in range. Radar
systems utilizing high PRFs are often called Pulsed Doppler Radars (PDR).
Range and Doppler ambiguities for different PRFs are in Table 1A.1.
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TABLE 1A.1. PRF ambiguities.

PRF Range Ambiguous | Doppler Ambiguous
Low PRF No Yes
Medium PRF Yes Yes
High PRF Yes No

Radars can utilize constant and varying (agile) PRFs. For example, Moving
Target Indicator (MTI) radars use PRF agility to avoid blind speeds. This kind
of agility is known as PRF staggering. PRF agility is also used to avoid range
and Doppler ambiguities, as will be explained in the next three sections. Addi
tionally, PRF agility is also used to prevent jammers from locking onto the
radar's PRF. These two latter forms of PP&jility are sometimes referred to as
PRF jitter.

Fig. 1A.1 shows a simplified pulsed radar block diagram. The range gates
can be implemented as filters that opewl close at time tarvals that corre
spond to the detection range. The width of such an interval corresponds to the
desired range resolution. The radar receis@ften implemented as a series of
contiguous (in time) range gates, whére width of each gate is matched to
the radar pulsewidth. The NBF bank is normally implemented using an FFT,
where bandwidth of the individual filters corresponds to the FFT frequency
resolution.

1A.2. Range and Doppler Ambiguities

As explained earlier, a pulsed radsan be range ambiguous if a second
pulse is transmitted prior to the return of the first pulse. In general, the radar
PRF is chosen such that the unambiguous range is large enough to meet the
radar’s operational requirements. Therefdong-range search (surveillance)
radars would require relatively low PRFs.

The line spectrum of a train of pulses hsiax"x envelope, and the line
spectra are separated by the PRFas illustrated in Fig. 1A.2. The Doppler
filter bank is capable of resolving target Doppler as long as the anticipated
Doppler shift is less than one half the bandwidth of the individual filters (i.e.,
one half the width of an FFT bin). Thus, pulsed radars are designed such that

2v
fo = 2fgmay = %""X (1A.1)

wheref ., is the maximum anticipated target Doppler frequengy,, is the
maximum anticipated target radial velocity, ahds the radar wavelength.
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Figure 1A.1. Pulsed radar block diagram.

If the Doppler frequency of the target is high enough to make an adjacent spec
tral line move inside the Doppler band of interest, the radar can be Doppler
ambiguous. Therefore, in order to avoid Doppler ambiguities, radar systems
require high PRF rates when detectingh speed targets. When a long-range
radar is required to detect a high speed target, it may not be possible to be both
range and Doppler unambiguous. This problem can be resolved by using multi
ple PRFs. Multiple PRF schemes carirmorporated sequéally within each

dwell interval (scan or integration frame)) the radar can use a single PRF in
one scan and resolve ambigtin the next. The latter technique, however, may
have problems due to changing target dynamics from one scan to the next.

1A.3. Resolving Range Ambiguity

Consider a radar that uses two PRFEsg,andf,, on transmit to resolve
range ambiguity, as shown in Fig. 1A.3. DenBte andR , as the unambigu
ous ranges for the two PRFs, regpedy. Normally, these unambiguous
ranges are relatively small and areohof the desired radar unambiguous
range R, (where R ,»R,;,R,, ). Denote the radar desired PRF that corre
sponds taR,, asf,.
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Figure 1A.2 Sectra of transmitted and recéved waveforms, and Doppler
bank. (a) Doppler is resolved. (b) Spectral lines have moved
into the next Dopplerfilter. This results in an ambiguous Dop-
pler measurement.

We choosé,, andf,, such that they are relatiyegprime with respect to one
another. One choice is to selef;t = Nf, and f, = '"N+1(f, for some
integer N. Within one period of the desired PRT{ = 1"f, ) the two PRFs
f., andf,, coincide only at one location, which is the true unambiguous target
position. The time delayr, establishes the desired unambiguous range. The
time delayst; andt, correspond to the time betwethe transmit of a pulse on
each PRF and receipt of a target return due to the same pulse.

Let M, be the number of PRF1 intervdistween transmit of a pulse and
receipt of the true target return. The quankity is similar toM; except it is
for PRF2. It follows that, over the interval to Ty, the only possible results
are M; = M, =M or M;+1 = M, . The radar needs only to meastrend
t, . First, consider the case whgn t, . In this case,

M M

t+— = t,+— (1A.2)
frl fr2
for which we get
t,—t
M=-221 (1A.3)
Tl_T2

where T, = 1"f,;, and T, = 1", . It follows that the round trip time to the
true target location is
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Figure 1A.3. Resolving range ambiguity.

t, = MT; +t;
(1A.4)
t = MT,+t,
and the true target range is
R=ct"2 (1A.5)
Now if t, * t,, then
Moo e MEL (1A.6)
frl fr2
Solving forM we get
"=ty (+T
- Lo+ T (1A.7)
Tl_TZ
and the round-trip time to the true target location is
t, = MT +t; (1A.8)
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and in this case, the true target range is

ct
R = 7“ (1A.9)

Finally, if t; = t, , then the target is in the first ambiguity. It follows that

to =1 =1, (1A.10)

and

R=ct,"2 (1A.11)

Since a pulse cannot be received whike following pulse is being transmit
ted, these times correspond to blind ranges. This problem can be resolved by
using a third PRF. In this case, once an integeas selected, then in order to
guarantee that the three PRFs are relatipeime with respect to one another.
In this case, one may choosg, = N'N+1(f, , f,=NN+2f,, and

fa= "N+1'N+2f,y .

r

1A.4. Resolving Doppler Ambiguity

The Doppler ambiguity problem is analogous to that of range ambiguity.
Therefore, the same methodology camubed to resolve Doppler ambiguity. In
this case, we measure the Doppler frequenijgsind f,, instead oft;, and

t,.

If f4,* f4», then we have

'de_fdl( + frz

M= —— < (1A.12)
frl_frz
Andif fy,) f,,
= de;fdl (1A.13)
frl_fr2
and the true Doppler is
fg = Mfyq+fg (1A 14)

fg = Mfip+fqp
Finally, if f4, = f,, , then
fy = far = foo (1A.15)

Again, blind Doppler can occur, which can be resolved using a third PRF.
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Example:

A certain radar uses two PRFs to resolve range ambiguities. The desired
unambiguous range isR, = 100Km . Choose N = 59. Computef,,, f,,
R,, andR,,.

Solution:

First let us compute the desired PRE,

It follows that
f,, = Nf,q = '59'150Q = 88.5KHz

f, = 'N+1(f,y ='59+ 1'150q = 90KHz

Example:

Consider a radar with three PRFsf,; = 15KHz , f,, = 18KHz , and
f.3 = 21KHz . Assumef, = 9GHz . Calculate the frequency position of each
PRF for a target whose velocity B50m"s . Calculatef, (Doppler frequency)
for another target appearing @KHz , 2KHz, and 17KHz for each PRF.

Solution:

The Doppler frequency is

Vo _ 24550+ 9+ 16 _ 4oy,

fy=2 2
¢ 3+10

Then by using Eq. (1A.14pf, +f, = f4 wherei = 1,2 3, we can write
n,fq +fq, = 150, +f4, = 33
nyf,+f4, = 18n, +f,, = 33
ngf s+ 143 = 2Ing+f4, = 33

We will show here how to compuig, and leave the computations mf and
ng to the reader. First, if we choosg = 0, that meansfy, = 33KHz , which
cannot be true sincg;, cannot be greater thaf), . Choosingn, = 1 is also
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invalid since fy; = 18KHz cannot be true either. Finally, if we choose
n, = 2 we getfy; = 3KHz , which is an acceptable valult follows that the
minimum n;, n,, ny that may satisfy the above three relations are= 2,
n,=1, and n; = 1. Thus, the apparent Doppler frequencies are
fgy = 3KHz, fy, = 15KHz , and fy; = 12KHz .

fa1 fr1
‘ KHz
35 10 15 20 25 30 35
A
fd2 fr2
KHz
5 10 1518 20 25 30 35
A
fas fra
KHz
5 1012 15 20 25 30 35

Now for the second part of the problem. Again by using Eq. (1A.14) we have

n,f,+f4 =f4 =160, +8

Ny, +fq, = fy = 18n,+2

nf 5 +fyg = fy = 2Ing + 17
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We can now solve for the smallest integegsn,, n, that satisfy the above
three relations. See the table below.

n 0 1 2 3 4
§. fromf 8 23 38 53 68
d rl

fq fromf,, 2 20 38 56

fq fromf, | 17 38 39

Thus, ny=2=n,, and n; =1, and the true target Doppler is
fy = 38KHz . It follows that

0.0333 _ 5oy 2. 1M

v, = 38000+ == T
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Appendix 1B Noise Figure

1B.1. Noise Figure

Any signal other than therget returns in the radar receiver is considered to
be noise. This includes interferingysals from outside the radar and thermal
noise generated within theceiver itself. Thermal naés(thermal agitation of
electrons) and shot noise (variation inrgardensity of a semiconductor) are
the two main internal noise gices within a radar receiver.

The power spectral density of thermal noise is given by
! [h
L }
$[eXp°/ﬁ$kT &
where|! | is the absolute value of the frequency in radians per setoisdthe
temperature of the conducting medium in degrees Keliis Boltzman’'s
constant, andh is Plank’s constanth(= 6.625) 10% joule seconds). When

the condition|! | « 28kT*h is true, it can be shown that Eq. (1B.1) is approxi
mated by

" #= (1B.1)

S, #+ 2KT (1B.2)

This approximation is widely acceptesince, in practiceradar systems oper
ate at frequencies less tha®0 GHz ; and, for example, iff = 290K, then
2$kT*h+ 6000 GHz.
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The mean square noise voltage (noise power) generated actossha
resistance is then

N~ =S 2kT dl = 4kTB (1B.3)
-2%$B
whereB is the system bandwidth in hertz.
Any electrical system containing therimaise and having input resistance
R,, can be replaced by an equivalenisetess system with a series combina

tion of a noise equivalent voltage source and a noiseless input regjstor
added at its input. This is illustrated in Fig. 1B.1.

R

n .
noiseless

,n* = 4KTBR, system

Figure 1B.1. Noiseless sysi with an input noise
voltage source.

The amount of noise power that can physically be extracted frémis one
fourth the value computed in Eq. (1B.3he proof is left as an exercise.

Consider a noisy system with power ga&ig, as shown in Fig. 1B.2. The
noise figure is defined by

total noise power out
noise power out due to,;R alone

Fqg = 10 log (1B.4)

More precisely,

=

Figure 1B.2. Noisy amplifier replaced by its noiseless equivalent
and an input voltage sorce in series with a resistor.
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N
Fgg = 10 log—= (1B.5)
N A,

whereN, andN; are, respectively, the noisevper at the output and input of
the system.

If we define the input and output signal power yand S,, respectively,
then the power gain is

S0
As = S (1B.6)

It follows that

~ CS*Ni .S .S
Fug = 10Iogo/g—(0 & ’N.( §<B_°/N_c§ & (1B.7)
where
S .S
/Ni( §B/ W_Z( 5 (1B.8)

Thus, it can be said that the noise figure is the loss in the signal-to-noise ratio
due to the added thermadise of the amplifiet"SNR¢ = "SNR¢ —F in dB#.

We can also express the noise figuréeinms of the system’s effective tem
peratureT,. Consider the amplifier shown in Fig. 1B.2, and let its effective
temperature b&,. Assume the input noise temperatur@ js Thus, the input
noise power is

N, = kT,B (1B.9)

and the output noise power is

N, = kT,B A +KTB A (1B.10)

where the first term on the right-handiesiof Eq. (1B.10) corresponds to the
input noise, and the latter term is due to thermal noise generated inside the sys
tem. It follows that the noise figure can be expressed as

"SNR¥ S T, +T T
F = L = kB O € _1+_% 1B.11
"SNRg, _ kT,B <% g, T, (18.11)
Equivalently, we can write
T, = "F—14T, (1B.12)
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Example:

An amplifier has a 4dB noise figure; the bandwidthBs= 500 KHz . Cat
culate the input signal power that yields a unity SNR at the output. Assume
T, = 290 degrees Kelvin and an input resistance of one ohm.

Solution:
The input noise power is

KT,B = 1.38) 10°°

) 290) 500) 18 = 2.0) 10w
Assuming a voltage signal, then the input noise mean squared voltage is
- = kT,B =20) 10° v
F=10""=251

From the noise figure definition we get

% = F;,/b%( & F
and
- = F,n = 251) 2.0) 10" = 5.02) 10°° V*
Finally,

|, = 70.85qv

Consider a cascaded system as in Fig. 1B.3. Network 1 is defined by noise
figure F,, power gainG, , bandwidthB, and temperaturg,, . Similarly, net
work 2 is defined by, , G,, B, andT,,. Assume the input noise has temper

atureT,.
network 1 network 2
SO
~ . - - .
N ™ TaGiiFy ™ TeGaiF, T’
i 0

Figure 1B.3. Cascaded linear system.
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The output signal power is

S, = SG,G, (1B.13)

The input and output noise powers are, respectively, given by
N; = kT,B (1B.14)

N, = kTyBG,G, + kT4, BG,G, + kT.,BG, (1B.15)

where the three terms on the right-hamttf Eq. (1B.15), respectively, cofre
spond to the input noise power, thermalse generated inside network 1, and
thermal noise generated inside network 2.

Now if we use the relationr, = "F-1#T, along with Eq. (1B.13) and Eq.
(1B.14), we can express the overall output noise power as

N, = FiN,G,G, +"F,— 1#N,G, (1B.16)

It follows that the overall noisigure for the cascaded system is

"S *N# F,—1
F=- =F,+ (1B.17)
S, *No# G,
In general, for an n-stage system we get
F,-1 Fi-1 Fo—1
F=F+—=—+=—+ 0 0 0+ (1B.18)
G, G,G, G,G,G; 0 0 G,_;

Also, the n-stage system effectiemperatures can be computed as

T, T T
Te=Ty+2+—2S4+ 0 0 0+ en (1B.19)
G, GG, G,G,G; 0 0 G,_;

As suggested by Eq. (1B.18) and Eqg. (1B.19), the overall noise figure is mainly
dominated by the first stag Thus, radar receivemmploy low noise power
amplifiers in the first stge in order to minimize ¢éhoverall receiver noise fig

ure. However, for radar systems that are built for low RCS operations every
stage should be included in the analysis.

Example:

A radar receiver consists of an antenna with cable lass 1dB = F, , an
RF amplifier with F, = 6dB, and gain G, = 20dB , followed by a mixer
whose noise figure i$; = 10dB and conversion loss = 8dB , and finally,
an integrated circuit IF amplifier withF, = 6dB and gain G, = 60dB . Find
the overall noise figure.
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Solution:

From Eq. (1B.18) we have

G, G, G3 G, Fi F2 F3 Fs
-1dB | 20dB | —-8dB | 60dB | 1dB 6dB 10dB | 6dB
0.7943 100 0.1585 106 1.2589 3.9811] 10 3.9811
It follows that
F-1o580+3:9811= 1 10-1 ,  39811-1 _ ga55g

0.7943  100) 0.7943 0.158) 100) 0.7943

F = 10log"5.3628f = 7.2941B
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Chapter 2 Radar Detection

2.1. Detection in the Presence of Noise

A simplified block diagram of a radaeceiver that employs an envelope
detector followed by a threshold decision is shown in Fig. 2.1. The input signal
to the receiver is composed of the radar echo sigrtal and additive zero
mean white Gaussian noise!t" , with variance#“. The input noise is
assumed to be spatially incoherantl uncorrelated with the signal.

The output of the bandpaBsfilter is the signal!t", which can be written
as
VIt = v !It"cos ot + V! t"sin$ ot = rlt"cosl$ t—odt™
vttt = rit"cogdt” (2.1)
Vo!t" = rit"sin%dt"

where $, = 2&f, is the radar operating frequencyt" is the envelope of
vIt', the phase i84t" = atanv,'v,", and the subscriptgQ , respectively,
refer to the in-phase dmquadrature components.

A target is detected wherit" exceeds the threshold valvg, where the
decision hypotheses are

sit'+nlt") V; Detection
nit") V; False alarm
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From antenna,

1 It"
and low noise| Band Pasq Envelopé Low Pass r Threshold
Amp. —| Filter (IF) Detector Filter > Detector oy
vt to display
devices
Threshold \t

Figure 2.1. Simplified block diagramof an envelope detector and threshold
receiver.

The case when the noise sualots from the signal (whila target is present) to
maker!t" smaller than the threshold is called a miss. Radar designers seek to
maximize the probability of detection for a given probability of false alarm.

The IF filter output is a complex random variable that is composed of either
noise alone or noise plus targetura signal (sine wave of amplitude). The
quadrature components corresponding to the first case are

vt = nit" 2.2)
VQ! t" = nQ! t"

and for the second case,

vt = A+ nlt" =rit"codt" * nIt" = rit"codt" —A

no_ T " oino, " (23)
vQ!t = nQ!t = rit"sin%t

where the noise queature components,!t" and nQ't" are uncorrelated zero
mean low pass Gaussianismwith equal varlance# . The joint Probability
Density Functiongdf) of the two random variables;nq is

/ +n20
fin(ng" = 1 S exp- n’ SQ. (2.4)
2&# + 2#°

1 { It cos%—A"2 + I sin% 0
28#° + 212 P

The pdfs of the random variables!t" and %dt", respectively, represent the
modulus and phase of!'t". The joint pdf for the two random variables
rit";9dt" is given by

fir(% = fin(ng"|J| (2.5)

where 1] 2is a matrix of derivatives defined by
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3n, 3n,

1] 2= 3r 3—%) = I:COSO/O_rSinﬁ (2:6)
ino
3_nQ 3_nQ sin% rcos%
3r 3%

The determinant of the matrix of derivatives is called the Jacobian, and in this
case it is equal to

[ = rit" 2.7)
Substituting Eqgs. (2.4) and (2.7) into Eqg. (2.5) and collecting terms yield

[ 2470
flr(% = ' > exp- r +'26‘. expimc—gs%’ (2.8)
2&# + 2#° # ’
Thepdffor r alone is obtained by integrating Eq. (2.8) o%er
2& ) 2 2&
/
" . r r’+A 1 rAcos¥p
Ir" = Afr(%dv% = —exp-— — IALDSTD 4o
flr 4[.r(AJd/o #Zexp+ 2 28 exp/+ 2 ,dA) (2.9)
0 0
where the integral inside Eg. (2.9) is known as the modified Bessel function of
zero order,
2&
w _ 1 p5co6
[o!5" = &49 dé (2.10)
0
Thus,
! 2470
fiys = Ly [P0 gy T +A 2.11)

#2 %2 T o2

which is the Rician probability density function. A #° = 0 (noise alone),
then Eg. (2.11) becomes the Rayleigh probability density function

r I 20
flr" = — &Xp-——, (2.12)
# + 2#°,

Also, when!A'#2 is very large, Eg. (2.11) becomes a Gaussian probability
density function of meaA and variancet " :
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[ 1p— a0
flr" 7 1 exp- Ir—A . (2.13)

ogu?  + 2#%

Fig. 2.2 shows plots for the Rayleigh and Gaussian densities. For this purpose,
use MATLAB programifig2_2.m” given in Listing 2.1 in Section 2.11. This
program uses MATLAB functionhormpdf.m” and“raylpdf.m”. Both fune

tions are part of the MATLAB Statisticsdlbox. Their associated syntax is as

follows
normpdf(x,mu,sigma)
raylpdf(x,sigma)

“X” is the variable)mu” is the mean, antsigma” is the standard deviation.

0.45 T T T T
| —— Gaussian pdf
e | e e s R e R U S sobo — Rayleigh pdf

o1 S ronsnabonis iy i (S . —

0.2

Probability density

9
o

1
o]
X

Figure 2.2. Gaussian and Rgeigh probability densities.

The density function for the random variateis obtained from
r
flog = 4! r(% dr (2.14)
0
While the detailed derivation is left as exercise, the result of Eq. (2.14) is

/A% /-1 Asinos 0
o = L exp A0 ACOS o JIASIET ) Acosty
2% eou®, e+ 20 #

(2.15)
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where

X
1 —g%2
FIX' = /— e do (2.16)
4
The functionF!x" can be found tabulated in most mathematical formula-refer

ence books. Note that for the case of noise aléne (0), Eq. (2.15) collapses
to a uniformpdfover the interval 0( 2&< .

One excellent approximation for the functibhx" is

Fie = 1! 1 01 2
+0.661x + 0.339/x2 + 5.51,2&

x=0 (2.17)

and for negative values of

Fl—x" = 1-FIx" (2.18)
MATLAB Function “que_func.m”

The function‘que_func.m”computed=!x" using Egs. (2.17) and (2.18) and
is given in Listing 2.2 in Section 2.11. The syntax is as follows:

fofx = que_func (x)

2.2. Probability of False Alarm

The probability of false alarrR;, is defined as the probability that a sample
R of the signalr!t" will exceed the threshold voltagé when noise alone is
present in the radar,

P A oxgl 10 d V0 (2.192)
= exp-—. r = exp-——:. .19a
= 420 247, s

VAR /2#2|nﬁrpi0 (2.19b)
fa’

Fig. 2.3 shows a plot of the normalizedetshold versus the probability of false
alarm. It is evident from this figure th&, is very sensitive to small changes

in the threshold value. This figure can be reproduced using MATLAB program
“fig2_3.m" given in Listing 2.3 in Section 2.11.

Vi

The false alarm timé&, is related to the probability of false alarm by
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log!1' P,,"

Figure 2.3. Normalized detection thrshold versus probabiity of false alarm.

Tfa = tlnt ' Pfa (220)
wheret;,; represents the radar integrationdinor the average time that the
output of the envelope detector will pass the threshold voltage. Since the radar
operating bandwidttB is the inverse of;,;, then by substituting Eq. (2.19)

into Eg. (2.20) we can writ€;, as

2
1 [/ V70
Ta=3 exp;Z—#Tz. (2.21)

Minimizing T;, means increasing the threshold value, and as a result the radar
maximum detection range is decreasdtkrefore, the choice of an acceptable
value for T;, becomes a compromise depending on the radar mode of opera
tion.

Fehlnet defines the false alarm number as

_int2 _Inl2"
ne, = 7 2.22
@ hii-pP, ' P, (2.22)

1. Fehlner, L. FMarcum’s and Swerling’s Data ofarget Detection by a Pulsed
Radat Johns Hopkins University, Applied Phgs Lab. Rpt. # TG451, July 2, 1962,
and Rpt. # TG451A, September 1964.
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Other slightly different definitions for the false alarm number exist in the liter
ature, causing a source of confusion ftainy non-expert readers. Other than
the definition in Eq. (2.22), the most commonly used definition for the false
alarm number is the one introduced by Marcum (1960). Marcum defines the
false alarm number dhe reciprocal oP;, . In this text, the definition given in

Eq. (2.22) is always assumed. Heracelear distinction is made between Mar
cum’s definition of the false alarm number and the definition in Eq. (2.22).

2.3. Probability of Detection

The probability of detectiof,, is the probability that a sampk of r!t"
will exceed the threshold voltagethe case of noise plus signal,

_ ro Ay ! 2+ a0

P = A — 1,/M0 exp X2

D 4#2 0+#2, + oou?
Vr

dr (2.23)

If we assume that the radar sigitzah sine waveform with amplitudg then its
power is AZ'2. Now, by usingSNR= R o#? (single-pulse SNR) and
!V%‘ 2#% = In11" P:,", then Eq. (2.23yan be rewritten as

_ . royrAy o 2ep0
P, = =l =’ exp-——— dr = (2.:24)
D 4 #2 0+#2, + ou?
[2#2In11 " p,,"
2
A" bl Lo
Q|:A/‘#‘727 2In+Pfa,:|
g7+ 5% 2

QI>(52= A8!>8"e

5

ds (2.25)

Q is called Marcum’s Q-function. WheR;, is small andPy is relatively
large so that the threshold is also large, Eq. (2.24) can be approximated by

1A _ /100
Pp7 F+# 2In+Pfa, 7 (2.26)
where F!x" is given by Eqg. (2.16). Many approximations for computing Eq.
(2.24) can be found throughout the lggmre. One very accurate approximation
presented by North (see bibliography) is given by

P, 70.5?erfc!,/~In P, — /SNR+0.5' (2.27)

where the complementaerror function is
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z

. 2 ,-@
erfc!2 = 1-— d@ (2.28)
Nrad
0

MATLAB Function “marcumsg.m”

The integral given in Eq. (2.24) somplicated and can be computed using
numerical integratio techniques. Pdrldeveloped an excellent algorithm to
numerically compute this integrdt is summarized as follows:

G > 19 _h'3 H
B ?“exp/_k%-o aAb B
Qla(b2= E " ) E (2.29)
D, />n la-b"p D
DL/~ exp a=P p
B 5, + 2 e
2n
Zn = dn+ %>n—l+ Zh-2 (2.30)
S5, = 1+§—?)5n_1+5n_2 (2.31)
dyiq = dod; (2.32)
Gl aAbH
>0 = EO a= bE (2.33)
@&'b aAbH
d, = (2.34)

_Eb‘a a=bE

>, = 0.0,5, = 0.5, and5_; = 0. The recursive Egs. &0) through (2.32)
are computed continuously unf|, ) 10° for values ofp = 3. The accuracy of
the algorithm is enhanced as the valugdk increased. The MATLAB func
tion “marcumsg.m” given in Listing 2.4 in Section 2.11 implements Parl's
algorithm to calculate the probability of detection defined in Eq. (2.24). The
syntax is as follows:

Pd = marcumsqg (alpha, beta)
wherealphaandbetaare from Eq. (2.25). Fig. 2.4 shows plots of the probabil
ity of detection,P, versus the single pulse SNR, with fRg as a parameter.
This figure can be reproduced using the MATLAB progrgmob_snrl.m”
given in Listing 2.5 in Section 2.11.

1. Parl, S., A New Method of Calailng the Generalized Q FunctidEEE Trans.
Information Theory\ol. IT-26, No. 1, January 1980, pp. 121-124.

© 2004 by Chapman & Hall/CRC CRC Press |



0.9993 T e - — —
e o o S S Vot o S B

0.9F---r :
0.851---
0.8}t :
0.75 - -

07 pmrtencbendo
s pedent et v el ks i Mok v ot e v e e

0.4

Probability of detection

03 e ARty AEEE Lol L EEE SEE LR TS
0.2

25 4

|
15 16 17 18

o

12 3 4 &5 6 7 8 9 10 11 12 13
Single pulse SNR - dB

Figure 2.4. Probability of detection versus single pulse SNR, for several
values of Py, .

2.4. Pulse Integration

Pulse integration was discussed in Gkaft in the context of radar measure
ments. In this section a more comprelamsanalysis of this topic is introduced
in the context of radar detection. The overall principles and conclusions pre
sented earlier will not change; howeviie mathematical formulation and spe
cific numerical values will change. Gerent integration preserves the phase
relationship between the received pujsbss achieving a build up in the sig
nal amplitude. Alternatively, pulse tegration performedfter the envelope
detector (where the phase relation is destroyed) is called non-coherent or post-
detection integration.

2.4.1. Coherent Integration

In coherent integration, if a perfect igtator is used (1038 efficiency), then
integratingn, pulses would improve the SNR tlye same factor. Otherwise,
integration loss occurs which is alway®e case for non-coherent integration.
In order to demonstrate this signalildup, consider the case where the radar
return signal contains both signal plus additive noise.ﬁﬁtﬁepulse is
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y It = st +n It (2.35)

wheres! t' is the radar return of interest ang!t" is white uncorrelated addi
tive noise signal. Coherent integrationrgf pulses yields

ne n np

1 1 1
' = = " = —1sIt" + It" 2= slt' + =n_It" )
zlt nP| Yl t nplsf Np!t" 2= sit'+ | rlPnmt (2.36)

b
m=1 m=1 m=1
The total noise power in! t' is equal to the variance. More precisely,

;" . o/ 0”

#.,= El | =n,!t" | =n!t™ (2.37)
- Np -l ng .
+
m=1 Yl=1 ’

whereE1 2is the expected value operator. It follows that
ne np
#2 = iz | Eingt'ndit 2= 12 | #oK = ni#ﬁy (2.38)
n n P
Pm( =1 Pm( =1

where#ﬁy is the single pulse noise power aig, is equal to zero fomL |
and unity form = |. Observation of Egs. (2.36) and (2.38) shows that the
desired signal power after coherent integration is unchanged, while the noise
power is reduced by the factdr n,. Thus, the SNR after coherent integration
is improved byn; .

Denote the single pulse SNR required to produce a given probability of
detection ad SNR, . Also, denote! SNR,, as the SNR required to produce
the same probability of detection whep pulses are integredi. It follows that

ISNR,, = ni!SNR1 (2.39)
P

The requirements of knowgrnthe exact phase of each transmitted pulse as well
as maintaining coherency during propagation is very costly and challenging to
achieve. Thus, radar systems would not utilize coherent integration during
search mode, since target micro-dyries may not be available.

2.4.2. Non-Coherent Integration

Non-coherent integration is often implemented after the envelope detector,
also known as the quadratic detectobléck diagram of radar receiver utiiz
ing a square law detector and non-coherent integration is illustrated in Fig. 2.5.
In practice, the square law detectonismally used as an approximation to the
optimum receiver.
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Figure 2.5. Simplified block diagam of a square law detector and
non-coherent integration.

The pdf for the signalr!t” was derived earlier and it is given in Eq. (2.11).
Define a new dimensionless varialyleas

—
S5

Yn = # (2.40)
and also define
AZ
M, = = = 2SNR (2.41)
2
#
It follows that thepdffor the new variable is then given by
IV ML
fly" = flr" dry - Y lo!Yn/M," exp/ern—zp—O (2.42)
n L

The output of a square law detector for (e pulse is proportional to the
square of its input, which, after the clyarof variable in Eq. (2.40), is propor
tional toy,,. Thus, it is convenient to flee a new change variable,

12
Xn = SYn (2.43)
The pdffor the variable at the output of the square law detector is given by

M
fix " = f!yn"‘g_yn = ex +—/+xn+—290,0,|0! [2x,M," (2.44)

n

Non-coherent integration of, pulses is implemented as

zZ= | X, (2.45)

Since the random variableg are independent, thglf for the variablez is
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fiz = fix," Oftx," ON Oflx, " (2.46)

The operator O symbolically indicates convolution. The characteristic
functions for the individuapdfs can then be used to compute the jpifitin
Eq. (2.46). The details of this developrhare left as an exercise. The result is

Inp—1"'2

flz' = {l_nﬁ-o' expi—z—%nPMpolnp_l! /2npzM,)" (2.47)
pl )

lh,—1 is the modified Bessel function of ordeg— 1. Therefore, the probabil

ity of detection is obtained by integratiftyZ' from the threshold value to
infinity. Alternatively, the probability of false alarm is obtained by lettvg

be zero and integrating thEdf from the threshold value to infinity. Closed
form solutions to these integrals ard pasily available. Térefore, numerical
techniques are often utilized to generate tables for the probability of detection.

Improvement Factor and Integration Loss

Denote the SNR that is required to achieve a speRffiggiven a particular
P;, whennp pulses are integrad non-coherently bySNR,. And thus,
the single pulse SNRSNR| , is less thanSNR ¢, . More precisely,

ISNRyc, = !SNR; ? IIny" (2.48)

where I!np" is called the integration improvement factor. An empirically
derived expression for the improvenésictor that is accurate withid.8dB is
reported in Peebléss

log!1'P,," )
Tﬁ?log' Np (2.49)

11— 0.1400g!n," + 0.018310logn,">"

Uiny" 3, = 6.79 1+ 0.23B,", 1+

Fig. 2.6a shows plots of the integratiamprovement factor aa function of the
number of integrated pulses wikh, andP;, as parameters, using Eq. (2.49).
This plot can be reproduced using the MATLAB progrdig?_6a.m” given

in Listing 2.6 in Section 2.11. Note this program uses the MATLAB function
“improv_fac.m”, which is given in Listing 2.7 in Section 2.11.

MATLAB Function “improv_fac.m”

The function“improv_fac.m” calculates the improvesnt factor using Eq.
(2.49). Itis given in Listing 2.7 in Section 2.11. The syntax is as follows:

[impr_of _np] =improv_fac (np, pfa, pd)

1. Peebles Jr., P. Radar PrinciplesJohn Wiley & Sons, Inc., 1998.
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Figure 2.6b. Integration loss versusiumber of non-coherently integrated
pulses.
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where

Symbol Description Units Status
np number of integrated pulses none input
pfa probability of false alarm none input
pd probability of detection none input

impr_of_np improvement factor output dB

The integration loss is defined as
Lyer = Np ' 11np" (2.50)

Figure 2.6b shows a plot of the integration loss versusThis figure can be
reproduced using MATLAB prografifig2_6b.m” given in Listing 2.8 in Sec
tion 2.11. It follows that, when non-coherent integration is utilized, the-corre
sponding SNR required to achieve a cert@j given a specifid?;, is now
given by

ISNRyc, = 'Np ?ISNR," "' Lyg (2.51)

which is very similar to Eq. (1.86) derived in Chapter 1.

2.4.3. Mini Design Case Study 2.1

An L-band radar has the following specifications: operating frequency
fo = 1.5GHz, operating bandwidthB = 2MHz, noise figureF = 8dB,
system losset = 4dB, time of false alarml;, = 12 minutes detection
range R = 12Km, the minimum required SNR &NR = 13.85B, antenna
gain G = 5000, and target RCS = 1m’. (a) Determine the PRE,, the
pulsewidthQ, the peak poweP, , the probability of false alarr®;,, the corre

spondingPp, and the minimum dectable signal leves,;,,. (b) How can you

reduce the transmitter power to achigfie same performance when 10 pulses
are integrated non-coherently? (c) If the radar operates at a shorter range in
the single pulse mode, find the new probability of detection when the range
decreases t®@Km.

A Solution

Assume that the maximum detection corresponds to the unambiguous range.
From that the PRF is computed as
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27? 12000

The pulsewidth is proportional to the inverse of the bandwidth,

-—1 - 05Rs

1_
B 27210

Q:

The probability of false alarm is

It follows that by using MATLAB function“marcumsg.m”the probability of
detection is calculated from

A? 1
Q[«/#:T )2|n£rp—fa01

marcumsg(alpha, beta)

with the following syntax

where

alpha = /27 J10*% ° = 6.9665

beta = JZInL 1 0= g404

6.94? 10"
Remember thatA” ' #' = 2SNR Thus, the detection probability is
Pp = marcums6.966% 6.944 = 0.508

2,

Using the radar equation one can calculate the radar peak power. More pre

cisely, -
14&""RKT,BFL
Pt = SNR T *
GSP
w3 23 6
P = 101.385! 48" ? 1200(51? 1.38? 1077?2907 2?10 ?6.309? 2.511
‘ 5000 20.2% 2 1
= 126.6Watts

And the minimum detectable signal is
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PG’S’P _ 126.61? 50002 0.221

= = : = 1.2254? 10**Volts
14&°RL 1482120006 ? 2.511

Sr‘nin =

When 10 pulses are integrated non-coherently, the corresponding improvement
factor is calculated from the MATLAB function “improv_fac.m” using the fol
lowing syntax

improv_fac (10,1e-11,0.5)
which yields|!10" = 6* 7.78dB. Consequently, by keeping the probability
of detection the same (with and without integration) the SNR can be reduced by

a factor of almost 6 dB (13.85 - 7.78). The integration loss associated with a
10-pulse non-coherent integration is calculated from Eg. (2.50) as

= —] == =167 2.2B

Thus the net single pulse SNR with 10-pulse non-coherent integration is
ISNRy¢, = 13.85- 7.78+ 2.2 = 8.27dB.

Finally, the improvement in the SNR duelézreasing the detection range to 9
Km is

/1200@*

ISNRgy, = 10l0g 200

+13.85= 18.8=B.

2.5. Detection of Fluctuating Targets

So far the probability of detection calculations assumed a constant target
cross section (non-fluctuating targethis work was first analyzed by Mar
cum? Swerling extended Marcum’s work ta#r distinct cases that account
for variations in the target cross sectidhese cases have come to be known as
Swerling models. They ar8werling I, Swerling Il Swerling Ill, and Swerling
IV. The constant RCS case analyzedMigrcum is widely known as Swerling
0 or equivalently Swerling V. Target fluctuation lowers the probability of
detection, or equivalently reduces the SNR.

1. Marcum, J. |.A Statistical Theory of Taeg Detection by Pulsed Rad4RE Trans
actions on Information Theory. Vol IT-6, pp 59-267. April 1960.

