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PREFACE

It has been 52 years since the first edition of this book was published, then under the
sole authorship of William H. Hayt, Jr. As I was five years old at that time, this would
have meant little to me. But everything changed 15 years later when I used the second
edition in a basic electromagnetics course as a college junior. I remember my sense
of foreboding at the start of the course, being aware of friends’ horror stories. On first
opening the book, however, | was pleasantly surprised by the friendly writing style
and by the measured approach to the subject, which — at least for me — made it a
very readable book, out of which I was able to learn with little help from my professor.
I referred to it often while in graduate school, taught from the fourth and fifth editions
as a faculty member, and then became coauthor for the sixth and seventh editions on
the retirement (and subsequent untimely death) of Bill Hayt. The memories of my
time as a beginner are clear, and I have tried to maintain the accessible style that I
found so welcome then.

Over the 50-year span, the subject matter has not changed, but emphases have. In
the universities, the trend continues toward reducing electrical engineering core course
allocations to electromagnetics. I have made efforts to streamline the presentation in
this new edition to enable the student to get to Maxwell’s equations sooner, and I have
added more advanced material. Many of the earlier chapters are now slightly shorter
than their counterparts in the seventh edition. This has been done by economizing on
the wording, shortening many sections, or by removing some entirely. In some cases,
deleted topics have been converted to stand-alone articles and moved to the website,
from which they can be downloaded. Major changes include the following: (1) The
material on dielectrics, formerly in Chapter 6, has been moved to the end of Chapter 5.
(2) The chapter on Poisson’s and Laplace’s equations has been eliminated, retaining
only the one-dimensional treatment, which has been moved to the end of Chapter 6.
The two-dimensional Laplace equation discussion and that of numerical methods have
been moved to the website for the book. (3) The treatment on rectangular waveguides
(Chapter 13) has been expanded, presenting the methodology of two-dimensional
boundary value problems in that context. (4) The coverage of radiation and antennas
has been greatly expanded and now forms the entire Chapter 14.

Some 130 new problems have been added throughout. For some of these, I chose
particularly good “classic” problems from the earliest editions. I have also adopted
a new system in which the approximate level of difficulty is indicated beside each
problem on a three-level scale. The lowest level is considered a fairly straightforward
problem, requiring little work assuming the material is understood; a level 2 problem
is conceptually more difficult, and/or may require more work to solve; a level 3 prob-
lem is considered either difficult conceptually, or may require extra effort (including
possibly the help of a computer) to solve.
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As in the previous edition, the transmission lines chapter (10) is stand-alone,
and can be read or covered in any part of a course, including the beginning. In
it, transmission lines are treated entirely within the context of circuit theory; wave
phenomena are introduced and used exclusively in the form of voltages and cur-
rents. Inductance and capacitance concepts are treated as known parameters, and
so there is no reliance on any other chapter. Field concepts and parameter com-
putation in transmission lines appear in the early part of the waveguides chapter
(13), where they play additional roles of helping to introduce waveguiding con-
cepts. The chapters on electromagnetic waves, 11 and 12, retain their independence
of transmission line theory in that one can progress from Chapter 9 directly to
Chapter 11. By doing this, wave phenomena are introduced from first principles
but within the context of the uniform plane wave. Chapter 11 refers to Chapter 10 in
places where the latter may give additional perspective, along with a little more detail.
Nevertheless, all necessary material to learn plane waves without previously studying
transmission line waves is found in Chapter 11, should the student or instructor wish
to proceed in that order.

The new chapter on antennas covers radiation concepts, building on the retarded
potential discussion in Chapter 9. The discussion focuses on the dipole antenna,
individually and in simple arrays. The last section covers elementary transmit-receive
systems, again using the dipole as a vehicle.

The book is designed optimally for a two-semester course. As is evident, statics
concepts are emphasized and occur first in the presentation, but again Chapter 10
(transmission lines) can be read first. In a single course that emphasizes dynamics,
the transmission lines chapter can be covered initially as mentioned or at any point in
the course. One way to cover the statics material more rapidly is by deemphasizing
materials properties (assuming these are covered in other courses) and some of the
advanced topics. This involves omitting Chapter 1 (assigned to be read as a review),
and omitting Sections 2.5, 2.6, 4.7, 4.8, 5.5-5.7, 6.3, 6.4, 6.7, 7.6, 7.7, 8.5, 8.6, 8.8,
8.9, and 9.5.

A supplement to this edition is web-based material consisting of the afore-
mentioned articles on special topics in addition to animated demonstrations and
interactive programs developed by Natalya Nikolova of McMaster University and
Vikram Jandhyala of the University of Washington. Their excellent contributions
are geared to the text, and icons appear in the margins whenever an exercise that
pertains to the narrative exists. In addition, quizzes are provided to aid in further
study.

The theme of the text is the same as it has been since the first edition of 1958.
An inductive approach is used that is consistent with the historical development. In
it, the experimental laws are presented as individual concepts that are later unified
in Maxwell’s equations. After the first chapter on vector analysis, additional math-
ematical tools are introduced in the text on an as-needed basis. Throughout every
edition, as well as this one, the primary goal has been to enable students to learn
independently. Numerous examples, drill problems (usually having multiple parts),
end-of-chapter problems, and material on the web site, are provided to facilitate this.

xi
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Answers to the drill problems are given below each problem. Answers to odd-
numbered end-of-chapter problems are found in Appendix F. A solutions manual
and a set of PowerPoint slides, containing pertinent figures and equations, are avail-
able to instructors. These, along with all other material mentioned previously, can be
accessed on the website:

www.mhhe.com/haytbuck

I would like to acknowledge the valuable input of several people who helped
to make this a better edition. Special thanks go to Glenn S. Smith (Georgia Tech),
who reviewed the antennas chapter and provided many valuable comments and sug-
gestions. Detailed suggestions and errata were provided by Clive Woods (Louisiana
State University), Natalya Nikolova, and Don Davis (Georgia Tech). Accuracy checks
on the new problems were carried out by Todd Kaiser (Montana State University)
and Steve Weis (Texas Christian University). Other reviewers provided detailed com-
ments and suggestions at the start of the project; many of the suggestions affected the
outcome. They include:

Sheel Aditya — Nanyang Technological University, Singapore

Yaqub M. Amani — SUNY Maritime College

Rusnani Ariffin — Universiti Teknologi MARA

Ezekiel Bahar — University of Nebraska Lincoln

Stephen Blank — New York Institute of Technology

Thierry Blu — The Chinese University of Hong Kong

Jeff Chamberlain — Illinois College

Yinchao Chen — University of South Carolina

Vladimir Chigrinov — Hong Kong University of Science and Technology

Robert Coleman — University of North Carolina Charlotte

Wilbur N. Dale

Ibrahim Elshafiey — King Saud University

Wayne Grassel — Point Park University

Essam E. Hassan — King Fahd University of Petroleum and Minerals

David R. Jackson — University of Houston

Karim Y. Kabalan — American University of Beirut

Shahwan Victor Khoury, Professor Emeritus — Notre Dame University,
Louaize-Zouk Mosbeh, Lebanon

Choon S. Lee — Southern Methodist University

Mojdeh J. Mardani — University of North Dakota

Mohamed Mostafa Morsy — Southern Illinois University Carbondale

Sima Noghanian — University of North Dakota

W.D. Rawle — Calvin College

Goniil Sayan — Middle East Technical University

Fred H. Terry — Professor Emeritus, Christian Brothers University

Denise Thorsen — University of Alaska Fairbanks

Chi-Ling Wang — Feng-Chia University
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I also acknowledge the feedback and many comments from students, too numerous to
name, including several who have contacted me from afar. I continue to be open and
grateful for this feedback and can be reached at john.buck@ece.gatech.edu. Many
suggestions were made that I considered constructive and actionable. I regret that
not all could be incorporated because of time restrictions. Creating this book was a
team effort, involving several outstanding people at McGraw-Hill. These include my
publisher, Raghu Srinivasan, and sponsoring editor, Peter Massar, whose vision and
encouragement were invaluable, Robin Reed, who deftly coordinated the production
phase with excellent ideas and enthusiasm, and Darlene Schueller, who was my
guide and conscience from the beginning, providing valuable insights, and jarring me
into action when necessary. Typesetting was supervised by Vipra Fauzdar at Glyph
International, who employed the best copy editor I ever had, Laura Bowman. Diana
Fouts (Georgia Tech) applied her vast artistic skill to designing the cover, as she has
done for the previous two editions. Finally, I am, as usual in these projects, grateful
to a patient and supportive family, and particularly to my daughter, Amanda, who
assisted in preparing the manuscript.

John A. Buck
Marietta, Georgia
December, 2010

On the cover: Radiated intensity patterns for a dipole antenna, showing the cases
for which the wavelength is equal to the overall antenna length (red), two-thirds the
antenna length (green), and one-half the antenna length (blue).
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CHAPTER

Vector Analysis

ector analysis is a mathematical subject that is better taught by mathematicians

than by engineers. Most junior and senior engineering students have not had

the time (or the inclination) to take a course in vector analysis, although it is
likely that vector concepts and operations were introduced in the calculus sequence.
These are covered in this chapter, and the time devoted to them now should depend
on past exposure.

The viewpoint here is that of the engineer or physicist and not that of the mathe-
matician. Proofs are indicated rather than rigorously expounded, and physical inter-
pretation is stressed. It is easier for engineers to take a more rigorous course in the
mathematics department after they have been presented with a few physical pictures
and applications.

Vector analysis is a mathematical shorthand. It has some new symbols and some
new rules, and it demands concentration and practice. The drill problems, first found
at the end of Section 1.4, should be considered part of the text and should all be
worked. They should not prove to be difficult if the material in the accompanying
section of the text has been thoroughly understood. It takes a little longer to “read”
the chapter this way, but the investment in time will produce a surprising interest. M

1.1 SCALARS AND VECTORS

The term scalar refers to a quantity whose value may be represented by a single
(positive or negative) real number. The x, y, and z we use in basic algebra are scalars,
and the quantities they represent are scalars. If we speak of a body falling a distance
L in a time ¢, or the temperature 7" at any point in a bowl of soup whose coordinates
are x, y, and z, then L, ¢, T, x, y, and z are all scalars. Other scalar quantities are
mass, density, pressure (but not force), volume, volume resistivity, and voltage.

A vector quantity has both a magnitude! and a direction in space. We are con-
cerned with two- and three-dimensional spaces only, but vectors may be defined in

! We adopt the convention that magnitude infers absolute value; the magnitude of any quantity is,
therefore, always positive.
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n-dimensional space in more advanced applications. Force, velocity, acceleration,
and a straight line from the positive to the negative terminal of a storage battery
are examples of vectors. Each quantity is characterized by both a magnitude and a
direction.

Our work will mainly concern scalar and vector fields. A field (scalar or vector)
may be defined mathematically as some function that connects an arbitrary origin
to a general point in space. We usually associate some physical effect with a field,
such as the force on a compass needle in the earth’s magnetic field, or the movement
of smoke particles in the field defined by the vector velocity of air in some region
of space. Note that the field concept invariably is related to a region. Some quantity
is defined at every point in a region. Both scalar fields and vector fields exist. The
temperature throughout the bowl of soup and the density at any point in the earth
are examples of scalar fields. The gravitational and magnetic fields of the earth, the
voltage gradient in a cable, and the temperature gradient in a soldering-iron tip are
examples of vector fields. The value of a field varies in general with both position and
time.

In this book, as in most others using vector notation, vectors will be indicated by
boldface type, for example, A. Scalars are printed in italic type, for example, 4. When
writing longhand, it is customary to draw a line or an arrow over a vector quantity to
show its vector character. (CAUTION: This is the first pitfall. Sloppy notation, such as
the omission of the line or arrow symbol for a vector, is the major cause of errors in
vector analysis.)

1.2 VECTOR ALGEBRA

With the definition of vectors and vector fields now established, we may proceed to
define the rules of vector arithmetic, vector algebra, and (later) vector calculus. Some
of the rules will be similar to those of scalar algebra, some will differ slightly, and
some will be entirely new.

To begin, the addition of vectors follows the parallelogram law. Figure 1.1 shows
the sum of two vectors, A and B. It is easily seen that A + B = B + A, or that vector
addition obeys the commutative law. Vector addition also obeys the associative law,

A+B+C)=(A+B)+C

Note that when a vector is drawn as an arrow of finite length, its location is
defined to be at the tail end of the arrow.

Coplanar vectors are vectors lying in a common plane, such as those shown
in Figure 1.1. Both lie in the plane of the paper and may be added by expressing
each vector in terms of “horizontal” and “vertical” components and then adding the
corresponding components.

Vectors in three dimensions may likewise be added by expressing the vectors
in terms of three components and adding the corresponding components. Examples
of this process of addition will be given after vector components are discussed in
Section 1.4.
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Figure 1.1 Two vectors may be added graphically either by drawing
both vectors from a common origin and completing the parallelogram or
by beginning the second vector from the head of the first and completing
the triangle; either method is easily extended to three or more vectors.

The rule for the subtraction of vectors follows easily from that for addition, for
we may always express A — B as A 4 (—B); the sign, or direction, of the second vector
is reversed, and this vector is then added to the first by the rule for vector addition.

Vectors may be multiplied by scalars. The magnitude of the vector changes, but
its direction does not when the scalar is positive, although it reverses direction when
multiplied by a negative scalar. Multiplication of a vector by a scalar also obeys the
associative and distributive laws of algebra, leading to

r+s)XA+B)=r(A+B)+s(A+B)=rA+rB+sA+sB

Division of a vector by a scalar is merely multiplication by the reciprocal of that
scalar. The multiplication of a vector by a vector is discussed in Sections 1.6 and 1.7.
Two vectors are said to be equal if their difference is zero, or A = Bif A — B = 0.

In our use of vector fields we shall always add and subtract vectors that are defined
at the same point. For example, the fotal magnetic field about a small horseshoe mag-
net will be shown to be the sum of the fields produced by the earth and the permanent
magnet; the total field at any point is the sum of the individual fields at that point.

If we are not considering a vector field, we may add or subtract vectors that are
not defined at the same point. For example, the sum of the gravitational force acting
ona 150 Ib s (pound-force) man at the North Pole and that acting ona 175 1b ; person
at the South Pole may be obtained by shifting each force vector to the South Pole
before addition. The result is a force of 25 Ib s directed toward the center of the earth
at the South Pole; if we wanted to be difficult, we could just as well describe the force
as 25 1b 7 directed away from the center of the earth (or “upward”) at the North Pole.?

1.3 THE RECTANGULAR
COORDINATE SYSTEM

To describe a vector accurately, some specific lengths, directions, angles, projections,
or components must be given. There are three simple methods of doing this, and
about eight or ten other methods that are useful in very special cases. We are going

2 Students have argued that the force might be described at the equator as being in a “northerly”
direction. They are right, but enough is enough.
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to use only the three simple methods, and the simplest of these is the rectangular, or
rectangular cartesian, coordinate system.

In the rectangular coordinate system we set up three coordinate axes mutually
at right angles to each other and call them the x, y, and z axes. It is customary to
choose a right-handed coordinate system, in which a rotation (through the smaller
angle) of the x axis into the y axis would cause a right-handed screw to progress in
the direction of the z axis. If the right hand is used, then the thumb, forefinger, and
middle finger may be identified, respectively, as the x, y, and z axes. Figure 1.2a
shows a right-handed rectangular coordinate system.

A point is located by giving its x, y, and z coordinates. These are, respectively,
the distances from the origin to the intersection of perpendicular lines dropped from
the point to the x, y, and z axes. An alternative method of interpreting coordinate

x =0 plane
y =0 plane o
Origin
P |
z=0 plane
(@)
Volume = dx dy dz
% dx dy i
o~1—P(1,2,3) .
| P’
| dy dz dx dz
| dx
4 I )
0@.-21) / i @
/= |
(b) (©)

Figure 1.2 (a) A right-handed rectangular coordinate system. If the curved fingers of the
right hand indicate the direction through which the x axis is turned into coincidence with the
y axis, the thumb shows the direction of the z axis. (b) The location of points P(1, 2, 3) and
Q(2, —2,1). (c) The differential volume element in rectangular coordinates; dx, dy, and dz
are, in general, independent differentials.
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values, which must be used in all other coordinate systems, is to consider the point as
being at the common intersection of three surfaces. These are the planes x = constant,
y = constant, and z = constant, where the constants are the coordinate values of the
point.

Figure 1.2b shows points P and Q whose coordinates are (1, 2, 3) and (2, —2, 1),
respectively. Point P is therefore located at the common point of intersection of the
planes x = 1, y = 2, and z = 3, whereas point Q is located at the intersection of the
planesx =2,y = —2,and z = 1.

As we encounter other coordinate systems in Sections 1.8 and 1.9, we expect
points to be located at the common intersection of three surfaces, not necessarily
planes, but still mutually perpendicular at the point of intersection.

If we visualize three planes intersecting at the general point P, whose coordinates
are x, y, and z, we may increase each coordinate value by a differential amount and
obtain three slightly displaced planes intersecting at point P’, whose coordinates are
x +dx,y+dy,and z +dz. The six planes define a rectangular parallelepiped whose
volume is dv = dxdydz; the surfaces have differential areas d'S of dxdy, dydz, and
dzdx. Finally, the distance d L from P to P’ is the diagonal of the parallelepiped and
has a length of \/(dx)? + (dy)? + (dz)?. The volume element is shown in Figure 1.2c;
point P’ is indicated, but point P is located at the only invisible corner.

All this is familiar from trigonometry or solid geometry and as yet involves only
scalar quantities. We will describe vectors in terms of a coordinate system in the next
section.

1.4 VECTOR COMPONENTS
AND UNIT VECTORS

To describe a vector in the rectangular coordinate system, let us first consider a vector r
extending outward from the origin. A logical way to identify this vector is by giving
the three component vectors, lying along the three coordinate axes, whose vector sum
must be the given vector. If the component vectors of the vector r are x, y, and z,
then r = x + y + z. The component vectors are shown in Figure 1.3a. Instead of one
vector, we now have three, but this is a step forward because the three vectors are of
a very simple nature; each is always directed along one of the coordinate axes.

The component vectors have magnitudes that depend on the given vector (such
as r), but they each have a known and constant direction. This suggests the use of unit
vectors having unit magnitude by definition; these are parallel to the coordinate axes
and they point in the direction of increasing coordinate values. We reserve the symbol
a for a unit vector and identify its direction by an appropriate subscript. Thus a,, a,,
and a. are the unit vectors in the rectangular coordinate system.? They are directed
along the x, y, and z axes, respectively, as shown in Figure 1.3b.

If the component vector y happens to be two units in magnitude and directed
toward increasing values of y, we should then write y = 2a,. A vector rp pointing

3 The symbols i, j, and k are also commonly used for the unit vectors in rectangular coordinates.
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/ y

r=xty+z

(a) ()

02,-2,1)

(©

Figure 1.3 (a) The component vectors X, y, and z of vector r. (b) The unit
vectors of the rectangular coordinate system have unit magnitude and are
directed toward increasing values of their respective variables. (c) The vector Rpq
is equal to the vector difference rq — rp.

from the origin to point P(1, 2, 3) is written rp = a, + 2a, + 3a.. The vector from
P to Q may be obtained by applying the rule of vector addition. This rule shows
that the vector from the origin to P plus the vector from P to Q is equal to the
vector from the origin to Q. The desired vector from P(1,2,3) to Q(2,—2,1) is
therefore

Rpp=rg—rp=2—-Da, +(-2-2)a, +(1 —3)a.

=a, —4a, —2a;

The vectors rp, ro, and Rpg are shown in Figure 1.3c.

The last vector does not extend outward from the origin, as did the vector r we
initially considered. However, we have already learned that vectors having the same
magnitude and pointing in the same direction are equal, so we see that to help our
visualization processes we are at liberty to slide any vector over to the origin before
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determining its component vectors. Parallelism must, of course, be maintained during
the sliding process.

If we are discussing a force vector F, or indeed any vector other than a
displacement-type vector such as r, the problem arises of providing suitable letters
for the three component vectors. It would not do to call them x, y, and z, for these
are displacements, or directed distances, and are measured in meters (abbreviated m)
or some other unit of length. The problem is most often avoided by using component
scalars, simply called components, F,, F,, and F.. The components are the signed
magnitudes of the component vectors. We may then write F = F,a, + Fya, + F.a..
The component vectors are F,ay, F,a,, and F.a..

Any vector B then may be described by B = B.a, + B,a, + B.a.. The magnitude
of B written |B| or simply B, is given by

|B| = /B: + B} + B (1

Each of the three coordinate systems we discuss will have its three fundamental
and mutually perpendicular unit vectors that are used to resolve any vector into its
component vectors. Unit vectors are not limited to this application. It is helpful to
write a unit vector having a specified direction. This is easily done, for a unit vector
in a given direction is merely a vector in that direction divided by its magnitude. A
unit vector in the r direction is r/y/x? + y? + z2, and a unit vector in the direction of
the vector B is

B B

/B2+ B2+ B2 Bl @)

ap —

Specify the unit vector extending from the origin toward the point G(2, —2, —1).
Solution. We first construct the vector extending from the origin to point G,
G =2a, —2a, —a;
We continue by finding the magnitude of G,
Gl = V2P + (=22 + (-1 =3

and finally expressing the desired unit vector as the quotient,
— G —

|G|
A special symbol is desirable for a unit vector so that its character is immediately

apparent. Symbols that have been used are ug, ap, 1g, or even b. We will consistently
use the lowercase a with an appropriate subscript.

ag 2a, — 2a, — 1a. = 0.667a, — 0.667a, — 0.333a;
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[NOTE: Throughout the text, drill problems appear following sections in which
a new principle is introduced in order to allow students to test their understanding of
the basic fact itself. The problems are useful in gaining familiarity with new terms
and ideas and should all be worked. More general problems appear at the ends of the
chapters. The answers to the drill problems are given in the same order as the parts
of the problem.]

D1.1. Given points M(—1,2,1), N(3,—-3,0), and P(—2, -3, —4), find:
(@) Ryn; (b) Ryn + Rups (¢) Iryl; (d) app; (e) [2rp — 3ry].

Ans. 4a, — 5a, — a;; 3a, — 10a, — 6a;; 2.45; —0.14a, — 0.7a,, — 0.7a;; 15.56

1.5 THE VECTOR FIELD

We have defined a vector field as a vector function of a position vector. In general,
the magnitude and direction of the function will change as we move throughout the
region, and the value of the vector function must be determined using the coordinate
values of the point in question. Because we have considered only the rectangular
coordinate system, we expect the vector to be a function of the variables x, y, and z.

If we again represent the position vector as r, then a vector field G can be
expressed in functional notation as G(r); a scalar field 7 is written as 7'(r).

If we inspect the velocity of the water in the ocean in some region near the
surface where tides and currents are important, we might decide to represent it by
a velocity vector that is in any direction, even up or down. If the z axis is taken as
upward, the x axis in a northerly direction, the y axis to the west, and the origin at
the surface, we have a right-handed coordinate system and may write the velocity
vector as v = v,a, + v,a, + v.a;, or v(r) = v(r)a, + v,(r)a, + v.(r)a;; each of
the components v,, v,, and v. may be a function of the three variables x, y, and z.
If we are in some portion of the Gulf Stream where the water is moving only to the
north, then v, and v, are zero. Further simplifying assumptions might be made if
the velocity falls off with depth and changes very slowly as we move north, south,
east, or west. A suitable expression could be v = 2¢7/1%a,. We have a velocity of
2 m/s (meters per second) at the surface and a velocity of 0.368 x 2, or 0.736 m/s, at
a depth of 100 m (z = —100). The velocity continues to decrease with depth, while
maintaining a constant direction.

D1.2. A vector field S is expressed in rectangular coordinates as S = {125/
[(x — 1?4+ =2+ + 1)’H(x — Da, + (v —2)a, + (2 + 1)a.}. (a) Evaluate
S at P(2, 4, 3). (b) Determine a unit vector that gives the direction of S at P.
(c) Specify the surface f(x, y, z) on which [S| = 1.

Ans. 5.95a, + 11.90a, + 23.8a; 0.218a, + 0.436a, + 0.873a,;
Ve —12 4G22 +(E+ 1?2 =125
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1.6 THE DOT PRODUCT

We now consider the first of two types of vector multiplication. The second type will
be discussed in the following section.

Given two vectors A and B, the dot product, or scalar product, is defined as the
product of the magnitude of A, the magnitude of B, and the cosine of the smaller
angle between them,

A-B=|A|B|cosbyuz (3)

The dot appears between the two vectors and should be made heavy for emphasis.
The dot, or scalar, product is a scalar, as one of the names implies, and it obeys the

commutative law,
A-B=B-A 4)

for the sign of the angle does not affect the cosine term. The expression A - B is read
“A dot B.”

Perhaps the most common application of the dot product is in mechanics, where
a constant force F applied over a straight displacement L. does an amount of work
F'L cos 0, which is more easily written F - L. We might anticipate one of the results
of Chapter 4 by pointing out that if the force varies along the path, integration is
necessary to find the total work, and the result becomes

Work:/F-dL

Another example might be taken from magnetic fields. The total flux & crossing
a surface of area S is given by BS if the magnetic flux density B is perpendicular
to the surface and uniform over it. We define a vector surface S as having area
for its magnitude and having a direction normal to the surface (avoiding for the
moment the problem of which of the two possible normals to take). The flux crossing
the surface is then B - S. This expression is valid for any direction of the uniform
magnetic flux density. If the flux density is not constant over the surface, the total flux
is ® = [ B-dS. Integrals of this general form appear in Chapter 3 when we study
electric flux density.

Finding the angle between two vectors in three-dimensional space is often a
job we would prefer to avoid, and for that reason the definition of the dot product is
usually not used in its basic form. A more helpful result is obtained by considering two
vectors whose rectangular components are given, such as A = A.a, + 4,a, + 4.a.
and B = B;a, + B,a, + B.a.. The dot product also obeys the distributive law, and,
therefore, A - B yields the sum of nine scalar terms, each involving the dot product
of two unit vectors. Because the angle between two different unit vectors of the
rectangular coordinate system is 90°, we then have

a,-a, =a,-a, =a,-a,=2a,-a, =a,-a, =2a,-a,=0
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B B
eBu eBa
a a
B-a (B-a)a
(@) (b

Figure 1.4 (a) The scalar component of B in the direction of the unit vector a is
B - a. (b) The vector component of B in the direction of the unit vector a is (B - a)a.

The remaining three terms involve the dot product of a unit vector with itself, which
is unity, giving finally

A-B=AB, + 4,8, + 4B (5)
which is an expression involving no angles.
A vector dotted with itself yields the magnitude squared, or
A-A= A =|AP | (6)

and any unit vector dotted with itself is unity,
Ay-ay = 1

One of the most important applications of the dot product is that of finding the
component of a vector in a given direction. Referring to Figure 1.4a, we can obtain
the component (scalar) of B in the direction specified by the unit vector a as

B-a = |B||a|cosfp, = |B|cosbp,

The sign of the component is positive if 0 < 65, < 90° and negative whenever
90° < 0, < 180°.

To obtain the component vecfor of B in the direction of a, we multiply the
component (scalar) by a, as illustrated by Figure 1.4b. For example, the component
of B in the direction of a, is B-a, = B,, and the component vector is Ba,, or
(B -a,)a,. Hence, the problem of finding the component of a vector in any direction
becomes the problem of finding a unit vector in that direction, and that we can do.

The geometrical term projection is also used with the dot product. Thus, B - a is
the projection of B in the a direction.

