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Foreword

In electric circuits, filters are one of the fundamental devices. In microwave
engineering, the counterpart of a filter is a frequency selective surface (FSS).
There are two major applications of FSS. One 1s to use FFSS as antenna
radomes for better control ol electromagnetic wave transimission and scatter-
ing. The other application of FSS is in reflector antenna systems, where FSS
refectors are used to separate feeds of different frequency bands. |

Since the advent of FSS n the late 1960s, there has been a sizable effort In
the study ot FSS from the viewpoint of theory, measurement, and manufac-
ture, out of which a wealth of knowledge has grown. Up to this point, the
knowledge has been scattered throughout technical, conlerence proceedings,
and company reports. Some of it is unpublished. There is a need tor a unified
presentation of FSS technology. Dr. T. K. Wu, an internationally known
researcher in electromagnetics, has taken on this task. The result is this
comprehensive book on FSS and associated devices. '

The eight chapters of this book cover various aspects of FSS, ranging {rom
modal analysis to fabrication. All chapters are written by recognized experts
in this field. For those people who want to learn about FSS, as well as for
those who work with FSS, I recommend this book highly.

SHUNG-WU LEE

University of illinois, Urbana
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brief summary of F'SS analytical and measurement techniques. A FORTRAN
computer code is given in the Appendix for calculating the transmission and
reflection performance of a gridded square-loop, square-loop, or double-
sguare-loop putch-ele}ment ESS using the equivalent circuit model. More
sophisticated codes, using the accurate integral equation technique, may be
purchased from Professors R, Mittra and S. W, Lee of the University of
[linois. | |
Chapters 2 through 6 are devoted (o FSS analyses, designs, and applica-
tions. Chapter 2, by Dr. Chi Chan, presents a very thorough treatment of the
single thin- or thick-screen FSS analysis using the spectral domain approach.
The cascading analysis of multiple FSS screens is discussed in Chapter 3 by
Dr. Joe Vacchione and Professor Mittra. Chapter 4 presents two case studies
of FSS application to multiband communication antenna systems. Various
practical FSS designs are described in detail to give readers as many
examples as possible. Chapter 3, by Mr. Robert Schmier, presents a thorough

thick- and thin-screen ESS analysis, using the spatial domain approach, and

an interesting application to bandpass radomes. The detailed equations for
the reaction integrals, which have never been disclosed in any relerence, are
given in the Appendix. Chapter 6, by Mr. Gregory Hickey, presents FSS
matertals and fabrication techniques, which are the first disclosure of these
subjects in any bouok.

Chapters 7 and 6 constitute the second part of the book, devoted to active
grid arrays. Chapter 7, by Dr. Lance Sjogren, presents the beam control
arrity, whlch incorporates a variable-impedance element to provide an FSS
whose characteristics - are externally controllable. Chapter 8, by Drs. Jon
Hacker and Robert Weikle, emphasizes the incorporation of active devices
that provide gain or nonlinearity into an FSS, enabling the development of
arrays with numerous additional capabilities, including oscillation, amplifica-
tion, and mixing. The ‘authors have also provided two computer source codes
for analyzing the equivalent circuit parameters for the cross-dipole and
bow-tie grid unit-cell configurations. These codes are developed using the
EMF method discussed in the chapter.

Finally, T would like to thank Professor Kaij Chang of Texas A & M
University for his suggestions and encouragement and for including this book
in the Microwave and Optical Engineering Series; all the authors for their
contributions and for. their cooperation; Drs. S. Govind of Northrop, L.
Sjogren of TRW, and J. Vacchione of JPL for reviewing the original
manuscripts; Mr. G. Telecki, Ms. Rose Leo Kish, Ms. Angioline Loredo, Mr.
Perry King, and the production staff of John Wiley & Sons, Inc. for their
assistance and fine work in the processing and publishing of this book.

1. K. Wu

CHAPTER

ONE

Fundamentals
of Periodic Structures

T. K. WU, Jet Pm[ﬁulsian Laboratory, California Institute of Technology,
Pasaclena, California

Two-dimensional planar periodic structures, as depicted in Figure 1.1, lla}ve
attracted a great amount of attention because of the fr-zqu:snu}r filtering
propetcty suggested. A periodic’ array consisting of gundu;t;ng patch or
aperture elements [1-3] is known as a frequency selec[we.su!:tacr: {FSS_}T_ -
dichroic. Similar to the frequency fiiters in traditional radio-frequency (RE)
circuits, the FSS may have low-pass or high-pass spectral behavior, depending
upon the array element type (i.e., patch or aperture).

More recently, the capabilities of the FSS have been extended by the
addition of active devices embedded in the unit cell of the periodic struc-
tures. Such structures are also called active grid arrays [4-7]). One category of
this grid array, the bearn control array, incorporates a variable-impedance
element to provide an FSS whose characteristics are externally contl‘oilaple.
Such arrays are discussed in Chapter 7. Incorporation of devices that pruw.dr:
gain or nonlinearity into an FSS allows the development of arrays with
numerous additional capabilities, including oscillation, amplification, and
mixing. Such arrays are discussed i Chapter 3. |

Note that phased array antennas {8-11] do not fall into the category of
erid arrays. The primary distinguishing features of the grid array are that it 1s
a simple planar FSS with few (typically one or two) active devices embedded
in the FSS unit cell, and it operates on a nonconfined propagaiing beam

Frequency Sclective Surfuce and Grid Array, Edited by T. K. Wu
ISBIN 0-471-31189-8 & 1993 John W_ih:y & Sans, Inc.
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2 FUNDAMENTALS OF PERIODIC STRUCTURES
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FIGURE 1.1  Geometry of a two-dimensional perntodic structure.,

rather than on an RF signal brought in through a guided-wave structure (e.g.,
a waveguide, microstrip, or stripline).

Many design parameters and principles are associated with the pertodic
structure, such as element shape, size, lattice geometry, dielectrics, grating
lobes, and Wood’s anomaly. These concepts are introduced in this chapter;

more detailed descriptions of the analysis and design are given in subsequent
chapters. .

1.1 FSS ELEMENTS

An FSS is a periodic array of aperture or patch elements, As illustrated in
Figure 1.2, the aperture-element FSS reflects at low frequencies and trans-
mits at high frequencies (similar to 2 high-pass filter), whereas the parch-
element FSS transmits at low frequencies and reflects at high frequencies

FSS ELEMENTS 3

Shaded Area |s Meta]

(a) High-Pass (b) Low-Pass
Aperture Patch
Element Elermnent

S
G{)

Frequency Frequency

FIGURE 1.2  Aperture (a) and patch-element FSS (b).

(similar to a low-pass filter) [1-3]. For freestanding thin grids without
dielectrics, the performance of the patch FSS exactly complements that of

i s P

the aperture FSS. An FSS may also be categorized as thick. or thin-screen,
depending on the thickness of the element. The term thin-screen FSS usually
refers to a screen with printed-circuit-type elements—that 15, patch or

R ——

aperture elements less than 0.001 X thick. where X is the wavelength at the

——

P Y

screen’s resonant frequency. Ifi general, the thin-screen FSS ig lightweight,
low volume, and can be inexpensively fabricated with conventional printed
circuit technology.

On the other hand, a thick-screen FSS, used mostly for high-pass applica-
tions (aperture type), is a periodic array of elements with electrically large
thickness. It is heavy, and fabrication requires precise and expensive machin-
ing of a thick metal block. Waveguide stacks [12-15] have been a popular
thick-screep FSS. The advantage of thick-screen FSSs is that the ratio of
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(ransmission [requency to reflection frequency (f,/f,), or band separation,
can be reduced to1.15 (= 14.0 'GHz/12.2 GHz), which is required for
advanced multifrequency connmunication satellite antennas [14]. When filled
with a dielectric such as paraffin wax, the waveguide’s cutoft frequency is

reduced, so the waveguide can be smaller. Hence, a closely packed array is

achieved without any grating lobe occurring in the operation bands. It has
also been found that increasing the angle of incidence increases cross-polari-
zation level and causes ellipticily in circularly polarized waves. One way (o
overcome this is to make the holes slightly oval, instead of circular, as
indicated in Potter [16]. Chapters 2 and § discuss thick-screen FSS.

1.1.1  ELlement Shape

Figure 1.3 illustrates some of the most common of the various element
shapes: circular [3, 12, 16), rectangular /dipole {17-20], cross dipole {21-25],
Jerusalem cross [25-27], tripole [28], three- or four-legged dipole [29], ring
[30-33), square-loop [34=37], and gridded square loop [36, 39]. One interest-
ing element, invented by Rosen [38], has a capacitor inside a rectangular loop
element to shorten the transmission/reflection band separation (f /f, =
140/12.2 = 1.15). - | |

The relative performance ratings of several freestanding, thin-screen F5Ss
are listed in Table 1.1. Seven elements are considered, and four characteris-
tics—stability of resonant frequency with incident angle, cross-polarization
level, bandwidth, and smallest band separation-—are rated. The resonant
frequency of the fieestanding dipole element array has the worst stability
with incident angle variations. Hence, it has the smallest operable bandwidth.
The reason is that when a vertically polarized incoming wave hits a half-wave
dipole in the x-y plane, as shown in Figure 1.3, the dipole will resonate

| I iy,

l . - | 1
Square Ring Gridded Cross Jerusalem Rectangular
Loop ., Square Loop Dipole Cross Loop with a

; Capacilor

h‘}*

:, —

:: L J

;fj J

—— X | i
Rectangular Tripole Three-Legged Four-Legged Circular

Dipole Dipole Dipale

FIGURE 1.3 FSS element shapes.

FSS ELEMENTS 5

TABLE 1.1,

Stability of

[Resonant

Frequency

with Cross-

Angle of Polarization Larger Sinall Band
Type of Element Incidence Level Bandwidth Separalion
Loaded dipole 1 2 | i
Jerusalem cross 2 3 2 2
Rings i 2 1 {
Tripole 3 3 3 2
Crossed dipole 3 3 3 3
Square [oop I l 1 1
Dipole 4 1 4 !

Ratimgs: best = |, second best =2, .. 3
Based an the freestanding single screen’s performance.

regardless of incident angle. However, if the incident direction is ablique to
the broadside of the dipole, the dipole will not resonate effectively, depend-
ing on the incident angles, because the projected length of the dipole in the
incident direction Is now less than a half-wavelength. For (his reason the
resonant fréquency of the dipole or the crossed-dipole element FSS shifts
drastically when incoming waves have large ncident angles.

1.1.2 Element Size

When a strip dipole element, such as that shown in Figure 1.3, is illuminated

by an RF source, and it the length of the dipole is a multiple of a
half-wavelength, the dipole will resonate and scatter the energy. When many
strip dipoles are arrayed, the reradiated energy from all the elements will be
coherent toward the direction as if a reHeclion is occurring, where lhe
reflection angle equals the incident angle. This is true because the induceq
surface current on each strip has a phase delay relative to its. neighboring
element. It is this phase delay (hat causes the scattered waves trom all the
elements Lo be coherent toward the reflection direction.

For square-loop and circular-loop (ring) elements (Figure 1.3), resanance
occurs when the tength of each half-loop is a multiple of a half-wavelength.
In other words, each half-loop is acting as a dipole element. The length of
the whole loop therefore needs to be a multiple of one full wavelength. To
avoid a null in the scattered pattern, the length of the loop must be one
wavelenglh instead of a multiple wavelength (a one-wavelength-long dipole
will have a null in its broadside direction, a 1.5-wavelength-long dipole will
form wtwo nulis in the oft-broadside directions, ete.) Similarly, a multiwvave-
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6 FUNDAMENTALS OF PERIODIC STRUCTURES .

length loop is expected to have such undesiralle nulls formed in its scattered
pattern. To sumimarize, the mean circumference of 3 printed circular-ring
element for the FSS application must be one wavelength long. For a ring

element printed on a dielectric substrate, the electrical length of the circum--

ference must be one effective wavelength, and the physical circumference will
therefore be less than one free-space wavelength; this requirement is the
result of the dielectric loading eflect.

When the element size is quite different from the resonant. dimensions,
the incident wave will travel through an FSS screen as 1if the screen were
essentially transparent. A small loss will occur due to dielectric, copper
conduction, and scattering. Figure 1.4 illustrates the typical transmission
characteristic of a ring-element FSS with a resonant frequency of f, =
8.4 GHz, at which the screen reflects the incident wave. For frequencies

A T

0.064 cm thick ¢, = 3.5

CIRCULAR RING ELEMENTS
ELEMENT SPACING = 0.85 cm
SQUARE LATTICE SPACING

RING INNER DIAMETER = 0.72 cm
RING OUTER DIAMETER = 0.74 cm

l,'j T
= ol —
b _
98] | -
G
_"_J o
z i
S 20| o g
0 3 ]
) - ——-— 30°*TE
= L s 458 TE ]
@ 30 307 TM -
2 ————— 45° TM i
4[] o [ ] 1 L] i I

FREQUENCY (GHz)

FIGURE 1.4 Transmission performance of a ring-element FSS with dielectrics on
both sides (From [32]).

DIELECTRIC LOADING EFFECTS 7

lower than Jo» transmission occurs. Transmission also occurs for frequencies
higher than fo» except when the size of the element is a multiple of the
resonant dimension at f, and when the element spacing becomes so large
that a grating lobe starts to appear (to be discussed later).

1.2 DIELECTRIC LOADING EFFECTS

Dielectrics are often used for stabilizing the drift of the FSS’s resonant
frequency with the steering of incident angle or for structural support.
A number of dielectric ioading effects have been published {3, 41-43].
Figure 1.5 shows that resonant frequencies decrease as dielectric thickness
increases [42]. Two basic dielectric configurations are shown: (1) the grids are
bonded on one side, and (2) the grids are embedded centrally in the
dielectrics. For a normally incident thin grid (with a 0.02-mm-thick dielectric
€, = 3.0) the resonant frequency is 20 GHz. As can be seen, the resonant
frequency of the partch array embedded in the dielectrics (with e, = 4.0)
approaches 10 GHz (= 20/ y/e,) as dielectric thickness js increased beyond
5 mm. The passband frequency of the slot (aperture element) array in the
dielectrics also tends to this value, but it exhibits an oscillatory behavior
about 10 GHz. For a patch or slof art y bonded on one side of the dielectric
(with e, = 4.0), the resonant freque?iy approaches 12.5 GHz (= 20/ \/; ,
with €, = 2.5, which is the average of 4.0 and 1.0).

The dielectric loading effect of a slot array aiso depends on incident angle
and wave polarizations. For transverse electric (TE) incidence, the resonance
decreases as the dielectric thickness increases (sirilar to normal tncidence).
For transverse magnetic (TM) incidence, a significan: reduction in the
dielectric loading effect is noticed as the Brewster angle (63°) is approached.
At this angle the air/dielectric interface does not reflect incident waves, and
the resonant frequency behaves similarly to that of the patch array (i.e., it
remains constant at 10 GHz). In fact, the angular stability of the slot arrays is
lost for dielectric thickness greater than ! mm. However, if the dielectric
thickness is a multiple of a quarter-wavelength (i.e, e, = 4 and ¢t = 7.5 mm),
the resonant frequency shift again becomes stable. |

Note that there is a mismatch loss for 3 slot array with dielectric on one
side, unless its thickness is a multiple of a half-wavelength. For exarnple, the
mismatch loss is 2 dB at normal incidence with a €, = 4 dielectric substrate.
However, with an equal thickness of dielectric on both sides of the grid, the
reflection at the two air /dielectric interfaces are tuned out at the resonant
frequency; consequently there is no passband mismatch loss whatever the
dielectric thickness. -

One of the most important applications of dielectric loading is the multi-
band FSS design. For a multiband FSS application, the highest frequency
generally determines the element spacing or lattice size. For the triband FSS
in Figure Iﬁ the element spacing is 0.39 free-space wavelengths at the Ku
band (13.8 GHz), too small to accommodate the circumference of the ring
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FIGURE 1.5 Variation of resonant [requency with the dielectric thickness for normal
incidence (JFFrom [42}}*!

CRATING-LOBE PHENOMENON Y

etement, which must be one electrical wavelength long at the X bang for
reflection to occur. One method of achieving both criteria (civcumlerence of
one elecurical wavelength at the X band and less than hall a free-space
wavelength spacing at the Ku band) is to use the dielectric loading effect to
recduce the ring’s physical size. Calculation shows thatl a triangular lattice can
be used with a material of relative dietectric constant 8.0. However, such a
material 15 not commercially available. Hence, a material with a relative
dielectric constant of 3.5 (Kevlar epoxy) and .004 cm thick is used as the
substrate on both side of the ring elements. In this design, the square lattice
1s adequate to avold grating lobes. Although this Kevlar epoxy material has a
relatively higher loss tangent, it does not introduce significant insertion loss
for the IS8 because the RF energy travels only perpendiculayly through the
very thin substrate mstead of parallel along the substrate, as §n a microstrip
or stripline transmission line. Therefore, for the FSS application, the high-
dielectric-constant substrate should be kept thin enough to prevent the
generation of surface waves, especially al large incident angles. Note that the
surface wave (or Wood's anomaty, discussed later) ol-an FSS grid embedded
in dielectrics will not be eliminated but only pushed higher in frequency if
the dielectric is thin. Furthermore, the occurrence of grating lobes depends
on the physical size of the lattice and ot on the presence of dielectrics [41).

