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Transmission Through a Conducting Screen

Perforated Periodically with Apertures

CHAO-CHUN CHEN

Absfracf—A general solution to the problem of determining first

the aperture field distribution and then the transmission and reflec-

tion coefficients of an infinite planar conducting sheet perforated

periodically with apertures has been formulated. The excitation is

considered to be a plane wave incident at any arbitrary angle. The

aperture dnensions and array element spacings were assiuned to be

comparable with the wavelength of the incident electromagnetic

field. The solution given can include the effect of a dielectric slab

used to support the thin conducting sheet.

The solution is obtained by matching the tangential field com-

ponents at the surface of the screen. The resulting integral equation

is solved by the method of moments which reduces the integral equa-

tion to a system of linear algebraic equations that can be solved with

the use of a digitrd computer. Accurate results for both the magnitude

and phase of the aperture field distribution and the transmission

coefficients for the propagating modes are determined explicitly for

a specific example of slots arranged in an equilateral triangular lat-

tice. The balance of power flow between the reflected and the trans-

mitted waves has been checked with satisfactory results. The solu-

tion can be applied to the problem of scattering from a conducting

screen with periodic apertures and to the complementary problem of

scattering from a set of conducting plates by the use of Babinet’s

principle.

INTRODCTCTION

M

EASU~EMENTS [1] have demonstrated that

a thin conducting metal screen perforated with

slots has bandpass bandstop characteristics

when illuminated by an incident electromagnetic wave

of variable frequency. This property makes these struc-

tures useful for many applications such as microwave

filters, bandpass radomes, artificial dielectric and an-

tenna reflectors, or ground planes..

The problem of scattering by a conducting thin screen

perforated periodically with apertures has been investi-

gated by Kieburtz and Ishimaru [2] with the help of a

variational approach. The success or failure of a varia-

tional solution depends on the ability to chose an appro-

priate trial function for the aperture field distribution.

A method of solution is established directly for the

aperture field distribution; hence the problems of reflec-

tion, transmission, and the aperture susceptance can

be treated in a straightforward manner. The method is

quite general and applies to rectangular or circular

apertures distributed periodically along any two co-

ordinates. All aperture dimensions and the array ele-

ment spacings are assumed to be comparable with the

wavelength of the electromagnetic field. The formula-
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the presence of a dielectric slab which

supports the thin conducting screen. The complemen-

tary problem of arrays of conducting plates can also be

handled by the use of Babinet’s principle.

The basic procedure is to expand the unknown elec-

tric field distribution near the conducting screen in a

set of Floquet mode functions and relate the unknown

magnetic fields on the two sides of the screen to the cor-

responding modal admittances in these two regions. By

appropriately matching the tangential field components

at the screen, an integral equation is obtained for the

unknown electric field in each aperture. To simplify

the computations, the unknown aperture field distribu-

tion is then expanded into a new set of functions that are

orthogonal over the aperture itself, Hence this expan-

sion should yield a faster convergence than the Floquet

mode expansion. By the method of moments [3], the

integral equation is reduced to a set of linear algebraic

equations which can be solved with the use of a digital

computer.

MODAL FORMULATIONS

Consider an electromagnetic wave to be incident on a

thin conducting screen perforated with apertures dis-

tributed periodically along any two skewed coordinates

S1 and .$ at an angle a as shown in Fig. 1.0 is the angle

between the propagation vector ~ and the normal to the

plane of the screen, and @ is the angle between the x

axis and the projection of k on the x–y plane. I t is as-

sumed that the thickness of the conducting screen is

negligible compared to a wavelength and that the

apertures are all identical. The screen is backed with a

dielectric sheet of thickness h.

The electromagnetic fields near the screen must

satisfy the periodicity requirements imposed by

Floquet’s theorem; thus the scalar mode potential

with the exp (@t) time dependence omitted can be

written as [4]

+ZW = ‘Xp ( ‘~(”.!zx + %.y + ~.Qz)) (1)

where

27rp
upq=ksin Ocos ++- (2)
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CONDUCTING SCREEN. Y

(a)

REFLECTED WAVE I INCIDENT PLANE WAVE

Fig. 1. Geometry of thin conducting screen
perforated periodically with apertures.

yDq= ~kz – lPq2, for k’ > tPq2 (4a)