In order to illustrate these definitions and operations, consider the vector field G =
ya, —2.5xa, +3a; and the point Q(4, 5, 2). We wish to find: G at Q; the scalar com-
ponent of G at O in the direction of ay = %(Zax + a, — 2a.); the vector component
of G at Q in the direction of ay; and finally, the angle 6, between G(rp) and ay.
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Solution. Substituting the coordinates of point Q into the expression for G, we have
G(rp) = 5a, — 10a, + 3a,
Next we find the scalar component. Using the dot product, we have
G-ay = (5a, — 10a, +3a.) - 1(2a, +a, —2a.) = (10 — 10 — 6) = —2

The vector component is obtained by multiplying the scalar component by the unit
vector in the direction of ay,

(G-ay)ay = —(2)1(2a, +a, —2a,) = —1.333a, — 0.667a, + 1.333a,

The angle between G(rp) and ay is found from

G-ay = |G| cosbg,
—2 = +/25+ 100 4+ 9 cos g,

and
—1 _2 o
0gqs = cos —— =99.9

/134

D1.3. The three vertices ofa triangle are located at 4(6, —1, 2), B(—2, 3, —4),
and C(=3, 1, 5). Find: (@) R43; (b) Rc; (¢) the angle 0 4¢ at vertex 4; (d) the
(vector) projection of R45 on R4¢.

Ans. —8a, +4a, — 6a;; —9a, + 2a, + 3a;; 53.6°; —5.94a, + 1.319a, + 1.979a,

11

1.7 THE CROSS PRODUCT

Given two vectors A and B, we now define the cross product, or vector product, of A
and B, written with a cross between the two vectors as A x B and read “A cross B.”
The cross product A x B is a vector; the magnitude of A x B is equal to the product
of the magnitudes of A, B, and the sine of the smaller angle between A and B; the
direction of A x B is perpendicular to the plane containing A and B and is along one of
the two possible perpendiculars which is in the direction of advance of a right-handed
screw as A is turned into B. This direction is illustrated in Figure 1.5. Remember that
either vector may be moved about at will, maintaining its direction constant, until
the two vectors have a “common origin.” This determines the plane containing both.
However, in most of our applications we will be concerned with vectors defined at
the same point.
As an equation we can write

A x B=ay|A||B|sinf,3 7

where an additional statement, such as that given above, is required to explain the
direction of the unit vector ay. The subscript stands for “normal.”
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A

048 B

1A><B

Figure 1.5 The direction of A x B isin the
direction of advance of a right-handed screw
as A is turned into B.

Reversing the order of the vectors A and B results in a unit vector in the opposite
direction, and we see that the cross product is not commutative, for Bx A = —(A xB).
If the definition of the cross product is applied to the unit vectors a, and a,,, we find
a, x a, = a., for each vector has unit magnitude, the two vectors are perpendicular,
and the rotation of a, into a, indicates the positive z direction by the definition of a
right-handed coordinate system. In a similar way, a, x a. = a, and a. x a, = a,.
Note the alphabetic symmetry. As long as the three vectors a,, a,, and a, are written
in order (and assuming that a, follows a_, like three elephants in a circle holding tails,
so that we could also write a,, a., a, or a., a,, a,), then the cross and equal sign may
be placed in either of the two vacant spaces. As a matter of fact, it is now simpler to
define a right-handed rectangular coordinate system by saying that a, x a, = a..

A simple example of the use of the cross product may be taken from geometry
or trigonometry. To find the area of a parallelogram, the product of the lengths of
two adjacent sides is multiplied by the sine of the angle between them. Using vector
notation for the two sides, we then may express the (scalar) area as the magnitude of
A x B,or |A x B|.

The cross product may be used to replace the right-hand rule familiar to all
electrical engineers. Consider the force on a straight conductor of length L, where
the direction assigned to L corresponds to the direction of the steady current /, and
a uniform magnetic field of flux density B is present. Using vector notation, we may
write the result neatly as F = /L x B. This relationship will be obtained later in
Chapter 9.

The evaluation of a cross product by means of its definition turns out to be more
work than the evaluation of the dot product from its definition, for not only must
we find the angle between the vectors, but we must also find an expression for the
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unit vector ay. This work may be avoided by using rectangular components for the
two vectors A and B and expanding the cross product as a sum of nine simpler cross
products, each involving two unit vectors,

AxB=A,B.a, xa,+A4,B,a, xa,+ A, B.a, xa,
+A,B.a, xa,+A4,Bya, xa,+ A4,B.a, X a;
+A.Bya. xa,+ A.Bya. xa,+ A.B.a. x a,

We have already found thata, x a, = a.,a, x a, = a,,and a; x a, = a,. The
three remaining terms are zero, for the cross product of any vector with itself is zero,
since the included angle is zero. These results may be combined to give

AxB=(A4,B. - A.B))a, + (A:B, — A B-)a, + (4B, — A, B, )a. (8)

or written as a determinant in a more easily remembered form,

a a, a;
AxB= Ax Ay AZ (9)
B, B, B.

Thus, if A = 2a, — 3a, +a, and B = —4a, — 2a, + 5a., we have

a, a, a
AxB=]2 -3 1
—4 -2 5

[(=3)(5) — (1(=2)]ax — [(2)(5) — (D(—=D]ay + [(2)(=2) — (=3)(—4)]a:
= —13a, — 14a, — 16a,

D1.4. Thethree vertices of a triangle are located at A(6, —1, 2), B(—2, 3, —4),
and C(—3, 1, 5). Find: (a) R4z x Ryc; (b) the area of the triangle; (c) a unit
vector perpendicular to the plane in which the triangle is located.

Ans. 24a, + 78a, + 20a;; 42.0; 0.286a, + 0.928a,, + 0.238a,

1.8 OTHER COORDINATE SYSTEMS:
CIRCULAR CYLINDRICAL COORDINATES

The rectangular coordinate system is generally the one in which students prefer to
work every problem. This often means a lot more work, because many problems
possess a type of symmetry that pleads for a more logical treatment. It is easier to
do now, once and for all, the work required to become familiar with cylindrical and
spherical coordinates, instead of applying an equal or greater effort to every problem
involving cylindrical or spherical symmetry later. With this in mind, we will take a
careful and unhurried look at cylindrical and spherical coordinates.

13
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The circular cylindrical coordinate system is the three-dimensional version of
the polar coordinates of analytic geometry. In polar coordinates, a point is located
in a plane by giving both its distance p from the origin and the angle ¢ between the
line from the point to the origin and an arbitrary radial line, taken as ¢ = 0. In
circular cylindrical coordinates, we also specify the distance z of the point from an
arbitrary z = 0 reference plane that is perpendicular to the line p = 0. For simplicity,
we usually refer to circular cylindrical coordinates simply as cylindrical coordinates.
This will not cause any confusion in reading this book, but it is only fair to point out
that there are such systems as elliptic cylindrical coordinates, hyperbolic cylindrical
coordinates, parabolic cylindrical coordinates, and others.

We no longer set up three axes as with rectangular coordinates, but we must
instead consider any point as the intersection of three mutually perpendicular sur-
faces. These surfaces are a circular cylinder (p = constant), a plane (¢ = constant),
and another plane (z = constant). This corresponds to the location of a point in a
rectangular coordinate system by the intersection of three planes (x = constant, y =
constant, and z = constant). The three surfaces of circular cylindrical coordinates are
shown in Figure 1.6a. Note that three such surfaces may be passed through any point,
unless it lies on the z axis, in which case one plane suffices.

Three unit vectors must also be defined, but we may no longer direct them along
the “coordinate axes,” for such axes exist only in rectangular coordinates. Instead, we
take a broader view of the unit vectors in rectangular coordinates and realize that they
are directed toward increasing coordinate values and are perpendicular to the surface
on which that coordinate value is constant (i.e., the unit vector a, is normal to the
plane x = constant and points toward larger values of x). In a corresponding way we
may now define three unit vectors in cylindrical coordinates, a,, a,, and a;.

The unit vector a, at a point P(py, ¢1, z;) is directed radially outward, normal
to the cylindrical surface p = p;. It lies in the planes ¢ = ¢, and z = z;. The unit
vector a4 is normal to the plane ¢ = ¢, points in the direction of increasing ¢, lies in
the plane z = z;, and is tangent to the cylindrical surface p = p;. The unit vector a,
is the same as the unit vector a, of the rectangular coordinate system. Figure 1.6
shows the three vectors in cylindrical coordinates.

In rectangular coordinates, the unit vectors are not functions of the coordinates.
Two of the unit vectors in cylindrical coordinates, a, and a,, however, do vary with
the coordinate ¢, as their directions change. In integration or differentiation with
respect to ¢, then, a, and a, must not be treated as constants.

The unit vectors are again mutually perpendicular, for each is normal to one of the
three mutually perpendicular surfaces, and we may define a right-handed cylindrical

4 The two variables of polar coordinates are commonly called r and 6. With three coordinates,
however, it is more common to use p for the radius variable of cylindrical coordinates and » for the
(different) radius variable of spherical coordinates. Also, the angle variable of cylindrical coordinates is
customarily called ¢ because everyone uses 6 for a different angle in spherical coordinates. The angle
¢ is common to both cylindrical and spherical coordinates. See?
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a, (P1,91,21)

z = a constant

\ ?1 - |

¢ = a constant

¢ p=a constant

(a) (b)

z+dz

Figure 1.6 (a) The three mutually perpendicular surfaces of the circular cylindrical
coordinate system. (b) The three unit vectors of the circular cylindrical coordinate system.
() The differential volume unit in the circular cylindrical coordinate system; dp, pd¢, and
dz are all elements of length.

coordinate system as one in which a, x a; =a;, or (for those who have flexible
fingers) as one in which the thumb, forefinger, and middle finger point in the direction
of increasing p, ¢, and z, respectively.

A differential volume element in cylindrical coordinates may be obtained by
increasing p, ¢, and z by the differential increments dp, d¢, and dz. The two cylinders
of radius p and p + dp, the two radial planes at angles ¢ and ¢ + d¢, and the two
“horizontal” planes at “elevations” z and z + dz now enclose a small volume, as
shown in Figure 1.6¢, having the shape of a truncated wedge. As the volume element
becomes very small, its shape approaches that of a rectangular parallelepiped having
sides of length dp, pd¢, and dz. Note that dp and dz are dimensionally lengths, but
d¢ is not; pd¢ is the length. The surfaces have areas of p dp d¢, dp dz,and p d¢ dz,
and the volume becomes p dp d¢ dz.



16

ENGINEERING ELECTROMAGNETICS

Figure 1.7 The relationship between
the rectangular variables x, y, z and the
cylindrical coordinate variables p, ¢, z.
There is no change in the variable z
between the two systems.

The variables of the rectangular and cylindrical coordinate systems are easily
related to each other. Referring to Figure 1.7, we see that

X = pcos¢
y =psing (10)
z =12z

From the other viewpoint, we may express the cylindrical variables in terms of x, y,
and z:

p=vVxt+y* (p=0)

¢ =tan' 2 (11)
X

z=1z

We consider the variable p to be positive or zero, thus using only the positive sign
for the radical in (11). The proper value of the angle ¢ is determined by inspecting
the signs of x and y. Thus, if x = —3 and y = 4, we find that the point lies in the
second quadrant so that p = 5 and ¢ = 126.9°. For x = 3 and y = —4, we have
¢ = —53.1° or 306.9°, whichever is more convenient.

Using (10) or (11), scalar functions given in one coordinate system are easily
transformed into the other system.

A vector function in one coordinate system, however, requires two steps in order
to transform it to another coordinate system, because a different set of component
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vectors is generally required. That is, we may be given a rectangular vector
A=A.a,+A,a,+ A4.a;

where each component is given as a function of x, y, and z, and we need a vector in
cylindrical coordinates

A= Aya,+ dgas+ A.a.

where each component is given as a function of p, ¢, and z.

To find any desired component of a vector, we recall from the discussion of the
dot product that a component in a desired direction may be obtained by taking the
dot product of the vector and a unit vector in the desired direction. Hence,

ApzA-ap and A¢=A-a¢

Expanding these dot products, we have

A, = (Aya, +A,a, + 4:a;)-a, = A;a,-a,+ 4,a,-a, (12)
Ay = (Aya, + A,a, + A.a;)-a5 = Aca, -2y + A,a, -2y (13)

and
A= (Axax + Ayay + Azaz) -a; = A:a;-a;, = 4. (14)

since a, - a, and a, - ay are zero.

In order to complete the transformation of the components, it is necessary to
know the dot products a, -a,, a, -a,, a, -ay, and a, - a4. Applying the definition
of the dot product, we see that since we are concerned with unit vectors, the result
is merely the cosine of the angle between the two unit vectors in question. Refer-
ring to Figure 1.7 and thinking mightily, we identify the angle between a, and a,
as ¢, and thus a, -a, = cos ¢, but the angle between a, and a, is 90° — ¢, and
a,-a, = cos(90° — ¢) = sin¢. The remaining dot products of the unit vectors
are found in a similar manner, and the results are tabulated as functions of ¢ in
Table 1.1.

Transforming vectors from rectangular to cylindrical coordinates or vice versa
is therefore accomplished by using (10) or (11) to change variables, and by using the
dot products of the unit vectors given in Table 1.1 to change components. The two
steps may be taken in either order.

Table 1.1 Dot products of unit vectors in cylindrical
and rectangular coordinate systems

ap agp az
a,- cos ¢ —sin¢ 0
a,- sin ¢ cos ¢ 0
a- 0 0 1

17
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Transform the vector B = ya, — xa, + za. into cylindrical coordinates.

Solution. The new components are
B,=B-a,=y(a,-a,) —x(a,-a,)
=ycos¢ —xsing = psingcosp — pcosgpsing =0
By =B-ay = y(ay-ay) —x(a, - ay)
= —ysing —xcos¢p = —psin’$ — pcos’p = —p
Thus,

B = —pa, + za,

D1.5. (a) Give the rectangular coordinates of the point C(p = 4.4, ¢
—115°,z = 2). (b) Give the cylindrical coordinates of the point D(x =
—3.1,y = 2.6,z = —3). (¢) Specify the distance from C to D.

Ans. C(x = —1.860, y = —3.99,z = 2); D(p = 4.05, ¢ = 140.0°, z = —3); 8.36

D1.6. Transform to cylindrical coordinates: (a) F = 10a, — 8a, +6a. at point
P(10, =8, 6); (b)) G = (2x +y)a, — (¥ —4x)a, at point Q(p, ¢, z). (c) Give the
rectangular components of the vector H = 20a, — 10ay + 3a, at P(x = 5,
y=2,z=-1).

Ans. 12.81a, +6a;; (2p cos? ¢ — p sin® ¢ + 5p sin ¢ cos d)a, +(4p cos? ¢ — psin® ¢
—3psing cosp)ag; Hy =22.3, H, = —1.857, H, =3

1.9 THE SPHERICAL COORDINATE SYSTEM

We have no two-dimensional coordinate system to help us understand the three-
dimensional spherical coordinate system, as we have for the circular cylindrical
coordinate system. In certain respects we can draw on our knowledge of the latitude-
and-longitude system of locating a place on the surface of the earth, but usually we
consider only points on the surface and not those below or above ground.

Let us start by building a spherical coordinate system on the three rectangular
axes (Figure 1.8a). We first define the distance from the origin to any point as ». The
surface » = constant is a sphere.

The second coordinate is an angle 6 between the z axis and the line drawn
from the origin to the point in question. The surface § = constant is a cone, and
the two surfaces, cone and sphere, are everywhere perpendicular along their inter-
section, which is a circle of radius 7 sin 6. The coordinate 6 corresponds to latitude,
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6 = a constant
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Figure 1.8 (a) The three spherical coordinates. (b) The three mutually perpendicular
surfaces of the spherical coordinate system. (c) The three unit vectors of spherical

coordinates: a, x ag = a,. (d) The differential volume element in the spherical coordinate
system.

except that latitude is measured from the equator and 6 is measured from the “North
Pole.”

The third coordinate ¢ is also an angle and is exactly the same as the angle ¢ of
cylindrical coordinates. It is the angle between the x axis and the projection in the
z = 0 plane of the line drawn from the origin to the point. It corresponds to the angle
of longitude, but the angle ¢ increases to the “east.” The surface ¢ = constant is a
plane passing through the & = 0 line (or the z axis).

We again consider any point as the intersection of three mutually perpendicular
surfaces—a sphere, a cone, and a plane—each oriented in the manner just described.
The three surfaces are shown in Figure 1.85.

Three unit vectors may again be defined at any point. Each unit vector is per-
pendicular to one of the three mutually perpendicular surfaces and oriented in that
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direction in which the coordinate increases. The unit vector a, is directed radially
outward, normal to the sphere » = constant, and lies in the cone 6 = constant and
the plane ¢ = constant. The unit vector a, is normal to the conical surface, lies in
the plane, and is tangent to the sphere. It is directed along a line of “longitude” and
points “south.” The third unit vector a, is the same as in cylindrical coordinates, being
normal to the plane and tangent to both the cone and the sphere. It is directed to the
“east.”

The three unit vectors are shown in Figure 1.8c. They are, of course, mutually per-
pendicular, and a right-handed coordinate system is defined by causing a, x ay = a,.
Our system is right-handed, as an inspection of Figure 1.8c¢ will show, on application
of the definition of the cross product. The right-hand rule identifies the thumb, fore-
finger, and middle finger with the direction of increasing r, 6, and ¢, respectively.
(Note that the identification in cylindrical coordinates was with p, ¢, and z, and in
rectangular coordinates with x, y, and z.) A differential volume element may be con-
structed in spherical coordinates by increasing », 6, and ¢ by dr, dO, and d¢, as
shown in Figure 1.8d. The distance between the two spherical surfaces of radius »
and r + dr is dr; the distance between the two cones having generating angles of ¢
and 0 + d0 is rdf; and the distance between the two radial planes at angles ¢ and
¢ + d¢ is found to be r sin 6d ¢, after a few moments of trigonometric thought. The
surfaces have areas of r dr dO, r sin6 dr d¢, and r? sin6 dé d¢, and the volume is
r*sin6 dr d6 d¢.

The transformation of scalars from the rectangular to the spherical coordinate
system is easily made by using Figure 1.8« to relate the two sets of variables:

X = rsinf cos ¢
y =rsinfsing (15)

z =rcosf

The transformation in the reverse direction is achieved with the help of

r=+x2+y2+22 (r>0)

f—cos | ——_ (0°<06<180°) (16)
/x2 +y2 +ZZ
¢ = tan ! 4
X

The radius variable » is nonnegative, and 0 is restricted to the range from 0° to 180°,
inclusive. The angles are placed in the proper quadrants by inspecting the signs of
x,y,and z.

The transformation of vectors requires us to determine the products of the unit
vectors in rectangular and spherical coordinates. We work out these products from
Figure 1.8c and a pinch of trigonometry. Because the dot product of any spheri-
cal unit vector with any rectangular unit vector is the component of the spherical
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Table 1.2 Dot products of unit vectors in spherical
and rectangular coordinate systems

a, ag ay

ay- sin 6 cos ¢ cos 6 cos ¢ —sin¢
ay- sin 6 sin ¢ cos 6 sin ¢ cos ¢
a,- cosf —sinf 0

vector in the direction of the rectangular vector, the dot products with a, are found
to be

a.-a, = cosd
a,-ap = —sinf
a.-ay =0
The dot products involving a, and a, require first the projection of the spherical
unit vector on the xy plane and then the projection onto the desired axis. For example,
a, - a, is obtained by projecting a, onto the xy plane, giving sin 6, and then projecting

sin@ on the x axis, which yields sin 6 cos ¢». The other dot products are found in a
like manner, and all are shown in Table 1.2.

We illustrate this procedure by transforming the vector field G =(xz/y)a, into
spherical components and variables.

Solution. We find the three spherical components by dotting G with the appropriate
unit vectors, and we change variables during the procedure:

Xz Xz .
G, =G-a, = —a,-a. = —sinfcos¢
y y

2
. cos” ¢
= rsinf cos —
sin ¢
Xz Xz
Gy =G-ay=—a,-ayg = —cosfcos¢p
y y
2
cos” ¢
= r cos’ 6 —
sin ¢

Xz Xz .
Gp=G-ay = —a,-a;, = —(—sing)
Y Y
= —rcosf cos ¢

Collecting these results, we have
G =rcosfcos¢ (sinf cotpa, 4 cost cotg ag — ay)

Appendix A describes the general curvilinear coordinate system of which the
rectangular, circular cylindrical, and spherical coordinate systems are special cases.
The first section of this appendix could well be scanned now.
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D1.7. Given the two points, C(—3, 2, 1) and D(r =5,60 =20°, ¢ = — 70°),
find: (a) the spherical coordinates of C; (b) the rectangular coordinates of D;
(c) the distance from C to D.

Ans. C(r = 3.74,0 = 74.5°, ¢ = 146.3°); D(x = 0.585,y = —1.607, z = 4.70);
6.29

D1.8. Transform the following vectors to spherical coordinates at the points
given: (a) 10a, at P(x = =3,y = 2,z = 4); (b) 10a, at O(p =5, ¢ = 30°,
z=4);(c) 10a, at M(r = 4,0 = 110°, ¢ = 120°).

Ans. —5.57a, — 6.18ay — 5.55a4; 3.90a, + 3.12a9 + 8.66a,; —3.42a, — 9.40a
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CHAPTER 1 PROBLEMS
1.10  Given the vectors M = —10a, +4a, — 8a; and N = 8a, + 7a, — 2a_, find:

(a) a unit vector in the direction of —M + 2N; (b) the magnitude of 5a, +
N — 3M; (¢) IM||2N|(M + N).

120 Vector A extends from the origin to (1, 2, 3), and vector B extends from the

origin to (2, 3, —2). Find (a) the unit vector in the direction of (A — B);
(b) the unit vector in the direction of the line extending from the origin to the
midpoint of the line joining the ends of A and B.

130 The vector from the origin to point 4 is given as (6, —2, —4), and the unit

vector directed from the origin toward point B is (2, —2, 1)/3. If points 4
and B are ten units apart, find the coordinates of point B.
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140 A circle, centered at the origin with a radius of 2 units, lies in the xy plane.
Determine the unit vector in rectangular components that lies in the xy plane,
is tangent to the circle at (—+/3,1, 0), and is in the general direction of
increasing values of y.

150 A vector field is specified as G = 24xya, + 12(x* + 2)a, + 18za,. Given
two points, P(1,2, —1) and Q(—2, 1, 3), find («) G at P;(b) a unit vector in
the direction of G at Q; (¢) a unit vector directed from Q toward P;(d) the
equation of the surface on which |G| = 60.

1.6 0 Find the acute angle between the two vectors A = 2a, + a, + 3a. and
B = a, — 3a, + 2a. by using the definition of (a) the dot product; (b) the
cross product.

1.7 Given the vector field E = 4zy? cos2xa, + 2zy sin2xa, + y? sin2xa, for
the region |x|, |y|, and |z| less than 2, find (a) the surfaces on which
E, = 0;(b) the region in which £, = E;(c) the region in which E = 0.

1.8] Demonstrate the ambiguity that results when the cross product is used to
find the angle between two vectors by finding the angle between
A =3a, —2a, +4a. and B = 2a, 4 a, — 2a.. Does this ambiguity exist
when the dot product is used?

190 A field is given as G = [25/(x2 + y?)](xa, + ya,). Find (@) a unit vector
in the direction of G at P(3, 4, —2); (b) the angle between G and a, at P;
(c) the value of the following double integral on the plane y = 7.

4 p2
/ / G-a,dzdx
0 0

1.104 By expressing diagonals as vectors and using the definition of the dot
product, find the smaller angle between any two diagonals of a cube, where
each diagonal connects diametrically opposite corners and passes through the
center of the cube.

1.11 i Given the points M (0.1, —0.2, —0.1), N(—0.2, 0.1, 0.3), and P(0.4, 0, 0.1),
find (a) the vector Ry y; (b) the dot product Ry, y « Rysp; (¢) the scalar
projection of Ry, on Ry, p; (d) the angle between R,y and Ry, p.

1.12 § Write an expression in rectangular components for the vector that extends
from (xy, y1, z1) to (x2, )2, z2) and determine the magnitude of this vector.

1.13 1 Find (@) the vector component of F = 10a, — 6a, + 5a. that is parallel to
G = 0.1a, 4 0.2a, 4 0.3a.; () the vector component of F that is
perpendicular to G; (c) the vector component of G that is perpendicular
to F.

1.14} Giventhat A+ B+ C = 0, where the three vectors represent line segments
and extend from a common origin, must the three vectors be coplanar? If
A+ B+ C+ D = 0, are the four vectors coplanar?

23
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1.15 i Three vectors extending from the origin are given as r; = (7, 3, —2),
r; =(—2,7,-3), and r; = (0, 2, 3). Find (a) a unit vector perpendicular to
both r; and ry; (b) a unit vector perpendicular to the vectors r; — r, and
r, — r3; (¢) the area of the triangle defined by r; and r,; (d) the area of the
triangle defined by the heads of ry, r,, and r;.

116l 1fA represents a vector one unit long directed due east, B represents a vector
three units long directed due north, and A + B = 2C — D and
2A — B = C + 2D, determine the length and direction of C.

1.17 | Point A(—4, 2, 5) and the two vectors, R4y = (20, 18 — 10) and
R,y = (10, 8, 15), define a triangle. Find (@) a unit vector perpendicular to
the triangle; (b) a unit vector in the plane of the triangle and perpendicular to
R v; (c) a unit vector in the plane of the triangle that bisects the interior
angle at 4.

1.18 § A certain vector field is given as G = (y + 1)a, + xa,. (a) Determine G at
the point (3, —2, 4); (b) obtain a unit vector defining the direction of G at
(3,-2,4).

1.19§ (a) Express the field D = (x2 + y?)~(xa, + ya,) in cylindrical components
and cylindrical variables. (b) Evaluate D at the point where p = 2, ¢ = 0.27,
and z = 5, expressing the result in cylindrical and rectangular components.

1.20 § If the three sides of a triangle are represented by vectors A, B, and C, all
directed counterclockwise, show that |C|?> = (A + B) - (A + B) and expand
the product to obtain the law of cosines.

12110 Express in cylindrical components: (a) the vector from C(3, 2, —7) to
D(—1, —4, 2); (b) a unit vector at D directed toward C; (c) a unit vector at D
directed toward the origin.

1225 A sphere of radius a, centered at the origin, rotates about the z axis at angular
velocity €2 rad/s. The rotation direction is clockwise when one is looking in
the positive z direction. (@) Using spherical components, write an expression
for the velocity field, v, that gives the tangential velocity at any point within
the sphere; (b) convert to rectangular components.

1.23 | The surfaces p=3,0=5¢=100° ¢ =130° z=3,and z = 4.5 define a
closed surface. Find () the enclosed volume; (b) the total area of the
enclosing surface; (c) the total length of the twelve edges of the surfaces;

(d) the length of the longest straight line that lies entirely within the volume.

1.24§ Two unit vectors, a; and a,, lie in the xy plane and pass through the origin.
They make angles ¢ and ¢,, respectively, with the x axis (@) Express each
vector in rectangular components; () take the dot product and verify the
trigonometric identity, cos(¢; — ¢,) = cos ¢ cos ¢, + sin ¢; sin ¢,; (¢) take
the cross product and verify the trigonometric identity
sin(¢, — ¢1) = sin ¢, cos P — cos P, sin ;.
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125 Given point P(r = 0.8,0 =30°, ¢ =45°)and E = 1/r? [cosp a, +
(sin¢/sin®)a,], find (a) E at P; (b) |[E| at P; (c) a unit vector in the
direction of E at P.

1261 Express the uniform vector field F = 5a, in (a) cylindrical components;
(b) spherical components.

1.27 ] The surfaces » = 2 and 4,0 = 30° and 50°, and ¢ = 20° and 60° identify a
closed surface. Find (a) the enclosed volume; () the total area of the
enclosing surface; (c) the total length of the twelve edges of the surface;

(d) the length of the longest straight line that lies entirely within the surface.

1.28 1 State whether or not A = B and, if not, what conditions are imposed on A
and Bwhen (¢) A-a, =B-a,;(b)A xa, =Bxa,;(c)A-a, =B-a, and
Axa, =Bxa,;(d)A-C=B-Cand A x C =B x Cwhere C is any
vector except C = 0.