1.3 GRATING-LOBE PHENOMENON

Grating or Bragg lobes are undesired secondary main beams occurring at
angles with higher-order constructive interference when the laltice size

TABLE 1.2. Periodic Array Lallice Type and Grating-Lebe
Criteria (From [32]}

LATTICE TYPE MAX, SPACING 8= 0° 8= 45°

a 4 1 a a
H o~ 1+sin6, el 3o s %as

SQUARE SPACING

a
60? /*-.1 .866a a 1.13 A a
l_l. luq - sing, " <1.15 5o < 0.67

TRIAMGULAR SPACING

4 ,
3. 4" 1.
»—JAE 2 le 2.c112 | -2 <085
1

IR lu{ 1+ s5in 8, Ag Lo

BRICK SPACING
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FIGURE 1.6 Transmission performance of a thin-slot FSS (square lattice, period =
1.78 cm, slot length = 1.32 em, width = 0.128 em) with dieleclries e, = 4, thickness =
0.7 and 0.35 cm [or case (i) and (ii); respectively) on both sides {® 1978 IEEE).
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becomes electrically large. Since period array elements behave similarly to
the conventional array, the largest lattice size to avoid grating lobes should
obey the same rule that governs a conventional array antenna [8, 9]. A
general rule for avoiding grating lobes is that the lattice size should be less
than one wavelength for the normal incident case (0° incident angle). For
large incident angles, the spacing should be kept below one-half of a
{ree-space wavelength. Table 1.2 lists grating-lobe criteria for square, triangu-
lar, and brick lattices. It also shows the maximum lattice size to avoid grating
lobes. The square lattice has the most closely packed elements, and the
triangular lattice has the largest element spacing. The spacing requirements
given in this table prevent the peak of the grating lobe from entering real
space. To avoid wasted energy, not even the shoulder region of the grating
lobe should enter real space:; therefore, the lattice size should be approxi-
mately two-thirds or less of that given in Table 1.2.

1.4 WOOD’S ANOMALIES

Wood’s anomalies were first observed in the chffraction spectrum of optical
gratings in 1902 [44]. They exhibit themselves as rapid variations, in the
intensity of the various diffracted spectral orders in certain narrow frequency
bands, which could not be explained by the grating theory at that time [44].
These anomalies usually occur at frequencies near to or higher than the
resonant frequency of any periodic structure. Thus, they have significant
impact on the design of periodic structures used in solar filters [45] and FSS
radomes [41]. Figure 1.6 (Figures 3 and 5 of Luebbers and Munk [41]) shows
the manifestation of these anomalies as the nulls in the transmission charac-
teristics of a slot array. It also shows that the frequency of Wood’s anomalies
or transmission null decreases as dielectric thickness increases. Further, for a
slot array in free space, Wood's anomalies oceur just below the frequency at
which the grating lobe starts to propagate in real space, which for normal
incidence on a rectangular grid array first occurs when the lattice size is one
wavelength. It has been shown that these nulls are associated with a surface
wave propagating along the surface of the array [41].

1.5 FSS ANALYSIS TECHNIQUES

Numerous methods have been used to analyze FSSs. One of the simplest

methods is the equivalent circuit model [26, 27]. In this analysis the various
strip segments that form a freestanding patch element in a periodic array are
modeled as inductive and capacitive components on a transmission line.
From the solution of this circuit, the reflection and transmission coeflicients
of the FSS screen are found. Since this approach uses the quasi-static
approximation to calculate the circuit components, 1t is ‘only accurate up to
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the resonant fi‘eqlle:1cy of the screen. In addition, it cannot mocel tIlﬁﬁ:
dielectric loading efiects accurately. A sample computer code *using this
equivalent circuit model is piven in the Appendix. The mutual-impedance
method (Pelton and; Munk {22]), which uses antenna array theory and a
knowledge of the mutual impedance between apertures, has also been used
successlully.

The nm{Iul (or integral equation) method [3, 12, 19, 25, 32, 40, 46] has
been the most successful in predicting the performance of periodic struc-
tures, particularly in:its ability to handie an arbitrary incidence angl‘ﬂ* The
method begins with the derivation of the integral equation by matchmg tlﬂ{e
Floguet mades i space and the aperture or culient Liodes on the pE:rm_ch
surtace. The integral equation may be formulated by using the spatial-
112, 19, 32, 40, 41] or the spectral-domain approach (3, 25,' 46l With the
spectral-domain approach the complicated integral eqqation IS I'l?dl{t‘&d Fﬂ a
simple algebraic multiplication of simple functions (trigonometric functions
and integrals involving them). Next, the method of moments [12-] or the
conjugate gradient techniques [3] is used to solve the integral equation.

To solve the integral equation, one must reduce the infinite number of
equations ~ith an infinite number of unknowns to a finite number of
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FIGURE 1.7 [I'SS measurement range.
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equations with the same number of unknowns. This must be done in

accordance with the relative convergence criteria as indicated n Lee [H01
Further discussion on this subject is given in Chapters 2, 3, and 5.

1.6 MEASUREMENT TECHNIQUES

Various methods have been used to meuasure transmission and reflection
properties of IESS screens, Transmission performuance may be tested at room
temperature on hnite-sized flat panels in an anechoic chamber, as illustraied
in Figure 1.7. The measurement setup (Figure 1.§ {46]) uses standard-gain
horns as ransmitting and receiving aniennas. By turning the horn antenna’s
polarization from vertical to horizontal, one can measure TE and TM
transmission charactevistics of (he test panel between lhe\tﬂwa horns. In
principle, this setup should be able to measure the FSS's reflection character-
istics. However, erroncous data were oblamed due (0 the strong edge
diffractions from the test panel. These dittractions miay be attributed to the
Lorn antenna's large beamwidth and (he relatively small FSS panel size.
The waveguide simulation technique [47], used routinely in impedance-
matching testing of phased array anlennas, provides an alternative for mei-
suring the FSS transmission /reflection performance. However, (1) it i1s de-
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EAS

FIGURE 1.9 Precision FSS measurement selup.

structive (i.e., an FSS test sample has to be cut out to fit tightly inside the
cross section of the test waveguide), (2) the effective incident angle on the
F5S sample changes as the frequency is swept over the waveguide’s operating
band, and (3) it is limited for TE polarization, since the precise TM
waveguide simulator test is very difficult to perform. Despite these limita-
tions, this ‘method is often used to spot-check FSS performance and to
provide simple validation checks for FSS analysis /design soltware.

Finally, the precision setup with horn and lens antennas (48, 49], as shown
in Figure 1.9, can be used for nondestructive measurements of the FSS
transmission and reflection performance with TE and TM polarizations.
Since the FSS test panel is illuminated by the narrow Gaussian beam of the
lens, the edge diffraction effect is reduced significantly. In addition, large-
incident-angle tests can be readily conducted with this approach.

1.7 APPLICATIONS -

Periodic structures have a myriad of applications and have contributed
significantly toward advancing our living standards. A-good example is the
screen door of a microwave oven, consisting of a periodic array of metallic
holes designed for reflecting microwave energies at 2.45 GHz while allowing
light to pass through. This allows us to see the tood being cooked inside the
oven. |

In a dual-reflector antenna systenr: an FSS can be used as the subreflector.
Different frequency feeds are optimized independently and placed at the real
and virtual foci of the subreflector. Hence, only a single main reflector is
required for multifrequency operation. For exampie, the FSS on the high-gain
antenna (Figure 1.10) of the Voyager spacecraft was designed to diplex the S
and X bands [21]. The S-band feed is placed at the prime focus of the main
reflector, and the X-band feed is placed at the Cassegrain focal point, Note
that only one main reflector is required for this two-band operation. Thus,
tremendous reductions in mass, volume, and, most important, cost of the
antenna system are achieved with the FSS subreflector. For a multifunction
reflector antenna, high-performance FSSs are required to diplex two closely
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/Prirnar}f Retlector

X-Band Feed FSS S-Band HGA

/] Feed
AN

LGA

Waveguides _(L o

to RFS LGA Pickup
ST 7T\ HGA Feed Cable Probe

—
I ‘\&

Fmbe-’/— Probe

R S LGA Feed Cable
bl F
RIS D Grrr———) LGA Pickup Probe Cable

HGA Pickup Probe

FIGURE 1.10 Voyager’s dual-frequency reflector antenna with an I'SS subreflector.

separated bands or to multiplex three or four bands (discussed in Chapter 4). T
Further, a dual-frequency, equal-beamwidth, compound reflector antenna

(Figure 1.11) has been developed by piacing a high-pass FSS at the rim of‘the
solid reflector {50

Frequency selective surface radomes [51~53] with aperture-type element
can be tuned to provide bandpass characteristics. In other words, at the
operating (in-band) frequency of the antenna the signal passes through the

e F !

FIGURE 1.11  Compound reflector antenna with an FSS rim (From [50]).
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radome with minimum insertion loss, whereas at the c:ut—nf—bas;? hzquill:cltﬁz
the signal is reflected, The racdome can usually |Jlt’: clqsagneq o ; EL E;m“m
skin of the vehicle so that minimum scatlering is acl1{evzl. e
description of thick- and thin-screen FSS radome 1s gven In mr:le:r .h .
The effect of the incident angle on the transvlmtted x_wave ( 1:1‘1%*& 11*‘-*
aperture-element FSS allows it to be used as a spatial hltes [54]. igure L1<

L
N

D, =D, =8.9mm, L=2.0mm, W=0.2

Transmission Coeffictent (db}

Lnltlllll:l

. i
2P0 10 20 30 40 60 €0
" 2 Angie of {ncidence (deg)

FIGURE 1.12 Angular liliering performance of a tripole slot-element array ™

incicdence (From Ref, 55 © Wiley, 1993).
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FIGURE 1.13 Horn antenna radiation pattern with (dashed line) and without (solid
line) the angular Alter of Figure 112 (From [55] © Wiley, 1993).

shows the angular filtering characteristics of tripale slot FSS {55]. The spatial
filter has applications in sidelobe suppression and beam formung of antenna
systems, as shown in Figure t.13. Other spatial filters are periodic strips [54],
FSSs with circular holes [56], cross-dipole slots [55], and microstrip patches
[52].

The feasibility of {requency scanunmg via perwdic structures has been
demonstrated in Johansson er al. [57-61). The idea is to design the grids
(blazed grating) so that the fArst-order diffracted wave will propagate and
serve as a frequency-scanned beam (Figure 1.14) while the specular refiecied
beam is suppressed. Johansson found that curcular-ring patch-e¢lement grids
[61] give high blazing elliciency (power conversion from imcident held to the
diffracted field) with circular polarization for a broader bandwidth than does
the cross-dipole element [6(}). |

Thick rectangtiiar or circular aperture-element FSSs have been designed
for collecting solar energy [45, 62] This type of FSS is a bandpass screen; that
18, it is essentially transparent in the frequency band where the solar cells e
most efficient, and it rellects at frequencies outside this band. In the far-
infrared region, passive quasi-oplical grids are used as beam splitters and
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f-l‘-'-'.". rg*‘: fa
sinB_jg= & - sing

p is the period of the grid

FREQUENCY
SCANNING
REFLECTOR

FIGURE 1.14 Frequency scamﬁng reflector antenna with a blazed grating (From [60)]
© 1989 IEEE).

mirrors {1, 63] for improving pumping efliciency in molecular lasers. A laser
cavity mirror is usually a rectangular-mesh grid designed to totally raﬂac:t at
the wavelength of the energy used to pump the cavity and to partially
transmit (0% to 409) at the lasing wavelengti. Since no energy used in the
laser pumping 1s lost at the mirror, the efliciency of the system is optimized.
Anotlier interesting quasi-optical application is tlie use of a sun shield as a
thermal control cover of spacecraft antennas [63]. The sun shield consists of a
square lattice array of vacuum-deposited aluminum square patches on a thin
Kapton film. This grid not only provides for sunlight blockage but also allows
for RF signal transmission.

Finally, active grid arrays may be the heart of future low-cost, high-power,
sohd-state communication, broadcast, and radar systems [4]. Various griFI
arrays have been demonstrated, including detectors, phased shifters, multipli-
ers, oscillators, amplifiers, and switches [4~7]. In these grid arrays (1) the
power is proportional to the area, and (2) the equivalent ctrecuit impcdanceq: 18
determined by the dimensions of the unit cell. These allow great design
flexibility. Thus, they provide not only high power and efliciency simuﬁltanle*
ously but large dynamic range and low noise. Further discussion on this grid

array can be found in Chapters 7 and 8.
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APPENDIX .

FORTRAN 51

Computer Code for Gridded Square-Loop, Square-Loop, or Double-Square-
Loop Patch-Element FS&

: - A 9
PROGRAM ECM ) b
H:‘-i11#li:‘-!-‘lh***#*ﬂ:**li:#'ﬂt*ﬂi*l“lt*IIH#lklhmIIHI!ﬂHIH##1**t‘##“h***#l*ﬁ*dﬂ*ﬂfﬂf#iﬂi******##ﬂt* ‘:

*TO.FIND THE FREQUENCY CHARACTERISTICS OF AN FSS WITH GRIDDED-SQUARE _.f"i 5

“LLOOP, SQUARE-LOOP AND DOUBLE SQUARE-LOOP PATCH ELEMENTS USING THE f
*EQUATIONS GIVEN IN REFERENCES [34-36]. 3
*WRITTEN BY TE-KAO WU 8-01-04. .
<t
b g

*variables: (all dimensions are in inches) E 4

"NF: number of frequency points (integer) .- 8

*FI: beginning frequency (GHz)

*DF: Frequency increment (GHz) _
“ER: effective dielectric constant of the substrate ; 53
"F: Frequency (GHz) :
*PR: reflected power

*PT: transmitted power

*RDB: reflected power (dB)

“TDB: transmitted power (dB)

*P: period of the unit cel]

*LS = 1 for gridded square-foop patch element FSS

*W1 strip width of the grid

"W2: strip width of the square-loop

*D: Length of the square-loop side

“G: gap width between the grid and the square-loop

*LS = 2 for square-loop patch element FSS
"W strip width of the square-loop 55
*G: gap width between two square-loop elements

*LS = 3 for double square-loop patch element FSS

*WI1: strip width of the outer-loop

*W2: strip width of the inner-loop

*G1: gap width between two double square-loop elemients 56

open(5,file="ein.dat’)
open(6,file="eou.dat")

DIRT=.0001

READ(5,*)LS,NF,FI,DF

IF(LS.EQ.2)GO TO 51

IF(LS.EQ.3)GO TO 52

WRITE(6,%)"THIS IS GRIDDED SQUARE-LOOP FSS DESIGN"
READ(5,*)P,W1,W2,D,G,ER

WRITE(6,1)P,W1,W2,D,G ER

1 FORMAT(SX,"P",SX,"WI" 4X,"W2" 4X,"DI" 4X."G 1" 4X "ER" o

&/6F6.3)

W2=w2*2,

APPENDIX 23

FDRMAT{ISJ‘{,“F"',SU(,“PR",3X,"PT,BX,“RDB",?X,"TDB“{)
GO TO 53
CONTINUE
WRITE(6,*)*THIS 1S SQUARE-LOOP FSS DESIGN®
READ(S,*)P,W,G,ER
D=P.G
WRITE(6,9)P,W,D,G,ER
FORMAT(S}{,'P',S}C,'W',:#X,'D'AX,'G',4X,’ER'
&/6F6.3)
w2=w*2
GO TO 53
CONTINUE
WRITE(6,*Y*THIS 15 DOUBLE-SQUARE-LOOP FSS DESIGN"

- READ(5,*)P,W1,D1,G1,ER

READ(S,*)W2,D2,G2
WRITE(6,8)P,W1,D1,G1. ER

WRITE(6,4)W2,D2,G2
FORMAT(/SX,"W2",4X,"D2",4X,"G2"/3F7 4)
FORMAT(5X,"P*,5X,"W1"4X,"D1" 4X,"G1" 4X "ER"

&/6F7.4)

wi=w2*2.

continue

Write(6,2)

DOP=D/P

DO 11 I=1,NF
F=FI+DF*(I-1)
WL=11.8/F
IF(LS.EQ.2)GO TO 55
iF(LS.EQ.3)Go TO 56
J{3=}{G(P,W2.WL)"‘DOP
}{2=J{G(P,WI,WL}
C1=J{G(P,G,WL}
B1=2*ER*DOP*(C]
}{1=2.“'X2*J{3!(X2+ X3)
BT=1/X2+ 1./(X1-1./B1)
GO TO 54

