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Scattering by a Two-Dimensional Periodic
Array of Conducting Plates

CHAO-CHUN CHEN

Abstract—The boundary value problem of an infinite array of
thin plates arranged in a doubly periodic grid along any two co-
ordinates is formulated in a general form for an arbitrarily polar-
ized plane wave incident from any oblique angle. The induced
current on the plate, the near-field distribution, and the distant
reflected waves can be obtained to a very close accuracy. Both
magnitudes and phases of the reflection coefficients for some
specific examples are determined explicitly. For the case of a
wave incident normally on a rectangular lattice array of narrow
rectangular plates, the calculated values are in excellent agree-
ment with the measurements in a previously published paper.
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IXTRODUCTION

N INFINITE array of metallic plates or strips such

as is illustrated in Fig. 1, forms a useful model for

the analysis of many practical microwave structures such

as filters, lens, and artificial dielectrics [1]. A knowledge

of the reflection and transmission coefficients at the array
face is required in each of these applications.

The problem of scattering by a two-dimensional periodic
array of rectangular plates was investigated by Ott,
Kouyoumjian, and Peters [2]. They used the point match-
ing method to solve the integral equation for the unknown
current on each plate. The solution given is restricted to
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Fig. 1.

the case of narrow plates arranged in a rectangular lattice
with a normally incident plane wave. The complementary
problem of scattering by a conducting screen perforated
periodically with apertures was treated by Kieburtz and
Ishimaru [3] by the variational method. The accuraey of
the variational solution depends on the ability to choose
an appropriate trial function.

A more general formulation of the scattering problem
of a two-dimensional periodic array of plates is presented
in this paper. The formulation applies to thin perfectly
conducting plates of arbitrary shape distributed period-
ically along any two skewed coordinates with a plane wave
of arbitrary polarization incident from any oblique angle.
The size of the conducting plates may be of comparable
width or less than the wavelength of the electromagnetic
field. The procedure to be presented here is to expand the
electromagnetic field distribution near the array of the
conducting plates into a set of Floquet mode functions.
By requiring the total electric field to vanish on the con-
ducting plates, an integral equation for the unknown
current on each plate is obtained. To solve this integral
equation the unknown current is first expressed by a com-
plete set of orthonormal mode functions and then its mode
coefficients are determined by the method of moments [4].
The accuracy of the induced current on the plates and the
reflection and transmission coefficients thus obtained are
dependent upon the number of modes retained in the
computation. A very accurate solution can be obtained by
the high-speed computer. Numerical examples for rectan-
gular plate arrays are given that are found to be in
excellent agreement with the measurements made by Ott,
Kouyoumjian, and Peters [2].

THEORETICAL ANALYSIS

An infinite planar array is considered that consists of
conducting plates arranged periodically along skewed co-
ordinates s; and s; that enclose the angle «, as shown in
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Fig. 1. In the figure, 6 is the angle between the propagation
vector £ and the normal to the plane of the array, and
¢ is the angle between the 2 axis and the projection of % on
the z—y plane. All the plates in the array are assumed to
be identical and infinitesimally thin. The electromagnetic
fields must satisfy the periodicity requirements imposed
by Floquet’s theorem. Hence, the scalar wave equation
has the following solution [57] with the exp (jwt) time
dependence omitted:

Yoo = exp [—j (U + Vg + Wag2) ] (1)
where
Uz = ksin@cos ¢ + 2rp/d. (2)
Ve = ksinésin ¢ + 2x¢/d, — 2vp/(d, tan a), (3)
forp,g = 0,41,42,+++,
Wy = (k* — T, fork? > T,.2
= —j| (B — T2, fork®< T, (4)
with

Tp42 = qu2 + qu2

where p and ¢ are the grating harmonies because of the
periodicity present in the array. The modal propagation
constant W, is positive for propagating modes and nega-
tive imaginary for evanescent modes in (1). The number
of propagating modes in free space depends on the element
spacings as well as the dircetion of the propagation vector
k. For the isosceles triangular array

(A\ds)? 4+ (M/2dy)? 2 (1 + sind)?
and
2(\/dz),(N/dy) = (1 + sin @)

only the modes with p and ¢ both equal to zero propagate;
otherwise higher order modes may also exist in the distant
seattered field.