1291 Express the unit vector a, in spherical components at the point: (a) r = 2,
f=1rad,¢ =0.8rad; (b)x =3,y =2,z=—1;(c) p =2.5,¢ = 0.7 rad,
z=1.5.

1.30§ Consider a problem analogous to the varying wind velocities encountered by
transcontinental aircraft. We assume a constant altitude, a plane earth, a flight
along the x axis from 0 to 10 units, no vertical velocity component, and no
change in wind velocity with time. Assume a, to be directed to the east and
a, to the north. The wind velocity at the operating altitude is assumed to be:

(0.01x% — 0.08x + 0.66)a, — (0.05x — 0.4)a,
1+ 0.5)?

Determine the location and magnitude of (a) the maximum tailwind
encountered; (b) repeat for headwind; (¢) repeat for crosswind; (d) Would
more favorable tailwinds be available at some other latitude? If so, where?

v(x,y) =
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CHAPTER

Coulomb’s Law and
Electric Field Intensity

establish and describe a few basic principles of electricity. In this chapter,

we introduce Coulomb’s electrostatic force law and then formulate this in
a general way using field theory. The tools that will be developed can be used to
solve any problem in which forces between static charges are to be evaluated or to
determine the electric field that is associated with any charge distribution. Initially,
we will restrict the study to fields in vacuum or free space; this would apply to media
such as air and other gases. Other materials are introduced in Chapters 5 and 6 and
time-varying fields are introduced in Chapter 9. M

H aving formulated the language of vector analysis in the first chapter, we next

2.1 THE EXPERIMENTAL LAW OF COULOMB

Records from at least 600 B.C. show evidence of the knowledge of static electricity.
The Greeks were responsible for the term electricity, derived from their word for
amber, and they spent many leisure hours rubbing a small piece of amber on their
sleeves and observing how it would then attract pieces of fluff and stuff. However,
their main interest lay in philosophy and logic, not in experimental science, and it
was many centuries before the attracting effect was considered to be anything other
than magic or a “life force.”

Dr. Gilbert, physician to Her Majesty the Queen of England, was the first to do
any true experimental work with this effect, and in 1600 he stated that glass, sulfur,
amber, and other materials, which he named, would “not only draw to themselves
straws and chaff, but all metals, wood, leaves, stone, earths, even water and oil.”

Shortly thereafter, an officer in the French Army Engineers, Colonel Charles
Coulomb, performed an elaborate series of experiments using a delicate torsion bal-
ance, invented by himself, to determine quantitatively the force exerted between two
objects, each having a static charge of electricity. His published result bears a great
similarity to Newton’s gravitational law (discovered about a hundred years earlier).
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Coulomb stated that the force between two very small objects separated in a vacuum
or free space by a distance, which is large compared to their size, is proportional to
the charge on each and inversely proportional to the square of the distance between
them, or
010>

R2
where O and O, are the positive or negative quantities of charge, R is the separation,
and k is a proportionality constant. If the International System of Units' (SI) is used,
Q is measured in coulombs (C), R is in meters (m), and the force should be newtons
(N). This will be achieved if the constant of proportionality & is written as

1

4reg

F=k

k=

The new constant € is called the permittivity of free space and has magnitude, mea-
sured in farads per meter (F/m),

1
€ =8.854x107"2=_—10"" F/m (1)
36w

The quantity € is not dimensionless, for Coulomb’s law shows that it has the
label C2/N - m?. We will later define the farad and show that it has the dimensions
C?/N - m; we have anticipated this definition by using the unit F/m in equation (1).

Coulomb’s law is now

0102

N 47T€0R2

2

The coulomb is an extremely large unit of charge, for the smallest known quantity
of charge is that of the electron (negative) or proton (positive), given in SI units as
1.602 x 10~ C; hence a negative charge of one coulomb represents about 6 x 10'8
electrons.? Coulomb’s law shows that the force between two charges of one coulomb
each, separated by one meter, is 9 x 10° N, or about one million tons. The electron
has a rest mass of 9.109 x 10~3'kg and has a radius of the order of magnitude of
3.8 x 107! m. This does not mean that the electron is spherical in shape, but merely
describes the size of the region in which a slowly moving electron has the greatest
probability of being found. All other known charged particles, including the proton,
have larger masses and larger radii, and occupy a probabilistic volume larger than
does the electron.

In order to write the vector form of (2), we need the additional fact (furnished
also by Colonel Coulomb) that the force acts along the line joining the two charges

! The International System of Units (an mks system) is described in Appendix B. Abbreviations for the
units are given in Table B.1. Conversions to other systems of units are given in Table B.2, while the
prefixes designating powers of ten in SI appear in Table B.3.

2 The charge and mass of an electron and other physical constants are tabulated in Table C.4 of
Appendix C.

27
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R12:r27r1 /
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Figure 2.1 If Q1 and Q2 have like
signs, the vector force F, on Q2 is in the
same direction as the vector Rys.

and is repulsive if the charges are alike in sign or attractive if they are of opposite sign.
Let the vector r; locate Q;, whereas r, locates O,. Then the vector Rj; = r; — 1y
represents the directed line segment from Q) to O, as shown in Figure 2.1. The vector
F; is the force on O, and is shown for the case where O and O, have the same sign.
The vector form of Coulomb’s law is

010

= a 3
2 471’60sz 12 3)

where a;, = a unit vector in the direction of R;,, or

_Rp  Rp  n-r€
Rzl Rz |2 —r1y

“

a2

We illustrate the use of the vector form of Coulomb’s law by locating a charge of
01 =3 x 107* C at M(1,2,3) and a charge of O, = —107* C at N(2,0,5) in a
vacuum. We desire the force exerted on Q; by Q.

Solution. We use (3) and (4) to obtain the vector force. The vector Ry, is
Rpop=r—-r =2-1a, +(0-2)a, +(5—3)a. =a, —2a, + 2a,
leading to |R},| = 3, and the unit vector, a;; = %(ax — 2a, + 2a.). Thus,

3x 1074%=10"%) [a, —2a, +2a,
47(1/367)109 x 32 3

30 (ax —2a, +2az> N

F, =

3

The magnitude of the force is 30 N, and the direction is specified by the unit
vector, which has been left in parentheses to display the magnitude of the force. The
force on O, may also be considered as three component forces,

F, = —10a, + 20a, — 20a,



CHAPTER 2 Coulomb’s Law and Electric Field Intensity

The force expressed by Coulomb’s law is a mutual force, for each of the two
charges experiences a force of the same magnitude, although of opposite direction.
We might equally well have written

010 QO

Fi=-F, = =—
4neoR122

= a 5
47160sz 21 12 Q)

Coulomb’s law is linear, for if we multiply O; by a factor n, the force on Q5 is
also multiplied by the same factor n. It is also true that the force on a charge in the
presence of several other charges is the sum of the forces on that charge due to each
of the other charges acting alone.

D2.1. A charge O = —20 uC is located at 4(—6, 4, 7), and a charge Oy =
50 uC is at B(5, 8, —2) in free space. If distances are given in meters, find:
(a) Ry3p; (b) R4p. Determine the vector force exerted on Q4 by Op if g =
(c) 107°/(36m) F/m; (d) 8.854 x 107! F/m.

Ans. lla, + 4a, — 92, m; 14.76 m; 30.76a, + 11.184a, — 25.16a, mN; 30.72a,
+ 11.169a,, — 25.13a, mN

2.2 ELECTRIC FIELD INTENSITY

If we now consider one charge fixed in position, say O, and move a second charge
slowly around, we note that there exists everywhere a force on this second charge;
in other words, this second charge is displaying the existence of a force field that is
associated with charge, Q. Call this second charge a test charge Q,. The force on it
is given by Coulomb’s law,

Y
! 47160th

Writing this force as a force per unit charge gives the electric field intensity, E; arising
from Q;:

ay;

kO
= 0. a,. p2

01  4meoRy,
E, isinterpreted as the vector force, arising from charge Q1, that acts on a unit positive

test charge. More generally, we write the defining expression:

E; ay; (6)

o
in which E, a vector function, is the electric field intensity evaluated at the test charge
location that arises from all other charges in the vicinity—meaning the electric field
arising from the test charge itself is not included in E.

The units of E would be in force per unit charge (newtons per coulomb). Again
anticipating a new dimensional quantity, the volt (V), having the label of joules per

E (7

i)

Interactives



30

ENGINEERING ELECTROMAGNETICS

coulomb (J/C), or newton-meters per coulomb (N - m/C), we measure electric field
intensity in the practical units of volts per meter (V/m).

Now, we dispense with most of the subscripts in (6), reserving the right to use
them again any time there is a possibility of misunderstanding. The electric field of a
single point charge becomes:

0

= 731{
4megR?

®)

We remember that R is the magnitude of the vector R, the directed line segment
from the point at which the point charge Q is located to the point at which E is desired,
and ay is a unit vector in the R direction.’

We arbitrarily locate Q) at the center of a spherical coordinate system. The unit
vector ap then becomes the radial unit vector a,., and R is r. Hence

O

= r
4 egr?

(€)]

The field has a single radial component, and its inverse-square-law relationship is
quite obvious.

If we consider a charge that is not at the origin of our coordinate system, the
field no longer possesses spherical symmetry, and we might as well use rectangular
coordinates. For a charge O located at the source point 1’ = x’a, + y'a, 4+ z'a_, as
illustrated in Figure 2.2, we find the field at a general field point r = xa,+ ya, + za,
by expressing R as r — r’, and then

(0] r—r  O@r-r)

dreglr — Y2 Ir—v| 4dmeor — )3

_ Ol —xa, + (¢ =y, + (2 = 2)a]
T dmel —xP + (= P+ PP

E(r) =

(10)

Earlier, we defined a vector field as a vector function of a position vector, and this is
emphasized by letting E be symbolized in functional notation by E(r).

Because the coulomb forces are linear, the electric field intensity arising from
two point charges, Q; at r; and Q; at r,, is the sum of the forces on O, caused by
0, and Q, acting alone, or

01 O

a; + a
47'[6()|l'—l'1|2 47T60|l‘—l‘2|2

E(r) =

where a; and a, are unit vectors in the direction of (r — ry) and (r — r), respectively.
The vectors r, ry, 1, ¥ — r|, r — I, a;, and a, are shown in Figure 2.3.

3 We firmly intend to avoid confusing » and a, with R and ag. The first two refer specifically to the
spherical coordinate system, whereas R and az do not refer to any coordinate system—the choice is
still available to us.
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E

P(x,,2)

0
oy

o
Origin

Figure 2.2 The vector r’ locates the point
charge Q, the vector r identifies the general point
in space P(x, y, z), and the vector R from Q to
Pix,y,2)isthenR=r—r.

E|

E(r)

Figure 2.3 The vector addition of the total electric field
intensity at P due to Q4 and Q5 is made possible by the
linearity of Coulomb’s law.
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If we add more charges at other positions, the field due to n point charges is

Er)=>)" O (11)

A
—Are|r — 1,2

In order to illustrate the application of (11), we find E at P(1, 1, 1) caused by four iden-
tical 3-nC (nanocoulomb) charges located at P (1, 1, 0), P,(—1, 1, 0), P3(—1, —1,0),
and P4(1, —1, 0), as shown in Figure 2.4.

Solution. We find that r = a, +a, +a.,ry = a, +a,,and thusr —r; = a..
The magnitudes are: [r —r;| =1, |r — | = V5, r—r3] =3, and |r — r4] = /5.
Because Q/4mey = 3 x 107°/(47 x 8.854 x 10712) = 26.96 V - m, we may now
use (11) to obtain

a, 1 2a, +a, 1 2a, +2a, +a; 1 2a, +a. 1
E=2696| —— + + +
[ LI V5 (V5) 3% S WY

or
E = 6.82a, 4 6.82a, +32.8a, V/m
D2.2. A charge of —0.3 uC is located at 4(25, —30, 15) (in cm), and a

second charge of 0.5 uC is at B(—10, 8, 12) cm. Find E at: (a) the origin;
(b) P(15,20,50) cm.

Ans. 92.3a, —77.6a, — 94.2a, kV/m; 11.9a, — 0.519a,, + 12.4a; kV/m

r—ry

Py(1,1,0
Py1,-1,0) o1 PLLD P (110

r—r,

r-r

Py(1,-1,0) P (1,1,0)

Figure 2.4 A symmetrical distribution of four identical 3-nC point
charges produces a field at P, E = 6.82a, + 6.82a, + 32.8a, V/m.
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14 (=1)" ()2(01)m+1

D2.3. Evaluate the sums: (a) Z w24 1 7 YE
m

Ans. 2.52;0.176
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2.3 FIELD ARISING FROM A CONTINUOUS
VOLUME CHARGE DISTRIBUTION

If we now visualize a region of space filled with a tremendous number of charges
separated by minute distances, we see that we can replace this distribution of very
small particles with a smooth continuous distribution described by a volume charge
density, just as we describe water as having a density of 1 g/cm® (gram per cubic
centimeter) even though it consists of atomic- and molecular-sized particles. We can
do this only if we are uninterested in the small irregularities (or ripples) in the field
as we move from electron to electron or if we care little that the mass of the water
actually increases in small but finite steps as each new molecule is added.

This is really no limitation at all, because the end results for electrical engineers
are almost always in terms of a current in a receiving antenna, a voltage in an elec-
tronic circuit, or a charge on a capacitor, or in general in terms of some large-scale
macroscopic phenomenon. It is very seldom that we must know a current electron by
electron.*

We denote volume charge density by p,,, having the units of coulombs per cubic
meter (C/m?).

The small amount of charge A Q in a small volume Av is

AQ = p,Av (12)

and we may define p, mathematically by using a limiting process on (12),

N
= 00 A ()

The total charge within some finite volume is obtained by integrating throughout that
volume,

Q=flpvdv (14)

Only one integral sign is customarily indicated, but the differential dv signifies inte-
gration throughout a volume, and hence a triple integration.

4 A study of the noise generated by electrons in semiconductors and resistors, however, requires just
such an examination of the charge through statistical analysis.

(i)
Mustrations
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As an example of the evaluation of a volume integral, we find the total charge contained
in a 2-cm length of the electron beam shown in Figure 2.5.

Solution. From the illustration, we see that the charge density is
0y = —5 x 107571907 C/m?

The volume differential in cylindrical coordinates is given in Section 1.8; therefore,

0.04 2 0.01 .
/ / / —5%x107%" 1" pdpde dz
0.0 0 0

We integrate first with respect to ¢ because it is so easy,

0.04 £0.01 .
/ f —1077e % pdp dz
0.02 Jo

and then with respect to z, because this will simplify the last integration with respect
to p,
z=0.04

0.01 10— 5 S :
Q / ( e—IO pzp d,O>
_105 z=0.02

0.01
— / —10757(e20000 _ =400
0

. z=4cm
-~ p,=—5e 105/)-"L4(‘,/m3
o\ z=2cm
p=1lcm

Figure 2.5 The total charge contained
within the right circular cylinder may be
obtained by evaluatingQ = [, pudv.
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Finally,
~20000  ,—4000p 0.01
— _10—10 € _
Q i (-2000 ~4000 /,
0=—1017 (L — LY =7 _0785pC
2000~ 4000/ ~ 40

where pC indicates picocoulombs.
The incremental contribution to the electric field intensity at r produced by an
incremental charge AQ atr’ is
AQ r—r ovAv r—r

AE(r) = =
® dreglr — )2 r—r/|  dmeglr — |2 r —r/|

If we sum the contributions of all the volume charge in a given region and let the
volume element Av approach zero as the number of these elements becomes infinite,
the summation becomes an integral,

E(r):/ pr)dv. r—r (15)

o dmeglr — |2 r — /|

This is again a triple integral, and (except in Drill Problem 2.4) we shall do our best
to avoid actually performing the integration.

The significance of the various quantities under the integral sign of (15) might
stand a little review. The vector r from the origin locates the field point where E is
being determined, whereas the vector r’ extends from the origin to the source point
where p,(r')dv’ is located. The scalar distance between the source point and the
field point is |r — 1’|, and the fraction (r — r’)/|r — /| is a unit vector directed from
source point to field point. The variables of integration are x’, y’, and z’ in rectangular
coordinates.

D2.4. Calculate the total charge within each of the indicated volumes: () 0.1 <

IxI, Iyl, |z| £0.2:p, = bL)0=p=<01,0=¢p<m2=<z=<4p, =

x3y3z3
%22 sin 0.6¢; (c) universe: p, = e~ /r?.

Ans. 0;1.018 mC; 6.28 C
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2.4 FIELD OF A LINE CHARGE

Up to this point we have considered two types of charge distribution, the point charge
and charge distributed throughout a volume with a density p, C/m3. If we now consider
a filamentlike distribution of volume charge density, such as a charged conductor of
very small radius, we find it convenient to treat the charge as a line charge of density
pr C/m.

We assume a straight-line charge extending along the z axis in a cylindrical
coordinate system from —oo to 0o, as shown in Figure 2.6. We desire the electric
field intensity E at any and every point resulting from a uniform line charge density p; .



ENGINEERING ELECTROMAGNETICS

(0,0,2")

Figure 2.6 The contribution dE = dE,a,+
dEa;, to the electric field intensity produced by an
element of charge dQ = p, dZ' located a distance
Z' from the origin. The linear charge density is
uniform and extends along the entire z axis.

Symmetry should always be considered first in order to determine two specific
factors: (1) with which coordinates the field does not vary, and (2) which compo-
nents of the field are not present. The answers to these questions then tell us which
components are present and with which coordinates they do vary.

Referring to Figure 2.6, we realize that as we move around the line charge,
varying ¢ while keeping p and z constant, the line charge appears the same from
every angle. In other words, azimuthal symmetry is present, and no field component
may vary with ¢.

Again, if we maintain p and ¢ constant while moving up and down the line charge
by changing z, the line charge still recedes into infinite distance in both directions
and the problem is unchanged. This is axial symmetry and leads to fields that are not
functions of z.

If we maintain ¢ and z constant and vary p, the problem changes, and Coulomb’s
law leads us to expect the field to become weaker as p increases. Hence, by a process
of elimination we are led to the fact that the field varies only with p.

Now, which components are present? Each incremental length of line charge
acts as a point charge and produces an incremental contribution to the electric field
intensity which is directed away from the bit of charge (assuming a positive line
charge). No element of charge produces a ¢ component of electric intensity; Eg is
zero. However, each element does produce an £, and an E. component, but the
contribution to £, by elements of charge that are equal distances above and below
the point at which we are determining the field will cancel.
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We therefore have found that we have only an £, component and it varies only
with p. Now to find this component.

We choose a point P(0, y, 0) on the y axis at which to determine the field.
This is a perfectly general point in view of the lack of variation of the field with ¢
and z. Applying (10) to find the incremental field at P due to the incremental charge
dQ = prdz', we have

’ /
pLdz'(r — ')
dE = ———~
dmeglr — v/
where
r = ya, = pa,
¥ =Za,
and
/ /
r—r =pa,—za,
Therefore,

_ prdz'(pa, —z'a;)
- 4].[60(’02 4 2/2)3/2
Because only the E, component is present, we may simplify:

dE

B pLpdz’
 Ame(p? +22)32

E / 0 prpdz’
") dmeo(p? + 212)2

dE,

and

Integrating by integral tables or change of variable, z’ = p cot6, we have

o0
g o P L
P 47160'0 P2 Jp? + 272

—00
and
E,= PL
2mwenp
or finally,
PL
E = a 16
27 €0p 14 ( )

We note that the field falls off inversely with the distance to the charged line, as
compared with the point charge, where the field decreased with the square of the
distance. Moving ten times as far from a point charge leads to a field only 1 percent
the previous strength, but moving ten times as far from a line charge only reduces
the field to 10 percent of its former value. An analogy can be drawn with a source of

i)
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(6,8,2)
x P(x’ y, Z)

0,8,0)

PL

(6,0,0)
(6.8,0) \
R (x.5.0)

Figure 2.7 A point P(x, y, 2) is identified near an infinite
uniform line charge located at x = 6, y = 8.

illumination, for the light intensity from a point source of light also falls off inversely
as the square of the distance to the source. The field of an infinitely long fluorescent
tube thus decays inversely as the first power of the radial distance to the tube, and we
should expect the light intensity about a finite-length tube to obey this law near the
tube. As our point recedes farther and farther from a finite-length tube, however, it
eventually looks like a point source, and the field obeys the inverse-square relationship.

Before leaving this introductory look at the field of the infinite line charge, we
should recognize the fact that not all line charges are located along the z axis. As an
example, let us consider an infinite line charge parallel to the z axisatx = 6, y = 8,
shown in Figure 2.7. We wish to find E at the general field point P(x, y, z).

We replace p in (16) by the radial distance between the line charge and point,
P,R=/(x —6)2+(y — 8)% and let a, be ag. Thus,

E = pL a
- R
2mmegy/(x — 6)2 + (v — 8)?

where
R (x—6)a, +(y—8a,
R -6+ (v - 82

Therefore,

_PL (x —6)ay + (y — 8)a,
T 2mey (x —6)2 + (v — 8)?

We again note that the field is not a function of z.
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In Section 2.6, we describe how fields may be sketched, and we use the field of
the line charge as one example.

D2.5. Infinite uniform line charges of 5 nC/m lie along the (positive and
negative) x and y axes in free space. Find E at: (@) P4(0, 0, 4); (b) P5(0, 3, 4).

Ans. 45a; V/m; 10.8a), 4 36.9a; V/m

2.5 FIELD OF A SHEET OF CHARGE

Another basic charge configuration is the infinite sheet of charge having a uniform
density of pg C/m?. Such a charge distribution may often be used to approximate
that found on the conductors of a strip transmission line or a parallel-plate capacitor.
As we shall see in Chapter 5, static charge resides on conductor surfaces and not
in their interiors; for this reason, pg is commonly known as surface charge density.
The charge-distribution family now is complete—point, line, surface, and volume, or
0, pr, ps,and p,.

Let us place a sheet of charge in the yz plane and again consider symmetry
(Figure 2.8). We see first that the field cannot vary with y or with z, and then we see
that the y and z components arising from differential elements of charge symmetrically
located with respect to the point at which we evaluate the field will cancel. Hence
only E, is present, and this component is a function of x alone. We are again faced
with a choice of many methods by which to evaluate this component, and this time we
use only one method and leave the others as exercises for a quiet Sunday afternoon.

Let us use the field of the infinite line charge (16) by dividing the infinite sheet
into differential-width strips. One such strip is shown in Figure 2.8. The line charge

P(x, 0, 0)

Figure 2.8 An infinite sheet of charge in the yz
plane, a general point P on the x axis, and the
differential-width line charge used as the element in
determining the field at P by dE = psdy’ar/(2weoR).



40

ENGINEERING ELECTROMAGNETICS

density, or charge per unit length, is p; = psd)y’, and the distance from this line

charge to our general point P on the x axis is R = /x2 + y2. The contribution to
E, at P from this differential-width strip is then
dy' dy'
JE. = s g_ Ps xdy

T e/ 4y 2mey x4 7

Adding the effects of all the strips,

ps /OO xdy ps .y y’]oo _ Ps
- 00

E, = tan~ —
2meg

o X2 4 2 - 27 e x
If the point P were chosen on the negative x axis, then
ps

E,=-—2
¥ 26()
for the field is always directed away from the positive charge. This difficulty in sign
is usually overcome by specifying a unit vector ay, which is normal to the sheet and
directed outward, or away from it. Then

E="5, (17)
260

This is a startling answer, for the field is constant in magnitude and direction.
It is just as strong a million miles away from the sheet as it is right off the surface.
Returning to our light analogy, we see that a uniform source of light on the ceiling of
a very large room leads to just as much illumination on a square foot on the floor as it
does on a square foot a few inches below the ceiling. If you desire greater illumination
on this subject, it will do you no good to hold the book closer to such a light source.

If a second infinite sheet of charge, having a negative charge density —pg, is
located in the plane x = a, we may find the total field by adding the contribution of
each sheet. In the region x > a,

+=&3x E7=—&ax E=E, +E_=0
2¢€g 2¢
and for x < 0,
E.=-2a E =4 EZE,+E =0
260 26O

and when 0 < x < a,

and

E—E, +E_ =2, (18)
€0

This is an important practical answer, for it is the field between the parallel plates
of an air capacitor, provided the linear dimensions of the plates are very much greater
than their separation and provided also that we are considering a point well removed
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from the edges. The field outside the capacitor, while not zero, as we found for the
preceding ideal case, is usually negligible.

D2.6. Three infinite uniform sheets of charge are located in free space as
follows: 3 nC/m? at z = —4, 6 nC/m? at z = 1, and —8 nC/m? at z = 4.
Find E at the point: (a) P4(2, 5, =5); (b) Pg(4,2, —=3); (c) Pc(—1, =5, 2); (d)
Pp(—2,4,5).

Ans. —56.5a;; 283a;; 961a_; 56.5a; all V/m

2.6 STREAMLINES AND SKETCHES
OF FIELDS

We now have vector equations for the electric field intensity resulting from several
different charge configurations, and we have had little difficulty in interpreting the
magnitude and direction of the field from the equations. Unfortunately, this simplicity
cannot last much longer, for we have solved most of the simple cases and our new
charge distributions must lead to more complicated expressions for the fields and
more difficulty in visualizing the fields through the equations. However, it is true that
one picture would be worth about a thousand words, if we just knew what picture to
draw.

Consider the field about the line charge,

PL
k= 2meyp A

Figure 2.9a shows a cross-sectional view of the line charge and presents what might
be our first effort at picturing the field—short line segments drawn here and there
having lengths proportional to the magnitude of E and pointing in the direction of E.
The figure fails to show the symmetry with respect to ¢, so we try again in Figure 2.95
with a symmetrical location of the line segments. The real trouble now appears—the
longest lines must be drawn in the most crowded region, and this also plagues us
if we use line segments of equal length but of a thickness that is proportional to E
(Figure 2.9¢). Other schemes include drawing shorter lines to represent stronger fields
(inherently misleading) and using intensity of color or different colors to represent
stronger fields.

For the present, let us be content to show only the direction of E by drawing
continuous lines, which are everywhere tangent to E, from the charge. Figure 2.94
shows this compromise. A symmetrical distribution of lines (one every 45°) indicates
azimuthal symmetry, and arrowheads should be used to show direction.

These lines are usually called streamlines, although other terms such as flux lines
and direction lines are also used. A small positive test charge placed at any point in
this field and free to move would accelerate in the direction of the streamline passing
through that point. If the field represented the velocity of a liquid or a gas (which,
incidentally, would have to have a source at p = (), small suspended particles in the
liquid or gas would trace out the streamlines.

i)

a1
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\
(@) (b)
(© (d)

Figure 2.9 (a) One very poor sketch, (b) and (c) two fair sketches, and
(d) the usual form of a streamline sketch. In the last form, the arrows show
the direction of the field at every point along the line, and the spacing of the
lines is inversely proportional to the strength of the field.

We will find out later that a bonus accompanies this streamline sketch, for the
magnitude of the field can be shown to be inversely proportional to the spacing of
the streamlines for some important special cases. The closer they are together, the
stronger is the field. At that time we will also find an easier, more accurate method
of making that type of streamline sketch.

If we attempted to sketch the field of the point charge, the variation of the field
into and away from the page would cause essentially insurmountable difficulties; for
this reason sketching is usually limited to two-dimensional fields.

In the case of the two-dimensional field, let us arbitrarily set £, = 0. The
streamlines are thus confined to planes for which z is constant, and the sketch is the
same for any such plane. Several streamlines are shown in Figure 2.10, and the £, and
E, components are indicated at a general point. It is apparent from the geometry that

E, dy
= _ X 19
E, dx (19)

A knowledge of the functional form of £ and £, (and the ability to solve the resultant
differential equation) will enable us to obtain the equations of the streamlines.
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o

Figure 2.10 The equation of a streamline is
obtained by solving the differential equation
Ey/Ex =dy/dx.

