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Abstract

Two inverse problems in eletromagnetics are investigated in this thesis. The first is the
retrieval of the effective constitutive parameters of metamaterials from the measurement of
the reflection and the transmission coefficients. A robust method is proposed for the re-
trieval of metamaterials as isotropic media, and four improvements over the existing meth-
ods make the retrieval results more stable. Next, a new scheme is presented for the retrieval
of a specific bianisotropic metamaterial that consists of split-ring resonators, which signi-
fies that the cross polarization terms of the metamaterial are quantitatively investigated for
the first time. Finally, an optimization approach is designed to achieve the retrieval of gen-
eral bianisotropic media with 72 unknown parameters. The hybrid algorithm combining
the differential evolution (DE) algorithm and the simplex method steadily converges to the
exact solution.

The second inverse problem deals with the detection and the classification of buried
metallic objects using electromagnetic induction (EMI). Both the exciting and the induced
magnetic fields are expanded as a linear combination of basic modes in the spheroidal co-
ordinate system. Due to the orthogonality and the completeness of the spheroidal basic
modes, the scattering coefficients are uniquely determined and are characteristics of the
object. The scattering coefficients are retrieved from the knowledge of the induced fields,
where both synthetic and measurement data are used. The ill-conditioning issue is dealt
with by mode truncation and Tikhonov regularization technique. Stored in a library, the
scattering coefficients can produce fast forward models for use in pattern matching. In ad-
dition, they can be used to train support vector machine (SVM) to sort objects into generic
classes.
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Thesis Co-Supervisor: Tomasz M. Grzegorczyk
Title: Research Scientist
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Chapter 1

Introduction

This thesis investigates two inverse problems in electromagnetics. The first problem, the

retrieval of the effective constitutive parameters of metamaterials from the measurement

of the reflection and the transmission coefficients, is addressed in chapter 2, 3 and 4. The

second inverse problem deals with the detection and the classification of buried objects

using electromagnetic induction (EMI), which is covered in chapter 5 of the thesis.

Left-handed metamaterials have been a subject of important scientific interest since the

first experimental verification of a negative refraction [1]. In 1968, Veselago first intro-

duced a medium with simultaneously negative permittivity and permeability [2]. Since the

electric field vector, magnetic field vector, and the wavenumber form a left-handed system

in it, this medium is called a left-handed medium (LHM). Nevertheless, real materials with

simultaneously negative permittivity and permeability are not available. However, in the

last few years, left-handed media have been experimentally designed as artificial materials,

or metamaterials [1, 3, 4], following the theoretical work by Pendry [5, 6]. There are many

interesting phenomena associated with LHM, such as a negative refraction [1], a lateral

beam shift [7], a perfect imaging effect [8], and a reversed Doppler shift [2].

Constitutive parameters are important in quantitatively characterizing the wave propa-

gation inside homogeneous media. However, designed as engineered composite structures,

metamaterials are inhomogeneous. Typical left-handed metamaterials consist of periodic

infinite metallic wires and split-ring resonators (SRRs), where the periodic infinite metallic

wires can be effectively modeled as a dilute plasma, thus providing a negative permittivity
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(e) [5], and the periodic arrays of SRRs give a negative permeability () [6]. In spite of

their inhomogeneity, metamaterials can be replaced conceptually by homogeneous materi-

als under some circumstances so that there would be no difference in the observed electro-

magnetic responses between the two. The above replacement is achieved when the applied

fields have spatial variation on a scale significantly larger than the periodicity of the wires

and SRRs, in which case the composite metamaterial is said to form an effective medium.

There are many ways to obtain the effective constitutive parameters of metamaterials.

In the numerical approach, the electromagnetic fields inside metamaterials are calculated,

and the constitutive parameters are obtained by taking the ratios of the spatially averaged

fields, i.e., = and u = >, where < · > denotes a spacial-average operator [9, 6].e> <H=>'

Such an approach is feasible for numerical simulations, but is hard to apply to experimental

measurements. Alternatively, analytical approaches describe the electromagnetic proper-

ties using some approximate analytical models for given metamaterial structures. While

analytical approaches give insights into the relationship between the physical properties

and geometrical properties of metamaterials, they become increasingly difficult to use in

metamaterials with complicated geometry structures. Consequently, retrieval techniques

are more commonly used because they can be applied to both simple and complicated

structures, and can use both numerical and experimental data. In the retrieval approach, we

assign the effective constitutive parameters to the metamaterial so that the scattered waves

(i.e., the reflection and transmission coefficients, or S parameters) from a planar slab of

the hypothetical homogeneous medium match those from a slab of metamaterial with the

same thickness. The retrieved constitutive parameters, even if approximate, are helpful in

the design of metamaterials and in the interpretation of their scattering properties.

In the retrieval of the constitutive parameters, three stages of retrieval are addressed.

First, in chapter 2, a robust method is proposed for the retrieval of metamaterials as isotropic

media, and four improvements over the existing methods make the retrieval results more

stable. Second, chapter 3 presents a new scheme for the retrieval of a specific bianisotropic

metamaterial that consists of split-ring resonators, which signifies that the cross polariza-

tion terms of the metamaterial are quantitatively investigated for the first time. Finally,

an optimization approach is designed in chapter 4 to achieve the retrieval of general bian-
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isotropic media. The hybrid algorithm combining the differential evolution (DE) algorithm

and the simplex method steadily converges to the exact solution.

Chapter 5 is dedicated to the detection and the classification of buried objects using

electromagnetic induction (EMI). The detection and removal of buried unexploded ord-

nance (UXO) is an important environmental problem, made very expensive and challenging

by the high false alarm rate. Among the techniques for detecting UXOs, electromagnetic

induction is promising and has been widely explored [10, 11, 12, 13, 14, 15]. It is well-

known that time varying fields induce a current flow in the electrically conductive and/or

magnetically permeable objects placed in their vicinity, and the induced current produces

magnetic fields, known as the secondary fields (correspondingly, the exciting fields are re-

ferred to as the primary fields). We can then detect and discriminate the objects through the

observation of the secondary fields.

Many numerical techniques are available for EMI calculation in the magneto-quasistatic

(MQS) regime. Two of the most widely used models that work well for simple structures

are (1) the dipole model [10, 16], in which one approximates the response of an object with

one or a number of independently responding magnetic dipoles, and (2) sphere models [17],

in which one approximates the object with a sphere. But many objects are complicated

enough so that it is impossible or very difficult to approximate them with independent

dipoles or spheres so that we need to resort to more complicated analytical geometries [18,

19, 20]. For such objects, recent forward modeling approaches in terms of standardized

excitations succeed in capturing the most complex magneto-quasistatic scattering behavior,

including all near field, material and geometrical heterogeneity, and internal interaction

effects [21, 22, 23, 24, 25]. The essential idea is that any excitation can be constructed from

a set of basic inputs and, thus, the response corresponding to the complete excitation can be

constructed just by superposition of responses to the basic excitations. Spheroidal modes

are chosen in this work because the spheroidal coordinate system can be made to conform

to the general shape of an object of interest, whether flattened or elongated, and many of our

objects of interest are bodies of revolution [13, 26]. In the spheroidal coordinate system,

both the primary and the secondary magnetic fields are expressed as linear superpositions

of basic modes. Due to the orthogonality and the completeness of the spheroidal basic
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modes, the scattering coefficients, in response to unitary magnitude of the primary mode

excitation, are uniquely determined. They are characteristics of the object and can then be

treated as discriminators in the pattern matching and classification.

Previous work has shown that many geometrically complicated elongated metallic ob-

jects can often be represented effectively in the MQS realm by a spheroid [27]. Thus

we first attempt to process ultra-wide band (UWB) MQS data to infer the properties of an

equivalent spheroid, thereby characterizing the material properties, general shape, and lo-

cation of a subsurface object. Beyond this, the response of any discrete scatterer (including

non-spheroidal objects) can be represented in terms of basic mode solutions in spheroidal

coordinates. Theoretical analysis proves that the scattering coefficients are characteristics

of the object, which is subsequently verified by numerical examples. The scattering coef-

ficients are retrieved from the knowledge of the secondary fields, where both the synthetic

and measurement data are used. The ill-conditioning issue is dealt with by mode truncation

and Tikhonov regularization technique. Stored in a library, the scattering coefficients can

produce fast forward models for use in pattern matching. Also they can be used to train

a support vector machine (SVM) to sort objects into generic classes, such as elongated or

not, permeable or not. The success of the retrieval from both synthetic and measurement

data shows the promise of the spheroidal mode approach in the detection and classification

of buried objects.
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Chapter 2

Retrieval of the isotropic metamaterial

2.1 Introduction

Left-handed (LH) structures have been realized so far as metamaterials [1, 3, 4] and very

quickly, researchers have been working on retrieving their effective permittivity and per-

meability to better characterize them [28, 29, 30]. Known methods to date [31, 32] use

S parameters calculated from a wave incident normally on a slab of metamaterial, from

which the effective refractive index n and impedance z are first obtained. The permittivity

e and permeability are then directly calculated from tt = nz and e = n/z. Note that the

values of , /p and z are relative to those in free-space, thus dimensionless. The permittivity

and permeability are tensors in general, but here we restrict the incidence so that we can

focus only on one of their principal axes.

It is also known that this retrieval process may fail in some instances, such as when the

thickness of the effective slab (exhibiting bulk properties) is not accurately estimated [28]

or when reflection (S11) and transmission (S21) data are very small in magnitude [30].

Although these issues have been addressed to some extent in previous works, we have found

that the retrieved results in some cases are still unsatisfactory. This chapter proposes four

improvements over the existing method, and the improved method retrieves stable results.

Some typical retrieval results are presented to show the robustness and effectiveness of the

method.
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2.2 Retrieval method

2.2.1 Theoretical retrieval equations

In order to retrieve the effective permittivity and permeability of a slab of metamaterial,

we need to characterize it as an effective homogeneous slab. In this case, we can retrieve

the permittivity and permeability from the reflection (S 11) and transmission (S21) data.

For a plane wave incident normally on a homogeneous slab of thickness d with the origin

coinciding with the first face of the slab, S11 is equal to the reflection coefficient, and S21 is

related to the transmission coefficient T by S21 = Teik °d, where k0o denotes the wavenumber

of the incident wave in free-space. The S parameters are related to refractive index n and

impedance z by [33, 31, 7]:

Ro1 (1 - ei2 nkod)
S11= 1 - R 1 ei2nkod (2.la)

(1 - R~ )einkod
S21 - Rei 2 n k d (2. lb)

where Rot = l -

As it has been pointed out in [28, 29], the refractive index n and the impedance z are

obtained by inverting Eqs. (2.1), yielding

(Z 1 + S11)2 - S221 (2.2a)
(1 - S11)2 - S21 '

einkod = X + i1- X 2, (2.2b)

where X = 22(1 - S1 + S221). Since the metamaterial under consideration is a passive

medium, the signs in Eqs. (2.2) are determined by the requirement

z > O0 (2.3a)

n" > 0, (2.3b)

where (.)i and (.)// denote the real part and imaginary part operators, respectively. The
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value of refractive index n can be determined from Eq. (2.2b) as:

n = { [[Ln(einkd)" + 2mr] i [Ln(einkod)]', (2.4)

where m is an integer related to the branch index of n'. As mentioned above, the imaginary

part of n is uniquely determined, but the real part is complicated by the branches of the

logarithm function.

Eqs. (2.2) can be directly applied in the case of a homogeneous slab for which the

boundaries of the slab are well-defined and the S parameters are accurately known. How-

ever, since a metamaterial itself is not homogeneous, the two apparently straightforward

issues mentioned above need to be carefully addressed. First, the location of the two

boundaries of the effective slab need to be determined, which we do here by ensuring a

constant impedance for various slab thicknesses. Second, the S parameters obtained from

numerical computation or measurements are noisy which can cause the retrieval method to

fail, especially at those frequencies where z and n are sensitive to small variations of S11

and S21. These two problems are examined in detail in the following sections.

2.2.2 Determination of the first boundary and the thickness of the ef-

fective slab

A homogeneous slab of material can be characterized by the fact that its impedance does

not depend on its thickness. My understanding of the physical meaning of the first effective

boundary is a plane beyond which the reflected wave behaves like a plane wave for a plane

wave incidence. When a plane wave is incident on a metamaterial, currents will be induced

on the metals creating a scattered field. The field produced by the induced currents is not

uniform: it is strongest around the metal and decay at a certain distance. By definition, the

first effective boundary is a plane beyond which the reflected wave is a plane wave in free

space, and it has to be determined. We use z and z 2 to represent the impedances of two

slabs of metamaterial of different thicknesses. The reflection S1, depends on the defined

position of the first boundary and the transmission S21 depends on the thickness of the slab.

In addition, since the impedance z is also a function of Sil and S21 , z depends on the first
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boundary and the thickness of the slab as well. Taking into account the above-mentioned

properties, we propose a method whereby the first boundary and the thickness of the sample

are determined by optimization so that z1 matches z2 at all frequencies. Fig. 2-1 illustrates

the configuration of the problem for a metamaterial made of two cells in the propagation

direction (x direction). The geometry of the metamaterial has been taken from [34, 35],

in which the dimensions have been slightly modified for ease of discretization in FDTD

simulations. With the split-ring resonator (SRR) and rod in the center of the unit cell, the

periodicity in x direction is do, as shown in Fig. 2-1. The first boundary of the effective

homogeneous medium is located at xl below (xl > 0) or above (xl < 0) the first unit

cell boundary, and the thickness of the effective medium is Ndo + 2 - x1 for a N-cell

metamaterial ( N = 2 in the case shown in Fig. 2-1). The optimization model is set up to

minimize the mismatch of impedances of different numbers of cells of metamaterial:

1 N IZZl(fi, ) - z2(fi, )l 
min f( ) = Nf =maxz1l(fi,7)[, Z2(fi,7) }' (2.5)

s.t.: -0.5do < x1,x2 < 0.5do, -= (Xl,X2),

where Nf is the total number of sample frequencies and zj (fi) represents the impedance of

slab j (j = 1, 2) at frequency fi.

In the ideal case, z matches z2 for all frequencies with the objective function value

equal to zero. We use the differential evolution (DE) algorithm [36] to optimize the ob-

jective function. For the structure shown in Fig. 2-1, we optimize the effective boundaries

in order to match the impedances of one and two cells of metamaterial, and the obtained

optimization solution is xopt = (3.8565 x 10-4do, 1.0479 x 10-4 do). For this optimized

effective boundaries, the impedances of one, two, and three cells of the metamaterial re-

trieved from the S parameters (obtained from FDTD simulations) are shown in Fig. 2-2.

It can be seen that the retrieved impedances for 1, 2 and 3 cells of metamaterial match

well for most frequencies, while matching was not as satisfactory when the method in [28]

was used (which corresponds to xl = 0.5do in our formulation). We also calculated the

impedance z for the case of = (0, 0) and found that the results are almost the same
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Figure 2-1: Illustration of the effective boundaries of a 2-cell metamaterial. The SRRs
and rods are periodic along y and : directions with periodicity ay = 4mm, az = 3mm.
The unit-cell thickness (do) in the direction of wave incidence is 4 mm. We choose the
first and the last unit cell boundary as the reference plane for the parameters xi and x2,
respectively. The value of x1 and x2 are positive/negative if the dash lines are below/above
their reference planes. The thickness of the effective homogeneous medium is 2do + x2 - Xl

[mm].

as the optimized ones. We have corroborated this result with many other metamaterial

thicknesses and geometries (periodic rod structure and the geometry shown in the inset of

Fig. 2-8(a)) to eventually conclude empirically that the first effective boundary of a sym-

metric one-dimensional (D) metamaterial (one pair of ring and rod within each unit cell)

[28, 3, 82] coincides with the first unit cell boundary and the second effective boundary

coincides with the last unit cell boundary. For 2D (two pairs of ring and rod within each

unit cell) [34, 82] and asymmetric D metamaterials, no such rule could be found and the

effective boundaries of the slab need to be determined from optimization.

2.2.3 Determination of n and z from Sll and S21

It is a common method to determine z and n from Eqs. (2.2) with the requirement of Eqs. (2.3),

where z and n are determined independently. However this method may fail in practice

when z' and n" are close to zero: a little perturbation of S1 l and S21, easily produced in

experimental measurements or numerical simulations, may change the sign of z' and n",
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Figure 2-2: Optimized impedance z for 1, 2 and 3 cells of metamaterial of Fig. 2-1 in the
direction of propagation.

making it unreliable to apply the requirement of Eqs. (2.3), as discussed in [30]. In fact, z

and n are related and we should use their relationship to determine the signs in Eqs. (2.2). In

order to determine the correct sign of z, we distinguish two cases. The first is for Iz'I > 6,

where 6z is a positive number, for which we apply Eq. (2.3a). In the second case, for

z ' I < 6,, the sign of z is determined so that the corresponding refractive index n has a non-

negative imaginary part, or equivalently eink°odl 1, where n is derived from Eqs. (2.1):

einkod S21_ (2.6)

Note that once we obtain the value of z, the value of einkod is obtained from Eq. (2.6), so

that we avoid the sign ambiguity in Eq. (2.2b). When the z in Eq. (2.2a) with a positive sign

is plugged into Eq. (2.6), Eq. (2.6) is simplified by straightforward algebraic manipulation

to Eq. (2.2b) with a negative sign. Correspondingly, the z in Eq. (2.2a) with a negative sign

leads to a positive sign in Eq. (2.2b). Fig. 2-3 shows the retrieved impedance using the

method presented in this chapter and using only the condition of Eq. (2.3a). It is noted that

the discontinuities obtained when only applying the criterion z' > 0 are removed.
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Figure 2-3: Comparison of the retrieved impedance z (real and imaginary parts) for one cell
of metamaterial shown in Fig. 2-1 by the method presented in this chapter and a traditional
method using only the requirement z' > 0.

2.2.4 Determination of the branch of n'

We have presented in the previous sections a method of solving for z and n", but n' remains

ambiguous because of the branches of logarithm function as seen in Eq. (2.4). In order to

address this problem, it has been suggested to use a slab of small thickness and applying the

requirement that e(f) and ,(f) are continuous functions of frequency [28, 29]. However,

no further details on the continuity argument were provided. In our method, we determine

the proper branch by using the mathematical continuity of the parameters, with special

attention to possible discontinuities due to resonances. The method is an iterative one:

assuming we have obtained the value of the refractive index n(fo) at frequency fo, we

obtain n(fl) at the next frequency sample f by expanding the function ein(fl)ko(fl)d in a

Taylor series:

ein(f)ko(f)d ein(fo)ko(fo)d (1 + + 1A2) , (2.7)

where A = in(fi)ko(f)d - in(fo)ko(fo)d and ko(fo) denotes the wavenumber in free-

space at frequency fo.

In Eq. (2.7), the branch index (m in Eq. (2.4)) of the real part of n(fl) is the only

unknown. Since the left-hand side of Eq. (2.7) is obtained from Eq. (2.6), Eq. (2.7) is a

binomial function of the unknown n(fl). Out of the two roots, one of them is an approx-
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imation of the true solution. Since we have obtained n"(f l), we choose the correct root

among the two by comparing their imaginary parts with n"(fl). The root whose imaginary

part is closest to n"(fl) is the correct one, and we denote it as no. Since no is a good ap-

proximation of n(fl), we choose the integer m in Eq. (2.4) so that n'(fi) is as close to n'

as possible.

The branch of n' at the initial frequency is determined as follows: from tl = nz and

e = n/z, we have

II" = n'z" + n"z', (2.8a)

1
/ -= 1 (-n'z" + n"z') . (2.8b)

The requirements /i" > 0 and e" > 0 lead to

In'z" < n"z'. (2.9)

In particular, when n"z' is close to zero but z" is not, n' should be close to zero. At

the initial frequency, we solve for the branch integer m satisfying Eq. (2.9). If there is

only one solution, it is the correct branch. In case of multiple solutions, for each of the

candidate branch index m, we determine the value of n' at all subsequent frequencies using

the above-mentioned iterative method. Because the requirement of Eq. (2.9) applies to

n' at all frequencies, we use it to check the validity of n' at all frequencies produced by

the candidate initial branch. Note in the special case when n"z' is close to zero but z"

is not, the checking process can easily be carried out. Therefore, the initial branch that

satisfies Eq. (2.9) at both the initial frequency and the subsequent frequencies is the correct

one.

