
660 IEEE TRANSACTIONS ON 

REFERENCES 
[I] H. Inada  and 31. A. Plonus, “The geometric optics  contri- 

IEEE Tra.ns. Antennas  Propagat., vol. BP-18, pp. 89-99, 
bution  to  the scattering  from a large dense dielectric sphere,” 

[2] R. G. Kouyoumjian, L. Peters,  Jr.,  and D. T. Thomas, “A 
January 19‘70. 

modified geomet.rica1 optics  methods  for scattering by &elec- 
tric bodies,” IEEE Trans. Antennas Propugai., vol.  AP-11, 

[a] L. Peters, Jr:, T. Kawano, and W .  G. Swarner, “Approxi- 
pp.  69G703,  November 1963. 

mations for dielectric or plasma scatters,” Proc. IEEE, vol. 53, 

[4] H.  C. Bryant  and A. J. Cor, “BIie theory and  the glory,” 
J .  Opf. SOC. -Am., vol. 56, pp. 1529-1532, November 1966. 

151 T. S. Fahlen  and H.  C. Bryant;, “Direct observations of sur- 
face waves on %-ater droplets, J .  Opt.  SOC. A n t . ,  vol. 56, 
pp. 1635-1636, Kovember 1966. 

[GI J .  Rheinstein,  “Backscatter from spheres: a short pulse view,” 
IEEE Trans. Anfennus Propagat., vol. AP-16, pp. 89-95, 

pp. 88’2-S92, August 1965. 

January 196s. 
[7] ‘A‘.. Franz  and P. Beckmann,  “Creeping waves for objects of 

finite conduct.ivitv.” I.R.E. Trans. Antennas Prooaaat.. vol. 

~~ 

ANTENXAS  AND PROP.4GATIOXi, VOL. AP-18, NO. 5, SEPTENBER 1970 

frequencies,” Ann.. Phys. ( K e a  
1961. 

[9] H. M. Nussenzveig, “High-frequency scattering bj; t.rars- 
parent sphere, pt. I-direct reflection and transmlsslon, pt. 
11-theory of t.he rainbox  and  the glory,” J .  Xalh.  Phys., 
uol. 10, pp. 82-176, January 1969. 

[lo] Y. 31. Chen,  “Diffraction by a smooth transparent object,” 
J .  Nath.  Phys., vol. 5, pp. 820-932, June 1964. 

1111 W. Streifer and R. D. Kodis, “On the solution of a trans- 
cendental equation arising in  the theory of scat.tering by a 
dielectric cylinder,” Quarf. A p p l .  Xath., vol. 21, pp. 285-297, 

1121 IF’. FYanz, “ U F  die Greenschen Funktionen des Zylinders 
January 1964,. 

nnd  der  Kugel, 2. Ka.tu,forsch. -4, vol. 9, pp. 705-7161  1954. 

Scattering by a Two-Dimensional Periodic 
Array of Conducting Plates 

CHXO-CHIX CHEN 

Absfracf-The boundary value  problem of an idmite  array of 
thin plates  arranged  in a doubly periodic grid along any two co- 
ordinates  is formulated in a general form for an arbitrarily polar- 
ized  plane wave incident from any oblique angle. The induced 
current on the plate, the near-field distribution, and  the  distant 
reflected  waves can  be obtained to a very close accuracy. Both 
magnitudes  and  phases of the reflection coefficients for some 
specific examples are  determined explicitly. For  the  case of a 
wave  incident  normally on a  rectangular lattice  array of narrow 
rectangular  plates, the calculated values  are in excellent  agree- 
ment with the  measurements in a previously published paper. 
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A‘ 
IXTRODUCTION 

A T  INFINITE  array of metallic  plates  or strips  such 
as is illustrated  in  Fig. 1, forms a. useful model for 

the analysis of many  practical microv,*ave structures such 
as filters, lens, and artificial  dielectrics [l]. A knowledge 
of the reflection and transmission coefficient,s a t  t,he army 
face is required in each of t.hese applications. 

The problem of scat,tering by a tmo-dimensiona.1 periodic 
axray of rect,angular plat.es was investiga.ted by  Ott, 
Kouyoumjian,  and  Peters [a ] .  They used the point, mat,ch- 
ing  method to solve the integral  equation  for the unknown 
current  on each plate. The solution  given is restricted to  

[13] G. X. Watson, A Treatse  on the  Theory of Bessel Functions. 
Cambridge, England: Cambridge  University Press, 1966. 