The orthonormal mode functions for the transverse
electric field components are expressible in terms of the
scalar wave function ¢ and the resulting TE and TM mode
functions, transverse with respect to the z axis, are

- 1 ¥ U
@TE=_"—ngA———p—qA) for TE mod
pa (dyd,) 12 (qu z qu Wpe, for modes
(5)
B 1 Upg ., Vie . ;
$,, 1 W ( L Tz_q y>5/,p o for TM modes.
(6)

The transverse electric and magnetic fields are related
by the modal impedances, such as

. 1/2
nquE - i_ (ﬂ’)
Iqu €p
T M

w_ Wre (E@)w
Mpa - k €

(7)

(8)
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Since an electromagnetic plane wave can always be decom-
posed into a combination of E- and H-polarized plane
waves that correspond to the TE and TM Floquet modes
with p = 0, ¢ = 0, a plane wave with unit eleetric field
intensity incident in the ¢ plane and at an oblique angle ¢
with the array normal can, therefore, be expressed as

Ez - z A00r¢00r (9)
=1
- 2 A -
Bi= 3= (2 X &) (10)
r=1 700r

where Ag, is the magnitude of incident field component,
and the third subsecript r = 1 or 2 is used to designate,
respectively, the TE and TM Floquet modes.

The scattered field can generally be expressed in terms
of the Floquet modes with reflection coefficients R,

2
E=33 Zquf&’qu (11)

p g r=1

- E E i (qur/npqr) (é X ‘i’qu)- (12)

» g r=1

o=

Because of the orthonormality of the mode function &,,,
" the unknown reflection coefficient R,, can be obtained
from (12)

Rogr = npgr f_/ 2 X I:_[s-(i-)pqr* da (13)

plate

where @,.* is the complex conjugate of &, The boundary
condition on the conducting plates requires that

Ei4+ Es = 0 overeach plate
22 X (Hi+ Hs) = K over each plate.

(14)
(15)

Substitution of (9), (11), and (13) into (14) yields the
integral equation

2 2
3 Awdur = — 25 5 tpar®or f f 8 X Ho&,q* da.
o=l

p g r=1 plate
(16)

To solve (16), the induced current —z X H® can be
expressed in terms of another set of modal functions ¥,,.;
that is appropriate for the geometry of the plate under
consideration and satisfies the plate boundary conditions.

2
—2 X Es = Z Z Zanl\i/mnl

m n l=1

over each plate, for m,n = 0,1,2,4,+++,=. (17)

The fact that the functions ¥,..; are orthonormal over a
single plate provides a faster convergence than the
Floguet type mode expression in (12) and reduces much
of the complicated computation in the process of evaluating
the unknown coefficients of the induced current. Again,
the third subseript { = 1, or 2 is used to stand for TE or
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TN modes. Both sides of (16) are multiplied by the
complex conjugate of ¥,,,;, and the resulting expression is
integrated over the plate. The result is

2 2
Z AOOrCDOr*'MNL = Z Z Z ﬁpqrcpqr*‘uNL

r=1 D g =1

[ ex Bt

plate

(18)

[\

where

OMTMNL = _/:/. \i’MNL“i’qu* da.

plate

(19)

The asterisks designate complex conjugates. The integral
equation (18) can be employed to generate a system of
linear algebraic equations with the mode coefficients B,,..;
as unknowns, These algebraic equations ean be written in
a matrix form

[Zanz™ [ Buni] = [Dwni]

where [Zayr™] is a square impedance matrix in which
the row index is designated by M,N,L and the column
index is designated by m,n,l. The matrix elements are
given by

(20)

[ZMNLm"l:I = Z Z Z ﬂquCpqr*MNLCpqrm"l (21)

p g r=1

and

2
Dt = 22 AgorCoor*™%

r=1

(22)

Equation (20) is a multiterminal network equation in
which [Zaxr™!] is the impedance matrix. B..; is the
branch current, D,..; is the equivalent source voltage, and
Cpe™t 1s the coupling coefficient between two different
types of modes.