For the metamaterial structure shown in Fig. 2-1, we found that there is a frequency

region at which there is no branch index m satisfying Eq. (2.9). We call this frequency

region the resonance band. The properties of the resonance band are still disputed by

researchers. Some papers [37, 38, 39] mention the existence of multiple modes in this

region since the real part of n is large, yielding a wavelength comparable to or smaller than
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the unit size of the metamaterial thereby rendering the retrieval of the effective parameters

of the metamaterials impossible. Other papers [29, 40] state that retrieval is possible and the

retrieved permittivity e has a negative imaginary part in the resonance band. Here, we do

not address this issue and for this reason the retrieved results presented here are interrupted

in frequency by the resonance region (see for example Fig. 2-4). In this case, since n(f) is

not continuous through all frequencies, we have to determine the initial branches for two

frequency regions: below and above the resonance band. Note that below the resonant

band, the retrieved branch index is zero, which confirms the validity of the traditional

method used for low frequency retrieval. The retrieved refractive indexes n for 1, 2 and

3 cells in the propagation direction are shown in Fig 2-4, where the resonance band is seen

to extend between 11 GHz and 12 GHz. We observe that the values of n for different cell

numbers are identical above the resonant region. Below the resonant band, however, the

retrieved n for and 2 cells match well, but the result for 3 cells differs significantly from

the previous two. This discrepancy is due to the small magnitude of S21 in this frequency

band, as we shall discuss in the next section.
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Figure 2-4: Retrieved refractive index n (real and imaginary parts) for 1, 2 and 3 cells of
the metamaterial structure shown in Fig. 2-1.

2.2.5 Sensitivity analysis

Although the retrieved z and n for 1, 2, 3 cells of metamaterial presented so far match well

for most of frequencies, a close examination shows that the three results do not match well
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at some specific frequencies. There are two cases of discrepancies. The first is that the

retrieved refractive index n for 3 cells of metamaterial does not match the value for 1 and 2

cells at low frequencies (5 GHz - 11 GHz in Fig. 2-4). The second is that the impedance

z appears to spike at some frequencies (around 12.2 GHz, 17 GHz, 19.5 GHz in Fig. 2-2).

We shall show here that these discrepancies are due to the sensitivity of z and n to the

accuracy of S1x and S21.

The first case appears when S211 is close to zero. In the region below the reso-

nance band, the transmission is usually small, especially for thicker metamaterials. From

Eq. (2.2b), we see that S21 appears in the denominator, so that the values of n are very

sensitive to small perturbations of S21. Yet, a small transmission has little influence on the

retrieval of z, which can be seen by computing:

0z 2 8S 21 Sll
(2.10)

,9S2 1 [(1 - S11)2 - S221]2 '

from which it is clear that a small IS211 makes "9- small (approximately zero). In addition,

we can see from Eq. (2. lb) that if n" is not small, S21 will decrease exponentially with d, i.e.

with an increasing number of cells in the propagation direction. Therefore, the smaller S21,

the higher the computation and measurement relative errors, which leads to less accurate

retrieval results.

The second case appears when S221 is close to unity while S1l is close to zero. Similar

to the first case, the denominator in the expression of z (see Eq. (2.2a)) approaches zero,

thus making it difficult to retrieve z. However, in this case the value of n is stable. In this

situation, instead of solving for n and z which exactly satisfy Eqs. (2.1), we solve for the

following inequalities:

S 1- Ro21 ei2nkod < (2.1 a)

S21 - (1 1- RP)einkod
|S2,1 I R2 ei 2 n ko d < (2.11 b)

where 6r and 6t are small positive numbers. Fig. 2-5 shows the range of z satisfying

Eqs. (2.11) for 6, = 0.015 and 6t = 0.0. At each frequency, all the z having a real and
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imaginary parts between the bounds shown in Fig. 2-5 satisfy Eqs. (2.11). It can be seen

that the magnitude of the spikes is within the tolerance error, which implies that they are

due to the noise in the S11 and S21 data.
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Figure 2-5: Range of z (real and imaginary parts) for tolerance 6r = 0.015
Eqs. (2.11). The impedance is for a 3-cell metamaterial shown in Fig. 2-1.

and 6t = 0.0 in

Finally, note that although the retrieved n and z for multiple cells may be different

from that for one cell at some specific frequencies, the calculated S11 and S2 1 for multiple

cells using the retrieved e and p from one cell data match well with the S1 and S21 data

computed for multiple cells directly from numerical simulation, as is illustrated in Fig. 2-6.

2.2.6 Results

The retrieved permittivity e and permeability /z of a one-cell of SRR-rod structure of Fig. 2-

1 are shown in Fig. 2-7. Note that although the results satisfy the condition e" > 0 and

,u" > 0, the positive energy requirement 0(ew)/Ow > 0 [84, 2] is violated in the frequency

band 12 GHz - 12.2 GHz. As a result, the resonance band is extended to 11 GHz 

12.2 GHz, as shown by the vertical dashed lines in Fig. 2-7(a). The value of e and ,u are

both negative in the frequency range 12.2 GHz - 12.8 GHz, showing that in this band, the

metamaterial exhibits a left-handed behavior. We also retrieved the effective parameters of
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Figure 2-6: S11 and S21 (real and imaginary parts) for 3 cells: comparison between FDTD
results (dot line with *) and calculated S parameters based on the retrieved e and IL (solid
line with G) for a one-cell metamaterial shown in Fig. 2-1.

4 and 5 cells of metamaterial shown in Fig. 2-1, and the retrieval results are close to those

for 1, 2, and 3 cells.

In addition, we also applied our method to retrieve the effective parameters of the struc-

ture taken from [82, 83], as shown in the inset of Fig. 2-8(a). For a ID structure, by match-

ing the impedance z for 1 and 2 cells of the metamaterial using the previously described

method, we obtain ,pt = (2.2053 x 10- 3do, 1.1356 x 10- 3 do), where do is the length of

unit cell. Again, we find that the two boundaries of the effective homogeneous medium are

close to the outer unit cell boundaries of the D metamaterial. Fig. 2-8 shows the retrieved

z, n, and p for 1 cell of this metamaterial. It can be seen that the frequencies range

13.8 GHz -, 14.5 GHz is a left-handed band, which agrees with the conclusion in [82]. It

should be noted, however, that for a 2D version of this metamaterial, the effective bound-

aries should be obtained from the optimization process, as they do not necessarily match

the unit cell boundaries of the metamaterial.
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2.2.7 Estimation of the error

In this section, we estimate the error of the retrieved n and z due to the noise contained

in the S parameters. For a metamaterial, the S parameters calculated from FD-TD contain

noise, but we do not know the exact value of z and n to compare with in order to estimate

the error of the retrieved solution. Therefore, we choose a slab of a homogeneous medium

with analytical e and , which is used to compare with the retrieved results in the presence

of the noise.

Consider a slab of homogeneous medium with the following constitutive parameters:

f2
f = + i-e f (2.12a)f2 + ief'

1= ~ PM(2.12b)f2 _ f2 + iTymf

where fpe = 10 GHz, y, = 0.2 GHz, fpm = 9 GHz, fm = 8 GHz, and ym = 1.0 GHz.

The thickness of the slab is 0.01 (m), and the operating frequency ranges from 3 GHz

to 15 GHz.

The refractive index n and the impedance z are functions of S11 and S21, as shown in

Eqs. (2.1). In what follows, we estimate the errors in the retrieved n and z in the presence

of noise.

Applying a Taylor expansion of the first order to Eqs. (2.1), we approximately obtain

the errors of the retrieved n and z due to the errors contained in the S parameters.

AZ as,,ll + as21
aS11 OS21

A l lAS 11 + A 21AS21 (2.13)

where

1 2(1 - S2 - S221)[-All 1 -(2.14a)

z [(1 - S11)2 S221]2
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A 2 1 = 1 4S11S 2 1 (2.14b)
z [(1 - S 11)2 - 221]2 '

Separating the real and the imaginary parts, we have

Az' = A'llAS' 1 - A1llS11 + A21LAS21 -21, 2l,21 (2.15a)

aZ/ = AlS'111 + A 11S1 + A',AS21 + A21L'\l1 (2.15b)

Thus, we obtain the bounds of error of z due to the errors contained in S11 and S21:

I/-Az'I AS I + IAA&I + IA'AS 1 + IAlAS2l1 (2.16a)

IAz"I < IA'llAS'I + IA1 jAS1 + IA' 1AS2"1 + IA21AS211 (2.16b)

Similarly, we obtain the bounds of the error of n,

IAn'l < IBlLAS' I + IB'A2S'I + IBh AS2'1 + B21AS21, (2.17a)

Ilan"I < IB1ASl'I + IB'LAS'I + IBLS' 1 + IB"IB AS21, (2.17b)

where

Bll = Lk(odV1 S21 (2.18a)

1 s + s2211
B 2 1 = /1 2 1 + S21 ) (2.18b)

k 11 -2 2

and X = 2 S + S21).

In the numerical simulations, we retrieve the refractive index and impedance in the

presence of five percent Gaussian noise in both the real and the imaginary parts of S11 and

S21. The retrieved and the true n and z, together with the lower and upper bounds from the

error analysis are shown in Figs. 2-9 and 2-10.

It can be seen that the retrieved results in the presence of noise are within the lower and

upper bounds at most of frequencies, which shows that the first order estimation of errors

is efficient and accurate.

The retrieved permittivity and permeability are also shown in Fig. 2-11, where we ob-
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serve that the retrieved permittivity and permeability randomly oscillate around the true

solutions.

2.2.8 Some comments

There are some comments about the proposed retrieval method.

Limitation of the retrieval method

Although the proposed retrieval method works well at most of frequencies, it cannot re-

trieve the constitutive parameters of metamaterials around the resonance frequency (see

the blocked frequency ranges in Fig. 2-4 and Fig. 2-7), which still remains an unsolved

problem. For this issue, there are mainly two explanations in the literature. The first one

is the existence of multiple modes in this region since the real part of n is large, yielding a

wavelength comparable to or smaller than the unit size of the metamaterial thereby render-

ing the retrieval of the effective parameters of the metamaterials impossible [37, 38, 39].

The second explanation is that retrieval is possible in this case and the retrieved permittiv-

ity e has a negative imaginary part in the resonance band [29, 40] state. In my opinion, I

prefer the first explanation, and thus leave the retrieved results around the resonance blank,

as shown in Figs. 2-4 and 2-7.

Dependence on the unit cell length

Note that for a given metamaterial structure, its effective constitutive parameters depend

on the length of the unit cell, i.e., do in Fig. 2-1. This property can be illustrated by the

following example, periodic wire structure, where the ring is removed in Fig. 2-1. The

study in [5] proves that the periodic metallic wires can be effectively modeled as a dilute

plasma. When the length of the unit cell do increases, the density of the electrons decreases,

thus, the plasma frequency also decreases due to the fact that the plasma frequency is

proportional to the square-root of the density of the electron.
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2.3 Conclusion

We have proposed an improved method to retrieve the effective parameters (index of re-

fraction, impedance, permittivity, and permeability) of metamaterials from transmission

and reflection data. The successful retrieval results for various metamaterial structures

show the effectiveness of the method. Our main conclusions are as follows:

1. The first boundary and the thickness of the effective media can be determined by

matching z through all sample frequencies for different lengths of slabs in the propagation

direction. For symmetric D metamaterials, we have drawn the empirical conclusion that

the first boundary coincides with the first boundary of the unit cell facing the incident

wave, and the thickness of the effective medium is approximately equal to the number of

unit cells multiplied by the length of a unit cell. For 2D and asymmetric D metamaterials,

the effective boundaries have to be determined by optimization.

2. The requirement z' > 0 cannot be used directly for practical retrievals when z' is

close to zero because the numerical or measurement errors may flip the sign of z', making

the result unreliable. In this case, we have to determine the sign of z by the value of its

corresponding n so that n" > 0.

3. There is a resonance band characterized by the fact that the requirement A/" > 0

and e" > 0 cannot be satisfied at those frequencies. On each side of the resonance, the

branch of n' can be obtained by a Taylor expansion approach considering the fact that the

refractive index n is a continuous function of frequency. Since the refractive index n at the

initial frequency determines the values of n' at the subsequent frequencies, we determine

the branch of the real part of n at the initial frequency by requiring that p" and e" are

non-negative across all the frequency band.

4. Due to the noise contained in the S parameters, the retrieved n and z at some specific

frequencies are not reliable, especially for thicker metamaterials at lower frequencies. In

spite of this, the fact that S11 and S21 for multiple cells of metamaterial calculated from

the retrieved e and pt for a unit cell metamaterial match the S11 and S21 computed directly

from numerical simulation confirms that the metamaterials can be treated as an effective

homogeneous material.
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Frequency [GHz] Frequency [GHz]

(a) Permittivity (b) Permeability

Figure 2-7: Retrieved E and /u (real and imaginary parts) for a one-cell metamaterial shown
in Fig. 2-1. The vertical dashed lines denote the limits of the resonance band.
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Figure 2-8: Retrieved z, n, e and p/ (real and imaginary parts) for a one-cell metamaterial
structure taken from [82, 83] and shown in the inset of Fig. 2-8(a). The vertical dashed
lines denote the limits of the resonance band.
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Frequency [GHz]

(a) Real part of n (b) Imaginary part of n

Figure 2-9: Comparison of the retrieved and the true results for n in the presence of five
percent noise in S parameters.

N

e

Frequency [GHz] Frequency IGHz]

(a) Real part z (b) Imaginary part of z

Figure 2-10: Comparison of the retrieved and the true results for z in the presence of five
percent noise in S parameters.
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Figure 2-11: Comparison of the retrieved and the true results for E and A in the presence of
five percent noise in S parameters.

46



Chapter 3

Retrieval of the bianisotropic

metamaterial

3.1 Introduction

The retrieval methods applied to metamaterials as presented in the previous chapter and

published so far [28, 29, 30] deal with isotropic permittivities and permeabilities. However,

it is known already that the metamaterials are intrinsically anisotropic because of the orien-

tations of the rings and rods in space, and that they are also possibly bianisotropic because

of the specific properties of their split-rings. For example, it has been shown in [41, 42]

that the original concentric split-ring exhibits a bianisotropic behavior, directly due to its

geometry. Consequently, the existing retrieval algorithms need to be improved to take into

account these additional properties.

In this chapter, we extend the work presented in the previous chapter and present a

methodology to retrieve bianisotropic parameters as well. Although our approach is gen-

eral, we derive it here for the specific retrieval of the bianisotropic term expected from

the original concentric split-ring resonator [1], shown in Fig. 3-1(a). The SRR structure is

made of two concentric rings, each interrupted by a small gap. For convenience, we refer to

this SRR structure as the edge-coupled SRR [41]. It has been pointed out [43, 42] that this

structure presents bianisotropy: The magnetic field in the y direction induces an electrical

dipole in the z direction due to the asymmetry of the inner and outer rings, and the electric
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field in the z direction, producing an unbalanced current distribution in the rings, induces a

magnetic dipole in the y direction. Supposing that the medium is reciprocal [33, 44, 42, 84],

the constitutive relationships can be written as

D=-.E+-EH, (3.1)

B= .H + E, (3.2)

where

0 0'\ 0 0

e= O 0 , 0 h o ' O ,y O

O O ezO 0 

0 0 0 0 0)
-1 ( - 1

O -ito O O OC

where Co and ttO are the permittivity and permeability of free space respectively, and c is

the speed of light in free space. Note that e,, ey, EZ, ,y, z, and E0 are all dimension-

less quantities. Since there are seven complex unknowns to be determined, at least seven

equations are required. In order to obtain these, we resort to multiple incidences as shown

in Fig. 3-1(b), where each incidence gives two complex equations, one for the reflection

(S 11) and and the other one for the transmission (S 21).

We propose a method to retrieve the above-mentioned constitutive parameters of a ho-

mogeneous material from the measured S parameters. The analytical inversion equations

are proposed for homogeneous lossless bianisotropic media, and a numerical retrieval ap-

proach is presented for the case of lossy bianisotropic media. Both methods are verified

by numerical examples, where analytical , P and ~0 are supposed and are retrieved from

the S parameters. Finally, we use the retrieval method to study the properties of various

SRR-based metamaterials. The retrieval results corroborate the conclusions found in the

previously published work [41, 42, 45, 43].

Although the retrieval method proposed in this chapter is used to retrieve the constitu-
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(a) Structure of the edge-coupled SRR: The
unit cell is a cube of edge a = 5.25
mm. The parameters of the SRR are g =
d = 0.125 mm, c = 0.25 mm, and w =
3.75 mm. The background medium is free
space.

k

77
TE1

TM2

i · TM2

Lk

H E
TM1

H

I E
TE3

(b) Modes of multiple incidences:
When the wave is incident normally
on the unit cell, the unit cell is peri-
odically repeated in the plane perpen-
dicular to the incidence direction, thus
forming a slab.

Figure 3-1: Unit cell of the metamaterial composed of the edge-coupled SRR upon which
six incidences are used to obtain the S parameters from finite-difference time-domain sim-
ulations.

tive parameters of media with the bianisotropy in the yz position (see Eq. (3.3)), it can be

easily generalized to retrieve the constitutive parameters of a medium with the bianisotropy

coupling other field components. Therefore, a general analysis tool can be constructed for

the study of the bianisotropic properties of metamaterials.

3.2 Retrieval methods

In this section, we present the retrieval equations for media described by Eq. (3.3) from the

knowledge of the S parameters. Two main cases are identified: if the medium is lossless

or if it is lossy. In the former case, the retrieved constitutive parameters can be obtained

analytically while in the later case, although the equations are analytical, their solution has

to be obtained numerically. Among the six incidences desired as shown in Fig. 3-1(b),

three are TE modes and three are TM modes. The definition of TE and TM is as follows:
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The plane of incidence is chosen to be xy/yz/zx plane for incidence in the xly/z direction,

respectively. Note that the S parameters are defined in terms of the electric and magnetic

fields for the TE and TM incidences, respectively. We see from Eqs. (3.1) and (3.3) that

only the y component of H contributes to D, and similarly only the z component of E

contributes to B. Thus, among the six incidences, only TM1, TE2, and TM3 see the

bianisotropy, while the other three waves are propagating as if the material were isotropic.

The incidence TE2, containing both H. and Ez, is more complicated than all the other

incidences and the retrieval method in this case has to be studied independently.

3.2.1 Incidences other than TE2

As mentioned above, the incidence TE2 is very particular, and we shall study it in the next

section. We show here that all the other incidences share the same retrieval equations, upon

properly defining the effective impedance and the refractive index. For each incidence,

the dispersion relationship, together with the redefined impedance and refractive index, is

listed in Table 3.1.

Since the incidences TEl, TM2 and TE3 do not contain Hy or Ez components that

cause the bianisotropy, they behave as if the medium were isotropic. In order to retrieve the

constitutive parameters in these cases, we use the previously published retrieval methods

that deal with isotropic media [28, 30, 29, 46]. The S parameters for a plane wave incident

normally on a slab of an isotropic medium are expressed by [33, 7]

Rol (1 - ei2nkod)
11= 1- R21 ei2nkod (3.4a)

S21 (1- Ro)einkodS21 R (3.4b)
1 - Nlei2nkod 

where ko denotes the wavenumber of the incidence wave in free space, d is the thickness

of the slab, n is the refractive index, Rol = (z - 1)/(z + 1) is the half-space reflection

coefficient, and z is the impedance and the admittance for TE and TM waves, respectively.

The retrieval equations are [46]
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Table 3.1: Dispersion relationship, redefined impedance and redefined refractive index for
each incidence of Fig. 3-1(b).

z (1+ S11)2 - S21
z -- q (1 - S1) 2 - S21' (3.5a)

einkod = X ± i,/1 -Xl (3.5b)

where X = (1l - S21 + S21). The sign in Eq. (3.5) is determined by the conditions for

passive media,

z' > O, (3.6a)

n" > O (3.6b)

where (.)/ and (.)If denote the real part and imaginary part operators, respectively. The
issues of the effective boundaries and the branch cut of the real part of n are solved in the

way descried in [46].

For incidences TM1 and TM3, we use the method proposed in [47, 48, 49] to calculate
the S parameters, and find that they take the same form as in the isotropic case, provided

that the impedance z and the refractive index n are properly redefined as shown in Table 3.1.

Consequently, z and n for incidences TM1 and TM3 can also be retrieved using Eq. (3.5).

3.2.2 Incidence TE2

Since the incidence TE2 contains both H inducing an electric dipole in the 2 direction,
and E inducing a magnetic dipole in the direction, it shows stronger bianisotropy than
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the incidences TM1 and TM3. The S parameters for incidence TE2 can be obtained by

using the method presented in [47, 48], and their analytical expressions are as follows:

p-k/ko-i o (1 _ ei2kzd)

Sl- IY+k./k+i (3.7a)
_ (kx/ko-A' )2 +2 ei2kd 

(k:/ko+/,2+~o0

S21 (=k/ko )e+9, (3.7b)
(k=/ko-pY2+~-i2k d
(k=,/ko+/r)2+ 

where kx is the wavenumber in the incidence direction inside the medium, and the disper-

sion relationship is given in Table 3.1. In general, we cannot define an impedance z and a

refractive index n in order to simplify Eq. (3.7) and solve z and n analytically, like in the

cases of incidences TM1 and TM3. Therefore, we resort to a numerical approach to solve

for My and 0o in Eq. (3.7).