[14] H. Inada, “Electromagnet.ic wave scattering by dielectric 
spheres,” Ph.D. dissertation,  Korthwest.ern  University,  Evans- 

[GI W .  Schobe,  “Eine an die Nicholsonformel anschliessende 
ton,  Ill.,  June 1969. 

asgmptotische  Entwicklung fur Zylinder Funktionen,” Acta. 
Math., vol. 92, pp. 265-305, 1956. 

[IG] J. C. Miller, “The Airy integral,” in British Association, Xathe- 
nzcrticul Tables, vol. B. Cambridge.  England:  Cambridge Uni- - .  - 
versity Press, ‘1946. 

[li] hI. Bbramorritz and L. A. Stegun, Handbook of Mdhemafi- 
cal Acncticms. National Bureau of Standards. U. S. DeDartc 

- 

ment of Commerce. 1964. 
[18] R.~ G. Newton, ?he Complex j-Pla:ne. Kew  York: 1%:. A. 

[19] R. G. Iiewton, Scattering  Theory o j  Tl’aues and  ParfiZes. New 

P201 A. Ralston. A First  Course in :Yunzerical BnuIusis. New 

Benjamin, 1964, p. 51. 

Tork:  McGraa-Hill, 1966, p. 93. 
. .  

Tork:  ~IcG~aw-Ilill,  1965. 
[21] W .  hiagnus  and L. Kotin,  “The zeros of the  Hankel function 

as a  function of its order,” :\’umer. Jlath.., vol. 2, pp. 228- 
234, July 1960. 

[22] H. C. van de  Hulst., Light  Scattering  by Small Particles. New 
York: Wiley, 1957. 

[ 2 3 ]  H. Inada  and AI. A. Plonus, “Xumerical results for back- 
scattering from large, high-density dielectric spheres,” Proc. 

1241 D. Atlas, L. J. Battan, W .  G. Harper, B. hI. Herman, I(. 
IEEE (Letters),  rol. 57, pp. 1192-1193, June 1969. 

Kerker,  and E. Xatijevic, “Back-scatter by dielectric spheres 
(refractive  index -,1.6),” IEEE Trans.  Antennas Propagat., 

IW] J. A. Stratton, Electro?nugnetie Theory. New l-ork: AIcGraw- 
vol. -4P-11, pp. 6&52, January 1963. 

[26] Tables oj  i h e  Bessel Functions of the First Kind, vol.  3-10. 
Hill, 1941. 

[27] 31. -4. Plonus and H. Inada, “Closed form expression for the 
Cambridge, Mass.: Harvard University  Press, 1948. 

AIie series for large, low density, dielectric spheres,” Proc. 
IEEE (Correspondence), vol. 53, pp. 662-663, June 1965. 



CHEN:  SCATTERING BY hRR.4T OF CONDUCTING PLATES 661 

THIN CONDUCTING 
PLATES i 

(a) 

THIN  CONDUCTING 
PLATES 

(b) 
Fig. 1. Geometry of scattering of plane r a v e  by periodic array of 

thin conducting  plates. (a)  Front view. (b) Side view. 

the case of narrow  plates  arranged in a rectangular 1at.tice 
with  a  normally  incident  plane wave. The complementary 
problem of smttering  by a  conducting  screen perfora.t.ed 
periodica,lly with apertures was treated  by  Kieburtz  and 
Ishimaru [3] by the variat,ional  method. The a.ccuracy.of 
the rariat,ional  solution  depends  on the ability t.0 choose 
an appropriate  trial funct,ion. 