2. Swerling, P.Probability of Detectiorfor Fluctuating TargetsIRE Transactions on
Information Theory. Vol IT-6, pp 269-308. April 1960.
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Swerling | targets have constant ampdié over one antenna scan; however,
a Swerling | target amplitude varieslependently from scaie scan according
to a Chi-square probability density fuion with two degrees of freedom. The
amplitude of Swerling Il targets fluctuates independently from pulse to pulse
according to a Chi-square probabilitiensity function with two degrees of
freedom. Target fluctuatioassociated with a Swerling model is similar to
Swerling I, except in this case the targetver fluctuates independently from
pulse to pulse according to a Chi-squarebability densityfunction with four
degrees of freedom. Finally, the fluctuation of Swerling IV targets is from
pulse to pulse according to a Chi-squarebability densityfunction with four
degrees of freedom. Swerlisfpowed that the statistics associated with Swer
ling |1 and Il models apply to targets consisting of many small scatterers of
comparable RCS values, while the stattsassociated wh Swerling Il and
IV models apply to targets consisting of one large RCS scatterer and many
small equal RCS scatterers. Non-cohenetetigration can be applied to all four
Swerling models; however, coherent integration cannot be used when-the tar
get fluctuation is either Ssvling 1l or Swerling IV. Tlis is because the target
amplitude decorrelates from pulse galse (fast fluctuation) for Swerling Il
and IV models, and thus phase coherency cannot be maintained.

The Chi-squar@dfwith 2N degrees of freedom can be written as
flp" = —N_— /®N_l exp/—MDO (2.52)
IN-1"1 P *P * P

whereP is the average RCS value. Using this equatiorpdifiassociated with
Swerling | and Il targets can be obtained by letthdg= 1, which yields a
Rayleighpdf. More precisely,

o _ 1 Po
fIP" = Zexp,— P=0 2.53
Sexp > (2:59)
Letting N = 2 yields thepdffor Swerling Ill and IV type targets,

1P = P/ 20 pop (2.54)
Pt P

The probability of detection for a fluaiting target is computed in a similar
fashion to Eq. (2.23), except in this cdbg' is replaced by the conditionadif
fir ' P*. Performing the analysis for thergwal case (i.e., using Eq. (2.47))
yields

Inp-1"'2 20 / 20
flz'P" = i%o ’ exp-—z—%np%. lnp—1- /2npziz. (2.55)
nP™"#° + #°, + #°,
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To obtainf! Z' use the relations

flz(P" = flz'P"fIP" (2.56)
fiz' = flz(P"dP (2.57)

Finally, using Eg. (2.56) in Eq. (2.57) produces
flz' = 4!z'P"f!P"dP (2.58)

where f!z'P" is defined in Eqg. (2.55) anflP" is in either Eq. (2.53) or
(2.54). The probability of detection is obtained by integratingptifelerived
from Eq. (2.58) from the threshold valto infinity. Performing the integration
in Eq. (2.58) leads to the incomplete Gamma function.

2.5.1. Threshold Selection

When only a single pulse is used, the detection threshpld related to the
probability of false alarnP;, as defined in Eq. (2.19). DiFranco and Rdbin
derived a general form relating the threshold Badfor any number of pulses
when non-coherent integration is used. It is

I Vs 0
Pia = 1=T|-—=(np—1 (2.59)
+/n,

whereT, is used to denote the incomplete Gamma function. It is given by

VAN

IV 0 U el
Tl-_T(np_l. = U
+

VAR ST o (260
0

Note that the limiting values for the incomplete Gamma function are
TIO(N" =0 T (N =1 (2.61)

For our purposes, the incompleter@aa function can be approximated by

-1 v
IV 0 Vi e T np—1 Inp—1"Ing—2"
T-—=(Mp—1 = 1-—t—— |1+ L =4+ P P2 + (262
s ' np—1'1 Vr V2
| —1"1
N +.npn _11}
VAg

1. DiFranco, J. V. and Rubin, W. IRadar DetectionArtech House, 1980.
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The threshold valu&/; can then be approximatéy the recursive formula
used in the Newton-Raphson method. More precisely,

G!'V¢ 4"
Vi(m = VT(m_l—TVTT(:%l.. ; m = 1(2(3(N (2.63)

The iteration is terminated whepy,—Vym_1| AVym_;'10000.0. The
functionsG andGVare

GV = 10.5™ ™ T 1Vy(ng" (2.64)
o oV V$p—1
C\Wrm' = = T 17 ST (2.65)

The initial value for the recursion is

Vyo = Np—J/np+2.3 ,/-logP;, ! /HogPg, + /np —1" (2.66)

MATLAB Function “incomplete_gamma.m”

In general, the incomplete Gamma function for some intBiger

X -V VN—1
| " =
T,IX(N N_T dv (2.67)

0
The function“incomplete_gamma.mimplements Eg. (2.67). It is given in

Listing 2.9 in Section 2.11. Note thiis function uses the MATLAB function

“factor.m” which is given in Listing 2.10. The functidfactorm” calculates

the factorial of an integer. Fig. 2.7 shows the incomplete Gamma function for

N = 1(3(6(10. This figure can be reproduced using the MATLAB program

“fig2_7.m" given in Listing 2.11. The syntax for this function is as follows:

[value] = incomplete_gamma (X, N)

where
Symbol Description Units Status
X variable input toT, ! x( N" units of x input
N variable input toT,! x( N" none /integer |  input
value TIX(N' none output
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Figure 2.7. The incomplete Genma function for four values ofN.

MATLAB Function “threshold.m”

The function“threshold.m” calculates the thresholgsing the recursive for
mula used in the Newton-Raphson method. It is given in Listing 2.12 in Sec
tion 2.11. The syntax is as follows:

[pfa, vt] = threshold (nfa, np)

where
Symbol Description Units Status
nfa Marcum’s false alarm number none input
np number of integrated pulses none input
pfa probability of false alarm none output
vt threshold value none output

Fig. 2.8 shows plots of the threshold value versus the number of integrated
pulses for several values of,; remember thaP;, 7 In!2" ' n;,. This figure
can be reproduced using MATLAB progrédfig2_8.m” given in Listing 2.13.
This program uses botthreshold.m” and ‘incomplete_gamma”.
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Figure 2.8. ThresholdVy verss n, for several values of,

2.6. Probability of Déection Calculation

Marcum defined the probability dlse alarm for the case whep) 1 as

P, 7In12"ng " " (2.68)

The single pulse probability of detection for non-fluctuating targets is given in
Eqg. (2.24). Whem,) 1, the probability of detection is computed using the
Gram-Charlier series. In this caslee probability of detection is

2
p perfev' /2" e
D 2 ,\/Z?L

—CVIVI 10V +15'2

1C,1V2—1" + C, V13— V™ (2.69)

where the constants;, C,, andCq are the Gram-Charlier series coefficients,
and the variable/ is

V:—=np!1+ SNR
v=-1 npx (2.70)

In general, values fo€;, C,, Cg4, andX vary depending on the target fluctu
ation type.
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2.6.1. Detection of Swerling V Targets

For Swerling V (Swerling 0) target flagations, the probability of detection
is calculated using Eq. (2.69). In thiase, the Gram-Charlier series coeffi
cients are

SNR+1'3
C; = = (2.72)
JnI2SNR+ 1"

C = SNR+1'4

fy (2.72)
Np! 2SNR+ 1"

C,=Ci'2 @.73)

X = /np!ZSNR+ 1" (2.74)

MATLAB Function “pd_swerling5.m”

The function“pd_swerling5.m” calculates the probability of detection for
Swerling V targets. It is given in Listing 2.14. The syntax is as follows:

[pd] = pd_swerling5 (inputl, indicator, np, snr)

where
Symbol Description Units Status
inputl Pta OF Iiy none input
indicator 1 when inputl = B none input
2 when inputl = p

np number of integrated pulses none input

snr SNR dB input

pd probability of detection none output

Fig. 2.9 shows a plot for the probaljliof detection versus SNR for cases
n, = 1(10. This figure can be reproduced using the MATLAB program
“fig2_9.m". It is given in Listing 2.15 in Section 2.11.

Note that it requires less SNR, with ten pulses integrated non-coherently, to
achieve the same probability of detentas in the case of a single pulse.
Hence, for any giverP, the SNR improvement cdve read from the plot.
Equivalently, using the functiofimprov_fac.m” leads to about the same
result. For example, wheR, = 0.8 the function“‘improv_fac.m” gives an
SNR improvement factor dft 10" 7 8.55dB. Fig. 2.9 shows that the ten pulse
SNR is about6.03dB. Therefore, the single fae SNR is about (from Eq.
(2.49))14.5dB, which can be read from the figure.
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Figure 2.9. Probability of deection versus SNRP;, = 10° , and non-
coherent integration.

2.6.2. Detection of Swerling | Targets

The exact formula for the probability of detection for Swerling | type targets
was derived by Swerling. It is

-V;'11+SNR

Ppb=e ;e =1 (2.75)
) / v 0
_ v/ 1 o™ - T .
= —T,! — —_— - — —
Po = 1-T\!V{(np-1 ++1+nPSNR, Tl_1+ 1 (np 1 (2.76)
+ nSNR :
5 e—VT'!l+nPSNR‘ S no) 1

MATLAB Function “pd_swerlingl.m”

The function“pd_swerlingl.m” calculates the probability of detection for
Swerling | type targets. It is given in Listing 2.16 in Section 2.11. The syntax is

as follows:
[pd] = pd_swerlingl (nfa, np, snr)
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where

Symbol Description Units Status
nfa Marcum’s false alarm number none input
np number of integrated pulses none input
snr SNR dB input
pd probability of detection none output

Fig. 2.10 shows a plot of the probability of detection as a function of SNR
forn, = 1 andPy, = 10 for both Swerling | and V type fluctuations. Note
that it requires more SNR, with fluctuation, to achieve the sBmeas in the
case with no fluctuation. This figure can be reproduced using MATLAB pro
gram“fig2_10.m" given in Listing 2.17.

Fig. 2.11a shows a plot of the grobability of detection versus SNR for
ne = 1(10( 50( 10q whereP;, = 10 . Fig. 2.11b is similar to Fig. 2.11a; in
this caseP;, = 10™. These figures can be reproduced using MATLAB- pro
gram“fig2_11ab.m” given in Listing 2.18.

Probability of detection
(o] (=] (=] (] o] (=]
([T N SO Y

b
o

(=]
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Figure 2.10. Probability of detetion versus SNR, single pulseP;, = 10
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Figure 2.11b. Probability of detection versus SNR. Swerling P;, = 10
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2.6.3. Detection of Swerling Il Targets

In the case of Swerling Il targetsetprobability of detection is given by
/M1
'H1+SNR

For the case when,) 50 Eq. (2.69) is used to compute the probability of
detection. In this case,

P, =1-T (n9 : Np Y50 @.77)

C
C,= —2 , Cg = = (2.78)
3, 2
1
C, = — 2.79
4 4n, (e.79)
X = /np 11+SNR (2.80)

MATLAB Function “pd_swerling2.m”

The function“pd_swerling2.m” calculatesP, for Swerling Il type targets.
It is given in Listing 2.19 in Section 2.11. The syntax is as follows:

[pd] = pd_swerling2 (nfa, np, snr)

where
Symbol Description Units Status
nfa Marcum’s false alarm number none input
np number of integrated pulses none input
snr SNR dB input
pd probability of detection none output

Fig. 2.12 shows a plot of the probabiligy of detection as a function of SNR
for np = 1(10(50( 10Q whereP;, = 107'%. This figure can be reproduced
using MATLAB program‘fig2_12.m" given in Listing 2.20.

2.6.4. Detection of Swerling Ill Targets
The exact formulas, developed by Marcufor the probability of detection
for Swerling 1l type targets when, = 1(2 is
_VT O/ 2 Onp—z
?
P T mSNR2. % TmSNR ¢

Vr 2 yq_o
1+n,SNR2 Nn,SNR P

Pp = 0

(2.81)

Ko =1+
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Figure 2.12. Probability of detetion versus SNR. Swerling I1.Ps,

Fornp) 2 the expression is

Vnp—l -V
Py = i +1-T,'V{(np—1" + K,
11+ n,SNR 2"In, —2"!
\V;
T/ L

_ VTP
T2 nsNe® L

MATLAB Function “pd_swerling3.m”

(2.82)

The function“pd_swerling3.m” calculatesP for Swerling Ill type targets.
Itis given in Listing 2.21 in Section 2.11. The syntax is as follows:

[pd] = pd_swerling3 (nfa, np, snr)

where
Symbol Description Units Status
nfa Marcum’s false alarm number none input
np number of integrated pulses none input
snr SNR dB input
pd probability of detection none output
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Fig. 2.13 shows a plot of the probablllty of detection as a function of SNR
for n, = 1(10(50( 100 whereP;, = 107 This figure can be reproduced
using MATLAB programfig2_13.m" given in Listing 2.22.

o
o
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9
i)

Probability of detection
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=

o
w

e
8]

=]

Figure 2.13. Probability of detecibn versus SNR. Swerling Ill. P;, = 107 .

2.6.5. Detection of Swerling IV Targets

The expression for the probability of detection for Swerling IV targets for

np A50 is
p =1 [u+/SNR_ | ,/SNRMeINp—1"
D~ —[Lb o meU G N (2.83)
/&% /44 SNR™™
+ 2 U”J 1+=-
where
- vt 0
y-= '+1+ISNR‘ > (np pt i (2.84)
By using the recursive formula
i
. no_ o X
TIx(i+1" = TIx(i ~ Texplx' (2.85)

then onlyl}, needs to be calculated using Eq. (2.84) and the rd$tare cal
culated from the following recursion:
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U=U_.-A ;)0

(2.86)
V;'11+ISNR 2" _
A= Np+i—1 i1 ;)1 (2.87)
P
_ IVp'IL+ISNR'2™ 2.88
L7 nlexplVy 11+ 1SNR 2™ (2.89)
V
4= Thirsnmz () 259

For the case when, =50, the Gram-Charlier series and Eq. (2.69) can be
used to calculate the probability of detection. In this case,

3 2
_ C
3J/Np125° —1"

4
c, =L 251

(2.91)
ANpy 252 _10°

X = Jny125°—1" (2.92)

5= 1+S—’2\IR (2.93)

MATLAB Function “pd_swerling4.m”

The function“pd_swerling4.m” calculatesP, for Swerling IV type targets.
Itis given in Listing 2.23 in Section 2.11. The syntax is as follows:

[pd] = pd_swerling4 (nfa, np, snr)

where
Symbol Description Units Status
nfa Marcum’s false alarm number none input
np number of integrated pulses none input
snr SNR dB input
pd probability of detection none output

Figure 2.14 shows a plot of the probability of detection as a function of SNR
for np = 1(10(50( 10Q whereP;, = 10°°. This figure can be reproduced
using MATLAB program‘fig2_14.m” given in Listing 2.24.
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Figure 2.14. Probability of detetion versus SNR. Swerling IV.P;, = 107 .

2.7. The Radar Equation Revisited

The radar equation developed in Chapter 1 assumed a constant target RCS
and did not account for integration loss. In this section, a more comprehensive
form of the radar equation is introducdd this case, the radar equation is
given by

2 "
=t o P.,G.G,S°PlIn,
148" T ,FBQ,L,L; ISNR,

(2.94)

whereP,, = P,{, is the average transmitted powBy, is the peak transmit
ted power,Q is pulsewidthf, is PRF,G; is transmitting antenna gaifs, is
receiving antenna gair§ is wavelengthP is target cross sectiom!ny" is
improvement factorn, is the number of integrated pulséds,is Boltzman’s
constant,T, is effective noise temperaturg, is the system noise figurs, is
receiver bandwidthl., is total system losses including integration ldssjs
loss due to target fluctuation, ah8NR; is the minimum single pulse SNR
required for detection.

The fluctuation loss];, can be viewed as tr@mount of additional SNR
required to compensate for the SNR Idss to target fluctuation, given a spe
cific Py value. This was demonstrated for a Swerling | fluctuation in Fig.
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2.10. Kantet developed an exact analysis falculating the fluctuation loss.

In this text the authors will take advantage of the computational power of
MATLAB and the MATLAB functions developed for this text to numerically
calculate the amouf fluctuation losavith an accuracy 00.005dB or better.

For this purpose the MATLAB functioffluct_loss.m” was developed. It is
given in Listing 2.25 in Section 2.11. Its syntax is as follows:

[Lf, Pd_Sw5] = fluct_loss(pd, pfa, np, sw_case)

where
Symbol Description Units Status
pd desired probabilityof detection none input
pfa probability of false alarm none input
np number of pulses none input
sw_case 1, 2, 3, or 4 depending on the none input
desired Swerling case
Lf fluctuation loss dB output
Pd_Sw5 | Probability of detection correspond none output
ing to a Swerling V case

For example, using the syntax
[Lf,Pd_Sw5]=fluct_loss(0.65, 1e-9, 10,1)

will calculate theSNR corresponding to both Swerling V and Swerling | fluc
tuation when the desired probability of detecti®dy = 0.65 and probability
of false alarmP;, = 10 and 10 pulses of non-coherent integration. The fol
lowing is a reprint of the output:

PD_SWS5 = 0.65096989459928

SNR_SWS5 = 5.52499999999990

PD_SW1 = 0.65019653294095

SNR_SW1 = 8.32999999999990
Lf = 2.80500000000000

Note that a negative value far indicates a fluctuadn SNR gain instead of
loss. Finally, it must be noted that the functiiact_loss.m” always assumes
non-coherent integration. Fig. 2.15 shows a plot for the additional SNR (or
fluctuation loss) required to achieve a cerfarobability of detection. This fig

ure can be reproduced using MATLAB progréig2_16.m” given in Listing

2.26 in Section 2.11.

1. Kanter, |., Exact Detection Probabilftyr Partially Correlatd Rayleigh Targets,
IEEE Trans, AES-229p. 184-196, March 1986.
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Figure 2.15. Fluctuation lossversus probability of detection.

2.8. Cumulative Probability of Detection

Denote the range at which the single pulse SNR is unity (O dB), aand
refer to it as the reference range. Thim a specific radar, the single pulse
SNR atR, is defined by the radar equation and is given by

2:2
P.G’S’P
G S =1 (2.95)

ISNR, = —————— =
148"k T,BFLR;

0

The single pulse SNR at any rangeis

P G2S%P
SNR= ﬁ (2.96)
148" T,BFLR

Dividing Eq. (2.96) by Eqg. (2.95) yields

SNR /Ro’ (2.97)

ISNRg, R,

Therefore, if the rang®, is known then the SNR at any other rafyés
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ISNR 4 = 40|og/ RCO (2.98)

Also, define the rang®s, as the range at whidh, = 0.5 = Pgy. Normally,
the radar unambiguous ranBg is set equal t@Rs;.

The cumulative probability of detectionfees to detecting the target at least
once by the time it is at randg®. More precisely, consider a target closing on a
scanning radar, where the target isnlinated only during a scan (frame). As
the target gets closer to the radarpitsbability of detection increases since the
SNR is increasedSuppose that the probability of detection during ttfa
frame is Pp, then, the cumulative probabilityf detecting the target at least
once durlng thenth frame (see Fig. 2.16) is given by

n
Pe, = 1-/ 11-Pp’ (2.99)
i=1
Pp. is usually selected to be very siné@llearly, the probability of not detect

inglthe target during theth frame isl1 — Pc . The probability of detection for
the ith frame,PDi , is computed as discussed in the previous section.

nth frame frame 1

(n+1)tr'1 frame
Figure 2.16. Detecting a target in many frames.

2.8.1. Mini Design Case Study 2.2

A radar detects a closing target Rt = 10Km, with probability of detection

Pp equal t00.5. AssumeP;, = 1077 . Compute and sketch the single look
probability of detection as a functlon of normalized range (with respect to
R = 10Km), over the interval 2— 20'Km. If the range between two succes
sive frames islKm, what is the cumulative probability of detection at
R = 8Km?
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A Solution:

From the function “marcumsg.m” the SNR corresponding’to= 0.5 and
P, = 107 is approximately 12dB. By using a similar analysis to that which
led to Eq. (2.98), we can express the SNR at any rBnge
- 10 _
ISNRg = ISNR,+40 IogE = 52— 40 logR

By using the function “marcumsq.m” vean construct the following table

RKm (SNR) dB Po

2 39.09 0.999
4 27.9 0.999
6 20.9 0.999
8 15.9 0.999
9 13.8 0.9
10 12.0 05
11 10.3 0.25
12 8.8 0.07
14 6.1 0.01
16 38 [

20 0.01 [

where[ is very small. A sketch &f, versus normalized range is shown in
Fig. 2.17.

The cumulative probability of detection is given in Eq. (2.95), where the{proba
bility of detection of the first frame is selected to be very small. Thus, we can
arbitrarily choose frame 1 to be & = 16Km. Note that selecting a different
starting point for frame 1 would have a negligible effect on the cumulative
probability (we only neetﬂ’D1 to be very small). Below is a range listing for
frames 1 through 9, where frame 9 correspondRte 8Km. The cumulative

frame 1 2 3 4 5 6 7
range in Km‘ 16 15 14 13 12 11 10
probability of detection at 8 Km is then

Pc, = 1-11-0.999!1-0.9'11-0.5'11-0.2511~0.07
11-0.01'11—["*7 0.9998
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Figure 2.17. Cumulativeprobability of detection versus normalized range.

1

2.9. Constant False Alarm Rate (CFAR)

The detection threshold is computedtbat the radar receiver maintains a
constant pre-determined probability fafse alarm. Eq. (2.19b) gives the rela
tionship between the threshold valile and the probability of false alarm
P, . and for convenience is regted here as Eq. (2.100):

Vy = [2# 2InﬁrPio (2.100)
fa’

If the noise pOW6#2 is assumed to be constant, then a fixed threshold can sat
isfy Eg. (2.100). However, due to mamgasons this condition is rarely true.
Thus, in order to maintain a constambbability of false alarm the threshold
value must be continuously updated based on the estimates of the neise vari
ance. The process of continuously chagdghe threshold value to maintain a
constant probability of false alarm isiown as Constant False Alarm Rate
(CFAR).

Three different types of CFAR processare primarily used. They are adap
tive threshold CFAR, nonparametric CFA&d nonlinear receiver techniques.
Adaptive CFAR assumes that the nfdeence distribution is known and
approximates the unknown parameters associated with these distributions.
Nonparametric CFAR processors tendaccommodate unknown interference
distributions. Nonlinear receiver techjoes attempt to normalize the root
mean square amplitude of the interference. In this book only analog Cell-Aver
aging CFAR (CA-CFAR) technique is exarad. The analysis presented in this
section closely follows Urkowitz

1. Urkowitz, H.,Decision and Detection Theomynpublished lecture notes. Lockheed
Martin Co., Moorestown, NJ.
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2.9.1. Cell-Averaging CFAR (Single Pulse)

The CA-CFAR processor is shown in Fig. 2.18. Cell averaging is performed
on a series of range and/or Doppler Hieells). The echo return for each pulse
is detected by a square law detechoranalog implementation these cells are
obtained from a tapped delay line. Thdl@inder Test (CUT) is the central
cell. The immediate neighb® of the CUT are excledl from the averaging
process due to a possible spillover from the CUT. The outpMt oéference
cells (M'2 on each side of the CUT) is eraged. The threshold value is
obtained by multiplying thewveraged estimate from all reference cells by a
constantK, (used for scaling). A detectids declared in the CUT if

Y; =Ko (2.101)

Cell-averaging CFAR assumes that theaaaf interest is in the CUT and all
reference cells contain zero mean peledent Gaussian noise of variarce.
Therefore, the outputf the reference cell&Z, represents a random variable
with gamma probability density functiqepecial case of the Chi-square) with
2M degrees of freedom. In this case, the gamdiis

IM'2r 1 -z 24>
e

flz' = ZM,Z - 1 2)0 (2.102)
2 # TIM'2"
reference guard guard reference
cells cell cut cells cells
input | square law -,—44\]4'—\
— detector
2 2
\i VW Y \i W vy
Yl
Y
K,Z
»| COmparator
threshold ~

output¢

The probability of false alarm cosponding to a fixed threshold was
derived earlier. When CA-CFAR is implemented, then the probability of false

Figure 2.18. Conventional CA-CFAR.
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alarm can be derived from the conditional false alarm probability, which is
averaged over all possible values & threshold in order to achieve an uncon
ditional false alarm probability. The conditional probability of false alarm
wheny = V; can be written as

—y'Z#2

P!Vr=Yy' =€ (2.103)
It follows that the unconditional probability of false alarm is
Pra = fPra! Ve = y'fly'dy (2.104)

0

wherefly" is thepdf of the threshold, which except for the constiégtis the
same as that defined kq. (2.102). Therefore,

Mo1 'Y 2K#>
fly" = % ; y=0 (2.105)
12K # > TIM"

Performing the integration in Eq. (2.104) yields

Py = —1 (2.106)

11+Ky"

Observation of Eq. (2.106) shows thihé probability of false alarm is now
independent of the noise power, whichhe objective oCFAR processing.

2.9.2. Cell-Averaging CFAR with Non-Coherent Integration

In practice, CFAR averaging is oftémplemented after non-coherent inte
gration, as illustrated iRig. 2.19. Now, the output of each reference cell is the
sum ofnp squared envelopes. It follows that the total number of summed ref
erence samples iIn,. The outputY; is also the sum of, squared enve
lopes. When noise alone is present in the CYJTis a random variable whose
pdfis a gamma distribution wit2n, degrees of freedom. Additionally, the
summed output of the reference cells is the surMpf squared envelopes.
Thus,Z is also a random variable which has a gamudfavith 2Mn, degrees
of freedom.

The probability of false alarm is themual to the probability that the ratio
Y, 'Z exceeds the threshold. More precisely,

P;, = Prob; Y;'Z) K (2.107)
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Figure 2.19. Conventional CA-CRAR with non-coherent integration.

Eqg. (2.107) implies that one must first find the joblf for the ratioY;'Z.
However, this can be avoided f;, is first computed for a fixed threshold
value V¢, then averaged overl glossible values of the threshold. Therefore,
let the conditional probability of false alarm where Vi be P!V = y" . It
follows that the unconditional false alarm probability is given by

Pra = Lra! Vr = y'fly'dy (2.108)
0

wherefly" is thepdf of the threshold. In view of this, the probability density
function describing the random varialigZ is given by

1 1oy 2K#™
. !V'Kl"an ‘e j C
= e ;y=0 (2.109)
12#% 'K, TIMn,"

fly'

It can be shown that in this case thelyability of false alarm is independent
of the noise power and is given by

np—1
_ 1 1TIMnp+k", Ky gk
- Kl TIMng" +1+K;,
0

(2.110)
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which is identical to Eq. (2.106) whéfy = K, andnp, = 1.

2.10. “MyRadar” Design Case Study - Visit 2

2.10.1. Problem Statement

Modify the design introduced in Chapter 1 for the “MyRadar” design case
study so that the effects of target RCS fluctuations are taken into account. For
this purpose modify the design such that: The aircraft and missile target types
follow Swerling | and Swerling Il fluctuations, respectivel7y. Also assume that
a P, =0.995 is required at maximum range wifh, = 10" or better. You
may use either non-coherent integration or cumulative probability of detection.
Also, modify any other design parameters if needed.

2.10.2. A Design

The missile and the aircraft detectianges were calculated in Chapter 1.
They areR, = 90Km for the aircraft and®®,, = 55Km for the missile. First,
determine the probability of detection fesch target type with and without the
7-pulse non-coherent integration. For this purpose, use MATLAB program
“myradar_visit2_1.m"given in Listing 2.27. This program first computes the
improvement factor and the associatadgnation loss. Second it calculates the
single pulse SNR. Finally it calculatdee SNR when non-coherent integration
is utilized. Executing this program vyields:

SNR_single_pulse_missile = 5.5998 dB
SNR_7_pulse_NCI_missile =11.7216 dB
SNR_single_pulse_aircraft = 6.0755 dB
SNR_7_pulse_NCI_aircrfat = 12.1973 dB

Using these values in functioripd_swerlingl.m” and “pd_swerling3.m”
yields

Pd_single_pulse_missile = 0.013
Pd_7 pulse_NCI_missile= 0.9276
Pd_single_pulse_aircraft = 0.038
Pd_7 pulse_NCI_aircraft = 0.8273

Clearly in all four cases, there is rastough SNR to meet the design require
ment of P, = 0.995.

1. Please readisclaimer in Section 1.9.1.
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Instead, resort to accomplishing the desiprobability of detection by using
cumulative probabilities. The single frame increment for the missile and air
craft cases are

Ruissile = Scan rate? y = 27?150 = 300m (2.111)
Raircrait = Scan rate? y = 27?400 = 800m (2.112)

2.10.2.1 Single Pulse (Per Frame) Design Option

As a first design option, considére case where during each frame only a
single pulse is used for detection (ire,integration). Consequently, if the sin
gle pulse detection does not achieve the desired probability of detection at 90
Km for the aircraft or at 55 Km for the missile, then non-coherent integration
of a few pulses per frame can then be utilized. Keep in mind that only non-
coherent integration can be used in¢hses of Swerling type | and Il fluctua
tions (see Section 2.4).

Assume that the first frame correspomglto detecting the aircraft is 106
Km. This assumption is arbitrary and it provides the designer with 21 frames.
It follows that the first frame, when teting the missile, is at 61 Km. Further
more, assume that the SNRRit= 90Km is ISNR ;;,c;arr = 8.5dB, for the
aircraft case. And, for the ssile case assume thatRt= 55Km the corre
sponding SNR i$SNR ,issie = 9dB. Note that these values are simply-edu
cated guesses, and the designer may be required to perform several iterations in
order to accomplish the desired cuntivia probability of detection,

Pp =0.995. In order to calculate the cumulative probability of detection at a
certain range, the MATLAB prografimyradar_visit2_2.m"”was developed.
This program is given in Listing 2.28 in Section 2.11.

Initialization of the progranfmyradar_visit2_2.m” includes entering the
following inputs: The desiredP;, ; the number of pulses to be used for non-
coherent integration per frame; the range at which the desired cumulative oper
ability of detection must be achievedetitame size; and finally the target fluc
tuation type. For notational purposesnde the range at which the desired
cumulative probability of detection must be achievedrgs Then for each
frame, the following list includes the quits of this program: SNR, probability
of detection, fluctuation loss, and cumulative probability of detection.

The logic used by this program for calculating the proper probability of
detection at each frame and for compgtihe cumulative probability of detec
tion is described as follows:

1. Initialize the program, by entering the desired input values. Assume Swer
ling V fluctuation and use Eq. (2.98) to calculate the frame-SISRIR; .
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1.1. For the*MyRadar” design case study, usg = 1, R, = 90Km, and
'SNR" ircrart = 8-5dB. Alternatively use R, = 55Km  and

ISNR issile = 9dB for the missile case. Note that the selected SNR

values are best estimates or ededa@uesses, and it may require going
through few iterationbefore finally selecting an acceptable set.

2. The program will then calculate thember of frames ahtheir associated
ranges. The program uses the functifinct_loss.m” to calculate the

Swerling V Py at each frame and the atidinal SNR required to accem
plish the same probability of detection when target fluctuation is included.

3. Depending on the fluctuation type, the program will then use the proper
MATLAB function to calculate the proldity of detection for each frame,

Py -

3.1. For the “MyRadar” design case study, these functions are
“pd_swerlingl.m”and“pd_swerling 3.m".
4. Finally, the program uses Eq. (2.99) to compute the cumulative probability
of detection,Pp, .

A Graphical User Interface (GUI) hasdn developed for this program; Fig.
2.20 shows its associateédUl workspace. To use this GUI, from the MATLAB
command window type'myradar_visit2_2 gui”. Executing the program
“myradar_visit2_2.m’using the input values stated above yields the following
cumulative probabilities of deteoti for the aircraft and missile cases,

Pocyee = 0-99872
Poc = 0.99687

aircraft

These results clearly satisfy the design requiremeyof 0.995. However,

one must re-validate the peak power requirement for the design. To do that, go
back to Eq.s (1.107) and (1.108), aadlace the SNR values used in Chapter 1
by the values adopted in this chapter (LESNR",; ... = 8.5dB and

ISNR issile = 9dB). It follows that the comsponding single pulse energy

for the missile and the aircraft cases are respectively given by

10°°

E, = 0.1658? ——. = 0.36273Joules (2.113)
10™
100.85

E, = 0.1487? =——. = 0.28994oules (2.114)
10~
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Initialization Start Quit

Swerling type 1
1.2.3.4. 0rb
Number of pulses 1
np
Mote:
T In order to run this program.
Range to 1st 106e3 1) You must click on
frame the initilization button
2] Enter_ynur current values
Range to last T 90e3 3!;' F?:::;"s?::t
frame
Desired single pulse 85
SHNR at last frame
Frame size 800
meters

Pfa 1.0e-7

Figure 2.20. GUI workspae associated with progranfmyradar_visit2_2_gui.m”.

This indicates that the stressing single pulse peak power requirement (i.e., mis
sile detection) exceed362KW . This value for the single pulse peak power is
high for a mobile ground based air defense radar and practical constraints
would require using less peak power.

In order to bring the single pulse peak power requirement down, one can use
non-coherent integration of a few pedsper frame prior to calculating the
frame probability of detection. For this purpose, the program
“myradar_visit2_2.m'can be used again. However, in this casg 1. This is
analyzed in the next section.

2.10.2.2. Non-Coherent lregration Design Option

The single frame probability of detection can be improved significantly
when pulse integration is utilized. One may use coherent or non-coherent inte
gration to improve the frame cumulative probability of detection. In this case,
caution should be exercised since coherent integration would not be practical
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when the target fluctuation type is @thSwerling | or Swerling 1ll. Alterna
tively, using non-coherent integration will always reduce the minimum
required SNR.

Rerun the MATLAB program rthyradar_visit2_2_gui”.Use n, = 4 and
use SNR = 4dB (single pulse) for both the missile and aircraft single pulse
SNR' at their respective reference rangeR, = 55Km and

issile

Ro,oan = 90KM. The resulting cumulative probabilities of detection are
Poc,.,. = 0-99945

Poc = 0.99812

aircraft

which are both within the desired desigrguirements. It follows that the eor
responding minimum required single pulse energy for the missile and the air
craft cases are now given by

100.4

E, = 0.1658? ome = 0.1147oules (2.115)
10~
10>

E, = 0.14877? o5e 0.1029oules (2.116)
10~

Thus, the minimum single pulse peak power (assuming the same pulsewidth as
that given in Section1.9.2) is

p, = 21147 - 194w (2.117)

17 10°

Note that the peak power requiremenitl be significantly reduced while
maintaining a very fine range resolution when pulse compression techniques
are used. This will be discussed in a subsequent chapter.

Fig. 2.21 shows a plot of the SNR versus range for both target types. This
plot assumes 4-pulse non-coherent integration. It can be reproduced using
MATLAB program“fig2_21.m". It is given in Listing 2.29 in Section 2.11.

2.11. MATLAB Program and Function Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is advised tourethese programs with different input
parameters.

1. Again these values are educated gue3sesdesigner my be required to go through
a few iterations beforerdving at an acceptabket of design parameters.
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Figure 2.21. SNR versus detection ramgfor both target types. The 4-pulse
NCI curves correspond to 21 frame cumulative detection with
the last frame at: 55 Km for the missile and 90 Km for the
aircraft.