As mentioned previously, using six incidences yields 12 equations for seven unknowns

to be solved. Five of the unknowns are therefore solved twice in this overdetermined prob-

lem. We see from Table 3.1 that e, E, and , are each retrieved twice. Also since e is

obtained from the incidence TM3, we solve for ity and 0o twice using the following two

methods:

Method I

From the incidences TM1 and TM3, we obtain the expressions of kty and 0:

y - zZTM3 (3.8)
EZZTM1

02= E,y(l - Z ), (3.9)
zXZTM3

where ZTM3 denotes the redefined impedance in the case of incidence TM3 (other variables

with the incidence mode in the subscript are defined similarly). There exist two roots of

02, and the one that yields a better match between the calculated (by Eq. (3.7)) and the

measured (or simulated) S parameters is identified as the correct o value of the medium.

Method 2

We use an optimization approach to obtain o. For a given o, we have the following
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relationship from the incidence TM3:

5°2Ay2 (3.10)

Thus, the S parameters for the case TE2 can be calculated using Eq. (3.7) for the given o0.

The value of 0o is obtained by optimizing its real and imaginary parts so that the calculated

S parameters match the measured (or simulated) ones. The optimization method we are

using here is the differential evolution algorithm [36].

While method 1 uses the TM1, TE2, and TM3 incidences to solve for py and 0o, method

2 uses only TE2 and TM3 incidences. Yet, we expect these two different mathematical

approaches to yield the same retrieval results, which will be shown later in the numerical

verification.

3.2.3 Incidence TE2: Lossless media

It is worth mentioning that there is an analytical approach to solve for py and 0o in a special

case. When the wavenumber kx and the constitutive parameters are real numbers, which

refers to a propagating wave inside a lossless medium, it can be shown that the S parameters

in Eq. (3.7) reduce to

S11 1- j~oij~ei~nkod' (3.11a)Sll -Rol (1 - i2nkod) (3.1a)
1 - Rol12)einkod

S21 1 - Ro12einkod (3.1 lb)

where the refractive index n and the impedance z are redefined as in Table 3.1. For con-

venience, we call the retrieval method in this case a lossless retrieval, while the retrieval

method in the previous section is referred to as a lossy retrieval. In what follows, we solve

for n and z by inverting Eq. (3.11) as:

Sll _ (einkod _ eind) R 1 (3.12a)
=S end(e ~-incod) 1 (3.12a)

S 21 IROll2 1'

1 inkod + (einkod -einkod (3.12b)
S21 e +eRoll 2 - 1
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Eliminating ei" k°d - e-ink°d, we find

inkod _ Rol- Sl
S21Rol

(3.13)

Plugging Eq. (3.13) into Eq. (3.12a), and using IRoll2 = Rollo1, we eventually obtain the

value of z as:

DC" - B'
z':v 7Al

(3.14a)4'
1

= -D,
2

A = 2Sll - (S21 + 1 -_ 221),

B = 2Sll + (S21 + 1 - 21),

c = s1 - 2 21- ,
A"B' - A'B"
A"C" + A'C'

(3.14b)

(3.15a)

(3.15b)

(3.15c)

(3.15d)

Once z is obtained, n can be solved via Eq. (3.13). Similarly to the lossy case, we have

two different methods to solve for pty and 0o in the lossless case.

Method 1

The component way is calculated from the incidences TM1 and TM3, as shown in

Eq. (3.8). From ZTE2 listed in Table 3.1, we obtain

6 =-.
2i ZTE2

Method 2

From the results for the cases TE2 and TM3, we get

2 2
T E2d u ZT M3

e2

Consequently, the value of Eo is calculated using Eq. (3.16).
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3.3 Numerical validation

The retrieval equations presented in the previous section have first been validated using

analytical models. In this process, a slab of a given thickness is assigned the constitutive

parameters of Eq. (3.3), where each component of the constitutive tensors is described by

a frequency dispersive model (or by a positive constant in some cases), either lossy or

lossless. The S-parameters are computed analytically, and are used as input to the retrieval

algorithms. The retrieved parameters are obviously expected to match exactly the input

functions.

Retrieval for lossless media

For a lossless medium, the constitutive parameters are chosen to follow the form pro-

posed in [42] (Note the difference in the coordinate systems used in this chapter and

in [42]),

,(f) = C1,

E(f) = E + C2(fo2/f2 1)-1,

Y(f) = 1 + C3(f2/f2- 1),

o(f) = C4fo/f (fo2/f 2 1)-1

%(f) = L(f) = Iz(f) = 1,

where the coefficients are chosen arbitrarily to be C1 = 1.5, C2 = 1.0, C3 = 2.0, C4 = 0.5,

and fo = 5.0 GHz.

The constitutive parameters are retrieved using the lossless retrieval method presented

in the previous section. For the non-dispersive components, the retrieval results agree ex-

actly with the above given values. For the dispersive components, the retrieved results are

compared with the analytical ones in Fig. 3-2. The retrieval results near the resonance are

divergent and become numerically unstable, thus they are not shown here. Slightly away

from this resonant region, however, the retrieved results are in perfect agreement with the

input functions, which validates the proposed lossless retrieval method.
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Figure 3-2: Comparison of the analytical and the retrieved results for a lossless homoge-
neous medium. The curves with o and o are the retrieval results using method 1, and the
curves with x and + are from method 2. Note that the markers in the figure are hard to
distinguish because the results are almost identical for the two methods.
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Retrieval for Lossy media

In order to prove the validity of the proposed retrieval method for lossy media, we re-

trieve the constitutive parameters of the following homogeneous lossy bianisotropic medium

E'(f) = C1,

Ez(f) = 1-Fef 2/(2 f2 + iyef),

tIy(f) = 1- Fmf2/(f2 _ f + imf),

o(f) = 1-F f2/(f 2 _ f + if),

Ey(f) = C2.

Here we choose arbitrarily C1 = 2.0, C2 = 1, f, = 6.0 GHz, f, = f = 5.0 GHz, ye = 0.4

GHz, ym = 0.2 GHz, = 0.6 GHz, and Fe, = F, = F = 0.4.

The constitutive parameters are retrieved using the lossy retrieval method proposed

previously. For the dispersive components, the retrieved results are compared with the

analytical ones in Fig. 3-3, where a perfect agreement can be seen. It is worth mentioning

that the losses avoid the divergence of ez, y and o0, which is advantageous for the retrieval

algorithm.

3.4 Retrieval results for SRR-based metamaterials

The edge-coupled SRR-based metamaterial shown in Fig. 3-1(a) has been studied and

proven to exhibit bianisotropy [41, 42], which has been corroborated by the studies in [45,

43]. In this section, we apply our retrieval method to a metamaterial composed of edge-

coupled SRRs in order to quantify rigorously the magnitude of the bianisotropic term as a

function of frequency. Note that the S parameters are calculated from FDTD simulation.

The retrieval results show that the edge-coupled SRR structure indeed presents a strong

bianisotropy, while a slight modification of it exhibits no bianisotropy, which agrees with

the conclusion found in [41, 42].
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Figure 3-3: Comparison of the analytical and the retrieved results for a lossy homogeneous
medium. The curves with and o are the retrieval results using method 1, and the curves
with x and + are from method 2. Note that the markers in the figure are hard to distinguish
because the results are almost identical for the two methods.
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3.4.1 Evidence of bianisotropy

In order to illustrate the necessity of using a retrieval method in which bianisotropy is

considered, we first retrieve the effective constitutive parameters of an edge-coupled SRR

metamaterial shown in Fig. 3-1(a) using the isotropic retrieval method [46]. Each com-

ponent of the permittivity and the permeability tensor is retrieved exactly twice since an

isotropic retrieval is carried out for each of the six incidences, where the S parameters are

obtained using the periodic finite-difference time-domain method [50]. The retrieved re-

sults are shown in Fig. 3-4. While we observe good agreements in the retrieved , Huz,

es, and Ey (except around the resonance), there is a noticeable mismatch between the two

retrieval methods for the parameters ez and py, which indicates that the anisotropic model

is not sufficient to describe the homogeneity of an edge-coupled SRR metamaterial shown

in Fig. 3-1(a). Therefore, a better model is needed. Since the y component of the magnetic

field produces an electric dipole in the z direction and the z component of the electric field

produces a magnetic dipole in the y direction, the bianisotropy terms in Eq. (3.3) can not

be neglected [42]. It is not surprise to see the unsuccessful retrieval of ez and py,, since 0o

is coupled with both of them in the incidences TM1, TE2 and TM3 (see Table 3.1).

When a lossless retrieval for bianisotropic media is applied, the retrieved I,, Wz, e,s and

ey are identical to the ones shown in Fig. 3-4, while the retrieved ez, y and 0o are shown

in Fig. 3-5. Unlike in the situation when an anisotropic retrieval is used, we observe a good

match between the two retrieved values for both y and 0, except around the resonance

frequencies, a range known to be hard to deal with in the retrieval of metamaterial's pa-

rameters [29, 46]. To show quantitatively a better match in Fig. 3-5, we define the relative

mismatch (RM) of u, as

0 °if I~yjl+lt21 < aRM(J0) =2 (3.18)
livyl-Avyl otherwise,
'(l ,yl +1lay2)

where a is a small positive number. The smaller the RM, the better the matching between

the two results. The relative mismatch for ez and Eo can be defined similarly. We refer to the

frequency where RM is larger than a constant /3 as the unsatisfactory matching frequency.
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Figure 3-4: Retrieval results for a lossless edge-coupled SRR metamaterial whose unit cell
is shown in Fig. 3-1(a), using a retrieval method not considering the bianisotropy. The
retrieved Lx (Fig. 3-4(a)) and E, (Fig. 3-4(c)) show negative imaginary parts around the
resonance, which violates physical laws [84] and therefore indicates that the results are not
reliable in the corresponding region. Those results difficult to read within the resonance
band are not shown in Fig. 3-4(e) and Fig. 3-4(f). The shaded region indicates the frequency
range where the mismatch of either ,y or ez exceeds the threshold (RM > 0.25).
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Table 3.2: Frequency ranges (in GHz) of unsatisfactory match for the retrieved ,y, ez and

For iuy_ For ez or 0o Total Range
Fig. 3-4 6.9-9.3 6.6-8.5 6.6-9.3
Fig. 3-5 7.2-7.9, 8.1-8.5 7.2-7.5, 8.1-8.5 7.2-7.9, 8.1-8.5
Fig. 3-6 3.9-4.8 4.1-4.5 3.9-4.8
Fig. 3-7 5.9-6.7 6.0-6.5 5.9-6.7

For the parameter a = 0.25 and / = 0.25, the unsatisfactory matching frequency ranges

for py, ez in Fig. 3-4 and Lpy, 0 in Fig. 3-5 are listed in Table 3.2. The total unsatisfactory

frequency range in which either py or e (or 0o) does not match well are also given in Ta-

ble 3.2. We find that the unsatisfactory matching frequency range in Fig. 3-5 is narrower

than that in Fig. 3-4.

Compared to [41, 42], we see that the shapes of the retrieved Py and e, agree with the

models proposed in [41, 42], but that the resonances of ez and y, are not equal to each

other (y at 7.5 GHz, ez at 8.0 GHz). The fact that the two retrieval results now match

well for both ty and 0o and that the retrieved Jo is not negligible proves the existence of the

bianisotropy in the edge-coupled SRR metamaterial.

3.4.2 Lossy retrieval

Next, we apply the lossy retrieval method to retrieve the effective constitutive parameters of

a lossy metamaterial. The SRR structure and the unit cell are same as shown in Fig. 3-1(a),

but the whole unit cell is filled with a lossy material with the relative permittivity er = 3.4

and the conductivity = 0.042 S/m (yielding an imaginary part of e of 0.01Eo at 7.5 GHz,

the resonance frequency of the SRR structure, which is shown in Fig. 3-5). The retrieval

results are shown in Fig. 3-6, where we observe a good match between the two retrieved

values for both py and o (except around the resonance: 3.9 4.8 GHz, see also Table 3.2).

We also see noticeable imaginary parts in the retrieved parameters.
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Figure 3-5: Retrieval results for a lossless edge-coupled SRR metamaterial whose unit cell
is shown in Fig. 3- l(a), using a lossless retrieval for bianisotropic media. The subscripts '1'
and '2' denote the results obtained from the proposed method 1 and method 2, respectively.
Those results difficult to read within the resonance band are not shown here. The shaded
region indicates the frequency range where the mismatch of either /,y or ~0 exceeds the
threshold (RM > 0.25).
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Figure 3-6: Retrieval results for a lossy edge-couple SRR metamaterial, whose unit cell is
the same that in Fig. 3-1(a) except that the background material is lossy ( a = 0.042 S/m,
Er = 3.4). Those results difficult to read within the resonance band are not shown here. The
shaded region indicates the frequency range where the mismatch of either Ay or 0o exceeds
the threshold (RM > 0.25).

3.4.3 Retrieval of the broadside-coupled SRR metamaterial

The proposed retrieval method is a tool not only for studying the properties of bianisotropic

media, but also for anisotropic media in which the retrieved bianisotropic term is expected

to be close to zero. We retrieve here the effective constitutive parameters of a broadside-

coupled SRR metamaterial, which is anisotropic as proposed in [41, 42]. The edge-coupled

SRR shown in Fig. 3-1(a) can be slightly modified to be a broadside-coupled SRR (See Fig.

3 of [42]) by increasing the inner SRR to the size of the outer one and by separating the two

rings by a certain distance (0.125 mm in our simulation). For this anisotropic structure, we

expect to retrieve zero or negligible bianisotropy term using the proposed retrieval method.

Since there is no loss in the system, we apply the lossless retrieval method to obtain the

results shown in Fig. 3-7. It is seen that the retrieved 0o is close to zero in most frequencies

except around the resonance, which agrees with the argument in [41, 42] that the broadside-

coupled SRR does not present bianisotropy due to the symmetry of the electric charges and

the currents. The successful retrieval results show that although the proposed retrieval
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Figure 3-7: Retrieved results for a broadside-coupled SRR metamaterial, where a negligible
50 is observed (except around the resonance: 5.9 GHz - 6.7 GHz. See Table 3.2). Those
results difficult to read within the resonance band are not shown here. The shaded region
indicates the frequency range where the mismatch of either try or 0o exceeds the threshold
(RM > 0.25).

method was initially constructed for the retrieval of bianisotropic media, it can also be

applied to anisotropic media.

3.5 Conclusions

A useful tool is proposed to study the properties of bianisotropic metamaterials by retriev-

ing their effective constitutive parameters from the measurements of the S parameters.

Analytical inversion equations are proposed to retrieve the constitutive parameters of ho-

mogeneous lossless bianisotropic media, while a numerical approach is proposed for lossy

bianisotropic media. Both methods have been first validated using analytical functions as

input values for the constitutive parameters and second, using simulated S parameters of

real split-ring structures. The retrieval results qualitatively corroborate the conclusions of

previously published articles, proving the existence of the bianisotropy in the edge-coupled

SRR metamaterials, but not in the broadside-coupled SRR metamaterials.
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Chapter 4

Optimization approach to the retrieval

of the constitutive parameters of a slab

of general bianisotropic medium

4.1 Introduction

Constitutive parameters are important in quantitatively characterizing the wave propaga-

tion inside metamaterials [33, 44], but they are usually unknown to us. As stated in [51],

the retrieval method from the reflection and transmission data as presented in the previous

chapters is the prime approach in characterizing the constitutive parameters of metamate-

rials. While there are many approaches to retrieve their isotropic parameters [46, 28, 30],

only [52] deals with the retrieval of the bianisotropic parameters. It should be noted, how-

ever, that in this study, the cross-polarization properties of the medium are known a priori,

which is the reason why a semi-analytical solution could be developed. For more com-

plicated metamaterial structures, the cross-polarization properties remain unknown and a

more general retrieval method is needed.

This chapter presents a method to retrieve the constitutive parameters of a general bian-

isotropic slab from the knowledge of the reflection and transmission matrix via an opti-

mization approach. Note that each of the permittivity tensor (), permeability tensor (),
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and cross-polarization tensors (~, ) is a three by three matrix with complex elements, so

that there are 72 parameters to be retrieved. While many methods have been proposed to

retrieve specific bianisotropic media in the literature [53, 54, 55], only [56], to be best on

the author's knowledge, deals with the retrieval of general bianisotropic media. However,

the optimization method proposed in [56] is based on the conjugate gradient, a determinis-

tic method, which often gives local-minima solution. In this chapter, differential evolution

(DE) and simplex optimization methods are used in order to obtain the global-minimum

solution. In the optimization, we minimize the relative mismatch between the measured

reflection/transmission data and the calculated ones from the forward approach, where the

reflection and transmission coefficients for a plane weave obliquely or normally incident

upon a slab in free space are calculated by the notion of propagators and wave-splitting

technique [48].

The proposed method is applied for to not only general media with unknown con-

stitutive properties, but also media with known constitutive properties. In our numerical

validation, we first apply our method to the retrieval of a rotated biaxial medium, where

15 parameters need to be optimized. Then we retrieve a rotated omega medium, where 17

parameters need to be optimized. Finally, we apply the proposed method to the retrieval of

two general bianisotropic media, where 72 parameters are optimized. In all the cases, we

obtain a group of solutions, instead of a single one. The fact that all the obtained solutions

are close to the true one shows the robustness of the proposed optimization method.

4.2 Problem formulation and forward approach

Consider a time-harmonic electromagnetic plane wave obliquely (or normally) impinging

from the region z < 0 onto a homogeneous slab located in the region z E [0, d]. Both sides

of the slab are free space. The incident wave vector ki is expressed as ki = (x sin 0 cos X +

0 sin 0 sin 4 + z cos 0)ko, where 0 E [0, 7r/2] and 4 are the polar and azimuthal angle of the

incident wave, respectively, and k0o denotes the wave number in free space.

The homogeneous slab is characterized by the electromagnetic parameters a, i7, =, and

~, and its constitutive relationships are

66



D=.E+*H,
B=j.H+( E,

(4.1)

(4.2)

Note that we do not assume anything on a, P, 5, and C, which are taken to be fully populated

complex tensors, yielding 72 unknown real parameters.

In the forward problem, the reflection and transmission coefficients are calculated by

the notion of propagators and wave-splitting technique [48]. Inside the slab, the tangential

electric and magnetic fields satisfy the following equations,

T Y (Z) = ikoM(z) ( H(Z) (4.3)

Upon integrating, we map the field on the left-hand side boundary (z = O) to the right-

hand side boundary (z =

(

where

d) as

E.y(d) = p E7 (O)

oJ Hzy(d) /J 0J H /y(O) 

=_ eikodM

(4.4)

(4.5)

is known as the propagator, and M, a function of , Pi, , and , is the fundamental dyad of

the bianisotropic medium whose explicit expression can be found in [48]. In both sides of

the slab, the wave splitting technique is used in free space,

{

=+ 1()
E,,(z) = (z) + (z)

-=-1 -1 __
J * HY(z) =-O · (z) + O E (z)

(4.6)

where

0 = III eCosOi + ee 1 (4.7)
cos 

is assimilated to an impedance dyad, where 11 is the unit vector in the direction of the pro-
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jection of ki onto the (xy) plane and (II, e, -) forms the basis of an orthogonal coordinate

system.

By combining Eqs. (4.4) and (4.6), we obtain the scattering relation,-(d) -) (4.8)
E (d) E (O)

where

T 2 ( 2 - P11 P12 I2 I2(4.9)

The reflection and transmission dyads for the tangential electric field are defined by

{ =-T22 T21 (4.10)
(4.10)

t = T1 + T12

In terms of the strengths of the fields of TE and TM waves, the reflection and transmis-

sion coefficients are defined to be

rEE = r22, rEM = r21 Cos9i, rME = -r 12/cos6i, rMM = -rll (4.11)

tEE = t22, tEM = t21 COSi, tME = t1 2/ COS0i, tMM = tll (4.12)

and the reflection and transmission tensors in terms of the fields strengths are

rEE rEM tEE tEM
7 = ( ), t = ( ) (4.13)

rME rMM ktME tMM/

The results obtained by the aforementioned method have been compared with those

obtained by the method in [47] for a variety of cases. In all of them, the two methods

yielded identical results, validating in this way the forward method used in this chapter.
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4.3 Optimization approach to inverse problem

4.3.1 Objective function

In the inverse problem, we optimize the constitutive parameters so that the calculated re-

flection and transmission data match the measured data. We denote all the parameters to be

optimized as x, and define the objective function as,

Mi.'f( ) E E {W[(0 q)lij(0 X) - iJ(9 )12 + Wtj(° , q)l ij(° ' X)- ¢)12}
{0,4} ijE{1,2}

(4.14)

where ij(, (6), tij (9, A) are the calculated reflection and transmission coefficients as func-

tion of incident angles, and ri ( 0),t i (, ¢) are the measured reflection and transmission

coefficients. The weighting factor are chosen as

1
Wij (0, ) ( + (4.15)

where a is a positive parameter that avoids an infinite weight for small magnitudes of

ig(O, ). Note that W is defined similarly.