A digital computer can be employed to calculate the
reflection coefficient &,,. and the induced current K on the
plate from the relations given in (13) and (15). The
unknown By,.; of (20) is first obtained using the computer,
and the values so obtained substituted into (17). To
simplify the calculation of B.,; and of the reflection coeffi-
cient, only the most significant TE and TM modes repre-
sented by (11) and (17) that satisfy the boundary condi-
tions need to be chosen. For example, for an E-polarized
plane wave incident in the z—z plane on the rectangular
plates arranged symmetrically with the x axis, all TM
Floquet modes in (11) and those for n even in (17) are
negligible.

SCATTERING BY RECTANGULAR PLATES

For the problem of scattering from rectangular thin
obstacles arranged in either a rectangular or a triangular
lattice array, the complete set of orthonormal mode fune-
tions ¥, in (17) for the induced current —z X B are
essentially the dual field functions of the transverse electric
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field functions for the rectangular waveguide [17]. They
can be written as

U, "B = F[(mn/@) hnnzt + (n/0) hnny¥]  (23)
U™ = FL(n7/0) hyiny® — (mm/a) hongy ] (24)
where
emen N2 [ M\ nr\* | M?
= _— _— B 2—
GG -

mar mm nr aw
]'mnz = si — _ - —_— _ — 26
L sm(ax 2)cos<by 2) (26)

mw m-n-) . [nw mr) 27)
=cos({—z——)sin{—y — —
08 a v 2 b 2

and where g and b are the dimensions of the rectangular
plate in the = and y directions and e, is the Newmann
factor, e, equaling 1, for m = 0, and e, equaling 2, for
m 2> 1, Substitution of (22) through (27) into (17) com-
pletes the formulation of the particular problem for the
rectangular plate array.

Calculations using a digital computer were made for an
arbitrarily polarized obliquely incident wave. In the com-
putations, the lowest 10 modes for the rectangular plate
and all Floquet modes whose transverse components of
wave numbers 7,, were less than 10 times the wave
number & = 27/\ were considered. In general, the number
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Fig. 3. Calculated reflection coefficients of rectangular lattice array
of plates for plane wave with E field parallel to y axis incident
normally to array.
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TABLE 1
TrE Six MosT SieNIFICANT MoDE COEPFICIENTS OF THE CURRENT INDUCED OvER A CoxpUCTING PLATE BY
A TE Praxe WAVE INCIDENT 1N THE 2~z PLANE

Mode §=1° 9 = 31° f = 61° § = 81°

Coefficient ¢ =0° 6 =0° 6 = 0° bt
B (7.499 — j0.204) 6.39 — _7:0.473) (3.59 — j0.319) (1.16 — 70.0404)
Boea (0.438 — j0.0119) (0.342 — 50.0253) (0.172 — 70.0152) (0.0540 — j0.0018)
Bm (0.0001 — j0.0045) (—0.0090 — 50.122) (—0.0117 — 30.131) (—0.0017 — j0.0502)
Bia (—0.0001 — ,1.0.0061) (—0.0114 — j0.153) (—-0.0132 — j0.149) (—0.0019 — j0.0553)
Bus (—0.0002 — 10.0098) (—0.0244 — JO.330) (~0.0392 — 70.440) (—0.0062 — 50.1730)
B (—0.0002 — j0.0100) (—0.0183 — j0.248) (—0.0209 — 70.235) (—0.0030 — j0.0875)

Note: All values are scaled to a factor of 1073, d: = 0.76 cm, dy = 1.52 em, « = 90%, a = 0.127 ¢m, b = 1.35 em, f = 13 GHz.

of modes considered here is believed sufficient to obtain a
solution for the reflection coefficient whose maximum error
in magnitude is less than three percent of unity. For the
case of a TE plane wave incident normally, the power
reflection coefficients from three different arrays of narrow
- plates with the rectangular lattice arrangement (a = 90
degrees) are illustrated in Fig. 2. The results are in excel-
lent agreement with the values measured by Ott, Kou-

" . youmjian, and Peters [2]. Since there is only one prop-

agating mode in the far field, the total reflected wave is
Ron®on which makes angle § with the array normal on the
opposite side of the incident wave.