Listing 2.1. MATLAB Program “fig2_2.m”"

% This program can be used to reproduce Figure 2.2 of the text
clear all

close all

xg = linspace(-6,6,1500); % random variable between -6 and 6
xr = linspace(0,6,1500); % random variable between 0 and 6
mu = 0; % zero mean Gaussian pdf mean

sigma = 1.5; % standard deviation (sqgrt(variance))

ynorm = normpdf(xg,mu,sigma); % use MATLAB function normpdf
yray = raylpdf(xr,sigma); % use MATLAB function raylpdf
plot(xg,ynorm,'k' xr,yray, 'k-.");

grid

legend('Gaussian pdf','Rayleigh pdf')

xlabel('x")
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ylabel('Probability density")
gtext("\mu = 0; \sigma = 1.5")
gtext(\sigma =1.5")

Listing 2.2. MATLAB Function “que_func.m”

function fofx = que_func(x)
% This function computes the value of the Q-function
% listed in Eq.(2.16). It uses the approximation in Eqgs. (2.17) and (2.18)
if (x >=0)
denom = 0.661 * x + 0.339 * sqrt(x"2 + 5.51);
expo = exp(-x"2 /2.0);
fofx = 1.0 - (1.0 / sqrt(2.0 * pi)) * (1.0 / denom) * expo;
else
denom = 0.661 * x + 0.339 * sqrt(x"2 + 5.51);
expo = exp(-x"2 /2.0);
value = 1.0 - (1.0 / sqrt(2.0 * pi)) * (1.0 / denom) * expo;
fofx = 1.0 - value;
end

Listing 2.3. MATLAB Program “fig2_3.m"

%This program generates Figure 2.3.
close all

clear all

logpfa = linspace(.01,250,1000);

var = 10.”(logpfa ./ 10.0);

vtnorm = sqrt( log (var));
semilogx(logpfa, vtnorm,'k")

grid

Listing 2.4. MATLAB Function “marcumsg.m”

function Pd = marcumsq (a,b)
% This function uses Parl's method to compute PD
max_test value = 5000.;
if @<b)
alphan0 = 1.0;
dn=al/b;
else
alphan0 =0,
dn=b/a;
end
alphan_1=0,
betan0 = 0.5;
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betan_ 1=0,
D1 =dn;
n=0;
ratio=2.0/(a * b);
rl =0.0;
betan = 0.0;
alphan = 0.0;
while betan < 1000.,
n=n+1,
alphan = dn + ratio * n * alphanO + alphan;
betan = 1.0 + ratio * n * betanO + betan;
alphan_1 = alphan0;
alphan0 = alphan;
betan_1 = betan0;
betanO = betan;

dn =dn * D1,
end
PD = (alphan0/ (2.0 * betan0)) * exp( -(a-b)*2 / 2.0);
if (a>=b)
PD=1.0 - PD;
end
return

Listing 2.5. MATLAB Program “prob_snrl1.m”

% This program is used to produce Fig. 2.4
close all
clear all
for nfa = 2:2:12
b = sqgrt(-2.0 * log(10*(-nfa)));
index = 0;
hold on
for snr=0:.1:18
index = index +1;
a = sqrt(2.0 * 107(.1*snr));
pro(index) = marcumsq(a,b);
end
x =0:.1:18;
set(gca,'ytick',[.1.2.3.4.5.6 .7.75.8.85.9 ...
.95 .9999])
set(gca,'xtick',[1 23456 78910111213 14 15 16 17 18])

loglog(x, pro,'k’);
end
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hold off

xlabel ('Single pulse SNR - dB")
ylabel (‘Probability of detection")
grid

Listing 2.6. MATLAB program “fig2_6a.m”

% This program is used to produce Fig. 2.6a

% It uses the function "improv_fac"

clear all

close all

pfal = 1.0e-2;

pfa2 = 1.0e-6;

pfa3 = 1.0e-10;

pfad = 1.0e-13;

pdl =.5;

pd2 = .8;

pd3 = .95;

pd4 = .999;

index = 0;

for np = 1:1:1000
index = index + 1;
I1(index) = improv_fac (np, pfal, pdl);
12(index) = improv_fac (np, pfa2, pd2);
I3(index) = improv_fac (np, pfa3, pd3);
l4(index) = improv_fac (np, pfa4, pd4);

end

np = 1:1:1000;

semilogx (np, 11, 'K, np, 12, 'k--', np, 13, 'k-.", np, 14, 'k:"

xlabel (‘'Number of pulses";

ylabel ('Improvement factor | - dB")

legend ('pd=.5, nfa=e+2','pd=.8, nfae=+6','pd=.95, nfa=e+10','pd=.999,

nfa=e+13";

grid

Listing 2.7. MATLAB Function “improv_fac.m”
function impr_of_np = improv_fac (np, pfa, pd)
% This function computes the non-coherent integration improvement
% factor using the empirical formula defined in Eq. (2.49)
factl = 1.0 + log10( 1.0/ pfa) / 46.6;
fact2 = 6.79 * (1.0 + 0.235 * pd);
fact3 = 1.0 - 0.14 * log10(np) 0.0183 * (log10(np))"2;
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impr_of _np = factl * fact2 * fact3 * log10(np);
return

Listing 2.8. MATLAB Program “fig2_6b.m”

% This program is used to produce Fig. 2.6b
% It uses the function "improv_fac".
clear all
close all
pfal = 1.0e-12;
pfa2 = 1.0e-12;
pfa3 = 1.0e-12;
pfad = 1.0e-12;
pdl =.5;
pd2 = .8;
pd3 = .95;
pd4 = .99;
index = 0;
for np = 1:1:1000
index = index+1;
11 = improv_fac (np, pfal, pdl);
i1 =10.70.1*12);
L1(index) = -1*10*log10(i1 ./ np);
12 = improv_fac (np, pfa2, pd2);
i2 = 10.74(0.1*12);
L2(index) = -1*10*l0og10(i2 ./ np);
I3 = improv_fac (np, pfa3, pd3);
i3 = 10.74(0.1*13);
L3(index) = -1*10*10og10(i3 ./ np);
14 = improv_fac (np, pfa4, pd4);
i4 = 10.70.1*14);
L4 (index) = -1*10*log10(i4 ./ np);
end
np = 1:1:1000;
semilogx (np, L1, 'k, np, L2-% np, L3, 'k-.", np, L4, 'k:")
axis tight
xlabel (‘'Number of pulses";
ylabel ('Integration loss - dB")
legend ('pd=.5, nfa=e+12','pd=.8, nfae=+12",'pd=.95, nfa=e+12','pd=.99,
nfa=e+12";
grid
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Listing 2.9. MATLAB Function “incomplete_gamma.m”

function [value] = incomplete_gamma ( vt, np)
% This function implements Egq. (2.67) to compute the Incomplete Gamma
Function
% This function needs "factor.m" to run
format long
eps = 1.000000001;
% Testtoseeifnp=1
if (np ==1)
valuel = vt * exp(-vt);
value = 1.0 - exp(-vt);
return
end
sumold = 1.0;
sumnew =1.0;
calcl = 1.0;
calc2 = np;
XX = np * log(vt+0.0000000001) - vt - factor(calc2);
templ = exp(xx);
temp2 = np / (vt+0.0000000001);

diff = .0;
ratio = 1000.0;
if (vt >=np)
while (ratio >= eps)
diff = diff + 1.0;

calcl = calcl * (calc2 - diff) / vt ;
sumnew = sumold + calcl;

ratio = sumnew / sumold;
sumold = sumnew;

end
value = 1.0 - temp1l * sumnew * temp2;
return
else
diff = 0.;
sumold = 1.;
ratio = 1000.;
calcl=1,
while(ratio >= eps)
diff = diff + 1.0;

calcl = calcl * vt/ (calc2 + diff);
sumnew = sumold + calcl;

ratio = sumnew / sumold;
sumold = sumnew;
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end
value = templ * sumnew;
end

Listing 2.10. MATLAB Function “factor.m”

function [val] = factor(n)

% Compute the factorial of n using logarithms to avoid overflow.

format long

n=n+9.0;

n2=n*n;

temp = (n-1) * log(n) - n + log(sqrt(2.0 * pi * n)) ...
+((1.0 - (1.0/30. + (1.0/105)/n2)/n2) / 12) I n;

val = temp - log((n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6) ...
*(n-7)*(n-8));

return

Listing 2.11. MATLAB Program “fig2_7.m"

% This program can be used to reproduce Fig. 2.7
close all
clear all
format long
i=0;
for x =0:.1:20
i = ii+1;
vall(ii) = incomplete_gamma(x , 1);
val2(ii) = incomplete_gamma(x , 3);
val = incomplete_gamma(x , 6);
val3(ii) = val;
val = incomplete_gamma(x , 10);
val4(ii) = val;
end
xx = 0:.1:20;
plot(xx,vall,'kx,val2,'k:" xx,val3k--',xx,val4,'k-.")
legend('N =1''N=3,'N=6''N =10
xlabel('x")
ylabel('Incomplete Gamma function (x,N)")
grid

Listing 2.12. MATLAB Function “threshold.m”

function [pfa, vt] = threshold (nfa, np)
% This function calculates the threshold value from nfa and np.
% The Newton-Raphson recursive formulased (Egs. (2-63) through (2-66))
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% This function uses "incomplete_gamma.m".
delmax = .00001;
eps = 0.000000001;
delta =10000.;
pfa = np * log(2) / nfa;
sqrtpfa = sqgrt(-log10(pfa));
sqrtnp = sqrt(np);
vt0 = np - sgrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
igf = incomplete_gamma(vt0,np);
num = 0.5”(np/nfa) - igf;
temp = (np-1) * log(\M@+eps) - vtO - factor(np-1);
deno = exp(temp);
vt = vt0 + (hum / (deno+eps));
delta = abs(vt - vt0) * 10000.0;
vt0 = vt;
end

Listing 2.13. MATLAB Program “fig2_8.m"

% Use this program to reproduce Fig. 2.8 of text
clear all
for n=1: 1:150

[pfal y1(n)] = threshold(1000,n);

[pfa2 y3(n)] = threshold(10000,n);

[pfa3 y4(n)] = threshold(500000,n);
end
n =1:1:150;
loglog(n,y1,'k',n,y3--",n,y4,'k-.");
axis([0 200 1 300])
xlabel (‘Number of pulses");
ylabel('Threshold")
legend('nfa=1000','nfa=10000','nfa=500000")
grid

Listing 2.14. MATLAB Function “pd_swerling5.m”
function pd = pd_swerling5 (inputl, indicator, np, snrbar)
% This function is used to calculate the probability of
% for Swerling 5 or 0 targets for np>1.
if(np==1)

'Stop, np must be greater than 1
return
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end

format long

snrbar = 10.0.~(snrbar./10.);
eps = 0.00000001;

delmax = .00001;

delta =10000.;

% Calculate the threshold Vt
if (indicator ~=1)

nfa = inputl,;

pfa = np *log(2) / nfa;
else

pfa = inputl,;

nfa = np * log(2) / pfa;
end

sqrtpfa = sqgrt(-log10(pfa));
sqrtnp = sqrt(np);
vt0 = np - sgrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
igf = incomplete_gamma(vt0,np);
num = 0.5”(np/nfa) - igf;
temp = (np-1) * log(\M@+eps) - vtO - factor(np-1);
deno = exp(temp);
vt = vt0 + (hum / (deno+eps));
delta = abs(vt - vt0) * 10000.0;
vt0 = vt;
end
% Calculate the Gram-Charlier coefficients
templ = 2.0 .* snrbar + 1.0;
omegabar = sqrt(np .* templ);
¢3 = -(snrbar + 1.0 / 3.0)/ (sqrt(np) .* templ.71.5);
c4 = (snrbar + 0.25) ./ (np .* temp1.72.);
c6 =c3 .*c3./2.0;
V = (vt - np .* (1.0 + snrbar)) ./ omegabar;
Vsqgr =V .}V,
vall = exp(-Vsqr ./ 2.0) ./ sqrt( 2.0 * pi);
val2 =¢3 .* (V.,2-1.0) +c4 .*V .* (3.0 - V.A2) -...
c6 .*V .* (VM -10. .* VA2 + 15.0);
g = 0.5 .* erfc (V./sqrt(2.0));
pd = g -vall .* val2;
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Listing 2.15. MATLAB Program “fig2_9.m”

% This program is used to produce Fig. 2.9
close all
clear all
pfa = 1le-9;
nfa = log(2) / pfa;
b = sqgrt(-2.0 * log(pfa));
index = 0O;
for snr=0:.1:20
index = index +1,;
a = sqrt(2.0 * 10°(.1*snr));
pro(index) = marcumsq(a,b);
prob205(index) = pd_swerling5 (pfa, 1, 10, snr);
end
x =0:.1:20;
plot(x, pro,'k',x,prob205,'k:");
axis([0 20 0 1])
xlabel (‘'SNR - dB")
ylabel (‘Probability of detection")
legend('np = 1','np = 10"
grid

Listing 2.16. MATLAB Function “pd_swerlingl.m”

function pd = pd_swerlingl (nfa, np, snrbar)
% This function is used to calculate the probability of detection
% for Swerling 1 targets.
format long
snrbar = 10.0"\(snrbar/10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
pfa = np *log(2) / nfa;
sqrtpfa = sqgrt(-log10(pfa));
sqrtnp = sqgrt(np);
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
igf = incomplete_gamma(vt0,np);
num = 0.5%(np/nfa) - igf;
temp = (np-1) * log(\M@+eps) - vtO - factor(np-1);
deno = exp(temp);
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vt = vt0 + (hum / (deno+eps));
delta = abs(vt - vt0) * 10000.0;

vtO = vt;
end
if (np ==1)

temp = -vt/ (1.0 + snrbar);
pd = exp(temp);
return
end
templ = 1.0 + np * snrbar;
temp2 = 1.0/ (np *snrbar);
temp = 1.0 + temp2;
vall = temp~(np-1.);
igfl = incomplete_gamma(vt,np-1);
igf2 = incomplete_gamma(vt/temp,np-1);
pd = 1.0 - igfl + vall * igf2 * exp(-vt/temp1l);

Listing 2.17. MATLAB Program “fig2_10.m”"

% This program is used to reproduce Fig. 2.10
close all
clear all
pfa = 1le-9;
nfa = log(2) / pfa;
b = sqgrt(-2.0 * log(pfa));
index = 0;
for snr=0:.1:22
index = index +1;
a = sgrt(2.0 * 10"(.1*snr));
pro(index) = marcumsq(a,b);
prob(index) = pd_swerlingl (nfa, 1, snr);
end
X =0:.1:22;
plot(x, pro,'k',x,prob,'k:";
axis([2 22 0 1))
xlabel (‘'SNR - dB')
ylabel (‘Probability of detection")
legend(‘Swerling V','Swerling I')
grid
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Listing 2.18. MATLAB Program “fig2_11ab.m”

% This program is used to produce Fig. 2.11a&b
clear all
pfa = le-11;
nfa = log(2) / pfa;
index = 0O;
for snr =-10:.5:30
index = index +1,;
probl(index) = pd_swerlingl (nfa, 1, snr);
prob10(index) = pd_swerlingl (nfa, 10, snr);
prob50(index) = pd_swerlingl (nfa, 50, snr);
prob100(index) = pd_swerlingl (nfa, 100, snr);
end
X =-10:.5:30;
plot(x, prob1,'k'x,prob10,'k:" x,prob50,'k--', ...
X, prob100,'k-.";
axis([-10 30 0 1])
xlabel (‘'SNR - dB")
ylabel (‘Probability of detection")
legend('np = 1','np = 10','np = 50','np = 100")
grid

Listing 2.19. MATLAB Function “pd_swerling2.m”

function pd = pd_swerling2 (nfa, np, snrbar)
% This function is used to calculate the probability of detection
% for Swerling 2 targets.
format long
snrbar = 10.0"\(snrbar/10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
pfa = np *log(2) / nfa;
sqrtpfa = sqgrt(-log10(pfa));
sqrtnp = sqgrt(np);
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
igf = incomplete_gamma(vt0,np);
num = 0.5%(np/nfa) - igf;
temp = (np-1) * log(\M@+eps) - vtO - factor(np-1);
deno = exp(temp);
vt = vt0 + (num / (deno+eps));
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delta = abs(vt - vt0) * 10000.0;

vtO = vt;
end
if (np <= 50)

temp = vt/ (1.0 + snrbar);
pd = 1.0 - incomplete_gamma(temp,np);
return
else
templ = snrbar + 1.0;
omegabar = sqrt(np) * temp1;
c3 =-1.0/sqrt(9.0 * np);
¢4 =0.25/np;
c6 =c3 *c3/2.0;
V = (vt - np * templ) / omegabar;
Vsgr =V *V,
vall = exp(-Vsqr / 2.0) / sqrt( 2.0 * pi);
val2 =c3* (V*2-1.0} c4*V*(3.0-V"2) - ...
c6 *V * (V™4 - 10. * VA2 + 15.0);
g = 0.5 * erfc (V/sqrt(2.0));
pd = q-vall * val2;
end

Listing 2.20. MATLAB Program “fig2_12.m”

% This program is used to produce Fig. 2.12

clear all

pfa = 1e-10;

nfa = log(2) / pfa;

index = 0;

for snr=-10:.5:30
index = index +1;
probl(index) = pd_swerling2 (nfa, 1, snr);
prob10(index) = pd_swerling2 (nfa, 10, snr);
prob50(index) = pd_swerling2 (nfa, 50, snr);
prob100(index) = pd_swerling2 (nfa, 100, snr);

end

X =-10:.5:30;

plot(x, prob1,'k',x,prob10,'k:" x,prob50,'k--', ...
X, prob100,'k-.");

axis([-10 30 0 1])

xlabel (‘'SNR - dB')

ylabel (‘Probability of detection")

legend('np =1','np = 10','np = 50','np = 100")

grid
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Listing 2.21. MATLAB Function “pd_swerling3.m”

function pd = pd_swerling3 (nfa, np, snrbar)
% This function is used to calculate the probability of detection
% for Swerling 3 targets.
format long
snrbar = 10.0"(snrbar/10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
pfa = np *log(2) / nfa;
sqrtpfa = sqgrt(-log10(pfa));
sqrtnp = sqrt(np);
vt0 = np - sgrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
igf = incomplete_gamma(vt0,np);
num = 0.5”(np/nfa) - igf;
temp = (np-1) * log(\M@+eps) - vtO - factor(np-1);
deno = exp(temp);
vt = vt0 + (hum / (deno+eps));
delta = abs(vt - vt0) * 10000.0;
vt0 = vt;
end
templ = vt/ (1.0 + 0.5 * np *snrbar);
temp2 =1.0 + 2.0/ (np * snrbar);
temp3 = 2.0 * (np - 2.0) / (np * snrbar);
ko = exp(-templ) * temp2~(np-2.) * (1.0 + temp1l - temp3);
if (np <=2)
pd = ko;
return
else
temp4 = vt?(np-1.) * exp(-vE)(templ * exp(factor(np-2.)));
temp5 = vt/ (1.0 + 2.0/ (np *snrbar));
pd =temp4 + 1.0 - incomplete_gamma(vt,np-1.) + ko * ...
incomplete_gamma(temp5,np-1.);
end

Listing 2.22. MATLAB Program “fig2_13.m”

% This program is used to produce Fig. 2.13
clear all
pfa = le-9;
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nfa = log(2) / pfa;

index = 0O;

for snr=-10:.5:30
index = index +1,;
probl(index) = pd_swerling3 (nfa, 1, snr);
prob10(index) = pd_swerling3 (nfa, 10, snr);
prob50(index) = pd_swerling3(nfa, 50, snr);
prob100(index) = pd_swerling3 (nfa, 100, snr);

end

X =-10:.5:30;

plot(x, prob1,'k'x,prob10,'k:",x,prob50,'k--', ...
X, prob100,'k-.";

axis([-10 30 0 1])

xlabel (‘'SNR - dB")

ylabel (‘Probability of detection")

legend('np = 1','np = 10','np = 50','np = 100")

grid

Listing 2.23. MATLAB Function “pd_swerling4.m”

function pd = pd_swerling4 (nfa, np, snrbar)
% This function is used to calculate the probability of detection
% for Swerling 4 targets.
format long
snrbar = 10.0"(snrbar/10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
pfa = np *log(2) / nfa;
sqrtpfa = sqgrt(-log10(pfa));
sqrtnp = sqgrt(np);
vtO = np - sgrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
igf = incomplete_gamma(vt0,np);
num = 0.5%(np/nfa) - igf;
temp = (np-1) * log(\M@+eps) - vtO - factor(np-1);
deno = exp(temp);
vt = vt0 + (hum / (deno+eps));
delta = abs(vt - vt0) * 10000.0;
vt0 = vt;
end
h8 = snrbar /2.0;
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beta = 1.0 + h8;
beta2 = 2.0 * beta"2 - 1.0;
beta3 = 2.0 * beta"3;
if (np >= 50)
templ = 2.0 * beta -1,
omegabar = sqrt(np * templ);
c3 = (beta3 - 1.) / 3.0/ beta2 / omegabar;
c4 = (beta3 * beta3 - 1.0) / 4. / np /beta?2 /beta2;
c6 =c3 *c3/2.0;
V = (vt - np * (1.0 + snrbar)) / omegabar;
Vsgr =V *V,
vall = exp(-Vsqr / 2.0) / sqrt( 2.0 * pi);
val2 =c3* (V*2-1.0} c4*V*(3.0-V"2) - ...
c6 *V * (V4 - 10. * VA2 + 15.0);
g = 0.5 * erfc (V/sqrt(2.0));
pd = g -vall * val2;
return
else
snr = 1.0;
gamma0 = incomplete_gamma(vt/beta,np);
al = (vt / beta)™np / (exp(factor(np)) * exp(vt/beta));
sum = gammao;

fori=1:1:np
templ = 1,
if (i==1)
ai=al;
else
ai = (vt/beta) *al/(np +i-1);
end
al = aij;

gammai = gammao - ai;
gamma0 = gammai;
al = ai;
forii = 1:1:i
templ =templ * (np + 1 - ii);
end
term = (snrbar /2.0)"i * gammai * templ / exp(factor(i));
sum = sum + term;
end
pd = 1.0 - sum / beta”np;
end
pd = max(pd,0.);
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Listing 2.24. MATLAB Program “fig2_14.m”

% This program is used to produce Fig. 2.14

clear all

pfa = 1le-9;

nfa = log(2) / pfa;

index = 0O;

for snr =-10:.5:30
index = index +1,;
probl(index) = pd_swerling4 (nfa, 1, snr);
prob10(index) = pd_swerling4 (nfa, 10, snr);
prob50(index) = pd_swerling4(nfa, 50, snr);
prob100(index) = pd_swerling4 (nfa, 100, snr);

end

X =-10:.5:30;

plot(x, prob1,'k'x,prob10,'k:" x,prob50,'k--', ...
X, prob100,'k-.";

axis([-10 30 0 1.1])

xlabel (‘'SNR - dB")

ylabel (‘Probability of detection")

legend('np = 1','np = 10','np = 50','np = 100")

grid

axis tight

Listing 2.25. MATLAB Function “fluct_loss.m”

function [Lf,Pd_Swb5] = fluctloss(pd, pfa, np, sw_case)
% This function calculates the SNR fluctuation loss for Swerling models
% A negative Lf value indicates SNR gain instead of loss
format long
% compute the false alarm number
nfa = log(2) / pfa;
% *kkkkkkkkkkkkkk Swer“ng 5 Case *kkkkkkkkkkkkkkk
% check to make sure that np>1
if (np ==1)
b = sqgrt(-2.0 * log(pfa));
Pd_Sw5 =0.001;
snr_inc = 0.1 - 0.005;
while(Pd_Sw5 <= pd)
snr_inc = snr_inc + 0.005;
a = sgrt(2.0 * 107(.1*snr_inc));
Pd_Sw5 = marcumsq(a,b);
end
PD_SW5 = Pd_Sw5
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SNR_SWS5 = snr_inc
else
% np > 1 use MATLAB function pd_swerling5.m
snr_inc = 0.1 - 0.005;
Pd_Sw5 =0.001;
while(Pd_Sw5 <= pd)
snr_inc = snr_inc + 0.005;
Pd_Sw5 = pd_swerling5(pfa, 1, np, snr_inc);
end
PD_SWS5 = Pd_Sw5
SNR_SWS5 = snr_inc
end
if sw_case ==
Lf=0.
return
end
0/0 kkkkkkkkkkkkkkk End Swerllng 5 case K*kkkkkkkkkkk
0/0 kkhkkkkkkkkkkkkkk Swerllng 1 case kkkkkhkkkkkkkkkkk
if (sw_case ==1)
Pd_Swl =0.001;
snr_inc = 0.1 - 0.005;
while(Pd_Sw1 <= pd)
snr_inc = snr_inc + 0.005;
Pd_Sw1 = pd_swerling1(nfa, np, snr_inc);
end
PD_SW1 =Pd_Swl
SNR_SW1 =snr_inc
Lf = SNR_SW1 - SNR_SWS5
end
0/0 kkkkkkkkkkkkkkk End Swerllng 1 case K*kkkkkkkkkkk
0/0 kkkkkkkkkkkkkkk Swerllng 2 case kkkkkhkkkkkkkkkkk
if (sw_case == 2)
Pd_Sw2 =0.001;
snr_inc = 0.1 - 0.005;
while(Pd_Sw2 <= pd)
snr_inc = snr_inc + 0.005;
Pd_Sw2 = pd_swerling2(nfa, np, snr_inc);
end
PD_SW2 = Pd_Sw2
SNR_SW?2 = snr_inc
Lf = SNR_SW?2 - SNR_SWS5
end

0/0 kkkkkkkkkkkkkkk End Swerllng 2 case kkkkkkkkkkkk
0/0 kkkkkkkkkkkhkkkk Swerllng 3 case Kkkkkkkkkkkkkkkkhk
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if (sw_case == 3)
Pd_Sw3 =0.001;
snr_inc = 0.1 - 0.005;
while(Pd_Sw3 <= pd)
snr_inc = snr_inc + 0.005;
Pd_Sw3 = pd_swerling3(nfa, np, snr_inc);
end
PD_SW3 =Pd_Sw3
SNR_SW3 =snr_inc
Lf = SNR_SW3 - SNR_SWS5
end
0/0 kkkkkkkkkkkkkkk End Swerllng 3 case *kkkkkkkkkkk
0/0 kkkkkkkkkkkkkkk Swerllng 4 case kkkkkhkkkkkkkkkkk
if (sw_case ==4)
Pd_Sw4 =0.001;
snr_inc = 0.1 - 0.005;
while(Pd_Sw4 <= pd)
snr_inc = snr_inc + 0.005;
Pd_Sw4 = pd_swerling4(nfa, np, snr_inc);
end
PD_SW4 = Pd_Sw4
SNR_SW4 = snr_inc
Lf = SNR_SW4 - SNR_SWS5
end
0/0 kkkkkkkkkkkkkkk End Swerllng 4 case *kkkkkkkkkkk
return

Listing 2.26. MATLAB Program “fig2_15.m”

% Use this program to reproduce Fig. 2.15 of text
clear all
close all
index =0.;
for pd = 0.01:.05:1
index = index + 1;
[Lf,Pd_Swb5] = fluct_loss(pd, 1e-9,1,1);
Lfi(index) = Lf;
[Lf,Pd_Swb5] = fluct_loss(pd, 1e-9,1,4);
Lf4(index) = Lf;
end
pd = 0.01:.05:1;
figure (2)
plot(pd, Lf1, 'k',pd, Lf4,'K:")
xlabel('Probability of detection")
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ylabel('Fluctuation loss - dB')
legend('Swerling | & II';'Swerling 11l & IV")
title('Pfa=1e-9, np=1")

grid

Listing 2.27. MATLAB Program “myradar_visit2_1.m”

% Myradar design case study visit 2_1

close all

clear all

pfa = le-7;

pd = 0.995;

np=7,

pt = 165.8e3; % peak power in Watts

freq = 3e+9; % radar operating frequency in Hz

g = 34.5139; % antenna gain in dB

sigmam = 0.5; % missile RCS m squared

sigmaa = 4; % aircraft RCS m squared

te = 290.0; % effective noigemperature in Kelvins

b = 1.0e+6; % radar operating bandwidth in Hz

nf = 6.0; %noise figure in dB

loss = 8.0; % radar losses in dB

% compute the improvement factor daé&-pulse non-coherent integration
Improv = improv_fac (np, pfa, pd);

% calculate the integration loss

lossnci = 10*log10(np) - Improv;

% calculate net gain in SNR due to integration

SNR_net = Improv - lossnci;

loss_total = loss + lossnci;

rangem = 55e3;

rangea = 90e3;

SNR_single_pulse_missile = radar_eq(pt, freq, g, sigmam, te, b, nf, loss, ran
gem)

SNR_7_pulse_NCI_missile = SNR_single_pulse_missile + SNR_net
SNR_single_pulse_aircraft = radar_eq(pt, freq, g, sigmaa, te, b, nf, loss, ran
gea)

SNR_7_pulse_NCI_aircraft = SNR_single_pulse_aircraft + SNR_net

Listing 2.28. MATLAB Program “myradar_visit2_2.m”

%clear all
% close all
% swid = 3;
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% pfa = le-7;
% np =1;
% R_1st_frame = 61e3; % Range for first frame
% RO = 55e3; % range to last frame
% SNRO = 9; % SNR at RO
% frame = 0.3e3; % frame size
nfa = log(2) / pfa;
range_frame = R_1st_frame:-frame:R0; % Range to each frame
% implement Eq. (2.98)
SNRi = SNRO + 40 .* log10((RO ./ range_frame));
% calculate the Swerling 5 Pd at each frame
b = sqgrt(-2.0 * log(pfa));
if np ==
for frame = 1:1:size(SNRi,2)
a = sqrt(2.0 * 10°(.1*SNRi(frame)));
pd5(frame) = marcumsq(a,b);
end
else
[pd5] = pd_swerling5(pfa, 1, np, SNRIi);
end
% compute additional SNR needed due to fluctuation
for frame = 1:1:size(SNRi,2)
[Lf(frame),Pd_Sw5] = fluctioss(pd5(frame), pfa, np, swid);
end
% adjust SNR at each frame
SNRi = SNRi - Lf;
% compute the frame Pd
for frame = 1:1:size(SNRi,2)
if(swid==1)
Pdi(frame) = pd_swerlingl (nfa, np, SNRi(frame));
end
if(swid==2)
Pdi(frame) = pd_swerling2 (nfa, np, SNRi(frame));
end
if(swid==3)
Pdi(frame) = pd_swerling3 (nfa, np, SNRi(frame));
end
if(swid==4)
Pdi(frame) = pd_swerling4 (nfa, np, SNRi(frame));
end
if(swid==5)
Pdi(frame) = pd5(frame);
end
end
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Pdc(1:size(SNRi,2)) = 0;
Pdc(1) =1 - Pdi(1);
% compute the cumulative Pd
for frame = 2:1:size(SNRi,2)
Pdc(frame) = (1-Pdi(frame)) * Pdc(frame-1);
end
PDC =1 - Pdc(21)

Listing 2.29. MATLAB Program “fig2_21.m”"

% Use this program to reproduce Fig. 2.20 of text.

close all

clear all

np = 4;

pfa = le-7;

pdm = 0.99945;

pda = 0.99812;

% calculate the improvement factor

Im = improv_fac(np,pfa, pdm);

la = improv_fac(np, pfa, pda);

% caculate the integration loss

Lm = 10*log10(np) - Im;

La = 10*log10(np) - la;

pt = 114.7e3; % peak power in Watts

freq = 3e+9; % radar operating frequency in Hz

g = 34.5139; % antenna gain in dB

sigmam = 0.5; % missile RCS m squared

sigmaa = 4; % aircraft RCS m squared

te = 290.0; % effective noigemperature in Kelvins

b = 1.0e+6; % radar operating bandwidth in Hz

nf = 6.0; % noise figure in dB

loss = 8.0; % radar losses in dB

losstm = loss + Lm; %otal loss for missile

lossta = loss + La; % ttal loss for aircraft

range = linspace(20e3,120e3,1000); % range to target from 20 to 120 Km,
1000 points

% modify pt by np*pt to account for pulse integration
snrmnci = radar_eq(np*pt, freq, g, sigmam, te, b, nf, losstm, range);
snrm = radar_eq(pt, freq, g, sigmam, te, b, nf, loss, range);
snranci = radar_eq(np*pt, freq, g, sigmaa, te, b, nf, lossta, range);
snra = radar_eq(pt, freq, g, sigmaa, te, b, nf, loss, range);
% plot SNR versus range

rangekm = range ./ 1000;

figure(1)
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subplot(2,1,1)
plot(rangekm,snrmnci,'k’,rangekm,snrm,'k -.")
grid

legend('With 4-pulse NCI','Single pulse’)
ylabel (‘'SNR - dB");

title('Missile case’)

subplot(2,1,2)
plot(rangekm,snranci,'k',rangekm,snra,'k -.")
grid

legend('With 4-pulse NCI','Single pulse’)
ylabel ('SNR - dB");

title(‘Aircraft case’)

xlabel('Detection range - Km’)
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Chapter 3 Radar Waveforms

Choosing a particular waveform type and a signal processing technigue in a
radar system depends heavily on the radar’s specific mission and role. The cost
and complexity associated with a certgipe of waveform hardware and soft
ware implementation constitute a majactor in the decision process. Radar
systems can use Continuous Waveforms (CW) or pulsed waveforms with or
without modulation. Modulation techniques can be either analog or digital.
Range and Doppler resolutions are directly related to the specific waveform
frequency characteristics. Thus, knowledfi¢he power spectrum density of a
waveform is very critical. In generajgnals or wavefors can be analyzed
using time domain or frequency domain techniques. This chapter introduces
many of the most commonly used radar waveforms. Relevant uses of a spe
cific waveform will be addressed in the context of its time and frequency
domain characteristics. In this booketterms waveform and signal are used
interchangeably to mean the same thing.

3.1. Low Pass, Band Passignals, and Quadrature
Components

Signals that contain significant reency composition at a low frequency
band including DC are called Low Pas#®jlsignals. Signals that have signifi
cant frequency composition around sofregjuency away fronthe origin are
called Band Pass (BP) signals. A real BP sigihéll can be represented math
ematically by

xIt" = rit"cosl 2#ft + $, 1" (3.1)
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wherer!t" is the amplitude modulation or envelogg!lt” is the phase modu
lation, f, is the carrier frequency, and both" and$,!t" have frequency com
ponents significantly smaller thég. The frequency modulation is

1d

It = = =
't 2# dt

m

$ 1t (3.2
and the instantaneous frequency is

flt = %# %!2#f0t+$x!t"" = fy+ ol t” (3.3)

If the signal bandwidth i8, and iff, is very large compared #®, the signal
x!'t" is referred to as a narrow band pass signal.

Band pass signals can also be represented by two low pass signals known as
the quadrature components; in thase Eq. (3.1) can be rewritten as

X" = x 11" cos2#fyt — Xt sin2#f gt (3.4)

wherex!t" andxy!t" are real LP signals referred to as the quadrature compo
nents and are given, respectively, by

X!t = rit" coss, !t"
e 3.5)
XQ!t" = rit"sing, !t

Fig. 3.1 shows how the quadregi.components are extracted.

2cos2#fyt

X"

mixer LP FiIterI—»

X!t = x,!t" cos2#ft
—Xg!'t" sin2#f,t

XQ
mixer} LP Filter|—>

|

—2sin2#f,t

Figure 3.1. Extraction of quadrature components.
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3.2. The Analytic Signal

The sinusoidal signal!'t' defined in Eq. (3.1) can be written as the real part
of the complex signaddt" . More precisely,

J$ It j#fot
x!I't'= Re®&2dt"' = Re& t'e e ! (3.6)
Define the “analytic signal” as
j2#fot
%Wt = vit'e (3.7)
where
j$, 1t
vit' = rit"e (3.8)
and
O ) * 0
"= 3.9
0= | +0 (3.9)

() " is the Fourier transform dfdt" and X!) " is the Fourier transform of
x!t". EQ. (3.9) can be written as

() " =2U1)"XI)" (3.10)

where U!) " is the step function in the frequency domain. Thus, it can be
shown thatdt" is

%ut" = xIt" +jx!t" (3.12)
x!t" is the Hilbert transform of! t" .

Using Egs. (3.6) and (3.11), one can then write (shown here without proof)

XIt" = Ug!t"cos) gt —Ugg!t"sin) ot (3.12)
which is similar to Eq. (3.4) with , = 2#f,.

Using Parseval’'s theorem it can be shdhat the energy associated with the
signalx!t' is

_1'2.. _1'2.. _1
E_E/X!t dt—é/u” dt—éE% (3.13)

X

© 2004 by Chapman & Hall/CRC CRC Press |



3.3. CW and Pulsed Waveforms

The spectrum of a given signal describies spread of itenergy in the fre
quency domain. An energy signal (finismergy) can be characterized by its
Energy Spectrum Density (ESD) functiamhile a power signal (finite power)
is characterized by tHeower Spectrum Density (PSD) function. The units of
the ESD are Joules per Hertz ahd PSD has units Watts per Hertz.

The signal bandwidth is the range of frequency over which the signal has a
nonzero spectrum. In general, any signal can be defined using its duration
(time domain) and bandwidth (frequency don). A signal is said to be band-
limited if it has finite bandwidth. Signals that have finite durations (time-lim
ited) will have infinite bandwidths, while band-limited signals have infinite
durations. The extreme case is a continuous sine wave, whose bandwidth is
infinitesimal.

