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Transmission of Microwave Throu8h Perforated Flat Plates

of Finite Thickness

CHAO-CHUN CHEN

MMract-Transmission characteristics of a thick conducting
plate perforated with either circular or rectangular holes are pre-
sented. Simple explicit formulas for predicting energy leakage
through a reflector surface are derived.

INTRODUCTION

D

URING the past two decades, metallic sheets per-

forated with either rectangular or circular holes as

shown in Fig. 1 have been widely used to form reflec-

tor surfaces, bandpass filters, Fabry-Perot interferometers,

and as elements in multipanel filters. Thin perforated sheets

are satisfactory for most applications. However, in many

cases thick p-erforated plates are preferred in order to enhance

the strength and hardness of the structure, to improve the

bandpass filter characteristics, or to avoid radiation hazards

due to leakage from microwave sources. Particularly in the

millimeter-wave and the far-infrared regions, the thickness of

the metallic mesh fiiter is not negligible compared to the wave-

length.

A thick perforated plate exhibits a steeper cutoff between

the stop and the passband frequency, which is significant in

the design of metallic mesh filters or fenestrated radomes. The

thick sheet also finds practical applications in problems as-

sociated with the radiation hazards due to leakage through

reflective surfaces on low-noise antennas or microwave-oven

doors.

Due to the lack of an effective theoretical analysis, a great

number of investigations have been performed experimentally

[1 ]-[7]. Those experiments, however, did not provide much

information about the thickness effect and its resonant shift

with the angle of incidence. Recently, the method of moments

has been applied successfully in solving the integral equation

for the unknown aperture fields for the case of a thin per-

forated sheet [8], [9]. This paper extends the numerical

method developed for the thin sheet to the case of a thick

plate. Transmission properties of a perforated plate at fre-

quencies well below the resonance region are also investigated.

Relatively simple explicit formulas for calculating energy

leakage through a reflector surface are derived.

GENERAL FORMULA

Consider a thick conducting plate that has symmetrical

discontinuities at z= ~ ll. This perforated plate is illuminated

by a plane wave at an arbitrary incident angle 0 from z = co .

Based on the superposition theorem, this original problem

may be decomposed into symmetric and antisymmetric

plane-wave excitations. The cases of the symmetric and the

antisyrnmetric excitations are equivalent to open- and short-

circuit problems, respectively, at z = O. They will be treated
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Fig. 1. Geometry of a perforated conducting plate.

separately as a boundary-value problem. The sum of the two

resulting fields is then the solution of the original problem.

To solve the short-circuit or open-circuit boundary-value

problem, the fields on both sides of the plate are expanded

into a complete set of Floquet modes @Pqr, with two spatial

harmonic numbers P and q, and a third subscript r, used to

denote TE or TM mode. Each Floquet mode has a propaga-

tion constant TPq along the z axis and a characteristic modal

f. The fields inside the holes between twowave admittance &?