As an illustration of this method, consider the field of the uniform line charge
with p;, = 2me,

1
E=-—a,
In rectangular coordinates,

X y
E= x2+y2ax+x2+yzay

Thus we form the differential equation

dy E, 'y dy dx
—_—= —— = — or _— = —
dx E. «x y X

Therefore,
Iny =Inx + C or Iny=Inx+InC
from which the equations of the streamlines are obtained,
y=0Cx

If we want to find the equation of one particular streamline, say one passing
through P(—2, 7, 10), we merely substitute the coordinates of that point into our
equation and evaluate C. Here, 7 = C(—2), and C = —3.5,s0 y = —3.5x.

Each streamline is associated with a specific value of C, and the radial lines
shown in Figure 2.94 are obtained when C = 0,1, —1,and 1/C = 0.

The equations of streamlines may also be obtained directly in cylindrical or
spherical coordinates. A spherical coordinate example will be examined in Section4.7.

43
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D2.7. Find the equation of that streamlinze that passes through the point
-8 4

P(1,4,=2)inthe field E = (@) —a, + —a,; (b) 2> [y(5x + D)a, +xa,].
y y

Ans. x2 +2y? =33; 2 = 15.7 4 0.4x — 0.08 In(5x + 1)
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CHAPTER 2 PROBLEMS

2114

2210
2310

2410

250

2.61

2.71

Three point charges are positioned in the x-y plane as follows: SnCaty =5
cm, —10 nC at y = —5 cm, and 15 nC at x = —5 cm. Find the required x-y
coordinates of a 20-nC fourth charge that will produce a zero electric field at
the origin.

Point charges of 1 nC and —2 nC are located at (0, 0, 0) and (1, 1, 1),
respectively, in free space. Determine the vector force acting on each charge.

Point charges of 50 nC each are located at A(1, 0, 0), B(—1, 0, 0), C(0, 1, 0),
and D(0, —1, 0) in free space. Find the total force on the charge at 4.

Eight identical point charges of O C each are located at the corners of a cube
of side length a, with one charge at the origin, and with the three nearest
charges at (a, 0, 0), (0, a, 0), and (0, 0, @). Find an expression for the total
vector force on the charge at P(a, a, ), assuming free space.

Let a point charge Q| = 25 nC be located at P;(4, —2, 7) and a charge
0, = 60 nC be at P5(—3, 4, —2). (a) If ¢ = ¢, find E at P5(1, 2, 3). (b) At
what point on the y axis is £, = 0?

Two point charges of equal magnitude ¢ are positioned at z = +d /2. (a)
Find the electric field everywhere on the z axis; () find the electric field
everywhere on the x axis; (c) repeat parts (a) and (b) if the charge at

z = —d/2is —q instead of +q.

A 2-uC point charge is located at A(4, 3, 5) in free space. Find £, E4, and
E.at P(8,12,2).
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2.80 A crude device for measuring charge consists of two small insulating spheres
of radius a, one of which is fixed in position. The other is movable along the
x axis and is subject to a restraining force kx, where & is a spring constant.
The uncharged spheres are centered at x = 0 and x = d, the latter fixed. If
the spheres are given equal and opposite charges of O/C, obtain the
expression by which QO may be found as a function of x. Determine the
maximum charge that can be measured in terms of €, k, and d, and state
the separation of the spheres then. What happens if a larger charge is applied?

290 A 100-nC point charge is located at A(—1, 1, 3) in free space. (a) Find the
locus of all points P(x, y, z) at which E, = 500 V/m. (b) Find y, if
P(=2, y1, 3) lies on that locus.

2100 A charge of —1 nC is located at the origin in free space. What charge must be
located at (2, 0, 0) to cause £, to be zero at (3, 1, 1)?

2118 A charge Qy located at the origin in free space produces a field for which
E. =1kV/m atpoint P(—2, 1, —1). (a) Find Qy. Find E at M(1, 6, 5) in
(b) rectangular coordinates; (c¢) cylindrical coordinates; (d) spherical
coordinates.

2.12 | Electrons are in random motion in a fixed region in space. During any 1 s
interval, the probability of finding an electron in a subregion of volume
1071 m? is 0.27. What volume charge density, appropriate for such time
durations, should be assigned to that subregion?

2.13} A uniform volume charge density of 0.2 .C/m? is present throughout the
spherical shell extending from » =3 cmtor = 5 cm. If p, = 0 elsewhere,
find (a) the total charge present throughout the shell, and (b) r if half the
total charge is located in the region 3 cm < r < 7.

2.14 1 The electron beam in a certain cathode ray tube possesses cylindrical
symmetry, and the charge density is represented by p, = —0.1/(p> + 107%)
pC/m? for0 < p <3 x 107*m, and p, = 0 for p > 3 x 10~* m. (a) Find
the total charge per meter along the length of the beam; () if the electron
velocity is 5 x 107 m/s, and with one ampere defined as 1C/s, find the beam
current.

2150 A spherical volume having a 2-um radius contains a uniform volume charge
density of 10'> C/m>. (@) What total charge is enclosed in the spherical
volume? (b) Now assume that a large region contains one of these little
spheres at every corner of a cubical grid 3 mm on a side and that there is no
charge between the spheres. What is the average volume charge density
throughout this large region?

2.16 § Within a region of free space, charge density is given as p, = WaﬂC/m3,
where py and a are constants. Find the total charge lying within (@) the
sphere, r < a; (b) the cone, r < a,0 <6 < 0.1x; (c) the region, r < a,
0<6<0.1nr,0<¢ <02m.
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2.171 A uniform line charge of 16 nC/m is located along the line defined by y =
—2,z=15.1Ife = ¢): (a) find E at P(1, 2, 3). (b) find E at that point in the
z = 0 plane where the direction of E is given by (1/3)a, — (2/3)a..

2.181 (a) Find E in the plane z = 0 that is produced by a uniform line charge, p;,
extending along the z axis over the range —L < z < L in a cylindrical
coordinate system. (b) If the finite line charge is approximated by an infinite
line charge (L — o0), by what percentage is £, in error if p = 0.5L? (¢)
Repeat (b) with p = 0.1L.

2.19 0 A uniform line charge of 2 uC/m is located on the z axis. Find E in
rectangular coordinates at P(1, 2, 3) if the charge exists from (a) —oo <
z <00;(b)—4<z<4

2.204 A line charge of uniform charge density py C/m and of length ¢ is oriented
along the z axis at —¢/2 < z < £/2. (a) Find the electric field strength, E, in
magnitude and direction at any position along the x axis. (b) With the given
line charge in position, find the force acting on an identical line charge that is
oriented along the x axis at £/2 < x < 3¢/2.

2.21 § Two identical uniform line charges, with p; = 75 nC/m, are located in free
space at x = 0, y = +0.4 m. What force per unit length does each line
charge exert on the other?

2.22§ Two identical uniform sheet charges with p; = 100 nC/m? are located in free
space at z = 2.0 cm. What force per unit area does each sheet exert on the
other?

2.23 | Given the surface charge density, p; = 2 ©C/m?, existing in the region p <
0.2m,z =0, find E at (a) P4(p =0,z =0.5); (b) Pg(p =0,z = —0.5).
Show that (c) the field along the z axis reduces to that of an infinite sheet
charge at small values of z; (d) the z axis field reduces to that of a point
charge at large values of z.

2.241 (a) Find the electric field on the z axis produced by an annular ring of
uniform surface charge density p; in free space. The ring occupies the region
z=0,a < p <b,0 < ¢ < 2x in cylindrical coordinates. (») From your part
(a) result, obtain the field of an infinite uniform sheet charge by taking
appropriate limits.

2.25} Find E at the origin if the following charge distributions are present in free
space: point charge, 12 nC, at P(2, 0, 6); uniform line charge density, 3 nC/m,
atx = —2, y = 3; uniform surface charge density, 0.2 nC/m? at x = 2.

2261 A radially dependent surface charge is distributed on an infinite flat sheet in
the x-y plane and is characterized in cylindrical coordinates by surface
density p; = po/p, where py is a constant. Determine the electric field
strength, E, everywhere on the z axis.
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2.27 1 Given the electric field E = (4x —2y)a, — (2x +4y)a,, find (a) the equation
of the streamline that passes through the point P(2, 3, —4); (b) a unit vector
specifying the direction of E at O(3, —2, 5).

2.28 ) An electric dipole (discussed in detail in Section 4.7) consists of two point
charges of equal and opposite magnitude =0 spaced by distance d. With the
charges along the z axis at positions z = +d /2 (with the positive charge at
the positive z location), the electric field in spherical coordinates is given
by E(r, 0) = [Qd /(4 eor)][2 cos Oa, + sinfay], where » >> d. Using
rectangular coordinates, determine expressions for the vector force on a point
charge of magnitude ¢ (@) at (0, 0, z); (b) at (0, y, 0).

229} IfE = 20e~>Y(cos Sxa, — sin5xa, ), find (a) |E| at P(r/6, 0.1, 2); (b) a unit
vector in the direction of E at P; (c) the equation of the direction line passing
through P.

2.30 | For fields that do not vary with z in cylindrical coordinates, the equations of
the streamlines are obtained by solving the differential equation £,/ E4 =
dp/(pd@). Find the equation of the line passing through the point (2, 30°, 0)
for the field E = p cos 2¢a, — p sin2¢pa,.

a7
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ing familiar with the concept of the streamlines that show the direction of

the force on a test charge at every point, it is difficult to avoid giving these
lines a physical significance and thinking of them as flux lines. No physical particle
is projected radially outward from the point charge, and there are no steel tentacles
reaching out to attract or repel an unwary test charge, but as soon as the streamlines
are drawn on paper there seems to be a picture showing “something” is present.

It is very helpful to invent an electric flux that streams away symmetrically from a
point charge and is coincident with the streamlines and to visualize this flux wherever
an electric field is present.

This chapter introduces and uses the concept of electric flux and electric flux
density to again solve several of the problems presented in Chapter 2. The work here
turns out to be much easier, and this is due to the extremely symmetrical problems
that we are solving. M

A fter drawing a few of the fields described in the previous chapter and becom-

3.1 ELECTRIC FLUX DENSITY

About 1837, the director of the Royal Society in London, Michael Faraday, became
very interested in static electric fields and the effect of various insulating materials on
these fields. This problem had been bothering him during the past ten years when he
was experimenting in his now-famous work on induced electromotive force, which
we will discuss in Chapter 10. With that subject completed, he had a pair of concentric
metallic spheres constructed, the outer one consisting of two hemispheres that could be
firmly clamped together. He also prepared shells of insulating material (or dielectric
material, or simply dielectric) that would occupy the entire volume between the
concentric spheres. We will immediately use his findings about dielectric materials,
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for we are restricting our attention to fields in free space until Chapter 6. At that time
we will see that the materials he used will be classified as ideal dielectrics.
His experiment, then, consisted essentially of the following steps:

1. With the equipment dismantled, the inner sphere was given a known positive
charge.

2. The hemispheres were then clamped together around the charged sphere with
about 2 cm of dielectric material between them.

3. The outer sphere was discharged by connecting it momentarily to ground.

4. The outer space was separated carefully, using tools made of insulating material
in order not to disturb the induced charge on it, and the negative induced charge
on each hemisphere was measured.

Faraday found that the total charge on the outer sphere was equal in magnitude to
the original charge placed on the inner sphere and that this was true regardless of the
dielectric material separating the two spheres. He concluded that there was some sort
of “displacement” from the inner sphere to the outer which was independent of the
medium, and we now refer to this flux as displacement, displacement flux, or simply
electric flux.

Faraday’s experiments also showed, of course, that a larger positive charge on the
inner sphere induced a correspondingly larger negative charge on the outer sphere,
leading to a direct proportionality between the electric flux and the charge on the inner
sphere. The constant of proportionality is dependent on the system of units involved,
and we are fortunate in our use of SI units, because the constant is unity. If electric
flux is denoted by W (psi) and the total charge on the inner sphere by O, then for
Faraday’s experiment

V=0

and the electric flux W is measured in coulombs.

We can obtain more quantitative information by considering an inner sphere of
radius a and an outer sphere of radius b, with charges of Q and —Q, respectively
(Figure 3.1). The paths of electric flux W extending from the inner sphere to the outer
sphere are indicated by the symmetrically distributed streamlines drawn radially from
one sphere to the other.

At the surface of the inner sphere, W coulombs of electric flux are produced by the
charge Q(= W) Cs distributed uniformly over a surface having an area of 47 a” m>.
The density of the flux at this surface is W/4mwa® or Q/4mwa? C/m?, and this is an
important new quantity.

Electric flux density, measured in coulombs per square meter (sometimes de-
scribed as “lines per square meter,” for each line is due to one coulomb), is given
the letter D, which was originally chosen because of the alternate names of displace-
ment flux density or displacement density. Electric flux density is more descriptive,
however, and we will use the term consistently.

The electric flux density D is a vector field and is a member of the “flux density”
class of vector fields, as opposed to the “force fields” class, which includes the electric
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Metal Insulating or
conducting dielectric
spheres material

Figure 3.1 The electric flux in the region between a
pair of charged concentric spheres. The direction and
magnitude of D are not functions of the dielectric
between the spheres.

field intensity E. The direction of D at a point is the direction of the flux lines at that
point, and the magnitude is given by the number of flux lines crossing a surface normal
to the lines divided by the surface area.

Referring again to Figure 3.1, the electric flux density is in the radial direction
and has a value of

D = 0 a, (inner sphere)
ey Ama®

D = iar (outer sphere)
vy Amb?

and at a radial distance », wherea <r < b,

_ 9

= a,
4mrr?

If we now let the inner sphere become smaller and smaller, while still retaining a
charge of Q, it becomes a point charge in the limit, but the electric flux density at a
point » meters from the point charge is still given by

0

= ar
4mrr?

O]

for Q lines of flux are symmetrically directed outward from the point and pass through
an imaginary spherical surface of area 4772

This result should be compared with Section 2.2, Eq. (9), the radial electric field
intensity of a point charge in free space,

0

fred —ar
471'60]"2
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In free space, therefore,

D =¢)E | (free space only) 2)

Although (2) is applicable only to a vacuum, it is not restricted solely to the field of
a point charge. For a general volume charge distribution in free space,

vd
E = / 1 47[;60;2 ag | (free space only) 3)
VO!

where this relationship was developed from the field of a single point charge. In a

similar manner, (1) leads to
d
D= / P a )

o 4mR2 "

and (2) is therefore true for any free-space charge configuration; we will consider (2)
as defining D in free space.

As apreparation for the study of dielectrics later, it might be well to point out now
that, for a point charge embedded in an infinite ideal dielectric medium, Faraday’s
results show that (1) is still applicable, and thus so is (4). Equation (3) is not applicable,
however, and so the relationship between D and E will be slightly more complicated
than (2).

Because D is directly proportional to E in free space, it does not seem that it
should really be necessary to introduce a new symbol. We do so for a few reasons.
First, D is associated with the flux concept, which is an important new idea. Second,
the D fields we obtain will be a little simpler than the corresponding E fields, because
€9 does not appear.

D3.1. Given a 60-uC point charge located at the origin, find the total electric
flux passijr%g through: (a) ;c?at portion of the sphere » = 26 cm bounded by
0<6 < —and0 < ¢ < —; (b) the closed surface defined by p = 26 cm and
z = £26 cm; (c) the plane z = 26 cm.

Ans. 7.5uC; 60 uC; 30 uC

D3.2. Calculate D in rectangular coordinates at point P(2, —3, 6) produced
by: (a) a point charge Q4 = 55 mC at Q(—2, 3, —6); (b) a uniform line
charge p; 3 = 20 mC/m on the x axis; (c¢) a uniform surface charge density

psc = 120 uC/m? on the plane z = —5 m.

Ans. 6.38a, —9.57a, + 19.14a, uC/m?; —212a, + 424a, uC/m?; 60a. uC/m?
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3.2 GAUSS’S LAW

The results of Faraday’s experiments with the concentric spheres could be summed up
as an experimental law by stating that the electric flux passing through any imaginary
spherical surface lying between the two conducting spheres is equal to the charge
enclosed within that imaginary surface. This enclosed charge is distributed on the
surface of the inner sphere, or it might be concentrated as a point charge at the center
of the imaginary sphere. However, because one coulomb of electric flux is produced
by one coulomb of charge, the inner conductor might just as well have been a cube or a
brass door key and the total induced charge on the outer sphere would still be the same.
Certainly the flux density would change from its previous symmetrical distribution
to some unknown configuration, but +Q coulombs on any inner conductor would
produce an induced charge of —Q coulombs on the surrounding sphere. Going one
step further, we could now replace the two outer hemispheres by an empty (but
completely closed) soup can. O coulombs on the brass door key would produce
W = Q lines of electric flux and would induce —Q coulombs on the tin can.!

These generalizations of Faraday’s experiment lead to the following statement,
which is known as Gauss’s law:

The electric flux passing through any closed surface is equal to the total charge enclosed
by that surface.

The contribution of Gauss, one of the greatest mathematicians the world has
ever produced, was actually not in stating the law as we have, but in providing a
mathematical form for this statement, which we will now obtain.

Let us imagine a distribution of charge, shown as a cloud of point charges in
Figure 3.2, surrounded by a closed surface of any shape. The closed surface may be
the surface of some real material, but more generally it is any closed surface we wish
to visualize. If the total charge is O, then O coulombs of electric flux will pass through
the enclosing surface. At every point on the surface the electric-flux-density vector
D will have some value Dg, where the subscript S merely reminds us that D must be
evaluated at the surface, and Dg will in general vary in magnitude and direction from
one point on the surface to another.

We must now consider the nature of an incremental element of the surface. An
incremental element of area AS is very nearly a portion of a plane surface, and
the complete description of this surface element requires not only a statement of its
magnitude AS but also of its orientation in space. In other words, the incremental
surface element is a vector quantity. The only unique direction that may be associated
with AS is the direction of the normal to that plane which is tangent to the surface
at the point in question. There are, of course, two such normals, and the ambiguity
is removed by specifying the outward normal whenever the surface is closed and
“outward” has a specific meaning.

1 If it were a perfect insulator, the soup could even be left in the can without any difference in the results.
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D S normal

Figure 3.2 The electric flux density Dg at P arising
from charge Q. The total flux passing through AS'is
Ds- AS.

At any point P, consider an incremental element of surface AS and let Dg make
an angle 6 with AS, as shown in Figure 3.2. The flux crossing A S is then the product
of the normal component of Dg and AS,

AV = flux crossing AS = Dg normAS = DgcosOAS = Dg - AS

where we are able to apply the definition of the dot product developed in Chapter 1.
The total flux passing through the closed surface is obtained by adding the dif-
ferential contributions crossing each surface element AS,

\b:/d\l/:‘(ﬁl dDS'dS

surface

The resultant integral is a closed surface integral, and since the surface element
dS always involves the differentials of two coordinates, such as dx dy, pd¢ dp,
or 2 sinf df d¢, the integral is a double integral. Usually only one integral sign is
used for brevity, and we will always place an S below the integral sign to indicate
a surface integral, although this is not actually necessary, as the differential dS is
automatically the signal for a surface integral. One last convention is to place a small
circle on the integral sign itself to indicate that the integration is to be performed over
a closed surface. Such a surface is often called a gaussian surface. We then have the
mathematical formulation of Gauss’s law,

v = %DS - dS = charge enclosed = O 5)
s

The charge enclosed might be several point charges, in which case

0 = %X0n

or a line charge,

Q=/0LdL

i)

53



54

ENGINEERING ELECTROMAGNETICS

or a surface charge,

0= / psdS (not necessarily a closed surface)
s

Q = / Pv dv
vol

The last form is usually used, and we should agree now that it represents any or
all of the other forms. With this understanding, Gauss’s law may be written in terms
of the charge distribution as

or a volume charge distribution,

fDS.dszf oy dv (6)
S vol

a mathematical statement meaning simply that the total electric flux through any
closed surface is equal to the charge enclosed.

To illustrate the application of Gauss’s law, let us check the results of Faraday’s
experiment by placing a point charge Q at the origin of a spherical coordinate system
(Figure 3.3) and by choosing our closed surface as a sphere of radius a.

Solution. We have, as before,

_ 9

= a,
4y

At the surface of the sphere,

Y

Dyg=—"
57 4na?

a,
The differential element of area on a spherical surface is, in spherical coordinates
from Chapter 1,
dS =r’sin0dbdp = a®sin6 do d¢
or
dS = a*sinf do d¢ a,

The integrand is

Ds-dS = Q a*sin0do doa, -a, = gsin@d@ do
47a? 4r

leading to the closed surface integral

$=2m O=m Q
/ = §in0d6 de
$=0 =¢ 47
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Figure 3.3 Applying Gauss’s law to
the field of a point charge Q on a
spherical closed surface of radius a. The
electric flux density D is everywhere
normal to the spherical surface and has
a constant magnitude at every point on it.

where the limits on the integrals have been chosen so that the integration is carried
over the entire surface of the sphere once.? Integrating gives
2w Q . 2
/0 471( cosf),dp = i 2nd¢ =0
and we obtain a result showing that O coulombs of electric flux are crossing the
surface, as we should since the enclosed charge is O coulombs.

Animations

D3.3. Given the electric flux density, D = 0.3r2a, nC/m? in free space:
(a) find E at point P(r = 2,0 = 25° ¢ = 90°); (b) find the total charge
within the sphere » = 3; (c) find the total electric flux leaving the sphere = 4.

Ans. 135.5a,V/m; 305 nC; 965 nC

D3.4. Calculate the total electric flux leaving the cubical surface formed by the
sixplanes x, y, z = &5 ifthe charge distribution is: (a) two point charges, 0.1 uC
at (1, —2, 3) and % uC at (—1, 2, —2); (b) a uniform line charge of 7 nC/m at
x = —2, y = 3; (c) a uniform surface charge of 0.1 pC/m? on the plane y = 3x.

Ans. 0.243uC; 31.4C; 10.54 uC

2 Note that if 6 and ¢ both cover the range from 0 to 277, the spherical surface is covered twice.
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3.3 APPLICATION OF GAUSS’S LAW: SOME
SYMMETRICAL CHARGE DISTRIBUTIONS

We now consider how we may use Gauss’s law,

szsns.ds

to determine Dy if the charge distribution is known. This is an example of an integral
equation in which the unknown quantity to be determined appears inside the integral.

The solution is easy if we are able to choose a closed surface which satisfies two
conditions:

1. Dy is everywhere either normal or tangential to the closed surface, so that
Dy - dS becomes either DgdS or zero, respectively.

2. On that portion of the closed surface for which Dy - dS is not zero, Dy =
constant.

This allows us to replace the dot product with the product of the scalars Dg and
dS and then to bring Dy outside the integral sign. The remaining integral is then
f < dS over that portion of the closed surface which Dy crosses normally, and this is
simply the area of this section of that surface. Only a knowledge of the symmetry of
the problem enables us to choose such a closed surface.

Let us again consider a point charge Q at the origin of a spherical coordinate
system and decide on a suitable closed surface which will meet the two requirements
previously listed. The surface in question is obviously a spherical surface, centered
at the origin and of any radius 7. Dg is everywhere normal to the surface; Dg has the
same value at all points on the surface.

Then we have, in order,

Q=5£D3-d5=f DgdS
S sph

$=2m O=m
=Dsy§ dS:DS/ / r*sin6 do dg
sph ¢=0 0=0

= 471r2D5

and hence

0
D¢ =
ST 42

Because r may have any value and because Dy is directed radially outward,

0 0

= ——a E=——a
42" Ameqr?
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which agrees with the results of Chapter 2. The example is a trivial one, and the
objection could be raised that we had to know that the field was symmetrical and
directed radially outward before we could obtain an answer. This is true, and that
leaves the inverse-square-law relationship as the only check obtained from Gauss’s
law. The example does, however, serve to illustrate a method which we may apply
to other problems, including several to which Coulomb’s law is almost incapable of
supplying an answer.

Are there any other surfaces which would have satisfied our two conditions? The
student should determine that such simple surfaces as a cube or a cylinder do not meet
the requirements.

As a second example, let us reconsider the uniform line charge distribution p;
lying along the z axis and extending from —oo to +0o. We must first know the
symmetry of the field, and we may consider this knowledge complete when the
answers to these two questions are known:

1. With which coodinates does the field vary (or of what variables is D a function)?
2. Which components of D are present?

In using Gauss’s law, it is not a question of using symmetry to simplify the
solution, for the application of Gauss’s law depends on symmetry, and if we cannot
show that symmetry exists then we cannot use Gauss’s law to obtain a solution. The
preceding two questions now become “musts.”

From our previous discussion of the uniform line charge, it is evident that only
the radial component of D is present, or

D=D,a,
and this component is a function of p only.

D, = f(p)

The choice of a closed surface is now simple, for a cylindrical surface is the only
surface to which D, is everywhere normal, and it may be closed by plane surfaces
normal to the z axis. A closed right circular cylinder of radius p extending fromz = 0
to z = L is shown in Figure 3.4.

We apply Gauss’s law,

Q:?g DS-dS=DS/ dS+O/ dS+0f ds
cyl sides top bottom
L 2
= DS/ / pdpdz = Ds2nplL
z=0 J¢$=0

and obtain

__9
P 2mplL

In terms of the charge density p;, the total charge enclosed is

0=p.L

Ds =D,
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Line charge —_—

PL

Figure 3.4 The gaussian
surface for an infinite uniform line
charge is a right circular cylinder of
length L and radius p. D is
constant in magnitude and
everywhere perpendicular to the
cylindrical surface; D is parallel to
the end faces.

giving
_PL
r 27p
or
. PL
P Daegp

Comparing with Section 2.4, Eq. (16), shows that the correct result has been
obtained and with much less work. Once the appropriate surface has been chosen, the
integration usually amounts only to writing down the area of the surface at which D
is normal.

The problem of a coaxial cable is almost identical with that of the line charge and
is an example that is extremely difficult to solve from the standpoint of Coulomb’s
law. Suppose that we have two coaxial cylindrical conductors, the inner of radius a
and the outer of radius b, each infinite in extent (Figure 3.5). We will assume a charge
distribution of pg on the outer surface of the inner conductor.

Symmetry considerations show us that only the D, component is present and
that it can be a function only of p. A right circular cylinder of length L and radius p,
where a < p < b, is necessarily chosen as the gaussian surface, and we quickly have

QO = Ds2nplL
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Conducting
7 cylinders

Figure 3.5 The two coaxial
cylindrical conductors forming a
coaxial cable provide an electric
flux density within the cylinders,
given by D, = aps/p.

The total charge on a length L of the inner conductor is

L 2
0= / / psadpdz =2malps
z=0 J¢p=0

from which we have

a a
Dy = 95 ps

D=—"a, (a <p<b)
P o

This result might be expressed in terms of charge per unit length because the inner
conductor has 2 aps coulombs on a meter length, and hence, letting p; = 2maps,

D= 'O—Lap
2mwp

and the solution has a form identical with that of the infinite line charge.

Because every line of electric flux starting from the charge on the inner cylinder
must terminate on a negative charge on the inner surface of the outer cylinder, the
total charge on that surface must be

Oouter cyl = _znaLpS,inner cyl

and the surface charge on the outer cylinder is found as

2ﬂbL:OS,outer cyl = _ZnaLpS,inner cyl
or
a
LS, outer cyl = — ZIOS,inner cyl

What would happen if we should use a cylinder of radius p, p > b, for the
gaussian surface? The total charge enclosed would then be zero, for there are equal
and opposite charges on each conducting cylinder. Hence

0= Dg2mpL (p > b)
Ds=0 (p > b)

i)
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An identical result would be obtained for p < a. Thus the coaxial cable or
capacitor has no external field (we have proved that the outer conductor is a “shield”),
and there is no field within the center conductor.