A time domain signaf!t" has a Fourier Transform (FB!) " given by

Fiy" = /fire) (3.14)

where the Inverse Fourier Transform (IFT) is

fitr = %#/ F1y )t g (3.15)

The signal autocorrelation functiog! 0" is

Rl0 = [flt"flt+0" dt (3.16)

The asterisk indicates the complex emgte. The signal golitude spectrum is
IF1) " . If fit" were an energy signal, then its ESORS$) *|° ; and if it were a
power signal, thn its PSD is§!) " which is the FT of the autocorrelation
function

§)" = [Rioe’

do (317

First, consider a CW waveform given by
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cos2#ft

frequency

-
|

—, 0 f
Figure 3.2. Amplitude spectrum for a continuous sine wave.

fiIt" = Acog) 4t (3.18)
The FT off!t" is
Fi)" = ABRI) ) J"+21) 4 ' 4 (3.19)

where 2! 5" is the Dirac delta function, an§l, = 2#f, . As indicated by
the amplitude spectrum shown in Fig. 3.2, the sigpat has infinitesimal
bandwidth, located &f,.

Next consider the time domain sigrigit" given by

"
‘A 0 0@

—=9t9 -
f,)t" = ARect 8 = = 27723 (3.20)
LU S
:O otherwise
It follows that the FT is
" . )0
Fp!) " = AOSinc %? (3.21)
where
Sind x = Sint#xt (3.22)
#X

The amplitude spectrum d§!t" is shown in Fig. 3.3. In this case, the band
width is infinite. Since infinite bandwidths cannot be physically implemented,
the signal bandwidtlis approximated by2# 2 radians per second drA0
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Hertz. In practice, thigpproximation is widelyccepted since it accounts for
most of the signal energy.

e

N A R

AN

fo—!1A0" fo+ 110"

Figure 3.3. Amplitude spectum for a single pulse, or a
train of non-coherent pulses.

Now consider the coherent gated CW wavefdghtt given by

flt' = B flt-nT" (3.23)

n=-

Clearly f5!t" is periodic, whereT is the period (recall thaf, = 1AT is the
PRF). Using the complex exponeht@urier series we can rewritgt" as

f)t" = B Fe (3.24)

where the Fourier series coefficiefs are given by
_ A0 .. .nO%g
Fn= T SII’]C, T7 (3.25)

It follows that the FT of,!t" is
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fo—!lﬁO" f0+!1A0"

Figure 3.4. Amplitude spetrum for a coherent pulse train of infinite length.

Fgl)" =2# B F,2!) —2n#f" (3.26)
n=-—
The amplitude spectrum éf!t" is shown in Fig. 3.4n this case, the spectrum

has asinx & envelope that correspondsip. The spacing between the spec
tral lines is equal to the radar PRF,

Finally, define the functioff,!t" as

N
ft" = B flt—nT" (3.27)
n=0

Note thatf,!t" is a limited duration of,!t". The FT off,!t" is

- : 8
F,) " = ANo Bsinc) T8 ¢ Sind m#0f,"2!) —2n#f" E  (3.28)
4 27 ' rE

; n=-—. 7

where the operator C " indicates convolution. The spectrum in this case is
shown in Fig. 3.5. The envelope is stillsnx & which corresponds to the
pulsewidth. But the spectral lines are replacedsbw A& spectra that corre
spond to the duratioNT.
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frequency

||«

Figure 3.5. Amplitude spetrum for a coherent pulsetrain of finite length.

3.4. Linear Frequency Modulation Waveforms

Frequency or phase modulated waveforms can be used to achieve much
wider operating bandwidths. Linear Frequency Modulation (LFM) is-com
monly used. In this case, the frequercgwept linearly across the pulsewidth,
either upward (up-chirp) or downwagdown-chirp). The matched filter band
width is proportional to the sweep bandwidth, and is independent of the pulse
width. Fig. 3.6 shows a typical example of an LFM waveform. The pulsewidth
is 0, and the bandwidth iB.

The LFM up-chirp instantaneous phase can be expressed by

vt = 280+ S8 - 29190

(3.29)
wheref, is the radar center frequency, amd= 12#B" A is the LFM coeffi
cient. Thus, the instantaneous frequency is

" 1 doym 0 0
| = hall?) = = =~
fit" = 52 96t = fo+Fe 59193 (3.30)

Similarly, the down-chirp instantaneous phase and frequency are given;respec
tively, by
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frequencyj A frequency
B T fo | time B fo time
I > >
| | | |
"T’I I‘T"

@ (b)
Figure 3.6. Typical LFM waveforms. (a) up-chirp; (b) down-chirp.

" - F.2g 0 0
0, = - - _ = -
At = 24 fot 57 59197 (3.31)
1 d 0 0
1t = Mo "= — _ - -
fit % G ot = fy — Ft 59t97 (3.32)
A typical LFM waveform can be expressed by
o F
) tg J2#’f0t+§t?
s!t" = Recffye (3.33)

where Rect tA0" denotes a rectangular pulse of widthEq. (3.33) is then

written as
. jouft
s't" = e sit (3.34)
where
Lo tgej#th
st = Recg(—)7 (3.35)

is the complex envelope &f!t".
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The spectrum of the signal!t* is determined from its complex envelope
slt'. The complex exponential term in Eq. (3.34) introduces a frequency shift
about the center frequenc€y. Taking the FT ob!t' yields

0
2

: o, a2
Shy" = /Rec?é?e’#Ft et = /eX|D,'J%§3 e ot (3.36)

- 0

2

Let FG= 2#F = 2#B A0, and perform the change of variable

x= [EG_)8 s dx = [Eedt (3.37)
#. FG #

Thus, Eg. (3.36) can be written as

X2

w_ [# )PmFG, j#ilm
Sh)" = J;Ge | € dx (3.38)
x
) X1 @
W _ [# ) PmFE, i#lR ilp | <
S)) _J;Ge z/ej dx— / € x> (3.39)
-0 0 :
where
_ [FGo,)g _ [BO. fg
= T2+ L8 = (B4 3.40
"1 J;,z F& 42." BAY 40

- [FGO_)g_ BO-,__f8
*2 J;,z F& ™\ 2. Bl (3.41)

The Fresnel integrals, denoted @yx' andS! %', are defined by

X

. -#H28
Cix' = /cos, T7dH (3.42)
0
X
. _H#H
SIxX = /sm’ngH (3.43)

0
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Fresnel integrals arapproximated by

1. #.3

a1 .- .
CIx'1 é+#xsm’ 2x7 ;o X»1 (3.44)
a1 01 -#.238
| = =+ m .
SIX | 5 #Xcos’ 2x7 ;o X» 1 (3.45)

Note that C!-x' = —C!x" and Sl-x' = -S!X'. Fig. 3.7 shows a plot of both
C!x' andS! x for 09x94.0. This figure can be reproduced using MATLAB
program‘fig3_7.m" given in Listing 3.1 in Section 3.12.

0.8

o
-l

2]
o

ot
o

0.4

Fresnel integrals; G{x); S(x)

Figure 3.7. Fresel integrals.

Using Egs. (3.42) and (3.43) into (3.39) and performing the integration yield

N oo I ) 2aase 230"+ Clx" 4Bl %" + S %" 49
g OJ;) e = % ;> (3.46)
Fig. 3.8 shows typical plots for the LFM real part, imaginary part, and ampli
tude spectrum. The square-like spectrum shown in Fig. 3.8c is widely known
as the Fresnel spectrum. This figwan be reproduced using MATLAB pro
gram“fig3_8.m", given in Listing 3.2 in Section 3.12.

A MATLAB GUI (see Fig. 3.8d) was deloped to input LFM data and dis
play outputs as shown in Fig. 3.8. It is calte@M_gui.m”. Its inputs are the
uncompressed pulsewidth and the chirp bandwidth.
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10 Microsecond, B =200 MHz
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Figure 3.8a. Typical LFM waveform, real part.

T =10 Microsecond, B =200 MHz

1 T T T T T T T
sell L LR
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Imaginary part
(=]
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|
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Figure 3.8b. Typical LFM waveform, imaginary part.
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Spectrum for an LFM waveform and T = 10 Microsecond, B =200 MHZ
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Figure 3.8c. Typical spectum for an LFM waveform.

Initialization | Start ‘ Quit ‘

Bandwidth in Hz Uncompressed pulsewidth
in seconds
200ek 10e-6

Figure 3.8d. GUI workspace“LFM_gui.m”.

3.5. High Range Resolution

An expression for range resolutiafR in terms of the pulsewidtlh was
derived in Chapter 1. When pulse compression is not used, the instantaneous
bandwidthB of radar receiver is normally matched to the pulse bandwidth,
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and in most radar applications this is done by setthg 1/ . Therefore,
range resolution is given by

JR=1c0'AR = cA2B" (3.47)

Radar users and designers alike seelccomplish High Range Resolution
(HRR) by minimizingJR. However, as suggested by Eq. (3.47) in order to
achieve HRR one must use very shmuises and consequently reduce the-aver
age transmitted power and impose severe operating bandwidth requirements.
Achieving fine range resolution whileaintaining adequate average transmit
ted power can be accomgiid by using pulse compression techniques, which
will be discussed in Chapter 5. By means of frequency or phase modulation,
pulse compression allows us to achidwe average transmitted power of a rel
atively long pulse, while obtaining the range resolution corresponding to a very
short pulse. As an example, consider an LFM waveform whose bandwilth is
and un-compressed pulsewidth (transmitted).ig\fter pulse compression the
compressed pulsewidth is denoteddsywhere0G 0 and the HRR is

c0G c0
UL &

JR =
2 2

(3.48)

Linear frequency modulation anddguency-Modulated (FM) CW wave
forms are commonly esl to achieve HRR. High mge resolution can also be
synthesized using a class of waveforms known as the “Stepped Frequency
Waveforms” (SFW). Stepped frequency waveforms require more complex
hardware implementation as compared FM or FM-CW; however, the radar
operating bandwidth requirements are lessrietive. This is true because the
receiver instantaneous bandwidth istchad to the SFW sub-pulse bandwidth
which is much smaller than the LFM or FM-CW bandwidth. A brief discussion
of SFW waveforms is presented in the following section.

3.6. Stepped Frequency Waveforms

Stepped Frequency Waveforms (SFW) produce Synthetic HRR target pro
files because the targetnge profile is computed byeans of Inverse Discrete
Fourier Transformation (IDF) of frequency domain samples of the actual tar
get range profile. The process ofngeating a synthetic HRR profile is
described in Wehnérlt is summarized as follows:

1. A series ofn narrow-band pulses are transmitted. The frequency from
pulse to pulse is stepped by a fixed frequency stepEach group oh
pulses is referred to as a burst.

1. Wehner, D. R.High Resolution Radasecond edition, Artech House, 1993.
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2. The received signal is sampled at gerthat coincides with the center of
each pulse.

3. The quadrature components for eécinst are collected and stored.

4. Spectral weighting (to reduce the range sidelobe levels) is applied to the
quadrature components. Corrections temget velocity, phase, and ampli
tude variations are applied.

5. The IDFT of the weighted quadratucomponents of each burst is calcu
lated to synthesize a range profile foattburst. The process is repeated for
N bursts to obtain consecutive synthetic HRR profiles.

Fig. 3.9 shows a typical SFW burst. The Pulse Repetition Interval (PRI) is
T, and the pulsewidth i8 . Each pulse can have its own LFM, or other type of
modulation; in this book LFM is assumed. The center frequency foi''the
step is

f=fy+idf ;i =0Kkn-1 (3.49)

Within a burst, the transmitted waveform for ﬁﬁréstep can be described as

. _ _Cjco2#fit+ L, iT9t9iT+0g
sit" = : ° (3.50)
, 0 elsewhere
) frequency
fio b — — —
fa b - — - — M
f, L —
L $If
6 | T |
‘I—l /\ time

T

Figure 3.9. Stepped frequency waveform burst.
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wherelL; are the relative phases agdare constants. The received signal from
a target located at rang attimet = 0 is then given by

s;!t" = C,@osl 2#f, 1t - 0!t"" + L;" ; IT+0It"9t9iIT +0 +0!t" (3.51)
whereC;Gare constant and the round trip detay is given by

Ry—vt
cAR

o = (3.52)

c is the speed of light and is the target radial velocity.

The received signal is down-convertedbtase-band in order to extract the
quadrature components. More precisslyt* is mixed with the signal

y;!t" = Ccosl2#ft +L" S iT9t9iT+0 (3.53)

After low pass filtering, the quaature components are given by

_x!t'g  -Acosq!t'

D E=D E (3.54)
,let“7 , A;sin%q!t"7
whereA, are constants, and
2R
%t = —2#f" 028 (3.55)

c/

where nowf; = Jf . For each pulse, the quadn@womponents are then sam
pled at

0 2
=0T+ + 2R (3.56)
2 c

0, is the time delay associated with tta@ge that corresponds the start of
the range profile.

The quadrature components can therexpressed in complex form as

i%
X, = Ae (3.57)

Eq. (3.57) represents samples of the targiéctivity, due to a single burst, in
the frequency domain. This information caen be transformed into a series
of range delay reflectivity (i.e., rangegfite) values by using the IDFT. It fol
lows that
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n-1
H, = %B X, ex ‘jzi"S - 0919n-1 (3.58)

i=0
Substituting Eqgs. (3.57) and (3.55) into (3.58) and collecting terms yield
n—1

= —BA exp—j
i=0

2R, 2vt,88 @
Cc

_2#I|

—2#f; (3.59)

’

By normalizing with respect ta and by assuming that, = 1 and that the
target is stationary (i.ey = 0), then Eq. (3.59¢an be written as

n-1
.-2#|| 2Rg @
=B exp j 2#fiTO%> (3.60)
i=0 ’
Using f; = iJf inside Eq. (3.60) yields
" ook 2RI L@
2# . 4nh
=B exp— -2 0 io +I573.> (3.61)
i=0
which can be simplified to
Sin#N _.n—1 2#N3
H, exp j—]/— — (3.62)
sin w2 ni
where
—2nR,Jf
= Ro + (3.63)
c
Finally, the synthesized range profile is
|H| — SIn#N (3.64)
#N

3.6.1. Range Resolution and Range Ambiguity in SFW

As usual, range resolution is determined from the overall system bandwidth.
Assuming a SFW witm steps, and step sizé, then the corresponding range
resolution is equal to
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JR = %Jf (3.65)

Range ambiguity associated wittS&W can be determined by examining
the phase term that correspondsi fpoint scatterer located at rangg. More
precisely,

2R
%t = 2#fiTO (3.66)
It follows that

Jo _ ML —F'Ry | 4#R,

= — = 3.67
it M -ftoc c 367
or equivalently,
- I%c
T Jfa# (3.68)
It is clear from Eq. (3.68) #t range ambiguity exists far% = J%+ 2n#.
Therefore,
_J%+2n# c _ -Cs8
Ro= =37 28 = Ro*Moyw (3.69)
and the unambiguous range window is
R, = = (3.70)

U 23f

Hence, a range profile synthesized gsanparticular SFW represents the rel
ative range reflectivity for all scattesewithin the unambiguous range win
dow, with respect to the absolute range that corresponds to the burst time delay.
Additionally, if a specific targt extent is larger thaR, , then all scatterers fall
ing outside the unambiguous range window will fold over and appear in the
synthesized profile. This fold-over problem is identical to the spectral fold-
over that occurs when using a Fast kaufransform (FFT) to resolve certain
signal frequency contents. For examgensider an FFT with frequency reso
lution Jf = 50Hz , and SizeNFFT = 64. In this case, this FFT can resolve
frequency tones betweenl600Hz and 1600Hz . When this FFT is used to
resolve the frequency contentakine-wave tone equal ttB0O0Hz , fold-over
occurs and a spectral line at the fourth FFT bin (ReQHz ) appears. There
fore, in order to avoid fold-over in the synthesized range profile, the frequency
stepJf must be

© 2004 by Chapman & Hall/CRC CRC Press |



Stepped Frequency Waveforms 159

Jf9CcRE (3.70)
whereE is the target extent in meters.

Additionally, the pulsewidth must also be large enough to contain the whole
target extent. Thus,

Jf91/0 (3.72)
and, in practice,

Jf91A0 (3.73)

This is necessary in order to reduce the amount of contamination of the-synthe
sized range profile caused by the clutterrounding the target under consider
ation.

MATLAB Function “hrr_profile.m”

The function*hrr_profile.m” computes and plots the synthetic HRR profile
for a specific SFW. It is given in Listin3.3 in Section 3.12. This function -uti
lizes an Inverse Fast Faer Transform (IFFT) of a size equal to twice the
number of steps. Hamming window of the same size is also assumed. The syn
tax is as follows:

[hl] = hrr_profile (nscat, scat_range, scat_rcs, n, deltaf, prf, v, r0, winid)

where
Symbol Description Units Status
nscat number of scatterers that make up none input
the target
scat_range| vector containing range to individ meters input
ual scatterers
scat_rcs | vector containing RCS of individual meter square input
scatterers
n number of steps none input
deltaf frequency step Hz input
prf PRF of SFW Hz input
v target velocity meter/second input
r0 profile starting range meters input
winid number>0 for Hamming window none input
number < 0 for no window
hl range profile dB output
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160 MATLAB Simulations foRadar Systems Design

For example, assume thaetfange profile starts &, = 900m and that

nscat tau n deltaf prf v
3 100F sec 64 10MHz 10KHz 0.0
In this case,
8
JrR= — 3010 _ 5o35m
2064010010
3010°
R =—=22° =15m
2010010

Thus, scatterers that are more than 0.2@%ers apart will appear as distinct
peaks in the synthesized range proflesume two cases; in the first case,

[scat_range] =[908, 910, 912] meterand in the second cagecat_range] =
[908, 910, 910.2] meterdn both cases, I¢scat_rcs] = [100, 10, 1] meters
squared.

Fig. 3.10 shows the synthesized rapgefiles generated using the function
“hrr_profile.m” and the first case when the Haimmwindow is not used. Fig.
3.11 is similar to Fig. 3.10, except in this case the Hamming window is used.
Fig. 3.12 shows the synthesized range profile that corresponds to the second
case (Hamming window is usedNote that all three sdaters were resolved in
Figs. 3.10 and 3.11; however, the last two scatterers are not resolved in Fig.
3.12, since they are separated by less #an

40
o e e |

S s e s S e

Range profile - dB

o0 I 1

relative distance - meters

Figure 3.10. Synthetic range profile forthree resolved scatterers. No window.
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Figure 3.11. Synthetic range profilefor three scatterers Hamming window.
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Figure 3.12. Synthetic range profile fothree scatterers. Two are unresolved.
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162 MATLAB Simulations foRadar Systems Design

Next, consider another case whgeat_range] = [908, 912, 916] meters.
Fig. 3.13 shows the corresponding ranggfif@. In this case, foldover occurs,

and the last scatterer appears at theetgportion of the synthesized range-pro
file. Also, consider the case where

[scat_range] =[908, 910, 923] meters

Fig. 3.14 shows the corresponding ramgefile. In this case, ambiguity is
associated with the firand third scatterersrgie they are separated bgm.
Both appear at the same range bin.

3.6.2. Effect of Target Velocity

The range profile defined in Eq. (3.64) is obtained by assuming that the tar
get under examination is stationary. Effect of target velocity on the synthe

sized range profile can be determined by substituting Egs. (3.55) and (3.56)
into Eqg. (3.58), which yields

n-1
?2#li . 0
H =B Aiexp-:Jzin“—j2#fi[2?R—2?V:|T+51+2?R5731>@ (3.74)
i=0 ' '
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Figure 3.13. Synthetic range profile forthree scatterers. Third scatterer folds
over.
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Figure 3.14. Synthetic range profile fothree scatterers.The first and third
scatterers appear inthe same FFT bin.

The additional phase term present in Eq. (3.74) distorts the synthesized range
profile. In order to illustrate this distortion, consider the SFW described in the
previous section, and assume the thoagtsrers of the first case. Also, assume
that v = 100mAs. Fig. 3.15 shows the synthesized range profile for this case.
Comparisons of Figs. 3.11 and 3.15 digahow the distortion effects caused

by the uncompensated target velocity. Figure 3.16 is similar to Fig. 3.15 except
in this casey = —100m As. Note in either case, ¢htargets have moved from

their expected positionso(tthe left or right) byDisp = 20n OvAPRF (1.28
m).

This distortion can be eliminated byultiplying the comfex received data
at each pulse by the phase term

= oxor_iouf[2Y-ir 4 %, 2R8T8
P = exp,—JZ#fi[C’|T+ > + 07}7 (3.75)

v andR are, respectively, estimates of theget velocity and range. This pro
cess of modifying the phase of the quadgitcomponents is often referred to
as “phase rotation.” In practice, when good estimatesaidR are not avail

able, then the effects of target vetgare reduced by using frequency hopping
between the consecutive pulses within $#V. In this case, the frequency of
each individual pulse ishosen according to a petdrmined code. Waveforms

of this type are often called Frequency Coded Waveforms (FCW). Costas
waveforms or signals are a good example of this type of waveform.
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Range profile - dB

relative distance - meters

Figure 3.15. lllustration of range profile distortion due to target velocity.

Range profile - dB

relative distance - meters

Figure 3.16. lllustration of range profile distortion due to target velocity.
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Figure 3.17 shows a synthesized range profile for a moving target whose
RCSisQ = 10m? andv = 15mAs. The initial target range is & = 912m. All
other parameters are as before. Thgsifé can be reproduced using the MAT
LAB program“fig3_17.m” given in Listing 3.4 in Section 3.12.

Time in seconds

o 5 10 15
Relative distance in meters

Figure 3.17. Synthesized range profiléor a moving target (4 seconds long).

3.7. The Matched Filter

The most unique charactaitsof the matched filter is that it produces the
maximum achievable instantaneous SNR at its output when a signal plus addi
tive white noise is present at the inplite noise does not need to be Gaussian.
The peak instantaneous SNR at the ikereoutput can be achieved by match
ing the radar receiver tramsffunction to the receidesignal. We will show
that the peak instantaneosignal power divided by thaverage noise power at
the output of a matched filter is equalttdce the input sigal energy divided
by the input noise power, regardless of the waveform used by the radar. This is
the reason why matched filters are often referred to as optimum filters in the
SNR sense. Note that the peak powedus the derivation of the radar equa
tion (SNR) represents the erage signal power over the duration of the pulse,
not the peak instantaneous signal poagiin the case of a matched filter. In
practice, it is sometimes difficult to d@ele perfect matched filtering. In such
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cases, sub-optimum filters may be udede to this mismah, degradation in
the output SNR occurs.

Consider a radar system that usedinite duration energy signad!t".
Denote the pulsewidth a&, and assume that a matched filter receiver is uti
lized. The main question that we needtswer is: What is the impulse, or-fre
quency, response of the filter that ximizes the instantaneous SNR at the
output of the receiver whendelayed version of the signglt" plus additive
white noise is at the input?

The matched filter input signahn then be represented by
xIt' = C slt—t," +nlt" (3.76)

whereC is a constantt, is an unknown time delay proportional to the target
range, anch;!t" is input white noise. Since the input noise is white, its eorre
sponding autocorrelation and Power Spectral Density (PSD) functions are
given, respectively, by

_ N
Rt = = 21t (3.77)

(3.78)

where N, is a constant. Denotg!t" andn,!t" as the signal and noise filter
outputs, respectively. More precisely, we can define

ylt'=C slt—t," +n,It" (3.79)

where
s,!t" = s!t" Chit’ (3.80)
ny!t" = ni!t" Chit' (3.81)

The operator (C ) indicates convolution, andh!'t' is the filter impulse
response (the filter is assumed to be linear time invariant).

Let R,!t" denote the filter autocorrelation function. It follows that the output
noise autocorrelatioand PSD functions are

o Ny Ny
Ro/t" = Ry!t" CRy/t" = =2 21t CRyIt" = 22 Ryt (3.82)

80" = &) "IH 1 = 52 k) P (3.83)
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whereH!) " is the Fourier transform for the filter impulse respotgé,. The
total average output noise power is equaRidt" evaluated at = 0. More
precisely,

R, 10" —&) | hiu'|°d
n'0" = 5 /|.u| u (3.84)

The output signal power evaluated at times ]Csolt—tl"\z, and by using Eq.
(3.80) we get

slt—t" = [slt—t;—u" hiu' du (3.85)

A general expression for the output SNR at timean be written as

ICs,'t—t,"

SNRt =12 (3.86)
Ry, 10"
Substituting Egs. (3.84) and (3.85) into Eqg. (3.86) yields
. 2
c? [ sit—t;—u" hiu" du
SNRt = —= (3.87)
i
= [ IhtulPdu
The Schwartz inequality states that
. 2 . .
/PIxQixdx 9 [ [PIxdx [ 1Q!x|%dx (3.88)

where the equalitgpplies only wherP = kQLl, wherek is a constant and can
be assumed to be unity. Then by applying Eq. (3.88) on the numerator of Eq.
(3.87), we get

c?fistt-ty—u? du bl du 2c? [ s tt—t —u)? du

SNR 19 —= = S— (3.89)
NO

N
70 /|h!u"|2du
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Eq. (3.89) tells us that the peak mrstaneous SNR occurs when equality is
achieved (i.e., from Eq. (3.88) = ksl). More precisely, if we assume that
equality occurs at = t;, and thak = 1, then

hiu' = slity—t, —u" (3.90)

and the maximum instantaneous SNR is

2C2/ ]si!to—tl—u"]2 du

SNR ' = —= ™ (3.91)

Eqg. (3.91) can be simplifiedsing Parseval's theorem,

E=C[l|s!to—t,—u’ du (3.92)

whereE denotes the energy of the input sijrconsequently we can write the
output peak instantaneous SNR as

SNR ' = IZ\I_E (3.93)
0

Thus, we can draw the conclusion that the peak instantaneous SNR depends
only on the signal energy and input noise power, and is independent of the
waveform utilized by the radar.

Finally, we can define the impulse response for the matched filter from Eq.
(3.90). If we desire the peak to occutgt t; , we get the non-causal matched
filter impulse response,

hott' = s1i—t (3.94)

Alternatively, the causal impulse response is

h!t" = s110-t" (3.95)

where, in this case, the peak occurggt t; +0 . It follows that the Fourier
transforms ofh, !t andh !t" are given, respectively, by

Ho)" = Sl " (3.96)

H) " = sl ne?° (3.97)
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where §!) " is the Fourier transform af!t". Thus, the moduli oH!) " and
S!) " are identical; howevethe phase responses are opposite of each other.

Example:

Compute the maximum instantaneous SNR at the outEut of a linear filter
whose impulse response is matched to the sighél = exp! -t~ 2T" .

Solution:

The signal energy is

1> AT

E=/Ix )%t = /e dt = J#T Joules

It follows that the maximum instantaneous SNR is

SNR= ﬂ
N A2

whereN, 2 is the input noise power spectrum density.

3.8. The Replica

Again, consider a radar system thatsia finite duration energy sigrsit”,
and assume that a matched filter receiver is utilized. The input signal is given
in Eq. (3.76) and is repeated here as Eq. (3.98),

XIt' = C glt-t" +n!t" (3.98)

The matched filter outpug!t' can be expressed by the convolution integral
between the filter's impulse response ant ,

yit' = /x! u'h!'t—u"du (3.99)

Substituting Eqg. (3.95) into Eq. (3.99) yields

yre' = [ xtu'sHo-t+u'du = Reg!t-0" (3.100)

whereR,s!t—0" is a cross-correlation betweaht' ands!0-t". Therefore,

the matched filter output can be comguifrom the cross-correlation between

the radar received signal and a delasegglica of the transmitted waveform. If

the input signal is the same as the transmitted signal, the output of the matched
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filter would be the autocorrelation funati@f the received (or transmitted) sig
nal. In practice, replicas of the tsanitted waveforms ameormally computed
and stored in memory for use byettadar signal processor when needed.

3.9. Matched Filter Respase to LFM Waveforms

In order to develop a general expression for the matched filter output when
an LFM waveform is utilized, we wiltonsider the case when the radar is
tracking a closing target with velocity. The transmitted signal is

28
tg 12#’f0t+ 517

s!t" = Rect O,7e (3.101)

The received signal is then given by

s It = sylt-Jie (3.102)

Jit = 2—V't ty" (3.103)

wheret, is the time corresponding to the target initial detection ranges @hd
the speed of light. Using Eq. {83) we can rewrite Eq. (3.102) as

" - 2v 8
' = sl,t—to+ ?!t—t07 = 5!Rt-t, (3.104)

and

R= 1+ Z\EI (3.105)
is the scaling coefficient. Substituting Eqg. (3.101) into Eq. (3.104) yields

Rt—ty"q jo#f,Rt—t;" j#FRIt—ty"?
08e 0 0 e 0

57 (3.106)

s,'t" = Rect
which is the analytical signal representation §,ort The complex envelope
of the S|gnals It" is obtained by multiplying Eq (3.106) baxp!—j2#ft" .
Denote the complex envelope byt"; then after some manipulation we get

—j 24t Rt—ty"q jo#flR-1"1t—t" j#FRIt—ts"?
sr!t":e] "°Rect OogeJ 0 o d 0

(3.107)

The Doppler shift due to the target motion is

© 2004 by Chapman & Hall/CRC CRC Press |



Matched Filter Respoesto LFM Waveforms 171

2y

fd:C

(3.108)
and sinceR-1 = 2vAc, we get

fy = IR-1"f, (3.109)
Using the approximatioRl 1 and Eg. (3.109), Eq. (3.107) is rewritten as

AP ATER ;
s't'l e slt—1, (3.110)

where

—j2#f,t

slt—-t," = e slt—ty" (3.111)

s,!t" is given in Eq. (3.101). The matched filter response is given by the con
volution integral

So!t" = [ hiu's!t—u"du (3.112)

For a non-causal matched filter the impulse respbhnseis equal tosl!—t"; it
follows that

S't" = [ sll-u's !t—u"du (3.113)

Substituting Eq. (3.111) into Eg. (33), and performing some algebraic
manipulations, we get

J2Hdtr U=

S!t = [ sty slt+ u—t,"du (3.114)

Finally, making the change of variallle= t + u yields

' j2Hfy -ty
it = [shit—tislt—tye™ @ O dr (3.115)

It is customary to sef, = 0. It follows that

‘ j2#f t'
Soitify" = [sitslir—td” e (3.116)
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where we used the notatigg!t;f;" to indicate that the output is a function of
both time and Doppler frequency.

3.10. Waveform Resolution and Ambiguity

As indicated by Eq. (3.93) the radanstivity (in the case of white additive
noise) depends only on the total eneofyhe received signal and is indepen
dent of the shape of the specific wavefo This leads us task the following
question: If the radar sensitivity is independent of the waveform, then what is
the best choice for a transmitted wipren? The answer depends on many fac
tors; however, the most important consideration lies in the waveform’s range
and Doppler resolutimcharacteristics.

As discussed in Chapter 1, range resolution implies separation between dis
tinct targets in range. Alternatively, Doppler resolution implies separation
between distinct targets in frequendyius, ambiguity and accuracy of this
separation are closely associated terms.

3.10.1. Range Resolution

Consider radar returns from two stationary targets (zero Doppler) separated
in range by distancgR. What is the smallest value 8R so that the returned
signal is interpreted by the radar as twdidé targets? In order to answer this
question, assume that the radar transmitted pulse is denotet! by

sit' = Alt'cos! 2#fyt + $!t"" (3.117)

wheref, is the carrier frequency!t" is the amplitude modulation, astt" is
the phase modulation. The sigrsat' can then be expressed as the real part of
the complex signaldt", where

i) ot-sit™ i) ot

%Wt = Alt'e = ult'e (3.118)
and

ut = Alee?® (3.119)

It follows that
sit' = Regodt"" (3.120)

The returns from both targets are respectively given by

St = %t—0y" (3.121)
S, It = %t—-0,-0" (3.122)
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where 0 is the difference in delay betwe#me two returns. One can assume
that the reference time @, and thus without any loss of generality one may
set0, = 0. It follows that the two targets are distinguishable by how large or
small the delay can be.

In order to measure the differencerémge between the two targets consider
the integral square error betwe@ht" and%t-0'. Denoting this error aé
it follows that

= /1At -%wt-01° ot (3.123)

Eq. (3.123) can be written as

= /At dt+ [ 199t-07% dt- (3.124)

/&Wdt"%l!t—()" +9lIt"%lt— 0™ dt’

Using Eq. (3.118) into Eq. (3.124) yields

§R-2/|ult| dt — 2Re=/%1't%|t—0' dit (3.125)

/\V/\(g

. 9 . @
1" =) o0 " . <
2/|u!t| dt — 2Re=e [ ullt'ult-0" di>

The first term in the right hand sideB{. (3.125) representse signal energy,
and is assumed to be constant. The second term is a varying funddiovitbf

its fluctuation tied to the carrier frequency. The integral inside the right-most
side of this equation is defined the “range ambiguity function,”

Ng!0" = [ullt'ult-0" dt (3.126)

The maximum value of\;!0" is at0 = 0. Target resolvability in range is
measured by the squared magnltuqisl0| It follows that if
INR!0"| = Ng!0" for some nonzero value of, then the two targets are indistin
guishable. Alternatively, if|N;! 0" TNg!0" for some nonzero value of, then
the two targets may be distinguishable (resolvable). As a consequence, the
most desirable shape foL!0" is a very sharp peak (thumb tack shape} cen
tered at0 = 0 and falling very quickly away from the peak.
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The time delay resolution is

/ INgt0? do
== (3.127)
NI O"
Using Parseval's theorem, Eq. (3.127) can be written as
J1un 1t q)
JO = 2# —_— (3.128)
[/ ) 2 d)]
The minimum range resolution corresponding®ois
JR=cOR (3.129)
However, since the signal effective bandwidth is
) 2
[/ un "2 d)]
B —w—-——— (3.130)

2# U "1* )

the range resolution is expressed as a function of the waveform’s bandwidth as
JR = cA2B" (3.131)

The comparison between Egs. (3.116) #8.126) indicatethat the output
of the matched filter and the range ambiguity function have the same envelope
(in this case the Doppler shiff is set to zero). This dicates that the matched
filter, in addition to providing the maximum instantaneous SNR at its output,
also preserves the signahge resolution properties.

3.10.2. Doppler Resolution

It was shown in Chapter 1 that the Doppler shift corresponding to the target
radial velocity is

2v _ 2Vf0

f, =
d=y c

(3.132)

wherev is the target radial velocity) is the wavelengthf, is the frequency,
andc is the speed of light.

© 2004 by Chapman & Hall/CRC CRC Press |



Waveform Resolution and Ambiguity 175
Let

—j 2#ft
17t g

(= /%!t"e t (3.133)

Due to the Doppler shift associatedtiwthe target, the received signal spec
trum will be shifted byf,. In other words the recgid spectrum can be repre
sented by( !f—fy". In order to distinguish beten the two targets located at

the same range but having different velocities, one may use the integral square
error. More precisely,

§ = /| =1y df (3.134)

Using similar analysis as that which led to Eq. (3.125), one should minimize

?. @
< <

2Re= [ ((Lif( 1 -1y df> (3.135)
< <

By using the analytic signal in Eq. (3.118) it can be shown that
(1" = UI2#f - 2#f," (3.136)

Thus, Eq. (3.135) becomes

ULI2#f" Ul 2#f — 28 " df = | ULI2#f — 2#f U1 2#f — 2#f, — 2#f " df (3.137)
d 0 0 d

The complex frequency correlation function is then defined as

' ' j2uf
NIy = [ Uli2gfui2sf—26t df = [ |uie)? 12 o (3.138)
and the Doppler resolution constalf}, is
[N Pty ure Y
Jfy = = = = = (—1’ (3.139)

NP10" - 2
[/ |u!t"|2dt]

where(Q is pulsewidth.
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Finally, one can define the corresponding velocity resolution as

cJf
Jv= —d=_FC

L 3.140
2f, ~ 2f,0 (3.149)

Again observation of Egs. (3.138) and (3.116) indicate that the output of the
matched filter and the ambiguity function (when= 0) are similar to each
other. Consequently, one concludes that the matched filter preserves the wave
form Doppler resolution properties as well.

3.10.3. Combined Rangand Doppler Resolution

In this general case, one needs to use a two-dimensional function in the pair
of variables (K, ). For this purpose, assume tifaé complex envelope of the
transmitted waveform is

o — 11y 2Rt
Wt = ult'e (3.141)

Then the delayed and Doppler-shifted signal is

j2#!f, —f "1t -0"
wit—0 = ut—oe . 0 ¢ (3.142)

Computing the integral square error between Egs. (3.142) and (3.141) yields

. . 2. @
< <

S = [19at —%!t—0"7 dt = 2/ |odt'|°dt—2Re= [ LIt —96!t—0"dt > (3.143)
< <

which can be written as

N

j2#f t <
Jurtulit—0e " at S (3.144)
<

< jomif,—f0

§ =2/ ut® dt-2R &

"/\fP/\

Again, in order to maximize this squared error@ar0 one must minimize the
last term of Eq. (3.144).