CONTINUE
X3=XG(P,W2,WL}*DC}P
CI=}{G(P,G,WL)
Bl=4*ER*DOP*C1
BT= 1./(X3-1./B1)

GO TO 54

CONTINUE

dip=di/p
d2p=d2/p
ZE=XG(P,W2,WL)
21=}{G(P.W1,WL)
}{1=2.‘DIP*ZI'ZZJ’(ZI + X
KZnDZP‘XG(P,WT,M)
C1=}{G{P,GI,WL)*4.
Bl=75*ER*DIP*C]
CZn#.*XG(P,GE.WL}
B2=ER“'DZP*C1*CZ!{C1+CZ)
BT= LAX1-1./B1)}+ IJ(}{'Z-LEEE}
PT= 1.{(1,+.25"BT*BT)
PR =1.-PT
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IF(PT.LT.DIRT)PT=DIRT
IF(PRLT.DIRT)PR=DIRT
RDB=10.*ALOG10(PR)
TDB=10.*ALOG10(PT)
WRITE(6,3)F,PR,PT,RDB, TDB

1I  CONTINUE

3 FORMAT(5F10.4)
STOP
END
FUNCTION XG(P,W,WL)
HPI=1.5708
Al=HPIP
DL=D/WL.
PL=P/WL
WA =W/WL
CS1=1/SIN(A1*W)
XG=PL"(ALOG(CS1)+FF(PL,WA))
RETURN '
END |
FUNCTION FF(P,W)
CA=COS(1.5708* W/P)
it N A
S ]-C
Q=(1./SQRT(L.-P*P))-1.
F1=Q*C*C/(1.+Q*S5*S)
F2=P*C*25%(1.-3.*S)

TDB

-17.0850

-7 .5324
-5.0245
-3.0G871

-1.5574

~.4500
~.0004
" T AL
-3.1341
-7.6593

FF=F1+F21*F2
RETURN,
END :
Bample Run #1
Input File
LA ey by 4
. 0.3543,.022,.0443,.35,.022,1,00
Qutput File
THIS 1S GRIDDED SQUARE-~LOOP FSS DESIGHN
P Wl W2 D1 Gl ER
«354 .U%Z .044 .350 .022 1.000
I PR PT RDB
1.0000 .8804 L0196 ~-.0858
2.0000 9217 .07B3 -, 3542
3.0000 +B23185 1765 -.B434
4 .0000 .B685%6 3144 -1.6396
5.0000 . 5088 v4912 -2.9349
G, 0 Sl . JOL3 . 6987 -5.2093
7.0000 L0984 .8G16 -10.0690
8.0000 . 0001 . 2999 -40,000G0
S.0000 P L i (R L BA487 -8.2030
10.0000 5141 . 4859 -2.8899
11.00040 8286 1714 -.8167
12,0000 .9747 .0253 -,1111
13.0000 9981 L0019 -,0082
14.0000 .9602 .0398 -,1762
15.0000 .B969 . 1031 ~. 4726
1e.0000 ¢ 2251 1747 -.8340
17.0000 7532 2468 -1.2312

-~15.9764
-27.2586
-14.0045
-9.8672
wl.0767
~6.0758

L g Al e Tl F - -
R .y -

R T e

Input File
2 M, 2

Qutput File

input File
A e
U.288,.009,.279,.,009,1.0
.009,.189, .036

gutput Fiie

Sample Run §2

0.353,.012,.,115,1.12

P W b G
3o Bld 230
¥ PR

2.0000 .0043
4.00060 0098
4.0000 LO1lB2
5.,0000 .0300
&.,0000 .0460
7.0000 .0678
8.0600a40 L0971
9.0000. . 1368
10,4000 » 1908
11.000G0 2645
12.00G00 3645
13.00080 .4963
14.046006 . 6564
15.0000 62398
16,0000 9613
17.0000 L9984
18.0000 9305
12.0000 . 7994

Sampla Run #3

P W1 Pl
.2880 ,0030 .2790
W2 D2 G2
.0090 ,1890 .0360
F PR
1.0000 .0199
2.0000 . 0808
31,0000 1861
4.,0000 33486
5.0000 5249
6.0000 . 7353
7.0000 .9180
8.0000 . 9999
5.0000 9185
10.0060 . 6826
11.0000 Ko Fe e
12,0000 1114
13.0000 .0003
14.0000 ., 0927
15,0000 3492
16.0000 L6467
17.0000 8697

THIS IS5 SQUARE-LGQP F3G DESIGH

ER

i L P Y

2

. 9957
. 3902
« 2818
. 3700
9540
.9322
' .90329
.a632
.a092
N (5 EpTs 7

FEL S
50237
3416
1702
0387
0016
. 0695
20086

RDB

-23.7105
-20.0672
=17.3962
-15.2328
~13.2685
=11.6%300
~10.,1288

-8,6393
—7+1541
-5.7753

-4 ,3B35
~3.0430
-1.8153
-.8105
=2 1714
~. 0071
=, 3100
- 9748

THIS IS5 DOUBLE-SQUARE~LGOP FS5 DESIGH
Gl ER

.0080 1.0000

BT

.2801
9132
.5149
.0654
»4751
L2647
L0820
. 3G01
.08B0O5
3174
.6263
. 8886
W50 62 g
L F0G7 3
. 6508
R 3

. 1303

RDB

-17.0038
-10.9266

-7.3260
-4.7546
—2 7395
ml 3351

= FELE

=.00G6

-.3644
-1.6580
- 2 FE T
« 35306

~34,9848
-10.3293

-4.5658
«1.8947
-.6065

APPENDIX 25

TDB

-.0185
-.0430
- 0728
. 1324
- 2047
-, 3047
-.4435
—~. 65388
= 55895
il

-1.9686
- IR
~4.6644
=-7.68813
-14.,1237
~27.8726
-13.57717
=6.9760

TDB

~.,0875
-.3658
-.B2EB9

o HMEE L
=y
~5.7730
-10.6630
—-38.4182
=1 B4 30
—-4.9846
-2.,.0320
i L)
-.0014
=t 2D
=1l 85352
g .h19]

-8.8485

—— el . g - i
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CHAPTER TWO

i

Analysis of Frequency
Selective Surfaces

CHI H. CHAN, Department of Electrical Engineering, University of Washington,
Seattle, Washington 98195

We discuss a number of techniques for analyzing frequency selective surfaces
(FSS). The formulation is based on constructing an integral equation for a
single unit cell. The integral equation is modified for periodic cells by the
application of Floquet’s theorem such that the continuous convolution inte-
gral 1s converted to an infinite summation with each summand being a

product of the spectral Green’s function and the spectral equivalent surface
current. This modified integral equation is discretized into a system of linear

equations in the context of the method of moments. Various basis and
weighting functions are discussed in conjunction with the choice of a matrix
solution. A general procedure of deriving the spectral Green’s functions is
provided. Illustrative numerical examples are given for various FSS structures
discussed. '

2.1 FORMULATION OF A FREESTANDING FSS

The technology of frequency selective surfaces has a long history of develop-
ment since the first grating made of equally spaced hairs was reported by the

Frequency Selective Surface and Grid Array, Edited by T. K. Wy
ISBN 0-471-31189-8 © 1995 John Wiley & Sons, Inc.

27



28 ANALYSIS OF FREQUENCY SELECTIVE SURFACES

FIGURE 2.1 Treestanding frequency selective suifaces: (a) conducting patches;
() apertures.

American physicist David Rittenhouse more than 200 years ago [1]. Contem-
porary FSSs comprise periodically arranged metallic patch elements or aper-
ture clements within a metallic screen and exhibit resonances at which total
reflection (patches) or total transmission (apertures) occurs. Example patch
and aperture geometries are shown n Figure 2.1

Extensive analytic research has been performed to predict the refiection
and transmission properties of FSSs. Mittra et al. [2] provides a long list of
references pertaining to aralyses of FSS; some of the important contributions
are cited here as well [3—-47]. Based on this extensive body of work, tech-
niques are now available to model FSSs efficiently in a wide range of physical
configurations. In this chapter, the techniques currently being used are
discussed. Several assumptions have been made: (i) the FSS is infinite in
extent, so ditlr action irom the edges of the surface in a plactical situation is
ignored, (ii) the incident radiation is_a monochromatic plane wave (other

T . e e T

sources can be treated as a summation of plane waves), and (iii) the

5

FORMULATION OF A FREESTANDING FS5 25

c::mduclmg screen is infintesimally thin, except for a fiute-thickness aperture

screen.

The first step in formulating the problem ol electromuagnetic scaliering
fropt an FSS is (o relate the fields scattered from the [SS to the surlace
currents induced on the screen by the incident field, nitially, we consider the
scatlering of a single freestanding, per f&uly conducting | patch lying on the x-y

"'-"—-"—q-“ — 25

plane, as shown in Figure 2.2, We will show how the integral equation
corresponding to a single patch 1s modified to include the contributions from
an array ol patches. Later we indicate how this formulation can be modilied

S — ey S

to handle ]'i"li.l“‘l?_lhfﬁhﬁigl"ﬁfliﬂ (with finite or infinite cmului..uwuea} embed-
ded in a layered medium. T

The scattered feld from a conducliig patch on the y-y piane due to an
incident plane wave can be calculuted from the induced current on the paich

cadiatine in free space. The scattered Aeld at point r due to a source ¢ is [48]
L |

i

- T

1

}'-’Eu

E' = —jou,A + V(V - 4), (2.1)

where

A =[Gy df = G, (2:2)
E _.l"!" “!I‘ -_II'JI

Y = 2.3

G(r,l ) ‘_I..ﬂﬂnl[‘ 4= rrlfl ] ( )

k, is the wave number k; = wy/py€,, the asterisk represents a convolution
operation, J is the induced surface current on the conductor, and & is the
free-space Green’s function. On the conducting patch, the tangential electric
field, denoted by a subscript ¢, vanishes:

. . Tl i
t=E + E" = 0. (

I3
i 138
S

palch,

FIGURE 2.2 Scailering {rom u single canducting
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The superscripts s and inc correspond to the scattered and incident fields, | wheéa = L_Si B Aﬂﬂ
respectively. Subsequently Eq. (2.1) becomes

f}U 5
o,

@;}de-g{'{
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FORMULATION O

. —~J
G

= =] for k2 > a? + 2,
| 1 2ykg — o - B e th
E(r) = jopoA,(r) — —[V(V - A(D))],. (2.5)

Jwe, 1

| 2\/{1*2 - ﬁz_- kg

! otherwise (1 is an identity tensor). (2.10)
| o
(L]
The proper branch of the square root in Eq. (2.10) is chosen to satisfy the
radiation condition.
Note that we have formulated the EFIE for 2 single patch only. To extend

the spectral domain method to a periodic array of patches, let us first
consider the periodicity in the x direction only. To satisfy Floguet’s theorem

Equation (2.5) is the electric-field integral equation (EFIE) [49] for the
perfectly electric conducting (PEC) patch. For a planar infinitesimally_thin

surface only surface current components J. and J, exist, and hence, only A,
and A, are nonzero. Therefore, we have Eq. (2.3) in matrix form as [29]

e e e e g L L LB e

o —

32 52 j; for periodic structures, the current must be in the form "44, EQ)
| Erine | —Jwun g & dx? dx dy A | ik o k
cxd O - 0 ’ o 76 ;r a o J(x + a) =J",~:}E*’H 2 (2.11) -
inc 2 ] . ) ( : ) ' i \
_EP J k? g gz 32 A"'_ | - o Jt‘"\jf&l.
35y ot 2 .' where k™ and a are the incident wave number and periodi ty in the x

' . . . . ¥ - fAne
. | direction, respectively. Defining a new function J/(x) = J(x)6/*¥% - we have

i e B = — e —gEwE - T

J(x+ea@)=J(x+ g)e"-"‘:}"cf-‘:j"ﬂ) - J(x)eiki-"”ﬂe ~jk " x +a)

where A, = G*J, and A, = G*J,. Defining a Fourier transform pair as

(2.12)

—— e am e R -

fla, B) = f [ flx,y)e e P gy dy (2.7) Hence, J'(x) is a periodic function with a periodicity of a .that can be
T e represented by the sum of its Fourier components:
L e . - , 5
f(l', }r) = Zf f f(ﬂ'i B)chr.\‘ejﬁy oy dﬁ, (28) o .)”(.Y) = Z jmﬂ,f('lm-rr,f’ﬂ}.‘r_ _—— "'_1 . f{-(ﬂ}j)
(27) ) —ed o 2 e .

As a result, J(x) can be expressed as
one can replace the convolution and partial derivatives appearing in Eq. (2.6)
by G*J « GJ, dA/dx & jaA, and dA/dy « JBA in the Fourier domain.
After taking the inverse Fourier transform to obtain the spatial domain
expression, Eq. (2.6) now reads

_ 20
]( ,.1'} o E j;nej{hnwja+kif"‘}x'

] = -

(2.14)

If we carry out the same procedure with k' and b, the incident wave
; number and periodicity in the y direction, respectively, Eq. (2.9) reads

H.E;IIC[‘A:} y)
"_ ~inc ‘ Einc X, }’} 2ar 3 - -kzﬂarzrr o, n-"
hEy (I}y)'- - 'T;nc( =il E Z ’ 5 " ~ G(ﬂ:m!ﬁu)
: ‘E}’ (I: }*) Jwegalb = = = —oo | —a,,B, kﬂ o B.u_
1 & . 1 |k2=d -ap | [7] | FAE |
gzl L3 L G| ermei®r dadp, (2.9) | P B gl B, (2.15)
o ra —c:n —m}iUEﬂ —‘ﬂ:‘ﬁ ,"{ﬁ - B* .}},J J\f(ﬂ'm! BH}
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where
2mar _ 211 ,
@, = + AC and B, = 5 “+ :‘c_:f‘“. (2.10)
{a

For a skewed 511(.1 as depicted in Figure 2.3, the Fourier transform variables

1ave to be redefined thmubh the use of a rf:c;pmca] lattice [29, 51]. They are
isted here as

PATIE ey i 2HT 2niar
IE.I:H'IJI = fI + k,l' Hn{'j ﬁ!”“ = b Sil] ﬂ R ﬂ

cot {) + k::f‘“*
(2.17)

143 N Sentto
Note that « \ = and 3, =

&, =, 5, when Q) = G0°.

For an npertururtypﬁ: (inductive) FSS as depicted in Figure 2.1(b) (3, 8, 9],
we can apply the concepts of duality to Eq. (2.1) to relate the scattered
magnetic ficld and:the magnetic surface current. Enforcing the continuity of
the total magnetic field on either side of the aperture, one obtains the

following equation:

H(x, )
_.Hj““ X, y)l[

) (& e =] -2 TS & i
52 4"”' E Z "l"ﬂ ﬂum . ﬂnmﬁnm (j(ﬂ.’ ﬁ )
3 : 3 v, e i
J'W#uﬂ;:’ (== —@ j|== — o : _"ﬂmuﬁnm - Bmu
ﬁd.t i_ L‘L‘m“ ) ﬁm;l) Fit J’ﬂ 3 :
, g mnt g It (?.. 18)

‘ .[‘l}‘fh,‘.(?ﬂ"m 3 ﬁum)

FIGURE 2.3 A skewed-grid FSS.
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Here M is the equwdiﬁnt magnefic surtace current al the aperture. A
detailed formulation of Eq. (2.18) will be presented later. The solution of
Eq. (2.18) vields the unknewn magnetic surfuce current distribution in the
aperture ol an induclive FSS. Equation 2.18), however, is valid only for a
pertectly conducting FSS. It the screen has a finite conductivily, we must
formulate the problem in terms of the surface currents on the conducting
portions of the screen rather than the squivalent magnetic currents in the
aperture, because the aperture is shorl-circuited by a perfect electric con-
ducting plane in the process ot formulating the integral equation.

2.2 SOLUTION OF THE OPERATOR EQUATION

Equations (2.15) und (2.18), governing the characteristics of the patch and
aperture FS5S8s, can be solved. with the method of moments. Specifically, we
present the spectral Galerkin method because the equations are ulready
formulated conveniently in the spectral domain.

As a first step, we rewrite Eqgs. (2.15) and (2.18) in the symbolic form

lu = B~ (' fL\l. T *ﬁ?L.l ¥ “L + yj}LJ'T) ‘ (f“.\' + j}”!‘) = (Jq‘g-" * jﬁg}'l’

(2.19)

where v represents etther the unknown induced cwrrent J or M, g corre-
sponds to the known incident E™ and R™ field, and L is the operator
relating the unknown u to the incident fleld g The method of wmoments
begins by expressing u in terims of a sel ol known basis functions |

N N :
2 Ci' fl = Z (icu ju + PC;'; f_rl')l {2?’”)
£ | [ = | |

where the C’s are unknown coeflicients to be determined. To convert the
operator equation (2.19) to a matrix equation, we substitute Eq. (2.20) inlo
(2.19). In the method of moments, the operator equation is modified by
forming a scalar product between it and a “test funcuion.” In Galerkin's
method [37, 49], the test function is chosen 10 be the same function as
the basis function. Consequenily, Eq. (2.19) is now converted (o a maltrix
equation

a

I
I tn' ) LIJ' Z _f, J

=l

, N
f.‘t'-" L,\',' E fr' - o g w
t 1.F'=l & iy, <f.r.r'= g.r) |
: N ¥ <f " > ’
1 . ¥i 132
j.m? L}'_r Z-f‘_vj ) ) ) ' ; )

sy

™
|
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N
fj*f" L}*.t E f.u

Je=d
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where the scalar product (a, b) is defined as

{a,b) :f a*bds, (2.22)
unit cell .
a” is the complex conjugate of a, and the integration is over the area of the

unit cell as depicted in Figure 2.1.