Our result is also useful for a finite length of coaxial cable, open at both ends, pro-
vided the length L is many times greater than the radius b so that the nonsymmetrical
conditions at the two ends do not appreciably affect the solution. Such a device is
also termed a coaxial capacitor. Both the coaxial cable and the coaxial capacitor will
appear frequently in the work that follows.

Let us select a 50-cm length of coaxial cable having an inner radius of 1 mm and an
outer radius of 4 mm. The space between conductors is assumed to be filled with air.
The total charge on the inner conductor is 30 nC. We wish to know the charge density
on each conductor, and the E and D fields.

Solution. We begin by finding the surface charge density on the inner cylinder,

Qinner eyl 30 x 107

| _ _ =9.55 uC/m?
LS, inner cyl 2ral 27 (1073)(0.5) i

The negative charge density on the inner surface of the outer cylinder is

Qouter cyl —30 x 10_9 2
o _ = —2.39 uC/
PSouer eyl = 75 L T 2m(4 x 10-3)(0.5) e

The internal fields may therefore be calculated easily:

aps _ 1070955 x 10°%) _ 9.55
P o J)

D, = C/m?

and

D, 955x107° 1079
E,=—L = v

= - = /m
€ 8.854 x 10~ 14p P

Both of these expressions apply to the region where 1 < p < 4 mm. For p < 1 mm
or p > 4 mm, E and D are zero.

D3.5. A point charge of 0.25 pC is located at » = 0, and uniform surface
charge densities are located as follows: 2 mC/m? at 7 = 1 cm, and —0.6 mC/m?
at7 = 1.8 cm. Calculate D at: (@) » = 0.5 cm; (b)r = 1.5 cm; (¢)r = 2.5 cm.
(d) What uniform surface charge density should be established at » = 3 cm to
cause D =0atr = 3.5 cm?

Ans. 796a, uC/m?; 977a, nC/m?; 40.8a, nC/m?; —28.3 uC/m?
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3.4 APPLICATION OF GAUSS’S LAW:
DIFFERENTIAL VOLUME ELEMENT

We are now going to apply the methods of Gauss’s law to a slightly different type
of problem—one that does not possess any symmetry at all. At first glance, it might
seem that our case is hopeless, for without symmetry, a simple gaussian surface cannot
be chosen such that the normal component of D is constant or zero everywhere on
the surface. Without such a surface, the integral cannot be evaluated. There is only
one way to circumvent these difficulties and that is to choose such a very small
closed surface that D is almost constant over the surface, and the small change in
D may be adequately represented by using the first two terms of the Taylor’s-series
expansion for D. The result will become more nearly correct as the volume enclosed
by the gaussian surface decreases, and we intend eventually to allow this volume to
approach zero.

This example also differs from the preceding ones in that we will not obtain the
value of D as our answer but will instead receive some extremely valuable information
about the way D varies in the region of our small surface. This leads directly to one
of Maxwell’s four equations, which are basic to all electromagnetic theory.

Let us consider any point P, shown in Figure 3.6, located by a rectangular
coordinate system. The value of D at the point P may be expressed in rectangular
components, Dy = Dyoa, + D;oa, + D-oa.. We choose as our closed surface the
small rectangular box, centered at P, having sides of lengths Ax, Ay, and Az, and
apply Gauss’s law,

fgn-dszg

In order to evaluate the integral over the closed surface, the integral must be
broken up into six integrals, one over each face,

%Dwz’S:/ +[ +./ +/ +/ +f
S front back left right top bottom

Consider the first of these in detail. Because the surface element is very small, D
is essentially constant (over this portion of the entire closed surface) and

/ = Dfront ° ASfront
front

= Dgont - Ay Az a,
= Dx,frontAy Az

where we have only to approximate the value of D, at this front face. The front face
is at a distance of Ax/2 from P, and hence

A
Dy front = Do + TX x rate of change of D,with x

Ax 0D,
2 0x

o +
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P(x,y,z)
D=D,=D,ya,+D,a,+D,a,

Figure 3.6 A differential-sized gaussian surface about
the point P is used to investigate the space rate of
change of D in the neighborhood of P.

where D, is the value of D, at P, and where a partial derivative must be used to
express the rate of change of D, with x, as D, in general also varies with y and z.
This expression could have been obtained more formally by using the constant term
and the term involving the first derivative in the Taylor’s-series expansion for D, in

the neighborhood of P.
. Ax 0D,
front 2 ox

We now have
Consider now the integral over the back surface,

/ = Dback ° ASback
back

= Dpaek - (_Ay Az ax)

= _DxfbackAy Az
and
. Ax 0D,
Dx,back - DxO - 7 Ix
giving

. Ax 90D,
= |—Dy+ — Ay Az
back 2 ox

If we combine these two integrals, we have

. 0Dy
+ = Ax Ay Az
front back dx
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By exactly the same process we find that

. D,
+ = —Ax Ay Az
right left 8y

[t
top bottom

and these results may be collected to yield

. (9D, 9D, 0D,
D-dS = +—+ Ax Ay Az
S ox ay 0z

and

oD,
Ax Ay Az
0z

or

oD oD aD,
%D-dS:Qi T+ 2= ) Av (7)
s dx ay az

The expression is an approximation which becomes better as Av becomes
smaller, and in the following section we shall let the volume Av approach zero.
For the moment, we have applied Gauss’s law to the closed surface surrounding the
volume element Av and have as a result the approximation (7) stating that

aD, n aD, + aD,
ox ay dz

Charge enclosed in volume Av = < ) x volume Av (8)

Find an approximate value for the total charge enclosed in an incremental volume of
107" m* located at the origin, if D = e™*siny a, — e~ cos y a, + 2za, C/m?.

Solution. We first evaluate the three partial derivatives in (8):

oD,
ax
oD,
Ay
aD,
az

= —e 'siny
=e “siny

=2

At the origin, the first two expressions are zero, and the last is 2. Thus, we find that
the charge enclosed in a small volume element there must be approximately 2Av. If
Av is 1072 m?, then we have enclosed about 2 nC.
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D3.6. Infreespace, letD = 8xyz*a, +4xzz4ay +16x%yz3a. pC/m?. (a) Find
the total electric flux passing through the rectangular surface z = 2, 0 <
x < 2,1 <y < 3,in the a, direction. (b) Find E at P(2, —1, 3). (c¢) Find
an approximate value for the total charge contained in an incremental sphere

located at P(2, —1, 3) and having a volume of 10~'? m3.

Ans. 1365 pC; —146.4a, + 146.4a, — 195.2a,V/m; —2.38 x 10721 C

i)

Interactives

3.5 DIVERGENCE AND MAXWELL’S
FIRST EQUATION

We will now obtain an exact relationship from (7), by allowing the volume element
Av to shrink to zero. We write this equation as

dD, 3D, 3D , D-dS
+ 24+ = zllmL—hmgzpv ©)
ax ay 0z

Av—0 Av o Av—0 Avp
in which the charge density, p,, is identified in the second equality.
The methods of the previous section could have been used on any vector A to
find fs A - dS for a small closed surface, leading to

04, 04 04, . A-dS
— + = lim JsA-dS (10)
ax ay 0z

o Av—0 Av
where A could represent velocity, temperature gradient, force, or any other vector
field.
This operation appeared so many times in physical investigations in the last cen-
tury that it received a descriptive name, divergence. The divergence of A is defined as

. . . fgA-dS
Divergence of A = divA = lim ——
Av—0 Av

(1)

and is usually abbreviated div A. The physical interpretation of the divergence of a
vector is obtained by describing carefully the operations implied by the right-hand
side of (11), where we shall consider A to be a member of the flux-density family of
vectors in order to aid the physical interpretation.

The divergence of the vector flux density A is the outflow of flux from a small closed surface
per unit volume as the volume shrinks to zero.

The physical interpretation of divergence afforded by this statement is often
useful in obtaining qualitative information about the divergence of a vector field
without resorting to a mathematical investigation. For instance, let us consider the
divergence of the velocity of water in a bathtub after the drain has been opened. The
net outflow of water through any closed surface lying entirely within the water must
be zero, for water is essentially incompressible, and the water entering and leaving
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different regions of the closed surface must be equal. Hence the divergence of this
velocity is zero.

If, however, we consider the velocity of the air in a tire that has just been punc-
tured by a nail, we realize that the air is expanding as the pressure drops, and that
consequently there is a net outflow from any closed surface lying within the tire. The
divergence of this velocity is therefore greater than zero.

A positive divergence for any vector quantity indicates a source of that vector
quantity at that point. Similarly, a negative divergence indicates a sink. Because the
divergence of the water velocity above is zero, no source or sink exists.® The expanding
air, however, produces a positive divergence of the velocity, and each interior point
may be considered a source.

Writing (9) with our new term, we have

D aD D,
divD = =+ —2 4 (rectangular) (12)
ax ay 0z

This expression is again of a form that does not involve the charge density. It is the
result of applying the definition of divergence (11) to a differential volume element
in rectangular coordinates.

If a differential volume unit p dp d¢ dz in cylindrical coordinates, or 72 sin 6 dr
d0 d¢ in spherical coordinates, had been chosen, expressions for divergence involving
the components of the vector in the particular coordinate system and involving partial
derivatives with respect to the variables of that system would have been obtained.
These expressions are obtained in Appendix A and are given here for convenience:

1 aD, oD, C
divD = — (p )= ¢"’ (cylindrical) (13)
‘ 19 , 1 1 3D, .
divD = 2 5(1’ D,) + 0 30 Dy) + s % (spherical) | (14)

These relationships are also shown inside the back cover for easy reference.

It should be noted that the divergence is an operation which is performed on a
vector, but that the result is a scalar. We should recall that, in a somewhat similar way,
the dot or scalar product was a multiplication of two vectors which yielded a scalar.

For some reason, it is a common mistake on meeting divergence for the first
time to impart a vector quality to the operation by scattering unit vectors around in

3 Having chosen a differential element of volume within the water, the gradual decrease in water level
with time will eventually cause the volume element to lie above the surface of the water. At the instant
the surface of the water intersects the volume element, the divergence is positive and the small volume
is a source. This complication is avoided above by specifying an integral point.
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the partial derivatives. Divergence merely tells us how much flux is leaving a small
volume on a per-unit-volume basis; no direction is associated with it.

We can illustrate the concept of divergence by continuing with the example at
the end of Section 3.4.

Find div D at the origin if D = e™“sinya, —e " cosya, + 2za..

Solution. We use (10) to obtain

oD , 9D, D
dx ay daz
=—eFsiny4+eFsiny+2=2

divD =

The value is the constant 2, regardless of location.
If the units of D are C/m?, then the units of div D are C/m>. This is a volume charge
density, a concept discussed in the next section.

D3.7. In each of the following parts, find a numerical value for div D at the
point specified: (@) D = (2xyz — y%)a, + (x’z — 2xy)a, + x’ya.C/m* at
P4(2,3,—1); (b)) D = 2pz*sin* ¢ a, + pz° sin2¢ a, + 2p°z sin’ ¢ a,C/m? at
Pg(p =2, =110°,z = —1); (c) D = 2rsinf cos ¢ a, + r cosf cos¢p ag —
rsingay C/m* at Po(r = 1.5, 60 = 30°, ¢ = 50°).

Ans. —10.00; 9.06; 1.29

Finally, we can combine Egs. (9) and (12) and form the relation between electric

flux density and charge density:
divD = p, (15)

This is the first of Maxwell’s four equations as they apply to electrostatics and
steady magnetic fields, and it states that the electric flux per unit volume leaving a
vanishingly small volume unit is exactly equal to the volume charge density there.
This equation is aptly called the point form of Gauss’s law. Gauss’s law relates the flux
leaving any closed surface to the charge enclosed, and Maxwell’s first equation makes
an identical statement on a per-unit-volume basis for a vanishingly small volume, or
at a point. Because the divergence may be expressed as the sum of three partial
derivatives, Maxwell’s first equation is also described as the differential-equation
form of Gauss’s law, and conversely, Gauss’s law is recognized as the integral form
of Maxwell’s first equation.

As a specific illustration, let us consider the divergence of D in the region about
a point charge Q located at the origin. We have the field

Y

= —ar
4y
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and use (14), the expression for divergence in spherical coordinates:

1 ad 1 oD
— — (Dysinf) + —— —2
rsinf 96 rsinf d¢

Because Dy and Dy are zero, we have

1 d 0
divD=— —(r* =0 ifr #0
v r2 dr (r 47rr2> ifr #0)
Thus, p, = 0 everywhere except at the origin, where it is infinite.
The divergence operation is not limited to electric flux density; it can be applied
to any vector field. We will apply it to several other electromagnetic fields in the
coming chapters.

1 o
divD=— —(’D,) +
re or

D3.8. Determine an expression for the volume charge density associated with

4 P o
cach D field: (1) D = —2a, + —a, — =2a: () D = zsinga, +
Z 7 zZ

zcospay, + psinga,; (c) D =siné sing a, + cos O sin¢p ay + cos ¢ a,.

4
Ans. ~2(x? +2%);0;0.
Z

3.6 THE VECTOR OPERATOR V
AND THE DIVERGENCE THEOREM

If we remind ourselves again that divergence is an operation on a vector yielding a

scalar result, just as the dot product of two vectors gives a scalar result, it seems possi-

ble that we can find something that may be dotted formally with D to yield the scalar
aD, n oD, N oD

ax ay dz

Obviously, this cannot be accomplished by using a dot product; the process must be

a dot operation.
With this in mind, we define the del operator V as a vector operator,

V—8a+aa+8a (16)
Cax oy Y 8z

Similar scalar operators appear in several methods of solving differential equations

where we often let D replace d/dx, D? replace d?/dx?, and so forth.* We agree on

defining V that it shall be treated in every way as an ordinary vector with the one

important exception that partial derivatives result instead of products of scalars.
Consider V - D, signifying

d d 0
V-D= (aax + Say + Eaz> '(Dxax + Dyay + DZaZ)

4 This scalar operator D, which will not appear again, is not to be confused with the electric flux density.
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We first consider the dot products of the unit vectors, discarding the six zero terms,
and obtain the result that we recognize as the divergence of D:

oD, 0D, 0D;
= +——+
ax ay dz

V-D = div(D)

The use of V - D is much more prevalent than that of div D, although both usages
have their advantages. Writing V - D allows us to obtain simply and quickly the correct
partial derivatives, but only in rectangular coordinates, as we will see. On the other
hand, div D is an excellent reminder of the physical interpretation of divergence.
We shall use the operator notation V - D from now on to indicate the divergence
operation.

The vector operator V is used not only with divergence, but also with several
other very important operations that appear later. One of these is Vu, where u is any
scalar field, and leads to

v ad a a ou du du
u = (aax + 53), + Eaz) u = aax + gay + a—zaz

The V operator does not have a specific form in other coordinate systems. If we
are considering D in cylindrical coordinates, then V - D still indicates the divergence
of D, or

vopo Ll D ppys L e 0D
TP 9 T ez

where this expression has been taken from Section 3.5. We have no form for V itself
to help us obtain this sum of partial derivatives. This means that Vu, as yet unnamed
but easily written in rectangular coordinates, cannot be expressed by us at this time
in cylindrical coordinates. Such an expression will be obtained when Vu is defined
in Chapter 4.

We close our discussion of divergence by presenting a theorem that will be needed
several times in later chapters, the divergence theorem. This theorem applies to any
vector field for which the appropriate partial derivatives exist, although it is easiest
for us to develop it for the electric flux density. We have actually obtained it already
and now have little more to do than point it out and name it, for starting from Gauss’s

law, we have
fD-dS: Q:/ pvdv:/ V-.Ddv
N vol vol

The first and last expressions constitute the divergence theorem,

fD-dS:/ V.Ddv (17)
S vol

which may be stated as follows:

The integral of the normal component of any vector field over a closed surface is equal to
the integral of the divergence of this vector field throughout the volume enclosed by the
closed surface.
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/ Closed surface S
—_—

~ / —_—
PN \
Volume v
Figure 3.7 The divergence theorem states that the total
flux crossing the closed surface is equal to the integral of

the divergence of the flux density throughout the enclosed
volume. The volume is shown here in cross section.

Again, we emphasize that the divergence theorem is true for any vector field,
although we have obtained it specifically for the electric flux density D, and we will
have occasion later to apply it to several different fields. Its benefits derive from the
fact that it relates a triple integration throughout some volume to a double integration
over the surface of that volume. For example, it is much easier to look for leaks in
a bottle full of some agitated liquid by inspecting the surface than by calculating the
velocity at every internal point.

The divergence theorem becomes obvious physically if we consider a volume v,
shown in cross section in Figure 3.7, which is surrounded by a closed surface S.
Division of the volume into a number of small compartments of differential size and
consideration of one cell show that the flux diverging from such a cell enfers, or
converges on, the adjacent cells unless the cell contains a portion of the outer surface.
In summary, the divergence of the flux density throughout a volume leads, then, to
the same result as determining the net flux crossing the enclosing surface.

Evaluate both sides of the divergence theorem for the field D = 2xya, + x?a, C/m?
and the rectangular parellelepiped formed by the planes x = O and 1, y = 0 and 2,
and z = 0 and 3.

Solution. Evaluating the surface integral first, we note that D is parallel to the sur-
faces at z = O and z = 3, so D-dS = 0 there. For the remaining four surfaces
we have

yg D.ds = /0 3 /0 D)o (—dydzay) + /0 3 fo D) - (dydza)

n /0 ’ /0 I(D)yzo.(_dx dza,)+ fo 3 /O 1(D)y:z.(alxalzay)
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3 2 3 2
_ / / (D2 )scody dz + / f (D2)eordy d=
0 0 0 0
3 1 3 1
_/ [ (Dy)y=0dx dz +/ / (Dy)y=2dx dz
0 0 0 0

However, (Dy)y=0 = 0, and (D,),=0 = (D, )y=2, which leaves only

3 2 3 2
fD-dS:/ /(Dx)ledydz=/ / 2ydydz
s 0o Jo o Jo
3
=/ 4dz =12
0

d 3
VD= —QQxy)+ —(x7) =2y
dx ay

Since

the volume integral becomes

3 02 pl 3 p2
fV-de:f//Zydxdydz://Zydydz
vol 0o Jo Jo 0o Jo

3

=/ 4dz =12
0

and the check is accomplished. Remembering Gauss’s law, we see that we have also
determined that a total charge of 12 C lies within this parallelepiped.

D3.9. Given the field D = 6p sin %(ﬁ a,+1.5p cos %q) a, C/m?, evaluate both
sides of the divergence theorem for the region bounded by p = 2, ¢ = 0,
¢=m,z=0,andz = 5.

Ans. 225;225
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CHAPTER 3 PROBLEMS
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3.6l

3.71

38l

Suppose that the Faraday concentric sphere experiment is performed in free
space using a central charge at the origin, Q1, and with hemispheres of radius
a. A second charge Q; (this time a point charge) is located at distance R
from Q;, where R >> a. (a) What is the force on the point charge before the
hemispheres are assembled around Q,? (b) What is the force on the point
charge after the hemispheres are assembled but before they are discharged?
(c) What is the force on the point charge after the hemispheres are assembled
and after they are discharged? (d) Qualitatively, describe what happens as O,
is moved toward the sphere assembly to the extent that the condition R >> a
is no longer valid.

An electric field in free space is E = (522 /€() 4. V/m. Find the total charge
contained within a cube, centered at the origin, of 4-m side length, in which
all sides are parallel to coordinate axes (and therefore each side intersects an
axis at £2).

The cylindrical surface p = 8 cm contains the surface charge density, ps =
5¢72%1 nC/m?. (@) What is the total amount of charge present? (b) How
much electric flux leaves the surface p = 8 cm, 1 cm < z < 5 cm,

30° < ¢ < 90°?

An electric field in free space is E = (5z° /) 4. V/m. Find the total charge
contained within a sphere of 3-m radius, centered at the origin.

Let D = 4xya, + 2(x* + z?)a, + 4yza, nC/m* and evaluate surface integrals
to find the total charge enclosed in the rectangular parallelepiped 0 < x < 2,
0<y<3,0<z<5m.

In free space, a volume charge of constant density p, = py exists within the
region —o0 < x < 00, —00 < y < oo, and —d/2 <z < d/2.Find D and E
everywhere.

Volume charge density is located in free space as p, = 2e~ %% nC/m?3 for

0 <r < 1 mm, and p, = 0 elsewhere. () Find the total charge enclosed by
the spherical surface » = 1 mm. (b) By using Gauss’s law, calculate the value
of D, on the surface r = 1 mm.

Use Gauss’s law in integral form to show that an inverse distance field in
spherical coordinates, D = Aa, /r, where A is a constant, requires every
spherical shell of 1 m thickness to contain 474 coulombs of charge. Does
this indicate a continuous charge distribution? If so, find the charge density
variation with .
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398 A uniform volume charge density of 80 uC/m? is present throughout the
region § mm < r < 10 mm. Let p, = 0 for 0 < < 8 mm. (a) Find the total
charge inside the spherical surface » = 10 mm. (b) Find D, atr = 10 mm.
(c) If there is no charge for » > 10 mm, find D, atr = 20 mm.

3100 An infinitely long cylindrical dielectric of radius b contains charge within its
volume of density p, = ap?, where a is a constant. Find the electric field
strength, E, both inside and outside the cylinder.

3118 m cylindrical coordinates, let p, = 0 for p < 1 mm, p, = 2sin(2000
7p) nC/m? for l mm < p < 1.5 mm, and p, = 0 for p > 1.5 mm. Find D
everywhere.

3.12 | The sun radiates a total power of about 3.86 x 10%° watts (W). If we imagine
the sun’s surface to be marked off in latitude and longitude and assume
uniform radiation, (a) what power is radiated by the region lying between
latitude 50° N and 60° N and longitude 12° W and 27° W? (b) What is the
power density on a spherical surface 93,000,000 miles from the sun in W/m??

31310 Spherical surfaces at » = 2, 4, and 6 m carry uniform surface charge
densities of 20 nC/m?, —4 nC/m?, and pso, respectively. (a) Find D atr = 1,
3, and 5 m. (b) Determine pgy suchthat D = 0 atr = 7 m.

3.14 1 A certain light-emitting diode (LED) is centered at the origin with its surface
in the xy plane. At far distances, the LED appears as a point, but the glowing
surface geometry produces a far-field radiation pattern that follows a raised
cosine law: that is, the optical power (flux) density in watts/m? is given in
spherical coordinates by

Y- a, watts/m?
r

where 0 is the angle measured with respect to the direction that is normal to
the LED surface (in this case, the z axis), and r is the radial distance from the
origin at which the power is detected. (a) In terms of Py, find the total power
in watts emitted in the upper half-space by the LED; () Find the cone angle,
01, within which half the total power is radiated, that is, within the range

0 < 0 < 6y; (c) An optical detector, having a 1-mm? cross-sectional area, is
positioned at » = 1 m and at & = 45°, such that it faces the LED. If one
milliwatt is measured by the detector, what (to a very good estimate) is the
value of Py?

3.151 Volume charge density is located as follows: p, = 0 for p < 1 mm and for
p >2mm, p, = 4p uC/m?® for 1 < p < 2 mm. () Calculate the total charge
in the region 0 < p < p1,0 <z < L, where | < p; < 2 mm. (b) Use
Gauss’s law to determine D, at p = p;. (c) Evaluate D, at p = 0.8 mm,
1.6 mm, and 2.4 mm.

3.16 § An electric flux density is given by D = Dy a,, where Dy is a given constant.
(a) What charge density generates this field? (b) For the specified field, what
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total charge is contained within a cylinder of radius a and height b, where the
cylinder axis is the z axis?

3.171 A cube is defined by 1 < x, y,z < 1.2. If D = 2x%a, + 3x%%a, C/m’
(a) Apply Gauss’s law to find the total flux leaving the closed surface of the
cube. (b) Evaluate V - D at the center of the cube. (¢) Estimate the total
charge enclosed within the cube by using Eq. (8).

3.18 ! State whether the divergence of the following vector fields is positive,
negative, or zero: (a) the thermal energy flow in J/(m? — s) at any point in a
freezing ice cube; (b) the current density in A/m? in a bus bar carrying direct
current; (c) the mass flow rate in kg/(m? — s) below the surface of water in a
basin, in which the water is circulating clockwise as viewed from above.

3.19 i A spherical surface of radius 3 mm is centered at P(4, 1, 5) in free space. Let
D = xa, C/m?. Use the results of Section 3.4 to estimate the net electric flux
leaving the spherical surface.

3.20 § A radial electric field distribution in free space is given in spherical

coordinates as:
_Tbo

E1_3—60ar r <a)
2 3.3
E2=(a360—:2)p03r (afrﬁb)
Qa® —b)p
E3=T2)03r (r =)

where pg, a, and b are constants. (a) Determine the volume charge density in
the entire region (0 < r < 00) by the appropriate use of V- D = p,. (b) In
terms of given parameters, find the total charge, O, within a sphere of radius
r wherer > b.

3.211 Calculate V - D at the point specified if (a) D = (1/z?)[10xyz a, +
5x’za, +(2z2° — 5x%y)a.] at P(=2,3,5); (b)) D = 5z% a, 4+ 10pz a, at
P(3,—-45°,5); (c) D = 2rsinf sing a, 4+ r cosf sin¢g ay + r cos ¢ a, at
P(3, 45°, —45°).

3221 (a) A flux density field is given as F; = 5a,. Evaluate the outward flux of F,
through the hemispherical surface,r = a,0 <6 < 7/2,0 < ¢ < 2m.
(b) What simple observation would have saved a lot of work in part a?
(c) Now suppose the field is given by F, = 5za,. Using the appropriate
surface integrals, evaluate the net outward flux of F, through the closed
surface consisting of the hemisphere of part a and its circular base in the xy
plane. (d) Repeat part ¢ by using the divergence theorem and an appropriate
volume integral.

3.2310 (a) A point charge Q lies at the origin. Show that div D is zero everywhere
except at the origin. (b) Replace the point charge with a uniform volume
charge density p, for 0 < r < a. Relate p,¢ to O and a so that the total
charge is the same. Find div D everywhere.
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3240 na region in free space, electric flux density is found to be

D po(z +2d)a, C/m? (-2d <z<0)

- { —po(z —2d)a, C/m> (0 <z <2d)

Everywhere else, D = 0. (a) Using V - D = p,, find the volume charge
density as a function of position everywhere. (b) Determine the electric flux
that passes through the surface definedbyz =0, —a <x <a, —b <y <b.
(c) Determine the total charge contained within the region —a < x < a,

—b <y <b, —d <z <d.(d) Determine the total charge contained within
the region —a <x <a, b <y <b, 0<z <2d.

3.25 | Within the spherical shell, 3 < r < 4 m, the electric flux density is given as
D = 5(r — 3)’ a, C/m%. (a) What is the volume charge density at » = 4?
(b) What is the electric flux density at 7 = 4? (¢) How much electric flux
leaves the sphere » = 4? (d) How much charge is contained within the sphere
r=4?

3.26 0 If we have a perfect gas of mass density p,, kg/m>, and we assign a
velocity U m/s to each differential element, then the mass flow rate is
omU kg/(m? — s). Physical reasoning then leads to the continuity equation,
V - (pnU) = —0p,,/0t. (a) Explain in words the physical interpretation of
this equation. (b) Show that 9% omU-dS = —dM/dt, where M is the total
mass of the gas within the constant closed surface S, and explain the physical
significance of the equation.

3271 Let D = 5.00/2a, mC/m? for » < 0.08 m and D = 0.205 a, /72 uC/m? for
r > 0.08 m. («) Find p, for r = 0.06 m. (b) Find p, forr = 0.1 m. (¢) What
surface charge density could be located at » = 0.08 m to cause D = 0 for
r > 0.08 m?

3281 Repeat Problem 3.8, but use V - D = p, and take an appropriate volume
integral.

3.29 l In the region of free space that includes the volume 2 < x, y,z < 3,D =
Z%(yz a, +xza, —2xya;) C/m?. (a) Evaluate the volume integral side of
the divergence theorem for the volume defined here. (b) Evaluate the surface
integral side for the corresponding closed surface.