The optimization method seeks at minimizing the objective function whose global-

minimum value is zero, which is obtained when the measured and computed data are iden-

tical, indicating that the retrieved constitutive tensors are identical to the original ones.

4.3.2 Optimization methods

We note that the optimization problem Eq. (4.14) is highly non-linear: from Eq. (4.5)

it can be seen that all the unknown parameters are in the argument of the exponential

function. The objective function has many local minima, which makes the search for a

global minimum intractable with deterministic optimization methods and stochastic op-

timization methods should be used instead. However, the stochastic methods are often

slowly-convergent, sometimes resulting in intolerable computation burden. Therefore, we

design here a hybrid optimization algorithm, which combines the differential evolution
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(DE) [36] algorithm to the simplex method.

Differential evolution algorithm is a stochastic parallel direct search optimization al-

gorithm, which utilizes a number of parameter vectors, known as individuals, as a gen-

eration to explore the search space [36, 57]. It is similar to genetic algorithm (GA), but

there are differences between them. In each generation, mutation and crossover opera-

tors are applied to the individuals of the current generation to generate a trial population.

The corresponding individuals in the two populations compete in the selection operation

to become members of the next generation. The mutation operator of DE generates new

parameter vectors by adding the weighted difference between two parameter vectors to a

third one. The algorithm stops when a specified maximum number of evolution generations

is reached. The DE algorithm can be applied to nonlinear and multi-modal problems with

continuous variables, with good global searching ability [36, 57, 58].

Simplex method [59, 60] is a direct search optimization algorithm, i.e., there is no need

for gradient information of the objective function. The geometric figure formed by a set

of n + 1 points in an n-dimensional space is called a simplex, such as a triangle in two

dimensions and a tetrahedron in three dimensions. The basic idea of simplex optimization

method is to compare the values of the objective function at the n + 1 vertices of a simplex

and rearrange the simplex gradually toward the optimum point during the iterative process.

The movement of the simplex is achieved by using three operations: reflection, contrac-

tions, and expansion. The movement stops when the standard deviation of the function at

the n + 1 vertices of the current simplex is smaller than a prescribed small quantity. Sim-

plex method is good at searching local minimum and converges fast compared with DE

algorithm.

In the retrieval of the bianisotropy media, DE is first used to perform a parallel search in

order to explore the entire solution space, and yields a set of solutions bearing good genes.

The simplex method, which is good at obtaining local minimum, is used subsequently,

taking the solution set from DE as initial guesses.
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4.4 Numerical reconstruction

In this section, numerical examples are presented to show the feasibility and the robustness

of the proposed optimization method. In the first two examples, we suppose that we know

a priori some properties of the medium, so that the total number of unknowns is reduced

and the optimization problem becomes relatively easier. In the subsequent examples, we

apply a 72-parameter retrieval method to two arbitrarily chosen media. In all the cases,

we show that the proposed method is able to reconstruct the constitutive tensors despite

the high nonlinearity of the problem. Note that in all the following numerical examples, I

first calculate S parameters using the forward problem solver, and then treat them as the

measured ones to evaluate the optimized ones in the inverse process.

4.4.1 Rotated biaxial medium

In this first example, prior knowledge of the medium is assumed: we know that the medium

to be retrieved is biaxial in both permittivity and permeability, yet, the numerical values

and the axes of the medium are unknown. Hence, we characterize the medium through the

tensors,

e = UTDiag{ee, ey }U (4.16)

= UT D ia g { /,, , . z}U (4.17)

where Diag{6E, EY, e } and Diag{/1 X, By, A, } are the unrotated permittivity and permeabil-

ity tensors, respectively, and U is rotation matrix defined by

cos a cosos3os y - sin a sin y sin a cos /3 cos y + cos a sin y -sin/3 cos y

U -= osaCossin - sincCosy - sin acos siny + cos os sin sin y

cos a sin3 sin a sin a sin cos P
(4.18)
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where (a, , -y) are the Euler angles [61]. Consequently, the optimization vector contains

15 unknowns,

X = (, , Ye, :r %, ex %, y ez , r ly, z, ib, A y,, PIb)

where (.)/ and (.)if denote the real part and imaginary part operators, respectively.

Various values and frequency dependent functions have been successfully retrieved with

our method although these are not shown here. For the sake of illustration, we choose here

the following parameters,

E(f ) = 1 - Fexf2/(f 2 -f + iexf),

ey(f) = 1- Feyf2/(f2-f2y + ieyf),

(f) = 1 -Fzf 2/(f 2 - f 2 + izf),

i'y(f) = 1-Fmyf 2/(f 2 -f2m +i mf)

Ily(f) = 1 -Fmyf2/(f2- fy + imf)
I,(f) = 1-Fm zf2/(f 2-fz+ imzf) (4.19)

where fex = 4.0 GHz, fey = 5.0 GHz, fez = 3.5 GHz, f m, = 5.0 GHz, f m, = 4.0

GHz, f mx = 3.5 GHz, yex = 0.5 GHz, yey = 0.4 GHz, yez = 0.3 GHz, ymx = 0.4

GHz, my, = 0.3 GHz, ymz = 0.2 GHz, Fex = 0.5, Fey = 0.3, Fez = 0.4 Fmx = 0.3,

Fmy = 0.2, Fmz = 0.3. The operating frequency range is from 2 GHz to 8 GHz. The

rotation angles are a = r/4, P = r/4, -y = i/6. The thickness of the slab is Ao/20,

where A0 is the wavelength in free space at the initial frequency. The slab is illuminated

under normal incidence as well as oblique incidences with the incidence angle (, A) E

{(45, 00), (450, 450), (450, 900)}.

For the initial frequency of 2 GHz, we use DE and simplex methods to optimize for the

constitutive parameters and the rotation angles. In the first stage of the optimization, DE

runs for 1600 generations, with a total population of 150 individuals in each generation.

Subsequently, half of the population of the last generation are used in the simplex method,
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where each of the individuals is treated as an initial guess. After the first round of simplex,

about half of the solutions are chosen as initial guesses for the second round of simplex

optimization. The above procedure is iterated until solutions with small objective functions

are achieved.

Table 4.1: Optimization results for rotated biaxial medium
Exact Optimized 1st Optimized 2nd Optimized 3rd Optimized 4th Optimized 5th Optimized 6th

ao 7.8540e-01 1.4699e+00 2.7443e+00 1.4701e+00 5.8853e+00 5.8855e+00 3.9271e+00
/3o 7.8540e-01 1.4699e+00 2.7443e+00 1.4701e+00 5.8853e+00 5.8855e+00 3.9271e+00
Yo 5.2360e-01 3.6048e+00 2.2869e+00 4.6372e-01 3.9991e+00 8.5830e-01 5.7600e+00
e' 1.1655e+00 1.1930e+00 1.1654e+00 1.1929e+00 1.1655e+00 1.1656e+00 1.1656e+00
E 1.0571e+00 1.0571e+00 1.1931e+00 1.0571e+00 1.1929e+00 1.1928e+00 1.0570e+00
E 1. 1929e+00 1.1655e+00 1.0572e+00 1.1656e+00 1.0570e+00 1.0568e+00 1.1928e+00
e

x
" 1.3793e-02 1.3981e-02 1.2996e-02 1.5983e-02 1.3797e-02 1.3560e-02 1.3827e-02
t" 2.1737e-03 2.0648e-03 1.5481 e-02 3.3855e-03 1.4023e-02 1.4372e-02 2.1341 e-03

E 1.4030e-02 1.3905e-02 3.0442e-03 1.2894e-02 2.1709e-03 2.2321e-03 1.4041e-02
/z 1.0571e+00 1.1452e+00 1.0569e+00 1.1451 e+00 1.0571e+00 1.0572e+00 1.0571e+00
M/ 1.0665e+00 1.0665e+00 1.1451e+00 1.0665e+00 1.1451e+00 1.1451e+00 1.0664e+00

/z 1.1451e+00 1.0571e+00 1.0667e+00 1.0571e+00 1.0665e+00 1.0664e+00 1.1451e+00
/tz 2.1737e-03 7.2363e-03 4.8521e-04 7.5070e-03 2.1787e-03 1.5714e-03 2.1361e-034z" p 3.3250e-03 3.2994e-03 7.4335e-03 3.1615e-03 7.0300e-03 7.1437e-03 3.3202e-03

i/t 7.0358e-03 1.9964e-03 3.2429e-03 3.5834e-07 3.3240e-03 3.3025e-03 7.0225e-03
f(2) 0 1.4525e-05 6.1939e-05 7.8181e-05 1.0325e-06 2.7679e-05 7.6682e-06

In the present numerical example, we obtain the six solutions as shown in Table 4.1

by using the DE and four rounds of simplex method. The fact that the coordinate axes are

labeled differently (for example, the x, y, and z are labeled as -, -y, and -z, respectively,

in the sixth solution) makes the solutions seemingly different from each other. In fact, the

six solutions are almost identical as shown in Table 4.2 when expressed in the rotated form

(see Eqs. (4.16) and (4.17)). Note that the full tensors of E and F are both symmetric

matrices, thus only the elements in the left lower part of the tensors are shown in Table 4.2.

For the retrieval at higher frequencies, we choose the linear extrapolation of the results

at the previous two frequencies as a initial guess for the simplex optimization. Note that

for the second frequency, the initial guess is just the result obtained at the initial frequency.

To quantitatively describe the match between the true and the retrieved constitutive

parameters, we define the relative mismatch (RM) to be

IPPrl if Ptl > T,
RM(p) = jIptjPpl i p 7ohrse(4.20)

Pr otherwise,

where p can be any component of e and i, subscript "t" and "r" denote "true" and "re-
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Table 4.2: Optimization results for rotated biaxial medium (in full tensor form)
TEX 1.0917e+00 1.0917e+00 1.0917e+00 1.0917e+00 1.0917e+00 1.0916e+00 1.0917e+00
Elf 5.211 le-03 5.1162e-03 6.2015e-03 6.5960e-03 5.2097e-03 5.3432e-03 5.1840e-03
e' 2 4.0725e-02 4.0754e-02 4.0757e-02 4.0746e-02 4.0743e-02 4.0769e-02 4.0737e-02
tElx 3.6903e-03 3.7194e-03 3.7333e-03 3.7442e-03 3.6896e-03 3.7398e-03 3.7099e-03
' 4.2738e-02 4.2750e-02 4.2632e-02 4.2749e-02 4.2776e-02 4.2870e-02 4.2682e-02

ezx 3.6265e-03 3.6346e-03 3.8996e-03 3.9914e-03 3.6266e-03 3.7476e-03 3.6379e-03
E' 1.1581e+00 1.1581e+00 1.1582e+00 1.1581e+00 1.1581e+00 1.1581e+00 1.1581e+00

V 1.2326e-02 1.2369e-02 1.2319e-02 1.2417e-02 1.2326e-02 1.2276e-02 1.2343e-02
'2 -4.2006e-03 -4.1730e-03 -3.9746e-03 -4.2372e-03 -4.2592e-03 -4.3667e-03 -4.2756e-03
tEl -1.4048e-03 -1.4889e-03 -3.8719e-04 -1.2679e-04 -1.4107e-03 -1.1672e-03 -1.4219e-03

El 1.1656e+00 1.1657e+00 1.1658e+00 1.1657e+00 1.1656e+00 1.1656e+00 1.1656e+00
TErz 1.2459e-02 1.2465e-02 1.3001e-02 1.3249e-02 1.2455e-02 1.2545e-02 1.2475e-02

I 1.0861e+00 1.0861e+00 1.0861e+00 1.0861e+00 1.0861e+00 1.0861e+00 1.0860e+00
2 4.2454e-03 4.2745e-03 4.2688e-03 4.2283e-03 4.2439e-03 4.2532e-03 4.2379e-03

1.9063e-02 1.9075e-02 1.9067e-02 1.9057e-02 1.9062e-02 1.9071e-02 1.9083e-02
8.5575e-04 9.021 le-04 8.8027e-04 8.8887e-04 8.5429e-04 8.5041e-04 8.5113e-04

t 2.8247e-02 2.8279e-02 2.811le-02 2.8240e-02 2.8275e-02 2.8320e-02 2.8275e-02
/7z7 1.3680e-03 1.4552e-03 1.6096e-03 1.6904e-03 1.3669e-03 1.4443e-03 1.3667e-03

' 1.0803e+00 1.0803e+00 1.0804e+00 1.0803e+00 1.0803e+00 1.0803e+00 1.0803e+00
3.5404e-03 3.4773e-03 2.6017e-03 2.2922e-03 3.5398e-03 3.1852e-03 3.5135e-03

1AZU 1 3.2317e-02 3.2370e-02 3.2561e-02 3.2308e-02 3.2292e-02 3.2224e-02 3.2328e-02
"ZU 1.8665e-03 2.0198e-03 2.8171e-03 3.0589e-03 1.8610e-03 2.1893e-03 1.8795e-03

/~zz 1.1023e+00 1.1023e+00 1.1021e+00 1.1022e+00 1.1023e+00 1.1024e+00 1.1023e+00
tzz 4.7487e-03 4.7803e-03 4.291 le-03 4.1484e-03 4.7490e-03 4.5791e-03 4.7275e-03

trieved", respectively, and r is a small positive parameter, below which the relative mis-

match is defined in an alternative way. In the present and all subsequent numerical exam-

ples, we choose r to be 0.05. To represent the mismatch across all sample frequencies,

we define an averaged relative mismatch (ARM) to be the mean of RM across all sample

frequencies.

The optimization results, not shown here, show that the true and the optimized results

are almost identical for both the real and imaginary parts at all frequencies. The maximum

ARM among the six components being retrieved is 0.0063, which is small and indicates a

good match between the true and retrieved results.

4.4.2 Rotated Omega medium

In the second example, we reconstruct the parameters of a rotated Omega medium, which

is a bianisotropic medium with the following constitutive parameters
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e = o 2 , /a=/o 4 /z ,
0 0 1A 0 0

0 0 0 , ' 0 0 i (4.21)

0 -i)o ° 0 o 

For the forward problem, the constitutive parameters for e and Pi are taken to be the

same as in the rotated biaxial case (see Eq. (4.19)), and the value of o is chosen to be

Eo(f) = 1 - Ff 2 /(f2 _ f + if)

where f.i = 4.0 GHz, ' = 0.5 GHz, Fe = 0.4. The rotation angles are arbitrarily set to

a = r/5, = 7r/4, -y = 7r/6, and the incidence and the thickness of the slab are identical

to those in the rotated biaxial case. The total number of unknowns in this case is seventeen,

where the real and the imaginary part of 0 are added compared to the rotated biaxial case.

The constitutive parameters are reconstructed using the same procedure as the one de-

scribed in the biaxial case. For the initial frequency, DE algorithm runs for 2000 genera-

tions, with a population of 170 individuals in each generation. Simplex method runs for five

rounds and obtain four solutions listed in Table 4.3. Here again, all the solutions are almost

identical to the true one when expressed in the rotated form (see Eqs. (4.16) and (4.17)

for e and t, and the rotation for S and C is defined similarly). For higher frequencies, the

linear extrapolation are used in the simplex method. The true and the optimized results

are almost identical at most frequencies for the components of a, P7, and ~, and only o is

shown in Fig. 4-1 for the purpose of illustration. The maximum ARM among the seven

components is 0.0096, which is for ~o.

75



Table 4.3: Optimization results for Omega medium
Exact Optimized 1st Optimized 2nd Optimized 3rd Optimized 4th

Cio 6.2832e-01 6.2964e-01 6.2978e-01 6.2844e-01 3.7698e+00
/o 7.8540e-01 7.8695e-01 7.8708e-01 7.8554e-01 2.3563e+00
-yo 5.2360e-01 6.8059e+00 5.2259e-01 3.6651 e+00 2.6179e+00
C: 1.1655e+00 1.1651e+00 1.1650e+00 1.1654e+00 1.1655e+00

1.0571e+00 1.0571e+00 1.0571e+00 1.0571e+00 1.0571e+00

Ez 1.1929e+00 1.1936e+00 1.1936e+00 1.1928e+00 1.1929e+00
E" 1.3793e-02 1.5862e-02 1.6209e-02 1.3972e-02 1.3662e-02
E" 2.1737e-03 2.1362e-03 2.1529e-03 2.1664e-03 2.1756e-03

Ez 1.4030e-02 1.4184e-02 1.4285e-02 1.3988e-02 1.3987e-02

/4 1.057 le+00 1.0570e+00 1.0570e+00 1.0571e+00 1.0571e+00

'1: 1.0665e+00 1.0660e+00 1.0662e+00 1.0665e+00 1.0665e+00
Lz 1.1451e+00 1.1446e+00 1.1448e+00 1.1451e+00 1.1451e+00
u" 2.1737e-03 2.2299e-03 2.1899e-03 2.2087e-03 2.1763e-03
"L 3.3250e-03 4.2892e-04 4.973 le-06 3.2113e-03 3.4997e-03

7.0358e-03 6.7278e-03 6.5528e-03 7.0260e-03 7.0613e-03
1.1324e+00 1.1330e+00 1.1331e+00 -1.1324e+00 -1.1324e+00

,, 1.1034e-02 1.0586e-02 1.0560e-02 -1.1077e-02 -1.1043e-02
f(x) 0 2.5906e-05 2.8427e-05 3.7121e-06 1.6790e-06

4.4.3 General bianisotropic medium

In the following two numerical examples, we consider the problem of parameter recon-

struction in media with arbitrary constitutive parameters. Both the real and the imaginary

parts of the T, 7, , and tensors are optimized, 72 parameters altogether, in order to match

the measured reflection and transmission data. In the forward problem, we consider two

media, known as Chiroferrite D,(Coo) and Omegaferrite C2v(Cs) [62]. Note that in these

numerical examples, although specific media are considered in the forward problem, we

still optimize 72 parameters in the inverse problem.

Case 1: Chiroferrite Doo(Coo)
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value of zero whenever necessary. The non-zero parameters are chosen to be

ex(f) M = 1 - f (f - f + iezTf),

Ex(f) = 0.1 + 0.05i (4.23)

ezz(f) = 1 - fezz/(f 2 - fez + iyezzf),

(f) = 1- f (f - f + i mzzf)

zy(f) = 0.li

ZZ(f) = 1

xx(f) = 1-e- f 10°

53y(f) = f(f2_ f + if),

,z(f) = (0.1 + 0.05i)f/109

with fpezx = 4.5 GHz, fp,,zz = 3.5 GHz, fp,,x = 4.0 GHz, fpt = 3.0 GHz, foxz = 4.0

GHz, fezz = 3.0 GHz, fOm xx = 3.5 GHz, foe = 2.5 GHz, yexx = 2.0 GHz, yezz = 1.2

GHz, ym,, = 1.5 GHz, and -y = 1.1 GHz

We first optimize the parameters at the initial frequency of 0.1 GHz. Totally uncon-

strained optimization problems with 72 unknowns are difficult to deal with, and parallel

computing is helpful in order to get good results in a reasonable time period. This being

not available to us, we resort to a physical assumption that simplifies the optimization prob-

lem and make it manageable on a single PC within a few hours. Our assumption is that the

bianisotropy is weak, namely, ~ and ~ approach to zero at relatively low frequencies. Al-

though this assumption does not hold for some media, it is true for most materials. Hence,

in the first stage of the approach, e and i are optimized with = and ~ being zero. When

a good match in reflection and transmission is achieved, i.e., and fi are close to the exact

solution, we start the second-stage of optimization, where S and 5, together with e and t

are optimized at low frequencies, with the solution obtained in the first stage treated as the

initial guess. The two-stage process ensures that if the bianisotropic parameters are not

exactly zero at low frequencies, non-zero but small values are used as initial guesses.

In the numerical simulation, we take a slab thickness of A0/30, where A0 denotes the
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wavelength in free space at the initial frequency. Note that a thickness of Ao/30 is not

too restrictive because of the very large wavelength at 0.1 GHz. Note also the importance

of the thickness of the slab in the optimization: if the slab is too thin compared with the

wavelength, it is almost transparent so that the reflection is almost zero and the transmission

is almost unity. In this case, the constitutive parameters have little influence in determining

the reflection and transmission coefficients, which yields an ill-conditioned problem. On

the other hand, if the slab is too thick, the problem becomes dramatically nonlinear, and is

difficult to optimize. From our experience, thicknesses within AO/30 to Ao/10 are good for

the optimization at the initial frequency.

There are two important issues in solving the inverse problem with 72 parameters,

namely uniqueness and computational burden. Fewer incidences are likely to result in

non-uniqueness, while too many incidences require intractable computation power. There-

fore, it would be valuable to know the number of the incidence directions that are necessary

and sufficient to obtain a unique solution with a manageable computational burden. Un-

fortunately, it is difficult or even impossible to answer this question and we have to choose

the incidence directions and number empirically. In our numerical simulations, we choose

different number of incidences at different optimization stages. Since DE algorithm ex-

plores the search space using a group of individuals as a generation, it is characterized by

the properties of good global searching abilities but is also time-consuming. In this re-

spect, we choose few incidences in the DE optimization. On the other hand, since there are

fewer individuals in the simplex method and we aim at obtaining the unique solution at this

optimization stage, we choose more diverse incidences in the simplex optimization.