The efficiency with which the solution for Eq. (2.21) can be derived for a
desired accuracy depends on the choice of basis functions, which are often
governed by the geometry of the patch or aperture in the unit cell. Matrix fill
tinte, matrix size, and solutimytgchg_ique of the matrix equation all depend

o e b

on basis functions, it is important to consider several factors that dictate their
choice. First, in order that the number of basis functions used to represent

T ey A

the unknown current be mintmal, and therelore the matrix size be small, it is
desirable that these functions satisfy the appropriate edge condition {32}, For
example, the current component parallel to a conducting edge z%mét be

singular. In contrast, the component nérmial to the edge must vanisih. The

enforcement of the rate of singulatity or the rate of vanishing when ap-
proaching the edge, however, is not strictly required [53, 54). Second, it is

]

convenient to choose basis functions that are analytically Fourier trans-

formable so that numerical evaluation of their transiorm 1S not required. It is
also desirable that numerical values of these transformed {unctions be easily
computed. Third, in order that the scalar products appearing in the matrix
elements be calculated without an inordinately large investment in computer
time, the transforms of the basis functions must decay reasonably rapidly for
large « and B. Finally, if the number of basis functions needed (o accurately
répresent the unknown current density becomes so large that the matrix solve
time dominates the matrix solution, then an iterative scheme (e.g., conjugate
gracdient method) may be more computationally eﬂicienﬁﬂzm direct simulta-
neons solution (e.g., Gaussian elimination) of the set ol eﬁmﬁﬁsﬂ?épre-
sented by Eq. (2.21). The iterative procedure is preferable, especially for a
multilayered FSS screen in which the number of unknowns is usually too
large for the core memory of the computer,

In general, there are two categories of basis functions used to represent
the unknown surface currents in the moment method, namely, entire-domain
and subdomain basis functions. First, consider entire-domain functions. These
functions span the entire support of the unknown, the patE:h or the aperture
in an IFSS cell, and are typically tailored for the specilic geometry of the
region over which the unknown is being expanded. Examples of such element
geometries are dipole, square patch, circular patch, cross, and Jerusalem
cross, for which entire-domain functions have been successfully applied [5, 7,
12, 25, 29, 37]. Circular rings and square loops have also been studied
extensively {28, 30-32, 35]. These element geometries are illustrated in
IFigure 2.4 [2].
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{a) (b) {c) (d)

(©) (6 (8) (h)

FIGURE 2.4 Some typical FSS unit-cell geometries: (a) square patch; (b) dipole;
(c) circular patch; {(d) cross dipole; (e) Jerusalem cross; (f) square loop; {g) circular
loop; (h) square aperture. |

The most important advantage of using the entire-domain _type of basis
functions is that the size of the resulting moment method matrix IS usually
much smaller than that for the subdomain functions; thus, entire-domain
basis functions chosen according to the considerations listed earlier provide
an eflicient solution for the spectral response of the ESS screen, However, for
arbitrary unit-cell geometries, suitable entire-domain basis functions are not,
m general, available. Furthermore, when the finite concusitvity of the con-
ducting surface is not uniform, the entire-domain basis functions that proved
useful for the perfectly conducting FSS are no longer suitable. A bismuth-
loaded aluminum 1-pole array [55] is an FSS with nonuniform conductivity
loading. Thus, for treating 55 screens comprising arbitrarily shaped unit-cel!
geometry and for aperture screens with finite conductivities, subdomain basis
functions have been Tound to be more suitable than entire-domain functions
[36, 41, 42, 46, 56).

We now discuss two approaches for solving the operator equation for the
induced current on the screen. We employ the direct matrix inversion
approach via Gaussian elimination when the entire-domain basis functions
are available. In contrast, when subdomain basis functions are used, we solve
the matrix equation by the conjugate gradient method. Note that the two
matrix solution techniques and the two types of basis functions are inter-
changeable, although the chosen combination may not have optimal effi-
ciency.

Let us first consider the entire-domain basis functions. Using Galerkin’s
method with a suitable set of basis functions, we obtain the following matrix

equation for Eq. (2.15) with all the multiplication constants absorbed into the
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matrix element G

ff-! Flnc N o o Jr_:; U G_T.t Gﬂ-
= Z Z E
f]"’[:"“: J=l s —ee =m0 f' r é (__}
i Ly yy
“f.'rj( lf'Tmu H ﬁm”) , 0 CJL'J
& . (2.23)
0 j.'r'.f( Qpin s an) Cﬂ'

The asymptotic behavior of the translorms of the basis and test {unctions
determines the number of terms needed in the doubly infinite summations,
which determunes the numerical efliciency of the solution. For some geome-
tries (c.g., a rectangular patch), the number of terms in the double summa-
tion is easily relatﬂd to the total number of specific entire-domain basis
function: (sine and cosine functions) used. The minimum number of terms

needed to obtain accurate wmbhtmg coeflicient C’s in Eq. (2.23) is governed
by the “relative cnnve:gence ' criterion [57- 6[}] Note that if spectral Green’s
tunctmns tahmg lntn account dlﬁ:lem:c suppmt and dlﬁemnt kmds ::}t basm

< i I-l-'i-n.-q.‘.._

geometries, this cuteucm IS not as easily found. In general, one should

e e O

gradually increase the number of summations until the matrix §L§§11ents
converge. The mtﬁ:gtals on the left-hand side of Eq. (2.23) can be identified
as the complex conjugate of the IFourier transforms of the test functions
evaluated at o = @y, = k™ and B = By, = kI°.

The choices of entire-domain basis tunctmns for some typical FSS gemme-

trics arce listed in Mittra et al. [2] and are given here:

- (1) Rectangular aperture or patch

| q 2y/d
“"‘,rpr,i(xijr_}i or ﬂifqu(l',}?) = "‘:5“1[ 4 l e oo ] ( }/ ) 73
(1 = 2v/a)?]”
(2.24)

' " T{2x/¢c) A d
Jl.“.(.l", };) Or ﬂf} rs( A }“‘) ¥ 43 1/2 a1l 7(.}’ + E)
| 1~ (2x/c)’]

(2.25)

|

where p,s =0 1,..., ¢,r=1,2,..., and 7; is the ith-order Cheby-
shev function of the first kind, The lengths of the edges of the patch or
aperture : the x and y directions are ¢ and d, respectively.

SOLUTION OF THE OPERATOR EQUATION 37

(2) Circudar aperture or patch

(3) "

(4)

n 211/ 5
ym(p!fﬁ) Ot ﬂ"pu(fr" fxb) = ﬂ b= (:}ﬂ} U,-(;}“,U)E”m# (226)
and
| . T(20/d)
Jopelpsp)ordf, (p,d) =4 3 e (237
L= (2psd)’]

where p=0,1,2,..., r=1223.

the circular patch or aperture is d.
[hin dipole or slot

L
L ?)}PL{G, Hr)P\(G’ L), (228)

v
A

i

W
. A, in[p
L

Joor M, =0, - (2.29)

where p=1,2,..., g=012,..., W and L are the width and
length of the dipole or slot, respectively, and

’ D
-l:- !1 — -1'u| i E:

e

?
L0, . otherwise, )

Rr("*u: D) _'

and

b, | .
k) L 4 £ T 3
P.»-(J"f}r 17} = SR 2
U, otherwise. y

Cross-dipole or slot

pr E -
Jep OF 8, {Cap 55“[—5- (.1‘ o _f’._} + sgn{ v} 8 CGS(Z.E')}
L LYPAO, P, | (2.30)
Typ OT My, = Jﬁ{cw Ei”[p—w(r + E)] ~ sgin( v} B CDS(iT-y)}
| ' & : | L
" Pu(0,w) P,(0, L), | (2.31)

sgn(x) = L, when x = 0,
TR —1, otherwise,

o B =l by Lole B i 6L
1s the rth-order Chiebyshev function of the second kind. The radius of

i B e —p—— -

ER T A - Tl m— = o

e LI ] e

- ——m (ISR Y p— et A — AL AP
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and p = 1,2,... . In writing E

unknown constants; we require

SURFACES

y components to be equal. ity
(5) Jerusalem cross
x-directed current J_ or M,
. Py LY
bt sm_—f:- n.x + 5) P.(0, L) P(0, W), (2.32)
i‘sin-pwr + . ‘P 0,D)P i~
s el 4 = .
L D ||_ 2 - .1*( 1 ) ¥ 2 ) Hf)i (23"3)
where p = 1,2,... .
y-directed current J, or M,
[ p7 L]
ysmﬁH-L—(y 7 EJ_P”(D’L)R‘(O' 117y, (2.34)
”sinﬁ{m( s HnE a2 -7) '
y D y 2) V(0.0 P, 5 ,I-l). (2.35)
junction basis functions
5 . mX
X sgn( x)sin TR"(U’ L)P.(0, W)
1 Ty (L -V
+ 55 sgn( y)cos —E—PI T Hf")}"y([}1 D)
1 Ty (=L + W
= E-JJ sgn{ v)cos FP" | 5 : IV) PJ,(U, Dy, (2.36)
5 e
y sgn{y)sm**-:}’y([}, L)P.{0, W)
T (L~ W )
¥ e sgn{ x)cos —b—P},h S v ]Rr({}, D)
I,.: mx =L 4+ I
.h 7 sgn( x)cos FP?L > , IV)F;.(U, D}, [(237)
o X 1 TY (L —W
X sin TP”(U’ LYP,(0, W) + Z sgn{ y)cos _}:'}_R‘( 5 I-F)P},(U, D)
1 Ty —-L + W . 1
+ 2 sgn( ¥)cos E—P_I( 5 , W ]FF(U, D), (2.38)
i sin —— P (0, LY PO W) + 3 il . B
 §in —— _ G : o /
3 = (0, A0, W) ztsgn(l)ct}s B I{( 5 M )PI(D,D)
1 ) T —L + W
+ ji.l Sgl‘t(,r)CﬂS 'Efj,( 3 . “'V]Rr([’: D), | (239)

(2.40)

as. (2.30) and (2.31) with C,p and C,,
the weighting coeflicients of the ¥ and
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<t ) ]
1 y l
[ ] Eq. 2.22)
1 E - st |
! W
I |
Eq. (2.15) with a + sign Eq. (2.16) |
(2

Eq. (2.17) with
a+sign

Eq. (2.17) with

- a - s1gn
Eq. (2.15) with a - sign

I
s, (2.18) and Eqgs. (2.19) and
l{1%2:‘?2{}) - (2.21)

= iod

FMGURE 2.5 Basis functions for currents on a Jerusalem cross.

The parameters L, D, and W are defined in Figure 2.5 along with the
location of each basis function.

Note that the edge conditions of currents normal and paralle] to a
conducting edge are enforced, but the rate of singularity and the rate of
vanishing are not imposed for all the basis functions. The phase change of
the current across the unit cell is provided by the linear combinations of the
basis functions multiplied by their respective complex weighting coefficients.
This phase variation can also be obtained by modifving the basis functions
with a multiplication factor g"‘f*-i"t"'*"‘j'm]’}. This factor does not complicate the
numerical evaluation since * ~nlv causes a phase shift to the Fourier
transform of the basis functions. As illustrated in the numerica! example
discussed later, the solution converges more rapidly with the number of basis
functions when this phase factor is included.

As mentioned, the basis functions are required to be analytically Fourier
transformable. For example, the Fourier transforms of the basis functions in

| S
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Eqs. (2.24) and (2.25) are

K
I

3 rf e 1l -+ - ]+ s Rl i )}j (d ) 2.41)
a{smu( 5 S (=1} bnhl 2 S| 1 2;3 . (2,

. c V | "511- d et s d i
— T Leeno M 808} — % — o M %
J c J"(Zﬂ; meh 7 Z'B) + (—1)" “sinc 5~ 5 . (2.42)

The multiplication constants ¢’ and ¢” can be absorbed into the weighting
coeflicients and, therefore, will not be required in the evaluation of current
and reilection and transmission coefficients. Here J, and J; are qth- and
sth-order Bessel functions, respectively.

When the conducting screen has a finite conductivity, Eq~(2.23) has to be
modified to satisfy the impedance boundary condition{[62}]) The modified

cquation is \
IEE s rew o RS A
f = . Z Z Z Jki: 0 GL’L‘ Gx}f
f J B ,ff"l" s £ uE wy 0 J;'I:‘_ *G}._‘. Gyr_
< ‘!.tj(ﬁ.rnu? JBuut) U C,rj
5 D jy;(aum! )an) MCJ’J"A
F o, 7
. J 5 g ds .1.
—Z, ;A Bl (2.43)

JI51,; ds

=1 ]

where Z_ is the surface impedance. Note that the integrals on the right-hand
sicdle have to be evaluated numerically.

Typically, the matrix size associated with Eq. (2.23) is about 20 X 20 (or
less) when entire-domain basis functions are employed. In contrast, the
number of subdomain basis functions required to represent the current
accurilely 1s often larger by an order of magnitude. Moreover, the Fourier
translorms of the subdomain basis functions do not decay very rapidly until
m and n are quite large in «,,, and B,,,; hence, more Floquet harmonic
terms are needed for the double summation to converge. However, as we
described, it is possible to accelerate the summation by using the fast Fourier
transform (FFT) algorithm when the unit cell is discretized uniformly. If one
finds” that” the ‘matrix size in Eg. (2.23) becomes prohibitively large for
subdomain functions and it becomes impractical to use conventional elimina-
tlon schemes to solve the matrix equation, one may be forced to resart to

iterative techniques instead.

] B Ay -
B e T R I o
"

Paad

St g

T r s

F .- -
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P e b el e P

Jr([’f;%] which has a triangular or piccewise-linear dependence in the direction
of the current and a pulse or stepwise-constant dependence in the orthogonal
dgirection, as shown n Fig. 2.6. It is expedient to discretize the unit cell into
an N XN grid and to employ equal-size rooftop basis functions. Such a

cdiscretization scheme efliciently allows the use of the FFT to carry out the

double summation appearing in the operator equation [64}: Note that the

gﬂe_nf the most frequently used subdomain basis functions is the rooftop

slkew angle must be 90° to use FFT. Details of this summingﬂpmcedt.lre will

be given shortly. |
Let us divect our attention to the more general problem of solving for the

: current density distribution, which appears as the unknown in Eq. (2.43). The
i representations for J, and J, take the form

jl

(T T o A

= 3 3 A (i, n)B (0, n), {2.d)
; " ~N/2 =N/T X
' N/2—1 N/2=|
J, = 1 > L{m,u)B (m,n), (2.45)
, ~N/2 —NJ2

where B and By are the subdomain basis tunctions and [ and [ are the

g - unknown amplitudes of the current elements corresponding to the subsec-

trons that reside within the conducting or resistive surface. It is evident that
the element weights tor the subdomains that fall outside Lie patches are to
be set identically equal to zero.

The curreat basis functions ure described by the following equations:

B (m,n)y=A_(m+1/2300 (2), (2.4G)
B.(m,n)=A(m)ll (n+1/2), (2.47)

A

/« Bl{m, n) centered at [(m + % )ax, n&y]
By(m, n) centered at ; ."‘-l
| | [m&x, [f 1

. R W R E R
el

FIGURE 2.6 Rooftop basis [unctions.