3301 (a) Use Maxwell’s first equation, V - D = p,, to describe the variation of the
electric field intensity with x in a region in which no charge density exists
and in which a nonhomogeneous dielectric has a permittivity that increases
exponentially with x. The field has an x component only; (b) repeat part (a),
but with a radially directed electric field (spherical coordinates), in which
again p, = 0, but in which the permittivity decreases exponentially with 7.

3.31 ! Given the flux density D = 1r—6 cos(20) ag C/m?, use two different methods to
find the total charge within the region 1 <7 <2m, 1 <6 < 2 rad,
1 < ¢ < 2rad.
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finding the electric field about several simple distributions of charge, and also with

Gauss’s law and its application in determining the field about some symmetrical
charge arrangements. The use of Gauss’s law was invariably easier for these highly
symmetrical distributions because the problem of integration always disappeared
when the proper closed surface was chosen.

However, if we had attempted to find a slightly more complicated field, such as
that of two unlike point charges separated by a small distance, we would have found it
impossible to choose a suitable gaussian surface and obtain an answer. Coulomb’s law,
however, is more powerful and enables us to solve problems for which Gauss’s law is
notapplicable. The application of Coulomb’s law is laborious, detailed, and often quite
complex, the reason for this being precisely the fact that the electric field intensity,
a vector field, must be found directly from the charge distribution. Three different
integrations are needed in general, one for each component, and the resolution of the
vector into components usually adds to the complexity of the integrals.

Certainly it would be desirable if we could find some as yet undefined scalar
function with a single integration and then determine the electric field from this scalar
by some simple straightforward procedure, such as differentiation.

This scalar function does exist and is known as the potential or potential field.
We shall find that it has a very real physical interpretation and is more familiar to
most of us than is the electric field which it will be used to find.

We should expect, then, to be equipped soon with a third method of finding
electric fields—a single scalar integration, although not always as simple as we might
wish, followed by a pleasant differentiation.

I n Chapters 2 and 3 we became acquainted with Coulomb’s law and its use in
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4.1 ENERGY EXPENDED IN MOVING A POINT
CHARGE IN AN ELECTRIC FIELD

The electric field intensity was defined as the force on a unit test charge at that point
at which we wish to find the value of this vector field. If we attempt to move the test
charge against the electric field, we have to exert a force equal and opposite to that
exerted by the field, and this requires us to expend energy or do work. If we wish to
move the charge in the direction of the field, our energy expenditure turns out to be
negative; we do not do the work, the field does.

Suppose we wish to move a charge Q a distance dL in an electric field E. The
force on Q arising from the electric field is

»

where the subscript reminds us that this force arises from the field. The component
of this force in the direction dL which we must overcome is

FEL :F-aL = QE‘&L

where a; = a unit vector in the direction of dL.
The force that we must apply is equal and opposite to the force associated with
the field,

Fappl = —QE ar

and the expenditure of energy is the product of the force and distance. That is, the
differential work done by an external source moving charge Q isdW = —QE-a;dL,

or dW = —QE-dL (2)

where we have replaced a; dL by the simpler expression dL.

This differential amount of work required may be zero under several conditions
determined easily from Eq. (2). There are the trivial conditions for which E, O, or dLL
is zero, and a much more important case in which E and dL are perpendicular. Here
the charge is moved always in a direction at right angles to the electric field. We can
draw on a good analogy between the electric field and the gravitational field, where,
again, energy must be expended to move against the field. Sliding a mass around with
constant velocity on a frictionless surface is an effortless process if the mass is moved
along a constant elevation contour; positive or negative work must be done in moving
it to a higher or lower elevation, respectively.

Returning to the charge in the electric field, the work required to move the charge
a finite distance must be determined by integrating,

final
W=— E-dL 3)

init
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where the path must be specified before the integral can be evaluated. The charge is
assumed to be at rest at both its initial and final positions.

This definite integral is basic to field theory, and we shall devote the following
section to its interpretation and evaluation.

D4.1. Given the electric field E = %(Sxyzax + 4xzzay —4x%ya.) V/m, find
the differential amount of work doné in moving a 6-nC charge a distance of
2 um, starting at P(2, —2, 3) and proceeding in the direction a; = (a) —gax +
38, + 2a,; () $a, — 22, — 2a;; (o) Ja, + fa,.

Ans. —149.3 {1; 149.3 {J; 0

4.2 THE LINE INTEGRAL

The integral expression for the work done in moving a point charge O from one
position to another, Eq. (3), is an example of a line integral, which in vector-analysis
notation always takes the form of the integral along some prescribed path of the dot
product of a vector field and a differential vector path length /L. Without using vector
analysis we should have to write
final
W=-0 EpdL
init

where £; = component of E along dL.

A line integral is like many other integrals which appear in advanced analysis,
including the surface integral appearing in Gauss’s law, in that it is essentially de-
scriptive. We like to look at it much more than we like to work it out. It tells us to
choose a path, break it up into a large number of very small segments, multiply the
component of the field along each segment by the length of the segment, and then
add the results for all the segments. This is a summation, of course, and the integral
is obtained exactly only when the number of segments becomes infinite.

This procedure is indicated in Figure 4.1, where a path has been chosen from
an initial position B to a final position! 4 and a uniform electric field is selected
for simplicity. The path is divided into six segments, AL, AL,, ..., ALg, and the
components of E along each segment are denoted by £, E;», ..., Er¢. The work
involved in moving a charge Q from B to 4 is then approximately

W=—Q(EAL + EpALy+ -+ ErsALg)
or, using vector notation,

W =—Q@;-AL; +E;- AL, + - - - + Eg - ALg)

! The final position is given the designation 4 to correspond with the convention for potential
difference, as discussed in the following section.
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Final position A
Epe /. Als

Initial position

Figure 4.1 A graphical interpretation of a line integral in a uniform field. The line
integral of E between points B and A is independent of the path selected, even in a
nonuniform field; this result is not, in general, true for time-varying fields.

and because we have assumed a uniform field,

Ei=E,=---=E
W = —QE-(AL; + ALy + --- + ALg)
What is this sum of vector segments in the preceding parentheses? Vectors add

by the parallelogram law, and the sum is just the vector directed from the initial point
B to the final point 4, L 4. Therefore

W =—QFE-Lgy (uniform E) 4)

Remembering the summation interpretation of the line integral, this result for the
uniform field can be obtained rapidly now from the integral expression

4
W= —Q/ E.dL (5)
B
as applied to a uniform field
4
W =—QE- / dL
B

where the last integral becomes L 4 and

W =—QE-Lgy (uniform E)
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For this special case of a uniform electric field intensity, we should note that the
work involved in moving the charge depends only on O, E, and L 4, a vector drawn
from the initial to the final point of the path chosen. It does not depend on the particular
path we have selected along which to carry the charge. We may proceed from B to 4
on a straight line or via the Old Chisholm Trail; the answer is the same. We show in
Section 4.5 that an identical statement may be made for any nonuniform (static) E field.

Let us use several examples to illustrate the mechanics of setting up the line
integral appearing in Eq. (5).

We are given the nonuniform field
E = ya, +xa, + 2a;

and we are asked to determine the work expended in carrying 2C from B(1,0, 1) to
A(0.8, 0.6, 1) along the shorter arc of the circle

r4yr=1 z=1

Solution. Weuse W = —Q [ ; E - dL, where E is not necessarily constant. Working
in rectangular coordinates, the differential path dL is dxa, 4 dya, + dza., and the
integral becomes

A
W:—Q/ E-dL
B

4
= —2/ (va, +xa, +2a.)-(dxa, +dya, +dza;)
B

0.8 0.6 1
=—2/ ydx—2[ xdy—4/ dz
1 0 1

where the limits on the integrals have been chosen to agree with the initial and final
values of the appropriate variable of integration. Using the equation of the circular
path (and selecting the sign of the radical which is correct for the quadrant involved),
we have

0.8 0.6
-2 V1I—x2dx -2 V1—3y2dy—0

I 0

0.8 0.6
—[x\/l — x2 +sin”! x]l — [y\/l — y2 4 sin”! y]o
—(0.48 +0.927 — 0 — 1.571) — (0.48 + 0.644 — 0 — 0)
= —0.96]J

S
Il
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Again find the work required to carry 2C from B to 4 in the same field, but this time
use the straight-line path from B to 4.

Solution. We start by determining the equations of the straight line. Any two of the
following three equations for planes passing through the line are sufficient to define
the line:

Ya— VB
y—yp="—"—(x—xp)
X4 —XB
Zy —Z
z—zp=——"(y—yp)
4 — VB
X —Xxp= o _XB(Z_ZB)
Z4 —ZB
From the first equation we have
y=-3(x—-1)
and from the second we obtain
z=1
Thus,
0.8 0.6 1
W:—Z/ ydx—Z/ xdy—4/ dz
1 0 1
0.8 0.6 y
—6 (x—l)dx—Z/ (1——) dy
1 0 3
=-0.961]

This is the same answer we found using the circular path between the same
two points, and it again demonstrates the statement (unproved) that the work done is
independent of the path taken in any electrostatic field.

It should be noted that the equations of the straight line show thatdy = —3 dx and
dx = —% dy. These substitutions may be made in the first two integrals, along with
a change in limits, and the answer may be obtained by evaluating the new integrals.
This method is often simpler if the integrand is a function of only one variable.

Note that the expressions for dL in our three coordinate systems use the dif-
ferential lengths obtained in Chapter 1 (rectangular in Section 1.3, cylindrical in
Section 1.8, and spherical in Section 1.9):

dL =dxa, +dya, +dza; (rectangular) (6)
dL =dpa, + pdpa, +dza, (cylindrical) 7
dL =dra, +rdfay+rsind dpag (spherical) )

The interrelationships among the several variables in each expression are determined
from the specific equations for the path.
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Infinite line
charge p; PL

4

dL=dpa,
dL=p, dpa,

(@) (b

Figure 4.2 (a) A circular path and (b) a radial path along which a charge of Q is carried
in the field of an infinite line charge. No work is expected in the former case.

As a final example illustrating the evaluation of the line integral, we investigate
several paths that we might take near an infinite line charge. The field has been
obtained several times and is entirely in the radial direction,

PL
2mepp

E=F)a, = a,

First we find the work done in carrying the positive charge Q about a circular
path of radius p, centered at the line charge, as illustrated in Figure 4.2a. Without
lifting a pencil, we see that the work must be nil, for the path is always perpendicular
to the electric field intensity, or the force on the charge is always exerted at right
angles to the direction in which we are moving it. For practice, however, we will set
up the integral and obtain the answer.

The differential element dL is chosen in cylindrical coordinates, and the circular
path selected demands that dp and dz be zero, so dL = p; d¢ a,. The work is then

W:_Q/ﬁnal oL . ‘p1d¢a
mic 2meEQp1 | ¢

7 pr
:—Q/ dpa,-a;, =0
0

2mey

We will now carry the charge from p = a to p = b along a radial path
(Figure 4.2b). Here dL = dp a, and

final b
AL pL dp
W=-0 ap-dpap:—Q/ —
init 27T €P a 2mey p
or

b

W=-— Op1 In —

2mwey  a

Because b is larger than a, In(b/a) is positive, and the work done is negative,
indicating that the external source that is moving the charge receives energy.
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One of the pitfalls in evaluating line integrals is a tendency to use too many minus
signs when a charge is moved in the direction of a decreasing coordinate value. This is
taken care of completely by the limits on the integral, and no misguided attempt should
be made to change the sign of dL. Suppose we carry Q from b to a (Figure 4.2b).
We still have dLL = dp a, and show the different direction by recognizing p = b as
the initial point and p = a as the final point,

W:_Q/” pr_dp _ Opr lng
py 2mey p 2mey  a

This is the negative of the previous answer and is obviously correct.

D4.2. Calculate the work done in moving a 4-C charge from B(1, 0, 0) to
A(0, 2, 0) along the path y = 2 — 2x, z = 0 in the field E = (a) 5a,V/m;
(b) 5xa,V/m; (c) Sxa, + Sya,V/m.

Ans. 20J;107J; =307

D4.3. We will see later that a time-varying E field need not be conservative.
(If it is not conservative, the work expressed by Eq. (3) may be a function of the
path used.) Let E = ya, V/m at a certain instant of time, and calculate the work
required to move a 3-C charge from (1, 3, 5) to (2, 0, 3) along the straight-line
segments joining: (a) (1, 3,5)to (2, 3,5)to (2,0, 5) to (2,0, 3); (b) (1, 3,5) to
(1,3,3)to (1,0, 3) to (2, 0, 3).

Ans. -91J;0

(i)
lustations

4.3 DEFINITION OF POTENTIAL
DIFFERENCE AND POTENTIAL

We are now ready to define a new concept from the expression for the work done
by an external source in moving a charge O from one point to another in an electric
field E, “Potential difference and work.”

final
W=— E-dL

init

In much the same way as we defined the electric field intensity as the force on a
unit test charge, we now define potential difference V as the work done (by an external
source) in moving a unit positive charge from one point to another in an electric field,

final
Potential difference = V' = — / E-dL )

init
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We have to agree on the direction of movement, and we do this by stating that
V 4 signifies the potential difference between points 4 and B and is the work done in
moving the unit charge from B (last named) to 4 (first named). Thus, in determining
V4p, B is the initial point and A4 is the final point. The reason for this somewhat
peculiar definition will become clearer shortly, when it is seen that the initial point B
is often taken at infinity, whereas the final point 4 represents the fixed position of the
charge; point A4 is thus inherently more significant.

Potential difference is measured in joules per coulomb, for which the volt is
defined as a more common unit, abbreviated as V. Hence the potential difference
between points 4 and B is

A
Vw:—/‘EdLV (10)
B

and V,p is positive if work is done in carrying the positive charge from B to 4.
From the line-charge example of Section 4.2 we found that the work done in
taking a charge O from p = b to p = a was

Thus, the potential difference between points at p = a and p = b is

w b
V= = =Pt 1n?2 (11)
O 2mey a
We can try out this definition by finding the potential difference between points
A and B atradial distances r 4 and r 3 from a point charge Q. Choosing an origin at O,

E=F,a = #ar
and
dL = dr a,
we have

A r4 1 1
VAB:—/ E°dL:—/ der: 0 (———) (12)
B e 47'[607” 47T€0 V4 rp

If rz > ry, the potential difference V45 is positive, indicating that energy is
expended by the external source in bringing the positive charge from rp to 4. This
agrees with the physical picture showing the two like charges repelling each other.

It is often convenient to speak of the potential, or absolute potential, of a point,
rather than the potential difference between two points, but this means only that we
agree to measure every potential difference with respect to a specified reference point
that we consider to have zero potential. Common agreement must be reached on
the zero reference before a statement of the potential has any significance. A person
having one hand on the deflection plates of a cathode-ray tube that are “at a potential
of 50 V”” and the other hand on the cathode terminal would probably be too shaken up
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to understand that the cathode is not the zero reference, but that all potentials in that
circuit are customarily measured with respect to the metallic shield about the tube.
The cathode may be several thousands of volts negative with respect to the shield.

Perhaps the most universal zero reference point in experimental or physical po-
tential measurements is “ground,” by which we mean the potential of the surface
region of the earth itself. Theoretically, we usually represent this surface by an infinite
plane at zero potential, although some large-scale problems, such as those involving
propagation across the Atlantic Ocean, require a spherical surface at zero potential.

Another widely used reference “point” is infinity. This usually appears in theo-
retical problems approximating a physical situation in which the earth is relatively far
removed from the region in which we are interested, such as the static field near the
wing tip of an airplane that has acquired a charge in flying through a thunderhead, or
the field inside an atom. Working with the gravitational potential field on earth, the
zero reference is normally taken at sea level; for an interplanetary mission, however,
the zero reference is more conveniently selected at infinity.

A cylindrical surface of some definite radius may occasionally be used as a zero
reference when cylindrical symmetry is present and infinity proves inconvenient. In a
coaxial cable the outer conductor is selected as the zero reference for potential. And,
of course, there are numerous special problems, such as those for which a two-sheeted
hyperboloid or an oblate spheroid must be selected as the zero-potential reference,
but these need not concern us immediately.

If the potential at point 4 is V4 and that at B is Vp, then

Vap=V4— Vs (13)

where we necessarily agree that V4 and V' shall have the same zero reference point.

D4.4. Anelectric field is expressed in rectangular coordinates by E = 6x2a, +
6ya, +4a.V/m. Find: (a) Vv if points M and N are specified by M(2, 6, —1)
and N(=3,-3,2); (b) Vyy if V=0 at Q(4, =2, —=35); (¢) Vy if V = 2 at
P(1,2,—-4).

Ans. —139.0V; —120.0 V; 19.0 V

4.4 THE POTENTIAL FIELD
OF A POINT CHARGE

In Section 4.3 we found an expression Eq. (12) for the potential difference between
two points located at » = r4 and r = rp in the field of a point charge O placed
at the origin. How might we conveniently define a zero reference for potential? The
simplest possibility is to let /' = 0 at infinity. If we let the point at » = r recede to
infinity, the potential at 4, becomes

Vy= 9

47'[607",4
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or, as there is no reason to identify this point with the 4 subscript,

Y

47[601”

(14)

This expression defines the potential at any point distant » from a point charge O
at the origin, the potential at infinite radius being taken as the zero reference. Returning
to a physical interpretation, we may say that Q/4meyr joules of work must be done
in carrying a unit charge from infinity to any point » meters from the charge Q.

A convenient method to express the potential without selecting a specific zero
reference entails identifying 7 4 as r once again and letting Q /4w e(rp be a constant.
Then

V= o +C (15)

4 €or
and C; may be selected so that /' = 0 at any desired value of ». We could also select
the zero reference indirectly by electing to let V" be Vy at r = ry.

It should be noted that the potential difference between two points is not a func-
tion of Cj.

Equations (14) and (15) represent the potential field of a point charge. The po-
tential is a scalar field and does not involve any unit vectors.

We now define an equipotential surface as a surface composed of all those points
having the same value of potential. All field lines would be perpendicular to such a
surface at the points where they intersect it. Therefore, no work is involved in moving
a unit charge around on an equipotential surface. The equipotential surfaces in the
potential field of a point charge are spheres centered at the point charge.

An inspection of the form of the potential field of a point charge shows that it
is an inverse-distance field, whereas the electric field intensity was found to be an
inverse-square-law function. A similar result occurs for the gravitational force field
of a point mass (inverse-square law) and the gravitational potential field (inverse
distance). The gravitational force exerted by the earth on an object one million miles
from it is four times that exerted on the same object two million miles away. The
kinetic energy given to a freely falling object starting from the end of the universe
with zero velocity, however, is only twice as much at one million miles as it is at two
million miles.

D4.5. A 15-nC point charge is at the origin in free space. Calculate V; if point
P, is located at Pi(—2,3, —1) and (a) V = 0 at (6, 5, 4); (b) V' = 0 at infinity;
(c)V=5Vat(2,0,4).

Ans. 20.67 V;36.0V; 10.89 V

(i)
Mustations
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4.5 THE POTENTIAL FIELD OF A SYSTEM OF
CHARGES: CONSERVATIVE PROPERTY

The potential at a point has been defined as the work done in bringing a unit positive
charge from the zero reference to the point, and we have suspected that this work, and
hence the potential, is independent of the path taken. If it were not, potential would
not be a very useful concept.

Let us now prove our assertion. We do so by beginning with the potential field
of the single point charge for which we showed, in Section 4.4, the independence
with regard to the path, noting that the field is linear with respect to charge so that
superposition is applicable. It will then follow that the potential of a system of charges
has a value at any point which is independent of the path taken in carrying the test
charge to that point.

Thus the potential field of a single point charge, which we shall identify as O,
and locate at ry, involves only the distance |r — r;| from Q) to the point at r where
we are establishing the value of the potential. For a zero reference at infinity, we have

0

Vi) = ————
(I') 47'[60|l‘ — I‘1|

The potential arising from two charges, O at r; and O, at r», is a function only of
[r — ry| and |r — ry[, the distances from Q; and Q; to the field point, respectively.

01 0>

V(r)= +
® 4reglr —ry|  4dmwep|r — 1y

Continuing to add charges, we find that the potential arising from » point charges is

ZOEDY _On (16)

= Ane|r — 1y

If each point charge is now represented as a small element of a continuous volume
charge distribution p, Av, then

pv(rl)Avl pu(rZ)sz pu(rn)Avn
Vr)= R T A
4reglr —ry|  4dmep|r — 1y 4eglr — r,|

As we allow the number of elements to become infinite, we obtain the integral
expression

ol 47T60|l' — l'/|

We have come quite a distance from the potential field of the single point charge,
and it might be helpful to examine Eq. (17) and refresh ourselves as to the meaning of
each term. The potential V' (r) is determined with respect to a zero reference potential
at infinity and is an exact measure of the work done in bringing a unit charge from
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infinity to the field point at r where we are finding the potential. The volume charge
density p,(r") and differential volume element dv’ combine to represent a differential
amount of charge p,(r') dv’ located at r’. The distance |r — r’| is that distance from
the source point to the field point. The integral is a multiple (volume) integral.

If the charge distribution takes the form of a line charge or a surface charge, the
integration is along the line or over the surface:

_ [ eyl

0= [ i e "
_ [ _pstrhas’

0= [ reie e "

The most general expression for potential is obtained by combining Egs. (16)—(19).

These integral expressions for potential in terms of the charge distribution should
be compared with similar expressions for the electric field intensity, such as Eq. (15)
in Section 2.3:

E(r) = / p(@ydv  r—r

o dmeglr — Y/ |2 |r — 1|

The potential again is inverse distance, and the electric field intensity, inverse-
square law. The latter, of course, is also a vector field.

To illustrate the use of one of these potential integrals, we will find /" on the z axis for
a uniform line charge p; in the form of a ring, p = a, in the z = 0 plane, as shown
in Figure 4.3.

Solution. Working with Eq. (18), wehave dL’' = ad¢’,r = za., ¥ = aa,, |[r—r'| =

va? + z2, and

4egn/a? + z2 B 2ep a? + z2

2 /
d
V:/ prade pra
0
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For a zero reference at infinity, then:

1. The potential arising from a single point charge is the work done in carrying a
unit positive charge from infinity to the point at which we desire the potential,
and the work is independent of the path chosen between those two points.

2. The potential field in the presence of a number of point charges is the sum of
the individual potential fields arising from each charge.

3. The potential arising from a number of point charges or any continuous charge
distribution may therefore be found by carrying a unit charge from infinity to
the point in question along any path we choose.
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(0,0, z)

\rfr'\*m

dL'=adg¢'

Figure 4.3 The potential field of a ring of uniform line
charge density is easily obtained from V = [ p, (r')dL’/
(Ameolr —1')).

In other words, the expression for potential (zero reference at infinity),

A
VAz—/ E-dL

o0
or potential difference,
4
VAB:VA_VBZ—/ E-dL
B

is not dependent on the path chosen for the line integral, regardless of the source of
the E field.

This result is often stated concisely by recognizing that no work is done in

carrying the unit charge around any closed path, or

?{E-dL:O (20)

A small circle is placed on the integral sign to indicate the closed nature of the
path. This symbol also appeared in the formulation of Gauss’s law, where a closed
surface integral was used.

Equation (20) is true for static fields, but we will see in Chapter 9 that Faraday
demonstrated it was incomplete when time-varying magnetic fields were present. One
of Maxwell’s greatest contributions to electromagnetic theory was in showing that a
time-varying electric field produces a magnetic field, and therefore we should expect
to find later that Eq. (20) is not correct when either E or the magnetic field varies
with time.

Restricting our attention to the static case where E does not change with time,
consider the dc circuit shown in Figure 4.4. Two points, 4 and B, are marked, and
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LN

R, Ry

B

Figure 4.4 A simple dc-circuit problem that must be
solved by applying § E - dL = O in the form of Kirchhoff's
voltage law.

(20) states that no work is involved in carrying a unit charge from A4 through R, and
R3 to B and back to A through R, or that the sum of the potential differences around
any closed path is zero.

Equation (20) is therefore just a more general form of Kirchhoff’s circuital law
for voltages, more general in that we can apply it to any region where an electric
field exists and we are not restricted to a conventional circuit composed of wires,
resistances, and batteries. Equation (20) must be amended before we can apply it to
time-varying fields.

Any field that satisfies an equation of the form of Eq. (20), (i.e., where the closed
line integral of the field is zero) is said to be a conservative field. The name arises from
the fact that no work is done (or that energy is conserved) around a closed path. The
gravitational field is also conservative, for any energy expended in moving (raising)
an object against the field is recovered exactly when the object is returned (lowered)
to its original position. A nonconservative gravitational field could solve our energy
problems forever.

Given a nonconservative field, it is of course possible that the line integral may
be zero for certain closed paths. For example, consider the force field, F = sinmp a,.
Around a circular path of radius p = p;, we have dL = p d¢ a,, and

2 2
%F-dL = / sinmwpiag - prdg ay = / p18inmp dop
0 0

= 27 p Sin TP,

Theintegraliszeroif p; = 1, 2, 3, ..., etc., butitis not zero for other values of py,
or for most other closed paths, and the given field is not conservative. A conservative
field must yield a zero value for the line integral around every possible closed path.

D4.6. If we take the zero reference for potential at infinity, find the potential
at (0, 0, 2) caused by this charge configuration in free space (@) 12 nC/m on the
line p = 2.5 m, z = 0; (b) point charge of 18 nC at (1, 2, —1); (¢) 12 nC/m on
the line y =2.5,z=0,—1.0 <x < 1.0.

Ans. 529 V;43.2V; 663V
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4.6 POTENTIAL GRADIENT

We now have two methods of determining potential, one directly from the electric field
intensity by means of a line integral, and another from the basic charge distribution
itself by a volume integral. Neither method is very helpful in determining the fields
in most practical problems, however, for as we will see later, neither the electric field
intensity nor the charge distribution is very often known. Preliminary information is
much more apt to consist of a description of two equipotential surfaces, such as the
statement that we have two parallel conductors of circular cross section at potentials
of 100 and —100 V. Perhaps we wish to find the capacitance between the conductors,
or the charge and current distribution on the conductors from which losses may be
calculated.

These quantities may be easily obtained from the potential field, and our im-
mediate goal will be a simple method of finding the electric field intensity from the
potential.

We already have the general line-integral relationship between these quantities,

Vz—/EodL 1)

but this is much easier to use in the reverse direction: given E, find V.
However, Eq. (21) may be applied to a very short element of length AL along
which E is essentially constant, leading to an incremental potential difference AV,

AV = —E- AL (22)

Now consider a general region of space, as shown in Figure 4.5, in which E and
V both change as we move from point to point. Equation (22) tells us to choose an
incremental vector element of length AL = AL a; and multiply its magnitude by

Figure 4.5 A vector incremental element of
length AL is shown making an angle of 6 with an
E field, indicated by its streamlines. The sources
of the field are not shown.
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the component of E in the direction of a; (one interpretation of the dot product) to
obtain the small potential difference between the final and initial points of AL.
If we designate the angle between AL and E as 6, then

AV = —EALcosf

We now pass to the limit and consider the derivative d V' /d L. To do this, we need
to show that /' may be interpreted as a function V(x, y, z). So far, V' is merely the
result of the line integral (21). If we assume a specified starting point or zero reference
and then let our end point be (x, y, z), we know that the result of the integration is a
unique function of the end point (x, y, z) because E is a conservative field. Therefore
V' is a single-valued function V' (x, y, z). We may then pass to the limit and obtain

dv
L= FE cosf

In which direction should AL be placed to obtain a maximum value of AV'?
Remember that E is a definite value at the point at which we are working and is
independent of the direction of AL. The magnitude AL is also constant, and our
variable is a;, the unit vector showing the direction of AL. It is obvious that the
maximum positive increment of potential, A Vp,x, will occur when cos6 is —1, or
AL points in the direction opposite to E. For this condition,

dv
- - F
dL max
This little exercise shows us two characteristics of the relationship between E
and V" at any point:

1. The magnitude of the electric field intensity is given by the maximum value of
the rate of change of potential with distance.