Define the combined range aBdppler correlation function as

joi,t

N OGy" = [ult'ullt-0'e dt (3.145)

In order to achieve the most range and Doppler resolution, the modulus square
of this function must be minimized f@T0 andf,; T 0. Note that the output of
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the matched filter in Eq. (3.116) is identical to that given in Eq. (3.145). This
means that the output of the matctidter exhibits maximum instantaneous
SNR as well as the most achibl@range and Doppler resolutions.

3.11. “MyRadar” Design Case Study - Visit 3

3.11.1. Problem Statement

Assuming a matched filter receiver,esetla set of waveforms that can meet
the design requirements as stated in the previous two chapters. Assume linear
frequency modulation. Do not use more than a total of 5 waveforms. Modify the
design so that the range resolutidrR = 30m during the search mode, and
JR = 7.5m during tracking.

3.11.2. A Design

The major characteristics of radaraveforms include the waveform’s
energy, range resolution, and Doppler (or velocity) resolution. The pulse
(waveform) energy is

E=P0 (3.146)

whereP, is the peak trasmitted power an@® is the pulsewidth. Range reselu
tion is defined in Eq. (3.131), while the velocity resolution is in Eq. (3.140).

Close attention should be paid to the selection process of the pulsewidth. In
this design we will assume that the guémnergy is the same as that computed
in Chapter 2. The radar operating barttvduring search and track are calcu
lated from Eq. (3.131) as

?Bsearcn@ 2 3010°A2030' = 5 MHz @
= >= = >

(3.147)
: Brrack; 1301 A207.5 = 20 MHzZ

Since the design calls for a pulsed matlzen for each pulse transmitted (one
PRI) the radar should not be allowedrégeive any signal until that pulse has
been completely transmitted. This limits the radar to a minimum operating
range defined by

o

R. =Y

min = 5 (3.148)

In this design choos&,;,
pulsewidth isQ,, ,,9 100Fs.

* 15Km. It follows that the minimum acceptable
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For this design select 5 waveforms, one for search and four for track. Typi
cally search waveforms @longer than track waveims; alternatively, track
ing waveforms require wider bandwidths than search waveforms. However, in
the context of range, more energy is required at longer ranges (for both track
and search waveforms), since one wouipeet the SNR to get larger as range
becomes smaller. This was depicted in the example shown in Fig. 1.13 in
Chapter 1.

Assume that during search and initigtection the single pulse peak power
is to be kept under 10 KW (i.eR, 9 20KW). Then by using the single pulse
energy calculated using Eq. (2.115)Ghapter 2, one cacompute the minri
mum required pulsewidth as

0, * 2147 = 573Fs (3.149)
20010
ChooseQ = 20Fs, with bandwidthB = 5MHz and use LFM modulation.

search ™
Fig. 3.18 shows plots of the real part, imaginary part, and the spectrum of this

search waveform. This figure wasroduced using the GUI workspace
“LFM_gui.m”. As far as the track waveforms, choose four waveforms of the
same bandwidthg,,,., = 20MHz) and with the following pulsewidths

TABLE 3.1. “MyRadar” design case study track waveforms.

Pulsewidth Range window

0, = 20Fs RmaxV 0-7%Rax

O, = 17.5Fs | 0.75R,,,V 0.5R .,
O = 15Fs 0.5RaxV 0.25R 14,

Oy = 12.5Fs R90.25R .,

Note thatr,,,, refers to the initial range at which track has been initiated. Fig.
3.19 is similar to Fig. 3.18 except it is foy.

For the waveform set selected in this design option, the radar duty cycle var
ies from 1.25% to 2.0%. Remember thfa¢ PRF was calculated in Chapter 1
asf, = 1KHz; thus the PRI i§ = 1ms.

At this point of the design, one must verify that the selected waveforms pro
vide the radar with the desired SNRitlmeets or exceeadat was calculated
in Chapter 2, and plotted in Fig. 2.21. In other words, one must now re-run
these calculations and verify that t88IR has not been degraded. This task
will be postponed until Chapter 5, where the radar equation with pulse com
pression is developed.
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Search Waveform
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Figure 3.18a. Real part of search waveform.
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Figure 3.18b. Imaginary part of search waveform.
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Search Waveform
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Figure 3.18c. Anplitude spectrum.
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Figure 3.19a. Real part of waveform.
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Track Wavetorm #3
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Figure 3.19b. Imaginary part of waveform.
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Figure 3.19c. Amplitude spectrum.
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3.12. MATLAB Program and Function Listings

This section presents listings for all MATLAB programs/functions used in
this chapter.

Listing 3.1. MATLAB Program “fig3_7.m”

% Use this program to reproduce Fig 3.7 from text
clear all
close all
n=0;
for x = 0:.05:4
n =n+l,
sx(n) = quadl(‘fresnels’,.0,x);
cx(n) = quadl(‘fresnelc’,.0,x);
end
plot(cx)
x=0:.05:4,
plot(x,cx,'k',x,sX,'k--"
grid
xlabel ('x")
ylabel (‘Fresnel integrals: C(x); S(x)")
legend('C(x)",'S(x)")

Listing 3.2. MATLAB Program “fig3_8.m”"

% Use this program to reproduce Fig. 3.8 of text

close all

clear all

eps = 0.000001;

%Enter pulsewidth and bandwidth

B = 200.0e6; %200 MHZ bandwidth

T = 10.e-6; %10 micro second pulse;

% Compute alpha

mu=2.*pi*B/T,

% Determine sampling times

delt = linspace(-T/2., T/2., 10001); % 1 nano second sampling interval
% Compute the complex LFM representation

Ichannal = cos(mu .* delt.”2 / 2.); % Real part

Qchannal = sin(mu .* delt.*2 / 2.); % Imaginary Part

LFM = Ichannal + sqrt(-1) .* Qchannal; % complex signal
%Compute the FFT of the LFM waveform

LFMFFT = fftshift(fft(LFM));

% Plot the real and Imaginary parts and the spectrum
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freqglimit = 0.5/ 1.e-9;% the sampling interval 1 nano-second
freq = linspace(-freqlimit/1.e6,freglimit/1.e6,10001);
figure(1)

plot(delt*1e6,Ichannal,'k");

axis([-1 1 -1 1])

grid

xlabel('Time - microsecs')

ylabel('Real part’)

title('T = 10 Microsecond, B = 200 MHz")

figure(2)

plot(delt*1e6,Qchannal,’k’);

axis([-1 1 -1 1])

grid

xlabel('Time - microsecs')

ylabel('Imaginary part’)

title('T = 10 Microsecond, B = 200 MHz")

figure(3)

plot(freq, abs(LFMFFT),'k");

%axis tight

grid

xlabel('Frequency - MHz")

ylabel('Amplitude spectrum’)

title('Spectrum for an LFM waveform and T = 10 Microsecond, ...
B =200 MHZ)

Listing 3.3. MATLAB Function “hrr_profile.m”

function [hl] = hrr_profile (nscat, scat_range, scat_rcs, n, deltaf, prf, v,
rnote,winid)

% Range or Time domain Profile

% Range_Profile returns the Range or Time domain plot of a simulated

% HRR SFWF returning from a predetermined number of targets with a-prede
termined

% RCS for each target.

c=3.0e8; % speed of light (m/s)

num_pulses =n;

SNR_dB = 40;

nfft = 256;

%carrier_freq = 9.5e9; %Hz (10GHz)

freq_step = deltaf; %Hz (10MHz)

V =v; % radial velocity (m/s) -- (+)=towards radar (-)=away

PRI = 1./ prf; % (s)

if (nfft > 2*num_pulses)

num_pulses = nfft/2;
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end
Inphase = zeros((2*num_pulses),1);
Quadrature = zeros((2*num_pulses),1);
Inphase_tgt = zeros(num_pulses,1);
Quadrature_tgt = zeros(num_pulses,1);
1Q_freq_domain = zeros((2*num_pulses),1);
Weighted_|_freq_domain = zeros((hum_pulses),1);
Weighted_Q_freq_domain = zeros((num_pulses),1);
Weighted_1Q_time_domain = zeros((2*num_pulses),1);
Weighted_1Q_freq_domain = zeros((2*num_pulses),1);
abs_Weighted_IQ_time_domain = zeros((2*num_pulses),1);
dB_abs Weighted_1Q_time_domain = zeros((2*num_pulses),1);
taur = 2. * rnote / c;
for jscat = 1:nscat
i =0;
for i = 1:num_pulses
il = ii+1;
rec_freq = ((i-1)*freq_step);
Inphase_tgt(ii) = Inphase_ti@) + sqrt(scat_rcs(jscat)) * cos(-
2*pi*rec_freqg*...
(2.*scat_range(jscat)/c - 2*(V/c)*((i-1)*PRI + taur/2 +
2*scat_range(jscat)/c)));
Quadrature_tgt(ii) = Quadrate_tgt(ii) + sqrt(scd_rcs(jscat))*sin(-
2*pi*rec_freqg*...
(2*scat_range(jscat)/c - 2*(V/c)*((i-1)*PRI + taur/2 +
2*scat_range(jscat)/c)));
end
end
if(winid >= 0)
window(1:num_pulses) = hamming(hum_pulses);
else
window(1:num_pulses) = 1;
end
Inphase = Inphase_tgt;
Quadrature = Quadrature_tgt;
Weighted_|_freq_domain(1:num_pulsednphase(1:num_pulses).* window’;
Weighted_Q_freq_domain(1:num_pulses) = Quadrature(1:num_pulses}.* win
dow’;
Weighted_1Q_freq_domain(1:num_pulses)= Weighted_|_freq_domain + ...
Weighted_Q_freq_domain*j;
Weighted_1Q_freq_domain(hum_pulses:2*num_pulses)=0.+0.i;
Weighted_1Q_time_domain = (ifft(Weighted_IQ_freq_domain));
abs_Weighted_IQ_time_domain = (abs(Weighted_IQ_time_domain));
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dB_abs Weighted_IQ_time_domain =
20.0*log10(abs_Weighted_1Q_time_domain)+SNR_dB;

% calculate the unambiguous range window size

Ru = c /2/deltaf;

hl = dB_abs_Weighted_IQ_time_domain;

numb = 2*num_pulses;

delx_meter = Ru/ numb;

xmeter = 0:delx_meter:Ru-delx_meter;

plot(xmeter, dB_abs_Weighted_IQ_time_domain,'k")

xlabel (‘relative distance - meters')

ylabel (‘Range profile - dB")

grid

Listing 3.4. MATLAB Program “fig3_17.m”"

% use this program to reproduce Fig. 3.17 of text
clear all

close all

nscat = 1;

scat_range = 912;

scat_rcs = 10;

n =64;

deltaf = 10e6;
prf = 10e3;

v =15;

rnote = 900,
winid = 1;
count =0;

for time = 0:.05:3
count = count +1;
hl = hrr_profile (nscat, scat_range, scat_rcs, n, deltaf, prf, v, rnote,winid);
array(count,:) = transpose(hl);
hi(1:end) = 0;
scat_range = scat_range - 2*n * v/ prf;
end
figure (1)
numb = 2*256;% this number matches that used in hrr_profile.
delx_meter = 15 / numb;
xmeter = 0:delx_meter:15-delx_meter;
imagesc(xmeter, 0:0.05:4,array)
colormap(gray)
ylabel (‘Time in seconds')
xlabel('Relative distance in meters')

© 2004 by Chapman & Hall/CRC CRC Press |



© 2004 by Chapman & Hall/CRC CRC Press |



Chapter 4 The Radar Ambiguity
Function

4.1. Introduction

The radar ambiguity function represents the output of the matched filter, and
it describes the interference caused lgyrdnge and/or Doppler shift of a-tar
get when compared to a reference ¢augf equal RCS. The ambiguity function
evaluated atf"f; $= #0"0$is equal to the matched filter output that is
matched perfectly to the signal reflectiedm the target of interest. In other
words, returns from the nominal targee located at the origin of the ambigu
ity function. Thus, the ambiguity function at nonzeroand f; represents
returns from some range and Doppldfedent from thosdor the nominal tar
get.

The radar ambiguity function is normally used by radar designers as a means
of studying different waveforms. It can provide insight about how different
radar waveforms may be suitable for the various radar applications. It is also
used to determine the range and Doppler resolutions for a specific radar wave
form. The three-dimensional (3-D) plot of the ambiguity function versus fre
quency and time delay is called the radar ambiguity diagram. The radar
ambiguity function for the signai#t $is defined as the modulus squared of its
2-D correlatiorfunction, i.e.,|°/# Ly f More precisely,

( 2
9818, = |) st $en ! & Yot (.)
—
In this notation, the target of interest is locatedfdffy $= #0" 0% and the
ambiguity diagram is centered at the same point. Note that some authors define

the ambiguity function a4t ,f; $. In this book,|%t f, $ is called the uncer
tainty function.
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DenoteE as the energy of the signsitt $

(
E = ) |t dt 4.2)
—(
The following list includes the properties for the radar ambiguity function:

1) The maximum value for the ambiguity function occurgd&f; $= #"0$
and is equal talE?,

maxt |9t if, §+ = [%0,0% = #2E $ (4.3)

%t 1, 8, |960;0 (4.4)

2) The ambiguity function is symmetric,
%t 1, § = %6ty § (45)

3) The total volume under the ambiguity function is constant,

)% Hy§ d dfy = RE$ (4.6)

4) If the functionS#f $is the Fourier transform of the sigrsit § then by using
Parseval's theorem we get

9% 1, § = ‘)S&ﬁ wHf—f,87% "ot | @)

4.2. Examples of the Ambiguity Function

The ideal radar ambiguity function igpresented by a spike of infinitesi
mally small width that peaks at the origin and is zero everywhere else, as illus
trated in Fig. 4.1. An ideal ambitdy function provides perfect resolution
between neighboring targets regardlessaf close they may be to each other.
Unfortunately, an ideal ambiguity function cannot physically exist. This is
because the ambiguity function mingtve finite peak value equal t2F $
and a finite volume also equal HE$. Clearly, the ideal ambiguity function
cannot meet those two requirements.

4.2.1. Single Pulse Ambiguity Function
Consider the normaed rectangular pulsstt $defined by
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Figure 4.1. Ideal ambiguity function.

1 t
St $= ﬁRec{_!—f_) (4.8)
From Eq. (4.1) we have
( .
i1y 6= ) S S ! &% ot @.9)

=
Substituting Eqg. (4.8) into Eq. (4.9) and performing the integration yield

Il Sin# fg#' ||

| 1!
PR R ! *30

%16y & = ‘{1—

MATLAB Function “single_pulse_ambg.m”

The function“single_pulse_ambg.mimplements Eq. (4.10). It is given in
Listing 4.1 in Section 4.6. The syntax is as follows:

single_pulse_ambg [taup]

taupis the pulsewidth. Fig 4.2 (a-d) show 3-D and contour plots of single pulse
uncertainty and ambiguity function¥hese plots can be reproduced using
MATLAB program*“figd_2.m" given in Listing 4.2 in Section 4.6.

The ambiguity function cut along the time delay dxis obtained by setting
fq = 0. More precisely,

2
|98t L0 § = {1-'5—,'9 HNE (4.11)
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Figure 4.2a. Single pue 3-D uncertainty plot.Pulsewidth is 2 seconds.
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Figure 4.2b. Contour plotcorresponding to Fig. 4.2a.
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Figure 4.2c. Single pulse 3-D ampuity plot. Pulsewicth is 2 seconds.
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Figure 4.2d. Contour plotcorresponding to Fig. 4.2c.
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Note that the time autocoregion function of the signab#t$is equal to
%t 1,0 $Similarly, the cut along the Doppler axis is
sin'l 'fy|2

|%0;fy § =
l! 'fd

(4.12)

Figs. 4.3 and 4.4, respectively, shtive plots of the uncertainty function
cuts defined by Egs. (4.11) and (4.13)nce the zero Doppler cut along the
time delay axis extends betweeh' and!', then, close targets would be
unambiguous if they are at ledstseconds apart.

amplitud

Figure 4.3. Zero Doppler uncertaintyfunction cut along the time delay axis.
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Figure 4.4. Uncertainty function of a single frequeng pulse (zero delay). This

plot can be reproduced using MATLAB program“figd_4.m" given
in Listing 4.3 in Section 4.6.
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The zero time cut along the Doppler frequency axis hésn x$ shape.
It extends from—( to ( . The first null occurs af; = 21 11". Hence, it is
possible to detect two targets that are shifted Yy , without any ambiguity.

We conclude that a single pulse range and Doppler resolutions are limited by
the pulsewidth!'. Fine range resolution requires that a very short pulse be
used. Unfortunately, using very shgrtilses requires very large operating
bandwidths, and may limit the radar eage transmitted poweo impractical
values.

4.2.2. LFM Ambiguity Function

Consider the LFM complex envelope signal defined by

St $= %Rec{g) J3t (4.13)

In order to compute the ambiguity function for the LFM complex envelope, we
will first consider the case wheb, !, !4. In this case the integration limits
are from-1412 to #412 $- . Substituting Eq. (4.13) into Eq. (4.9) yields

(

0%t Lf, $= —4) Rect tORec{t_loeJ 3eTsats J2 ity (4.14)

—(
It follows that

o
_] 131 2 2
j2r 8! +f,$

)e

o8t 1T, $= dt (4.15)

2

Finishing the integration process in Eq. (4.15) yields

sin/"1 48! +fd$1—l!-,00
5 9
9%t 5= ¢ fd{l—%o 0,1, 14 (a16)
B 1y $1-10

Similar analysis for the case whet, !, 0 can be carried out, where in
this case the integration limits are fral412 $- !to !' 12. The same result
can be obtained by using the symmeprpperty of the ambiguity function
(|B="r—,$=| %"f; $). It follows that an expression fo¥ Lf, $that is
valid for any! is given by
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sin "1 481 +fd$1—|l!—,|0O
%t 5= ' /1 L0 : L @)
Y g +fd$1—l%lo

and the LFM ambiguity function is

" sm/| 'H+ 1y $1 |'|00
e a2 _ |/ o :
%, & = f1-Lf : I, (4.18)
<Y +fda‘>1—u0
- !l.

Again the time autocorrelain function is equal t#4!"0 $ The reader can
verify that the ambiguity function for a down-chirp LFM waveform is given by

" sm/' "#H -1y $1 |||00

. _ |/ 'o .

|%t L, § = f1-Lf : I, (4.19)
T el —f, 81— | |0

MATLAB Function “Ifm_ambg.m”

The function“lfm_ambg.m” implements Eqgs. (4.18) and (4.19). It is given
in Listing 4.4 in Section 4.6. The syntax is as follows:

Ifm_ambg [taup, b, up_down]

where
Symbol Description Units Status
taup pulsewidth seconds input
b bandwidth Hz input
up_down up_down = 1 for up chirp none input
up_down = -1 for down chirp

Fig. 4.5 (a-d) shows 3-D and contour plots for the LFM uncertainty and ambi
guity functions for

taup b up_down
1 10 1

These plots can be reproduced using MATLAB progteig#_5.m” given in
Listing 4.5 in Section 4.6. This funoti generates 3-D and contour plots of an
LFM ambiguity function.
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Figure 4.5a. Up-chirp LFM 3-D uncertainty plot. Pulsewidth is 1 second; and
bandwidth is 10 Hz.
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Figure 4.5b. Contour plotcorresponding to Fig. 4.5a.
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Figure 4.5c. Up-chirp LFM 3-D ambiguity plot. Pulsewidth is 1 second; and
bandwidth is 10 Hz.
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Figure 4.5d. Contour plotcorresponding to Fig. 4.5c.
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The up-chirp ambiguity function cut along the time delay &xis

sin’ 311 '{1-'"'—,'00 ’

ogtro ¢ = |/1-LL0 TRE 420
Yogn g lLo
- !l.

Fig. 4.6 shows a plot for a cut in the uncertainty function corresponding to
Eqg. (4.20). Note that the LFM ambiguity function cut along the Doppler fre
quency axis is similar to that of the single pulse. This should not be surprising
since the pulse shape has not changed (we only added frequency modulation).
However, the cut along the time delayisagkhanges significantly. It is now
much narrower compared tbe unmodulated pulse cuh this case, the first
null occurs at

l.,511B (4.21)

which indicates that the effective pulsewidth (compressed pulsewidth) of the
matched filter output is completely determined by the radar bandwidth: It fol
lows that the LFM ambiguity function cut along the time delay axis is narrower
than that of the unmodulated pulse by a factor

Uncertainty

Delay - seconds

Figure 4.6. Zero Doppler urcertainty of an LFM pulse (14 = 1,

b = 20). This plot can be reproduced using MATLAB
program “figd_6.m" given in Listing 4.6 in Section 4.6.
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"
THIBS
6 is referred to as the compressiatio (also called time-bandwidth product
and compression gain). All three nantas be used interchangeably to mean

the same thing. As indicated by Eq. @).Zhe compression ratio also increases
as the radar bandwidth is increased.

6 I'B (4.22)

Example:

Compute the range resolution before and after pulse compression corre
sponding to an LFM waveform with the following specifications: Bandwidth
B = 1GHz; and pulsewidtH' = 10ms.

Solution:

The range resolution before pulse compression is

' 3
7R _c!'_3810°8108 10

uncomp = > = 1.58 10 meters

Using Eq. (4.21) yields

1
= =1 ns
1
18 10°
c! y o
7Rcomp: an = 38 1088218 10 =15 cm.

4.2.3. Coherent Pulse Train Ambiguity Function

Fig. 4.7 shows a plot of a coherent puisen. The pulsewidth is denoted as
' and the PRI i§ . The number of pulses in the trainN§ hence, the train’s
length is#N — 1 & seconds. A normalized individual pulsét $is defined by

s #t $= %Rec{ llO (4.23)
Einiin)
-l T = |
IN-19
-¢ =|

Figure 4.7. Coherent pulse train. N=5.
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When coherency is maintained betwéam consecutive pulses, then an expres
sion for the normalized train is

N-1
1 .
stt$= —OQ s #-iT$ (4.24)
A
i=0
The output of the matched filter is
(
%ttfg = ) ekt + &% ot (4.25)
=
Substituting Eq. (4.24) into Eq. (4.25) and interchanging the summations and
integration yield
N-1 N-1 ¢
e 1 . . j2' fyt
%t If, $= N9 o] )sl#t—lT $s &t —jT—1 & “dt (4.26)

i=0 j=0

Making the change of variabtg = t—iT yields

N-1 N-1 (
PR | j2' fgiT ) o 2 gty
%itf, 8= 5O e ©9 )sl#t1$sl8#1—.!—#—j e Tdty @27
i=0 i=0 <

The integral inside Eq. (4.27) represethts output of the matched filter for a
single pulse, and is denoted #y. It follows that

N-1 N-1
g oo 1 j2r fgiT ) e
9%t Lf 4 $= N9 € 9 %! —# - Fify (4.28)
i=0 j=0
When the relationy = i—j is used, then the following relation is trbie:
N N 0 N-1—|q N-1 N-1-|q
99 = 9 9 *9 9 (4:29)
i=0 m=0 g=-#N-1% i=0 for j=i-q qg=1 j=0 for i=j+q

Using Eq. (4.29) into Eq. (4.28) gives

1. Rihaczek, A. W.Principles of Hgh Resolution RadaArtech House, 1994.
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0 A N-1-|q B
> AT >

o1, $= = i —qTh,$Q € @ (4.30)
N > >
q=—#N-1% i=0 =

N-1A N-1-Iq B
1 . > j2fqT 2 £ T >
+=0Q 7e %# —qTf; $ e

N9 2 T -ais g ¢ g

g=1< j=0

Settingz = exp#j2' f,T $ and using the relation

9 Z= 1_1— (4.31)

yield

N-1-|q
2 fT it fgN-1-lgTs sin:' fAN-1-[qT$
9 € =€ sin# f,T$ (4.32)
i=0

Using Eq. (4.32) in Eq. (4.30) yields two complementary sums for positive and
negativeq. Both sums can be combined as

N-1
1 JrigN-1+qq; Sin:' f#N—-[dT$
O/t I = = 0, _ .
%t LTy $ N 9 NH —qT,fy & Sin# 1,1 S (4.33)
g=-#-1%

Finally, the ambiguity furtion associated with the berent pulse train is com
puted as the modulus square of Eq. (4.33).!B@T 12, the ambiguity func
tion reduces to

N-1
1 ' sin:' fN—-|gT$
O/t I = = 0, — d
%4t LTy $ N O [%# -aTf;$ S TS (4.34)
q=-#-1%

Thus, the ambiguity function for a coherent pulse train is the superposition
of the individual pulse’s ambiguity functions. The ambiguity function cuts
along the time delay and Doppler axes are, respectively, given by

N— L

#t08 = | Q {1-%9{1—“—‘,;139 ;[ —qTICl4  (a35)
a=-—#N-13%
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|%0;fy § =

1sin# 3148 sin# TyNT

N {14

MATLAB Function “train_ambg.m”

The function“train_ambg.m” implements Eq. (4.34). It is given in Listing
4.7 in Section 4.6. Theyntax is as follows:

sin# fyT $f

train_ambg [taup, n, pri]

Symbol Description Units Status
taup pulsewidth seconds input
n number of pulses in train none input
pri pulse repetition interval seconds input

Fig. 4.8 (a-d) shows typical outputs of this function, for

taup n pri
0.2 5 1

Doppler -Hz

20 40 a0 a0 100 120 140 160
Delay - seconds

Figure 4.8a. Three-dimensional ambiguit plot for a five pulse equal amplitude
coherent train. Pulsewidth is 02 seconds; and PRI is 1 second,
N=5. This plot can be reproduced using MATLAB program
“figd_8.m" given in Listing 4.8 in Section 4.6.
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Figure 4.8b. 3-D plot corresponding to Fig. 4.8a.
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Figure 4.8c. Zero Doppler ct corresponding to Fig. 4.8a.
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Figure 4.8d. Zero delay cutorresponding to Fig. 4.8a.
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4.3. Ambiguity Diagram Contours

Plots of the ambiguity function are called ambiguity diagrams. For a given
waveform, the corresponding ambiguity diagram is normally used to determine
the waveform properties such as theget resolution capability, measurement
(time and frequency) accuracy, and itspense to clutter. Three-dimensional
ambiguity diagrams are difficult to pland interpret. This is the reason why
contour plots of the 3-D ambiguity diagram are often used to study the -charac
teristics of a waveform. An ambiguity contour is a 2-D plot (frequency/time) of
a plane intersecting the 3-D ambiguidyagram that corresponds to some
threshold value. The resultant plots alfgges. It is customary to display the
ambiguity contour plots thabrrespond to one half ¢iie peak autocorrelation
value.

Fig. 4.9 shows a sketch of typical ambiguity contour plots associated with a
gated CW pulse. It indicates that rawrpulses provide Ieer range accuracy
than long pulses. Altertigely, the Dopplelaccuracy is better for a wider pulse
than it is for a short one. This trade-off between range and Doppler measure
ments comes from the uncertainty asatex with the time-bandwidth product
of a single sinusoidal pulse, where fr®duct of uncertainty in time (range)
and uncertainty in frequency (Doppler) cannot be much smaller than unity.
Note that an exact plot for Fig. 4.9 can be obtained using the function
“single_pulse_ambg.méand the MATLAB commandontour

frequency frequency
A A

\ - /\ i
1114 N time oy time

-_— <>
14 '4
long pulse short pulse

Figure 4.9. Ambiguity contour plot associated with a sinusoid
modulated gated CW pulse. See Fig. 4.2.

Multiple ellipses in an ambiguity comir plot indicate the presence of multi

ple targets. Thus, it seems that one may improve the radar resolution by
increasing the ambiguity diagram thresheklue. This is illustrated in Fig.
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4.10. However, in practice this is not possible for two reasons. First, in the
presence of noise we lack knowledgetlué peak correlain value; and sec
ond, targets in general will have different amplitudes.

Now consider the case of a coherent @utsin described in Fig. 4.7. For a
pulse train, range accuracy is still detened by the pulsewlih, in the same
manner as in the case of a single puighile Doppler accuracy is determined
by the train length. Thus, time and frequency measurements can be made inde
pendently of each other. However, #@ithal peaks appedn the ambiguity
diagram which may cause range and Doppler uncertainties (see Fig. 4.11).

frequency frequency
A A
time E time
low threshold value high threshold value

Figure 4.10. Effect of threshold value on resolution.

frequency

Figure 4.11. Ambiguity contour plot caresponding to Fig. 4.7. For an exact
plot see Fig. 4.8a.
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As one would expect, high PRF pulse trains (i.e., sifhiallead to extreme
uncertainty in range, while low PRF pal trains have ¢éseme ambiguity in
Doppler. Medium PRF pulse trains have moderate ambiguity in both range and
Doppler, which can be overcome by using multiple PRFs. It is possible to
avoid ambiguities caused by pulse trains and still have reasonable independent
control on both range and Dopplaccuracies by using a single modulated
pulse with a time-bandwidth product that is much larger than unity. Fig. 4.12
shows the ambiguity contour plot associated with an LFM waveform. In this
case, 4 is the pulsewidth an8 is the pulse bandwidth. The exact plots can be
obtained using the functidifm_ambg.m”.

frequency
A

A time

114

y

-

11B

Figure 4.12. Ambiguity contour plotassociated with an up-chirp LFM
waveform. For an exactplot see Fig. 4.5b.

4.4. Digital Coded Waveforms

In this section we will briefly discuss the digital coded waveform. We will
determine the waveform range and Dopplearacteristics on the basis of its
autocorrelation function, since in thebsence of noise, ¢houtput of the
matched filter is proportional to the code autocorrelation.

4.4.1. Frequency Coding (Costas Codes)

Construction of Costas codes can be understood from the construction pro
cess of Stepped Frequency Waveforms (SFW) described in Chapter 3. In SFW,
a relatively long pulse of lengttd is divided intoN subpulses, each of width
;1 (!4 = N!;). Each group o subpulses is called a burst. Within each burst
the frequency is increased By from one subpulse to the next. The overall
burst bandwidth isN7f. More precisely,
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1, = 141N (4.37)

and the frequency for thieh subpulse is
fi = fo+i7f ;1= 1"N (4.38)

wheref, is a constant frequency arigl» 7f. It follows that the time-band
width product of this waveform is

7fl4 = N? (4.39)

Costas signals (or codes) are similaB#WV, except that the frequencies for
the subpulses are selected in a randashion, according to some predeter
mined rule or logic. For this purpose, considerkh& N matrix shown in Fig.
4.13b. In this case, the rows are indexed fiom 1" 2"D "N and the columns
are indexed fromj = 0"1"2"D N—-1¢% The rows are used to denote the
subpulses and the columns are used to denote the frequéiniot’ Andicates
the frequency value assigned to the asded subpulse. In this fashion, Fig.
4.13a shows the frequency assignmessoaiated with a SK. Alternatively,
the frequency assignments in Fig. 4.13b are chosen randomly. For a matrix of
size N 8 N, there are a total dfl! possible ways of assigning thdots” (i.e.,

N! possible codes).

0123456789 0123456789
°

Hmwbmmwmog
[ ]
Hmwhmmwmog
[ ]

@) (b)

Figure 4.13. Frequency asgnment for a burst of N sibpulses. (a) SFW (stepped
LFM); (b) Costas code of length Nc = 10.
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The sequences &diot” assignments for which the corresponding ambiguity
function approachesan ideal or dthumbtack” response are called Costas
codes. A near thumbtack response was obtained by éus‘iag the following
logic: there is only one frequency per time slot (row) and per frequency slot
(column). Therefore, for aNl 8 N matrix the number of possible Costas codes
is drastically less thail! . For example, there afd, = 4 possible Costas
codes forN = 3, andN, = 40 possible codes foN = 5. It can be shown
that the code density, defined as the ratjdIN! , gets significantly smaller as
N becomes larger.

There are numerous analytical ways tog@@ate Costas codes. In this section
we will describe two of these methods. First,debe an odd prime number,
and choose the number of subpulses as

N=gqg-1 (4.40)

Define E as the primitive root of|. A primitive root ofg (an odd prime num
ber) is defined ak& such that the powei® E"E "D gat moduloq generate
every integer froml to q—1.

In the first method, for ahl 8 N matrix, label the rows and columns, respec

tively, as
i =0"1"2'D -2
f 0 H-29 (4.41)
j =1'2"3'D Hg—-1$
Place a dot in the locatidgi"j $corresponding td, if and only if
i = #£$ #modulo o$ (4.42)

In the next method, Costas code is first obtained from the logic described
above; then by deleting the first row and first column from the matrix a new
code is generated. This method produces a Costas code of lergth—2.

Define the normalized complexeope of the Costas signal as
N-1

1 O s#-11,$ (4.43)
=0

/\/N_!ll

[ eXpH2' fit $ 0,t !1 g
) 0 elsewhere-

Sttt $=

St $= (4.44)

1. Costas, J. P., A Study of a Clas®etection Waveformblaving Nearly Ideal
Range-Doppler Ambiguity Propertig2toc. IEEE72, 1984, pp. 996-1009.
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Costas showed that the output of the matched filter is

A B

N-1 > N-1 >

1 > >
%t fp $= Ng expi2' Ifp! OF  #"fp 8 Q  F#t —# —q $1"f; $@n.45)

> >

1=0 > qg=0 >

< qGl =
Fig#"fp $—/ b — |l|03|nH exp#-jl —j2' f ! $ Yy (446)

1

H="#-f,-fHh&l|-['[$ (4.47)
| =' #f,—fq—fD$5+|!|$ (4.48)

Three-dimensional plots of the ambityufunction of Costas signals show
the near thumbtack response of the ambiguity function. All sidelobes, except
for few around the origin, have amplitudeN . Few sidelobes close to the-ori
gin have amplitude& IN, which is typical of Costs codes. The compression
ratio of a Costas code is approximatdly

4.4.2. Binary Phase Codes

Consider the case of binary phase codes in which a relatively long pulse of
width !" is divided intoN smaller pulses; each is of widih =!"1IN. Then,
the phase of each sub-pulsedadomly chosen as eithBror ' radians rela
tive to some CW reference signal. ltdgstomary to chacterize a sub-pulse
that hasO phase (amplitude of +1 Volt) astleer “1” or “+.” Alternatively, a
sub-pulse with phase equal to (amplitude of -1 Vol is characterized by
either “0” or “-.” The compression rat@ssociated with binary phase codes is
equal to6 = !1"17! , and the peak value I8 times larger than that of the long
pulse. The goodness of a compressed binary phase code waveform depends
heavily on the random sequence of the phases of the individual sub-pulses.

One family of binary phase codes tpadduces compressed waveforms with
constant sidelobe levels equal to unityhie Barker code. Fig. 4.14 illustrates a
Barker code of length seven. A Barker code of lenytis denoted a3, .
There are only seven known Barker coded #fhare this unige property; they
are listed in Tald 4.1. Note thaB, andB, have complementary forms that
have the same characteristics. Sinceettee only seven Barker codes, they
are not used when radsecurity is an issue.
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Figure 4.14. Binary phasecode of length 7.

TABLE 4.1. Barker codes.

Code Code Side lode
symbol length Code elements reduction (dB)
B, 2 1-1 6.0
11
B, 3 11-1 9.5
B, 4 11-11 12.0
111-1
Bsg > 111-11 14.0
B, 7 111-1-11-1 16.9
By, 11 111-1-1-11-1-11-1 20.8
Bis 13 11111-1-111-11-11 22.3

In general, the autocorrelation furosti (which is an approximation of the
matched filter output) for @8, Barker code will be2N7! wide. The main
lobe is 27! wide; the peak value is equal k. There areN—1 $12 side
lobes on either side of the main loG¢is is illustrated in Fig. 4.15 for B,5.
Notice that the main lobe is equal to 13, while all sidelobes are unity.

The most sidelobe reduction offered by a Barker code2&3dB, which
may not be sufficient for the desired radar application. However, Barker codes
can be combined to generate much longer codes. In this dge;@de can be
used within aB,, code (n within n) to generate a code of lengthn. The
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compression ratio for the combin&],,, code is equal tonn. As an example,
a combinedBs, is given by

Bs, = *1110T 11101 00010 11161 (4.49)

and is illustrated in Fig. 4.16. Unfortunately, the sidelobes of a combined
Barker code autocorrelation function are no longer equal to unity.

7!
J|+|+|+|+|H-| B o -l+}_
I~ 1371 =1 "
13
1
1371 77 1371

Figure 4.15. Barker code of lagth 13, and its corresponding
autocorrelation function.