At the first stage of optimization, i.e., looking for e and 7P with ~ and C being zero,

DE is applied first and simplex method is used subsequently. In the DE optimization, the

slab is illuminated at normal incidence as well as oblique incidences with 0 = 80° and

seven evenly distributed from 0° to 360 °, which is written in shorthand as < 80° , 7 > .

The population in each generation is 360 and the total generation of the evolution is 2000.

Then, the simplex method is used to realize the local searching, where more incidences

(< 720, 5 >, < 600, 4 >) are added in addition to the original ones. Simplex method is

sequentially carried out until there is no significant improvement over the results obtained
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from the previous round. We finally obtain 6 solutions, all of which have an objective

functions smaller than 0.003.

At the second stage of the optimization, with the results obtained in the first stage

as initial guesses, we optimize 72 constitutive parameters to further match the reflection

and transmission coefficients. During the sequential application of the simplex method,

we drop the worst one due to its slow convergence, and finally obtain 5 solutions, all of

which are close to the exactly solution. The best one Zpt, with the objective function value

8.2819e - 05, is expressed in tensor form as

2.2574 x 100 + i3.1142 x 10-2 1.0004 x 10-1 + i5.0110 x 10-2 -1.7325 x 10-3 - il.3521 x 10-3

-1.0003 x 10-1 - i5.0050 x 10-2 2.2574 x 100 + i3.1087 x 10-2 2.0543 x 10- 3 -il.6488 x 10- 3

-1.6469 x 10 - 3 - il.3089 x 10 -3 -1.0716 x 10- 3 - il.1411 x 10- 3 2.4240 x 100 - i5.9698 x 10-2

2.2978 x 100 + i2.9986 x 10-2 -7.0558 x 10-5 + il.0007 x 10-1 -6.1793 x 10-4 - i5.2777 x 10-4

= 12.9643 x 10-5 - il.0006 x 10-1 2.2979 x 100 + i2.9957 x 10-2 -3.7733 10- - i5.2512 x 10-4

-7.6239 x 10 - 4 - i5.6321 x 10 - 4 8.6050 x 10 - 4 - i7.3461 x 10 - 4 1.0101 x 100 - il.4723 x 10-2

9.6879 x 10- 3 + i4.9159 x 10- 5 2.5333 x 10- 3 + il.8333 x 10-2 -4.3811 x 10-5 + i3.2369 x 1-5

= -2.5505 x 10 - 3 - il.8330 x 10-2 9.6820 x 10- 3 + il.9989 x 10- 5 1.1471 x 10- 5 + il.6218 x 10- 5

-6.7776 x 10- 4 + il.1243 x 10- 4 3.8108 x 10- 4 + i4.0342 x 10- 4 1.0602 x 10-2 + i4.3711 x 10- 3

-9.9637 x 10- 3 + i - 1.4234 x 10 - 4 -3.0222 x 10- 3 - il.9711 x 10-2 7.8364 x 10-5 + i3.3801 x 10-5

3.0341 x 10-3 + il.9728 x 10-2 -9.9609 x 10-3 - il.2851 x 10- 4 9.5813 x 10-5 + i3.3791 x 10 -5

-1.0464 x 10 - 4 + il.3586 x 10- 4 -1.4829 x 10 -4 - i6.8296 x 10- 5 -1.1364 x 10-2 - i4.6567 x 10 - 3

We find that the solution is pretty close to the true solution tr:

2.2662 x 100 + il.5838 x 10-2

= 1-1.0000 x 10-1 - i5.0000 x 10-2

0

2.3070 x 100 + il.6017 x 10-2

77 = -il.0000 x 10-1 2

9.9502 x 10-3

= -1.8596 x 10- 3 - i2.5417 x 10-2

0

-9.9502 x 10- 3

= 1.8596 x 10-3 + i2.5417 x 10-2

0

.31

1.0000 x 10-1 + i5.0000 x 10-2 0

2.2662 x 100 + il.5838 x 10-2 0 ,

0 2.3624 x 100 + il.8185 x 10 - 2

il.0000 x 10 -, 0

070 x 100 + il.6017 x 10-2 0 ,

0 1.0000 x 100

1.8596 x 10 - 3 + i2.5417 x 10-2 0

9.9502 x 10 - 3 0

0

-1.8596 x 10- 3 - i2.5417 x 10-2

-9.9502 x 10-3

0

1.0000 x 10-2 + i5.0000 x 10-3) 

0

0

-1.0000 x 10-2 - i5.0000 x 10-3
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Finally, for the retrieval at higher frequencies, we choose the linear extrapolation of the

results at the previous two frequencies as a initial guess for the simplex optimization. We

observe that at 2.1 GHz, the thickness of the slab is seventy percent of the wavelength,

consequently making the optimization very hard. Thus starting at 2.1 GHz, we choose a

thinner slab whose thickness is five percent of the wave length at 2.1 GHz. The optimization

results are shown in the following figures.
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Figure 4-2: Comparison of the retrieved and the true e of a Chiroferrite medium. The solid
and dotted-dashed lines are for the real and imaginary parts, respectively. The thick and
thin lines are for the true and the retrieved results, respectively.

The results show that most of the constitutive parameters are retrieved successfully,

although there are some discrepancy around the resonant frequencies. The averaged relative

mismatch of each component of the constitutive tensors is
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Figure 4-3: Comparison of the retrieved and the true , of a Chiroferrite medium. The solid
and dotted-dashed lines are for the real and imaginary parts, respectively. The thick and
thin lines are for the true and the retrieved results, respectively.
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4.0030 x 10- 3 ,

1.1346 x 10-1

3.7612 x 10-3

3.4552 x 10-3 ,

7.6319 x 10-2

We see that most components have an averaged relative mismatch smaller than 0.012.

Case 2: Omegaferrite C2v(Cs)

As a second example, we consider an Omegaferrite C2v(C8) medium in the forward
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problem, whose constitutive parameters are

Exx

IE = EO 0= o 0

'O

iO

O zz /xz

'xy 0 0

0 i =1 =- G

Oy ' =c -0

o Pxz

0 0 fIzzJ

0

0

(yz O,

83

1

0.5

0

-0.5

4
2

-2 0

-2
-4

%.'

2 4
Freq. (GHz)

2 4
Freq. (GHz)

4
2

J' 0

-2
-4

I

, 0.5
WiP 0

-0.5

0.1

o0

-0.1

6

6

6

U

0
NNV:

_n
2 4

Freq. (GHz)

The solid
thick and

(4.24)

.M. '.� . �.-b -
N

, n

-v.,



2 4 6
Freq. (GHz)

L-A
. %W

2 4
Freq. (GHz)

2 4
Freq. (GHz)

0.02

0.01

0

-0.01

Freq. (GHz)
2 4 6

Freq. (GHz)

N

6

6

Freq. (GHz) Freq. (GHz)

N3

2 4 6 2 4 6
Freq. (GHz) Freq. (GHz)

Figure 4-5: Comparison of the retrieved and the true ( of a Chiroferrite medium. The solid
and dotted-dashed lines are for the real and imaginary parts, respectively. The thick and
thin lines are for the true and the retrieved results, respectively.

In this example, we choose the following parameters,

EXx(f)

yy(f)

I4yy(f)

= 1- Fezf 2/(f 2- fz + iezzxxf),

1 + 0.05i

= 1 - Fezf 2/(f 2 - fe2, + iYezzf),

= O.li;

=1 - Fmxxf2/(f 2 -_ f + imxzf),

1 - Fmyyf2/(f 2 - fyy + iYmyYf),

(4.25)

= 1

= 1- FmXzf2/(f 2 _ f2 + imXzf)

yZ((f)

= - Ff 2/(f2 _ f + if ),

= - y,

= 0.05i,

(4.26)'zy = - Z
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where Fexx = 0.2, Fezz = 0.4, Fm,, = 0.3, Fmyy = 0.2 , Fmz = 0.1, F = 0.1, fess = 4 .0

GHz, fezz = 4.5 GHz, f m,, = 5.0 GHz, fmyy = 4.0 GHz, fmz: = 3.5 GHz, fe = 4.0 GHz,

/exx = 0.6 GHz, yezz = 0.7 GHz, ymxx = 0.9 GHz, )Ymyy = 0.5 GHz, ymxz = 0.6 GHz,

-y = 0.5 GHz.

The frequencies range from 3 GHz to 6 GHz, and the thickness of the slab is AO/20. In

this example, we aim at testing the robustness of the linear extrapolation technique in the

retrieval at the higher frequencies, so we choose the parameters at the initial frequency to

be the exact values. Both clean and noisy data are tested. In the simulations, 2 percent and

5 percent Gaussian random noises are added to the reflection and transmission coefficients.

The optimization results are shown in the Fig. 4-6 - Fig. 4-17. We tell from the figures that

most of the constitutive parameters are generally reconstructed, although there are notice-

able mismatch around the resonance. In the presents of noise, although the reconstructed

profiles digress more from the true one, the trends of profiles are kept in the retrieval. For

the case of 5 percent noise, the averaged relative mismatch of each component of the con-

stitutive tensors is

1.4424 x 10-1

2.0195 x 10
- 3

1.0404 x 100

1.8089 x 10-1

4.8104 x 10
- 4

1.1756 x 10-1

3.2927 x 10
- 3

1.0999 x 10-1

4.4965 x 10- 5

2.0802 x 10 - 3

2.3189 x 10-1

2.0666 x 10 - 3

3.2447 x 10- 3

9.4122 x 10-2

3.0988 x 10
- 3

5.6284 x 10-
5

2.5500 x 10 - 1

3.1775 x 10- 3

1.0327 x 10 - 1

3.8406 x 10- 3

9.7271 x 10-1

2.5538 x 10-1

1.1890 x 10
- 3

1.1604 x 100

5.7393 x 10-1

1.2266 x 10-3 1

2.2166 x 10- 1

1.3982 x 10-1

6.3694 x 10-5 

6.5296 x 10-2

1.6204 x 10-3

5.2166 x 10-1

7.6016 x 10-4

6.0768 x 10-4

1.1775 x 100 .

1.1904 x 10-3

We see that most components have an averaged relative mismatch smaller than 0.025.
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4.5 Conclusion

An optimization approach is used to retrieve the constitutive parameters of slab of general

bianisotropic medium from the knowledge of the reflection and transmission data. The

method is for either rotated media with known constitutive properties or more general me-

dia with unknown constitutive properties. High dimensional inverse problems are attacked

by the combination of differential evolution algorithm and simplex method. DE is used

first to parallel explore the searching spacing and then simplex method is applied to accel-

erate the convergence. Fewer incidences are used in DE in order to reduce the computation

burden and diverse incidences are used in simplex method in order to obtain the unique

solution. Importantly, our method obtains a group of solutions, all of which are almost

identical to the true one. Linear extrapolation of the results at the previous two frequencies

are used as an initial guess for the retrieval of dispersive medium using simplex optimiza-

tion method. Both clean and noisy data are tested. Optimization results show that the
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constitutive parameters are reconstructed successfully. It should be noted that slabs with

different thickness should be used for the broad-band retrieval. The limitation of the pro-

posed method is that it cannot deal with the bianisotropic media whose cross-polarization

terms are not close to zero at low frequencies.
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Chapter 5

Application of a spheroidal mode

approach in the detection and

discrimination of buried objects

5.1 Introduction

The detection and removal of buried unexploded ordnance (UXO) is an important environ-
mental problem, made very expensive and challenging by the high false alarm rate. Among
the techniques for detecting UXOs, electromagnetic induction (EMI) is promising and has
been widely explored [10, 11, 12, 13, 14, 15, 17, 18, 19, 63, 64, 65, 66, 67]. Many nu-

merical techniques are available for EMI calculation in the magneto-quasistatic regime.
Two of the most widely used models that work well for simple structures are (1) the dipole
model [10, 16], in which one approximates the response of an object with one or a number

of independently responding magnetic dipoles, and (2) sphere models [17], in which one

approximates the object with a sphere. But many objects are complicated enough so that

it is impossible or very difficult to approximate them with independent dipoles or spheres
so that we need to resort to more complicated analytical geometries. Spheroidal mode ap-

proach is chosen in this work because the spheroidal coordinate system can be made to
conform to the general shape of an object of interest, whether flattened or elongated, and
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many of our objects of interest are bodies of revolution. Further more, the response of any

discrete scatterer (including non-spheroidal objects) can be represented in terms of basic

mode solutions in spheroidal coordinate system.

This chapter is organized as follows. The spheroidal mode approach is first introduced.

Then we investigate the inversion of a single spheroidal object. Retrieval of the character-

istic scattering coefficients from both the clean and the noisy synthetic data is addressed,

and subsequently the inversion from the measurement data is presented. Finally, the char-

acteristic scattering coefficients are used in pattern matching and classification.

5.2 Spheroid mode approach

In the frequency band we are considering (a few Hz up to a few 100 kHz), both conduction

and displacement currents have a negligible influence in the relatively small region illumi-

nated by the sensor around a sizable metallic scatterer. While the magnetic field H(7) in the

metallic scatterer satisfies the Helmholtz equation, the magnetic field in the ground around

the scatterer is irrotational. It can be expressed in terms of the gradient of a scalar potential,

governed by the Laplace equation [68]. This applies to both the primary (transmitted) and

secondary (scattered) fields. Thus, outside of the scatterer, we use a linear superposition of

a finite number of basic solution modes to express both excitation and response, where each

mode corresponds to a solution of the Laplace equation in spheroidal coordinates. This is

an extension of the previous work [27] in which only the primary field is expressed using

spheroidal modes.
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d

Figure 5-1: The prolate spheroidal coordinate system is specified by (, , f), with -1 <
7r < 1, 1 < < oo, andO 0< < 2r. The surface of a spheroid is given by o = ~0 =
b/ - a2 , where a and b are minor and major semi-axis of the spheroid. The interfocal
distance is given by d = 2b 2- a2 .

5.2.1 Formulation

In a prolate spheroidal coordinate system (see Fig. 5-1), the primary and secondary field

potentials are respectively expressed by [69]:

UPR(r) = 2 EbpnPn.n(71)Pnm(6)T pn

doo oo 1

US() = E E EBpnPnm(?)Qn(0Tpn(O)
m=O n=m p=O

-- - Bk'kS(T), (5.2)
k

where d is the interfocal distance of the spheroidal coordinate system, j, k index the set

{p, m, n} and
T~ ({ cos(m0), p = O,
Tpm(C)- sin(m5), p = 1.
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P (.) and Qm (.) are the associated Legendre functions of the first and second kind, respec-

tively. A time dependence of e- iwt is assumed and suppressed throughout. The primary and

secondary fields are represented respectively as:

IPR(T) = -dEbjV pPR(), (5.3)

HS(T) = aH bHS (r) = b - dB V (5.4)
j j k

where V denotes the gradient operator. The coefficient by represents the strength of the jth

primary field mode, while the coefficient B? ) represents the strength of the kth mode in the

secondary field, in response to a unitary magnitude of the jth excitation mode in the primary

field. Note that E bjB() in Eq. (5.4) is equal to Bk in Eq. (5.2). The lower primary field

modes are (p, m, n) = (0, 0, 1), (0, 1, 1), (1, 1, 1), which correspond to unitary uniform

excitation in the -z, x and y direction, respectively.

In the laboratory coordinate system where the measurements are carried out, if the

spheroidal object is not located at the origin or aligned with the z axis, a self coordinate

system has to be defined based on the location and orientation of the spheroid, in which

the spheroidal mode approach can be used. The secondary field clearly depends on the

properties of the source, the position of measurement, and the location, orientation, size,

shape, and composition material of the scatterer. In Eq. (5.4), Vks(7) is determined by

the position of the measurement. The coefficients b depend on the characteristics of the

transmitter and the location and orientation of the object, and B() is determined by the

shape, size and composition of the object. We denote the parameters that the coefficients

bj depend on as pb, and the parameters that the coefficients B ( j ) depend on as PB. We

observe that coefficients B(j ) are determined by the intrinsic properties of the object and

are independent of its location and orientation as the coordinate system is attached to the

object. It can be proved mathematically [68, 70] that each object has a unique set of B?()

in a given spheroidal coordinate system. Thus in principle one can recognize an object

from its set of B (j) . Of course, if two different objects produce similar scattered fields, or

if sampling is insufficient to reveal the differences in their scattered fields, the objects will
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be indistinguishable in terms of B ( j ) as well. However, any significant difference in the

scattered field data necessarily implies a difference somewhere in the set of B?(), because

of the orthogonality of the associated functions.

In what follows, we address some theoretical and practical issues of the spheroidal

mode approach, i.e., dealing with non-spheroidal objects, the choice of interfocal distance

d of the spheroidal coordinate system, the properties of the basic spheroidal modes, and the

ordering of the primary and the secondary modes.

5.2.2 Dealing with a non-spheroidal object

Note that the object in the spheroidal coordinate system is not itself necessarily a spheroid.

For a general scatterer, we choose a fictitious spheroidal surface ~ = 0o enclosing the object

(see Fig. 5-2) strictly for computational purposes. The primary and secondary fields on and

outside the fictitious surface are expressed by Eq. (5.3) and Eq. (5.4). We conclude from

the uniqueness of the solution and the orthogonality of the modes that the coefficients bj

and B( ) in Eq. (5.3) and Eq. (5.4) are independent of the size of the enclosing spheroidal

surface () and are unique in a given spheroidal coordinate system, i.e., the interfocal

distance d is fixed [68, 70].

Figure 5-2: An example of a non-spheroidal object surrounded by a spheroidal surface
corresponding to a particular "radial" coordinate value -= 0o in the prolate spheroidal
coordinate system chosen.
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5.2.3 Choice of the interfocal distance

To proceed, we must choose a particular d to define the coordinate system. For a given

object, the logical choice would be a value similar to its longest dimension, for an elongated

object in a prolate system; or the shortest dimension, for a flattened object in an oblate

system. Since most UXOs are elongated objects, we only consider the prolate system in

the examples here. In principle, different d can be used for different objects considered in

the same problem. This could be advantageous if we do not wish to examine or compare

either the input or induced modal coefficients (bj, B()), but only need a forward solution

system for obtaining H. The advantage of proceeding in a single spheroidal coordinate

system is that it allows us to examine and compare the B(j ) themselves, as discriminators.

5.2.4 Properties of the spheroidal modes

From the properties of the trigonometric functions and the associated Legendre functions

of the first kind, we find that the spheroidal modes have the following properties:

* For both the primary and the secondary potentials, the integer m and n determine

their spatial distribution properties. From the periodic properties of the sine and

cosine functions, we see that m represents the number of periods for E [0, 27r].

From the properties of the associated Legendre function of the first kind, we conclude

that n - m represents the number of the zeros for r7 E (- 1, 1).

* For an object that is symmetric about the xy plane, when excitation is (0, 1, 1), i.e.,

uniform fields in the x direction, the coefficients Bp,,",) are nonzero only when n-m

is even due to the property of the associated Legendre function of the first kind,

Pm (-r) = (1)n-mPn m().

The conclusion is also true for the (1, 1, 1) excitation.

* For a body of revolution (BOR), when the excitation mode is (0, 0, 1), i.e., uniform

fields in the -z direction, the coefficients Bpm,1 are nonzero only when p = 0 and
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m = 0, which means we expect no variation with respect to X in the secondary field.

More generally, making use of the orthogonality property of cos me and sin m, we

conclude that (p', m', n') primary mode excites only (p', m', n) secondary modes, i.e.,

those secondary modes with different p or m from the primary mode are eliminated.

* For a BOR, the scattering coefficients satisfy the following equation:

B(O,l,nt) = B(1,,nt)
O,1,n - 1,1,n

This is explained by the rotation of the spheroidal coordinate system by around the

z axis:

cos(O) = sin(k + ) = sin(').
2

More generally, by rotating the spheroidal coordinate system by m'7 around the z

axis, we have

B(O,m',n) ,m',n)

5.2.5 Ordering the primary and the secondary modes

Eqs. (5.3) and (5.4) contain an infinite number of the primary and secondary modes. In

practice, however, we have to use a truncated version of them. Here we address the issue

of ordering the finite collection of primary and secondary modes.

Index of the primary mode (j')

Consider a finite number of primary modes (' = {p, m, n}): p = {0, 1}, {m = 0, 1,..., M},

and {n = m, m + 1,..., N}. A total number of N + N + (N - M + 1)] M modes are

listed in Table 5.1:

We order them according to the following criteria,

* the index starts from 1 for the mode boo,

* in the same row, the index is increased by 1 for the next mode,
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Table 5.1: Index of mode j for the primary field
n=1 n=2 ... n=M ... n=N

m=O bool boo2 ... booM .. booN

m=1 boll bill b012 b112 ... bolM bllM ... bolN bllN
m=2 bo22 b 122 ... bo2M b12M ... bo2N b12N

m=M .I boMM bMM ... I boMN blMN

* the index of the first mode in a row increases by 1 compared with that of the last

mode in the previous row.