—— — j~kz — tPq2, for kz < tPq2 (4b)

with

The modal propagation constant ~pQ is positive real

for the propagating modes and is negative imaginary for

evanescent modes. For the case of an isosceles triangular

array when the element spacings and the angle of

incidence satisfy

H’+(-w’’+sin’”
and

2(2G)=’+sine)
The distant scattered field only consists of the TE and

TM modes with P = O, q = O; otherwise the higher modes

may also exist. The vector orthonormal mode functions

for the transverse electric field can be derived from the

scalar potentials (1). The resultant TE and TM vector

mode functions, transverse with respect to the z axis,

are

The transverse electric and magnetic fields are related

by the modal admittances

d&TJ1 =: 2_, TM modes. (8)
PO

The modal admittance for TE and TM waves looking

into the dielectric region from z = +0 plane can be

obtained by the transmission line formula which is

y,, = tp.d

%, + .itp< ‘an (~p/ k)
(9)

&# + j$,. tan (Tpf k)”

The function $P,d designates the modal admittance in

the dielectric region and has the same form as in (7) and

(8) for the corresponding TE and TM waves, except that

the dielectric constant EO should be replaced by EOC,.

For convenience of notation, a third subscript r, equal

to 1 or 2, will be used to designate the TE and TM

modes, respectivel}-.

It is known that a homogeneous electromagnetic wave

can always be decomposed into a combination of two

plane waves with either the E or the H field perpendicu-

lar to the plane of incidence that correspond to the TE

and TM Floquet modes with @ = O, q = O. A plane wave

with unit electric field intensity, incident in the @

plane at an angle O to the array normal, has the reflec-

tion coefficients RPq, and the transmission coefficients

B P ‘w for the corresponding modes @,Q, in both regions.

Matching the tangential field components at

plane ~-ields

the z=O

in each aperture

over the conductor

in a unit cell

,=1 P q !-=1

2

over each aperture.

(lOa)

(lOb)

(11)

The reflection coefficients Rpq, and the transmission

coefficients BP*, can be obtained from (lOa) as

R B,,, =Pv = H
Et. ~pQ,*da (12a)

aDerture
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for all P, g, and r with the exception of the incident terms

for which P, q are both equal to zero. In this case

A 00, + ROOT = Boo,, forr=lor2. (12b)

Substituting (12a) into (11), we obtain an integral

equation which must be satisfied over the aperture only:

To solve the above integral equation for the unknown

aperture electric field distribution, the electric field in

the aperture will be expanded in another set of complete

orthonormal functions @~nz that span the space of the

aperture itself. The new set of orthonormal functions is

chosen to satisfy the aperture boundary condition and

thus provides a faster convergence to the aperture field

than the Floquet mode expression of (10a)

Multiplying both sides of (13) by the complex con-

j ugate of T~. t and integrating over the aperture, we

obtain

2

2 ~ A ~o,&,CoOr*MNL
,=1

(15)

= x z i (f.,,+ yP*r)c,*r*”NL Ss Et.~,gr*da

P q T=l aperture

where

(&MNL =

u
GMNI,. @pq,.* da (16)

aperture

and the asterisk designates the complex conjugate. The

integral equation (15) generates a system of linear alge-

braic equations with the mode coefficients Fmnl as

unknowns, which can be written in the matrix form

[YWVLm”f][Fret] = 2[Imn,] (17)

where [ Y~~L~~Z] is a square admittance matrix, the

row index is designated by the subscript M, N, L, and

the column index by the superscript m, n, 1. The matrix

elements are given by

Imnl = ~ A o&JJ’oor*~”z. (19)
r==1

Equation (17) is the expression for an admittance matrix

for a multi terminal network where [ YMNLm”2 ] is the

admittance matrix, Fmnl is the terminal voltage, in. z

is the equivalent current source, and CPq,m’li is the

coupling coefficient between two different types of

modes. The accuracy of the mode coefficient Fm,,l

obtained from (17) depends upon the number of modes

used to approximate the aperture electric field in both

(lOa) and (14). After the field distribution over the

aperture is determined, the distant reflected and the

transmitted fields can be calculated in a straightforward

manner from (12a).

TRANSMISSION THROUGH RECTANGULAR APERTURES

In this section (12a), (14), and (17) are employed to

calculate the reflection from, or transmission through, a

perfectly conducting screen perforated with rectangular

apertures. An equilateral grid arrangement was used for

the layout of the apertures. When the origin of the

rectangular coordinates is at the center of an aperture

and each rectangular aperture has the dimensions a and

b parallel to the x and y axis, the set of orthonormal

mode functions can be written as

[

n n- mr
~.nTE = g — e.nz.i — — e.n!)j

b 1 (20)
a

[

m7r ?27r
fcmrlTM= g — emr,.i+ ~ e.n,~1 (21)

a

and

‘=(31’2[(3+(%}1”2’22)

(mir mr

)(

717r ‘n7r
e~nx z cos —~. — Sin _

2

b ~..~

)
(23)

a

‘mn=sin(%-:)c”’(%--a ‘2’)
where em is the Neumann factor, e., = 1 for m = O, and

efi=2form~l.