3 I e
e[ LI LML L LI

LT T T S R T L T

Figure 4.16. A combinedBg, Barker code.
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MATLAB Function “barker_ambig.m”

The MATLAB function“barker_ambig.m” calculates and plots the ambigu
ity function for Barker code. It is givein Listing 4.9 in Section 4.6. The syn
tax as follows:

[ambiguity] = barker_ambig(u)

whereu is a vector that defines the input code in term4st and“-1s.” For
example,usingt = :1 1 1 -1 -1 1 -1; as an input, the function will cal
culate and plot the ambiguity function correspondind@io Fig. 4.17 shows
the output of this function wheB,; is used as an input. Fig. 4.18 is similar to
Fig. 4.17, except in this cadl is used as an input.

ambiguity function

delay ' frequency

Figure 4.17a. Ambiguity function for B;; Barker code.
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normalized amibiguity cut for f=0

delay

Figure 4.17b. Zero Doppler cut for theB,; ambiguity function.

delay

freguency

Figure 4.17c. Contour plot corresponding to Fig. 4.17a.
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Figure 4.18a. Ambiguity function for B, Barker code.
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Figure 4.18b. Zero Doppler cut for theB, ambiguity function.
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Figure 4.18c. Contour plot corresponding to Fig. 4.18a.

4.4.3. Pseudo-Random Number (PRN) Codes

Pseudo-Random Number (PRN) codes are also known as Maximal Length
Sequences (MLS) codes. These codes are called pseudo-random because the
statistics associated witheir occurrence are similar that associated with the
coin-toss sequences. Maximum lengthusences are periodic. The MLS codes
have the following distinctive properties:

1. The number of ones per period is one more than the number of minus-ones.
2. Half the runs (consecutive states of the same kind) are of length one and
one fourth are of length two.

3. Every maximal length sequence has thhift and add” property. This
means that, if a maximal length sequence is added (modulo 2) to a shifted
version of itself, then the resultingggeence is a shifted version of the erig
inal sequence.

4. Everyn-tuple of the code appears once and only once in one period of the
sequence.

5. The correlation function is periodic and is given by
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AL n=0"2L"22L"D B
Jin$= 7 @ (4.50)
<1 elsewhere

Fig. 4.19 shows a typical sketch for BiL.S autocorrelatin function. Clearly
these codes have the advantage that the compression ratio becomes very large
as the period is increased. Additionalgjacent peaks (grating lobes) become

farther apart.
[ o] o

.1J L\

Figure 4.19. Typical autocorrelaton of an MLS code of length L.

Linear Shift Register Generators

There are numerous ways to genelteS codes. The most common is to
use linear shift registers. When thedny sequence generated using a shift reg
ister implementation is periodic and has maximal length it is referred to as an

MLS binary sequence with peridd, where
L=2"-1 (4.51)

n is the number of stages in the shift register generator.

A linear shift register generator basigatonsists of a shift register with
modulo-two adders added to it. The add=ms be connected to various stages
of the register, as illustrated in Fig. 4.20 for= 4 (i.e.,L = 15). Note that
the shift register initiastate cannot be “zero.”

—y—
=
N
w
N
'

Figure 4.20. Circuit for generating an MLS sequence of length = 15
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The feedback connections associatétth a shift register generator deter
mine whether the output sequence will be maximal or not. For a given size
shift register, only few feedback moections lead to maximal sequence- out
puts. In order to illustrate this concept, consider the two 5-stage shift register
generators shown in Fig. 4.21. The shift register generator shown in Fig. 4.21a
generates a maximal length sequencelearly depicted by its state diagram.
However, the shift register generator shown in Fig. 4.21b produces three non-
maximal length sequences (depending on the initial state).

10000
00001 01000

(D~@0~(B~(3-~(S)~@~-EB~B~0-
@B~ T (DD~
B-B-T-B-O-G~D | Lz

@)

(b)

Figure 4.21. (a) A 5-stage shift regist generator. (b) Non-maximal length
5 stage shift register generator.

© 2004 by Chapman & Hall/CRC CRC Press |



Given an n-stage shift register generator, one would be interested in knowing
how many feedback connections will yield maximal length sequences. Zierler
showed that the number of maximal length sequences possible for a given n-
stage linear shift register generator is given by

n
N, = L#2 -1% (4.52)
n
wherelL is the Euler’s totient (or Euler’s phi) function. Euler’s phi function is
defined by
m-19
Lk $= k —_ (4.53)
I\i/l Pi

wherep, are the prime factors df. Note that wherp; has multiples, then
only one of them is used (see exampl&dn (4.56)). Also note that whénis
a prime number, then the Euler’s phi function is

Lk $= k-1 (4.54)

For example, a 3-stage shift register generator will produce

_LR-1$_ LS 7-1_,

N 4.55
E 3 3 3 *-59
and a 6-stage shift register,
_L#2°-1%_ L#3$_63,8-1§ H-1$_
N, = 5 == "% 8 3 $8—7 =6 (4.56)

Maximal Length Sequence Chracteristic Polynomial

Consider an n-stage maximal lengthelar shift registewhose feedback
connections correspond td k" m"etc This maximal length shift register can
be described using its characteristic polynomial defined by

XX +x"+D +1 (4.57)

where the additions are modu®. Therefore, if theharacteristic polynomial

for an n-stage shift register is knowone can easily determine the register
feedback connections and consequently deduce the corresponding maximal
length sequence. For example, cons@é-stage shift register whose charac
teristic polynomial is

1. Zierler, N.,Several Binary-Segnce GeneratorMIT Technical Report No. 95,
Sept. 1955.
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6 5
X +x +1 (4.58)

It follows that the shift register which generates a maximal length sequence is
shown in Fig. 4.22.

K

utput

1]2[3] 4] 5] 6}~

Figure 4.22. Linear slift register whose charateristic polynomial is
XA+ 1.

One of the most important issuessaciated with generating a maximal
length sequence using a linear shift ségi is determining the characteristic
polynomial. This has been and continues to be a subject of research for many
radar engineers and designers. It has been shown that polynomials which are
both irreducible (not factorable) and primitive will produce maximal length
shift register generators.

A polynomial of degree n is irreducibikit is not divisible by any polyno
mial of degree less than n. It follows that all irreducible polynomials must have
an odd number of terms. Consequently, only linear shift register generators
with an even number of feedback connections can produce maximal length
sequences. An irreducible polynomial is primitive if and only if it divides
x"—1 for no value ofn less thar2" —1.

MATLAB Function “prn_ambig.m”

The MATLAB function“prn_ambig.m” calculates and plots the ambiguity
function associated with a given PRN code. It is given in Listing 4.10 in Sec
tion 4.6. The syntax is as follows:

[ambiguity] = prn_ambig(u)

whereu is a vector that defines the input maximal length code (sequence) in
terms of‘ls” and“-1%s.” Fig. 4.23 shows the output of this function for

u31t=1-1-1-1-121-11-11211-111-1-1-1121111-1-111-11-1-1]

Fig. 4.24 is similar to Fig. 4.23, exdep this case the input maximal length
sequence is

ulb=[1-1-1-11111-11-111-1-1]
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ambiguity function a PRN code
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Figure 4.23a. Ambiguityfunction correspondingto a 31-bit PRN code.
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Figure 4.23b. Zero Doppler cutcorresponding to Fig. 4.23a.
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Figure 4.23c. Contour plot coresponding to Fig. 4.23a.

ambiguity function a PRMN code

0.1

delay frequency

Figure 4.24a. Ambiguityfunction correspondingto a 15-bit PRN code.
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Figure 4.24b. Zero Doppler cutcorresponding to Fig. 4.24a.
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Figure 4.24c. Contour plot coresponding to Fig. 4.24a.
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4.5. “MyRadar” Design Case Study - Visit 4

4.5.1. Problem Statement

Generate the ambiguity plots for theaveforms selected in Chapter 3 for
this design case study.

4.5.2. A Design

In this section we will show the B-ambiguity diagranand the correspord
ing contour plot for only the search wéwen. The user is advised to do the
same for the track waveforms. Foistipurpose, use the MATLAB program
“myradar_visit4.m”. It is given in Listing 4.11 in Section 4.6.

Figs. 4.25 and 4.26 show the output figures produced by the program
“myradar_visit4.m” that correspond tthe search waveform.

o o o
8- B i

Ambiguity nction
o [
>

& a” 7 e
Doppler - MHz i1 = 1 Dieday - Micro-soconds

Figure 4.25. Ambiguity plot for “MyRadar” search waveform.
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Doppler - MHz

0 0 s
Delay - Micro-seconds

Figure 4.26. Contour of the ambiguity plot for"MyRadar” search
waveform.

4.6. MATLAB Program and Function Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is strongly advised to rerun the MATLAB programs in
order to enhance his understanding of this chapter’s material.

Listing 4.1. MATLAB Function “single_pulse_ambg.m”

function x = single_pulse_ambg (taup)
colormap (gray(1))
eps = 0.000001;
i=0;
taumax = 1.1 * taup;
taumin = -taumax;
for tau = taumin:.05:taumax
i=i+1;
i=0;
for fd = -5/taup:.®:5/taup %-2.5:.05:2.5
=i+ 1
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vall = 1. - abs(tau) / taup;
val2 = pi * taup * (1.0 - abs(tau) / taup) * fd;
x(j,i) = abs( vall * sin(val2+eps)/(val2+eps));
end
end

Listing 4.2. MATLAB Program “fig4_2.m”"

% Use this program to reproduce Fig. 4.2 of text
close all

clear all

eps = 0.000001;

taup = 2,;

taumin = -1.1 * taup;
taumax = -taumin;

X = single_pulse_ambg(taup);
taux = taumin:.05:taumax;
fdy = -5/taup:.05:5/taup;
figure(1)

mesh(taux,fdy,x);

xlabel ('Delay - seconds')
ylabel (‘Doppler - Hz')
zlabel (‘(Ambiguity function')
colormap([.5 .5 .5])
colormap (gray)

figure(2)
contour(taux,fdy,x);

xlabel ('Delay - seconds')
ylabel (‘Doppler - Hz')
colormap([.5 .5 .5])
colormap (gray)

grid

y = X2;

figure(3)

mesh(taux,fdy,y);

xlabel ('Delay - seconds')
ylabel (‘Doppler - Hz')
zlabel (‘(Ambiguity function')
colormap([.5 .5 .5])
colormap (gray)

figure(4)
contour(taux,fdy,y);

xlabel ('Delay - seconds')
ylabel (‘Doppler - Hz")
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colormap([.5 .5 .5])
colormap (gray)
grid

Listing 4.3. MATLAB Program “fig4_4.m”

% Use this program to reproduce Fig 4.4 of text
close all

clear all

eps = 0.0001;

taup = 2,;

fd = -10./taup:.05:10./taup;
uncer = abs( sinc(taup .* fd));
ambg = uncer."2;

plot(fd, ambg,'k’)

xlabel ('Frequency - Hz")
ylabel (‘Ambiguity - Volts")
grid

figure(2)

plot (fd, uncer,'k");

xlabel ('Frequency - Hz")
ylabel (‘Uncertainty - Volts")
grid

Listing 4.4. MATLAB Function “Ifm_ambg.m”

ffunction x = Ifm_ambg(taup, b, up_down)
eps = 0.000001,
i=0;
mu = up_down * b/ 2. / taup;
delt = 2.2*taup/250;
delf = 2*b /250;
for tau = -1.1*taup:.05:1.1*taup
i=i+1;
=0
for fd = -b:.05:b
j :j +1;
vall = 1. - abs(tau) / taup;
val2 = pi * taup * (1.0 - abs(tau) / taup);
val3 = (fd + mu * tau);
val = val2 * val3;
x(j,i) = abs( vall * (sin(val+eps)/(val+eps))).*2;
end
end
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Listing 4.5. MATLAB Program “fig4_5.m”

% Use this program to reproduce Fig. 4.5 of text
close all

clear all

eps = 0.0001;

taup=1.;

b =10

up_down =1

x = Ifm_ambg(taup, b, up_down);
taux = -1.1*taup:.05:1.1*taup;
fdy = -b:.05:b;

figure(1)

mesh(taux,fdy,x)

xlabel ('Delay - seconds')
ylabel (‘Doppler - Hz')

zlabel (‘(Ambiguity function')
figure(2)

contour(taux,fdy,x)

xlabel ('Delay - seconds')
ylabel (‘Doppler - Hz')

y = sqrt(x);

figure(3)

mesh(taux,fdy,y)

xlabel ('Delay - seconds')
ylabel (‘Doppler - Hz')

zlabel (‘Uncertainty function')
figure(4)

contour(taux,fdy,y)

xlabel ('Delay - seconds')
ylabel (‘Doppler - Hz")

Listing 4.6. MATLAB Program “fig4_6.m"

% Use this program to reproduce Fig. 4.6 of text
close all

clear all

taup = 1,

b =20

up_down =1,

taux = -1.5*taup:.01:1.5*taup;

fd=0;

mu = up_down * b/ 2. / taup;

i=0,;
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for tau = -1.5*taup:.01:1.5*taup
ii=ii+1;
vall = 1. - abs(tau) / taup;
val2 = pi * taup * (1.0 - abs(tau) / taup);
val3 = (fd + mu * tau);
val = val2 * val3;
x(ii) = abs( vall * (sin(val+eps)/(val+eps)));
end
figure(1)
plot(taux,x)
grid
xlabel ('Delay - seconds')
ylabel (‘Uncertainty")
figure(2)
plot(taux,x.*2)
grid
xlabel ('Delay - seconds')
ylabel (‘Ambiguity")

Listing 4.7. MATLAB Function “train_ambg.m”

function x = train_ambg (taup, n, pri)
if( taup > pri/ 2.)
'ERROR. Pulsewidth must be less than the PRI/2.'
return
end
gap = pri - 2.*taup;
eps = 0.000001;
b=1./taup;
i=0.;
for g =-(n-1):1:n-1
tauo = q - taup ;
index = -1;
for taul = tauo:0.0533:tauo+gap+2.*taup
index = index + 1;
tau = -taup + index*.0533;
i=ii+1;
j=0.
for fd = -b:.0533:b
j=j+1
if (abs(tau) <= taup)
vall = 1. -abs(tau) / taup;
val2 = pi * taup * fd * (1.0 - abs(tau) / taup);
val3 = abs(vall * sin(val2+eps) /(val2+eps));
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vald = abs((sin(pi*fd*(n-abs(q))*pri+eps))/(sin(pi*fd*pri+eps)));
X(j,ii)= val3 *vald / n;

else
X(j,ii) = 0;

end

end
end
end

Listing 4.8. MATLAB Program “fig4_8.m”"

% Use this program to reproduce Fig. 4.8 of text
close all

clear all

taup =0.2;

pri=1;

n=5;

X = train_ambg (taup, n, pri);
figure(1)

mesh(x)

xlabel ('Delay - seconds')
ylabel (‘Doppler - Hz')

zlabel (‘(Ambiguity function')
figure(2)

contour(x);

xlabel ('Delay - seconds')
ylabel (‘Doppler - Hz')

Listing 4.9. MATLAB Function “barker_ambig.m”

function [ambig] = barker_ambig(uinput)

% Compute and plot the ambiguity function for a Barker code
%Compute the ambiguity function

% by utilizing the FFT through combining multiple range cuts
N = size(uinput,2);

tau = N;

Barker_code = uinput;

samp_num = size(Barker_code,2) *10;

n = ceil(log(samp_num) / log(2));

nfft = 2n;

u(1:nfft) = O;

1=0;

for index = 1:10:samp_num
index;
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j=iL
u(index:index+10-1) = Barker_code());
end
v=u;
delay = linspace(-tau, tau, nfft);
freq_del = 12 / tau /100;
1=0;
vift = fft(v,nfft);
for freq = -6/tau:freq_del:6/tau;
J=L
exf = exp(sqrt(-1) * 2. * pi * freq .* delay);
u_times_exf = u .* exf;
ufft = fft(u_times_exf,nfft);
prod = ufft .* conj(vfft);
ambig(:,j) = fftshift(abs(ifft(prod))");
end
freq = -6/tau:freq_del:6/tau;
delay = linspace(-N,N,nfft);
figure (1)
mesh(freq,delay,ambig ./ max(max(ambig)))
colormap([.5 .5 .5])
colormap(gray)
axis tight
xlabel(‘frequency’)
ylabel('delay’)
zlabel(*ambiguity function’)
figure (2)
value =10 * N ;
plot(delay,ambig(:,51)/value,'k")
xlabel('delay’)
ylabel('normalized amibiguity cut for f=0")
grid
axis tight
figure (3)
contour(freq,delay,ambig ./ max(max(ambig)))
colormap([.5 .5 .5])
colormap (gray)
xlabel(‘'frequency’)
ylabel('delay’)
grid on

Listing 4.10. MATLAB Function “prn_ambig.m”

function [ambig] = prn_ambig(uinput)
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% Compute and plot the ambiguity function for a PRN code
% Compute the ambiguity function by utilizing the FFT
% through combining multiple range cuts

N = size(uinput,2);
tau = N;
PRN = uinput;
samp_num = si{fRN,2) * 10;
n = ceil(log(samp_num) / log(2));
nfft = 2n;
u(1:nfft) = O;
1=0;
for index = 1:10:samp_num
index;
J=iL
u(index:index+10-1) = PRN(j);
end
% set-up the array v
v=u;
delay = linspace(0,5*tau,nfft);
freq_del = 8 / tau /100;
1=0;
vift = fft(v,nfft);
for freq = -4/tau:freq_del:4/tau;
J=L
exf = exp(sqrt(-1) * 2. * pi * freq .* delay);
u_times_exf = u .* exf;
ufft = fft(u_times_exf,nfft);
prod = ufft .* conj(vfft);
ambig(:,j) = fftshift(abs(ifft(prod))");
end
freq = -4/tau:freq_del:4/tau;
delay = linspace(-N,N,nfft);
figure(1)
mesh(freq,delay,ambig ./ max(max(ambig)))
colormap([.5 .5 .5])
colormap(gray)
axis tight
xlabel(‘'frequency’)
ylabel('delay’)
zlabel(*ambiguity function a PRN code")
figure(2)
plot(delay,ambig(:,51)fhax(max(ambig))),'k’)
xlabel('delay")
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ylabel('normalized amibiguity cut for f=0")

grid

axis tight

figure(3)

contour(freq,delay,ambig ./ max(max(ambig)))
axis tight

colormap([.5 .5 .5])

colormap(gray)

xlabel(‘frequency’)

ylabel('delay’)

Listing 4.11. MATLAB Program “myradar_visit4.m”
% Use this program to reproduce Figs. 4.25 to 4.27 of the text

close all

clear all

eps = 0.0001;
taup = 20.e-6;
b =1.e6;
up_down =1
i=0;

mu = up_down * b/ 2. / taup;
delt = 2.2*taup /250;
delf = 2*b /300;
for tau = -1.1*taup:delt:1.1*taup
izi+1;
j=0;
for fd = -b:delf:b
j=i+ 1
vall = 1. - abs(tau) / taup;
val2 = pi * taup * (1.0 - abs(tau) / taup);
val3 = (fd + mu * tau);
val = val2 * val3;
X(j,i) = abs( vall * (sin(val+eps)/(val+eps)))."2;
end
end
taux = linspace(-1.1*taup,1.1*taup,251).*1e6;
fdy = linspace(-b,b,301) .* 1e-6;
figure(1)
mesh(taux,fdy,sqrt(x))
xlabel (‘Delay - Micro-seconds')
ylabel (‘Doppler - MHZz")
zlabel (‘(Ambiguity function")
figure(2)
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contour(taux,fdy,sqrt(x))

xlabel (‘Delay - Micro-seconds')
ylabel ('Doppler - MHZz")

grid
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Chapter 5 Pulse Compression

Range resolution for a given radar can be significantly improved by using
very short pulses. Unfortunately, utiligj short pulses decreases the average
transmitted power, which can hinder the radar’s normal modes of operation,
particularly for multi-function and sueillance radars. Since the average trans
mitted power is directly linked to thesgeiver SNR, it is often desirable to
increase the pulsewidth (i.e., incredbe average transmitted power) while
simultaneously maintaining adequate range resolution. This can be made pos
sible by using pulse compression techniques. Pulse compression allows us to
achieve the average transmitted power of a relatively long pulse, while-obtain
ing the range resolution corresponding to a short pulse. In this chapter, we will
analyze analog and digital pulse compression techniques.

Two LFM pulse compression techniqueg discussed in this chapter. The
first technique is known as “correlati processing” which is predominantly
used for narrow band and some medium band radar operations. The second
technique is called “stretch processirand is normally used for extremely
wide band radar operations.

5.1. Time-Bandwidth Product

Consider a radar system that empla@ysnatched filter receiver. Let the
matched filter receiver bandwidth be denotedBasThen the noise power
available within the matched filter bandwidth is given by

NO

N, =2 > B (5.1)
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A noise PSD
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0
Figure 5.1. Input noise power.

frequency
>

where the factor of two is used tocaant for both negative and positive-fre
quency bands, as illustrated in Fig. 5.1. The average input signal power over a
pulse duration” is

S = E (5.2)

E is the signal energy. Consequently, the matched filter input SNR is given by

S E
#NR$ = 2 = .
¥ N, ~ N,B" 5:3)

The output peak instantaneous SNR to the input SNR ratio is

SNRE $
= 2B"™ |
#SNR$ ©4

The quantityB™' is referred to as the “time-bandwidth product” for a given
waveform or its corresponding matched filter. The fad6t by which the
output SNR is increased over that atitifgut is called the matched filter gain,
or simply the compression gain.

In general, the time-bandwidth product of an unmodulated pulse approaches
unity. The time-bandwidth product of a pulse can be made much greater than
unity by using frequency or phase mdtion. If the radar receiver transfer
function is perfectly matched to that of the input waveform, then the compres
sion gain is equal t8"'. Clearly, the compression gain becomes smaller than
B"' as the spectrum of the matched filleriates from that of the input signal.

5.2. Radar Equation with Pulse Compression

The radar equation for a pulsed radar can be written as
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o2 02t
SNR= w (5.5)
#( $RKTFL

whereP, is peak power;%is pulsewidth,G is antenna gair, is target RCS,
R is rangek is Boltzman’s constantl, is effective noise temperaturg, is
noise figure, and. is total radar losses.

Pulse compression radars transmit relatively long pulses (with modulation)
and process the radar echo into very short pulses (compressed). One can view
the transmitted pulse as being composed of a series of very short subpulses
(duty is 100%), where the width of eashbpulse is equal to the desired eom
pressed pulsewidth. Denote the compressed pulsewidth.aShus, for an
individual subpulse, Eq. (5.5) can be written as

P," G°&
#SNR$ = “3—4 (5.6)
©#( $R'KTFL

The SNR for the uncompressed pulse is then derived from Eq. (5.6) as
PH# Y% n" $°&"

SNR= y (5.7)
#( $R'KTFL

where n is the number of subpulses. Equation (5.7) is denoted as the radar
equation with pulse compression.

Observation of Eqgs. (5.5) and (5.7ficates the followingnote that both
equations have the same form): Foraegiset of radar parameters, and as long
as the transmitted pulse remains wwed, the SNR is also unchanged
regardless of the signal bandwidth. More precisely, when pulse compression is
used, the detection range is maintainedemhe range resolution is drastically
improved by keeping the pulsewidth unchanged and by increasing the band
width. Remember that range resolution is proportional to the inverse of the sig
nal bandwidth,

)R = cl2B (5.8)

5.3. LFM Pulse Compression

Linear FM pulse compression is accomplished by adding frequency modula
tion to a long pulse at tramission, and by using a thed filter receiver in
order to compress the received signal.aA®sult, the matched filter output is
compressed by a factdr = B"', where"' is the pulsewidth an® is the
bandwidth. Thus, by using long pulses and wideband LFM modulation large
compression ratios can be achieved.
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Figure 5.2 shows an ideal LFM pulsempression process. Part (a) shows
the envelope for a wide pulse, part (b) shows the frequency modulation (in this
case it is an upchirp LFM) with bandwid® = f,—f;. Part (c) shows the
matched filter time-delay characteréstivhile part (d) shows the compressed

pulse envelope. Finally part (e) shows the Matched filter input / output wave
forms.

- > (@)
(b)
)t |-
ot B (©)
f, 1,
- @
— -
‘| :» Matched Filtel—— g
(e)

Figure 5.2 Ideal LFM pulse compression.

Fig. 5.3 illustrates the advantagepaflse compression usmg more realistic
LFM waveform In this exaple, two targets with RCS ; = = 1m® and

= 0.5m° are detected. The two targets are not separated enough in time to
be resolved. Fig. 5.3a shows the composite echo signal from those targets.
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Clearly, the target returns overlap attays, they are not resolved. However,
after pulse compression the two pglsare completely separated and are
resolved as two distinct targets. bcf, when using LFM, returns from neigh
boring targets are resolved as lcagthey are separated in time 'y , the
compressed pulsewidth. This figure can be reproduced using MATLAB pro
gram“figs_3.m” given in Listing 5.1 in Section 5.5.

Uncompressed echo

Relative delay - seconds x 107

Figure 5.3a. Composite echo gnal for two unresolved targets.

CGompressed echo

0 5 10 15 20 25 30 35 a0 45 50
Target relative position in meters

Figure 5.3b. Composite echo signaorresponding to Fig. 5.3a, after
pulse compression.
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5.3.1. Correlation Processor

Radar operations (seardhack, etc.) are usually aéd out over a specified
range window, referred to as the reeeivindow and defined by the difference
between the radar maximum and minimum range. Returns from all targets
within the receive window are collectadd passed through matched filter cir
cuitry to perform pulse compression. One implementation of such analog pro
cessors is the Surface Acoustic W48AW) devices. Because of the recent
advances in digital computer developmehe correlatiorprocessor is often
performed digitally using the FFT. This digital implementation is called Fast
Convolution Processing (FCP) and can be implemented at base-band. The fast
convolution process is illustrated in Fig. 5.4

input matched filter
signal FFT »| multiplier| »| INV. FFT output
A
FFT of
stored
reelica

Figure 5.4. Computing the matchd filter output using an FFT.

Since the matched filter is a linear time invariant system, its output can be
described mathematically by the convolution between its input and its impulse
response,

yi#t & stt$-ht $ (5.9)

where s#t $is the input signalh#t $is the matched filter impulse response
(replica), and the+ operator symbolically represents convolution. From the
Fourier transform properties,

FFT, s#t$+-h#t$ = SHEH# $ (5.10)

and when both signals are santpfoperly, the compressed signgt $can
be computed from

y = FFT., S. H (5.11)

where FFT™ is the inverse FFT. When using pulse compression, it is-desir
able to use modulation schemes tbah accomplish a maximum pulse com
pression ratio, and can significantly reduce the sidelobe levels of the
compressed waveform. For the LFM case the first sidelobe is approximately
13.4dB below the main peak, and for most radar applications this may not be
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sufficient. In practice, high sidelodevels are not preferable because noise
and/or jammers located at the sidelobey imterfere with target returns in the
main lobe.

Weighting functions (windows) can be used on the compressed pulse spec
trum in order to reduce the sidelobe llsv@he cost associated with such an
approach is a loss in the main lobe resolution, and a reduction in the peak value
(i.e., loss in the SNR). Weighting thent domain transmitted or received-sig
nal instead of the compressed pulsecsum will theoretically achieve the
same goal. However, this approacharely used, since amplitude modulating
the transmitted waveform introducestra burdens on the transmitter.

Consider a radar system that utilizegorrelation processor receiver (i.e.,
matched filter). The receive window in meters is defined by

Rrec = Rmax_ Rmin (6.12)

whereR,,,, andR.,;,, respectively, define the maximum and minimum range
over which the radar performs detection. Typic&Jy, is limited to the extent
of the target complex. The normalizedwaex transmitted signal has the form

s#t$= expg2( gfot+/§t2ﬁ 0414"% (5.13)

"%is the pulsewidth] = B!"% andB is the bandwidth.

The radar echo signal is similar to thensmitted one witthe exception of a
time delay and an amplitude change that correspond to the target RGS. Con
sider a target at rand®, . The echo received by the radieom this target is

. " / "

S # $= alexp% 2( %fo#t —" B 5#[ =" §§ (5.14)
where a, is proportional to target RCS, antenna gain, and range attenuation.
The time delay’, is given by

"1 = 2R, !c (5.15)

The first step of the processing consists of removing the frequgndhis
is accomplished by mixing,# $with a reference signal whose phas@(i$,t .
The phase of the resultant signal, after low pass filtering, is then given by

54 $= 2 g—fo"l+/§m—"1§§ (5.16)

and the instantaneous frequency is

_1d _ m_w ¢ B2 2R3
fi# $= 2 a5#t$— =", %= --o)@t o1 (5.17)
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The quadrature components are

%Xﬁ% 8 _ cos#t$

= 5.18
8  Osinsau gl o1

Sampling the quadrature components is performed next. The number-of sam
ples, N, must be chosen so that foldover (ambiguity) in the spectrum is
avoided. For this purpose, the sampling frequeficybased on the Nyquist
sampling rate), must be

f8 2B (5.19)
and the sampling interval is

)t4112B (5.20)

Using Eq. (5.17) it can be shown that (flreof is left as an exercise) the-fre
quency resolution of the FFT is

)f=11"% (5.21)

The minimum required number of samples is

1 "%
Nz — =< 5.22
Ht )t &2
Equating Egs. (5.20) and (5.22) yields
N 8 2B"% (5.23)

Consequently, a total &B"' real samples, oB"%complex samples, is suf
ficient to completely describe an LFM waveform of duratiorand bandwidth
B. For example, an M signal of duration" =20 /s and bandwidth
B = 5 MHz requires 200 real samples to determine the input signal (100
samples for the I-channel and0l€amples for the Q-channel).

For better implementation of the FAY is extended to the next power of
two, by zero padding. Thus, the total number of samples, for some positive
integerm, is

Neer = 278N (5.24)

The final steps of the FCP processinglie: (1) taking the FFT of the sam

pled sequence; (2) multiplying the frequency domain sequence of the signal
with the FFT of the matched filter impulse response; and (3) performing the
inverse FFT of the composite frequency domain sequence in order to generate
the time domain compressed pulse (HRR profile). Of course, weighting,
antenna gain, and range attenuatiomgensation must also be performed.
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Assume thatl targets at rangeR, , R,, and so forth are within the receive
window. From superposition, the phasfeahe down-converted signal is

w o ! "
5# $= 9 2( %—fo i+§#t— iﬁ% (5.25)
i=1
The times,"; =#2R !1c$ i =1;2;: ;|- represent the two-way time delays,

where"; coincides with the start of the receive window.
MATLAB Function “matched_filter.m”

The function"matched_filter.m” performs fast convolution processing. It is
given in Listing 5.2 in Section 5.5. The syntax is as follows:

[y] = matched_filter(nscat, taup, b, rrec, scat_range, scat_rcs, win)

where
Symbol Description Units Status
nscat number of point scatterers within the ~ none input
received window

rrec receive window size m input
taup uncompressed pulsewidth seconds input
b chirp bandwidth Hz input
scat_range| vector of scattems’ relative range m input

(within the receive window)
scat_rcs vector of satterers’ RCS m input
win 0 = no window none input

1 = Hamming
2 = Kaiser with parameter pi
3 = Chebychev - sidelobes at -60dB

y normalized compressed output volts output

The user can access this function &ithy a MATLAB function call, or by
executing the MATLAB progranfmatched_filter_gui.m” which utilizes a
MATLAB based GUI. The work space assated with this program is shown
in Fig. 5.5. The outputs for this function include plots of the compressed and
uncompressed signals as well as theicapised in the pulse compression-pro
cess. This function utilizes the functidpower_integer_2.m”which imple
ments Eq. (5.24). It is given in Listing 5.3 in Section 5.5.
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Initialization | Start | Quit

number of

scatterers

receive window 20
in meters

uncompressed pulse 0.005e-3
width

bandwidth 10026
in Hz
ers relative range ERUERI
in meters
scatterers RCS 112
inm"2

winid 2
0.1.2.0r3

Figure 5.5. GUI workspace asociated with the function*matched_filter_gui.m”.

As an example, consider the case where

nscat 3
rrec 200 m
taup 0.005 ms
b 100e6 Hz
scat_range| [10 75120l m
scat_rcs [121]m?
win 2

Note that the compressed pulsed range resolution, without using a window,
is ) R = 1.5m. Figs. 5.6 shows the real part and the amplitude spectrum for
the replica used in the pulse compression. Fig. 5.7 shows the uncompressed
echo, while Fig. 5.8 shows the compresb#fd output. Note that the scatterer
amplitude attenuation is a function of the inverse of the scatterer’s range within
the receive window.
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Real (part) of replica

Spectrum of replica

Uncompressed echo

m uwr' i w i Ww\u"uw\" il

|ll|

M\h\n il M i

95 0 056 A
Frequency in Hz w10°

Relative delay - seconds x10°

Figure 5.7. Uncompressed echoggial. Scatterers are not resolved.
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I S N N

Compressed echo

L T

o 20 40 50 20 100 120 140 160 180 200
Target relative position in meters

Figure 5.8. Compressed echo sighcorresponding to Fig. 5.7.
Scatterers are completely resolved.

Fig. 5.9 is similar to Fig. 5.8, except in this case the first and second scatter
ers are less than 1.5 meter apart (theyaa70 and 71 meters within the receive
window).

=8 : : : : : : : : :

Compressed echo

0 20 a0 &0 =0 100 120 140 18D 180 200
Target relative position in meters

Figure 5.9. Compressed echo sighof three scatterers, two of
which are not resolved.
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5.3.2. Stretch Processor

Stretch processing, also known“astive correlation,” is normally used to
process extremely high bandwidth LR¥veforms. This processing technique
consists of the following steps: First, the radar returns are mixed with a replica
(reference signal) of the transmittedweform. This is followed by Low Pass
Filtering (LPF) and coherent detection. Next, Analog to Digital (A/D) conver
sion is performed; and finally, a banksérrow Band Filters (NBFs) is used in
order to extract the tones that are proipodl to target range, since stretch-pro
cessing effectively converts time delay into frequency. All returns from the
same range bin produce the same condtaquency. Fig. 5.10a shows a block
diagram for a stretch processing reeei The reference signal is an LFM
waveform that has the same LFM slope as the transmitted LFM signal. It exists
over the duration of the radar “receivéadow,” which is computed from the
difference between the radar maximamd minimum range. Denote the start
frequency of the reference chirpfas

Consider the case when the radar neeireturns from a few close (in time
or range) targets, as illustrated in Figl0a. Mixing withthe reference signal
and performing low pass filtering are effectively equivalent to subtracting the
return frequency chirp from the reference signal. Thus, the LPF output consists
of constant tones corresponding to thgets’ positions. The normalized trans
mitted signal can be expressed by

s #t $= 00%2( gfot + %tzﬁ 04t4"% (5.26)

where/ = B!"%is the LFM coefficient and, is the chirp start frequency.
Assume a point scatterer at rarl@eThe signal received by the radar is

s # $= acos[z( &) $+/§#t—)" sﬁﬂ (5.27)

where a is proportional to target RCS, antenna gain, and range attenuation.
The time delay)" is

)" = 2R!lc (5.28)
The reference signal is
St $= 200%2( (2)frt + %tzﬁ 04t4 T, (5.29)

The receive window in seconds is

2#Rmax_ Rmin $: 2Rrec
C C

T =

rec

(5.30)
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i —_ - 2fl —— retunl
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— e time l<—>{ time
Nt Trec . .
)t T,ec = receive window
Figure 5.10a. Stretch pocessing block diagram.
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It is customary to lef, = f,. The output of the mixer is the product of the
received and reference signals. Afiewv pass filtering the signal is

St $= acost2(fy)" +2()" t—-(/ ¥ $$ (5.31)
Substituting Eq. (5.28) into (5.31) and collecting terms yield

_ 24_R 2R R3
St $= a co 0 1 3t+ O2(f __(W } (5.32)
and since'% 2R ! c, Eq. (5.32) is approximated by
st $<a co Zﬂ,,—O/R% + AL(CB J (5.33)
The instantaneous frequency is
-~ 1d24(BR ‘l@
fInSt 2( dto C"Q/ c C"% (534)

which clearly indicates that target rangs proportional to the instantaneous
frequency. Therefore, proper sampling of the LPF output and taking the FFT of
the sampled sequence lead to the foltmwvconclusion: a peak at some-fre
quencyf; indicates presence of a target at range

R, = f,c"%2B (5.35)

Assumel close targets at rang&y, R,, and so forthR; =R, =: =R)).
From superposition, the total signal is

st $= 9 att $:os[2( %fo#t =" St /E#t =" §ﬂ (5.36)
i=1
where,a# $ i =1;2;: ;I- are proportional to theargets’ cross sections,
antenna gain, and range. The timés=#R !'c$ i =1;2;: ;I- represent

the two-way time delays, whetg coincides with the att of the receive win
dow. Using Eg. (5.32) the overall signal at the output of the LPF can then be
described by

_ A(BR 2(BR 3
s, $= Q a;cog § % % c 02( 0— c"%l}
i=1
And hence, target returns appear casstant frequency tones that can be
resolved using the FFT. Consequently, determining the proper sampling rate
and FFT size is very critical. The raxftthis section presents a methodology
for computing the proper FFT paranrsteequired for stretch processing.