Index of the secondary mode (k)

For the same (p, m, n), the index of k is greater than that of j by one because the index of k

starts from one for the mode B 0oo. The reason for this difference is that the {0, 0, 0} primary

mode potential is expressed by P0 (e), which is always equal to one, having no contribution

to the magnetic fields, while the secondary mode Qo(~) is not a constant potential.

5.2.6 Relationship between the spheroidal mode approach and the dipole

approximation approach

In the the low frequency band where the EMI is applied, the magnetic field around a metal-

lic object is irrotational, and can be expressed as the gradient of a scalar potential, governed

by the Laplace equation [68]. If the potential is expressed in a spherical coordinate sys-

tem, we get a multipole expansion, with the first term dipole, the second term quadrupole,

etc [68]. When the observation is far from the metallic object, the secondary field can be

well approximated by a dipole model, with the quadrupole and higher terms neglected. On

the other hand, sphere is a special ellipsoid: when the interfocal distance d approaches to

zeros, the length of the major axis is equation to that of the minor axis. In this case, by

keeping the lower modes we reduce the spheroidal mode approach to the dipole approxi-

mation approach: modes Bo0 11 , B1 ll and Boo0 correspond to the dipole components in x, y

and z directions, respectively [69].
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Figure 5-3: Geophex GEM-3 instrument sensor head (Courtesy of Dr. K. O'Neill)

5.3 Electromagnetic induction sensor

The measurement data used in this work were obtained using the GEM-3 electromagnetic

sensor. This sensor was developed by Geophex Inc. and has been widely used for detecting

and characterizing buried metallic objects [10, 63, 17]. The picture of the GEM-3 is shown

in Fig. 5-3. The GEM-3 is a monostatic sensor characterized by a zero source -receiver

separation. The sensor head of the GEM-3 contains two concentric transmitting current

loops with radii of approximately 20 cm and 10 cm. The total current in the inner loop is

one half of that in the outer loop and flows in the opposite direction. Therefore, the primary

fields at the center, where the receiver is placed, are nearly zero. The frequency range of

the GEM-3 is roughly between 30 Hz and 24 kHz.

During the measurement, in order to minimize variance due to sensor position, the

GEM-3's position and orientation is fixed. Test objects are placed upon a supporting

wooden platform that is built around the GEM-3 instrument. Whenever test objects are

moved to a new position on the wooden platform, their induced magnetic fields are mea-

sured by the GEM-3 sensor. The accuracy of the measurement was tested by a previous

group member in his work [11, 12], where the measured responses of spheroidal objects
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are compared with those obtained by an analytically approach. The results show that the

measurement data taken by the GEM-3 are reliable at frequencies up to about 12 kHz, with

decreasing accuracy at higher frequencies. Note that all the measurements reported in the

thesis were taken by Dr. Kevin O'Neill's group at Hanover, NH.

5.4 Inversion for a single spheroidal object

It has been shown that many realistic elongated objects can be approximated as prolate

spheroids [27]. In this section, we investigate a spheroidal object or equivalently an elon-

gated object with a response that can be well-approximated by that of a spheroid. For a

single spheroid or an equivalent spheroid, the vector PB is {2a, 2b, Pr, a), where 2a and

2b are the length of minor and major axis, respectively, Pr is the relative magnetic perme-

ability, and a is the conductivity of the object. For a given source, the vector Pb depends on

the location and the orientation of the object. As a robust optimization scheme, differential

evolution is applied to search for the set of trial parameters {Pb, PB} that produce the values

of H8 in Eq. (5.4) that best match the observed data. For each trial {Pb, PB , the forward

process calculating the secondary field is executed. An essential step in the forward process

is the application of the coefficients B? ) obtained by an analytical approach [11, 12, 67].

First, we run numerical simulations to determine the parameters of a hypothetical

spheroid illuminated by a uniform primary field. Fig. 5-4 illustrates the setup of the single

spheroid inversion problem. In the laboratory coordinate system, the spheroid is located at

o =- (x0 , yo, z0), which is (0, 0, -0.55) m in the simulation. The orientation of the spheroid

is defined by the Euler angles (00, 00), which are (, ). A self coordinate system is

defined by the location and orientation of the spheroid, in which a spheroidal mode ap-

proach introduced in section 5.2 can be used. Other parameters of the spheroid are as

follows: 2a = 0.05 m, 2b = 0.20 m, Pr = 100, a = 3 x 106 S/m. Here we choose a

mono-static model, i.e., the source and the observation positions are the same. The uni-

form primary field sent out from measurement position ,, is H (T) = ( - o)Ho,

where H0o is a constant. The magnetic field (x , y, z components) is "measured" on a 5 by

5 grid (x = 0.2 x (i - 3), y = 0.2 x (j - 3), i, j = 1, 2,..., 5) at the height z = O. In the
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current simulation model, first we compute the forward problem, calculating the secondary

field produced by the spheroid. Then in the inverse problem, we treat the calculated sec-

ondary fields as the "measured" fields. We treat the conductivity a as a known parameter

in this simulation and assume that the x and y coordinates of the spheroid have been es-

timated by another sensor type, such as ground penetrating radar [71]. The task is to find

the parameters of the trial spheroid (zo, 00, 0o, 2a, 2b, ,r) so that the secondary fields pro-

duced by the trial spheroid match the "measured" fields as closely as possible. The sample

frequencies are chosen to be 40 Hz, 500 Hz, 10 kHz, and 1 MHz.

AZ

iR7Pr)e t

Figure 5-4: Illustration of the setup of the single spheroid inversion problem

The mathematical optimization model is expressed as

1 Nd Nf 
1 1 s -

min f( - [Hm(s,t)(X) - H(s,t)( )1(5 6)
NdN s=1 t= maxe6, 17d(,t) (X)I}

s.t. Xim n < Xi < Xmax i = 1, 2,... Nu,

where Nd is the total number of measurement points, Nf is the total number of sample
-S

frequencies, N, is the total number of unknowns, Hd is the data of the measured field,

and 6 is a small positive number (which is one percent of the maximum magnitude of

the measured magnetic field in the simulation) that avoids infinite weighting for too small
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Table 5.2: Comparison of the optimized and theoretical data in the numerical model.

[I Ito [m][ 00 o o [ 2a [m] 2b [m]l ~r ]
Theoretical value -0.55 2.09 (= 'ir) 3.93 (= ir) 0.050 0.20 100.0
Optimized value -0.54 2.07 3.93 0.051 0.19 107.5

Id 1. Note we have transformed Hm calculated by the model Eq. (5.4) to the value in

the laboratory coordinates. In this simulation, X = (zo, 00, o, 2a, 2b, pr). The objective

function f (X) expresses the average relative mismatch of the secondary fields and its value

is zero in the ideal situation.

Differential evolution algorithm (DE) [36, 57] is applied to optimize the objective func-

tion. DE has been introduced in chapter 4 and is not repeated here. When DE is applied

to the buried object detection, each individual is a vector consisting of the location, size,

permeability etc. of the buried object. The individual producing a better match with the

measured field wins in the "selection" operation. After 200 generations of optimization,

with a population of 12 individuals in each generation, DE gives the results shown in Ta-

ble 5.2.

The optimized objective function value is fpt = 0.031, which means that the average

mismatch between the measured data and the computed secondary field is of 3.1%. Some

optimization trajectories are shown in Fig. 5-5 and Fig. 5-6 , in which the individual X

of each generation that produces the smallest mismatch and its corresponding objective

function values f are plotted. We can see from Fig. 5-5 and Fig. 5-6 that after about 150

generations of evolution, the optimized parameters are close to their true values, and the

objective function value is less than 0.04.

Second, we apply the inversion method to deal with the data collected by the GEM-

3 instrument [63]. The primary fields are calculated by the Biot-Savart's law and then

are conveniently expressed in terms of fields from a collection of infinitesimal magnetics

sources with analytical expressions [27]. The GEM-3 data in arbitrary units are converted

to equivalent magnetic fields using the normalization method proposed in [11, 12]. The

primary fields produced by the GEM-3 are nonuniform, and bj 0 for n > 1, where

j indexes the set {p, m, n}. In order to find the secondary field in Eq. (5.4), we need
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Figure 5-5: Optimization trajectory of parameters in the numerical model, in which the
parameters of the hypothetical spheroid are zo = -0.55 m, 00 = 2(= 2.09), Oo = ' (=

3.93), 2a = 0.05 m, 2b = 0.20 m, and r = 100.
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Table 5.3: Comparison of the optimized and real data for spheroid A2 shown in Fig. 5-7.
I ! I 0 I z0 [m] ] 00 2a [m] 2b [m] ILr a [S/m] ]

Real value -0.275 0 Any 0.03 0.09 1.0 2 x 10' 5 x 107
Optimized value -0.269 0.140 1.656 0.029 0.084 1.0 3.09 x 107

to calculate bj for this source. One way to find the excitation coefficients is to utilize the

orthogonality of the associated Legendre functions [27]. Although it is an accurate method,

the computation entailed is somewhat burdensome for inversion routines: we must calculate

a double integration with a rapidly oscillating integrand for each bj. A faster method for

obtaining the excitation coefficients is to solve for all bj together in a linear equation system

obtained by matching the primary field on a spheroidal surface defined by J = o0. The

point matching technique can be expressed by a truncated version of Eq. (5.3), with the

maximum primary mode j being J. The contribution to the primary field from the modes

after J is negligible. For this problem, we found the primary field modes j with m > 3

or n > 5, produce a negligible contribution compared with the leading modes. Note that

the primary magnetic fields produced by the GEM-3 instrument are expressed in the self

coordinate system. For N matching points and three (x, y, z) field components, there are

3N equations. When 3N > J, the task of finding bj is overdetermined and can be solved

by a least squares method.

After obtaining bj, DE is employed to optimize the objective function Eq. (5.6). For a

real machined spheroid (see Fig. 5-7) [12, 11] with parameters (z0, 00, 0o, 2a, 2b, Lr, a) =

(-0.275 m, 0, Any, 0.03 m, 0.09 m, 1, 2x10 7 S/m 5x10 7 S/m), we measured the sec-

ondary field at a grid of 4 by 4 (x = 0.05 + 0.1 x (i - 3), y = 0.05 + 0.1 x (j - 3), i,j =

1, 2, 3, 4) at the height z = 0 at the frequencies of 90, 150, 210, 330, 450, 510, 930, 2490,

6270, 10950 Hz. For this inversion problem with 7 parameters to be optimized, DE obtains

the results shown in Table 5.3, using a population size of 20 and 100 iterations.

The optimized objective function value fot is 0.077. The comparison of optimized and

measured broadband EMI response at point T = (0.05,0.05, 0) m is shown in Fig. 5-8.

Note that the choice of sign convention follows the convention common in the geophysics

field in that the complex conjugate of the magnetic field is shown. We observe from Fig. 5-8
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that the optimized results are close to the measured data.

Figure 5-7: A real ellipsoid made of aluminum, with dimensions 2a = 0.03 m, 2b = 0.09
m, designated A2 (Courtesy of Dr. K. O'Neill).

,,x 10

-0.
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-0.

10_ 102 10o
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lo4

Figure 5-8: Comparison of the measured field and the optimized field at point (x, y, z) =
(0.05, 0.05, 0.0) m for the spheroid shown in Fig. 5-7.

5.5 Inversion from clean synthetic data

In this section, we present two examples in which the characteristic scattering coefficients

are retrieved from the synthetic data. We first expand the secondary field produced by an

oblate spheroid under a prolate spheroidal coordinate system. Then scattering coefficients

of a composite object consisting of two coaxial spheroids are retrieved.
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5.5.1 An oblate spheroid in a prolate spheroidal system

As mentioned in section 5.2.2, the spheroidal modes form a complete set so that the sec-

ondary fields produced by any scatterer can be uniquely expanded in a given spheroidal

coordinate system, regardless of the shape and size of the object. In this example, we ex-

pand the secondary field produced by an oblate spheroid in a prolate spheroidal coordinate

system.

The size of the oblate spheroid is 2a = 0.38 (m) and 2b = 0.20 (m), with an interfocal

distance d = 2/aT2- b = 0.32311 (m). The relative permeability of the spheroid is

Atr = 50 and the conductivity is oa = 1 x 107 (S/m). The spheroid is located at To =

(0, 0, -1.0) (m) with the rotation angle 00 = 0 and 0o = 0. Magnetic fields are measured

at two levels (z = 0 and 0.3 (m)) on grids (11 by 11 points within x = [-0.5, 0.5] (m) and

y = [-0.5, 0.5]) (m) at the operating frequency 100 Hz. In the simulation, we choose a

mono-static model, in which the uniform primary field is HP () = (r - fo)Ho, where

F0 is where the spheroid is located, Tm is the measurement position, and Ho is a constant.

Thus, the primary field over the object is uniform for each rm.

The secondary fields are expanded as a linear combination of orthogonal modes in a

prolate spheroidal coordinate system with the interfocal distance identical to that of the

oblate spheroid under investigation.

In the numerical simulation, we choose M = 1, N = 6 for the secondary modes and

j = (0, 0, 1), (0, 1, 1), (1, 1, 1) for primary modes due to the uniform excitation.

The simulation results show that the fields at all measurement points are expanded

correctly, which means that the secondary fields produced by an oblate spheroid can be

expanded in a prolate spheroidal coordinate system. For comparison, the fields are also

expanded in an oblate spheroidal coordinate system with the same interfocal distance.

The magnitudes of the scattering coefficients B(j ) and the contribution of each mode

to the total fields are shown in Figs. 5-9 and 5-10. We observe that for those non-zero

secondary modes, as n increases, B(j ) increases, 9' decreases (due to the property of

the associated Legendre function of the second kind), and the field contribution B()VkJIs

decreases.
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of B(j ) in the prolate coordinate system for the oblate spheroidal

In comparison, the the fields are also expanded in an oblate spheroidal coordinate sys-

tem with the same interfocal distance, as shown in Figs. 5-11 and 5-12. The same expansion

properties are observed.

Comparing Fig. 5-10 and Fig. 5-12, we see that for the secondary field produced by the

oblate spheroid, the series expanded in the oblate spheroid coordinate system converges

faster than that in the prolate spheroid coordinate system.

5.5.2 Composite object

When the object is too complicated to be represented by a spheroid, we still express the

primary and secondary fields on and outside a fictitious spheroidal enclosing surface in the

same way. In other words, in the spheroidal coordinate system, we can obtain the coeffi-

cients bj for the primary field and B(j ) for the secondary field, whatever the object may be.

It is shown [13] that for a single spheroid the coefficients B(j) are the characteristics of the

object, independent of its location and orientation and of the properties of the source. In
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fact, the same conclusion is applied to an object with an arbitrary shape.

For example, consider a composite object (see Fig. 5-13) consisting of two spheroids.

Here we assume the following parameters: the first spheroid, 2a = 0.198 m, 2b = 0.282

m, ,r = 1, a = 1 X 107 S/m; the second spheroid: 2a = 0.312 m, 2b = 0.589 m,

/, = 100, a = 1 x 107 S/m. For combinations of magnetic and non-magnetic metallic

pieces, the scattered field obtained by assuming a simple superposition of MQS responses

from two such objects will be insignificantly different from the actual scattered field, if the

observation point is farther away than their characteristic dimensions [18, 19]. Similarly,

if the objects are both magnetic but their separation is at least on the order of the smallest

characteristic dimension, the effects of the interaction on the scattered far field is weak [18,

19]. In this example we only consider such cases, i.e., the scattered field from the two

objects can be obtained by superposing the responses of each object, accounting for their

different locations within the primary field. The purpose is simply to assemble an example

of a heterogeneous structure for which the response can readily be calculated, in order to
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posite object. The interfocal distance d is 1.6 m in the simulation.

Table 5.4: Inverted B( ) for the composite object shown in Fig. 5-13. The number inside
the parenthesis means the power of 10.

k = (0,0,1) k = (0, 1, 1)
Inversion A Inversion B Inversion A Inversion B

j = (0,0,1) 4.45(-2) - 1.19(-2)i 4.45(-2) - 1.19(-2)i 9.73(-10) - 4.69(-10)i -7.90(-9) + 3.27(-9)i
j (0, 1,1) 1.14(-10) - 4.55(-11)i -1.40(-10) + 7.69(-11)i -2.74(-2) + 6.52(-3)i -2.74(-2) + 6.52(-3)i
= (1, 1,1) 1.91(-11) - 7.43(-12)i -3.14(-18) + 1.03(-18)i -1.15(-10) + 4.66(-11)i -2.58(-17) - 6.75(-18)i

illustrate the invariance of the B(j ) in a given spheroidal coordinate system.

We solve for B() by matching measurements on and above the "ground" (i.e. some

chosen plane near the object). We obtain B( ) by solving the truncated version of Eq. (5.4)

in which the maximum primary mode index j and the maximum secondary mode index k

are chosen to be J and K, respectively. In this numerical simulation, we choose J to be

m = 3, n = 5, and K to be m = 2, n = 5. Note the secondary field H () here is expressed

in the self coordinate system. An overdetermined problem is setup for N measurements

when the number of equations 3N is greater than the total number of unknowns JK.
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To show that the coefficients B( ) are independent of the orientation of the object, we

solve for them in the following two situations: case A: (00, o0) = (3, 0); case B: (00, 00) =

(4, r). Some of the typical resulting B(j) at 463 Hz are shown in Table 5.4. The values

illustrate that the coefficients B( ) are independent of the orientation of the object so that

B(j ) is indeed a characteristic of the object. Note that the small terms are close to zero,

and we do not expect them to be exact due to numerical errors. Also, note that we may not

always be able to determine all the B(j ) that we desire when some input modes or scattering

modes are too weakly represented in the particular data at hand.

5.6 Inversion from noisy synthetic data

In order to obtain the characteristic scattering coefficients B (j ), we solve a linear equation

system, i.e., a truncated version of Eq. (5.4), with the maximum primary mode J and

secondary mode K. For ease of presentation, we rewrite the linear equation system to be

Ax = h (5.7)

where x is a JK-dimensional vector representing the unknowns B (j ), h is a N-dimensional

vector representing the measured magnetic fields, A is a N by JK matrix, and N denotes

the total number of measurements. An overdetermined problem is set up when the number

of equations N is greater than the total number of unknowns JK,

Minimize: lAx - h 2, (5.8)

and its solution is well-known:

x = (ATA)-'ATh. (5.9)

It is well known that the solution is very sensitive to small errors on h when the ma-

trix A is ill-conditioned, or nearly singular. Ill-conditioning is a common issue in inverse

problems. In the inversion of the scattering coefficient B(j ), we deal with this issue using
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two approaches. One is to choose few but important modes for both primary and secondary

potentials so that the total number of unknowns is reduced. The other is to apply regular-

ization techniques, in which the objective function is modified so that a balance between

accuracy and stability is achieved.

5.6.1 Mode selection

One of the reasons for ill-conditioning is that the number of unknowns is too large. Since

the number of unknowns (JK) is equal to the product of the numbers of the primary and the

secondary modes, we seek to use as few as possible of both the primary and the secondary

modes, while those modes should be important in representing the properties of the primary

and the secondary fields. Another effect of the reduction of the modes is to speed up the

inversion.

In the following numerical example, we show how the primary and the secondary

modes are chosen in order to reduce the ill-conditioning of the inverse problem.

A prolate spheroid with 2a = 0.066 (m), 2b = 0.245 (m), relative permeability /lr = 50,

and conductivity a - 107 (S/m) is considered in this example. We choose the inter-

focal distance of the spheroidal coordinate system to be same as that of the spheroid

d = 2v 2- a = 0.23594 (m). The spheroid object is put on a horizontal grid whose

height is z = 0. During the measurement, the object is moving while the GEM-3 sen-

sor is stationary. The GEM-3 sensor is positioned directly beneath the center of the grid.

The object is first moved along the y axis, where 13 measurements are performed, y =

-0.6 + (i - 1) x 0.1(m), i = 1,..., 13. Then the object is moved along the x axis, and

12 measurements are performed, x = -0.6 + (i - 1) x 0.1(m), i = 1, .. , 6, 8,..., 13.

Two levels of measurements are carried out, where the the GEM-3 is located at z = -0.165

(m) and z = -0.265 (m), respectively. We will retrieve the scattering coefficients B(j)

from the measurements for some orientations of the object, and then predict the secondary

fields for other orientations of the object. In the retrieval stage, the object is orientated

at ( = 37r/4, = r) and ( = 0, = 0), respectively, with the GEM-3 at the level

z = -0.165 (m). In the prediction stage, the orientation of the object is ( = 7r, 4, = 0),
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with the GEM-3 at the level z = -0.165 (m) and z = -0.265 (m). All the three compo-

nents of magnetic fields are considered, and the operation frequency is 10,950 Hz.