apertures are expressed in terms of the conventional wave-

guide modes Y’~n, with a characteristic modal admittance

~~~ and a propagation constant (%fi. The incident wave is of
arbitrary polarization with modal voltage coefficients A 001

and AOOZBy matching the transverse electric and magnetic

fields at the aperture z = –11, an integral equation for the

unknown transverse field at z = —11 is obtained:

7== 1 ?=1 p q !fJ

aperture

,=1 p q

fJ>q=o, tl, f2, ”””, i@

m,n=o, 1,2, ”””, +-w (1)

where F~n, and Y~,,, are the modal coefficient of the conven-

tional waveguide modes and the input admittance looking

into the waveguide from the aperture at z = — L, respectively.

In the cases of open and short circuits atz= O, the input admit-
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tance is

Y mnr = +iqmti7~an(@)71zrJ1)7
for open circuit

= –jv,flnr cot(D?J!?lr~l), forshort circuit. (2)

By substituting (2) into (1), ti~o integral equations, one for

the cpen-circuit and the other for the short-circuit problem,

are obtained. The open- and short-circuit aperture fields at

z= —11, E. and E. are obtained by sol~”ing these two integral

equations independentl~- by the method of moments. Thus

thetransverse aperture fields atz= ~llofthe original problem

are

E,(2= TIJ =+[EOA E,]. (3)

The positive sign applies to the aperture field on the incident

side of the plate, andthenegati~-e sign totheaperture field on

the transmitted side. The reflection coefficient at.z= -11 is

R pqr = Ss.E,(Z=–l,)@l,,*d u-3p,.400, (4)

aperture

~,here ~pg=I for~=g=O, othernvise ~Pg=O.

The transmission coefficient at z =11 is

B pq?’=
SS

E,(Z = L). @,,~,.*da. (5)

aixrture

The same procedure applies equalll- well to the problem of a

thick perforated plate laminated between two identical dielec-

tric sheets, which has been treated in [9] and [11].

In the range of passband frequencies, accuracy of the

solution depends upon the number of modes remaining in (1)

to approximate the respecti~-e fields in the aperture and the

free-space regions. The criteria in choosing the proper number

of modes in these two regions ~vere discussed in detail in [12]

and [13] by Mittra and Lee et al. Nthough the general equa-

tions (1)-(5) and the method of moments p:rovide an effective

means for determining the reflection and the transmission

coefficients of a perforated plate, the interest and practice of

using (l)–(5) are often hinged on the complexity of program-

ming the multimode computation and its cost in computation.

Furthermore, the foregoing formulation does not gi~e much

insight into the physical characteristics of the problems. For

many applications, such as antenna reflector surfaces or RF

isolation screens, simple explicit expressions are available for

rapidly obtaining an approximate estimation of the transmis-

sion loss through these surfaces.

MESH SCREEX FOR RF ISOLATION

Most of RF isolation screens or reflector surfaces are per-

forated with either circular or square openings arranged in

either square or equilateral triangular lattice. Since the size of

these openings is usually well below cutoff, only the dominate

waveguide mode is of significance in the region of these open-

ings. If the number of free-space modes retained in (1) in-

cludes the modes whose transverse propagation coefficients

are slightly greater than that of the TEu mode for circular

holes or TE,O mode for square holes beyond cutoff, an ap-

proximate solution can be obtained even without resorting to

the computer.

For the case of normal incidence, the reflection and the

transmission coefficients of a reflector screen can be reduced

to the forms

1
R=——

1 –~[.4 + Btanlt(fll)]

+ ——-
1

———— – 1 (6)
‘ 1 –.~[.~ + B cot /?(,8/1

1
T=—— —————

I –j[A + B tan]7(61)]

– –––––1––––– (7)
I –j[z4 + B cot /?(/31)]

where ~ and B are functions of element spacing and aperture

size. Four different patterns of perfc)rated plate that are most

commonly used in practice are the following.

1) Ci~cdar Ope~lingr WIII Equilateral Triangl{lor Lattice:

12 [ “(-$%)1
‘= 12(%)-1, ‘---–--–11--G%JJ

1, pt%:)~——
- (w- 1)’”r$z-l’

for a > 0.28d and d < 0.57~ (8)

‘=033(:)((%)- “)1’2
(9)

‘=:((%)- ‘)”2
(lo)

~vbere a is the radius of circular apertures and d is the spacing

between any two apertures.

2) Ci?’cular openings with .!iqfla?w Lattice:

A=8

- ((:}8)
1/2

–1

[

‘GQ’a) 1

- (2(:;- 1)]’2 (%? 1’

for a > 0.28d and d < 0.5A (11)
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‘=X3’((%9’-1)” (12)

3) Square Openings with Equilateral Tria~~gular Lattice:

A= “3(%)’-1)’2-41,1 1;(() )1
–1ii

()7ra
Cos —

d

2a 2()1– j-

2

2

1[
[Sin(al’

‘To’-1)’21(%)J
for a > 0.5d and d < 0.57~

‘=%(3’-‘)1’2
‘=:((3’-‘)”

(13)

(14)

(15)

where a is the width of the square openings.

4) Square O$enings with Square Lattice:

[1()
sin —

- ((:)’: Y’ ;; 2

,[2(2(3’-1Y’2----;)]

“[::;21[%117
for a > 0.50! and d < 0.5X (16)

‘=:(w)- ‘r (17)

Although A and B can also be derived for the case of an arbi-

trary incidence, the results are no longer simple. Thus we shall

resort to the empirical method for the variation of power

transmitted from that of the normal incidence. For an

3

obliquely incident plane wave, the energy leakage through a

RF screen or reflector surface can be expressed as

leakage (dB) = – 20 log I T[cos O]ZCI-PJ I ,

for perpendicular polarization

—_— 20 log I T[cos 0]–15(1-’) I ,

for parallel polarization (18)

where @ is the plate porosity, i.e., the ratio of surface areas

between the opening to the unit cell.

Equations (8)–(17) are valid for small openings below the

cutoff of all waveguide modes. The accuracy of the solution

from (18) is typically better than +- 1.5 dB for incidence angles

less than 60° up to a leakage of a 35-dB level. Equations (6)

and (7) also serve as a first-order approximation in the range

of passband frequencies.

NUMERICAL RESULTS AND DISCUSSION

Transmissibility as a function of the angle of incidence,

plate thickness, as well as frequency, is presented for several

cases of interest. For the plate with rectangular openings, the

criteria given by Mittra [12 ] and Lee [13] was used to choose