(5.37)
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Assume a radar system using a streatessor receiver. The pulsewidth is
"%and the chirp bandwidth B. Since stretch processing is normally used in
extreme bandwidth cases (i.e., very laRjg the receive window over which
radar returns will be processed is typically limited to from a few meters to pos
sibly less than 100 meters. The compressed pulse range resolution is computed
from Eq. (5.8). Declare the FFT size tolMeand its frequency resolution to be
) f. The frequency resolution can be computed using the following procedure:
consider two adjacent point scatterers at raRgend R, . The minimum fre
quency separatior), f, between those scatterersthat they are resolved can
be computed from Eq. (5.34). More precisely,

_¢ g -2Bp oo 2B
yf=f,-f = c"(%RZ R, $ C,,))R (5.38)
Substituting Eqg. (5.8) into Eq. (5.38) yields

_2B ¢c _1
)f= C"%2B "% (2:39)

The maximum frequency resolvable by the FFT is limited to the region
>N) f!12. Thus, the maximum resolvable frequency is

N)_f " ZB;ﬂ"”’.‘:zmax_ Rmin $: 2BRl'ec
2 c"% c"%

(5.40)

Using Egs. (5.30) and (5.39) into Eq. (5.40) and collecting terms yield

N?2BT,ec (5.41)

For better implementation oféH=FT, choose an FFT of size

Neer8N = 27 (5-42)
m is a nonzero positive integer. The sampling interval is then given by

1 1
)f= @T, =
TsNeer ° ) fNeer

(5.43)

MATLAB Function “stretch.m”

The function“stretch.m” presents a digital implementation of stretch-pro
cessing. It is given in Listing 5.4 in Section 5.5. The syntax is as follows:

[y] = stretch (nscat, taup, f0, b, scat_range, rrec, scat_rcs, win)

where
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Symbol Description Units Status
nscat number of point scatterers within the none input
received window
taup uncompressed pulsewidth seconds input
fo chirp start frequency Hz input
b chirp bandwidth Hz input
scat_range vector of scatterers’ range m input
rrec range receive window m input
scat_rcs vector of satterers’ RCS m input
win 0 = no window none input
1 = Hamming
2 = Kaiser with parameter pi
3 = Chebychev - sidelobes at -60dB
y compressed output volts output

The user can access this function eithyee MATLAB function call or by exe

cuting the MATLAB prograni'stretch_gui.m” which utilizes MATLAB based

GUI and is shown in Fig. 5.10b. The outputs of this function are the complex
array y and plots of the uncompressed and compressed echo signal versus

time. As an example, consider the case where

nscat 3
taup 10 ms
fo 5.6 GHz
b 1 GHz
rrec 30m
scat_range [2510] m
scat_rcs [1,1, 2] n?
win 2 (Kaiser)

Note that the compressed pulse range resolution, without using a window, is
) R = 0.15m. Figs. 5.11 and 5.12, respeetiy, show the uncompressed and
compressed echo signals corresponding to this example. Fig. 5.13 is similar to
Figs. 5.11 and 5.12 except in this case ofvthe scatterers are less than 15 cm
apart (i.e., unresolved targetsRit,iive = A3; 3.1 B).
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Initialization | Start | Quit

number of
scatterers

receive window

in meters
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width

bandwidth 1ed
in Hz

scatterers relative range [2549]
in meters
scatterers RCS n1]
inm"2

winid 2
0.1.2 0or3

center frequency
in HZ

Figure 5.10b. GUI workspace associated with the functiofstretch_gui.m”.
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Figure 5.11. Uncompressed echo sigh Three targets are unresolved.
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Figure 5.12. Compressed echogial. Three targets are resolved.
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Figure 5.13a. Uncompressed &o signal. Three targets.
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Figure 5.13b. Compressed echo sigh Three targets, two are not
resolved.

5.3.3. Distortion Due to Target Velocity

Up to this point, we have analyzed pulse compression with no regard to tar
get velocity. In fact, all analyses prded assumed stationary targets. Uneom
pensated target radial velocity, or equivalently Doppler shift, degrades the
quality of the HRR profile generated by pulse compression. In Chapter 3, the
effects of radial velocity on SFW weamalyzed. Similar distortion in the HRR
profile is also present with LFM wavefosmwhen target radial velocity is not
compensated for.

The two effects of target radial velty (Doppler frequency) on the radar
received pulse were developed in Chaptahen the target radial velocity is
not zero, the received pulsewidth is exged (or compressed) by the time dila
tion factor. Additionally, tle received pulse center frequency is shifted by the
amount of Doppler frequency. When thesffects are not compensated for, the
pulse compression processor output is distorted. This is illustrated in Fig. 5.14.
Fig. 5.14a shows a typical output of the pulse compression processor with no
distortion. Alternatively, Figs. 5.14b, 5.14c, and 5.14d show the output of the
pulse compression processor when 5% shift of the chirp center frequency, 10%
time dilation, and both are present.
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Figure 5.14a. Compressed pulse outpuif a pulse compression processor. No
distortion is present. This figure can be reproduced using
MATLAB program “fig5_14" given in Listing 5.5 in Section 5.5.
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Figure 5.14b. Mismatched compessed pulse; 5% Doppler shift.
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Figure 5.14c. Mismatched comprssed pulse; 10%ime dilation.
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Figure 5.14d. Mismatched compressd pulse; 10% time dilation and 5%
Doppler shift.
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Correction for the distortion caused by ttarget radial velocity can be over
come by using the following approach. Oegperiod of a few pulses, the radar
data processor estimates the radial véjazi the target under track. Then, the
chirp slope and pulsewidth of the next transmitted pulse are changed to
account for the estimated Doppler frequency and time dilation.

5.4. “MyRadar” Design Case Study - Visit 5

5.4.1. Problem Statement

Assume that the threat may consist of multiple aircraft and missiles. Show
how the matched filter receiver can rasmultiple targets with a minimum
range separation of 50 meters. Also verify that the waveforms selected in
Chapter 3 are adequate to maintain proper detection and tracking (i.e., pro
vide sufficient SNR).

5.4.2. A Design

It was determined in Chapter 3 thhé pulsed compressed range resolutions
during search and tracke respectively given by

) Rsearch = 30m; Bsearch = 5MHz (5.44)
) Riack = 7.5M; B ack = 20MHz (5.45)

It was also determined that a singkarch waveform and 4 track waveforms
would be used.

Assume that track is initiated once deigttis declared. Aircraft target type
are detected &, = 90Km while the missile is detected Bf,,, = 55Km.

It was shown in Section 2.10.2.2 that the minimum SNR at these ranges for
both target types iISNR8 4dB when 4-pulse non-coherent integration is uti
lized along with cumulative detection. It was also determined that a single
pulse option was not desirable since it required prohibitive values for the peak
power. At this point one should howeueke advantage of the increased SNR
due to pulse compression. From Chapter 3, the pulse compression gain, for the
selected waveforms, is equal to 100 (10 dB). One should investigate this SNR

enhancement in the context of elining the need for pulse integration.

The pulsed compressed SNR can bepated using Eqg. (5.7), which is
repeated here as Eq. (5.46)

2,2
P."0G2&%
SNR= "c;[l& (5.46)
#( $R'KTFL
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where G = 34.5dB, & = 0.1Im, T, = 290Kelvin, F = 6dB, L = 8dB,
"m = 0.5m°, ' a = 4m’, and P, = 20KW (from Chapter 3). The search
pulsewidth is"%= 20/ s and the track waveforms afe.5 s4 " %4 20/ s.
First consider the missile case. Thegd pulse SNR at the maximum detec
tion rangeR",, = 55Km is given by

6 3.45
SNR, = 20c1G c20c10°cma*®§cmwagcos 547

#( $c#esCc 10 §c1.38c102°c290c 198 c10*®
8.7028@ SNR, = 9.3%B

Alternatively, the single pulse SNR, witlulse compression, for the aircraft is

6 3.45
SNR = 20c1Gc20c10® cmo*®§cw.1§ca = (5.48)

w( $cmoc 16 $c1.38c10 2 c290c 108 Cc10°°

9.7104@ SNR, = 9.87dB

Using these calculated SNR vetu into the MATLAB program
“myradar_visit2_2.m"(see Chapter 2) yields

PDCA\rcarft = 0999

(5.49)
PDCMissile = 0.9984

which clearly satisfies thdesign requirement éf, 8 0.995.

Next, consider the matched filter aitslreplicas and pulsed compressed out
puts (due to different waveforms). For this purpose use the program
“matched_filter_gui.m”. Assume a receive window of 200 meters during
search and 50 meters during track.

Fig. 5.15 shows the replica andetlassociated uncompressed and -com
pressed signals. The targets consist af &ivcraft separated by 50 meters. Fig.
5.16 is similar to Fig. 5.15, exceptist for track waveform number 4 and the
target separation is 20 m.
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Figure 5.16a. Replica associatl with track waveform number 4.
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5.5. MATLAB Program and Function Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is strongly advised to rerun the MATLAB programs in
order to enhance his understanding of this chapter’s material.

Listing 5.1. MATLAB Program “fig5_3.m"

% use this program to reproduce Fig. 5.3 of text

clear all

close all

nscat = 2; %two point scatterers

taup = 10e-6; % 10 microsecond uncompressed pulse

b = 50.0e6; % 50 MHz bandwidth

rrec = 50 ; % 50 meter processing window

scat_range = [15 25] ; % scatterers are 15 and 25 meters into window
scat_rcs =[1 2]; % RCS 1 m"2 and 2m”"2

winid = 0; %no window used

[y] = matched_filter(nscat,taup,b,rrec,scat_range,scat_rcs,winid);

Listing 5.2. MATLAB Function “matched_filter.m”

function [y] = matched_filter(nscat,taup,b,rrec,scat_range,scat_rcs,winid)
eps = 1.0e-16;
% time bandwidth product
time_B_product = b * taup;
if(time_B_product <5)
fprintf(“*******+* Time Bandwidth product is TOO SMALL ***¥¥ikxr)
fprintf(\n Change b and or taup’)
return
end
% speed of light
c = 3.e8;
% number of samples
n = fix(5 * taup * b)
% initialize input, outputind replica vectors
x(nscat,1:n) = 0.;
y(1:n) =0.;
replica(1:n) = 0.;
% determine proper window

if( winid == 0.)
win(l:n) =1.;
win =win";

else
if(winid ==1.)
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win = hamming(n);

else
if( winid == 2.)
win = kaiser(n,pi);
else
if(winid == 3.)
win = chebwin(n,60);
end
end
end
end

% check to ensure that sca#es are within receive window
index = find(scat_range > rrec);

if (index ~= 0)
‘Error. Receive window is too laggor scatterers fall outside window'
return

end

% calculate sampling interval
t = linspace(-taup/2,taup/2,n);
replica = exp(i * pi * (b/taup) .* t./2);
figure(1)
subplot(2,1,1)
plot(t,real(replica))
ylabel('Real (part) of replica’)
xlabel('time in seconds')
grid
subplot(2,1,2)
sampling_interval = taup / n;
freqlimit = 0.5/ sampling_interval,
freq = linspace(-freqlimit,freglimit,n);
plot(freq,fftshift(abs(fft(replica))));
ylabel('Spectrum of replica’)
xlabel('"Frequency in Hz")
grid
for j=1:1:nscat

range = scat_range(j) ;;

X(j,:) = scat_rcs(j) .* exp(i * pi * (b/taup) .* (t +(2*range/c)).*2) ;

y=x(.1) +v;
end
figure(2)

plot(t,real(y),'k")

xlabel ('Relative delay - seconds’)
ylabel (‘'Uncompressed echo')
grid
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out =xcorr(replica, y);

out = out ./ n;

s=taup *c/2;

Npoints = ceil(rrec * n /s);

dist =linspace(0, rrec, Npoints);

delr = c/2/b

figure(3)
plot(dist,abs(out(n:n+Npoints-1)),'k")
xlabel (‘Target relative position in meters'’)
ylabel (‘Compressed echo')

grid

Listing 5.3. MATLAB Function “power_integer_2.m”
function n = power_integer_2 (x)
m=0.
forj=1:30

m=m+1,;

delta = x - 2."m;

if(delta < 0.)
n=m;

return

else
end
end

Listing 5.4. MATLAB Function “stretch.m”

function [y] = stretch(nscat,taup,f0,b,rrec,scat_range,scat_rcs,winid)
eps = 1.0e-16;
htau = taup / 2.;
c =3.e8;
trec = 2. *rrec/ c;
n = fix(2. * trec * b);
m = power_integer_2(n);
nfft = 2.”m;
x(nscat,1:n) = 0.;
y(1:n) =0.;
if(winid == 0.)
win(l:n) =1.;
win =win’;
else
if(winid == 1.)
win = hamming(n);
else
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if( winid == 2.)
win = kaiser(n,pi);

else
if(winid == 3.)
win = chebwin(n,60);
end
end
end

end

deltar=c/2./b;

max_rrec = deltar * nfft / 2.;

maxr = max(scat_range);

if(rrec > max_rrec | maxr >= rrec )
'Error. Receive window is too laggor scatterers fall outside window'
return

end

t = linspace(0,taup,n);

for j=1:1:nscat
range = scat_range(j);% + rmin;
psil=4.*pi*range *f0/c - ...

4.* pi *b *range * range / c / ¢/ taup;
psi2 = (2*4. * pi * b *range / ¢ / taup) .* t;
X(j,:) = scat_rcs(j) .* exp(i * psil + i .* psi2);
y =y +x(,);

end

figure(1)

plot(t,real(y),'k")

xlabel ('Relative delay - seconds’)
ylabel (‘'Uncompressed echo')
ywin =y .* win’;

yfft = fft(y,n) ./ n;

out= fftshift(abs(yfft));

figure(2)

delinc = rrec/ n;

%(dist = linspace(-déhc-rrec/2,rrec/2,n);
dist = linspace((-rrec/2), rrec/2,n);
plot(dist,out,'k")

xlabel ('Relative range in meters')
ylabel (‘Compressed echo')

axis auto

grid
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Listing 5.5. MATLAB Program “fig5_14.m”

% use this program to reproduce Fig. 5.14 of text
clear all

eps = 1.5e-5;

t=0:0.001..5;

y = chirp(t,0,.25,20);

figure(1)

plot(t,y);

yfft = fft(y,512) ;

ycomp = fftshift(abs(iffifft .* conj(yfft))));
maxval = max (ycomp);

ycomp = eps + ycomp ./ maxval,
figure(1)

del = .5/512;

tt = O:del:.5-eps;

plot (tt,ycomp,'k’)

axis tight

xlabel (‘Relative delay - seconds');
ylabel('Normalized compressed pulse’)
grid

y1 = chirp (t,0,.25,21); % change center frequency
y1fft = fft(y1,512);

ylcomp = fftshift(abs(ifft(y1fft .* conj(yfft))));
maxval = max (ylcomp);

ylcomp = eps + ydomp ./ maxval;
figure(2)

plot (tt,ylcomp,'k")

axis tight

xlabel (‘Relative delay - seconds');
ylabel('Normalized compressed pulse’)
grid

t = 0:0.001:.45; % change pulsewidth
y2 = chirp (t,0,.225,20);

y2fft = fft(y2,512);

y2comp = fftshift(abs(ifft(y2fft .* conj(yfft))));
maxval = max (y2comp);

y2comp = eps + y&mp ./ maxval;
figure(3)

plot (tt,y2comp,'k")

axis tight

xlabel ('Relative delay - seconds');
ylabel('Normalized compressed pulse’)
grid
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Chapter 6 Surface and Volume Clutter

6.1. Clutter Definition

Clutter is a term used to describe any object that may generate unwanted
radar returns that may interfere withrmal radar operations. Parasitic returns
that enter the radar through the antesmadin lobe are called main lobe elut
ter; otherwise they are called sidelobetelutClutter can be classified into two
main categories: surface diet and airborne or volume clutter. Surface clutter
includes trees, vegetation, ground terranan-made structures, and sea sur
face (sea clutter). Volume clutter naalty has a large extent (size) and
includes chaff, rain, birds, and inseci&urface clutter changes from one area
to another, while volume clutter may be more predictable.

Clutter echoes are random and hahermal noise-like characteristics
because the individualutter components (scatterers) have random phases and
amplitudes. In many cases, the cluttgmai level is much higher than the
receiver noise level. Thus, the radar’slinbto detect tagets embedded in
high clutter background depends on 8ignal-to-Clutter Ratio (SCR) rather
than the SNR.

White noise normally intrduces the same amount of noise power across all
radar range bins, while clutter power may vary within a single range bin. Since
clutter returns are targeké echoes, the only way a radar can distinguish tar
get returns from clutter echoes is based on the target!RC&nd the antiei
pated clutter RCS  (via clutter map). Clutter RCS can be defined as the
equivalent radar cross section attributedeflections from a clutter are4, .

The average clutter RCS is given by

A (6.2)
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where! %m’"m® $is the clutter scattering cdieient, a d|menS|onIess quan
tity that is often expressed in dB. Some radar englneers eXpreasterms of
squared centimeters per squared meter. In these t3sEs40dB higher than
normal.

6.2. Surface Clutter

Surface clutter includes both land areh <lutter, and is often called area
clutter. Area clutter manifests itself &irborne radars in the look-down mode.
It is also a major concern for ground-béisadars when searching for targets at
low grazing angles. The grazing andlg is the angle from the surface of the
earth to the main axis of the illuminating beam, as illustrated in Fig. 6.1.

earth surface

Figure 6.1. Definition of grazing angle.

Three factors affect the amount ofittér in the radar beam. They are the
grazing angle, surface roughness and the radar wavelength. Typically, the clut
ter scattering coefficierit” is larger for smaller wavelengths. Fig. 6.2 shows a
sketch describing the dependency! & on the grazing angle. Three regions
are identified; they are tHew grazing angle region, flat or plateau region, and
the high grazing angle region.

0

1~ dB
A
| |
low grazing | high grazing
angle region plateau region angle region

0dB -

grazmg angle

critical angle ! 60&

Figure 6.2. Clutter regions.
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The low grazing angle region extends fraero to about the critical angle.
The critical angle is defined by Rayleigh the angle below which a surface is
considered to be smooth, and above which a surface is considered to be rough;
Denote the root mean square (rme$)a surface height irregularity &%,
then according to the Rayleigh criteri@ turface is considered to be smooth if

4( hrms Fn04 K (_
) sin /qJ 5 (6.2)
Consider a wave incident on a roughface, as shown in Fig. 6.3. Due to
surface height irredarity (surface roughness), theugh path” is longer than
the “smooth path” by a distan@h,,;sin%, . This path difference translates
into a phase differentiat%:

+% = 27( 2Ny msSiN%, (6.3)

N\ smooth /
path,

__ smooth surface level

Figure 6.3. Rough surface definition.

The critical angle, is then computed wher% = ( (first null), thus

4(h
()—”"s sin%,. = ( (6.4)
or equivalently,
O/qJC = asin4—hL (6.5)
rms

In the case of sea clutter, for examphes rms surface height irregularity is
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hyms, 0.025+ 0.046 L, (6.6)
whereS,, ;. is the sea state, which is tabulated in several cited references. The
sea state is characterized by the wavgHigperiod, length, particle velocity,
and wind velocity. For examples,; ;. = 3 refers to a moderate sea state,
where in this case the wave igf® is approximately between
0.9144 to 1.2192 m, the wave period 6.%0 4.5 seconds, wave length
1.9812 to 33.528 m, wave velocity20.372 to 25.928 Km"hr, and wind
velocity 22.224 to 29.632 Km"hr.

Clutter at low grazing angles is ofteeferred to as diffuse clutter, where
there are a large number of cluttetures in the radar beam (non-coherent
reflections). In the flategion the dependency of” on the grazing angle is
minimal. Clutter in the high grazing angle region is more specular (coherent
reflections) and the diffuse clutter cooments disappear. In this region the
smooth surfaces have Iarge? than rough surfaces, ppsite of the low graz
ing angle region.

6.2.1. Radar Equation for Aea Clutter - Airborne Radar

Consider an airborne radar in the look-down mode shown in Fig. 6.4. The
intersection of the antenna beam with tround defines aglliptically shaped
footprint. The size of the footprint & function of the grazing angle and the
antenna 3dB beamwidth,,g, as illustrated in Fig. 6.5. The footprint is
divided into many ground range bins each of size"2 $ec %, where. is
the pulsewidth.

From Fig. 6.5, the clutter arely, is

A., R- 3dBC—2' sed, 6.7)

Figure 6.4. Airborne radar in the look-down mode.

© 2004 by Chapman & Hall/CRC CRC Press |



Figure 6.5. Footprint definition.

The power received by the radar from a scatterer wigljiris given by the
radar equation as

_ PG,

#( R

where, as usuaR, is the peak transmitted powé3, is the antenna gair), is
the wavelength, andl; is the target RCS. Similatlthe received power from
clutter is

(6.8)

_PGH
#( R

where the subscripC is used for area clutter. Substituting Eq. (6.1) 'fQr
into Eq. (6.9), we can then obtain the SCR for area clutter by dividing Eq. (6.8)
by Eqg. (6.9). More precisely,

(6.9)

2! 534
#SCR$ = #— (6.10)

Example:

Consider an airborne radar shown in Fig. 6.4. Let the antenna 3dB -beam
width be- ;45 = 0.0Zad, the pulsewidth = 2/ s, rangeR = 20Km, and
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grazing angle%, = 20& The target RCS i5, = = 1m’. Assume that the chut
ter reflection coefficient is ° = 0.0136. Compute the SCR.

Solution:
The SCR is given by Eqg. (6.10) as
2! .cos%
#SCR% ;!3_

1% 38RC

#SCR$ = #H ¥ $¥cos20&$

= 5.761 10*
#0.0136%0.02$20000831 1 %21 10° $

It follows that

#SCR$ = —32.4dB

Thus, for reliable detection the radar must somehow increase its SCR by at
least#32+ X $IB, whereX is on the order o3 to 15dB or better.

6.2.2. Radar Equation for Are&lutter - Ground Based Radar

Again the received powerdm clutter is also cal¢ated using Eq. (6.9).
However, in this case the clutter RCS is computed differently. It is
Ve = Pueet! sic (6.11)

where! 5. is the main beanslutter RCS and g, . is the sidelobe clutter
RCS, as illustrated in Fig. 6.6.

main beam
clutter

sidelobe ;
clutter

Figure 6.6. Geometry for ground based radar clutter
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In order to calculate the total clutter RCS given in Eq. (6.11), one must first
compute the correspding clutter areas for bothe main beam and the side
lobes. For this purpose, consider the geometry shown in Fig. 6.7. The angles
- » and - represent the antenna 3-dBraath and elevation beamwidths,
respectively. The radar height (frothe ground to the phase center of the
antenna) is denoted Wy, while the target height is denoted by. The radar
slant range iR, and its ground projection ;. The range resolution i8R
and its ground projection isR,. The main beam clutter area is denoted by
Aygc and the sidelobe clutter area is denoted\by.,.

antenna boresight

h, h,
earth surface
—a
|
| o
| Ry | T
| e Fi;
| I
| I
| sidelobe |
| clutter region |
|
| main beam
| Clutter region
|
L

sidelobe
clutter region

Figure 6.7. Clutter geometry for ground based radar. Side view and
top view.
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From Fig. 6.7 the following relations can be derived

-, = asith, "R $ (6.12)
- = asindth,—h, $R$ (6.13)
+Rg = +Rcos-, (6.14)

where+R is the radar range resolution. The slant range ground projection is
Ry = Rcos-, (6.15)
It follows that the main beamnd the sidelobe clutter areas are

Ause = *Ry Ry -a (6.16)
Asic = *Ry (Ry (6.17)

Assume a radar antenna be&@# $of the form

G# &= exp4—2 776 50 Gaussian (6.18)
_E 3
2

?6sin82.78— 17 <

2 22 'ESE _||8('Ef e

L -18 =5 sin

GH# $= >4 -75 278: 0 3R (6.19)
12 E252'78._E3 3 : 2 x 3
= 0 ;elsewher@

Then the main beam clutter RCS is

0 2 0 2
Pvee = ! AugCH# o t+-, 8= !+Rg Rg -AGH - 8 (6.20)

and the sidelobe clutter RCS is

ste = ! OASLC#SerS§ = 0+Rg (RQ#SLfmsé (6-21)

where the quantitysL,,, is the root-mean-squafems) for the antenna side
lobe level.

Finally, in order to account for the vation of the clutter RCS versus range,
one can calculate the total clutter RCS as a function of range. It is given by
! +1
| #R $= —MBc * Stc (6.22)
Mm+R"R$$

whereR,, is the radar range to the horizon calculated as
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h
R, = /Tfre (6.23)

wherer, is the Earth’s radius equal ®371Km. The denominator in Eq.
(6.22) is put in that format in order to account for refraction and for round
(spherical) Earth effects.

The radar SNR due to a target at raRyes

2\ 2
PG’ %1,

SNR= — 22 "t
#( $R*kT,BFL

(6.24)

where, as usuaR, is the peak transmitted powés, is the antenna gair), is
the wavelength! , is the target RCSK is Boltzman’s constant], is the
effective noise temperaturd® is the radar operating bandwidthk, is the
receiver noise figure, and is the total radar losses. Similarly, the Clutter-to-
Noise (CNR) at the radar is

2\ 2
|
CNR = _PG)te

= (6.25)
#( $R'KT,BFL

where the! . is calculated using Eqg. (6.21).

When the clutter statistic is Gaussi#me clutter signal return and the noise
return can be combined, and a nevueafor determining the radar measure
ment accuracy is derived from the Signal-to-Clutter+Noise-Ratio, denoted by
SIR. Itis given by

SIR= S — (6.26)
1, 1
SNR SCR

Note that theSCRis computed by dividing Eq.(6.24) by Eg. (6.25).
MATLAB Function “clutter_rcs.m”

The function“clutter_rcs.m” implements Eq. (6.22); it is given in Listing
6.1 in Section 6.6. It also generates plots of the clutter RCS and the CNR ver
sus the radar slant range. Its outputs include the clutter RCS in dBsm and the
CNR in dB. The syntax is as follows:

[sigmaC,CNR] = clutter_rcs(gimao0, thetakE, thetaA, SL, range, hr, ht, pt, f0, b,
to, f, I, ant_id)

where
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Symbol Description Units Status
sigma0 clutter back scaerer coefficient dB input
thetaE antenna 3dB elevation beamwidth degrees input
thetaA antenna 3dB azimuth beamwidth degrees input
SL antenna sidelobe level dB input
range range; can be a vector or a single valje  Km input
hr radar height meters input
ht target height meters input
pt radar peak power KW input
fo radar operating frequency Hz input

b bandwidth Hz input

to effective noise temperature Kelvins input

f noise figure dB input

| radar losses dB input
ant_id 1 for (sin(x)/x)"2 pattern none input

2 for Gaussian pattern
sigmac | clutter RCS; can be either vector orsin dB output
gle value depending on “range”
CNR clutter to noise ratiogan be either vec dB output
tor or single value depending on
“range”

A GUI called“clutter_rcs_gui” was developed for this function. Executing
this GUI generates plots of tHe, and CNR versus range. Figure 6.8 shows
typical plots produced by this GUI using the antenna pattern defined in Eq.
(6.18). Figure 6.9 is similar to Fig. 6.8 except in this case Eq. (6.19) is used for
the antenna pattern. Note that the dighia clutter RCS (at very close range)
occurs at the grazing angle corresponding to the null between the main beam
and the first sidelobe. Fig.9c shows the GUI workspace associated with this
function.

In order to reproduce those two figures use the following MATLAB calls:
[sigmaC,CNR] = clutter_rcs(-20, 2, 120, linspace(2,50,100), 3, 100, 75,
5.6e9, 1e6, 290, 6, 10, 1) (6.27)

[sigmaC,CNR] = clutter_rcs(-20, 2, 125, linspace(2,50,100), 3, 100, 100,
5.6e9, 1e6, 290, 6, 10, 2) (6.28)
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Figure 6.8a. Clutter RCS versus range usg the function call in Eq. (6.27).
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Figure 6.8b. CNR vesus range using the function call in Eq. (6.27).
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Figure 6.9c. GUI workspace for“clutter_rcs_gui.m”.
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6.3. Volume Clutter

Volume clutter has large extents andlides rain (weathg chaff, birds,
and insects. The volume clutter coeffici is normally expressed in square
meters (RCS per resolution volume). Birdhsects, and other flying particles
are often referred to as angletter or biological clutter.

As mentioned earlier, chaff is usedaasECM technique blgostile forces. It
consists of a large number of dipole reflectors with large RCS values. Histori
cally, chaff was made of aluminum foilpwever, in recent years most chaff is
made of the more rigid fiberglass with conductive coating. The maximum chaff
RCS occurs when the dipole lendthis one half the radar wavelength.

Weather or rain clutter is easier toppuess than chaff, rste rain droplets
can be viewed as perfect small spkeiMye can use the Rayleigh approxima
tion of a perfect sphere to estimate the rain droplets’ RCS. The Rayleigh
approximation, without regard to the propagation medium index of refraction
is:

I o= o(r’kr $ r«) (6.29)
wherek = 2( ") , andr is radius of a rain droplet.

Electromagnetic waves when reflectéidm a perfect sphere become
strongly co-polarized (have the samdapiaation as the incident waves). Gon
sequently, if the radar transmits, fexample, a right-hand-circular (RHC)
polarized wave, then the received wanae left-hand-circular (LHC) polar
ized, because they are propagating i@ tipposite directin. Therefore, the
back-scattered energy frorain droplets retains the same wave rotation (polar
ization) as the incident wave, but haseaersed direction of propagation. It
follows that radars can suppress rainttelr by co-polarizing the radar transmit
and receive antennas.

Denote@as RCS per unit resolution volurivg, . It is computed as the sum
of all individual scatterers RCS within the volume,

N
@= A k (6.30)
i=1
whereN is the total number of scatterers within the resolution volume. Thus,
the total RCS of a single resolution volume is

N

Ly = AV (6.31)

i=1
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A resolution volume is shown in Fig. 6.10, and is approximated by

2

Vi » ( R°c. (6.32)

8' a“e
where- ,, -, are, respectively, the antenmemuth and elevation beamwidths
in radians,. is the pulsewidth in seconds,is speed of light, an® is range.

Figure 6.10. Definitionof a resolution volume.

Consider a propagation medium with an index of refractiorTheith rain
droplet RCS approximation in this medium is

5
- §—4KZD? (6.33)
where
2 2
K? = ‘mz—l (6.34)
m +2

andD; is theith droplet diameter. For exaie, temperatures betwe&2&F
and 68&F yield

5
i, 0.93£—4Di6 (6.35)
)
and for ice Eq. (6.33) can be approximated by
(e
i, 0.25D; (6.36)

Substituting Eq. (6.33) into Eq. (6.30) yields

© 2004 by Chapman & Hall/CRC CRC Press |



5
@= §—4K22 (6.37)
)

where the weather clutter coefficientis defined as

N
Z= A D (6.38)
i=1

In general, a rain droplet diameter is given in millimeters and the radar reso
lution volume is expreﬁsseg in cubic meters; thus the unitg afre often
expressed imillimeter "m”.

6.3.1. Radar Equation for Volume Clutter

The radar equation gives the totaiy@w received by the radar from a tar-
get at rangdR as

_PG),

#( $R

where all parameters in Eq. (6.39) hdnezn defined earlier. The weather €lut
ter power received by the radar is

(6.39)

2\ 2

|
= M (6.40)

#( $R
Using Eq. (6.31) and Eq. (6.32) in Eqg. (6.40) and collecting terms yield

N
PG’ (2

Sy = Py 8R “ameC Al (6.41)

i=1

The SCR for weather clutter is then computed by dividing Eqg. (6.39) by Eg.
(6.41). More precisely,

8!
= —2+t (6.42)

N
2
(- a—ec.R'A\!i

i=1

#SCR$ =

Ll

where the subscript is used to denote volume clutter.
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Example:

A certain radar has target RCS, = = 0.1m°, pulsewidth. = 0.2/ s,
antenna beamwidth , = 0. 02rad|ans Assume the detectlon range to
beR = 50Km, and compute the SCRA' = 1.61 10%m° "m’ $

Solution:

From Eq. (6.42) we have

|
#SCR$ = 8. y

2
(-a e RA!
i=1

Substituting the proper values we get

#SCR§ = #B%0.1% = 0.265
(#0.028831 10°$0.21 10°$501 10 $#1.61 10°$

#SCR$ = —5.76dB .

6.4. Clutter Statistical Models

Since clutter within a resolution cell @olume is composed of a large num
ber of scatterers with random phases and amplitudes, it is statistically
described by a probability distribution function. The type of distribution
depends on the nature of clutter itself (sea, land, volume), the radar operating
frequency, and the grazing angle.

If sea or land clutter is composedrofiny small scatterers when the proba
bility of receivingan echo from one scatterer iatitically indgpendent of the
echo received from another scatteregntithe clutter may be modeled using a
Rayleigh distribution,

f#x $= expgxX g ; XBO (6.43)
0

wherex, is the mean squared valueof
The log-normal distribution best describes land clutter at low grazing angles.

It also fits sea clutter in éhplateau region. It is given by

6 #nx-—Inx §7
# $= 1 expy- ——5;: x' 0 (6.44)

20 x 2 202 3

© 2004 by Chapman & Hall/CRC CRC Press |



wherex,, is the median of the random variableand! is the standard devi
ation of the random variable #x $

The Weibull distribution is used to model clutter at low grazing angles (less
than five degrees) for frequencies betwé&eand 10GHz. The Weibull proba
bility density function is determined by the Weibull slope paramatéoften
tabulated) and a mediagatter coefficient ¢, and is given by

bXb—l b
fix $= == expg—x— I xBO (6.45)

"o

whereb = 1"a is known as the shape parameter. Note that vihen2 the
Weibull distribution becomes a Rayleigh distribution.

6.5. “MyRadar” Design Case Study - Visit 6

6.5.1. Problem Statement

Analyze the impact of ground clutter on “MyRadar” design case study.
Assume a Gaussian antenna pattern. Assume that the radar height is 5 meters.
Consider an antenna sidelobe le&l = —20 dB and a ground clutter coef
ficient ! ° = —15 dBsm. What conclusions can you draw about the radar’s
ability to maintain proper detection and track of both targets? Assume a radar
heighth, B5m.

6.5.2. A Design

From the design processes establishéchapters 1 and 2, it was determined
that the minimum singlpulse SNR required taccomplish the design objec
tives wasSNRB 4dB when non-coherent integration (4 pulses) and cumula
tive detection were useda€toring in the sudce clutter will degrade the SIR.
However, one must mainta®IRB 4dB in order to achieve the desired prob
ability of detection.

Figure 6.11 shows a plot of the clutter RCS versus range corresponding to
“MyRadar” design requirements. This figure can be reproduced using the
MATLAB GUI “clutter_rcs_gui” with the following inputs:

Symbol Value Units
sigma0 -15 dB
thetaE 11 (see page 45) degrees
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Symbol Value Units
thetaA 1.33 (see page 45) degrees
SL -20 dB
range linspace(10,120,1000) Km
hr 5 meter
ht 2000 for missile; 10000 for aircraft meter
pt 20 KW
fo 3e9 Hz
b 5e6 Hz
t0 290 Kelvins
f 6 dB
I 8 dB
ant_id 2 for Gaussian pattern none

Clutter RCS in dBsm

o 20 40 80 B0 100 120
Slant Range in Km

Figure 6.11a. Clutter RCS entering the radar for the missile case.
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Clutter RCS in dBam

20 40 B0 80 100 120
Slant Range in Km

Figure 6.11b. Clutter RCS entering the radar for the aircraft case.