A computation was made that considered the lowest

possible 10 modes in (14) for rectangular apertures and

about 200 Floquet modes whose transverse components

of wave numbers tP~ were less than 11 times the free-

space wave number k = 27r/A in (lOa). For the case of

narrow slots with a rectangular grid arrangement, the

numerical results are in excellent agreement with the

values measured by Ott [1]. They also agree with the

corresponding solutions given by Babinet’s principle for

the complementary problem of scattering by conducting

plates [5].

Since only one propagating beam is permitted for the

case considered here, the distant reflected and trans-

mitted waves are confined to the ~ool and 3002 modes

only. Shown in Fig. 2 is the variation of the transmission

coefficient as a function of frequency when the screen

is illuminated by a normally incident plane wave with
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Fig. 2. Transmission coefficient of plane wave withE fieldparallel
totheyaxis atnormal angle of incidence (dx=2.0cm, d%=0.577
cm, a=30°, a=l.2 cm).

E field perpendicular to the x axis. The bandw-idth

increases with slot width. The resonance frequency,

where the transmission coefficient is purely real, also

increases with the slot width instead of decreasing. For

the case where the screen is loaded with a dielectric

slab, the resonance frequency decreases as expected.

The transmission coefficient of a plane wave with E

field perpendicular to the x–z plane, incident at different

angles of 0 is shown in Fig. 3. The resonant frequenc~-

decreases with the increase in the angle of incidence.

The graph in Fig. 4 shows the transmission coefficient

of a plane wave with H field perpendicular to the y–z

plane, incident at different angles of 0. It is seen that the

resonant frequency is insensitive to the angle of inci-

dence in this plane and the bandwidth increases as the

angle of incidence increases. This phenomenon is differ-

ent from the case shown in Fig. 3 in which the band-

width decreased instead of increasing. The dips in the

higher frequency region are due to the forced resonances

that occur just prior to the onset of gratin~ lobes. Be-

yond these frequencies where the dips occur both re-

flected and transmitted waves may propagate as

multiple beams in the free space.

In the previous cases the slot arrays are all illuminated

by a plane wave incident in either x–z or y–z planes.

Because of the symmetry in the geometry the reflected

and transmitted waves both have the same polarization

as that of the incident wave. In Table I the three most

significant mode coefficients F~nz in (14) for the cases of

beam scan in the x–z and y–z planes are given. The other

mode coefficients are not listed because they are much

smaller than these for the cases considered here. iNever-

theless, it is seen that the aperture field distribution is

dominated by the TEIO mode. This phenomenon does

not hold for the case when a plane wave is incident in a

@ plane that does not have geometrical sylmmetry or for

LEGEND

——— g .60°

8 10 12 14 16 18 20

FREQUENCY, GHz

Fig. 3. Transmission coefficient of incident plane wave with E field
perpendicular to the x–z plane (dz =2.0 cm, dti =0.577 cm, a=30°,
a=l.2 cm, b= O.12 cm).

the case when the electrical length of the slots are far

from the resonant frequency of the TEIO mode. In

general, 10 w-aveguide modes appear to be sufficient to

give a good approximation to the aperture field distribu-

tion if the slot length is less than one wavelength. Illus-

trated in Table II is the type of convergence for the

transmission coefficient Bool that one can expect when

various numbers of Floquet modes in (lOa) are con-

sidered in the computation,

The graph in Fig. 5 shows the transmitted TE- and

TM-mode coefficients for an incident TE plane wave

(E field perpendicular to the plane of incidence). When

the plane of incidence is the plane with geometrical

sylmmetry, the reflected or transmitted wave has no

TM-mode component. In general, as the angle of inci-

dence 6 increases, the magnitudes of both the TE and

TM transmission coefficients decrease.
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TABLE I

THREE MOST SIGNIFICANT MODE COEFFICIENTS OF
THE APERTURE ELECTRIC FIELD DISTRIBUTION*

—.

Incident Plane Wave with E Field Perpendicular to x–z Plane

Angle
of

Inci-
dence

F,,, (TE,O mode) F,,, (TE,o mode) F,,, (TE,Omorfe)

(de-
grees)

0=1
+=0 3.103 –jo .0074 0. Oooo+jo .0071 0. 1255-jO. 0003

‘=31 2.835 –jl.315*=0 0.0856 +j0.1846 0.1462 –jO, 0678

6=61 0.6335 -jl.514+=0
0.1553 +j0.0650 0,0441 –jo. 1054

Incident Plane Wave with H Field Perpendicular to y–z Plane

A:fle

I nci-
dence

F,o, (TE,o mode) F;o, (TE,,o mode) F,,, (TL1l, mode)

(de-
grees)

0=1
+=90

3.102 –70 .0060 0.1254 –jO ,0002 o.OOOo+jo. oo72

!9=31
r#l=90

3.084 –jO .0402 0.1221 –jO.0016 o.oo53+jo.4139

‘=61 3.063 -jO.0102
qJ=90

0.1273 –jo .0004 0.0019 +j0.5624

— .