The effect of twofold and fourfold increases in the initial -

value of the plate width are shown in Fig. 3. Total reflec-
tion oceurs at the frequency at which the plate becomes
resonant. The bandwidth increases with the plate width
as expected; however, the resonance frequency also in-
creases with plate width rather than decreasing.

The induced current on the conducting plate can be
obtained from the relation of (15). Table I presents the
coefficients Bn,; of a rectangular lattice array of thin
conducting plates with ¢ = 0.127 cm, b = 1.35 e¢m, d. =
0.76 cm, and d, = 1.52 cm, when the array is excited by a
TE plane wave in the z—z plane. Due to the array sym-
metry the indueed current for a normal angle of incidence
is dominated by the ¥oy and W modes, which are the first
and third sinusoidal terms along the y axis. As the angle of
incidence § increases, the coefficient of ¥y, becomes larger,
and then exceeds that of ¥y When a plane wave is
incident in the planes, other than the ¢—z or y—z planes, due
to the geometric dissymmetry of the array around the
plane of incidence, there are many mode coeflicients B
that are of the same order of magnitude. For an accurate
evaluation of the induced current when a plane wave is
incident in these planes, additional modes must be con-
sidered in the computation. In general, the number of
modes needed to describe the induced current distribution
on each plate depends on both the angle of incidence and
the plane of incidence.

The variations of the reflected TE and TM wave co-
efficients as a function of the angle of incidence when a
TE plane wave is incident in different planes are shown
in Fig. 4. It can be seen that the wave is totally reflected
when the plane of incidence is the 8 = 0 degree plane and
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Tig. 4. Reflected TE and TM waves due to 13.0 GHz TE wave
incident on rectangular lattice array (with dimensions as shown
in Fig. 3). (2) TE waves. (b) TM waves.
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Fig. 5. Reflected TM and TE waves due to 13.0 GHz TM wave
incident on rectangular lattice array (with dimensions as shown
in Fig. 3). (a) TM waves. (b) TE waves.

almost totally transmitted when it is the § = 90 degrees
plane. In addition, it may be seen that the reflected wave
has no TM component when the plane of incidence is the
z—z plane for which the array has geometric symmetry.
The reflected TE wave component increases with angle of
incidence 6, and the TM wave component decreases with
the angle of incidence 6.

The variations of the reflected TM and TE wave coeffi-
cients as a function of the angle of incidence 6 when a TM
plane wave is incident in different planes are presented
in Fig. 5.
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The preceding computation has been made for the case
of rectangular plates arranged in a rectangular lattice
array. The element spacings of the array are so close that
in the distant scattered field only the p = 0, ¢ = 0 modes
propagate. However, the formulation is general and applies
equally well for arrays with large element spacings and/or
arrays of circular disks. As the element spacing increases
a point will be reached where the next higher order Floquet
modes with either » or ¢ not equal to zero can propagate.
However, because of the mutual couplings among the
elements, a total reflection may sometimes occur before
the higher order modes become propagative. This phenom-
enon whieh is usually referred to as Wood’s anomaly, is
also predictable by the calculation presented here.

CoxcLusioxs

A generalized formulation of the seattering by a two-
dimensional array of periodically arranged thin conducting
plates was developed and used to calculate the reflection
coefficients and induced current on a conducting plate.
These solutions ean be obtained to a high degree of
accuracy within a few percent of the exact solutions. The
accuracy depends upon the number of modes used to
approximate the induced current on each plate and the
number of Floquet modes used to approximate the near
field of distribution.

The numerical results demonstrate that the solution for
the rectangular plate configuration given in this paper
possesses the following properties. 1) At resonance, the
reflection coefficient is negative real and precisely equal to
unity, while off resonance, its magnitude decays to less
than unity. 2) At normal incidence, the relation between
the reflected TM wave due to an incident TE plane wave,
or vice versa, satisfles the reciprocity theorem. 3) The
energy flow of the reflected and transmitted waves satisfies
the law of energy conservation, 4) All numerical results
presented in this paper agree by the application of Babinet’s
principle with the solution for a complementary problem
of a conducting screen perforated with slots [6].
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