The MATLAB program“myradar_visit6.m” was developed to calculate and
plot the CNR and SIR fdiMyRadar” design case study. It is given in Listing
6.2 in Section 6.6. This program assumes the design parameters derived in
Chapters 1 and 2. More precisely:

Symbol Description Value
| 0 clutter backscatter coefficient -15 dBsm
SL antenna sidelobe level -20dB
- missile RCS 0.5m2
Do aircraft RCS am?
£ antenna elevation beamwidth 11 deg
- A antenna azimuth beamwidth 1.33 deg
hr radar height 5m
hta target height (aircraft) 10 Km
htm target height (missile) 2Km
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Symbol Description Value
P, radar peak power 20 KW
fo radar operating frequency 3GHz
T, effective noise temperature 290 degrees Kelvin
E noise figure 6 dB
L radar total losses 8 dB
C Uncompressed pulsewidth 20 microseconds

Figure 6.12 shows a plot of the @\and the SIR ass@ted with the mis
sile. Figure 6.13 is similar to Fig. 6.12 except it is for the aircraft case. It is
clear from these figures that the regdirSIR has been degraded significantly
for the missile case and not as muchtfer aircraft case. T& should not be
surprising, since the missile’s altitudenisich smaller than that of the aircraft.
Without clutter mitigation, the missile would not be detected at all. Alterna

tively, the aircraft detection is compromisedRa8 80Km. Clutter mitigation
is the subject of the next chapter.

Missile case; 21-frame cumulative detection
20 , :

— Desired SNR; from Chapter &

R e L e e

30

gl 44 4 ¥ § B 0§ i
20 30 40 50 =1] a0 a0 o 100 110 120
Slant Range in Km

Figure 6.12. SNR, CNR, and SIR wsus range for the missile case.
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Aircraft case; 21-frame cumulative detection
40 T T T T I I T I I
. . . . — Desired SNR; from Chapter 5

) I T T N S S T S i S
20 30 40 50 =1] a0 a0 o 100 110 120
Slant Range in Km

Figure 6.13. SNR, CNR and SIR vsus range for the aircraft case.

6.6. MATLAB Program and Function Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is advised tourethese programs with different input
parameters.

Listing 6.1. MATALB Function “clutter_rcs.m”

function [sigmaC,CNR] = clutter_rcs(sigma0, thetaE, thetaA, SL, range, hr, ht,
pt, fO, b, tO, f, l,ant_id)

% This function calculates the clutter RCS and the CNR for a ground based
radar.

clight = 3.e8; % speed of light in meters per second

lambda = clight /fO;

thetaA_deg = thetaA,

thetaE_deg = thetaE;

thetaA = thetaA_deg * pi /180; % antenna azimuth beamwidth in radians
thetakE = thetaE_deg * pi /180.; % antenna elevation beamwidth in radians
re = 6371000; % earth radius in meters

rh = sqgrt(8.0*hr*re/3.); % range to horizon in meters
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SLv = 10.07(SL/10); % radar rms sidelobes in volts
sigmaOv = 10.0"(sigma0/10); % clutter backscatter coefficient
tau = 1/b; % pulsewidth
deltar = clight * tau / 2.; % range resolution for unmodulated pulse
%%%%%%%%% %% %% %% % %% %% %% %% %% %% %%
range_m = 1000 .* range; % range in meters
%%%%%%%%% %% %% %% % %% %% %% %% %% %% %%
thetar = asin(hr ./ range_m);
thetae = asin((ht-hr) ./ range_m);
propag_atten = 1. + ((range_m ./ rh)."4); % propagation attenuation due to
round earth
Rg =range_m .* cos(thetar);
deltaRg = deltar .* cos(thetar);
theta_sum = thetae + thetar;
% use sinc"2 antenna pattern when ant_id=1
% use Gaussian antenna pattern when ant_id=2
if(ant_id ==1) % use sinc"2 antenna pattern
ant_arg = (2.78 * theta_sum ) ./ (pi*thetaE);
gain = (sinc(ant_arg))."2;
else
gain = exp(-2.776 .*(theta_sum./thetaE)."2);
end
% compute sigmac
sigmac = (sigmaOv .* Rg .* deltaRg) .* (pi * SLv * SLv + thetaA .* gain."2) ./
propag_atten;
sigmaC = 10*log10(sigmac);
%%%%%%% %% %% %% %% %% %% %% %% % %% % % %% % % %% %
if (size(range,2)==1)
fprintf('Sigma_ Clutter="); sigmaC
else
figure(1)
plot(range, sigmaC)
grid
xlabel('Slant Range in Km")
ylabel('Clutter RCS in dBsm")
end
%%%%% %% %% %% % %% % % %% %% %% %% %% %% %% %% %
% Calculate CNR
pt = pt * 1000;
g = 26000 / (thetaA_deg*thetaE_deg); % antenna gain
F =10.7(f/10); % noise figure is 6 dB
Lt = 10.7(1/10); % total radar losses 13 dB
k = 1.38e-23; % Boltzman’s constant
TO = t0; % noise temperature 290K
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argnumC = 10*log10(pt*g*g*lambda*lambda*tau .* sigmac);
argdem = 10*log10(((4*pi)*3)*k*TO*Lt*F .*(range_m)."4);
CNR = argnumC - argdem;
%%%%%%%%% %% %% %% % %% %% %% %% %% %% %% %
if (size(range,2) ==1)

fprintf(‘'Cluuter_to_Noise_ratio="); CNR
else

figure(2)

plot(range, CNR,'r")

grid

xlabel('Slant Range in Km’)

ylabel('CNR in dB')
end

Listing 6.2. MATLAB Program “myradar_visit6.m”

clear all

close all

thetaA= 1.33; % antenna azimuth beamwidth in degrees

thetakE = 11; % antenna elevation beamwidth in degrees

hr = 5.; % radar height to center of antenna (phase reference) in meters
htm = 2000.; % target (missile) high in meters

hta = 10000.; % target (aircraft) high in meters

SL =-20; % radar rms sidelobes in dB

sigma0 = -15; % clutter backscatter coefficient

b = 1.0e6; %1-MHz bandwidth

t0 = 290; % noise temperature 290 degrees Kelvin

fO = 3e9; % 3 GHz center frequency

pt = 114.6; % radar peak power in KW

f=6; % 6 dB noise figure

| = 8; % 8 dB radar losses

range = linspace(25,120,500); % radar slant range 25 to 120 Km, 500 points
% calculate the clutter RCS anckethssociated CNR for both targets
[sigmaCa,CNRa] = clutter_rcs(sigma0,dtak, thetaA, SL, range, hr, hta, pt,

fo, b, tO, f, 1, 2);

[sigmaCm,CNRm] = clutter_rcs(sigmaOetiaE, thetaA, L, range, hr, htm, pt,
fo, b, tO, f, I, 2);

close all

%%%%%%%% %% % %% %% %% %% %% %% %

np =4,

pfa = le-7;

pdm = 0.99945;

pda = 0.99812;

% calculate the improvement factor
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Im = improv_fac(np,pfa, pdm);

la = improv_fac(np, pfa, pda);

% calculate the integration loss

Lm = 10*log10(np) - Im;

La = 10*log10(np) - la;

pt = pt * 1000; % peak power in watts

range_m = 1000 .* range; % range in meters

g = 34.5139; % antenna gain in dB

sigmam = 0.5; % missile RCS m squared

sigmaa = 4; % aircraft RCS m squared

nf = f; %noise figure in dB

loss = I; % radar losses in dB

losstm = loss + Lm; %otal loss for missile

lossta = loss + La; % tt@l loss for aircraft

% modify pt by np*pt to account for pulse integration

SNRm = radar_eq(np*pt, f0, g, sigmam, t0, b, nf, losstm, range_m);
SNRa = radar_eq(np*pt, fO, g, sigmaa, t0, b, nf, lossta, range_m);
snrm = 10.(SNRm./10);

snra = 10.A(SNRa./10);

cnrm = 10.~(CNRm./10);

cnra = 10.*(CNRa./10);

SIRm = 10*log10(snrm ./ (1+cnrm));

SIRa = 10*log10(snra ./ (1+cnra));

%%%%%%% %% %% %% %% %% %% %% %% % %% % % %% %
figure(3)

plot(range, SNRm,'k’, range, CNRm,'k :', range,SIRm,'k -.")
grid

legend('Desired SNR; from Chapter 5','CNR’,'SIR")
xlabel('Slant Range in Km")

ylabel('dB")

title("Missile case; 21-frame cumulative detection’)
%%%%%%% %% %% % %% % % %% % % %% %% %% %% %% %% %% %% %
%%%%%

figure(4)

plot(range, SNRa,'k’, range, CNRa,'k :', range,SIRa,'k -.")

grid

legend('Desired SNR; from Chapter 5','CNR’,'SIR")
xlabel('Slant Range in Km’)

ylabel('dB")

title(‘'Aircraft case; 21-frame cumulative detection')
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Chapter 7 Moving Target Indicator (MT])
and Clutter Mitigation

7.1. Clutter Spectrum

The power spectrum of stationary clutfeero Doppler) can be represented
by a delta function. However, clutter is not always stationary; it actually exhib
its some Doppler frequency spread beeaaf wind speed and motion of the
radar scanning antenna. In general,dl¢ter spectrum is concentrated around
f = 0 and integer multiples of the radar PRF and may exhibit a small
amount of spreading.

The clutter power spectruman be written as the sum of fixed (stationary)
and random (due to frequency spreadicmponents. For most cases, the ran
dom component is Gaussian. If we denote the stationary-to-random power
ratio by W™, then we can write the clutter spectrum as

- * $ "4 *
Sl #= %) W +1 H+ %o exp) - 0#?( (7.1)
B+W & w282 % 280 &

where! , = 2, f, is the radar operating frequency in radians per sechnd,
is the rms frequency spread compdngtetermines the Doppler frequency
spread), ané, is the Weibull parameter.

The first term of the right-hand side Bf. (7.1) represents the PSD for-sta
tionary clutter, while the second temccounts for the frequency spreading.
Nevertheless, since most of the clufiewer is concentrated around zero Bop
pler with some spreading (typically less than 100 Hz), it is customary to model
clutter using a Gaussian-shaped posgectrum (which is easier to analyze
than Eqg. (7.1)). More precisely,
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P "
S #= —= exp) 2

T sz % 282 &

whereP, is the total clutter powe|$!2 and! ; were defined earlier. Fig. 7.1
shows a typical PSD sketch of radar returns when both target and clutter are
present. Note that the clutter powsrconcentrated around DC and integer
multiples of the PRF.

e

(7.2)

spectrum A

clutter returns

noise level

»

—
/
%

r frequency

Figure 7.1. Typical radar return PSD when clutter and target are present

7.2. Moving Target Indicator (MTI)

The clutter spectrum is normgalitoncentrated around DG € 0) and mu
tiple integers of the radar PRF, as illustrated in Fig. 7.2a. In CW radars, <lut
ter is avoided or suppressed by igngrthe receiver output around DC, since
most of the clutter power is condeated about the zero frequency band.
Pulsed radar systems may utilize spefiledrs that can distinguish between
slowly moving or stationary targets and fast moving ones. This class of filter is
known as the Moving Target Indicator T¥). In simple words, the purpose of
an MTI filter is to supprestarget-like returns proded by clutter, and allow
returns from moving targets to pass through with little or no degradation. In
order to effectively suppress clutter retsiran MTI filter needs to have a deep
stop-band at DC and at integer multiples of the PRF. Fig. 7.2b shows a typical
sketch of an MTI filter response, while Fig. 7.2c shows its output when the
PSD shown in Fig. 7.2a is the input.

MTI filters can be implemented usingldg line cancelers. As we will show
later in this chapter, the frequency response of this class of MTI filter is peri
odic, with nulls at integer multiples of the PRF. Thus, targets with Doppler fre
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quencies equal taf, are severely attenuated. Since Doppler is proportional to
target velocity {; = 2v.- ), target speeds thatquuce Doppler frequencies
equal to integer multiples df are known as blind speeds. More precisely,

Volind = 7’ :n/ 0 (7.3)

Radar systems can minimize the atence of blind speeds by either
employing multiple PRF schemes (PRF staggering) or by using high PRFs
where in this case the radar may become range ambiguous. The main differ
ence between PRF staggering and PRF agility is that the pulse repetition inter
val (within an integration interval) cdre changed between consecutive pulses
for the case of PRF staggering.

input to
MTI filter

clutter returns

(@)

__noise level

|
—f f=0 tarJget f frequency
r reurn '
|
MTI filter |
response
pons | (b)
|
i
—f, f=0 | f, frequency
MTI filter |
output |
| ©
|
+ |
—f f=0 f, frequency

Figure 7.2. (a) Typical radar return PSD when clutter and target are
present. (b) MTI filter frequency response. (c) Output from an
MTI filter.
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Fig. 7.3 shows a block diagram of @herent MTI radar. Coherent transmis
sion is controlled by the STAble Local Oscillator (STALO). The outputs of the
STALO, f| o, and the COHerent Oscillator (COHQ@,, are mixed to produce
the transmission frequencyf 5+f-. The Intermediate Frequency (IF),
fc0fy, is produced by mixinghe received signal witli 5. After the IF
amplifier, the signal is passed through a phase detector and is converted into a
base band. Finally, the video signal is inputted into an MTI filter.

| Pulse modulator I

flotfe % flotfe
@7 power amplifier

. flo flo ]
MIXEr fw STALO » mixer
T —
foOf 1
C d Y .
IF amplifier COHO c

foOf, |

to detector
—>

Figure 7.3. Coherent MTI radar block diagram.

7.3. Single Delay Line Canceler

A single delay line canceler can be implemented as shown in Fig. 7.4. The
canceler’s impulse response is denotet"&% The outputy"t# is equal to the
convolution between the impulse respoh$&# and the inpuk"t#. The single
delay canceler is often called a “twalge canceler” since it requires two-dis
tinct input pulses before an output can be read.

The delayT is equal to the PRI of the raddr .(f, ). The output signay" t#
is

y't# = X't X"t—T# (7.4)
The impulse response of the canceler is given by

h't# = #th— #t-T# (7.5)
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Figure 7.4. Singledelay line canceler.

where+" 2 #is the delta function. It follows that the Fourier transform (FT)
of h"t#is

Hl #= 1—¢' T (7.6)
where! = 2, f.

In the z-domain, the single ldg line canceler response is

H'z#= 1-7" (7.7)
The power gain for the single delay line canceler is given by
IH'l #° = H" #H3" #="1-¢7' "#1-€&' T# (7.8)
It follows that
H #2 = 1+1-"€' T+e?' T#= 2"1-cos T# (7.9)
and using the trigonometric identit — 2cos24 # = 4"sind # yields
IH"1 #2 = 4"sin"! T.2## (7.10)
MATLAB Function “single_canceler.m”

The functior'single_canceler.m"computes and plots (as a functiorf of, )
the amplitude response for a single delay line canceler. It is given in Listing 7.1
in Section 7.11. The syntax is as follows:

[resp] = single_canceler (fofr)

where fofr is the number of periods desired. Typical output of the function
“single_canceler.m”is shown in Fig. 7.5. Clelgr the frequency response of a
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single canceler is periodiwith a period equal td,. The peaks occur at
f = "2n+ 1#."2f #, and the nulls are &t= nf,, wheren/ 0.

----------------------------------------------------------------

Amplitude response - dB  Amplitude response - Volts

|
15
Momalized frequency - tfir

Figure 7.5. Single canceler frequency response.

In most radar applications the response of a single canceler is not acceptable
since it does not have a wide notch in the stop-band. A double delay line can
celer has better response in both the stop- and pass-bands, and thus it is more
frequently used than argjle canceler. In this book, we will use the names “sin
gle delay line canceler” and “single canceler” interchangeably.

7.4. Double Delay Line Canceler

Two basic configurations of a double delay line canceler are shown in Fig.
7.6. Double cancelers are often cdllethree-pulse cancelers” since they
require three distinct input pulses before an output can be read. The double line
canceler impulse response is given by

h"t# = +#t#—2+"t —TH+ Ft1-2T# (7.11)

Again, the names “double delay line&dnceler and “double canceler” will be
used interchangeably. The power g@inthe double delay line canceler is
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H A = H A A 732

» delay,T »

delay,T

Figure 7.6. Two configurations fa a double delay line canceler.

where |H,"! #fz is the single line canceler power gain given in Eq. (7.10). It
follows that

. Cy, Texd
H 4 = 16)gind) > ge (7.13)

And in the z-domain, we have

H'z#t= "1—7 4 = 1-271+ 772 (7.14)
MATLAB Function “double_canceler.m”

The function“double_canceler.m”computes and plots (as a function of
f.f,) the amplitude response for a double delay line canceler. It is given in
Listing 7.2 in Section 7.11. The syntax is as follows:

[resp] = double_canceler (fofr)
wherefofr is the number of periods desired.

Fig. 7.7 shows typical output from this function. Note that the double can
celer has a better response thandingle canceler (deeper notch and flatter
pass-band response).
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o ! —— double canceler
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Figure 7.7. Normalized frequency respnses for single and double cancelers.

7.5. Delay Lines with Fedback (Recursive Filters)

Delay line cancelers with feedback loap® known as recursive filters. The
advantage of a recursive filter is thatahgh a feedback loop we will be able
to shape the frequency response of the filter. As an example, consider the sin
gle canceler shown in Fig. 78rom the figure we can write

y't# = X'tH-"1 - K" t# (7.15)
V'tH = YUt Wt (7.16)
W't = V't—T# (7.17)

Applying the z-transform to thabove three equations yields

Y'zt = X"z#-"1-KAWN"' z (7.18)
VUZH = Yz Wzt (7.19)
W'z = 7z (7.20)
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X >® delay, T ye)

Figure 7.8. MTI recursive filter.

Solving for the transfer functioll"z# = Y" z#. X" z#tyields

1-7*

H"z# = : (7.21)

1-Kz

The modulus square &f"z# is then equal to
2 _ "l—7'#1-—z# 2-"z+7'#
|H"z#" = — = > — (7.22)
"1-Kz "#1-Kz# "1+K'#-K"z+z #

Using the transformation = dr yields
z+7'=2cod T (7.23)

Thus, Eq. (7.22) can now be rewritten as
|H..ej! T#Z - 2"1—cosl T# (7.24)

"1+ K*#—2Kcos'l T#
Note that whenK = 0, Eq. (7.24) collapses to Eqg. (7.10) (single line-can

celer). Fig. 7.9 shows a plot of Eq. (7.24) #r= 0.25%0.750.9 Clearly, by
changing the gain factd¢ one can control the filter response.

In order to avoid oscillation due to the positive feedback, the valu¢ of
should be less than unity. The vallle— K#" is normally equal to the number
of pulses received from the target. For examfles 0.9 corresponds to ten
pulses, whileK = 0.98 corresponds to about fifty pulses.
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Figure 7.9. Frequency response c@sponding to Eq. (7.24). This
plot can be reproduced using MATLAB program
“fig7_9.m” given in Listing 7.3 in Section 7.11.

7.6. PRF Staggering

Target velocities that correspond toltiple integers of the PRF are referred
to as blind speeds. This terminology is used since an MTI filter response is
equal to zero at these values (see Fig). Blind speeds can pose serious-imi
tations on the performance of MTI radargd their ability to perform adequate
target detection. Using PRF agility by changing the pulse repetition interval
between consecutive pulses can extenditsieblind speed to tolerable values.
In order to show how PRF staggering can alleviate the problem of blind
speeds, let us first assume that two radeith distinct PIRs are utilized for
detection. Since blind speeds are prtipoal to the PRF, the blind speeds of
the two radars would be different. However, using two radars to alleviate the
problem of blind speeds is a very costly option. A more practical solution is to
use a single radar with two or more different PRFs.

For example, consider a radar system with two interpulse pefipcsnd
T,, such that
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LEg

7.25
T, n, (7.23)

wheren; andn, are integers. The first true blind speed occurs when

n n
e 4 (7.26)
LE P
This is illustrated in Fig. 7.10 fom; = 4 and n, = 5. Note that if
n, = n; + 1, then the process of PRF staggering is similar to that discussed in
Chapter 3. The ratio

s = = (7.27)

is known as the stagger ratio. Using staggering ratios closer to unity pushes the
first true blind speed farther out. However, the dip in the vicinityl of;
becomes deeper, as illustratedrig. 7.11 for stagger rati&, = 63. 64. In
general, if there arbl PRFs related by

n_lzn_Z:G:% (7.28)
Tl T2 TN
and if the first blind speed to occtar any of the individual PRFs ;41
then the first true blind speddr the staggered waveform is

_Mtmp+6 +ny
Vilind = N Vhlind1 (7.29)

7.7. MTI Improvement Factor

In this section two quantities thateanormally used to define the pekrfor
mance of MTI systems aiatroduced. They are ‘iGtter Attenuation (CA)”
and the MTI “Improvement Factor.” The MTI CA is defined as the ratio
between the MTI filteinput clutter powelC; to the output clutter poweZ,,

CA=G.C, (7.30)

The MTI improvement factois defined as the ratio of the Signal to Clutter
(SCR) at the output to the SCR at the input,

S+ ) S
| = 2)/Eo &2@ & (7.:31)

which can be rewritten as
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Figure 7.10. Frequency responseasf a single canceler. Top plot
corresponds toT,, middle plot corresponds toT,,
bottom plot corresponds to stagger ratiorl,/T, = 4/3
This plot can be reproduced using MATLAB program
“fig7_10.m" given in Listing 7.4 in Section 7.11.
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Figure 7.11. MTI responses, staggeng ratio 63/64. This plot can be
reproduced using MATLAB program “fig7_11.m” given
in Listing 7.5 in Section 7.11.

| = §0CA (7.32)

S
The ratioS, . § is the average power gain otMTI filter, and it is equal to
[H"! #2. In this section, a closed formpmession for the improvement factor
using a Gaussian-shaped power spectrum is developed. A Gaussian-shaped
clutter power spectrum is given by
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Wi = exp'—f* . 287# (7.33)
J2,$

where P, is the clutter power (constant), afig is the clutter rms frequency
(which describes the clutter spectrunresm in the frequency domain). It is

given by
$, = JBo+$2+82 (7.34)

$, is the standard deviation for the clutter spectrum spread due to wind veloc
ity; $ is the standard deviation for theitter spectrum spread due to antenna
scanning; and, is the standard deviation fdve clutter spectrum spread due

to the radar platform motion (if apicable). It can be shown tHat

$, = 28y (7.35)
2 *
$. = 0.269 —— (7.36)
s Q/ﬁ aTscan &
$.9 ¥sin8 (7.37)

where- is the wavelength an$l,, is the wind rms velocity7 , is the antenna
3-db azimuth beamwidth (in radiand);.,, is the antenna scan time;is the
platform velocity; and is the azimuth angle (in radians) relative to the direc
tion of motion.

The clutter power at thepait of an MTI filter is

f2*

P )
- . exp — df (7.38)
2,8, % 2?;3( &

C

Factoring out the constaf, yields

f2*

)
exp’ — df (7.39)
J2,8 % 2?55(&

C =P,
)

It follows that

1. Berkowtiz, R. S.Modern Radar, Analysis, Eugtion, and System Deigdohn
Wiley & Sons, New York, 1965.
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Ci = Pc (7.40)
The clutter power at the output of an MTI is
C, = - WH#H"H#* df (7.41)

7.7.1. Two-Pulse MTI Case

In this section we will continue the analysis usingiragle delay line can
celer The frequency response for a sindéday line canceler is given by Eq.
(7.6). The single canceler power gain is given in Eg. (7.10), which will be
repeated here, in terms bfrather thar , as Eq. (7.42),

" Y, fxx 2
|H"f#° = 4g/§|n2ya 28 (7.42)
It follows that
: P f2 *
C.= =« c in (7.43)
T2 s, ?( de ‘)%' .

Now, since clutter power will only be significant for smallthen the ratio
f.f, is very small (i.e.,$,«f, ). Consequently, by using the small angle
approximation, Eq. (7.43) is approximated by

9 .. P ) f_22(* Q) fi2 (7.44)
U 8, Poy a5t &, & ¢
which can be rewritten as
2 N
4P, 2 *
C, = —% - 1 exp)— f—z( 2 df (7.45)

fr2 _’_ A12,$t2 % 2%; &

The integral part in Eq. (7.45) is tsecond moment of a zero mean Gau35|an
distribution with varlance$t2 Replacing the integral in Eq. (7.45) tsg{
yields

Co= —2 &7 (7.46)

Substituting Eqgs. (7.46) and (7.40) into Eq. (7.30) produces
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2)/@—$ & (7.47)
ot
It follows that the improvemeriactor for a single canceler is

_) f x2S
I = 2,@’$t & 5 (7.48)

The power gain ratio for a siregtanceler is (remember that"f# is periodic
with periodf,)

SO —_ l . 1 lf*z
g H"f47 = P 42,/§mf—r & (7.49)

—f,.2

r

Using the trigonometric identity2 — 2cos24 # = 4"sin4 # yields

f.2

r

IH"f4° = flr ) ?J/g—Zcoszf;rf*gf =2 (7.50)

It follows that

| =2

ro*
%5, & (7.51)

The expression given in Eq. (7.51) is an approximation valid only for
$, «f,. When the conditior$, «f, is not true, then the autocorrelation func
tion needs to be used in order to develop an exact expression for the improve
ment factor.

Example:

A certain radar had, = 800Hz. If the clutter rms isp, = 6.4Hz (wooded
hills with $,, = 1.1631Km. hr), find the improvement factor when a single
delay line canceler is used.

Solution:

In this case$, = $,. It follows that the clutter attenuation CA is

f, 800 «? _
CA 2»@3; &= 2,/62 64y g = 395.771= 25.97dB

and sinceS,.S = 2 = 3dB we get
lgg = "CA+ § .S#; = 3+25.97= 28.974iB.
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7.7.2. The General Case

A general expression for the improvemhéactor for the n-pulse MTI (shown
for a 2-pulse MTI in Eq. (7.51)) is given by

1 f ,2n-1#
- Q¥ 2n—1#—1m 2% & (752

where the double factorial notation is defined by
"2n—-1#! = 1<3<5<6 <"2n-1# (7.53)
"2n#l = 2<4<6 <2n (7.54)

Of courseQ!! = 1; Q is defined by
Q° = nl (7.55)
— A2

where A; are the Binomial coefficients fahe MTI filter. It follows thatQ®
for a 2-pulse, 3-pulse, and 4-pulse MTI are respectively

Bi1_ 1 _1C
5— 7.56
@°20 70, (759

Using this notation, then the improvement factor for a 3-pulse and 4-pulse
MTI are respectively given by

fo x4
I3 puise = 2?,@—ét & (7.57)

6

4y fo«
I4—pu|se é%,_ét & (7.58)

7.8. “MyRadar” Design Case Study - Visit 7

7.8.1. Problem Statement

The impact of surface clutter on the “MyRadar” design case study was ana
lyzed. Assume that the wind rms velodity = 0.45m. s. Propose a clutter
mitigation process utilizing a 2-pulse and a 3-pulse MTI. All other parameters
are as calculated in the previous chapters.
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7.8.2. A Design

In earlier chapters we deteimad that the wavelength is = 0.1m, the PRF
is f, = 1KHz, the scan rate i,.,, = 2s, and the antenna azimuth 3-db
beamwidth is7 , = 1.3D. It follows that

2%, _ 2<0.45
= W -2 - 9gHz 7.59
$, = = ¥ (7.59)
$. = 0.26 /(7 & 0. 265< —25: - 361384z (7.60)
a SCan l 32< . R < 2

180

Thus, the total clutter rms spectrum spread is

= J$2+$2 = /81+ 1305.810= /1386.810= 37.24z  (7.61)

The expected clutter attenuationings a 2-pulse and a 3-pulse MTI are
respectively given by

1000 2

apulse = 22,/Q = 2< 2,@73724 g = 36. 53JWE 15.64B (7.62)
_ PRt 1000 x4

Ispuise = 2g o= 2<) g 23 &= 667 24%ﬁ’E 28.241B (7.63)

To demonstrate the effect of a 2-pulse and 3-pulse MTIMyRadar”
design case study, the MATLAB progrdmyradar_visit7.m” has been devel
oped. It is given in Listing 7.6 in Sian 7.5. This program utilizes the radar
equation with pulse compression. In thase, the peak power was established
in Chapter 5 a®, F 10KW. Figs. 7.12 and 7.13 show the desired SNR and the
calculated SIR using a 2-pulse and a 3-pulse MTI filter respectively, for the
missile case. Figs. 7.14 and 7.15 stsdwvilar output for the aircraft case.

One may argue, depending on the tracking scheme adopted by the radar, that
for a tracking radar

$, =%, = 9Hz (7.64)

since$, = O for a radar that employes a monopulse tracking option. In this
design, we will assume a Kalman filteacker. For more deita the reader is
advised to visit Chapter 9.
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Missile case; 214rame cumulative detection
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Figure 7.12. SIR for the missilecase using a 2-pulse MTI filter.

Missile case; 21-frame cumulative detection
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Figure 7.13. SIR for the missilecase using a 3-pulse MTI filter.
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Aircraft case; 21-frame cumulative detection
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Figure 7.14. SIR for the aircraft case using a 2-pulse MTI filter.

Aircraft case; 21-frame cumulative detection
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Figure 7.15. SIR for the aircraft case using a 3-pulse MTI filter.
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As clearly indicated by the previouaufofigures, a 3-pulse MTI filter would
provide adequate clutter rejection for both target types. However, if we assume
that targets are detected at maximumgea (90 Km for aircraft and 55 Km for
missile) and then are tracked for the @fghe flight, then 2-pulse MTI may be
adequate. This is true since the SNBuld be expected to be larger during
track than it is during detection, espalyi when pulse compression is used.
Nonetheless, in this design a 3-pulse MTI filter is adopted.

7.9. MATLAB Program and Function Listings

This section contains listings off AlATLAB programs and functions used
in this chapter. Users are encouragerktan this code with different inputs in
order to enhance their understanding of the theory.

Listing 7.1. MATLAB Function “single_canceler.m”

function [resp] = single_canceler (fofrl)
eps = 0.00001;

fofr = 0:0.01:fofr1;

argl = pi .* fofr;

resp = 4.0 .*((sin(argl)).”2);

max1 = max(resp);

resp = resp ./ maxl;

subplot(2,1,1)

plot(fofr,resp,'k")

xlabel (‘Normalized frequency - f/fr’)
ylabel( 'Amplitude response - Volts')
grid

subplot(2,1,2)
resp=10.*log10(resp+eps);
plot(fofr,resp,'k’);

axis tight

grid

xlabel (‘Normalized frequency - f/fr’)
ylabel( 'Amplitude response - dB’)

Listing 7.2. MATLAB Function “double_canceler.m”

function [resp] = double_canceler(fofrl)
eps = 0.00001;

fofr = 0:0.01:fofr1;

argl = pi .* fofr;

© 2004 by Chapman & Hall/CRC CRC Press |



resp = 4.0 .* ((sin(argl)).”2);

max1 = max(resp);

resp = resp ./ maxl;

resp2 = resp .* resp;

subplot(2,1,1);
plot(fofr,resp,'k--"fofr, resp2,'k");
ylabel (‘Amplitude response - Volts')
resp2 = 20. .* log10(resp2+eps);
respl = 20. .* log10(resp+eps);
subplot(2,1,2)
plot(fofr,respl,'k--",fofr,resp2,'k’);
legend ('single canceler','double canceler’)
xlabel (‘Normalized frequency f/fr")
ylabel (‘Amplitude response - dB")

Listing 7.3. MATLAB Program “fig7_9.m”

clear all

fofr = 0:0.001:1;

arg = 2.*pi.*fofr;

nume = 2.*(1.-cos(arg));
denll = (1. + 0.25 * 0.25);
denl2 = (2. * 0.25) .* cos(arg);
denl =denll - denl12;
den21=1.0+0.7 *0.7;

den22 = (2. *0.7) .* cos(arg);
den2 = den21 - den22;
den31=(1.0+0.9*0.9);
den32 = ((2. * 0.9) .* cos(arg));
den3 = den31 - den32,;

respl = nume ./ denl,;

resp2 = nume ./ den2;

resp3 = nume ./ den3;
plot(fofr,respl,'k’ fofr,reg2,'k-." fofr,resp3,'k--");
xlabel('Normalized frequency")
ylabel('Amplitude response’)
legend('’K=0.25','K=0.7",'K=0.9")
grid

axis tight

Listing 7.4. MATLAB Program “fig7_10.m”"

clear all
fofr = 0:0.001:1;
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f1 = 4.0 .* fofr;

f2 = 5.0 .* fofr;
argl = pi .* f1;
arg2 = pi .* f2;

respl = abs(sin(argl));

resp2 = abs(sin(arg2));

resp = respl+resp2;

max1 = max(resp);

resp = resp./maxl;
plot(fofr,respl,fofr,resp2,fofr,resp);
xlabel('Normalized frequency f/fr')
ylabel('Filter response’)

Listing 7.5. MATLAB Program “fig7_11.m"

clear all

fofr = 0.01:0.001:32;

a=63.0/64.0;

terml = (1. - 2.0 .* cos(a*2*pi*fofr) + cos(4*pi*fofr)).~2;
term2 = (-2. .* sin(a*2*pi*fofr) + sin(4*pi*fofr)). 2;

resp = 0.25 .* sgrt(terml1 + term2);

resp = 10. .* log(resp);

plot(fofr,resp);

axis([0 32 -40 Q));

grid

Listing 7.6. MATLAB Program “myradar_visit7.m”"

clear all

close all

clutter_attenuation = 28.24;

thetaA= 1.33; % antenna azimuth beamwidth in degrees
thetakE = 11; % antenna elevation beamwidth in degrees
hr = 5.; % radar height to center of antenna (phase reference) in meters
htm = 2000.; % target (missile) height in meters

hta = 10000.; % target (aircraft) height in meters

SL = -20; % radar rms sidelobes in dB

sigma0 = -15; % clutter bekscatter coefficient in dB

b = 1.0e6; %1-MHz bandwidth

t0 = 290; % noise temperature 290 degrees Kelvin

fO = 3e9; % 3 GHz center frequency

pt = 114.6; % radar peak power in KW

f=6; % 6 dB noise figure

| = 8; % 8 dB radar losses
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range = linspace(25,120,500); % radar slant range 25 to 120 Km, 500 points
% calculate the clutter RCS ancethssociated CNR for both targets
[sigmaCa,CNRa] = clutter_rcs(sigma0,dtakE, thetaA, SL, range, hr, hta, pt,
fo, b, tO, f, ,2);

[sigmaCm,CNRm] = clutter_rcs(sigmaOgtiaE, thetaA, SL, raye, hr, htm, pt,
fo, b, tO, f, ,2);

close all

%%%%%%% %% %% % %% % % %% % % %% % %

np =4;

pfa = le-7;

pdm = 0.99945;

pda = 0.99812;

% calculate the improvement factor

Im = improv_fac(np,pfa, pdm);

la = improv_fac(np, pfa, pda);

% caculate the integration loss

Lm = 10*log10(np) - Im;

La = 10*log10(np) - la;

pt = pt * 1000; % peak power in watts

range_m = 1000 .* range; % range in meters

g = 34.5139; % antenna gain in dB

sigmam = 0.5; % missile RCS m squared

sigmaa = 4; % aircraft RCS m squared

nf = f; %noise figure in dB

loss = I; % radar losses in dB

losstm = loss + Lm; %otal loss for missile

lossta = loss + La; % tt@l loss for aircraft

% modify pt by np*pt to account for pulse integration

SNRm = radar_eq(np*pt, f0, g, sigmam, t0, b, nf, losstm, range_m);
SNRa = radar_eq(np*pt, fO, g, sigmaa, t0, b, nf, lossta, range_m);
snrm = 10.(SNRm./10);

snra = 10.A(SNRa./10);

CNRm = CNRm - clutter_attenuation;

CNRa = CNRa - clutter_attenuation;

cnrm = 10.~(CNRm./10);

cnra = 10.*(CNRa./10);

SIRm = 10*log10(snrm ./ (1+cnrm));

SIRa = 10*log10(snra ./ (1+cnra));

%%%%6%%% %% %% %% %% %% %% %% %% % %% % % %% %
figure(3)

plot(range, SNRm,'k’, range, CNRm,'k :', range,SIRm,'k -.")

grid

legend('Desired SNR; from Chapter GNR','SIR with 3-pulse’,'MTI filter")
xlabel('Slant Range in Km’)
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ylabel('dB")

title('Missile case; 21-frame cumulative detection')

%%%%%%%%% %% %% %% % %% %% %% %% %% %% %% % % %% %% %
figure(4)

plot(range, SNRa,'k’, range, CNRa,'k :', range,SIRa,'k -.")

grid

legend('Desired SNR; from Chapter GNR','SIR with 3-pulse’,'MTI filter")
xlabel('Slant Range in Km")

ylabel('dB")

title(‘'Aircraft case; 21-frame cumulative detection')
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