A more general  formulation of the scatt.ering  problem 
of a two-dimensional periodic array of plates is present,ed 
in  this  paper.  The  formulation applies to  thin perfect.ly 
conducting  plat,es of arbitrary sha.pe distribut.ed period- 
ically along any  two sken-ed coordinat,es with  a  plane  wave 
of arbitrary polarization  incident,  from any oblique a.ngle. 
The size of the conducting  plates  may  be of comparable 
width or less than  the wavelength of the elect,romagnetic 
field. The procedure t.0 be present.ed here is to expand the 
electromagnetic field distribution  near  the a.rray of the 
conducting  plates  into  a  set of Floquet mode functions. 
By requiring  t,he total elect.ric field t.o vanish  on the con- 
ducting  plates, an integral  equat,ion  for the unknown 
current on each plate is obtained. To solve t,his int.egra1 
equation  the unknown  current  is first- expressed by a com- 
plete  set of ort,honormal mode functions  and t.hen it.s mode 
coefficient,s are determined by  the method of moments [4]. 
The a.ccura.cy of the induced current on t,he  plat.es and  the 
reflection a.nd transmission coefficients thus obta.ined are 
dependent,  upon the number of modes retained  in the 
computation. A very accurat.e solut.ion can be obtained  by 
t,he high-speed computer.  Numerical  examples  for rect.an- 
gular  plate a.rra.ys are given that  are found to  be in 
excellent  agreement  with the measurements  made by  Ott, 
Mouyoumjia.n, and  Peters [ 2 ] .  

THEORETICAL ~ A L Y S I S  

An infinite  planar array  is considered that consists of 
conducting  plates  arranged periodica,lly a.long skewed co- 
ordinates SI and s2 that enclose t,he  angle CY: as shown in 

Fig. 1. In  the figure, 8 is the angle between t,he propagation 
vector f and  the normal t,o the plane of the  array,  and 
4 is t.he angle between the x axis and  the projection of E on 
the x-y plane. -All the plates in  the  array  are assumed to 
be identica.1 and infinitesimally thin.  The elect.romagnetic 
fields must  satkfy  the peri0dicit.y requirements  imposed 
by Floquet’s  theorem.  Hence, the sca1a.r wave  equat.ion 
has the following solution [SI with t.he exp (jwl) time 
dependence  omit,ted: 

$ p q  = exp C-j(V,,x + J,’,,y + W,g)l (1) 

where 

LTPq = k sin 8 cos .#J + - 3 ~ p / c l ,  (2) 

ITpq = k sin 8 sin 4 + 2rq/dy - 2 r p / ( d ,  ta.n CY), (3) 

forp,q = O , = t l , = t 2 , . - - , & m  

w p q  = (k2 - T,,2) I / * ,  for k2 > Tpp2 

= - j  i ( k 2  - Tpq2)1/2  1 ,  for k2 < Tpq2 (4) 

with 
Tp,2 = u 2 + 1.’ 2 

where p and q are  the  grating harmonics because of the 
periodicity  present,  in the a,rray. The modal propagation 
const,ant W z q  is positive  for  propagating modes and nega- 
tive  imaginary  for evanescent modes in (1). The  number 
of propagating modes in free  space  depends  on the element 
spacings as well as the direct.ion of the propagation  vector 
f .  For t,he isosceles t.riangular array 

P ,  PP 

+ (X/2d,)2 2 (1 + ~ i n 8 ) ~  
and 

2(X/d,):(X/d,) 2 (1 + sin8) 

only the modes with p and q both  equal t.0 zero propagate; 
ot,herwise higher order modes may also exist in  the  distant 
scattered field. 

The ort,honormal mode functions  for the tra.nsverse 
electric field components are expressible in t.erms of the 
scalar wave function $ a.nd the resulting TE and T M  mode 
funct,ions, tra,nsverse  with  respect to  the z axis, are 

1 $,,, for TM modes. 

(6 )  

The  transverse electric and magnet.ic fields are  related 
by  the modal  impedances,  such as 
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Since an electromagnetic  plane  wave  can  always be decom- 
posed into a  combination of E- and H-polarized plane 
waves that correspond to the TE and  TM Floquet modes 
with p = 0, q = 0, a  plane  wave  with unit electric field 
intensity  incident  in the 4 plane and  at   an oblique angle 0 
with the  array  normal can,  therefore, be expressed as 

2 

Ei = C Aoor&ot (9) 
-1 

Bi = - ( 2  x &&Ir) 
Am 

(10) 
r=1 ?low 

where Aow is the magnitude of incident field component, 
and  the  third  subscript T = 1 or 2 is used to designate, 
respectively, the TE and  TM  Floquet modes. 