2. This maximum value is obtained when the direction of the distance increment is
opposite to E or, in other words, the direction of E is opposite to the direction in
which the potential is increasing the most rapidly.

We now illustrate these relationships in terms of potential. Figure 4.6 is intended
to show the information we have been given about some potential field. It does this by
showing the equipotential surfaces (shown as lines in the two-dimensional sketch).
We desire information about the electric field intensity at point P. Starting at P, we lay
off a small incremental distance AL in various directions, hunting for that direction
in which the potential is changing (increasing) the most rapidly. From the sketch, this
direction appears to be left and slightly upward. From our second characteristic above,
the electric field intensity is therefore oppositely directed, or to the right and slightly
downward at P. Its magnitude is given by dividing the small increase in potential by
the small element of length.

It seems likely that the direction in which the potential is increasing the most
rapidly is perpendicular to the equipotentials (in the direction of increasing potential),
and this is correct, for if AL is directed along an equipotential, AV = 0 by our
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+40 +30

+50
+20

+60

+70
+80
V=+90 >
Pe

Figure 4.6 A potential field is shown by its equipotential
surfaces. At any point the E field is normal to the
equipotential surface passing through that point and is
directed toward the more negative surfaces.

+10

definition of an equipotential surface. But then
AV =—-E-AL=0

and as neither E nor AL is zero, E must be perpendicular to this AL or perpendicular
to the equipotentials.

Because the potential field information is more likely to be determined first, let
us describe the direction of AL, which leads to a maximum increase in potential
mathematically in terms of the potential field rather than the electric field intensity.
We do this by letting ay be a unit vector normal to the equipotential surface and
directed toward the higher potentials. The electric field intensity is then expressed in
terms of the potential,

dv
dL

which shows that the magnitude of E is given by the maximum space rate of change
of 7 and the direction of E is normal to the equipotential surface (in the direction of
decreasing potential).

Because d V' /d L |max occurs when AL is in the direction of ay, we may remind
ourselves of this fact by letting

ay (23)

max

dv B dv
dL|... dN
and
dv
E=—-—— 24
dNaN (24)

Either Eq. (23) or Eq. (24) provides a physical interpretation of the process of
finding the electric field intensity from the potential. Both are descriptive of a general
procedure, and we do not intend to use them directly to obtain quantitative information.
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This procedure leading from V to E is not unique to this pair of quantities, however,
but has appeared as the relationship between a scalar and a vector field in hydraulics,
thermodynamics, and magnetics, and indeed in almost every field to which vector
analysis has been applied.

The operation on V' by which —E is obtained is known as the gradient, and the
gradient of a scalar field 7" is defined as

dT
Gradientof 7 = grad 7 = — 25
radient o gra dNaN (25)

where ay is a unit vector normal to the equipotential surfaces, and that normal is
chosen, which points in the direction of increasing values of 7.
Using this new term, we now may write the relationship between /" and E as

E = —grad V (26)

Because we have shown that V" is a unique function of x, y, and z, we may take
its total differential
av av v
dV = —dx + —dy + —dz
ax ay a0z

But we also have
dV =—-E-dL=—-E,dx — E,dy — E.dz

Because both expressions are true for any dx, dy, and dz, then

v

E, =——

ax

£ - oV

y = ay

v

E, =——

0z

These results may be combined vectorially to yield
E = 8Va —i—aVa +3Va (27)
N ax " ay Y 8z

and comparing Eqs. (26) and (27) provides us with an expression which may be used
to evaluate the gradient in rectangular coordinates,

av arv arv
grad V= aax 2y gay G Eaz (28)

The gradient of a scalar is a vector, and old quizzes show that the unit vectors
that are often incorrectly added to the divergence expression appear to be those that
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were incorrectly removed from the gradient. Once the physical interpretation of the
gradient, expressed by Eq. (295), is grasped as showing the maximum space rate of
change of a scalar quantity and the direction in which this maximum occurs, the vector
nature of the gradient should be self-evident.

The vector operator

v a n ad n a
= —a, —a —a;
ax y "’ oz

may be used formally as an operator on a scalar, 7', VT, producing
oT oT oT

VI=—a,+—a,+ —a,
ax ay oz

VT = grad T

This allows us to use a very compact expression to relate E and V,

E=-VV (29)

The gradient may be expressed in terms of partial derivatives in other coordinate
systems through the application of its definition Eq. (25). These expressions are
derived in Appendix A and repeated here for convenience when dealing with problems
having cylindrical or spherical symmetry. They also appear inside the back cover.

from which we see that

av av av
VV = —a,+ —a,+ —a. (rectangular) (30)
ox ay 0z
av 1oV aV
VIV = %ap —+ ; ﬁatp —+ gaz (Cylindrical) (31)
av 1oV 1 ar
VV =—a, + - — — — herical 32
8ra +r8939+rsm6 a¢a¢ (spherical) (32)

Note that the denominator of each term has the form of one of the components of L in
that coordinate system, except that partial differentials replace ordinary differentials;
for example, 7 sin @ d¢ becomes » sin6 d¢.

We now illustrate the gradient concept with an example.

Given the potential field, ¥ = 2x?y — 5z, and a point P(—4, 3, 6), we wish to find
several numerical values at point P: the potential V', the electric field intensity E, the
direction of E, the electric flux density D, and the volume charge density p,.

Solution. The potential at P(—4, 5, 6) is
Vp = 2(—4)*(3) — 5(6) = 66 V
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Next, we may use the gradient operation to obtain the electric field intensity,
E=—VV = —4xya, —2x’a, + 5a, V/m
The value of E at point P is
Ep =48a, —32a, + 5a. V/m

and

|Ep| = /482 + (=322 + 52 = 57.9 V/m
The direction of E at P is given by the unit vector
ap p = (48a, —32a, + 5a.)/57.9
= 0.829a, — 0.553a, + 0.086a.
If we assume these fields exist in free space, then
D = ¢E = —35.4xya, — 17.71x% a, + 44.3a, pC/m’

Finally, we may use the divergence relationship to find the volume charge density that
is the source of the given potential field,

oy =V -D = —354y pC/m’
At P, p, = —106.2 pC/m>.

D4.7. A portion of a two-dimensional (£, = 0) potential field is shown in
Figure 4.7. The grid lines are | mm apart in the actual field. Determine approx-
imate values for E in rectangular coordinates at: (a) a; (b) b; (c) c.

Ans. —1075a;, V/m; —600a, — 700a, V/m; —500a, — 650a, V/m

100
D4.8. Giventhepotential field in cylindrical coordinates, V' = = PCOSPV,

and point P at p =3 m, ¢ = 60°, z = 2 m, find values at P foZr (a) V; (b) E;
(c) E; (d)dV/dN; (e) ay; (f) py in free space.

Ans. 30.0 V; —10.00a, + 17.3a4 +24.0a, V/m; 31.2 V/m; 31.2 V/m; 0.32a, — 0.55a,4
—0.77a,; —234 pC/m>

4.7 THE ELECTRIC DIPOLE

The dipole fields that we develop in this section are quite important because they
form the basis for the behavior of dielectric materials in electric fields, as discussed
in Chapter 6, as well as justifying the use of images, as described in Section 5.5 of
Chapter 5. Moreover, this development will serve to illustrate the importance of the
potential concept presented in this chapter.

An electric dipole, or simply a dipole, is the name given to two point charges of
equal magnitude and opposite sign, separated by a distance that is small compared to



ENGINEERING ELECTROMAGNETICS

106 V

Figure 4.7 See Problem D4.7.

the distance to the point P at which we want to know the electric and potential fields.
The dipole is shown in Figure 4.8a. The distant point P is described by the spherical
coordinates r, 6, and ¢ = 90°, in view of the azimuthal symmetry. The positive and
negative point charges have separation d and rectangular coordinates (0, 0, %d ) and
(0,0, —%d), respectively.

So much for the geometry. What would we do next? Should we find the total
electric field intensity by adding the known fields of each point charge? Would it be
easier to find the total potential field first? In either case, having found one, we will
find the other from it before calling the problem solved.

If we choose to find E first, we will have two components to keep track of in
spherical coordinates (symmetry shows E is zero), and then the only way to find V'
from E is by use of the line integral. This last step includes establishing a suitable zero
reference for potential, since the line integral gives us only the potential difference
between the two points at the ends of the integral path.

On the other hand, the determination of V first is a much simpler problem.
This is because we find the potential as a function of position by simply adding the
scalar potentials from the two charges. The position-dependent vector magnitude and
direction of E are subsequently evaluated with relative ease by taking the negative
gradient of V.

Choosing this simpler method, we let the distances from Q and —Q to P be R
and R;, respectively, and write the total potential as

47e

R R

0 (1 1\ _ 0O R-R
_47'[60 R1R2
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(a)

R, To distant
point P

(b)

Figure 4.8 (a) The geometry of the problem of an
electric dipole. The dipole moment p = Qd is in the a,
direction. (b) For a distant point P, Ry is essentially
parallel to R», and we find that R, — Ry = dcos#.

Note that the plane z = 0, midway between the two point charges, is the locus of
points for which R; = R,, and is therefore at zero potential, as are all points at

For a distant point, R; = R, and the R; R, product in the denominator may be
replaced by 2. The approximation may not be made in the numerator, however,
without obtaining the trivial answer that the potential field approaches zero as we go
very far away from the dipole. Coming back a little closer to the dipole, we see from
Figure 4.8b that R, — R may be approximated very easily if R; and R, are assumed
to be parallel,

R, — Ry =dcosb
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The final result is then

V= Qd cost (33)

4egr?

Again, we note that the plane z = 0 (6 = 90°) is at zero potential.
Using the gradient relationship in spherical coordinates,

E=-VFV = aVa—i-laVa—i- ! aVa
- T\ T T 90 T rsing 99 ¢

we obtain

"
2megr3 4regr3

E— _<_Qdcos@ Qd sin6 9) (34)

or

d
E = (2cosB a, +sinf ay) (3%5)
4regr3

These are the desired distant fields of the dipole, obtained with a very small
amount of work. Any student who has several hours to spend may try to work the
problem in the reverse direction—the authors consider the process too long and de-
tailed to include here, even for effect.

To obtain a plot of the potential field, we choose a dipole such that
0d/(4mey) = 1, and then cos§ = Vr2. The colored lines in Figure 4.9 indicate
equipotentials for which V' = 0,40.2, +0.4, +0.6, +0.8, and +1, as indicated.
The dipole axis is vertical, with the positive charge on the top. The streamlines for
the electric field are obtained by applying the methods of Section 2.6 in spherical
coordinates,

Ey rdo B sin 6
E, dr ~ 2cosf

or

d
a = 2cotf db
P

from which we obtain
r = C;sin’6
The black streamlines shown in Figure 4.9 are for C; = 1, 1.5, 2, and 2.5.

The potential field of the dipole, Eq. (33), may be simplified by making use of
the dipole moment. We first identify the vector length directed from —Q to +Q as d
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Figure 4.9 The electrostatic field of a point dipole with its moment in the a,
direction. Six equipotential surfaces are labeled with relative values of V.

and then define the dipole moment as Od and assign it the symbol p. Thus
39
The units of p are C - m.

Because d - a, = d cos 6, we then have
_ P-a
47T€07"2

(37

This result may be generalized as

1 r—r

_ . 38
47t<§0|r—r’|2p r—r'| (38)

where r locates the field point P, and r’ determines the dipole center. Equation (38)
is independent of any coordinate system.

99



100

ENGINEERING ELECTROMAGNETICS

The dipole moment p will appear again when we discuss dielectric materials.
Since it is equal to the product of the charge and the separation, neither the dipole
moment nor the potential will change as Q increases and d decreases, provided the
product remains constant. The limiting case of a point dipole is achieved when we let
d approach zero and Q approach infinity such that the product p is finite.

Turning our attention to the resultant fields, it is interesting to note that the
potential field is now proportional to the inverse square of the distance, and the
electric field intensity is proportional to the inverse cube of the distance from
the dipole. Each field falls off faster than the corresponding field for the point charge,
but this is no more than we should expect because the opposite charges appear to
be closer together at greater distances and to act more like a single point charge
of zero Coulombs.

Symmetrical arrangements of larger numbers of point charges produce fields
proportional to the inverse of higher and higher powers of 7. These charge distributions
are called multipoles, and they are used in infinite series to approximate more unwieldy
charge configurations.

D4.9. An electric dipole located at the origin in free space has a moment
p =3a, —2a, +a.nC- m. (a)Find V at P4(2,3,4). (b) Find V" atr = 2.5,
0 = 30°, ¢ = 40°.

Ans. 023 V; 197V

D4.10. A dipole of moment p = 6a, nC - m is located at the origin in free
space. (a) Find V at P(r = 4,0 = 20°, ¢ = 0°). (b) Find E at P.

Ans. 3.17V; 1.58a, + 0.29ay9 V/m

4.8 ENERGY DENSITY IN THE
ELECTROSTATIC FIELD

We have introduced the potential concept by considering the work done, or en-
ergy expended, in moving a point charge around in an electric field, and now we
must tie up the loose ends of that discussion by tracing the energy flow one step
further.

Bringing a positive charge from infinity into the field of another positive charge
requires work, the work being done by the external source moving the charge. Let
us imagine that the external source carries the charge up to a point near the fixed
charge and then holds it there. Energy must be conserved, and the energy expended in
bringing this charge into position now represents potential energy, for if the external
source released its hold on the charge, it would accelerate away from the fixed charge,
acquiring kinetic energy of its own and the capability of doing work.

In order to find the potential energy present in a system of charges, we must find
the work done by an external source in positioning the charges.



CHAPTER 4 Energy and Potential

We may start by visualizing an empty universe. Bringing a charge O from infinity
to any position requires no work, for there is no field present.> The positioning of
0, at a point in the field of Q) requires an amount of work given by the product of
the charge O, and the potential at that point due to Q. We represent this potential
as V5,1, where the first subscript indicates the location and the second subscript the
source. That is, V5 is the potential at the location of O, due to Q;. Then

Work to position Q> = 0, V51

Similarly, we may express the work required to position each additional charge
in the field of all those already present:

Work to position Q3 = Q3V3.1 + Q33
Work to pOSitiOI’l Q04 = 04 Va1 + 04 Vaor + [on Vas
and so forth. The total work is obtained by adding each contribution:

Total positioning work = potential energy of field
=Wg=02V21+ 03V31+ O03V32+ Q4Va

+04Var+ OQaVas+--- (39)
Noting the form of a representative term in the preceding equation,
1 3
03V31=0; 9 9

47T€0R13 o Ql 47T€0R3]

where R;3 and R3; each represent the scalar distance between O and Q3, we see that
it might equally well have been written as Q) V) 3. If each term of the total energy
expression is replaced by its equal, we have

We=01Viag+O1Vig+ Q2Vos+ O Via+ OoVou+ Q3Vza+---  (40)

Adding the two energy expressions (39) and (40) gives us a chance to simplify the
result a little:

2Weg = Q1(Vip+Vig+Vig+--)
+ (Vg +Vaz+Vos+--0)
+ Q3(V3,1 + V3’2 + V3'4 + - )
4.

Each sum of potentials in parentheses is the combined potential due to all the charges
except for the charge at the point where this combined potential is being found. In
other words,

Viao+Vizg+Vig+--=W

2 However, somebody in the workshop at infinity had to do an infinite amount of work to create the
point charge in the first place! How much energy is required to bring two half-charges into coincidence
to make a unit charge?
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V1 is the potential at the location of Q) due to the presence of O, O3, ... . We
therefore have

m=N
We =350+ 02Vat OsVs+--)=3Y Oulu (41)
m=1

In order to obtain an expression for the energy stored in a region of continuous
charge distribution, each charge is replaced by p,dv, and the summation becomes an
integral,

Wg = %/Dl oV dv (42)

Equations (41) and (42) allow us to find the total potential energy present in a
system of point charges or distributed volume charge density. Similar expressions
may be easily written in terms of line or surface charge density. Usually we prefer
to use Eq. (42) and let it represent all the various types of charge which may have to
be considered. This may always be done by considering point charges, line charge
density, or surface charge density to be continuous distributions of volume charge
density over very small regions. We will illustrate such a procedure with an example
shortly.

Before we undertake any interpretation of this result, we should consider a few
lines of more difficult vector analysis and obtain an expression equivalent to Eq. (42)
but written in terms of E and D.

We begin by making the expression a little bit longer. Using Maxwell’s first
equation, replace p, by its equal V - D and make use of a vector identity which is true
for any scalar function V' and any vector function D,

V-(VD)=V(V-D)+D-(VF) 43)

This may be proved readily by expansion in rectangular coordinates. We then have,
successively,

WE=%/ vadv=%/ (V-D)Vdv
vol vol

- %/VOI[V-(VD)—D-(VV)]dv

Using the divergence theorem from Chapter 3, the first volume integral of the last
equation is changed into a closed surface integral, where the closed surface surrounds
the volume considered. This volume, first appearing in Eq. (42), must contain every
charge, and there can then be no charges outside of the volume. We may therefore
consider the volume as infinite in extent if we wish. We have

Wg = %f(VD)-dS—%[ D-(VV)dv
S vol

The surface integral is equal to zero, for over this closed surface surrounding the
universe we see that V' is approaching zero at least as rapidly as 1/r (the charges
look like point charges from there), and D is approaching zero at least as rapidly as
1/r%. The integrand therefore approaches zero at least as rapidly as 1/7°, while the
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differential area of the surface, looking more and more like a portion of a sphere,
is increasing only as 2. Consequently, in the limit as » — oo, the integrand and
the integral both approach zero. Substituting E = —V/ in the remaining volume
integral, we have our answer,

WE=%/ D-Edv:%[ €E*dv (44)
vol vol

We may now use this last expression to calculate the energy stored in the elec-
trostatic field of a section of a coaxial cable or capacitor of length L. We found in
Section 3.3 that

a
D, aps
P
Hence,
a
E = ﬁap
€o0p

where ps is the surface charge density on the inner conductor, whose radius is a.

Thus,
2
La’p% b
Wg=1 // /eozzpdpdqbd Sla

This same result may be obtained from Eq. (42). We choose the outer conductor

as our zero-potential reference, and the potential of the inner cylinder is then
a
Vaz—/ E,,dp:—/ aPs 4p = "psl b
b b €opP €0

The surface charge density pg at o = a can be interpreted as a volume charge density
oy = ps/t, extending from p = a — %t top=a+ %t, where ¢ < a. The integrand
in Eq. (42) is therefore zero everywhere between the cylinders (where the volume
charge density is zero), as well as at the outer cylinder (where the potential is zero).
The integration is therefore performed only within the thin cylindrical shell at p = a,

2w a+t/2 b
WE=%/ oo VdV =1 ff f ﬁaﬁln ~p dp dg dz
VO a—t/2

from which

a’ ,05 ln(b/a)
€0

Wg =

once again.

This expression takes on a more familiar form if we recognize the total charge
on the inner conductor as Q = 2mwaLps. Combining this with the potential difference
between the cylinders, V,, we see that

Wg =10V,

which should be familiar as the energy stored in a capacitor.
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The question of where the energy is stored in an electric field has not yet been
answered. Potential energy can never be pinned down precisely in terms of physical
location. Someone lifts a pencil, and the pencil acquires potential energy. Is the energy
stored in the molecules of the pencil, in the gravitational field between the pencil and
the earth, or in some obscure place? Is the energy in a capacitor stored in the charges
themselves, in the field, or where? No one can offer any proof for his or her own
private opinion, and the matter of deciding may be left to the philosophers.

Electromagnetic field theory makes it easy to believe that the energy of an electric
field or a charge distribution is stored in the field itself, for if we take Eq. (44), an
exact and rigorously correct expression,

Wg =3 f D-Edv
vol
and write it on a differential basis,
dWg = iD-Edv

or

awe
dv 2
we obtain a quantity %D - E, which has the dimensions of an energy density, or joules
per cubic meter. We know that if we integrate this energy density over the entire field-
containing volume, the result is truly the total energy present, but we have no more
justification for saying that the energy stored in each differential volume element dv
is %D - E dv than we have for looking at Eq. (42) and saying that the stored energy is
%pv Vdv. The interpretation afforded by Eq. (45), however, is a convenient one, and
we will use it until proved wrong.

D-E (45)

D4.11. Find the energy stored in free space for the region 2 mm < r < 3

200
mm, 0 < 6 < 90°,0 < ¢ < 90°, given the potential field V' =: (a) — V,
r
300 cos 8
(b)) —7—V

Ans. 46.4 uJ; 36.71
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CHAPTER 4 PROBLEMS

41l

421

431

4.41

4510

4.6

4.71

4.81

491

The value of E at P(p = 2, ¢ =40°, z = 3) is given as E = 100a,

— 200ay + 300a, V/m. Determine the incremental work required to move a
20 nC charge a distance of 6 um: (a) in the direction of a,,; (b) in the
direction of ay; (¢) in the direction of a.; (d) in the direction of E; (e) in the
direction of G = 2a, — 3a, +4a..

A positive point charge of magnitude ¢, lies at the origin. Derive an
expression for the incremental work done in moving a second point charge ¢,
through a distance dx from the starting position (x, y, z), in the direction

of —a,.

If E = 120a,V/m, find the incremental amount of work done in moving
a 50-uC charge a distance of 2 mm from (a) P(1, 2, 3) toward Q(2, 1, 4); (b)
0(2,1,4) toward P(1, 2, 3).

An electric field in free space is given by E = xa, + ya, + za. V/m. Find
the work done in moving a 1-uC charge through this field (a) from (1, 1, 1)
to (0, 0, 0); (b) from (p =2, ¢ = 0) to (p = 2, ¢ = 90°); (c) from (»r = 10,
0 =6y to (r =10,6 =6 + 180°).

Compute the value of ff G- dL for G = 2ya, with 4(1, —1, 2) and

P(2, 1, 2) using the path (a) straight-line segments A(1, —1, 2) to B(1, 1, 2)
to P(2, 1, 2); (b) straight-line segments A(1, —1,2) to C(2, —1,2) to
P(2,1,2).

An electric field in free space is given as E = x 4, +4z4, 4+ 4y 4.. Given
V(l,1,1) =10V, determine V' (3, 3, 3).

Let G = 3xy?a, + 2za, Given an initial point P(2, 1, 1) and a final point
04,3, 1), find [ G-dL using the path (a) straight line: y = x — 1,
z = 1;(b) parabola: 6y = x> +2,z = 1.

Given E = —xa, + ya,, (a) find the work involved in moving a unit positive
charge on a circular arc, the circle centered at the origin, from x = a to

x = y = a/~/2; (b) verify that the work done in moving the charge around
the full circle from x = a is zero.

A uniform surface charge density of 20 nC/m? is present on the spherical
surface » = 0.6 cm in free space. (a) Find the absolute potential at

P(r =1cm,0 =25° ¢ = 50°). (b) Find V43, given points A(r = 2 cm,
0 =30° ¢ =60°) and B(r =3 cm, 6 = 45°, ¢ = 90°).

4100 A sphere of radius a carries a surface charge density of pyy C/m?. (a) Find

the absolute potential at the sphere surface. (b) A grounded conducting shell
of radius b where b > a is now positioned around the charged sphere. What
is the potential at the inner sphere surface in this case?

4.11 ! Let a uniform surface charge density of 5 nC/m? be present at the z = 0

plane, a uniform line charge density of 8 nC/m be located at x = 0, z = 4,
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and a point charge of 2 «C be present at P(2, 0, 0). If ¥ = 0 at M(0, 0, 5),
find V at N(1, 2, 3).

4.12§ In spherical coordinates, E = 2r/(r2 + a?)?a, V/m. Find the potential at any
point, using the reference (a)V = 0 at infinity; (b) V' = 0 atr = 0;
(c)V =100V atr = a.

4.13} Three identical point charges of 4 pC each are located at the corners of an
equilateral triangle 0.5 mm on a side in free space. How much work must be
done to move one charge to a point equidistant from the other two and on the
line joining them?

4.141 Given the electric field E = (v + Da, + (x — 1)a, + 2a; find the potential
difference between the points (@) (2, —2, —1) and (0, 0, 0); (b) (3,2, —1) and
(=2, -3,4).

4.15 | Two uniform line charges, 8 nC/m each, are located at x = 1,z = 2, and at
x = —1, y = 2 in free space. If the potential at the origin is 100 V, find V" at
P@4,1,3).

4.161 A spherically symmetric charge distribution in free space (with 0 < r < 00)
is known to have a potential function V' (r) = Voa?/r?, where V, and a are
constants. (a) Find the electric field intensity. (») Find the volume charge
density. (c¢) Find the charge contained inside radius a. (d) Find the total
energy stored in the charge (or equivalently, in its electric field).

4.17 § Uniform surface charge densities of 6 and 2 nC/m? are present at p = 2 and
6 cm, respectively, in free space. Assume V' = 0 at p = 4 c¢cm, and calculate
Vat(a)p=5cm;(b)p =7cm.

4.18 | Find the potential at the origin produced by a line charge p; = kx/(x? + a?)
extending along the x axis from x = a to 400, where ¢ > 0. Assume a zero
reference at infinity.

4.19 § The annular surface 1 cm < p < 3 cm, z = 0, carries the nonuniform surface
charge density p, = 5p nC/m?. Find V" at P(0, 0,2 cm) if V = 0 at infinity.

4.20§ In a certain medium, the electric potential is given by

Vi =2 (1—e)
ae
where py and a are constants. (a) Find the electric field intensity, E. (b) Find
the potential difference between the points x = d and x = 0. (c) If the
medium permittivity is given by €(x) = €pe™, find the electric flux density,
D, and the volume charge density, p,, in the region. (d) Find the stored
energy in the region (0 <x <d),(0 <y <1),(0 <z < 1).

4210 Let ¥ = 2xy223 + 3In(x2 4 2% + 322) V in free space. Evaluate each of the
following quantities at P(3,2, —1) (a) V; (b) |V |; (c) E; (d) |E|; (e) ay;
(/)D.
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4.220 A line charge of infinite length lies along the z axis and carries a uniform
linear charge density of p; C/m. A perfectly conducting cylindrical shell,
whose axis is the z axis, surrounds the line charge. The cylinder (of radius b),
is at ground potential. Under these conditions, the potential function inside
the cylinder (p < b) is given by

V(o) = k = 35— In(p)
TTE€Q
where £ is a constant. () Find £ in terms of given or known parameters.
(b) Find the electric field strength, E, for p < b. (c¢) Find the electric field

strength, E, for p > b. (d) Find the stored energy in the electric field per unit
length in the z direction within the volume defined by p > a, where a < b.

4.23 1t is known that the potential is given as ¥ = 80p%° V. Assuming free space
conditions, find. (a) E; (b) the volume charge density at p = 0.5 m; (¢) the
total charge lying within the closed surface p = 0.6,0 < z < 1.

4.241 A certain spherically symmetric charge configuration in free space produces
an electric field given in spherical coordinates by

{ (por?)/(100€9) a, V/m  (r < 10)
E(r) =
(100p9)/(€or?)a, V/m  (r = 10)

where py is a constant. (a) Find the charge density as a function of position.
(b) Find the absolute potential as a function of position in the two regions,

r < 10 and r > 10. (¢) Check your result of part b by using the gradient.

(d) Find the stored energy in the charge by an integral of the form of Eq. (43).
(e) Find the stored energy in the field by an integral of the form of Eq. (45).

4.25 § Within the cylinder p = 2,0 < z < 1, the potential is given by V' = 100 +
50p 4+ 150p sin@V. (a) Find V, E, D, and p, at P(1, 60°, 0.5) in free space.
(b) How much charge lies within the cylinder?