Note that although the object is a spheroid, we do not use that as prior information in

the inversion of the scattering coefficients B(j)

Selection of the primary modes

The GEM-3 sensor produces non-uniform fields, whose potentials can theoretically be ex-

pressed as an infinite linear combination of orthogonal primary modes. However, only a

small number of modes are dominant, with others negligible. According to the author's

experience, four to seven modes are usually sufficient to describe the potentials produced

by the GEM-3 sensor.

In Fig. 5-14, the magnitudes of the primary modes are compared. In this example, the

coefficients bj(7i) are calculated for each relative position (i) between the object and the

sensor. The maximum magnitude of each primary mode, i.e. the maximum Ibj (i) for all

Fi, is plotted in Fig. 5-14, where we choose m < 7 and n < 7 so that we have a finite

number of j. Note that the magnitudes of the coefficients bj in Fig. 5-14 are normalized

so that the maximum one is unity. The index of the mode j is given in section 5.2.5. We

observe that there are only four dominant modes: j = (0, 0, 1), (0, 0, 2), (0, 1, 1), and (1,

1, 1). Note that modes (0, 0, 3), (0, 1, 2), and (1, 1, 2) are next to the aforementioned four

modes, but they are small compared with the four basic modes. We also find that all other

modes are negligible.

Selection of the secondary modes

Unlike the primary fields, whose modes are independent of the scattering object as long

as the local spheroidal coordinate system is uniquely defined, the secondary fields strongly

depend on the properties of the scattering object. For an object, which can be any shape,

any composition, we cannot determine a priori which specific secondary mode is dominant

or negligible. Thus, we have to truncate the secondary modes by keeping only the lower

modes. We refer to this approach as a "standard model." In practice, however, since the

response of most of UXO to a GEM-3 sensor can be effectively modeled as that of a body of

115



-o

E

0
E

U 1U 2U 3U 4U) -U bU
Index of the primary mode

Figure 5-14: Maximum magnitude of bj

revolution, the number of secondary modes is dramatically reduced due to the properties of

the modes for a BOR that are presented in section 5.2.4. We refer to this model as a "BOR

model". For example, in the case that only the secondary modes with m < 2 and n < 2

are considered, for the four fundamental primary modes, there are only eight unknown

scattering coefficients in the BOR model, while there are 36 in the standard model. In the

BOR model, the eight B(j)s to be solved for are Boo0 '0") B B,') B, 00 ,2l) Bo~oo2) Boo00 2),B(0,0,0 0,0,1 0,0,2 0,0,0 10,0,1

B 0,0,2 , B', 1") and Bo" 12. All other 28 modes are either equivalent to one of the eight0,0,2 ) 0,1,1 _ 0,1,21)
modes (B(1'1,1) = Boll) and B(12) = Bo,1 ) or equal to zero.

We test the stability of the system with different selections of primary and secondary

modes in the presence of the noise, and the results are shown in Table 5.5.

To quantitatively evaluate the prediction, we define the relative error as follows:

ER= IIht - h1 (5.10)
where h and h denoe he rue and hted magnetic fields at al l measurement points

where ht and hp denote the true and the predicted magnetic fields at all measurement points
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Table 5.5: Relative error of the prediction in the presence of noise. We interpret (4j, mini,
10%) as follows: four fundamental primary modes, secondary modes with m < 1 and n <
1, and 10% Gaussian noise added to the true magnetic fields. Other cases are interpreted
similarly.

Standard model BOR model
(4j, mlnl, 10%) 0.15232 0.11409
(4j, mini, 20%) 0.25597 0.22049
(4j, m2n2, 10%) 0.41432 0.11937
(7j, mni, 10%) 0.27384 0.051730
(7j, mini, 20%) 0.53769 0.096471
(7j, m2n2, 10%) 1.9365 0.091543

(7j, m2n2, 10%, Regularization) 0.23230 0.090055

at the predict stage, respectively, and II -1 represents the 2-norm Euclidean length. The

smaller the relative error, the better the prediction.

Gaussian noise is added to the true magnetic fields at the retrieval stage, with magni-

tudes of 10% and 20% of the true field strength. The performances of both the standard

model and the BOR model are evaluated.

In Table 5.5, we interpret (4j, mini, 10%) as follows: four fundamental primary modes,

secondary modes with m < 1 and n < 1, and 10% Gaussian noise added to the true

magnetic fields. Other cases are interpreted similarly. Table 5.5 shows that the BOR model

works better than the standard model for a spheroidal object in the presence of noise. For

the secondary modes, the selection of m < 1 and n < 1 is better than that of m < 2 and

n < 2, other parameters being equal. For the primary modes, although the seven-mode

case is slightly better than the four-mode case in the BOR model, this is not true when

the positions of the measurements also contain noise. Table 5.6 shows the comparison of

the results between the four-primary-mode and the seven-primary-mode in the presence

of the noise in the positions of the measurements, where we add Gaussian noise to the

x and y coordinates, with magnitude of 5 (mm). The results in Table 5.6 show that the

four-primary-mode formulation performs better than the seven-primary-mode one. It is

encouraging that good prediction can be obtained using only four fundamental primary

modes and few secondary modes with m < 1 and n < 1.
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Table 5.6: Relative error of the prediction in the presence of noise in both the magnetic
fields and the positions of measurements.

Standard model BOR model
(4j, m2n2, 10%) 0.38698 0.12597
(7j, m2n2, 10%) 1.9094 0.13353

The comparison of the predicted and the true magnetic fields are compared in Fig. 5-15-

Fig. 5-17. Note that only some typical results in Table 5.5 are plotted.

5.6.2 Regularization

For the overdetermined problem Eq. (5.8), its solution Eq. (5.9) is very sensitive to small er-

rors in h if the matrix A is ill-conditioned. In this case, we say that the operator (ATA) - 1AT

is unstable. Besides the mode truncation as described in section 5.6.1, regularization tech-

niques are another common approach to deal with the ill-conditioning problem. The idea

of regularization is to approximate the unstable operator by a stable one. There are many

regularization techniques with various degrees of sophistication, ease of implementation,

and computational efficiency. Here we adopt a Tikhonov regularization technique that is

most popularly used [72, 73, 74, 75, 76]. In Tikhonov regularization, the approximate oper-

ator is obtained by adding a stabilizing term to the variational formulation Eq. (5.8), which

leads to the well known formulation:

Minimize: lAx - h112 + allxll2, (5.11)

where a is the regularization parameter. We can see from Eq. (5.11) that for the small

values of a, the approximation is good but the approximate operator is only marginally

stable. On the other hand, for the large values of a, the approximate operator is stable but

the approximation is farther from the exact one. Therefore, there is a compromise between

the accuracy of the solution and the stability. The solution x for the least square problem

with Tikhonov regularization (Eq. (5.11)) is

x = (ATA + a)-lATh. (5.12)
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Figure 5-15: Comparison of the true and the predicted secondary magnetic fields in the
presence of 20 % noise, where the standard model is used and the primary modes are
chosen to be the four fundamental modes and the secondary modes are chosen to be m < 1
and n < 1.
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Figure 5-16: Comparison of the true and the predicted secondary magnetic fields in the
presence of 20 % noise, where the BOR model is used and the primary modes are chosen
to be the four fundamental modes and the secondary modes are chosen to be m < 1 and
n<1.
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Figure 5-17: Comparison of the true and the predicted secondary magnetic fields in the
presence of 10 % noise, where the standard model is used and the primary modes are
chosen to be the seven fundamental modes and the secondary modes are chosen to be
m < 2 and n < 2.
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Choosing the regularization parameter a is difficult and most methods in the literature

are typically based on heuristics [74]. Here we do not aim at finding a systematic way of

choosing the regularization parameter, which in fact is a task for mathematicians. Instead,

we show, by empirically choosing the regularization parameter, that Tikhonov regulariza-

tion can help to improve performance in the inversion of the scattering coefficients B ( j ). In

this example, we apply Tikhonov regularization to the case (7j, m2n2, 10%) in Table 5.5.

Several values of regularization a between 10-9 and 10- 3 are tested, and all of them turn

out to help the prediction. The best among all the trials happens when oa = 10-5 . The

relative error of the prediction is listed in Table 5.5, where we observe that the accuracy

of the prediction of the standard model is improved noticeably and that of the BOR model

is slightly improved. The comparison of the magnetic fields between the predicted results

and the true results are shown in Fig. 5-18, where we see that the predicted results are much

better than those obtained without regularization (see Fig. 5-17).

5.7 Inversion from measurement data

5.7.1 BOR object

In this section, we retrieve the characteristic scattering coefficients of real UXO, most of

which can be effectively modeled as bodies of revolution [15]. To show the validity of the

spheroidal model approach, we apply it to retrieve the scattering coefficients of a real UXO,

namely U2, as shown in Fig. 5-19. We see that its head and body are bodies of revolution,

and its eight fins are evenly distributed around the central axis. The longest and the widest

dimensions of U2 are 0.245 (m) and 0.062 (m), respectively.

During the measurement, the object U2 is moving while the GEM-3 sensor is stationary.

The object U2 is put on a horizontal grid with altitude z = 0. The GEM-3 sensor is

positioned directly beneath the center of the grid. The object is first moved along the y

axis, where 13 measurements are performed, y = -0.6 + (i - 1) x 0.1, i = 1,... ,13.

Then the object is moved along the x axis, and 12 measurements are performed, x =

-0.6 + (i - 1) x 0.1, i = 1,..., 6, 8,..., 13. Two levels of measurements are carried
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Figure 5-18: Comparison of the true and the predicted magnetic fields in the presence of
10 % noise, The standard model with the Tikhonov regularization is used and the primary
modes are chosen to be the seven fundamental modes and the secondary modes are chosen
to bem < 2 and n < 2.
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out, where the GEM-3 is located at z = -0.165 (m) and z = -0.265 (m), respectively.

In the retrieval stage, the object are orientated in two ways: nose upward ( = 0, =

0) and nose downward ( = r, = 0). The GEM-3 sensor measures at two levels for each

position of the object U2: z = -0.165 (m) and z = -0.265 (m). In the prediction stage,

the object U2 is tilted 37r/4, with the nose downward, pointing to the positive x direction,

i.e. ( = 37r/4, = 7r). The altitude of the GEM-3 sensor is same as that in the retrieval

stage. Only z component of the fields are measured and the operation frequency is 10,950

Hz.

We choose the interfocal distance of the spheroidal coordinate system to be = 0.236

(m), which is same as that in section 5.6.1. Since the object U2 is almost a BOR, we

use a BOR model in our retrieval. We choose the four basic primary modes modes, and

m < 1 and n < 1 for the secondary modes. Tikhonov regularization with the regularization

parameter a = 10-5 is used to deal with the ill-condition. The retrieved scattering coeffi-

cients B?() are then used to predict the magnetic fields in the prediction stage. For all the

50 prediction data, the relative error is Er = 0.16050, and the comparison of the predicted

and the true values are shown in Fig. 5-20. We see that the predicted results generally

agree with the measured true data. Again, as illustrated in retrieval on the synthetic data in

section 5.6.1, it is encouraging to see that the scattering effect of the real BOR object can

be effectively modeled using only four basic primary modes and the few lowest secondary

modes.

5.7.2 Non-BOR object

In this section, we apply the spheroidal mode approach to some non-BOR objects. Some

measurement data are first used to retrieve the scattering coefficients B( ) , and then we

predict the magnetic fields at other measurement positions.

First we consider a rectangular metallic plate, as shown in Fig. 5-21. For convenience,

we refer to this object as CL15 (The picture and the name of the object are provided by

Dr. Kevin O'Neill), whose dimension is 0.32 (m) x 0.14 (m) x 0.025(m). As shown in

Fig. 5-21, we label the middle point of one of the edges with the length of 0.14 (m) as
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Figure 5-19: A UXO object labeled as U2 (Courtesy of Dr. K. O'Neill)

"nose", and the two edges with the length of 0.32 (m) as "left side" and "right side". The

local coordinate system attached to the object is defined as follows: we assign the x axis

to be the direction from the center to the right side of the object; y axis to be the direction

from the center of the object to the nose; z axis to be the normal direction of the plate.

In the retrieval stage, two orientations of the object are considered. The object CL15

is first positioned with the nose upward and the normal of the plate paralleling with the

x axis of the lab frame. In terms of the Euler angles, this orientation is ( = 0, 0 =

7, y = ). Then the object is positioned with the nose pointing to the y axis of the

lab frame with the normal of the plate paralleling with the x axis of the lab frame. This

orientation is (q = 0, 0 = , 7 = 0). For both orientations, the object is placed onto

a surface with the altitude z = 0. During the measurement, the object is stationary while

the GEM-3 sensor is moving. The GEM-3 sensor performs measurements on a 7 by 7 grid

(x = -0.3 + (i - 1) x 0.1, y = -0.3 + (j - 1) x 0.1, i, j = 1,..., 7) above the object

CL15. The altitudes of the measurements are z = 0.532 (m) and z = 0.365 (m) for the two

orientations, respectively.

In the prediction stage, two levels of 7 by 7 grid of measurements are performed at

z = 0.582 (m) and z = 0.632 (m) for the first orientation, and the two levels ( z = 0.415

(m) and z = 0.465 (m)) of measurements are carried out for the second orientation. These
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Figure 5-20: Comparison of the measured and the predicted magnetic fields for the object
U2
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Figure 5-21: A metallic rectangular object labeled as CL15 (Courtesy of Dr. K. O'Neill)
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data are used as the true value to compare with the predicted results.

Note that in both retrieval and prediction stages, only the z component of the magnetic

fields are measured, and the operation frequency is 210 Hz. In the coordinate system

attached to the object, we define a spheroidal coordinate system with the foci in the z

axis of the local system and the interfocal distance d = 0.236 (m).

With the normal direction of the plate being the z axis in the local coordinate system,

the object CL15 is not a body of revolution. First we use the standard model to retrieve

the scattering coefficients. In the retrieval, we choose the four fundamental primary modes

modes, and m < 1 and n < 1 for the secondary modes. Tikhonov regularization with the

regularization parameter a = 10- 7 is used to deal with the ill-condition. For all the 196

prediction data, the relative error is Er = 0.17598, and the comparison of the predicted and

the true values are shown in Fig. 5-22.

Since the object CL15 is far from a BOR, if we apply a BOR model to it, we expect

to have a bad prediction of the magnetic fields. The prediction results from a BOR model

with the same parameters as in the standard model are shown in Fig. 5-23, where noticeable

mismatch between the predicted and the true values is observed. The relative error is Er =

0.33229, much larger than that of the standard model.

In the second example, we consider a square plate with dimension 0.14 (m) x 0.14 (m)

x 0.01(m), as shown in Fig. 5-24. We refer to this object as CL16 (The picture and the

name of the object are provided by Dr. Kevin O'Neill). The method of labeling the "nose",

"left side", and "right side" are similar to that for the object CL15 (see Fig. 5-24). The

definition of the local coordinate system is also same as that for the object CL15.

Only one orientation is considered in both the retrieval and the prediction stages: (b =

0, 0 = , y = ), which is the first orientation of the object CL15. The measurements are

carried out on the same grid, except the the altitude is z = 0.341 (m) in the retrieval stage

and z = 0.391 (m) and 0.441 (m) in the prediction stage.

First we use the standard model to retrieve the scattering coefficients, which are then

used to predict the magnetic fields. The spheroidal coordinate system, the primary and

secondary modes, and the regularization parameters are chosen to be same as those in the

retrieval for the object CL15. The comparison of the predicted and the true values are
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Figure 5-22: Comparison of the measured and the predicted magnetic fields for the object
CL15, where the standard model is used in the retrieval.
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Figure 5-23: Comparison of the measured and the predicted magnetic fields for the object
CL15, where the BOR model is used in the retrieval.
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Figure 5-24: A square metallic plate labeled as CL16 (Courtesy of Dr. K. O'Neill)

shown in Fig. 5-22, and the relative error is Er = 0.054052.

Although the object CL16 is not a BOR, we expect to effectively model it using a BOR

model since it is a square plate. The prediction results from a BOR model with the same

parameters as in the standard model are shown in Fig. 5-25, where we see good match

between the predicted and the true values. The relative error is Er = 0.17989, much

smaller than that of the BOR model for the object CL15.

5.8 Pattern matching and classification

5.8.1 Pattern matching

The spheroidal mode approach can also be implemented in a pattern matching ("finger-

printing") calculation for dealing with very complex objects, such as some UXOs. In the

following pattern matching example, we identify a UXO among a list of candidates by in-

vestigating the patterns of the secondary fields produced by the candidates under a given
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Figure 5-25: Comparison of the measured and the predicted magnetic fields for the object
CL16, where the standard model is used in the retrieval.
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Figure 5-26: Comparison of the measured and the predicted magnetic fields for the object
CL16, where the BOR model is used in the retrieval.
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Table 5.7: List of objects that create the candidate patterns
Pattern ID j Object Material I axis(2a) I axis(2b) elongation (e)

P1 I1 Iron 91mm 91mm 1
P2 S2 Steel 30mm 182mm 6
P3 S3 Steel 30mm 90mm 3
P4 S4 Steel 15mm 90mm 6
P5 A2 Aluminum 30mm 91mm 3
P6 A3 Aluminum 15mm 91mm 6
P7 C1 composite: I; S2
P8 C2 composite: I; S3
P9 C3 composite: I; A2
P10 U1 UXO: longest dimension: 280mm;

widest dimension: 83mm; mainly made of steel

excitation. When positioned at To with the rotation angles (00, 00), each candidate ob-

ject produces a pattern of secondary fields under a certain excitation. For a certain UXO,

we know its characteristic coefficients B(i) which are stored in the database. The pattern

matching is to determine which unseen candidate object is the above-mentioned UXO. The

problem is solved by calculating the pattern of the scattered fields produced by the UXO

and comparing the calculated pattern (referred as "test pattern") with the candidate patterns.

Since the coefficients B( j) are known from the database, only the coefficients bj need to be

calculated in order to obtain the secondary field (see Eq. (5.4)). For a given source, the

coefficients bj are calculated by the method proposed in section 5.4. After sweeping all the

candidate patterns of secondary fields, the pattern that produces the minimum mismatch

with the test pattern is identified. The discrimination criterion is that when the mismatch

is less than a threshold, we conclude that the identified object is the UXO in consideration,

otherwise it is not.

In this pattern matching example, we have ten candidate patterns of scattered fields. To

create the candidate patterns, we put each of the objects listed in Table 5.7 at T0 = (0, 0, 0)

m, with rotation angle (0o, 0o) = (0, 0), and the GEM-3 instrument is used to excite the

object and record the scattered magnetic fields. Object A2 is shown in Fig. 5-7, while

objects I, A3, S2, S3, and S4 are shown in Fig. 5-27, and U1 is shown in Fig. 5-28. Note

that C1, C2 and C3 are composite objects, consisting of a spheroid and a sphere positioned
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Figure 5-27: Objects in Table 5.7 that create the candidate patterns (Courtesy of Dr. K.
O'Neill)

Figure 5-28: An example of UXO with the longest dimension 280mm and widest dimen-
sion 83mm, designated U1 (Courtesy of Dr. K. O'Neill)

coaxially as shown in Fig. 5-13. Operating at 510 Hz, the GEM-3 collects data at eight

different levels above the object. In this pattern matching test, we assume that we don't

know the identity of the objects in Table 5.7. Given the ten candidate patterns and the

coefficients B (j ) for the UXO U1 that is sought (in a spheroidal coordinate system with the

interfocal distance d = 0.2 m), we are to determine which candidate pattern is most likely

to be associated with the UXO U1.

The mismatch between the test pattern and the candidate pattern is defined in Eq. (5.6),

which represents the average relative mismatch of the secondary fields. For a candidate

pattern, the smaller the mismatch, the higher the similarity to the test object UXO U1.
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After sweeping the candidate patterns, we get the mismatch values as shown in Fig. 5-29.

It can be seen that the mismatch of candidate pattern P10 is nearly zero (actually 0.0045)

and notably less than those of other candidate patterns. If the discrimination threshold is

set to 0.01, we draw the conclusion that the object producing the candidate pattern P10 is

UXO U1 being sought, which agrees with the experimental truth. Other than pattern P10,

pattern P7 (produced by object C1) produces the smallest mismatch. We also observe that

the objects made of steel produce a higher similarity to the pattern of UXO U1 than those

made of aluminum with similar size.

5.8.2 Pattern classification

The characteristic scattering coefficients can be used to train a support vector machine

(SVM) to sort objects into generic classes, such as elongated or not, permeable or not. We

first introduce the support vector machine.

Principle of SVM

The Support Vector Machine (SVM) has been applied to a wide range of pattern-recognition

problems, and has achieved remarkable success [10, 77, 78]. Based on the statistical learn-

ing theory and structural-risk minimization principle[79, 80], the SVM finds a nonlinear

decision function in the pattern space (input space) by mapping the data into a higher di-

mensional feature space and separates them there by means of a maximum margin hyper-
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Figure 5-29: Sorted mismatch value of each candidate pattern
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plane. In the training of an SVM , a subset of informative input points, known as support

vectors, are identified automatically by the system and are used to make binary decisions

in the testing process.