The  scattered field can  generally be expressed in  terms 
of the Floquet modes with reflection coefficients Rpqr 

2 

l? = C C C R p , ~ p , r  (11) 
p q r=1 

p - 
ffs - C C C ( R p a r l q p q r )  ( 2  X 6 p q r ) .  (12) 

Because of the orthonormality of the mode function &p,r,  

the unknown reflection coeEcient Rp,  ca.n be  obtained 
from (12) 

p q r=l 

R,, = ?Ipqr 2 x 8 s  -&pqr* cla (13) 

where Qp,* is the complex conjugate of Qpv. The boundary 
condition  on the conducting  plates  requires t1~a.t 

Bi + B. = 0 over  each plate (14) 

28 X (Rri + 8.) = R over each p1at.e. (15) 

Substitution of (9),  (l l) ,  and (13) into (14) yields the 
integral  equation 

5 A O O ~ ~ O O ~  = - 5 V p q r 5 ' p q r  I*J 2 X Bs *ppr* da. 
' r=l p q r=l  plate 

(16) 

To solve (16), the induced current -2 X Bs can  be 
expressed in  terms of another  set of modal  functions Gmnz 
that is appropriate  for the geometry of the  plate  under 
consideration a.nd satisfies the  plate bounda.ry  conditions. 

2 

-8 X B. = B m n l G m n l  
m n 1=1 

over  each  plate, for m,n = 0,1,2,4,. a ,  a. (17) 

The  fact  t,hat  the functions q m n l  are  orthonormal over a 
single plate provides  a  faster convergence than  the 
Floquet  type mode expression in (12) and reduces much 
of the complicated  computation in t,he process of evaluating 
the unknown coefficients of the induced  current. Again, 
the  third  subscript I = 1, or 2 is used to  stand for TE or 

ThI  modes. Both sides of (16) are multiplied by  the 
complex conjugate of and  the resulting expression is 
integrated  over the plate.  The result  is 

2 2 
AoorCoch.*.KVL = - C C C t p q r C p v * a " x L  

7=l F 4 -1 

-Illate 2 X ~ s - & ~ ~ ~ *  da (18) 

where 

Cpv,UXL = * : j l S L * & p q r *  da. (19) 

The asterisks  designate complex conjugates. The integral 
equation (1s) can  be employed to  generate a sysbem of 
1inea.r algebraic equations m-ith the mode coefficients Bmnl 
as unknowns. These  algebraic  equations  can be  written  in 
a matrix  form 

[ ~ - W N L ~ ~ ~ ] [ B , , Z ]  = [Dmnz] (20) 

where [ZJISL~"~] is a square impeda.nce matrix in which 
t,he row index is designat.ed by M,N,L and  the colunm 
index is designated by m,n,l. The  matrix e1ement.s are 
given by 

9 

[ Z . U . V L ~ ~ ' ]  = q p q r C p ~ r * ~ ~ l i N L C p q P n I  (21) 
P 4 r=1 

and 
2 

D m n t  = AOOrCOOr*mnz. (22) 
r-1 

Equation (20) is a multiterninal  network  equation  in 
which [ Z X . V L ~ ~ ' ]  is the impedance  matrix. Bmnl is the 
branch  current, D m n l  is the equivalent,  source  voltage, and 
Cpqrmnl is the coupling coefficient between two different 
types of modes. 

A digital  computer  can  be  employed to calculate the 
reflection coefficient Rpqr a.nd the induced current K on the 
plate  from  the relations  given in (13) and (15). The 
unknown Bmnl of (20) is first  obta.ined using the computer, 
and  the values so obtained  substituted  into (17). To 
simplify the calcula.tion of B m n l  and of the reflection coeffi- 
cient,  only the most s i g d c a n t  TE and Th.1 modes repre- 
sented  by (11) and (17) that satisfy the boundary condi- 
t.ions need to be chosen. For example, for an E-polarized 
plane  wave  incident  in the 2-2 plane  on the rect,angular 
phtes arranged  symmetrically  with the 1: axis, all Tni 
Floquet modes in (11) and  those for n even in (17) are 
negligible. 