—— T T Py T m— — —
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where for the rooftop discretization one has

Ay
Mm(n)={bh W=may<—-, (2.43)
10, Elséwllere,
] lx — m A xl
j'l'Lt(.'H} — 1 ]. = ﬁ_‘r " II M5 E Ii:t'! < &.l', (2”49)
10, elsewhere,

where Ax =a/N and Ay = b/N. Expressions similar to Fqs. (2.48) and
(2.49) can be defined for 1T, and A,. Note that the centers of B _(m, n) and
By(m,n) are oflset by (Ax/2, —Ay/2). For details of the disqg_tjzation
procedure, refer to Chan and Mittrd [56] and Glisson and Wilton63]) 4
Denoting the test and basis functions'In Eq. (2.43) as T and B,we write

the resulting operator equation as

FEthtt({]?D)P*(p + %? q)-
EJ,U?i?‘(U,D)P*(;J,q + 1),

—

N2~ N/Z-L N/2-1 Nya—t [ G

- X ¥ ¢ T [|r»

plm=N/2 g = N2 mm= N2 nm=Ny2 | G (0, 1) Gy (m, n)

(11, 1) C?_i_y(m, 1)

"“’",'P*_+¢E”-—-lﬂpf”
; Eflmuﬁfs"-ff:ﬂmiﬁfﬁ F (P Q) (p 33 4 2) ;"‘(IJ ,f}')
PP =4,3+1)P"(5,3) || L. q)
by 0 [nea) |
g ¥ , (2.50)
0 Ff,.(p,q)h:’}.(p,-:?)
with p =p —p’ and 7 = g — ¢'. The term P is defined as
P(p,q) — Ew_j‘{i-:‘f“‘:;:rﬂ.r+.k;,'“:-:rd_1r}? (2*51)

and £, and F, are the magnitudes of the x and ¥y components of the
incident field, respectively. The first two sunumations on the right-hand side
of Eq. (2.50) correspond to summing the scattered field at a testing location
due to each of the basis functions. The next two summations correspond to
transforming the scattered field in the spectral domain into the spatial
domain. The Fourier transform of B (p’, q’) is equal to the same {unction
centered at the origin multiplied by a phase shift e THOmP AY+E0 ) The
inner product of the scattered field and the test function T.(p,q) corre-
sponds to taking the complex conjugate of the Fourier transform of the test
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function as in the first term on the right-hand side of Eq. (2.43). Once again
this introduces a phase shift of e/ EnP8x+8,047) and the net phase shift is
therefore given by eA*wP4x+8,34%) Reacall from Eq. (2.1¢) that the next phase
shift is then decomposed into two terms given by gl 2T/ Noidmna /Npx( 5 7y
Other phase terms, P*(5 + 1,5 ~ 1) and P*(5 — 5,4 + 1), result from
the offset of the centers of the x and v basis functions. After rearranging the
order of summation, we write Eq. (2.50) as |

E,oT(0, 0)P*(p +1.q)
ET}(0,0)P*(p,g + )

N/2~-1 N/2-) G_i._f(rir,rt) é;.:!,(n:,r!)'

= X L

M= =N/2 == N2 C;‘;,_l.(m,n) (}F‘;P(m,n)

N%_l NE..I ne—j{uprmtl.r+ﬂjfnﬂy} G

T "N 0 e —HaymrAY+S8 an Ay)

-I ', g’ :

x J(; Q) Ej{“mpll-f‘*'ﬂmqﬂf}

I.(p',q")

AT I I AR *
+ Z, | (2.52)

0 Flp.q) || 1,(p,q)

Equation (2.52) has been written such ::at the summation can be performed
simultaneously by using the FFT algorithm. Symbolically, Eq. (2.52) reads

p=: =

EoTX(9,0) P*(p + 1, 4)
E‘uu?::’({},ﬂ) P"‘(_p, q + %)

FP*(;J,.q) 0
0 P*(p,a)

i

FFT™!

-

P, a)0|[1(pa)
UP(pr’qr)d fy(‘pf!qﬁ)

ij.a.(m,n) #_:.J,(m,n) iy ..
Gyelmm) G (m,n)

F(p,q) 0 i (p,q)

4 &
10 E(p,a) || 1,(p,q)

(2.53)

L
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In Eqgs. (2.50), (11.52'), and (2.53), the modified spectral Green’s functions are

_.—-rr—u-u-—--f-r—'"'-'-*

|

_ﬁi E Z éxr,;(ﬂlr, ”;)é.r(”l,! H’)fﬁd (', '), (2.54)

r=—w gm —®

G (m,n) =

C?_i.j,(r?r,f:) = Z E Gw(m n)B(m WYT (', 1)

P on =

.xEﬁum’ Ax/2-py ﬂy‘(l}’ (255)

(?;,J.(m,n) = o G“ m’ H)B (', u) L’

ym —0 y e —co

e E_ﬂﬂm' 4.y ,J"E'"ﬂ".' '&J'a"’z}j (2_56)

Z Z GJ,}(I:': ff)B(m u)f (m',u'y. (2.57)

I =G §am e O

i;’,f(m; 1nj

B andi&ra the Fourier transforms of the basis and test fﬁnctiuns, respec-
Tﬁely. The asterisk represents complex conjugate. When an N X N FFT is
used, "' =n + rN and m' = m + sN, -N/2 <n, m < N/2 — 1. The sum-
nmtmns in r fm{i s are lypically clunﬁ from —4 to 4. The resistance terms F

- T W N e Aol o PR =, RS TR e TR

in" Eqs. (2.50), (2.52), and (2.53) wiil be defined shortly.

The unknown weighting coeflicients can be obtained either by a direct
solution of the mairix equation or by using an iterative procedure, such as the
conjugate gradient method (CGM) [65, 66]. One distinct difference between
the numerical implementation of the direct matrix method and the iterative
procedure lies in the manner in which the double sumimation is evaluated in
these two schemes. In the conventional direct .matrix method [36], each
malrix element is a double summation with the index ranging from — N, (o
Ny, and Lhc coneoiation of these double summations is usually time consum-
ing. A more eﬂu:ient way to evaluate the matrix elements is to first compute
the double summations in Eqgs. (2.54) to (2.57) and then carry out the double
summations in Eq. (2.50) by the FFT. When the matrix ‘size becomes
prohibitively large, Eq. (2.53) is cast in a form suitable for applying the
iterative procedure base.{i on the FGM For completeness, the CGM algo-
rithm is listed in Taule 2.

The rate of convergence of the tteration algorithm based on CGM de-
pends on the condition number of the Dpuﬂtm{[mD—the higher the condi-

e — —

tion number, the s-iﬂwex Lthe convergence. The condition number ol a matrix
is a measure of the determinant ot the matrix in magnitude relative to the
cofaclors ot elements. ol that matrix when the largest matrix element has
been normalized to 1 [68]) The choice of the basis and test functions plays an
important role in deterfiining the condition numberﬁgﬁ]:_)a\‘m consider two
test functions, namely, the rooltop and the razor-blade Tunctions, and com-

g ke M LW W R b ey oreq mr B ba . ER

pare the convergence of the iterative procedures for these two choices. The

; -
e " o] 3 e ! R
I e T e Il o B e TR PR

- - . ' . oy
- e S L PR P My g T e R = i L « Sk A o b i D
AR m g D ] Ly e s T T TS T R ] T TR S T W T AT T TN RN T T e . [ W e, T Ty I.i"'\i:'."f"?

it
4%y W TRy,
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TABLE 2.1. The Conjugate Gradient Algorithm (

Lit = ¢
Initial guess: v, =
fnitiad residual: R, = ¢
Enitial error: ervor, = (R, R,?
t, = L R, L, is the adjoint aperator of L
a = (i,
= Lu,
= (8, &)
n=a/b
U, = u, + nu,

1_ Y ot E T TR T L LT 1t | 9 + l:ﬁai::h:i; g R R PR T i

no= i
a, = |
“:; = L;ER:;
a = (' u

i, =1, +djau,

'gﬂ = LIIJ‘” b = {SH*‘ !E;H:)I ﬂ = ﬂ/h

‘Rn - Ru—nk ~ NEw» UH = U, T,

ervor, = (R, R,/

percentage ervor = squilerror, /error,) X 100%

if ervor (prescribed vaive of n) maximum value — stop
otherwise po to 1 1o continue

x-directed razor-blade function is defined as follows:

Ax
T (m,n) = I, v —mAx} < and v —ndy =1,

q
et

(2.58)

0, elsewhere.

This tunction kas a support of Ax in the x direction and is a delta function
in the y direction. A sumilar expression can be defined for the y-directed
razor-blade functuon. The Fourier transforms of the two test functions are
Rooftop

Csin( e, Ax/2) 'Esin(ﬁn Ay/2)
, (2.59)
a,, &x/2 | B,Ady/2

ﬁ.(m,u) =

; | sin e, &x/2) [ sin(B8, Ay/2) ]
T.(m,n) = i XY ; NV = (2.60)

L A e ¢ N g — -
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Razor blade

PR

sin «v,, Ax /2)

T.(m,n) = IS TV I (2.61)
. sin( B, Ay /2

T.(m,n) = 7 /%) : (2.62)
| B,ay/?

Substituting these basis and test functions in Egs. (2.54) to (2.57), one can
obtain the relationship between the scattered field and the unknown weight-

-ing coefficient, either in a matrix form as shown in Eq. (2.50) or in an

operator form as in Eq. (2.53). Unlike the scattered field terms, the surface

M e e T

resistance terms, F, in Eqs. (2.50) and (2.53) consist of simple multiplication
operations instead of convolutions. Each of these resistance terms F is the
scalar product of the basis and test functions that can be carried out

analytically. The resistance functions F, and F, in Egs. (2,50) and (2.53) are

F(m,ny=C8(m=1,n) + Cy8(m,ny + C(m+ 1,n), (2.63)
Fo(m,n) =D8(m,n—1) + D,8(m,n) + D (m,n+1), (2.64)

where the Kronecker & function is defined as

1 whenm=randn =g -
I Y = : 2.65
( ) { 0 elsewhere, ( )

and s and r are the indices of the current elements /_ and 7, in qs. (2.50)
and (2.53). The C and D values will be defined shortly for the rooftop and
razor-blade test functions. In addition, some modifications are necessary for
the edge element for which m = -N/2 or N/2 -1 and n= —N/2 or
N/2 — 1. The § functions in Egs. (2.63) and (2.64) are to be modified as

follows:

N ; 1 M N
me= - S(m —1,n) — e "‘5(—— ~ l,n), (2.66)
2 2
N o ol (124 N
mo= — — 1, S{m + 1,1) — e~ /%s “5(— —*,r:), (2.67)
2 2
N -1 e N
noe= ——, S(m,n—1) — e *’5(?11, ealan 1), (2.68)
2 ‘ 2
‘h’; : b N
halva i §(m,n + 1) —» e 7% 5’5(!:1, = -5) (2.69)

' 5
T - p— b --""H'l'-r:l T BT

E e e bt

a -
B B e T T i A Py

F, - .
L e e Lt bt it
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For rooftop basis and razor-blade testing, one has

—h-l—l-‘

Ax Ay

Cy=D,= P (2.70)
3Ax Ay

Gy = By= — (2.71)

On the other hand, for the same basis functions but rooftop testing, the
C’s and D’s reduce to '

Ax Ay
C,=D,= S (2 12)
JAx Ay

Next, we consider the problem of truncating the _doubly_infinite summa-
tions in Eqs. (2.54) through (2.37). When the truncation criterion is chosen
such that r and s in Egs. (2.54) to (2.57) are both zero, it is seen that only
N X N Floguet harmonics are retained in the doubly infinite summation
when an N X N FFT is employed. This approximation is used in Mont-
gomery and Davey [41], Christodoulou and Kauffman [42], and Cwik and
Mittra [46] and is valid only if the contributions of the remainder of the
Floquet harmonics are negligible; however, in most cases, this assumption
usually leads to a less accurate solution.

For the razor-blade test function, the asymptotic behavior of the summand
in the infinite summation appears in Eqs. (2.53) to (2.57) and is

1

| 2.74)
nm(rnz -+ nl)tﬁ (

Owing to the asymptotic behavior of the summand, the convergence of the
summation is relatively slow. However, for the rooftop test function, the
asymptotic behavior takes the form

il A Sr———

1

(HHI}Z(IHI + ”1)1,!2 |

(2.75)

For this choice of test function,-the series in Egs. (2.54) to (2.57) converge
considerably faster and the number of terms in each of the summations can
be reduced by about a factor of 2. Choosing a test function with a_superior
asymptotic behavior not only improves the rate of pnnvergence for 1he double

summation but it also accelerates the convergence of the iteration algorithm
as well, ‘ ' "

e ————
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Let us now consider the procedure for solving Eq. (2.53) by the CGM,
oullined briefly in Tabie 2.1. As we see, it is necessary to construct an adjoint
operator and define an’inner pmduct For a matrix operator, its adjoint
operator is the transpose of its complex conjugate. Consider the FET as a
malrix operator. The transpose of the complex conjugate of the FFT opera-
tion is simply the inverse FFT operation, and vice versa. In view of this, the

adjoint operators for Eqs. (2.53) can be written as

px 0| G x| [P o 0
FET-Y . FFT + Z* (2.76)
0 p G Gxl o P 0 F,

Note Lhat the complex conjugate transposition of the resistance matrix
operations in Bqs. (2.52) and (2.53) involving F remains unchanged since the
maltrix s real and symmetrie, as seen in Eq. (2.76).

The unknowns of operator equation (2.53) are the amplitudes of the basis
functions; hence, the inner product can be delined as

NJZme ] NTT =]

Y. - e n)l +| 1, (m, u]i

N2 —N/2

J, = (2.77)

Once the operator and the adjoint operator have been identilied for an
equation to be solved and the inner product has been defined, one can follow
the procedure in Tabie 2.1 to determine (he unknown amplitudes of the
subdomain basis functions in Eq. (2.64). However, if the number of unknowins
is only moderate, one can eiploy a direct mﬂtux method for matrix sulpymn

usually with a considerable saving of time, because the "FET size remains
unchanged regavdless of the number of unknowns residing on the N X N

grid.

2.3 FSS IN A MULTILAYERED MEDIUM e
(2] gt oove e oYy

Of considerable practical interest are the mtensmns of the formulations

P T I
o e

presented for the patch- and apenm& type FS8s to screens (i) embedded in a
dielectric medium of finite thickness, (i) printed on a substrate, (iii) with a
substrate and a, superstrate, and to (iv) multiple screens for additional
degrees of design freedom. We now show how these could be analyzed in a
relatively straightforward manner, 1o modify the operator equation derived
earlier for the induced current on the freestanding screen, we simply replﬂce
the spectral dyachc Gmans function n Eq. (2.23) with a new Green’s
function that accounts for the sﬂ"ﬂmte and the sup@ﬁ_t_l_qte The spectral
dyadic Green’s function for a layered dielectric meclﬁ'ﬁﬂ can be conveniently
obtained via the S{Jectnl clﬂnmm 1rnn1|tance approach “which has been de-

[ T A TTha e . g

- e O Py SR e ST Sy S Pl EPHR

- ey . =
e T T T g R — RS T B

A g TR o e
= T L e
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P 1 =PI .| S P

pmhlem&..

The configuration of. ithe multilayered FSS 1s depicted in Figure 2.7. The
relative permuttivities and permeabilities can be complex. The mcident field
will induce currents on the conducling SllldeES which, in turp, radiate
scattered ficids. For a multilayered 5SS with M conducting screens, the

SN SN

scattered fields or the induced currents on each of the conducting surfaces
arve related to (he incident fields by the equalion

= E-EI?E 2 Al &0 e Cﬁ;f.j.r (‘;‘:_-" i " ﬁ
- e : ’ JU 0 Jdl: Y
Ema: Z Z Z e o TR Bt i

- v (2.78)
l']-i' I" I JH] == = D ] W L G,F{r G]:ip j i

-

The subscript { corresponds to the ith conducting surface, where 7 =
1.2, ..., M. The left-hand side of Eq. (2.78) corresponds to the sum ol the
scatt::md felds due (o the current on each of the Af surlaces. The unknown
electric currents J, in each screen are expanded 1 busis En_r;_ﬁ:tiuns wetghied
with unknown coefficients. The unknown coefficients are then determined
with Galerkin's method. To soive tor these coethcients, we nu.,d the mcident

fields on the conducting surfaces and the spectral Green’s functions.

“Using the spectral-domain immittance approach [69], from Eq. (2.1) and
- W A, (2.79)
we have
d (/
BEE = ol o el (2.80)
& dy
1 & { a J
Ef - : .f[t. ‘s _ flp . (281)
T Jwe dz \dx dy

K€ &\ \\“ln
M 128 n2 L WL o
L€ VLSt adiudniniin g
22 €022 [ 22
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He2€ a2 Wiggi/iz/iaaaizz/f t32
Hra1€ I3 L g1
Muz Erz [ SRR i Ly

FIGURE 2.7 A multfayered IS,
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In the Fourier domain, these equations become

. —a - _
H] « ‘/ - =J, + \/ 25 : (. (2.82)
a* + B o B
ES - J + B I 2.83
2 1/&2 + B ) ‘/&,2 + B¢ e 283

with the subscripts in @ and B8 omitted for convenience, A new coordinate
system 1s defined in Figure 2.8 such that

L sinf?  —cosé ||x
—_ . 'j
[UJ [cﬂsﬂ sin ¢ ”_}f ’ (2.84)

where cosf = a/ Va? + 82 and sin @ = B/ Va? + B2, In the spectral do-

main, the induced current becomes

(2.85)

}i

Hence, from Eq. (2.82), the v component of the spectral current yields

o — — o [P [ T b e b e i e

-

- =y . 3
H] J.sin @ + 2 =J cos 0 = 0. (2.86)
Va? + g2 Va? + 32
similarly, from Eq. (2.83), the u component of the spectral current yields
| . e s B3 .
Ll a J,sin @ — ? =J,cos 8 = (). (2.87)
S e Vo’ + g2

One can see that the 1 components of all the currents generate the TE (to z)
fields and the v components generate the TM (Lo z) fields. After the TE and
TM fields are decomposed in the spectral domain, we can use the transmis-
sion line model to relate the scattered field and the surface current for the i
and v components separately. ~ 7

FIGURE 2.8 A new coordinate system.
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Assume the scattered TE field at the ith conducting screen due to the
current on the jth screen is

£, [z0 g .