the proper number of modes in the two respective regions.

For the plate with circular openings, the accuracy of the com-

puted results was verified by examining the conservation of

energy, convergence of solution, and observing the higher

order mode coefficients [12 ]. Excellent agreement between

the computed and experimental results has been obtained.

Fig. 2 shows a comparison of the measured and computed

results for a plane wave at normal and 45° incidence. The

theoretical curves are the results of 10 waveguide-mode com-

putations.

Effects of conducting plate thickness orI the behavior of

transmission and reflection are the problems of primary inter-

est in this paper. Consider the case of rectangular waveguides

flush-mounted between two parallel ground planes, which may

possibly be used as a feed through lens in phased arrays or fil-

ters in an oversized beam waveguide in the optical- and milli-

meter-wave regions. Dimensions of the aperture and its array

spacings are

a= O.93in b= O.278in

dz=l.18in du=0.34in CY=300

for plate thickness from zero to 1,3 free-space wavelengths.

Reflection coefficients as a function of plate thickness are

plotted in Fig. 3 for a plane-wave incident normally. The

cutoff frequency, both phase and amplitude, of the reflection

coefficient exhibits a periodic characteristic. The first cycle

of this periodicity is approximately but not equal to the

rectangular guide wavelength. This is to be expected since

there are higher order mode interactions between two aper-

tures when the plate is thin. Below the cutoff frequency, the

power reflection coefficient increases with thickness as the

coefficient of the 4- and 6-GHz cases. In both cases, the inci-

dent waves are totally reflected if the plate is sufficiently elec-

trically thick. However, the phase shifts of the electric field on

total reflection are less than 180°, i.e., inductive surfaces. At 6

GHz the phase of the reflected wave asymptotically ap-

proaches 90° when the plate becomes very thick.

The reflectivity and transmissibility of a perforated plate

depends on both the polarization and the angle of incidence.
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versus frequency. a = 0.159 in; dl = d~ = 0,35 in; a = 60°, sandwiched
between dielectric sheets 0.028 in thick with + = 3 for normal incidence
in +=0° plane.

As an example, consider three flat brass plates O, 0,03, and

0.06 in thick perforated with circular apertures of O.159-in

radius, These apertures are arranged in an equilateral tri-

angular lattice and covered with a dielectric sheet with e.= 3

and 0.028 in thick on each side. These dimensions were taken

after [5], which may be of interest to those involved in band-

pass radome design. Fig. 4 shows the insertion loss and the

insertion phase delay as functions of frequency at normal inci-

dence. Fig. 5 shows the comparison of insertion loss for per-

pendicularly and parallel polarized plane waves incident at a

0= 60° angle. A distinctive difference in resonant shift is ob-

served between the cases with circular holes filled with dielec-

tric and filled with air. For perpendicular polarization, as the

angle of incidence increases both resonant frequency and

bandwidth decrease from those of the normal incidence. The

bandpass behavior also varies with the plane of incidence.

However, this variation is minimized in an equilateral tri-

angular lattice arrangement. Computed results on an O.Ol-in-

thick plate are in agreement with the measured data reported

in [s].

The last example considers a perforated plate, which is of

interest to those concerned with the microwave leakage

through the antenna reflector surfaces or RF screen. Com-

parison of transmission losses obtained from the 10 lowest

order aperture modes by (1), and results from the single-mode

calculation from (18) are shown in Fig. 6(a) and (b) for plates

with 84-percent and S1-percent porosity, respectively. For the

hexagonal lattice considered here, variation of insertion loss

versus angle of incidence is insensitive to the plane of inci-

dence. As the angle of incidence increases, the energy leakage

.
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Fig. 5. Transmission loss of a sandwiched flat plate with circular holes
versus frequency. a = 0.159 in; dl = d~ = 0.35 in; a = 60°, sandwiched
between dielectric sheets 0.02S in thick and with e,= 3 for 8 = 60° inci-
dence in+ = 0° plane,
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Fig. 6. (a) Flat perforated plate with 84-percent porosity. (b) Flat
perforated plate with 5 l-percent porosity.

becomes higher than that of the normal incidence for per-

pendicular polarization, and becomes lower for the parallel

polarization. The insertion loss is inversely proportional to

the plate thickness. In general, the single-mode aperture field

approximation is adequate for calculation of energy leakage

through a perforated screen when the size of the apertures are

smaller than that of the resonant aperture. Deviations be-

tween the computed curves and the measured points are pos-

sibly due to the rounded edges of the apertures on tested

samples.

CONCLUSION

In the past, most filter and reflector surfaces have been

designed experimentally because there were no accurate

theoretical models. It has been demonstrated that this model

accurately predicts the performance of a thick plate per-

forated with either rectangular or circular apertures ranging

from electrically small to resonant apertures. Equations (6)-

(18) are useful for evaluating energy leakage through reflector

surfaces. They also serve as a first-order solution for a per-

forated plate in the resonance region. Thick plates provide a

sharper cutoff between stopband and passband, but the pass-

band narrows as plate thickness increases. Shifts of resonant

frequency and changes of bandwidth in the opposite sense for

the perpendicular and the parallel polarizations as functions

of incident angle limit many useful applications of this per-

forated plate.
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