SCATTERING BY RECTAKGCLAR  PLATES 

For the problem of scattering  from  rectangular thin 
obst.acles arranged  in  either a rectangular  or a triangular 
lattice  array,  the complete set of orthonormal mode func- 
tions \kmnl in (17) for the induced current - 2  X 8. are 
essentially the  dual field functions of the t.ransverse  electric 
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Fig. 2. Calculated and measured power reflection coefficients (after 111) of narrow plates with 
rectangular  latt,ice  arrangement. 

field functions  for  the  rectangular waveguide [l]. They 
can be writt.en  as 

and where a and b are  the dimensions of the rectangular 
p1at.e in the x and g directions and E,,, is the Newmann 
fa.ctor, equaling 1, for IJZ = 0, and em equa.ling 2, for 
m 2 1. Substitution of (22) through (27) into (17) com- 
plet.es the formulation of the particular  problem for t.he 
rect.angular p1at.e array. 

Calculations using a digit.al computer were made for an 
arbitrarily polarized obliquely  incident wave. In  the com- 
putations, the lowest 10 modes for t,he  rect,angular  platme 
and all  Floquet modes whose transverse  conlponents of 
wa.ve numbers Tpq were less than 10 times the wave 
number X- = %/X were considered. In  general, t,he number 

FREQUENCY,  GHr 
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................ 3 0 508 C M  
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Fig. 3. Calculated reflection coefficients of rectangular lattice  array 
of plat.- for plane wave with E field parallel to y axis incident 
normally to  array. 
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TABLE I 

A TE PLAXE R A V E  IXCIDENT IS THE x--z P L A ~  
THE S I X  MOST SIGNIFICANT M O D E  COEFFICIENTS OF THE CURREST I X D E C E D   O V E R  A COSDUCTISG PL4TE BY 

Mode 
Coefficient $I = 0" 

8 = I" 8 = 31" 
Q = 0" 

e = 610 
Q = 0" 

e = 810 
Q = 0" 

Ban (7.49 - j0.204)  (6.39 - j0.473) 
Baa (0.438 - jO.0119) 
Blll 10.0001 - io .0045)  (-0.0090 - i0.122) 

(0.342 - j0.0253) 

B131 
--_ 

(-'O.OOOl - >0.006G i-o.01ii - jo.153j 
But (-0.0002 - jO.0098) (-0.0214 - j0.330) 
B132 (-0.0002 - ~0.0100) (-0.0183 - j0.248) 

* -  -~~ 

(3.59 - j0.319)  (1.16 - j0.0404) 

(-O.Oll/ - j0.131) (-0.0017 - 30.0502) 
(-0.0132 - j0.149) (-0.0019 - j0.0553) 
(-0.0392 - jO.440) (-0.0062 - j0.1730) 
(-0.0209 - j0.235) (-0.0030 - jO.0875) 

(0.172- - j0.0152) (0.0540 - j0.0018) 

Note: -%I1 values are scaled to a factor of los3. d, = 0.76 em, d, = 

of modes considered here is believed sufficient to obtain  a 
solution  for the reflection coefficient whose maximum  error 
in  magnitude  is less than  three  percent of unit,y. For  the 
case of a TE plane  wave  incident  normally, the power 
reflection coefficients from  three different  a.rrays of narrow 
plates  nith  the rectangular  lattice  arrangement (a = 90 
degrees) a.re illustra,ted in Fig. 2. The results  are  in excel- 
lent agreement  with the values  measured by  Ott, Kou- 
youmjian,  and  Peters [ a ] .  Since there is only  one prop- 
agating mode in the  far field, the  total reflect.ed wave is 
Roo l&~~l  which makes  angle 6 with the  array  normal  on  the 
opposite  side of the incident wave. 

The effect of twofold and fourfold  increases in t.he init,id 
value of the plate  width  are shown in Fig. 3. Total reflec- 
tion occurs at   the frequency at  which the plate becomes 
resonant. The bandwidth  increases with  the  plate  width 
as  expected; however, the resonance frequency also in- 