= | = s o A 2.88
Bl o zmu||s e
A . o 4. -

With the two coordinate systems related by Eq. (2.84), Eq. (2.88) can be
rewritten in x-y coordinates as '

|- . 7 E: oy’ "o p - [ L " ow - " 7 B e g
ES ZTEUsin? g + Z™licos2 9 (ZTMii . FTE T)cos @sin 6 || 7,
E}, [ T e Meos Osin®  Z™ilgin2 g 4 ZTEU ¢oe? p /3

Al 4 N L

] ~ij sij [ 7]
J
Gi Gu ||,
= "'U' ‘_“ b . (2*89)
G_r.t' G.l'}‘ ‘}:F}‘

Therefore, to derive the Green’s function, one needs to derive Z in Eq.

(2.89). Consider the situation ﬂ'éﬁiaéaqiﬁ‘?igure 2.9 and its transmission line
equivalent model. The input admittance looking downward can be obtained

through the successive use of the transmission line equation:

V. oy Yy + Y, coth y,t
R T T

(2.90)

where Y}, is the characteristic admittance of the medium. Similarly, the input
admittance looking upward can also be obtained from Eq. (2.90). For Figure
2.9 the input admittance looking downward s |

Yoo + Yr coth vyt

Y., = Y.
L " Y,, coth Yoals + Y, 0

Yo2 | I Yo2 ’

T k -
- -:'::5:}_"."_7 Wi !
Eaar # : Yol YL

LI A

FIGURE 2.9 Equivalent transmission line mode.
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where

Yo + Y, coth yq, ¢
VY, coth vyt + Y,

ol —_
LI'H Y{

The TE and TM case characteristic admittance of a medium are defined as

+ - ] T h. -;E"
follows: G 8 By 5. o &
G | T
A T e ;
v - Y Jweé |
' Y B e — and YM = —, (2.91)
Jw it s
&
t f%} ."I :"l'fr £ |
R o
where y = Jr:rm + B2 = €,u, k. The input 1mpe¢lan¢:& that relates the cur-

rent on the jth screen and the scattered field on the jth smeen due to th15
current is then

1
"i.r.'.'.h + Yﬂ h?

botiom Lop

FINTE

(2.92)

where Y, om and Y, represent the input admittance looking downward and
upward at the ith screen, respectively. The superseript e corresponds to the
™ case, and th superscript /i corresponds to the 1“[:'. case. On the Dtlmr
hand, when the scattered field is evaluated at a distance t away from ‘the
current source as Ll&pmted in Figure 2.10, one needs to modify Eq. (2.92). In
Figure 2.1G, ¥, 1&. the input admitlance looking upward from the top surface;
that is, il inciucies ali layers above the ith screen. To transtfer the mmpedance

e p i e —— = — =

e

to a distance ¢, one needs to multipiy Eq. (2.92) oy the factor

L ? (2.93)
i o T == . u Z
AR 0 COs yi + Y sin vyt ’
.t{,’
Y :‘ I r".lfl_!" :‘n .-‘-I;'\'{.-:
. e
S
P I R R s
L T T T T 8 "'L "5.
M;\.;hf‘n;‘m;\!'\ "'ln "m Y
R R Y A N . S Q
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%y "'-.. e "-n. T " T S 4
j.}
FIGURE 2.10 Relahion between the current and the scattered field at different =z

localions.
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Theretore,

|
. I TE G re,h
{ Z l/‘f-'e i + },r: K } bransier (2 94)

ottoun lup

If the scattered ﬁeld 13 evalud[ul fwo Iayers h o ihf: bGllIEL one needs to

, ¥, and  replaced
by the new ones. FFrom this dppluach WE Can dt..rw{: thf., spectral Green’s

function relating the jth current and the ith scalteved feld. To complete the
formulation, one also needs the incident field on the left-hand side of L.
(2.75).

The incident helds for TE and TM_polarizations can be derived by using
the z-»::lm_:c:tec_l Imtentml fr. The mcident field is calceulated in the presence of
the dielectric structures but with all conducting patches removed. A general

configuration is depicted in Figure 2.11. The potential of each region is
defined as follows:

[ S
N = -
= n -'-_a.-_.,.,._. ey ]

li’Thi Tl: —_— ﬂjﬂu.\'t:,jlﬁ“fe?”: _l_ Rt’j“”iﬂjﬁ“‘vf—:HT“:} (E-QSE}-)
1_h|,TE el L ¥ i :

i, = g/wtePur( Cy coshy,z + C,, sinh v,z (2.95b)
ThLTE L jagy L /80y ' 5 o

) = e/ coshiyy 2 + Cypysinhyy,z),  (2.95¢)

lﬂLﬂ‘[rE = Tfja”‘t.-ﬁf’fﬂ“rf T : ('-} gﬁd)

where a, and 8, are obtained by setting /= = 0 in BEqg. (2.17). When the
FSS is hacked by a gmumi [}hm Eq {’* E}Sd) is not used because there is no

-'__"'ﬁ- -
TR e, S TR e B e e T EEEET e ek
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1["[I~.-l|+l

FIGURE 2,11  Incident belds.

- T R — — i




54  ANALYSIS OF FREQUENCY SELECTIVE SURFACES

transmitted field. Equation (2.95¢) is modified such that it satisfies the
boundary condition that the tangential electric field vanishes on the conduc-
tor. The modified equations are

TEcase - = e/ [C,ysinh yy (2 + 1,,)],  (2.96a)

TMcase gy = e*0%e’Por [, cosh v, (2 + 1,,)].  (2.96b)

To enforce the continuity of the tangential electric and magnetic fields at
the dielectric interfaces, we use the following equations [48]:

TE case
54 TE ‘ 3!!]1'15
Et e I]’b : E}, — ; (2*9?)
' ay dx
1 82:,{;TE 1 a2yTE
‘!{1‘ o -.___ ; Hq! = . . 3 (2‘98)
' jewp 0xdz : jwi dydz
- TM case
1 a?wTM 1 a?_wTM
E = - : E =~ . - (2.99)
Jwe dxdz jwe dydz
% -:'?!,ErTM 2 {?rf;TM —
gy » 7 ax ; (2190}

A matrix equation is obtained and solved numerically to determine the values
of all the coeflicients in Eqs. (2.95a) to (2.95d). The matrix equations
corresponding to the TE and TM incidences are

i ». "
RO S R R eme ]
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[
Nl ey T

i ?1' ; Ti

] Azwz,:; = —sinh y;( —1,), AE:‘+[,2£+1 = —— cosh ’}";(“'*f;):

f grf fr.f
it

3 AE:‘+I,2:’+2 = - suh '}"f+1( _‘t_-'):

E §J'I*+l

| g

| _ I+ ]

AE:’+1,21‘+3 o f cosh T:+I( If)! I = 112! :M 2 ]-:

ri<41

; Azpp41,20 = cosh Yul =)y Aspreg o, = sinh Yar(—tpr)s

i s g
i Aapar,oar4r = —e 770
1
b ] "}"
1 7 B
| Agprer.am = 7— sinhyy (—1,,),
; frﬁf
i Yar
| Asprar,ame = cosh yy (~1)),
rif
e =Y :
Aapszamez = — Yo 7MY, (2.104)

where £ = p, and ¢, = ¢, for TE and TM incidences, respectively. All other
elements in [ 4] are zero.

Using the expressions for the incident fields and that of the dyadic Green’s
function in the operator equation for the induced current density, one
obtains the system of equations in Eq. (2.78) to be solved for a multilayered
FSS with multilayered dielectrics. Note that the format of this equation is
identical to that of the freestanding screen, although modifications are

mtroduced by the expressions for the incident field and the composite
Green’s function.

Tk e ey T T R MACTEGSAT of SRS S e i S

g TR W [~ e - e N

1A x] = [8]) (2.101)
- , iri £ :*
Fi=i8 Oy Op £y €5 == Oy 6, TP, )5~ , 2.4 REFLECTION AND TRANSMISSION COEFFICIENTS
(2.102) (& A€
i.u ’ Once the surface currents are known, the reflection and t ansmission coefh
| 4=y Once the surface , nd tr sion coefli-
[b]=[-1 =%, 0O 0O 0O -+ 0 01, (2.103) éu‘ﬁf-’fﬁf T=1 cients of the FSSs can be calculated from the tangential scattered electric
Y, 2.yq// fields at z =0 and z = — Iy, expressed in the spectral domain., These
Ap=1, Ap= -1, 4, = —y,, Ay = — O sl rbe_'"’; O~ - ¢ scattered fields are calculated on the conducting screen from (Eq @80y and™
1 :

Ajyivy 2 = coshy( =), Agiq04 = sinh Yi{( =1},

SPLEE th::n  transferred to the top and bottom surfaces of the multilayered FSS by
; r—u“Emg Eq. (2.93) repeatedly. The total field on the top surface is the sum of

- B ¢ Biagd ,;5 - the scattered held and the reflected field obtained by solving R in Eq. (2.101)

Agisv1,2i42 = —c0shy,, (—1)), e i and substituting its value in the second term on the right-hand side of Ea.

Agisraies = —Sinhiy,, (=t,), L e cﬁ'fE ~=.%$"‘ ,Q%EE !;r’ (2.95a). Similarly, the total ﬁr::ld on the bt}t_mm surface is the sum of the
- B o i el scattered field and the transmitted field obtained from Eq. (2.95d).
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Consider a plane-wave incidence with its magnetic or electric vector

4 T o U R Ty T T

potential given by {
A = Fg/outgiPu¥erni (2.105)
[ = Ze/twtePunleul, (2.106)

Here 4, = ¢™ and F. = ¢"% as described in Section 3.
The total scattered fi=il at z = 0 can be written as the superposition of
Fioquet’s harmonics, which takes the torm

E-F — E{H’ejﬂli"lﬂjﬁﬂyﬂl_'THI + Z Z Ef}qei“u’lgfﬁile g ® (2'1{}7)
!j o = G = o
5
Wh'ﬂlﬂ T.f”.f = ‘/EEP + Bt} :L”
An alternative form of E° 1
; | l | 1
Y= —V X7 - jou,A" + —V(V - A%}, (2.108)
JWeEy
where the scatiercd potentials are
A=2% Y 3 Ii” Me*’“ﬂ‘emfr’e"”fw z =0,
o= o= = —
™ ; .
s Z E RM S (2_109)
P g —x
TE -
Fj - Z Z Pﬂ'f}' Ipﬂtj‘ (2"}'10)
p= —ce )= — oo
IHence,
7 o5 5 RTE - Z2lea pa 2.111)
b.x = Z Z _-”35; R;rq o __;...E..,_ 24 [f"pq! ( :
p= — LG = —ia \ 0
Ef = i )E a, RTE — ﬁ""’“’*‘RTM W (2.112)
yoo JO Ry i P pd- )
= oo p= — D i

Multiplying Eqs. (2.111) and (2.112) by ., and integrating over the unit cell,
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one gels

- - ¥y
5 . TE H etif iM
[ _ E tpmu 'Eh = 2 Z ( “}ﬁq !{pﬂr R
il eedl = g m Wey
s, (2.113)
wnit el
* E*" { i i : HTE ‘Bff.}f“f R’[ A
j : If!!HHf (Hy = JF{T.U e jrf
untl cell P —on jm= —h (W€
| i, ds (2.114)

Lkl cefbi

Nate that the left-hand sides of Eqs. (2.113) and (2.114) are the Fourier

e T g p—"

~— transform of E7 and [}, respectively, evaluated 11 «,and B, Due (o the

and R™ can be written

fHr fitil

mtfiogcﬁmhty 'piﬁtjelly of Flmquet s harmonics, RTE
from the previous equiafions as

ie (B B) + Eldu) ~ o {Eia,,.B,) + EB,.))

RTE — v {2.13)
f r.n'.;i + 5” |

- ~ (@ (B3, ) + EL8u) + Bul Ei( 2, B,) + £55,,))

\ i = & 53 '

f":‘l‘] ” [\ﬂm + JBH)‘}(’HHI/EHE“ . h:‘(l

x - ¥ gt | H

Ese okt e SR eue
i 5 ._:__..., | ; 3 i

é‘-' :;5 ¢ 5 4y ‘J Ve | < e 2 F - k*., bidu f’ et "'L'} J

The reflccted field terms are inciuded when m = = 0. The tilde in Zqs.
(2.115) and (2.116) represents the Fourter transform ol the ¢uantity under-
neath. In a similar manner, the scuttered field at the bottom surface can bhe
evaluated. We have

( ”(E D m”) - e, ( . 8.0 % E

)

P 2.117
THt ﬂ;} + ﬁ;‘; : {' )
TTN; B o (ﬂ.'j”(:Ef( Hl 1 B ) + EE 'S“”;) + 6”{ [: Ht’ ﬁrt) T E HHI‘)] '
f:tj + (':':.s_n *+ ﬁﬁ)‘hnm/wfli |
S (2.118)
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In Egs. (2.115) to (2.118), the reflected field and the transmitted field are

TE
.E-j 2 "jB“R’ E_:. = jﬁﬂR, ET': —= —J.BUTE_THTEI, E:::: — jf_’fﬂTE—Tﬂfﬂf!
(2.119)
™
'r{/ ’
IS ¢ | . " )
ES'= n'}"nRh £ BE]‘YUR’ Bt o oY Te~vin . F = BoYe a——
| “<o } “€n wey : we,
(2.120)

The power reflection and transmission CDEﬂIC!EHH of the propagating modes
are obtained by taking the absolute value sau squared of the reflection and

L,-'L:""* transmission coefficients, As a check, one can note that the sum of these
T 1y == power coeflicients is equal to unity when normalized to the incident power if
e oo L .. ithere are no mnductm and dielectric Iosses
. 2.5 MAGNETIC FIELD FORMULATION FOR AN APERTURE SCREEN /JM,J‘D’@ %
P
_-'_":'.r, -T‘ ‘.'
b = g It was mentioned earlier that an aperture solution based on the use of
.., = ,— magnetic surface currents provides an alternative means of FSS analysis
x:}} Lok § [Eq. (2.18)]. This analysis requires that (he screen be a perfect conductor,
g e however. More generally, multilayered FSS analysis can be performed with

some screens treated as patch FSSs and others treated as aperture FSSs.
Here we use a patch- 1perlu1e'p1tch configuration as depicted in Figure 2.12
to illustrate how we can muple electric_and. magnetic currents in the I'SS
analysis [70] To analyze this structure, it 18 more cmwément to construct two
auxtliary problems based on the equivalence principle [48], one for the fields
above the aperture’ and one for the fields below. These two problems are
muplad thmugh the enforcement of bc:rundqry CDlldllanS

o —
- et - —— ——
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FIGURE 2,12 A patch-aperture-patch FSS.
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FIGURE 2,13 Equwalent structure for obtaining fields for a patch-aperture-patch
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The aperture at the z = 0 plane is replaced by a perfectly conducting
plane (shorted aperture), with the original tangentlal electric field at the
aperture restored at z = 0" and z = 0~ by appropriate magnetic surface

~'¢ currents M and —M, respectively. The patches at z = £, and —r1, are
replaced by electric surface currents J, and J, (see Figure 2.13). One can
write expressions for the magnetic field above and below the z = 0 plane.
The total transverse magnetic field at the z = 0% plane is the sum of the field

radiated by M in the presence of the shorted aperture and the short-circuited
field due to J, and the incident field. On the other hand, the field at z = 0~

‘ is radiated by —M in the presence of the conducting plane and the environ-

ment for the region z < 0 and the short-circuited field due to J,. The

continuity of the tangential electric field at the aperture is sausﬁed via the
choice of equivalent magnetic currents M and ~M. The* enfﬁrcement of

- — i . e

the continuity of the transverse -magnetic field across the Elpf:ltuiﬂ ralatas the

R R T L T

unknown magnetic surface current M and the electric surface currents Ji and

Js

»
T
-

"
I YR

D L
R L

To complete the formulation, we énfﬂrce the boundary condition that the
total tangential electric field on the natchcs 1S zero. For z > 0, the total
electric field is the sum of the incident field (with the aperture short-
: circuited) and the scattered field due to J, and &i. For z < 0, the total
electric field is the scattercd field due to J, and —M only.