* dZ=2.0 cm, dU =0.577 cm, a=30°, a=l.2 cm, b= O.12 cm, and
#=13.6 GHz.

TABLE 11

CONVEW;ENCE OF THE TRANSMISSION COEFFICIENT BOOI WITH AN
INCIDENT PLANE WAVE WITH E FIELD PERPENDICULAR

TO THE X–Z PLANE VERSITS THE TOTAL NUMBER OF
MODES CONSIDERED IN (10)

————. —.
Total
Num-

ber 6=1”, +=0” 6=31”, +=0” 0=61”, +=0”
of

Modes

650 0.999911/–0.76 0.909437/–24.57 0.397952/–66.55

355 0.999875/–0.90 0.906842/–24.93 0.392846/–66.87

219 0.999995 ~–O.13 0.9071 ?1/–24.89 0.386110/-67.29

115 0.999161/–2.35 0.901169/–25.68 0.389377/–67.08

.!5 0.998332/–3.31 0,927109/–22.01 0.456679/–62.87——

The transmitted TM- and TE-mode coefficients due

to an incident TM plane wave (H field perpendicular to

the plane of incidence) are given in Fig. 6. It is seen that

when the plane of incidence is the y–z plane (+ = 900), the

\vave is totally transmitted. In Fig. 6(11) it is interesting

{o see that the magnitude of tile transnlitted TE

coefficient BOOI may becolne greater than unity. This is

possible because the [’oynting vectors of a TE w~ve and

a TM wave that have the same magnitude of mode co-

efficients are different by a COS2 O factor, Since only one

propagating beam is permitted for all cases given herein,
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Fig. 5. Transmitted TE- and TM-mode coefficients due to incident
TE plane wave (d4=2.O cm, dv=0.577 cm, a=30°, a=l.2 cm,
b = 0.12 cm, j= 13.6 GHz. (a) Transmitted TE wave. (b) Trans-
mitted ThI wave.

the power flow of the reflected and transmitted waves

nlust satisfy the law of energy conservation. Thus

E::L I ~,,”, 12 + W+:LD:L I B“,,, ‘
(25a)
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Fig. 6. Transmitted TM- and TE-mode coefficients due to incident TM plane wave (d. = 1.0 cm, dv = 0.577 cm,
~ = 30°, ~ = 1.2 ~m, ~ =0,12 ~m, ~ = 13.6 GEIz. (a) Transmitted TXI v-al-e. (b) Transmitted TE wave.

for an incident TE wave, and

Re( YOO,)
— \ %]’+

iin +t:(yool) I Boo, 1’

‘too’ (25b)

+ /l?oo, \’=1
for an incident TM wave. For example, assume a TM

plane wave illuminates the screen from the direction

O = 81°, @ = 30°. From Fig. 6 the distant transmitted

field has the components BOOI = 1.238/– 41.5°, 300,

=().701,/-41.0” , and therefore, the sum of fhe left-

hand side of (25b) is 0.9977 which is very close to unity.

All data presented here have been in excellent agreement

with the conditions of (25).

From Figs. 5 and 6 it is also seen that at normal

incidence the relation between the TE incident wave and

the reflected TM wave or vice versa satisfies the rec-

iprocity theorem.

CONCLUSION

A method of solution has been formulated to evaluate

the aperture field distribution and the transmission co-

efficients of a plane wave incident upon a conducting

screen with periodically spaced apertures. The screen

may or may not be loaded with a dielectric slab. The

aperture field distribution is expanded into Floquet

modes to lmake it possible to distinguish the propagating

modes from the evanescent modes conveniently. I t is

also expanded into a second set of modes that are

orthogonal over the aperture and satisfy the aperture

boundary condition itself. This step simplifies the

computations involved in the evaluation of the aperture

field distribution, The zccuracy of the solution depends

on the numbers of modes used in (lOa) and (14) to

approximate the aperture field distribution. Accurate

numerical results for the aperture field distribution and

the transmission coefficients have been obtained for the

specific case of rectangular slots arranged in an equi-

lateral triangular grid array. These results satisfy both

the law of energy conservation and the reciprocity

theorem.

The problem of transmission through a conducting

screen with circular apertures can be solved with the

methods presented in this paper. Furthermore, this

formulation is also applicable to the complementary

problems of reflection from or transmission through a

set of conducting plates by the use of Babinet’s principle.
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