A simple way to build a binary classifier is to construct a plane separating separating one

pattern class, "+1" from another pattern class, "-1". However, most real-world problems

involve data for which there is no such simple plane that separates the two pattern classes.

One solution to this problem is to map the data in pattern space (input space) to a higher-

dimensional space, known as feature space, and define a separating hyperplane there. Here

is an example illustrating this idea. As shown in Fig. 5-30, there are two classes, "+1",

represented by the squares on the inner circle, and "-1", represented by the cross on a outer

circle. There does not exist a straight line that separates the class "+1" from the class "-1".

However, under a mapping defined as

(u1, U2) - l, (X, X 3 ) = (U, V2u1 u2,U2),

the data in the three-dimensional feature space can be separated by a plane. In fact, the

mapping of any circle located in between the inner and outer circles can be the separating

hyperplane in the feature space.

Assume that we are given a set of training observations, {ui, yi}, (i = 1, ... , N), with

input data ui E Rn and corresponding binary class labels yi E {-1, +1}. Let xi = 'I(ui)

be the feature vectors obtained by a nonlinear mapping ~4. In the feature space, assume that

the hyperplane is expressed by

< w,x > +b = 0 (5.13)

where wt represents the vector normal to the hyperplane. For a given hyperplane, we can

always scale w and b so that the hyperplane is in a canonical form in which

I< w, i > +b > +1, if yi = +1 (5.14)

< u,xi > +b < -1, if i = -1,
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Figure 5-31: Canonical optimal hyperplane in the feature space

which is equivalent to

(5.15)

We show here that the separation between the two classes due to the hyperplane is

proportional to 1/1 Iwl , where wju denotes the norm of wu. Let the x1 andX2 be the closest

points to the hyperplane among the points in class "+1" and "-1", respectively, as shown

in Fig. 5-31. It is easy to see that

< w, > +b = +1,

< w,X2 > +b = -1,

< WU,(Z1-X2) > = 2,

< w/ll, (X1 - X2)> = 2/11wll (5.16)

From Eq. (5.16), we see that the separation between the two classes is proportional to

1/11wl . The larger the separation, the better the classification ability.
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One thing worth mentioning is that the SVM may not be able to find any separation

hyperplane sometimes in the presence of the the noise. Consequently, the problem is ad-

dressed by using a "soft margin" that accepts classification error in the training examples.

To reflect this idea, we modify Eq. (5.15) by introducing the slack variables 5:

Yi[< w,xi > +b] > 1-(i, i = 1,..., N. (5.17)

where

i > 0, ,i=1,...,N. (5.18)

Thus, a support vector machine can be specified by controlling both the classification

margin and the the magnitude of the penalty for the training error. This is achieved by

minimizing the objective function

N

f(w, ) = I1112 + CEi (5.19)
i=l

subject to Eqs. (5.17) and (5.18) for some constant C that represents the trade-off between

the classification ability and the training errors.

The above constrained optimization problem can be solved by the method of Lagrange

multipliers. It is well-known from optimization theory that the solution is characterized by

the saddle of the Lagrangian. After mathematical manipulations, we finally arrive at the

dual formulation of the original problem:

N N

Max Q(a) = E ci - E aCiajyiyj < xi,xj > (5.20)
i=1 i,j=

subject to

< ai < C i = 1, 2,..., N

Ei==laiYi- 0

We observe that the optimization problem( Eqs. (5.20) and (5.21)) is a quadratic pro-

gramming problem, and the its solution can always be deterministically found, regardless

of the initial points.

Once a is obtained, the optimal separating hyperplane is identified in which w is ex-
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plicitly determined (w = ENl aiYixi) and b is implicitly determined from the optimal

condition of the Eq. (5.19) [77]. Thus, the SVM classifier is obtained,

y(u) = sign ai tiy < (u), (xi) > +b (5.22)

Those ui for which a > 0 lie close to the decision hyperplane and are called the "sup-

port vectors", since the removal of them would change the location of the separating hy-

perplane. Thus, the SVM focuses upon the small subset of examples that are critical to

differentiating one class from another class, discarding the remaining examples.

Note that feature vector 4'(u) always appears in the format of dot product in the deci-

sion function Eq. (5.22). Thus, after defining a function K(u, ui) =< (u), )(ui) >, there

is no need to compute 1(u) explicitly. The function K(u, ui) is known as "kernel func-

tion". Mathematicians often find that it is easier to specify a kernel function than to specify

explicitly the mapping function. As long as the kernel function is legitimate, an SVM will

operate correctly even if we do not know exactly what features of the training data are be-

ing used in the kernel-induced feature space. The definition of a legitimate kernel function

requires that the function must be continuous and positive definite [80]. Several choices of

the kernel K(u, ui) are possible [77]:

* Liner kernel: K(u, ui) = uTu

* Polynomial kernel: K(u, ui) = (uTu + l)d

* Gaussian kernel: K(u,ui) = e-11" -"Ui12/a2

In fact, the kernel function expresses the similarity measure between the patterns u and

u. The more similar between u and ui, the larger the kernel function K(u, ui).

To my knowledge, there is no a kernel that works well for all classification problems, so

we have to find the appropriate kernel by try-and-error. When the data in the pattern space

are separable by a plane, liner kernel is a good candidate. If the data in the pattern space

cannot be separated by a plane, nonlinear kernels are needed. For the polynomial kernel,

when d is equal to one, it reduces to the linear kernel since an additional constant does not

contribute to the decision. For the Gaussian kernel, a too large value of a makes the kernel
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always close to one, thus the SVM thinks that any two data in the pattern space are always

almost identical. On the other hand, a too small value of a makes the kernel always close

to zero, thus any two data in the pattern space are thought by the SVM to be very different

unless they are exactly identical (I lu - ui II = 0). In addition, the choice of a also depends

on the scale of u since a and u are in the denominator and numerator of the argument of an

exponential function.

The SVM software '"mySVM"

In the following classification examples, a free non-commercial software "mySVM" is

used [81]. The software mySVM is an implementation of the support vector machine, and

it can be used for pattern classification. When using mySVM, we need to supply mainly the

following parameters: the capacity parameter C (C > 0) in Eq. (5.19), the kernel definition,

the training data, and the test data. I've applied mySVM to some analytical functions, for

example, in > 0.5? (for x E [-7r, 7r]), sin xl cos x2 < 0? (for xl, x2 E [-7r, 7r]). The fact

that more than 90% of the test data are correctly classified shows that the software works

well.

Classification results based on synthetic data

In this section, we apply an SVM on synthetic data to sort unseen objects into generic

classes, e.g., elongated or not, permeable or not, based on examination of the scattering

coefficients B(j ) . In order to obtain the scattering coefficients B (i ) , we first calculate the

secondary fields produced by the objects, which are then used as the "measured" data to

retrieve B(j) in a given spheroidal coordinate system. Note that in order to compare the

scattering coefficients, we have to retrieve them in the same coordinate system, regardless

of the shapes and sizes of the objects.

Example 1: Is the spheroid elongated (e > 2)?

In this example, we say a spheroid is "elongated" if the elongation (e) is greater than

2. The parameters of the spheroids considered in the training and the test are as follows:

The range of elongation is e E [0.2, 5], the relative permeability is r E [1,250], length of
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major axis (the maximum of 2a and 2b) is between 0.05 and 0.65 (m), the conductivity is

chosen to be a constant a- = 107 (S/m).

The input to the SVM are the scattering coefficients B( ) retrieved in a spheroidal co-

ordinate system with the interfocal distance d = 0.01 (m). Only the fundamental modes

of B( ) are considered in the classification, i.e., j = (0, 0, 1), (0, 1, 1), (1, 1,1) and k =

(0, 0, 0), (0, 0.1), (0, 1, 1), (1, 1, 1). For a given spheroid, both the real and the imaginary

parts of the fundamental modes retrieved at the limiting operating frequencies 10 Hz and

100 kHz compose one input point in the pattern space. Thus, the dimension of each input is

48 (3 x 4 x 2 x 2). The scattering coefficients of 394 different spheroids randomly chosen

from the ranges mentioned in the previous paragraph are retrieved, and are sent to a SVM

program "mySVM" (see [81]) as the training data. Then the trained SVM predicts whether

the 93 test spheroids are elongated (e > 2?) or not. The classification results are listed in

the Table 5.8. We observe that only 3 out of 93 spheroids are misclassified.

We sort the spheroids used in the tests by the elongation, and plot the corresponding

prediction results in Fig. 5-32. We see that those spheroids with an elongation close to 2

are more likely to be wrongly classified.

Example 2: Is the composite object elongated (e > 2.5)?

In the second example, SVM will determine whether a composite object is elongated

or not (e > 2.5?). The composite consists of two spheroids, one oblate (el = 1/3) and

the other prolate (e2 = 3), coaxially placed as shown in Fig. 5-33, with the closest points

separated by 0.05 (m). The range of the parameter b (semi-axis) for the oblate spheroid

is bl E [0.01, 0.05] (m), and b2 E [0.03, 0.25] (m) for the prolate spheroid. The range

of the relative permeability for both of the spheroids is r E [1, 250]. We choose the

conductivities of the two spheroids to be 107 (S/m) and 2.8 x 106 (S/m), respectively. The

Table 5.8: SVM classification results for spheroids: Class + 1 for e > 2; Class -1 otherwise
Number of predicted values
+1 -1

Number of +1 48 2
true values -1 1 42
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e

Figure 5-32: Classification results: if the spheroid is elongated or not (e > 2) ?

Table 5.9: SVM classification results for composite objects: Class +1 for e > 2.5; Class
-1 otherwise

Number of predicted values
+1 -1

Number of +1 33 0
true values -1 0 66

interfocal distance of the spheroidal coordinate system and operating frequency are same

as those in the example 1. Elongation is defined by the ratio of the length along the axial

direction to the widest dimension.

After being trained by 483 input patterns, the SVM predicts whether 99 test composite

objects are elongated or not. The prediction results are shown in Table 5.9. It shows that

all the test patterns are correctly classified.

Example 3: permeable (r > 20 ?)

In the third example, we will determine whether a homogeneous spheroid is permeable

or not (r > 20?). The parameters of the spheroids considered in the training and the

test are as follows: The range of elongation is e E [0.2, 5], the relative permeability is
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Figure 5-33: Composite object for classification

Table 5.10: SVM classification results for spheroids: : Class +1 for Ar > 20; Class -1
otherwise

Number of predicted values
+1 -1

Number of +1 55 0
true values -1 0 43

Ur E [1, 150], length of major axis (the maximum of 2a and 2b) is between 0.1 (m) and

0.3 (m), the conductivity is chosen to be a = 2.8 x 107 (S/m) for pr < 20, or a = 106

(S/m) for p/ > 20. the interfocal distance of spheroidal coordinate system is chosen to

be d = 0.236 (m) and the operating frequencies are 210 Hz, 10, 950 Hz. The scattering

coefficients B(j ) are obtained for the BOR model, and the real and the imaginary parts of

B(i) of the fundamental modes (j = k = (0, 0, 1) and j = k = (0, 1, 1)) are chosen to

compose an eight-dimension pattern space (2 x 2 x 2).

After being trained by 448 input patterns, the SVM predicts whether the 98 test com-

posite object are permeable or not. The prediction results are shown in Table 5.10. It shows
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that all the test patterns are correctly classified.

Classification results based on experimental data

In the last example, we use an SVM to determine whether real objects are elongated or not

(e > 2 ?). The objects considered are listed in the Table 5.11. We use the GEM-3 sensor to

collect the secondary fields produced by those objects, and the scattering coefficients B( )

are retrieved and saved in the library. Note that the method used here for retrieving the

scattering coefficients B() is same as that applied to the object U2 as described in section

5.7.1, i.e., only z component of the magnetic field is used, the measurements are performed

on two cross lines, and different orientations and altitudes of the object are considered.

The interfocal distance of the spheroidal coordinate system is 0.236 (m), and the operating

frequencies are 210 Hz and 10,950 Hz.

The ideal situation is that we train SVM using the scattering coefficients B (j ) obtained

for the real object. But we have limited number of those real objects. So we have to resort

to synthetic data in the training of SVM. In the training we train SVM using the scattering

coefficients B(j) of both 163 synthetic homogeneous spheroids and a real UXO U2. Here

all of the objects are treated as BORs and the dimension of each input is eight. After

training, SVM predicts whether the real objects are elongated or not.

The prediction results show that only U4, U5, and U6 are misclassified. The reason for

the misclassification is that all but one training data are for synthetic homogeneous media,

while all the data for testing are obtained from measurement for real object. When we have

more (say, hundreds of) real objects used for training, we expect to have better results in

the testing.

5.9 Conclusion and discussion

In this chapter, we adopt a spheroidal mode approach in the use of electromagnetic induc-

tion (EMI). Both the exciting and the induced magnetic fields are expanded as a linear com-

bination of basic modes in the spheroidal coordinate system. For the inversion of a single

spheroid, the DE algorithm is used to characterize the material properties, general shape,
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Figure 5-34: UXO objects for the use of classification (Courtesy of Dr. K. O'Neill)

147

.91 I

,0

79 t1 '@
I I .r

Is eI71
I , I I

-- -.. 1.

t ·II : _. _ _- -_. _i , .i_ -'



Table 5.11: List of objects used for SVM classification
Object Material I widest dimension longest dimension | elongation (e)

I1 Iron 91 mm 91 mm 1
S2 Steel 30 mm 182 mm 6
S3 Steel 30 mm 90 mm 3
S4 Steel 15 mm 90 mm 6
S5 Steel 30 mm 5 mm 1/6
S6 Steel 30 mm 10 mm 1/3
S7 Steel 30 mm 30 mm 1
S8 Steel 90 mm 30 mm 1/3
S9 Steel 90 mm 15 mm 1/6
Al Aluminum 30 mm 180 mm 6
A2 Aluminum 30 mm 91 mm 3
A3 Aluminum 15 mm 91 mm 6
A4 Aluminum 30 mm 5 mm 1/6
A5 Aluminum 30 mm 9 mm 1/3
A6 Aluminum 30 mm 30 mm 1
A7 Aluminum 90 mm 30 mm 1/3
A8 Aluminum 90 mm 15 mm 1/6
U1 83 mm 280 mm 3.37
U2 62 mm 245 mm 3.40
U3 97 mm 490 mm 5.05
U4 108 mm 465 mm 4.31
U5 70 mm 399 mm 5.70
U6 81 mm 280 mm 3.46
U7 37 mm 110 mm 3.40
U8 60 mm 260 mm 4.33
U9 83 mm 400 mm 4.82

Table 5.12: SVM classification
otherwise

results for real objects: Class +1 for e > 2; Class -1

Number of predicted values
+1 -1

Number of +1 11 3
true values -1 0 11
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(a) All spheroids except S8, S9, A7, and A8 (b) Oblate spheroids S8, S9, A7, and A8

Figure 5-35: All spheroidal objects for the use of classification (Courtesy of Dr. K. O'Neill)

and location of a subsurface object. Beyond this, the response of any discrete scatterer

(including non-spheroidal objects) can be represented in terms of basic mode solutions in

spheroidal coordinates. Theoretical analysis proves that the scattering coefficients are the

characteristics of the object, which is subsequently verified by numerical examples. The

scattering coefficients are retrieved from the knowledge of the secondary fields, where both

the synthetic and measurement data are used. The ill-conditioning issue is dealt with by

mode truncation and Tikhonov regularization technique. It is encouraging that only four

primary modes and few fundamental secondary modes (m < 1 and n < 1) are needed in

the inversion of the characteristic scattering coefficients. Stored in a library, the scattering

coefficients can produce fast forward models for use in pattern matching. Also they can be

used to train a support vector machine (SVM) to sort objects into generic classes, such as

elongated or not, permeable or not.
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Chapter 6

Conclusion

In this thesis, I have dedicated myself to the investigation of two inverse problems. The first

is the retrieval of the effective constitutive parameters of metamaterials from the measure-

ment of the reflection and the transmission coefficients. The second inverse problem deals

with the detection and the classification of buried metallic objects using electromagnetic

induction (EMI).

Retrieval of constitutive parameters

In the retrieval of constitutive parameters, my work contains three parts:

First, a robust method is proposed for the retrieval of metamaterials as isotropic media,

and four improvements over the existing methods make the retrieval results more stable.

The main conclusion is as follows:

(1). The first boundary and the thickness of the effective media can be determined by

matching z through all sample frequencies for different lengths of slabs in the propagation

direction. For symmetric D metamaterials, we have drawn the empirical conclusion that

the first boundary coincides with the first boundary of the unit cell facing the incident

wave, and the thickness of the effective medium is approximately equal to the number of

unit cells multiplied by the length of a unit cell. For 2D and asymmetric ID metamaterials,

the effective boundaries have to be determined by optimization.

(2). The requirement z' > 0 cannot be used directly for practical retrievals when z' is
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close to zero because the numerical or measurement errors may flip the sign of z', making

the result unreliable. In this case, we have to determine the sign of z by the value of its

corresponding n so that n" > 0.

(3). There is a resonance band characterized by the fact that the requirement it" > 0

and e" > 0 cannot be satisfied at those frequencies. On each side of the resonance, the

branch of n' can be obtained by a Taylor expansion approach considering the fact that the

refractive index n is a continuous function of frequency. Since the refractive index n at the

initial frequency determines the values of n' at the subsequent frequencies, we determine

the branch of the real part of n at the initial frequency by requiring that Ap" and E" are

non-negative across all the frequency band.

(4). Due to the noise contained in the S parameters, the retrieved n and z at some spe-

cific frequencies are not reliable, especially for thicker metamaterials at lower frequencies.

In spite of this, the fact that S11 and S21 for multiple cells of metamaterial calculated from

the retrieved E and p for a unit cell metamaterial match the S11 and S21 computed directly

from numerical simulation confirms that the metamaterials can be treated as an effective

homogeneous material.

Second, a new scheme is presented for the retrieval of a specific bianisotropic metama-

terial that consists of split-ring resonators, which signifies that the cross polarization terms

of the metamaterial are quantitatively investigated for the first time. The main conclusion

is as followings:

(1). Analytical inversion equations are proposed to retrieve the constitutive parame-

ters of homogeneous lossless bianisotropic media, while a numerical approach is proposed

for lossy bianisotropic media. Both methods have been first validated using analytical

functions as input values for the constitutive parameters and second, using simulated S

parameters of real split-ring structures.

(2). The retrieval results qualitatively corroborate the conclusions of previously pub-

lished articles, proving the existence of the bianisotropy in the edge-coupled SRR metama-

terials, but not in the broadside-coupled SRR metamaterials.

.Third, an optimization approach is designed to achieve the retrieval of general bian-
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isotropic media. The hybrid algorithm combining the differential evolution (DE) algorithm

and simplex method steadily converges to the exact solution. The main conclusion is as

followings:

(1). The method is for either rotated media with known constitutive properties or more

general media with unknown constitutive properties.

(2). High dimensional inverse problems are attacked by the combination of differential

evolution algorithm and simplex method. DE is used first to parallel explore the searching

space and then simplex method is applied to accelerate the convergence. Fewer incidences

are used in DE in order to reduce the computation burden and diverse incidences are used

in simplex method in order to obtain the unique solution. Importantly, our method obtains

a group of solutions, all of which are almost identical to the true one.

(3). Linear extrapolation of the results at the previous two frequencies are used as an

initial guess for the retrieval of dispersive medium using simplex optimization method.

Optimization results show that the constitutive parameters are reconstructed successfully.

(4). It should be noted that slabs with different thickness should be used for the broad-

band retrieval.

(5). The limitation of the proposed method is that it cannot deal with the bianisotropic

media whose cross-polarization terms are not close to zero at low frequencies.

Detection and classification of a buried object

In the detection and classification of a buried object, we adopt a spheroidal mode approach

in the use of electromagnetic induction (EMI). Both the exciting and the induced magnetic

fields are expanded as a linear combination of basic modes in the spheroidal coordinate

system. For the inversion of a single spheroid, the DE algorithm is used to characterize the

material properties, general shape, and location of a subsurface object. Beyond this, the

response of any discrete scatterer (including non-spheroidal objects) can be represented in

terms of basic mode solutions in spheroidal coordinates. Theoretical analysis proves that

the scattering coefficients are the characteristics of the object, which is subsequently veri-

fied by numerical examples. The scattering coefficients are retrieved from the knowledge

of the secondary fields, where both the synthetic and measurement data are used. The ill-

153



conditioning issue is dealt with by mode truncation and Tikhonov regularization technique.

It is encouraging that only four primary modes and few fundamental secondary modes

(m < 1 and n < 1) are needed in the inversion of the characteristic scattering coefficients.

Stored in a library, the scattering coefficients can produce fast forward models for use in

pattern matching. Also they can be used to train a support vector machine (SVM) to sort

objects into generic classes, such as elongated or not, permeable or not.
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