At z = ¢, where the total tangential electric field on the patch is zero, we
have e

5 . ek |
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pre) T2 L Gy G|,
LY gy WETRESTS y yy J Iy
d T
) Gi GE M.r " 1 .
2 @ . ' _ ell@mr+ B, y) D; (2_121)
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where the subscript S.C. corresponds to the fact that the incident field 1s
calculated with the aperture short-circuited; that is, the aperture 1s removed

by covering it with
is removed. At

patch at z =
magnelic field at the aperture requires

[

z = {),

a conducting plane. On the other hand, the conducting
the continuity of the tangential

-

. J'
..';-.u-::':r-;zﬂrm

' =
- S = d

[ erine 3 3
i « = [|G &7,
F bie + Z L ) C’:.g, éj ):'
Y s meEmens e i e vy fEy
w = ' _ g
G, G
o i ’ E;{u.rm.r-iwﬁ”y}
- =4 i
L Tyx vy hﬂ’fr_
([ A5 s Hax 1 [ as s [ 7 1)
e = Gl.‘x G ¥ nf!l@ GH Grv 2
—_ o ' "k e, v+ B,3)
_ Z 2 ,_,5 _-5 - —I_ 6 ‘*ﬁ B} }LI : [ :
A it R GJM' GJ’l' "&'}r,w G;rx GJ'J' ,Ih_ 4
L P ) i =l - - A ol

(2.122)

i

Again, zero tangential electric field on the second patch ﬂl‘_,,j/; — £, yields

G?"rnq s e T s T

Xy G A o

= 7 7
Gr.r G.w* J s

“ o 1 G

E.-':{ﬂm-"': +ﬁ::y} — 0'

/] = — 00 1} == — OG

(2.123)

The unknown electric and magnetic currents appearing in Egs. (2.12]) to

[RERr EFTERT i TR G e ]

Fomn ' rrl =i Sl Sl el

(2. 1’?3) are expanded with the rooftop basis tunctions weighted with unknown

g i [ ——

coellicients. To solve for the unkiowi weighting coefficients, we need the

e i —t——

short-circuited incident electric ht:ld at the top patch and the short-circuited
incident muagnetic field at the apmlme ‘Tn addition, we need to derive all the
spectral Green’s functions appearing i Bgs. (2.121) to (2.123). We deri ive
them by using the S{'LEEEI_ ﬂgmam immitlance approach discussed earlier.

The most important steps in this approach are to carry out a coordinate
tmnsimmutmn that leads to the decomposition of the TE and TM fields to z

A -—n—l.--.

components in the spectral domain. The transmission line model (TLM) ]

e S R R i B s o

then used to derive the spectral Green’s function for each of the TE and TM

componenis. Decomposition of the TL and M helds due to the equivalent

magnetic surface current M _can also be done in the spectral domain. Similar

to Egs. (2.1) and (2.79), we write (48]
Sy M- E= -VXE (2.124)
1
Ao s H= —jwel + —V(V - F), (2.125)
e p jwi
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where T is the electiic vector potential due to M at the short-circuited

S T I e 1 T

apenune In the spectral domain, the z components of the elactuc anl
magnetic fields are

E, =jaf, — jBF, & ——=
, { Va

..+EZ \/EEE”'I*ﬁE

‘n-

ﬂf cos f — ﬂf sin @ = .-11-3'“,

e
L
™
I

I

M cos ¢ + M, sint = M. (2.127)

Note that E, depends only on M., which timplies that M creales only the
TE flﬂli]_b Smnh;ly, H depe.n{l:; Dlll}’ on Ml,, dnd hence thE: M current
due to M are Llecmnpmed in the bpectml {iﬁt‘l‘]ﬂ,[ﬂ, Wlth Lhe decmupmsnmn ol
the TE and TM felds, the Green’s function appearing in Eqgs. (2.121) (o
(2.123) can be constructed easily with the TLM. In particular, we derive the

spectral Green’s functions associated with the upper-half problem as de-

picted in Figure 2.14. We abtain the functions assoctated with the lower-half
problem from those for the upper half by replacing €, and i, and e,, and ¢,
respectivety.

o infinity

}
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U YTM JiE
" &l .
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FIGURE 2.14 The upper-hall problem and its equivaleat (ransmission e models,
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The upper-half problem together with its equivalent TLMs are depicted in
Fig. 2,140 where Y, and ¥V, are the characteristic admittance ol the air and
dielectric regions, respectively. Note that the subseript of the clectrie current
IS suppressed Tor simplicity. Since the transmission line in the air region
extends to mfnity, we can terminate the transmission lne at (he diclectric fair

Anterface with the characteristic admittance of the air region. The appropri-

ate field quantities due to the electric and magncetic current sources can he
obtained by using the superposition principle, as depicted in Figure 2.15. The
relationship between the circuit and field quantities s also included in the
figure,

With the characteristic admittances Y, and Y, defined in Eq. (2.91), we
can now write the transmission line equations and their appropriate bound-
ary conditions for the TLM depicted in Figures 2.15(a) and (b). In the
following equations, the superscripts TE and TM and subscripts # and v are

suppressed for convenience, The transmission line equations are
v(z) = Vo(e™ " + [emi?), (2.128)
i(2) = Y Vo{e™7" — Tem?)y, (2.129)
For Figure 2.15(a), we have the boundary conditions
I'+i(t) —v(e)Y, =0, (2.130)
v(0) = 0. (2.131)

From Eqs. (2.128) and (2.131), we have '= — | Subseguently, from Eqgs.
(2.128)-(2.130) we evaluate V), as

=
Vo = 2
! Yo(e?"r - e” V) + YV {emh + e 1)’ (2.132)

o il
e e
v, E) I@_‘T (1,J) (v, E) 2 =it
J v,u Y'{M'TE
2 gy n
{1, H (1, I —@_ v, z=0
Ml!,"ﬁ
(a) (b

FIGURE 2,15 Equivalent transmission line models using the superposition principle
(a) with electrie current source, (b) with magnetic current source.
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and, hence, the voltage at z =, and the current at z = 0, after simplifica-
tion, are

1
() = 2= £ 2.
L Yy + ¥ coth y,t, (2.133)
. ~Y, /sinh y,
i(0) = Pl = oL, (2.134)

Yy + Y, coth y,r,
On the other hand, for Figure 2.15(b), the boundar;, conditions are

v{0) =V, (2.135)
i(t)) =v(t,)Y,. (2.136)

Enforcing these boundary conditions in Eas. (2.128) and (2.129), we obtain

| Y, /sinh vy t,
1) =PV = ¥, 2.7

0 s Y, + Y, coth Yty " - 5 148
(0) = Yo + Y, cothy,t, (2.138)

The functions Z, P,, P,, and Y are defined by Egs. (2.133) to {2.138). From
the relationships between the circuit and field quantities, the appropriate
field quantities due to the electric and magnetic current sources are obtained.
Recalling the fact that J and M, generate TE fields and J, and M,

preer - T i et B S T—
=

generate TM fields in (u, v)Coordinates, we hive

E, Z' L ; (2.139)
- = TM 2 m '
E"Jat:-il 3 0 “ o B :

- - - I -

i o 0 ‘PITTVI jh‘ 2 140
H - __pTE N f : ( ) )
L Y Jatz=g e | R |
and

ﬁ‘g‘n | : 0 PETE- I-MH- (2 141)
z Tl pT™ y R & :

R — L P, 0 J_ﬁ/IUJ

] -u _ FFTM U PMHH 47
] Lo vrE|ian | (2199

_H",ut 2 =) 3 ' J17 70 '

However, the field quantities appearing in Eas. (2.121) t0 (2.123) are in (x, y)

. B

coordinates. Therefore, Eqs. (2.139) to {2.142) have to be transformed back
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to (x, y) coordinates. This can be done by the use of the transformation

matrix in BEq. (2.84)., As an illustration, we will derive the spectral Green'’s
function that relates the scattered electric field E° at z =, due to the
electric surface current f The rest of the Green’s functions fﬂ”i}‘w very

easily. From Eq. (2.84) we hzwe.

-~ - = P G 0 = , -r 1T ~
B sing . cos@ || L, sind cos@ || ZTE 0 |}J,,
7 ~cos sind || E, —~cosf sin@il 0 Z™HJ,
L ; a : AL = . 4L 1 u
. g s e I
sin  cos@ {{Z'F 0 ||sing —cos@ || Sy,
—cos@® sind |}l 0 Z™ilcosd sing || J,,
. - t— o ] - L. —

ZTEsin? 0 + Z™ cos?0 (Z™ — Z'")cos Osin 0 || J,

(ZTM - Z T8 )cos 8 sin ¢ Z™ gin2g + ZTEcos? 0 || J

B IP-
*C?.:,r Galv* -";FI.!;'FI )
o Py (2.143)
i ke .JIJFJL; lr-

Following the same coordinate transformations, the rest of the spectral
Green’s functions are

r ] M =]

G G2 (PSE — P )sin @ cos 6 PLEsin? 9 + P;™ cos* 0
G2 Gl - — (P} cos? ¢ + PTM sin?0) (P — Py )sin 0 cos @ _ ’
(2.144)
6L G, (P™ — PT)singcos @ P™sin?@ + PIE cos? 0
G G, —(P™cos? 0 + PEsin?0)  (P[E — P/™)sin 6 cos ﬁ'_’
(2.145)
LY Gl v ™sin2g 4+ Y™ cos?8  (YTE — Y™ )cos 0 sin 6
Gl Gl - (YTE - Y ™)cos Osing Y TEsin? 0 + Y™ cos® 0

(2.146)
- Jr
Note that the subscript 1 in f and f lhas been omitted for convenience. 'The
spectral Green's funciions for the Iﬂwahlmlt pmblf:m can be obtained by
replacing €, and’™ ] by ¢, and "t TESPECHIVELY, in “Bas (2. 143} to (2.146). In

—

addition, for the 5pﬂctml_(§leuns functions that are associated with the
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magnetic surface current, a negative Sign is tequlmd SHICE we lhwc -—M in
the lower-half problem. lence, '“'*'

premeaiary
-4l
o
| NS
i
ATy
o
s
w4 —_
"mat

i p—
Wy i
]
A
I
x

“I — f:,_‘ (2l4?)

Although we have derived all the necessary spectral Green's functions Lo
solve for the unknown electric and magnetic surface currents m Eqs. (2.121)
to (2.123), we need to caleulate the short-circuited incident electric field on
the upper patch and the incident magnetic field at the short-cireuited
aperture. These incident fields are derived as {ollows. | | |

The short-circuited incident helds for both TE and TM polarization can
be derived by using the z-directed potential W, Consider the gmunzlul

dielectric slab ch,pn_ted in Figure 2.16, where I;lle m_uult:nl potential Y™ |
defned as

Arine . pdagy g tBaYeTes

The total potential in each of the regions is defined as

(i

1Iri D Ej;'t“--rﬂ-.jﬁj”-vETHz -{-— {EE.P;{TH'Ftl.-'Fﬁ“.FEqT”'E: (2‘148)

Z=1 ]
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perfect cleciric conductior

FIGURE 2.16 Short-circuited inciden( felds on a grounded slab.
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Wl = del*vte/Po¥ cogh vy, z, (2.149)
™

W= pioutgiBusgrat 4 Re/™0glBure=v0r, (2.150)

Y= Apfike Mot inliy o, (2.151)

The potentials are chosen such that they satisfy the boundary condition on

ol

SE——
L N e ———

the perfect electric conductor. To calculate the electric and magnetic fields

— o b e b b el

for the TE caselﬁ*nm Eqs.h (2.1) and (2.2(]),3'&e set A = ZWTE On the other
hand, for the TM case, we set [ = 2™ ip Eqs. (2.124) and (2.125). By
enforcing the continuity of the tangential electric and masgnetic fields at
z =f,, we obtain the unknown coeflicients R and A. Suf;sequently, we
obtain the short-circuited electric field at z = f, and magnetic field at z = (
as

TE
: ~JjBpleYeiry ¢ o
(2 =1,) = p—_ (2.152)
| Jag2evviy . .
E;Jnﬂ( 7 o= fi) e 0 ¢ EJHII‘TEHHU:"", (2.153)
Yo + v, coth Yl
‘ 2a,evuh sinh v, ¢
HP™(z=0) = : Yo¥y/ Lis elTuvglBoy (2.154)
o {u,tbﬂ(’}’ﬂ + v, coth ?lti)
‘ 283, e Sifl g
Hw (2 = 0) = —C0 TSI iy 158
™
2& ETHH
Einc( > = f;} < aYoYy e.frrqu-ejﬂu}'a (2156)
. 2By, e -
E(z = 1)) = ik ety (2.157)
: wErEﬂ( Yo coth '}"1"[ + T!/Yﬂ)
| 2jBae™ vy, /sinh y
Hire(z = 0) = 2P0V SN (2.158)
Yo + ¥y coth y,r,
+ 2jape¥oly, fsinhy r,
Hpe(z = 0) = - L0V e 1509

Yo t ¥y coth y, 1,
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With all the spectral Green’s functions and short-circuited incident fields
being defined, we can solve the set of simultaneous equations (2.121) to
(2.123) for the unknown electric and magnetic currents. The reflection and
transmission coefficients can be calculated from the tangential scattered

electric fields at z = ¢, and z = —1, expressed in the spectral domain, The
scattered field on the top surface is given by
= =2 |
‘:]'— & {::{L'/- T - =, P s T el e
.E :..f‘-f E_T G;l GJI}, J“. _g {._;f"l G_;j, ..I'}ﬁijl.
2a-F] - = | _ i i [ N - . (2.160)
L y G}! x GJ*J-" '!1 » JT \ GE y M ¥
| P L - Jeyf, = 4L da,B, ToAL 1oy,

The scattered and reflected fields are substituted into Egs. (2.115) and
(2.116) to obtain the reflection coefficients. The reflecied field ferms are
included only when p = ¢ = 0. From the solution of Eq. (2.101), the re-
flected field terms for the present case are

T
= = e (yy — y, coth v, 1,)
g - —JB R, E; = Ja, %, where [ = : : 1+
Yo + ¥y coth y¢,
(2.161)
™
E":j iy g Ek’n'}"nR‘ E-.:, L ﬁn'}’uR, o
_ Weyg ‘ WEg
e?i(y,cothyt, — v, /e
1 ( 0 1™ : rl) ‘ (2‘162)

Yo Coth vyt + v, /¢,

By the same token, the transmission coefficients can be obtained very easily
by replacing the approprizte speciral Green's functions, Furthermore, in the
lower-half problem, the incident field has been shielded by the ground plane,
and, as a result, the transmitted field terms in Egs. (2.117) and (2.118) are
deleted. The transmission coeflicients are then ) T

";[’QGE-I(&F’ q) - ﬂ’pE-}'(ﬂp“Bq)]
a, + B;

/i , (2.163)

j[ﬂpE—I(ﬂ’pr B,) + BqEr(“w ‘Bﬂ)]

2.164
(ap + B2 )vsa/iwe, ( :

Th
Thq
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wlhere the scaltered held on thE: bﬂtt{]m smfﬂca 1S

P e K Lo E.
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-

é X GF X é: = f 2Zx é? X G? r "r“r X
] wl ; +1 i (2.165)
g 3 T o 3
n E i “p;jll 5 G_'r'.lf G}; P J'E}. A : G};_‘- G}'f Afj: }“‘”ﬂ”

The power reflection and transmission coeflicients of the propagating modes
are obiaiued by taking the absolute value square of these reflection.and
lranismission coeflicients. The sum of these power reflection and transmission
coeflicients of (he propagating modes is equal to unity when nmnmlizad to
the mcidence power for lms.sln::&,s dielectrics.

2.6 THICK-STRIP GRATINGS CORRUGATED SURFACES,
AND SLOTTED SCREENS

. 1a addition to the dielectric Iuadmg eflect, the frequency response of an FSS

iy il e oF =

is also aflected by the fintte- ﬂ]iLLHEES mEtd“IZd[lﬂﬁ of the conducting surlace.
Periodic structures with finite-thickness metallization include thick- -strip grat-
ings, corrugated surfaces, and slotted screens. Ditlraction from a grating with
a rectangular cross section or a corrugated surface has been anualyzed with
analytical techniques such as the Wiener-Hopf [71] and the dual-series
approach derwved from the equivalent Riemann-Hilbert pmblem [7”] Al-
thoueh these methods are mathematically ngmmts the solutions are unnec-
essarily complicated. A considerable number of nmdlﬁcagmns are mqmrﬁ:d

o — e

when the periodic structures are loaded with dielectric layers. Another class

of periodic structures of interest is a thick screen, which is desirable in many

applications, such as solar power ulters [73), because it has a sharper
stopband cutoll than does a thin screen. A moment method analysis of
a thick screen has been reported [74]; however, 10 diel
included, " R

By extending the spectrai domain developed for the patch-aperture-patch

RN p—— SR e

I'SS, we derive a mixed spectral-domain ;lp})lDﬂC]l for analyzing periodic
structures with thick metallization and dielectric loading. This approach has

Al i o T T e ey s ey

B i P

im dielectric loading is

R R R PR W ey e, b --i-F'-‘-

been successfully applied to dl]’ll}’ZE nicrowave transmission lines and ridge
waveg_un;!es [53, 54]. Structures that can be analyzed by this method are
depicted in Figure 2.17.