The induced current  on  the conducting p1a.t.e can  be 
obtained  from the relation of (15).  Table I presents the 
coefficients Bmnz of a rectangu1a.r lattice  array of thin 
conducting  plates  with a = 0.127 cm, b = 1.35 cm, cl, = 
0.76 cm, and d, = 1.52 cm, when the  array is excit.ed by a 
TE plane  wave  in the 2-2 plane. Due  to  the  array synl- 
metry  the induced current  for a norma.1 angle of incidence 
is  dominated  by  the \ken and Gml modes, which are  the first 
and  third sinusoidal t e r m  along the y a,&. As the angle of 
incidence 6 increases, the coefficient of \kin becomes larger, 
and  then exceeds that of \Eoz1. When  a  plane  wave is 
incident  in the planes, other  than  the z--z or y-z planes,  due 
to  the geomehic  dissymmetry of the  array around the 
plane of incidence, there  are  many mode coefficients Bmnl 
that  are of the same  order of magnitude. For an accurat.e 
evaluation of the induced current when a plane  n-ave is 
incident in these  planes,  additional modes must  be con- 
sidered in  the computa,tion. I n  general, the number of 
modes needed tu describe the induced  current  distribution 
on each plate  depends on both  the a.ngle of incidence and 
the plane of incidence. 

The variabions of the reffected TE and TXI wave co- 
efficients as a function of the angle of incidence when a 
TE plane  wave  is  incident in different  planes are shown 
in  Fig. 4. It can  be  seen that  the wave is totally reflected 
when the pla.ne of incidence is the 6 = 0 degree  plane a.nd 

. . creases with  plate width rather  than decreasing. 

1.52 cm, O[ = go", a = 0.127 cm, b = 1.35 cm,f = 13 GHz. 
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Fig. 4. Reflect.ed TE and TM waves due  to 13.0 GHz TE wave 
incident on rectangular lattice  array  (with dimensions as shown 
in Fig. 3). (a) TE waves. (b) TM waves. 
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Fig. 5 .  Reflected T M  and T E  waves due  to 13.0 GHz TM wave 

in  Fig. 3). (a) TM waves. (b) TE waves. 
incident  on  rectangular 1at.tice array (with dimensions as shorn  

The preceding computation  has been made for the ca,se 
of recta.ngular  plates  a,rranged in a  rectangular  lattice 
array.  The element  spacings of t,he array  are so close that 
in the  distant  scattered field only the p = 0, q = 0 modes 
propagate. However, the formulation  is  general  and  applies 
equally well for arrays n-it.h large  element  spacings  a.nd/or 
a,rrays of circula.r disks. ils the element.  spacing  increases 
a  point will be  reached  where t,he next, higher  order Floquet 
modes  with either p or q not  equal  to zero can  propaga.te. 
However, because of the  mutual couplings among the 
elements, a. total reflection may sometimes occur before 
the higher order modes become propagative. This phenom- 
enov which is usually  referred to  as Wood’s anoma.ly, is 
also predictable by  the calculation  present,ed  here. 

COKCLVSIOSS 

A generalized formulation of the  scattering by a two- 
dimensional array of periodically arranged  thin conducting 
phtes was developed and used to  ca1culat.e the reflection 
coefficients and induced  current  on  a  conducting phte .  
These  solutions  can  be  obt.ained to a. high degree of 
accuracy n-ithin a few percent of the exact  solutions. The 
accuracy  depends  upon the number of modes used to  
approximate the induced current  on each plate  and  the 
number of Floquet modes used to  a.pproximate  t,he near 
field of distribution. 

The numerical  results  demonstrate that t.he solution  for 
t,he rect.angu1a.r p1at.e configuration  given in  this  paper 
possesses t.he following properties. 1) At resonance, the 
reflection coefficient is negative  real and precisely equal to 
unity, while off resonance, its magnitude  decays to  less 
than unity. 2) At normal incidence, the  rehtion between 
t.he reflected TbI wave due to  an incident TE plane  wave, 
or vice versa, satisfies the reciprocity t.heorem. 3) The 
energy flow of the reflected and  transmitted n w e s  satisfies 
the law of energy  conservation. 4 j  All numerica.1 results 
presented in  this  paper agree by the application of Babinet’s 
principle with the solution  for a complementary  problem 
of a  conduct,ing  screen perforat.ed n4t.h slots [SI. 

A 4 ~ ~ ~ ~ ~ ~ : ~ ~ ~ ~ ~ ~ ~ ~ ~  

The  author wishes t.0 t.hank D. J. Lewis a.nd Dr. A. T. 
Villeneuve for  their helpful suggestions and for reviewing 
this manuscript. 
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