To illustrate how the mixed spectral-domain method works, let us consider

- A e 11 e | miakieiiiel AU o T W, T B A fre—

a thick-strip grating as depicted in rl,{,liiﬂ 2.18. # .
The essence of this approach is to short-circuit the a apertures wnh per-

fectly t:t::rncluctm;? planes. The original al tangential Elﬂctrm ﬁelds at the apm-
lures are 1eamracl by unknown magnetic surface currents, which are found by

enforcing the continuity of tangential magnetic field across the apertures.

R e o Tl e g i
R A T TR

e A L T
Pkt | ALY B T

THICK-STRIP GRATINGS, CORRUGATED SURFACES, ARND SLOTTED S5CREENS 0Y

L7
LTI

W 22

(b) (c)

FIGURE 2.17 Periodic structures with finite-thickness metallization: (a) @ thick-strip
arating; (b} a corrugated surlace; {¢) thick slotted screen.

Mathematically, we have

H(dY) =HI{d") + H'(dT), (2.166)
H (d™) = H7M(d™) + HY:(d7), (2.167)
H(0%) = HZM0Y)Y + H'(07), (2.168)
FH(07) = HI™:(07), (2.169)
F(d") =HJ(d™), (2.170)
H.(0%) = H (07). (2.171)

The superscripts correspond to the sources that generated the magnetic
fields. The incident held is calculated withh the ground plane short-crrcuited
as in- the patch- -aperture- -patch FSS_case. The key difference between the
present pmblﬂn‘i and Lhe pah.h aperture-palch case is that, although Lhe
magnetic ficld above or below the thick aperture salisfies Floquet’s condition
as in the case of the patch-aperture-pateh, the magnetic feld inside the thick
aperture satishes (he wiveguide modal cunglltmn Therefore, the speclral-
domain magnetic fields above and below the apertures have a diflerent

melnim vitriable, and the solution method involves the mixing of I*lm]uet
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FIGURE 2.18 A thick-strip grating and its equivalent structure: (a) a thick-strip
grating, (b) unit cell of the original structure: (¢) unit cell of an equivalent structure.
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and waveguide modes, which give the method its name of mixed spectral
domain. Equations (2.170) and (2.171) can be rewritten as

HP(d*) = —HM{(d*) + H7"(d™) + HM(d™),  (2.172)
0=H;M(0") + HY(0%) — H7¥2(07). 0.173)

Expanding the scattered fields on the right-hand side as a product of the
spectral Green’s function and spectral magnetic currents, we have ‘

e

.y

HM = ), GiMpel**+ ¥, G,Me“+ T G Mel (2.174)

o= —on : P - — o0 N —m
0= 2 GiMe/ + 3. GMye'* + Y G M,elon, (2.175)
J] = — 1] - - 0 P —
where
Znr ‘ '
¥y = —— + K, (2.176)
ar
ey 2177
ay = (2177)

The required spectral Green’s functions are derived by the spectral-domain
immitfaiice approach. The spectral Green’s functions outside the slot are
different from inside and are sampled according to Egs. (2.176) and (2.177),
respectively. The extension of this mixed spectral-domain approach to treat

- ma

the slotted screen is straightforward. The basis functions chosen are

] T ——

e
_ 'mx 3% e
M, = SIH[“——“—(I + E'HE"A" g » (2.178)
A F W i VS T e
+ ; !) L’_’_ r f(.,-"?
L)U!) d-’f? TP(ZI/W) : ) ine U‘)/)-F/..a-'/ ‘
M, = - = ; gl X - (2.179)
V1= (2x/w)
where r = 1,2,... and p =0,1,2,... . For the slotted screens, the basis

functions in Eqs. (2.24) and (2.25) with phase factor e/ x+k*% a0 be used
to speed up convergéncé. The edge singularity varies as §-1/ 3 and the
normal component should vanish at a rate of §'3, where & is a small
distance away from the edge. One could incormorate a' cubic root in the
denominator of Eq. (2.179) so that these edge conditions can be satisfied
exactly. The Fourier transforms of the new functions, however, require one
to evaluate Bessel functions of Tractional order. Wewill SHow ‘in the niimeri-
cal section that the edgé conditions need fio: he strictly enforced. Applying
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the spectral Celerkin method, we have

— .

e,

+ Y MMGSM,|
3= — X,

(2.180)

S OMEG M, + Y MFG,M,

1= ~—w

f M H ™ =

)

= == 0 £, i

124

0= Y M:GM,| + Y, M¥EGsM,

+ Y MEG.M, . (2.181)

o, i1t= —a

H o= — "TH

Note that matrix clements are now mixed with the two spectral domains
defined m Eqs. (2.170) and (2.177). Direct matrix inversion using Gaussian
elimination is employed to solve for the unknown weighting coefficients of
the magnetic currents. .

2.7 NUMERICAL RESULTS

The spectral Galerkin methods using the entire-domain _basis functions with

Lprait 4 e bl — T s ey

Gaussian elimination and the subdomain basis functions with the conjugate

T 1T A e S

gradient method, respoctively, have heen validated against experimental
measurements., For example, the former agrees well with the measurement
by Ott et al. [5] for an array of narrow (reestanding plates [37] between 8.3
and 12 GHz. The latter method has been validated in both the millimeter-
wave [56] and infrared [75] regions. In these cases, the subdomain basis
functions are required to model nonuniform resistive loading on the conduct-
ing surfaces as well as unclesirable irregular unit-cell geometry caused by the
fabrication process. Readers are rvelferred to these papers for experimental
verification details.

In this section we present some nwiverical results that illustrate the
application of the techniques discussed for computing the scattering charac-
teristics of FSSs. Let us first consider the entire-domain basis functions.

Figure 2.19 shows the convergence curves for a freestanding square-patch
FSS cormputed using busis functions given by Eqgs. (2.24) and (2.25) with and
without the edge singuiariy term 1n the denominator. That is, we want (o
invesligate the effects of the edge singularity. Contrary to the example shown
in Tsao and Mittra [37], basis tunctions with or without edge singularity yield
similar convergent solutions for this patch case. In Tsao and Mittira [37], the
convergence curve is [or a square aperture with @ = 1.0 cm, & = 0.8 ¢cm, and

a/Ay = 1.5, Here our square patch is a = 1.0 em, b = 0.5, and a /Ay = 0.5,
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FIGURE 2,19 Convergence curves for a square-patch FSS.

Next, we compare the spectral response of the same FSS, using the
enlire-domain basis functions of Eqs. (2,24) and (2.25) and the rooftop
subdomain basis functions. We use § entire-basis f{unctions and the 112
subdomain basis functions lor a 16 X 10 grid. Figure 2.20 shows very good
agreement between the two. Here A, 1s the free-space wavelength, The
number of subdomain basis functions is smuall enough that we can solve the
resulting matrix equation by Gaussian eliminuation.

A B el

1.0
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FIGURE 2.20 Comparison of transnitted power calculited by entire-domain and
subdomain basis functions. ”
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FIGURE 2.21  Comparison of rate of convergence beliveen methods 1 and 2.
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Let us consider the gatch-ap&rtur&patch structure in Figure 2.12, We
have presented two approaches (o analyze this structure, namely, (1) model
the structure with electric currents only, as discussed in Section 2.3, or (2)

e,
—

—— e e — i L

model the structure with both electric and magnetic currents, as discussed in

Baoat TSmO Lo

Section 2.5. Figure 2.21 shows the > rate of convergence of the percentage
error defined in Ta})le 2. f6rsolving the matrix equation [ormulated by the
two methods by using the comjugate gradient iterative solution. Due to the

mixing of the electric and magnetic surface currents, although proper scaling

-between them has been used [67], the rate of convergence of method 2 is

much slower than that of method T, which _uvalves_only electric surface
currents. Note that the number of unknowns in method 2 i-$n312 a_s C;E.[J_HUS_E:{:I
to 580 in method 1. The slow convergence of method 2 can be attributed to
the conc}ition number of the resulting impedance matrix and the zero term in
the excitation vector [70]. Although not shown here, similar convergence

Jbehavior was observed for other unit-cel] geometries.

In the numerical results that follow, direct matrix inversion will be used
f::u' methods 1 and 2 when enough computer memory is available to store the
impedance matrix in the core. When the matrix size becomes prohibitively
large, only the conjugate gradient method is used for method 1. The conju-
gate gradient Is not applied to method 2 because of the slow convergence
blﬂhavmr. Once the unknown currents are found, the reflection and transmis-
sion coeflicients can be evaluated with the equations in Section 2.4. |

The transmitted power of two patth-apérturé-patcli structures will be
presented. The first one has a circular geometry (Figure 2.12), and the second
one has a ]erusalem-cmsa unit cell, Each dielectric layer in Figure 2.12 is a
0.0254-cm TeHon-Fiberglass with a dielectric constant of 2.5. In addition, the

el S e r— e e

aperture 1n the middle screen has the same geometry and dimensions as the
top and bottom patches.
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Figure 2.22 shows the numerica! results for both formulations of a circular
patch-aperture-patch surface with 0.7112-cm diameter in a 1.27-cm X 1.27-cm
square lattice. The incident angle is 8" = 20° and ¢™ = 1°. The circular
boundary ts approximated by the rooftop basis functions. Although one can
use the triangular discretization [oT better approximation to_the.circilar
b@’ﬁndmy using the method in Kipp and Chan [76], the nonuniform dis-
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FIGURE 2.22 Comparison of spectral response between methods 1 and 2. 8 = 20,
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cretization prohibits-the-use of FFT and therefore resulls in a slower solution
time.

" The plain solid curve is obtained by solving method 2 with matrix inver-
sion. The number of unknowns is 312 for a 16 X 16 discretization of the unit
cell. The solid curves with dots are obtained from method 1 by using both
16 % 16 and 32 x 32 discretizations having 860 and over 2300 unknowns,
respectively. The results obtained from the 32 X 32 discretization of the unit

cell tn using method 1 best agree with experimental results, since the circular
geometry is better approximated by staircasing with fAner discretizations.
Similar results are obtaine.d for 8" = 40°, as depicted in Figure 2.23.
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FIGURE 2.23 Comparison of spectra! respoase between methods 1 and 2. ¢ = 40°,
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The resonance remains stable for theta as lurge as 70°. Although not

o — e =
iy s PP T = - -

o e w p L o "

sliown here, when ¢ is varied, the resonance remains unchanged up to 4
certain value of &M, say ™ = 45°, Another resonance may show up
between the first and second resonances, and this can be atlributed to the
grating-lobe phenomenon [Zj.lf‘ﬂﬂi‘ﬂ Stlldi_ﬂs_Ir;}}:ﬁﬂ_{_ﬂggtﬂi{ﬁdﬂlﬁ_ elnminate F_his_
unwanled resonance—tor exampie arrange the elements mn a skewed lattice.
Extensive compuler simulations reveal that the first resonance is due to the
aperture, and the second is due to the patches. The two resonances can be
shifted by adjusting the radii of thie patches and the aperture. That the first
resonance is contralled by the aperture explains why the second resonance
calculated from method 1 tends to agree with experimental resulls better
than the first resonance. This is because more basis tunctions are used i
representing the electric surface currentls i the perforated gmungl pline
than are used in modeling the magnetic surface currents at the aperture. On
the other hand, if the aperture is large enough that more basis functions are
used to model the magnetic currents, better resulls from method 2 are
expected. |

Next, we focus our atlention on the calculation ot the first resonance of
this tightly coupled structure. In Figure 2.24 we replace the circular geume:‘ry
with a Jerusalem cross. The dimensions of the Jerusalem cross are L. = ja,
[V = Ltq, D= 3a,and a = b = 1.27 cm, as defined in Figure 2.5. A 16 X 16
grid is employed (0 discretize the unit cell. [t is clearly shown that the
resonance is invariant to the_incident angle 8™, at least up to 70° when ¢™
is fixedat 1°,. ©

So far we have presented numerical results for structures of zero thick-
ness. We now consider structures with fipite-thickness metallization. The
analysis techniques were presented in Section 2.6, Figure 2.25 shows the
comparison of the mixed spectral-domain method and the Wiener-Hopl
technique [71] for a tl1icl~:~slrip#§£§1ting w“lif’,f,{ﬁﬁﬁ-b- Excellent agree-
ment is achieved. T

Next we compare the mixed spectral-domain metlhod with the dual-series

approach {72] tor the corrugated surface depicted in Figure 2.17. Figure 2.26

[T P
T T i

shows the phase difference belween the fast polarization case (T™) and the
slow polarization case (TE) for Ay =1 cm, a = 25 cm, a/w = 2.5, and
0 < d < 0.3 cm. Figure 2.26 agrees very well with Figure 6b of Lok et al. [72]
and does not show the numerical difficulty such as (he results presented in
Figure ‘6a of Kok et al. [72] with the mode-matching method, Our good
results may be atlributed to the fact that the basis functions satisly the edge

— g s me T

singulurity condition and that we have a phase factor in the basis tunction tor

this uperture case. | |
" As a final example, we compare our mixed spectral-domain result with the
approximate’ technique {74] for a thick-rectangular-aperture screen. Our
method compares very well with those in Compton and Rutledge [74], which
also compares well with the mode~-matching method for the same styucture al
normal incidence. Note that the accuracy of the approsimate technique
dereriorates when the thickiness is reduced,
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| Note that in the analysis leading to Figure 2.27 the phase factor i
included in the basis -functions. To illustrate the importance of this pha 2
fac-t{}r. let us consider the same thick screen in Figure 2.27 but wit][:: tI?e
incidence field at g.= 20° and ¢ = 20° Figures 2.28(a) and (1) show the
cnnve::gence. of the spectral fesponse with the number of basis functions with
and without the phase factor, respectively. It is clear that without the phase

factor, the solution does not converge rapidly, especially close to resanance

R l'\-—--..n--dh-a_q.l\. S Ty

In this chapter we presented severa] teé]ihiques for analysis of frequency

selective surfaces. These techniques are based on Galerkin’s method in the

Spectral ' | ' ' '
P domain, Both entire-domain basjs funct:m_'{sj.___@_;_1;{_L_gp_b,d_omain basis

functions are conisidered, Tliesa functions are judicioy ly chosen so that_fley
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FIGURE 2.25 Comparison of the mixed spectral-domain method and Wiener-Hopf
technique for a thick-strip grating.

pends on the number of unknowns. When the number of unknowns is small,
which 15 usually the case when entire-domain basis functions are available,
the matrix is solved by Gaussian elimination. In contrast, when the number of
unknowns is large, due to the use of subdomain basis functions, we solve the
matrix solution iteratively, using the conjugate gradient method, which is
numerically eflicient when coupled with the fast Fourier transform algorithm.
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FIGURE 2.26 The phase difference between fast and slg_x?_ polarization cases for a
corrugated surface described in Kok et al. [72]. T -
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FIGURE 2.27 Comparison between the mixed- -spectral-domain method and the
approximale lechnique described in Compton and Rutledge [74].
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Depending on 'the problems, we formulate thf:. integm] equation by using

| e i T D T

electric surface currents, magnetic SLlldeE cuitents, or a combination of both.

admr = g - Y T

Dzﬂarﬂnt formulations yield different numerical efliciencies, even Lt the same

At P iy ks s B TR R T S

matrix solution technique is enm[myed The efficiency and accuracy of all’

B T i -\.-_—.-.u.-l.---_u.-.
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solution Aiethods presented here have been proven based on agreement
between experimental, analytical, and numerical results.
In this L‘fl‘i‘]plt‘:r the analysis is based on the assumptions that (i) the B35S 1S

infinite in extent, (i1) the incident radiation is @ monochromatic plane wave,
and (i) the cmnductlng patch is mﬁmtemmcllly thin. The frequency range of

primary int€rest is that a /A, < 1. For afhy = |, LhL anmlﬂhluﬁthﬂda are
no longer ﬁ;g@ggcal and other solution methods, such as the spectral iterative
[77] and optical methods [4], should be adopted. When the 1SS 1s truncated,
one can no longex solve for the surface currents on a unit cell. Hﬂwevar :::311&
caint still assume the current distributions in the cells that are not too close ta
the periphery of the surface to be the same as the infinite ESS. The currents
on and neay the peripheral cells are then modified. Detailed descriptions can
be found in Ko and. Mittra (78] The effects of curvature of the surface
frequency response have been discussed in Cwik and Mitira [79]. Another
important [mmt is that_the material pmpmtles change with hequanw and

should be properly accounted for, especially at optical frequency [75]. When
the incident field is not a monochromatic plane wave, one may expand the
source into its plane-wave spectrum and construct the frequency response of
the FSS for each of the sampled frequencies. Such ‘treatment has been
empiﬂ},fed lo calculate the interaction bethEn a dipole antenna and an FSS

[801.
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