4.26 I Let us assume that we have a very thin, square, imperfectly conducting plate
2 m on a side, located in the plane z = 0 with one corner at the origin such
that it lies entirely within the first quadrant. The potential at any point in
the plate is given as /' = —e™" sin y. (@) An electron enters the plate at
x = 0, y = 7 /3 with zero initial velocity; in what direction is its initial
movement? (b) Because of collisions with the particles in the plate, the
electron achieves a relatively low velocity and little acceleration (the work
that the field does on it is converted largely into heat). The electron therefore
moves approximately along a streamline. Where does it leave the plate and in
what direction is it moving at the time?

4.278 Two point charges, 1 nC at (0, 0, 0.1) and —1 nC at (0, 0, —0.1), are in free
space. (a) Calculate V" at P(0.3,0, 0.4). (b) Calculate |E| at P. (c¢) Now treat
the two charges as a dipole at the origin and find V" at P.

4.28§ Use the electric field intensity of the dipole [Section 4.7, Eq. (35)] to find the
difference in potential between points at 6, and 6, each point having the
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same r and ¢ coordinates. Under what conditions does the answer agree with
Eq. (33), for the potential at 6,7

4290 A dipole having a moment p = 3a, — 5a, + 10a. nC - m is located at
0(1, 2, —4) in free space. Find V" at P(2, 3, 4).

4300 A dipole for which p = 10€pa, C - m is located at the origin. What is the
equation of the surface on which £, = 0 but E # 0?

4310 A potential field in free space is expressed as V' = 20/(xyz) V. (a) Find the
total energy stored within the cube | < x, y, z < 2. (b) What value would be
obtained by assuming a uniform energy density equal to the value at the
center of the cube?

4321 (a) Using Eq. (35), find the energy stored in the dipole field in the region
r > a.(b) Why can we not let a approach zero as a limit?

4331 A copper sphere of radius 4 cm carries a uniformly distributed total charge
of 5 uC in free space. (@) Use Gauss’s law to find D external to the sphere.
(b) Calculate the total energy stored in the electrostatic field. (c¢) Use Wg =
0?%/(2C) to calculate the capacitance of the isolated sphere.

4340 A sphere of radius @ contains volume charge of uniform density py C/m?.
Find the total stored energy by applying (a) Eq. (42); (b) Eq. (44).

4.35{ Four 0.8 nC point charges are located in free space at the corners of a square
4 cm on a side. (a) Find the total potential energy stored. (b) A fifth 0.8 nC
charge is installed at the center of the square. Again find the total stored
energy.

4.36 1 Surface charge of uniform density py lies on a spherical shell of radius b,
centered at the origin in free space. (@) Find the absolute potential
everywhere, with zero reference at infinity. (b) Find the stored energy in the
sphere by considering the charge density and the potential in a
two-dimensional version of Eq. (42). (¢) Find the stored energy in the electric
field and show that the results of parts (b) and (c) are identical.



CHAPTER

Conductors and
Dielectrics

n this chapter, we apply the methods we have learned to some of the materials

with which an engineer must work. In the first part of the chapter, we consider

conducting materials by describing the parameters that relate current to an applied
electric field. This leads to a general definition of Ohm’s law. We then develop methods
of evaluating resistances of conductors in a few simple geometric forms. Conditions
that must be met at a conducting boundary are obtained next, and this knowledge
leads to a discussion of the method of images. The properties of semiconductors are
described to conclude the discussion of conducting media.

In the second part of the chapter, we consider insulating materials, or dielectrics.
Such materials differ from conductors in that ideally, there is no free charge that can be
transported within them to produce conduction current. Instead, all charge is confined
to molecular or lattice sites by coulomb forces. An applied electric field has the effect
of displacing the charges slightly, leading to the formation of ensembles of electric
dipoles. The extent to which this occurs is measured by the relative permittivity, or
dielectric constant. Polarization of the medium may modify the electric field, whose
magnitude and direction may differ from the values it would have in a different
medium or in free space. Boundary conditions for the fields at interfaces between
dielectrics are developed to evaluate these differences.

It should be noted that most materials will possess both dielectric and conductive
properties; that is, a material considered a dielectric may be slightly conductive, and
a material that is mostly conductive may be slightly polarizable. These departures
from the ideal cases lead to some interesting behavior, particularly as to the effects
on electromagnetic wave propagation, as we will see later. H
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5.1 CURRENT AND CURRENT DENSITY

Electric charges in motion constitute a current. The unit of current is the ampere (A),
defined as a rate of movement of charge passing a given reference point (or crossing
a given reference plane) of one coulomb per second. Current is symbolized by 7, and
therefore

Y

I = 7 (1)

Current is thus defined as the motion of positive charges, even though conduction in
metals takes place through the motion of electrons, as we will see shortly.

In field theory, we are usually interested in events occurring at a point rather
than within a large region, and we find the concept of current density, measured in
amperes per square meter (A/m?), more useful. Current density is a vector! represented
by J.

The increment of current A/ crossing an incremental surface AS normal to the
current density is

Al = JyAS
and in the case where the current density is not perpendicular to the surface,
Al =J-AS

Total current is obtained by integrating,

1=fSJ-ds )

Current density may be related to the velocity of volume charge density at a point.
Consider the element of charge AQ = p,Av = p, AS AL, as shown in Figure 5.1a.
To simplify the explanation, assume that the charge element is oriented with its edges
parallel to the coordinate axes and that it has only an x component of velocity. In
the time interval A¢, the element of charge has moved a distance Ax, as indicated in
Figure 5.1b. We have therefore moved a charge AQ = p, AS Ax through a reference
plane perpendicular to the direction of motion in a time increment A¢, and the resulting
current is

A A
Ar=22 _ , Ash®
N; At

As we take the limit with respect to time, we have

Al = p, ASv,

! Current is not a vector, for it is easy to visualize a problem in which a total current / in a conductor of
nonuniform cross section (such as a sphere) may have a different direction at each point of a given
cross section. Current in an exceedingly fine wire, or a filamentary current, is occasionally defined as a
vector, but we usually prefer to be consistent and give the direction to the filament, or path, and not to
the current.
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AQ=p,Av
AO=p,Av
\ ¢ < Lo
.
?,
=
/ ~
AS AL / e
AS AL
(a) (b)

Figure 5.1 Anincrement of charge, AQ = p,AS AL, which moves a distance Ax in
atime At, produces a component of current density in the limit of Jy = p, vx.

where v, represents the x component of the velocity v.? In terms of current density,
we find

Jy = Py vy
and in general

J=pyv (3)

This last result shows clearly that charge in motion constitutes a current. We
call this type of current a convection current, and J or p,Vv is the convection current
density. Note that the convection current density is related linearly to charge density
as well as to velocity. The mass rate of flow of cars (cars per square foot per second)
in the Holland Tunnel could be increased either by raising the density of cars per
cubic foot, or by going to higher speeds, if the drivers were capable of doing so.

D5.1. Given the vector current density J = 10p%za, — 4p cos® ¢ a; mA/m*:
(a) find the current density at P(p = 3, ¢ = 30°, z = 2); (b) determine the
total current flowing outward through the circular band p = 3,0 < ¢ < 27,
2 <z<28.

Ans. 180a, — 9a; mA/m?; 3.26 A

5.2 CONTINUITY OF CURRENT

The introduction of the concept of current is logically followed by a discussion of the
conservation of charge and the continuity equation. The principle of conservation of
charge states simply that charges can be neither created nor destroyed, although equal

2The lowercase v is used both for volume and velocity. Note, however, that velocity always appears as
a vector v, a component vy, or a magnitude |v|, whereas volume appears only in differential form as dv
or Av.
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amounts of positive and negative charge may be simultaneously created, obtained by
separation, or lost by recombination.

The continuity equation follows from this principle when we consider any region
bounded by a closed surface. The current through the closed surface is

I:walS
s

and this outward flow of positive charge must be balanced by a decrease of positive
charge (or perhaps an increase of negative charge) within the closed surface. If the
charge inside the closed surface is denoted by Q;, then the rate of decrease is —d Q; /d't
and the principle of conservation of charge requires

B _dg,
I_ng-dS_ = (4)

It might be well to answer here an often-asked question. “Isn’t there a sign error?
I thought 7 = dQ/dt.” The presence or absence of a negative sign depends on what
current and charge we consider. In circuit theory we usually associate the current flow
into one terminal of a capacitor with the time rate of increase of charge on that plate.
The current of (4), however, is an outward-flowing current.

Equation (4) is the integral form of the continuity equation; the differential, or
point, form is obtained by using the divergence theorem to change the surface integral

into a volume integral:
%J-dS:/ (V-J)dv
S vol

We next represent the enclosed charge Q; by the volume integral of the charge density,

d
/ V:-Jddv=—— pvdv
vol

dt vol

If we agree to keep the surface constant, the derivative becomes a partial derivative
and may appear within the integral,

9Py
/(V-J)dv:/—pdv
vol vol ot

from which we have our point form of the continuity equation,

V-Ih=—-—= (6))

Remembering the physical interpretation of divergence, this equation indicates
that the current, or charge per second, diverging from a small volume per unit volume
is equal to the time rate of decrease of charge per unit volume at every point.

As a numerical example illustrating some of the concepts from the last two sec-
tions, let us consider a current density that is directed radially outward and decreases
exponentially with time,

1
J=—-¢"a, A/m®
r
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Selecting an instant of time # = 1 s, we may calculate the total outward current at
r=>5m:
I=J.8=(te")4n5?)=23.1A
At the same instant, but for a slightly larger radius, » = 6 m, we have
I=J.8=(te")(4m6*) =27.7A

Thus, the total current is larger at » = 6 than itis at» = 5.
To see why this happens, we need to look at the volume charge density and the
velocity. We use the continuity equation first:

a 1 1 9 1 1
_PU:V.JZV‘ —eta, ) = = — e ]
ot r r2or\ r r?
We next seek the volume charge density by integrating with respect to z. Because p,

is given by a partial derivative with respect to time, the “constant” of integration may
be a function of r:

1 1
Oy = —/—ze_t dt + K(r) = e + K(r)
r r
If we assume that p, — 0 as ¢t — oo, then K(r) = 0, and

1
py = —e ' C/m’
.

We may now use J = p, v to find the velocity,

1 —t
J —e
v=L = 'i =rm/s
Pv et
72

The velocity is greater at » = 6 than it is at 7 = 5, and we see that some (unspecified)
force is accelerating the charge density in an outward direction.

In summary, we have a current density that is inversely proportional to , a charge
density that is inversely proportional to 72, and a velocity and total current that are

proportional to 7. All quantities vary as e

D5.2. Current density is given in cylindrical coordinates as J = —10°z'a,
A/m? in the region 0 < p < 20 um; for p > 20 um, J = 0. (@) Find the total
current crossing the surface z = 0.1 m in the a, direction. (b) If the charge
velocity is 2 x 10° m/s at z = 0.1 m, find p, there. (c) If the volume charge
density at z = 0.15 m is —2000 C/m?, find the charge velocity there.

Ans. —39.7 uA; —15.8 mC/m>; 29.0 m/s
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5.3 METALLIC CONDUCTORS

Physicists describe the behavior of the electrons surrounding the positive atomic
nucleus in terms of the total energy of the electron with respect to a zero reference
level for an electron at an infinite distance from the nucleus. The total energy is the
sum of the kinetic and potential energies, and because energy must be given to an
electron to pull it away from the nucleus, the energy of every electron in the atom is
a negative quantity. Even though this picture has some limitations, it is convenient to
associate these energy values with orbits surrounding the nucleus, the more negative
energies corresponding to orbits of smaller radius. According to the quantum theory,
only certain discrete energy levels, or energy states, are permissible in a given atom,
and an electron must therefore absorb or emit discrete amounts of energy, or quanta,
in passing from one level to another. A normal atom at absolute zero temperature has
an electron occupying every one of the lower energy shells, starting outward from the
nucleus and continuing until the supply of electrons is exhausted.

In a crystalline solid, such as a metal or a diamond, atoms are packed closely
together, many more electrons are present, and many more permissible energy levels
are available because of the interaction forces between adjacent atoms. We find that
the allowed energies of electrons are grouped into broad ranges, or “bands,” each band
consisting of very numerous, closely spaced, discrete levels. At a temperature of abso-
lute zero, the normal solid also has every level occupied, starting with the lowest and
proceeding in order until all the electrons are located. The electrons with the highest
(least negative) energy levels, the valence electrons, are located in the valence band. If
there are permissible higher-energy levels in the valence band, or if the valence band
merges smoothly into a conduction band, then additional kinetic energy may be given
to the valence electrons by an external field, resulting in an electron flow. The solid is
called a metallic conductor. The filled valence band and the unfilled conduction band
for a conductor at absolute zero temperature are suggested by the sketch in Figure 5.2a.

If, however, the electron with the greatest energy occupies the top level in the
valence band and a gap exists between the valence band and the conduction band, then

Empty
conduction
band Empty
conduction
Empty band
conduction Energy gap
Energy Bond Energy gap
Filled Filled Filled
valence valence valence
band band band
Conductor Insulator Semiconductor

(a) (b) ()

Figure 5.2 The energy-band structure in three different types of materials
at 0 K. (@) The conductor exhibits no energy gap between the valence and
conduction bands. (b) The insulator shows a large energy gap. (c) The
semiconductor has only a small energy gap.
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the electron cannot accept additional energy in small amounts, and the material is an
insulator. This band structure is indicated in Figure 5.2b. Note that if a relatively large
amount of energy can be transferred to the electron, it may be sufficiently excited to
jump the gap into the next band where conduction can occur easily. Here the insulator
breaks down.

An intermediate condition occurs when only a small “forbidden region” separates
the two bands, as illustrated by Figure 5.2¢. Small amounts of energy in the form of
heat, light, or an electric field may raise the energy of the electrons at the top of the
filled band and provide the basis for conduction. These materials are insulators which
display many of the properties of conductors and are called semiconductors.

Let us first consider the conductor. Here the valence electrons, or conduction,
or free, electrons, move under the influence of an electric field. With a field E, an
electron having a charge Q = —e will experience a force

F = —¢E

In free space, the electron would accelerate and continuously increase its velocity
(and energy); in the crystalline material, the progress of the electron is impeded
by continual collisions with the thermally excited crystalline lattice structure, and a
constant average velocity is soon attained. This velocity v, is termed the drift velocity,
and it is linearly related to the electric field intensity by the mobility of the electron
in the given material. We designate mobility by the symbol © (mu), so that

Va = —pE (6)

where 1. is the mobility of an electron and is positive by definition. Note that the
electron velocity is in a direction opposite to the direction of E. Equation (6) also
shows that mobility is measured in the units of square meters per volt-second; typical
values® are 0.0012 for aluminum, 0.0032 for copper, and 0.0056 for silver.

For these good conductors, a drift velocity of a few centimeters per second is
sufficient to produce a noticeable temperature rise and can cause the wire to melt if
the heat cannot be quickly removed by thermal conduction or radiation.

Substituting (6) into Eq. (3) of Section 5.1, we obtain

J=—peuE (7

where p, is the free-electron charge density, a negative value. The total charge density
Py 1s zero because equal positive and negative charges are present in the neutral
material. The negative value of p, and the minus sign lead to a current density J that
is in the same direction as the electric field intensity E.

The relationship between J and E for a metallic conductor, however, is also
specified by the conductivity o (sigma),

| J=0E | )

3 Wert and Thomson, p. 238, listed in the References at the end of this chapter.

(i)
Mustrations
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where o is measured is siemens* per meter (S/m). One siemens (1 S) is the basic
unit of conductance in the SI system and is defined as one ampere per volt. Formerly,
the unit of conductance was called the mho and was symbolized by an inverted 2.
Just as the siemens honors the Siemens brothers, the reciprocal unit of resistance that
we call the ohm (1 €2 is one volt per ampere) honors Georg Simon Ohm, a German
physicist who first described the current-voltage relationship implied by Eq. (8). We
call this equation the point form of Ohm’s law; we will look at the more common
form of Ohm’s law shortly.

First, however, it is informative to note the conductivity of several metallic con-
ductors; typical values (in siemens per meter) are 3.82 x 107 for aluminum, 5.80 x 107
for copper, and 6.17 x 107 for silver. Data for other conductors may be found in
Appendix C. On seeing data such as these, it is only natural to assume that we are be-
ing presented with constant values; this is essentially true. Metallic conductors obey
Ohm’s law quite faithfully, and it is a /inear relationship; the conductivity is constant
over wide ranges of current density and electric field intensity. Ohm’s law and the
metallic conductors are also described as isotropic, or having the same properties in
every direction. A material which is not isotropic is called anisotropic, and we shall
mention such a material in Chapter 6.

The conductivity is a function of temperature, however. The resistivity, which
is the reciprocal of the conductivity, varies almost linearly with temperature in the
region of room temperature, and for aluminum, copper, and silver it increases about
0.4 percent for a 1-K rise in temperature.> For several metals the resistivity drops
abruptly to zero at a temperature of a few kelvin; this property is termed super-
conductivity. Copper and silver are not superconductors, although aluminum is (for
temperatures below 1.14 K).

If we now combine Equations (7) and (8), conductivity may be expressed in terms
of the charge density and the electron mobility,

(o = —pente | ©)

From the definition of mobility (6), it is now satisfying to note that a higher temperature
infers a greater crystalline lattice vibration, more impeded electron progress for a given
electric field strength, lower drift velocity, lower mobility, lower conductivity from
Eq. (9), and higher resistivity as stated.

The application of Ohm’s law in point form to a macroscopic (visible to the naked
eye) region leads to a more familiar form. Initially, assume that J and E are uniform,
as they are in the cylindrical region shown in Figure 5.3. Because they are uniform,

I:/J-dS:JS (10)
S

4 This is the family name of two German-born brothers, Karl Wilhelm and Werner von Siemens, who
were famous engineer-inventors in the nineteenth century. Karl became a British subject and was
knighted, becoming Sir William Siemens.

3 Copious temperature data for conducting materials are available in the Standard Handbook for
Electrical Engineers, listed among the References at the end of this chapter.
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Conductivity o
—_—
Area=S
14
1=JS — E=7
—_—
L

Figure 5.3 Uniform current density J and electric field
intensity £ in a cylindrical region of length L and cross-
sectional area S. Here V = IR, where R =L /o S.

and
Vabz—/ E-dL:—E-f dL =—-E-L,
b b
=E- L, (11
or
V =EL
Thus
I 14
J=—=—=0FE =0—
S L
or
L
V =—
oS

The ratio of the potential difference between the two ends of the cylinder to
the current entering the more positive end, however, is recognized from elementary
circuit theory as the resistance of the cylinder, and therefore

V =1IR (12)
where
R = L (13)
oS

Equation (12) is, of course, known as Ohm’s law, and Eq. (13) enables us to compute
the resistance R, measured in ohms (abbreviated as 2), of conducting objects which
possess uniform fields. If the fields are not uniform, the resistance may still be defined
as the ratio of V' to I, where V' is the potential difference between two specified
equipotential surfaces in the material and 7 is the total current crossing the more
positive surface into the material. From the general integral relationships in Egs. (10)
and (11), and from Ohm’s law (8), we may write this general expression for resistance
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when the fields are nonuniform,

Vo —J, E-dL
g too _ZhE-dL (14)
I~ [oE-dS

The line integral is taken between two equipotential surfaces in the conductor, and
the surface integral is evaluated over the more positive of these two equipotentials.
We cannot solve these nonuniform problems at this time, but we should be able to
solve several of them after reading Chapter 6.

As an example of the determination of the resistance of a cylinder, we find the resis-
tance of a 1-mile length of #16 copper wire, which has a diameter of 0.0508 in.

Solution. The diameter of the wire is 0.0508 x 0.0254 = 1.291 x 103 m, the area of
the cross section is 7(1.291 x 1073/2)? = 1.308 x 10~° m?, and the length is 1609 m.
Using a conductivity of 5.80 x 107 S/m, the resistance of the wire is, therefore,

1609

R= =212Q
(5.80 x 107)(1.308 x 10-6)

This wire can safely carry about 10 A dc, corresponding to a current density of
10/(1.308 x 107%) = 7.65x 10° A/m?, or 7.65 A/mm?. With this current, the potential
difference between the two ends of the wire is 212 V, the electric field intensity is
0.312 V/m, the drift velocity is 0.000 422 m/s, or a little more than one furlong a week,
and the free-electron charge density is —1.81 x 10' C/m?, or about one electron
within a cube two angstroms on a side.

D5.3. Find the magnitude of the current density in a sample of silver for
which 0 = 6.17 x 107 S/m and 1, = 0.0056 m?/V -s if (a) the drift velocity
is 1.5 um/s ; (b) the electric field intensity is 1 mV/m; (c) the sample is a cube
2.5 mm on a side having a voltage of 0.4 mV between opposite faces; (d) the
sample is a cube 2.5 mm on a side carrying a total current of 0.5 A.

Ans. 16.5 kA/m?; 61.7 kA/m?; 9.9 MA/m?; 80.0 kA/m?
D5.4. A copper conductor has a diameter of 0.6 in. and it is 1200 ft long.
Assume that it carries a total dc current of 50 A. (a) Find the total resistance of

the conductor. () What current density exists in it? (¢) What is the dc voltage
between the conductor ends? (¢) How much power is dissipated in the wire?

Ans. 0.035 Q;2.74 x 10° A/m?; 1.73 V; 86.4 W
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5.4 CONDUCTOR PROPERTIES
AND BOUNDARY CONDITIONS

Once again, we must temporarily depart from our assumed static conditions and let
time vary for a few microseconds to see what happens when the charge distribution is
suddenly unbalanced within a conducting material. Suppose, for the sake of argument,
that there suddenly appear a number of electrons in the interior of a conductor. The
electric fields set up by these electrons are not counteracted by any positive charges,
and the electrons therefore begin to accelerate away from each other. This continues
until the electrons reach the surface of the conductor or until a number of electrons
equal to the number injected have reached the surface.

Here, the outward progress of the electrons is stopped, for the material surround-
ing the conductor is an insulator not possessing a convenient conduction band. No
charge may remain within the conductor. If it did, the resulting electric field would
force the charges to the surface.

Hence the final result within a conductor is zero charge density, and a surface
charge density resides on the exterior surface. This is one of the two characteristics
of'a good conductor.

The other characteristic, stated for static conditions in which no current may flow,
follows directly from Ohm’s law: the electric field intensity within the conductor is
zero. Physically, we see that if an electric field were present, the conduction electrons
would move and produce a current, thus leading to a nonstatic condition.

Summarizing for electrostatics, no charge and no electric field may exist at any
point within a conducting material. Charge may, however, appear on the surface as a
surface charge density, and our next investigation concerns the fields external to the
conductor.

We wish to relate these external fields to the charge on the surface of the conductor.
The problem is a simple one, and we may first talk our way to the solution with a
little mathematics.

If the external electric field intensity is decomposed into two components, one
tangential and one normal to the conductor surface, the tangential component is seen
to be zero. If it were not zero, a tangential force would be applied to the elements of
the surface charge, resulting in their motion and nonstatic conditions. Because static
conditions are assumed, the tangential electric field intensity and electric flux density
are zero.

Gauss’s law answers our questions concerning the normal component. The elec-
tric flux leaving a small increment of surface must be equal to the charge residing on
that incremental surface. The flux cannot penetrate into the conductor, for the total
field there is zero. It must then leave the surface normally. Quantitatively, we may
say that the electric flux density in coulombs per square meter leaving the surface
normally is equal to the surface charge density in coulombs per square meter, or
Dy = ps.

If we use some of our previously derived results in making a more careful analysis
(and incidentally introducing a general method which we must use later), we should set
up a boundary between a conductor and free space (Figure 5.4) showing tangential
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Free space

Conductor

Figure 5.4 An appropriate closed path and gaussian surface are used to
determine boundary conditions at a boundary between a conductor and free
space; £; =0and Dy = ps.

and normal components of D and E on the free-space side of the boundary. Both
fields are zero in the conductor. The tangential field may be determined by applying

Section 4.5, Eq. (21),
ygE -dL =0

around the small closed path abcda. The integral must be broken up into four parts

b c d a
[l ] =
a b c d
Remembering that E = 0 within the conductor, we let the length from a to b or ¢ to
d be Aw and from b to ¢ or d to a be Ah, and obtain

E,Aw — Eyaps A+ Eyaay AR =0

As we allow Ak to approach zero, keeping Aw small but finite, it makes no
difference whether or not the normal fields are equal at a and b, for Ak causes these
products to become negligibly small. Hence, E; Aw = 0 and, therefore, £; = 0.

The condition on the normal field is found most readily by considering Dy rather
than £y and choosing a small cylinder as the gaussian surface. Let the height be A/
and the area of the top and bottom faces be AS. Again, we let Ak approach zero.
Using Gauss’s law,

fén—dszg

we integrate over the three distinct surfaces

Jot fot L=
top bottom sides

and find that the last two are zero (for different reasons). Then

DyAS = O = psAS
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or
Dy = ps

These are the desired boundary conditions for the conductor-to-free-space bound-

ary in electrostatics,
D[ — Et — 0 (15)

| Dy = Ey = ps | (16)

The electric flux leaves the conductor in a direction normal to the surface, and the
value of the electric flux density is numerically equal to the surface charge density.
Equations (15) and (16) can be more formally expressed using the vector fields

E x n|s =0 (17)

D-n| =p (18)

where n is the unit normal vector at the surface that points away from the conductor,
as shown in Figure 5.4, and where both operations are evaluated at the conductor
surface, s. Taking the cross product or the dot product of either field quantity with n
gives the tangential or the normal component of the field, respectively.

An immediate and important consequence of a zero tangential electric field in-
tensity is the fact that a conductor surface is an equipotential surface. The evaluation
of the potential difference between any two points on the surface by the line integral
leads to a zero result, because the path may be chosen on the surface itself where
E .- dL=0.

To summarize the principles which apply to conductors in electrostatic fields, we
may state that

1. The static electric field intensity inside a conductor is zero.

2. The static electric field intensity at the surface of a conductor is everywhere
directed normal to that surface.

3. The conductor surface is an equipotential surface.

Using these three principles, there are a number of quantities that may be calcu-
lated at a conductor boundary, given a knowledge of the potential field.

Given the potential,
V =100(x> — %)

and apoint P(2, —1, 3) that is stipulated to lie on a conductor-to-free-space boundary,
find V, E, D, and pg at P, and also the equation of the conductor surface.

Solution. The potential at point P is
Vp =100[2> — (—1)*)] =300V
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1 z =13 plane
1 3
0
x2_y2 =3
V=300V
~1 P(2,-1,3)
Ve
/
/
/
-2 /
/ xy=-2
/
/ -
-3

Figure 5.5 Given point P2, —1, 3) and the
potential field, V = 100(x? — y?), we find the
equipotential surface through P is x° — y? = 3,
and the streamline through P is xy = —2.

Because the conductor is an equipotential surface, the potential at the entire sur-
face must be 300 V. Moreover, if the conductor is a solid object, then the potential
everywhere in and on the conductor is 300 V, for E = 0 within the conductor.

The equation representing the locus of all points having a potential of 300 V is

300 = 100(x% — y?)
or
2oy =3
This is therefore the equation of the conductor surface; it happens to be a hyperbolic
cylinder, as shown in Figure 5.5. Let us assume arbitrarily that the solid conductor
lies above and to the right of the equipotential surface at point P, whereas free space

is down and to the left.
Next, we find E by the gradient operation,

E = —100V(x? — y?) = —200xa, + 200ya,
At point P,
E, = —400a, —200a, V/m
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Because D = ¢)E, we have
Dy = 8.854 x 10 "?Ep = —3.54a, — 1.771a, nC/m’

The field is directed downward and to the left at P; it is normal to the equipotential
surface. Therefore,

Dy = [Dp| = 3.96 nC/m?
Thus, the surface charge density at P is
ps.p = Dy = 3.96 nC/m?

Note that if we had taken the region to the left of the equipotential surface as the
conductor, the E field would terminate on the surface charge and we would let
ps = —3.96 nC/m?.

123

Finally, let us determine the equation of the streamline passing through P.

Solution. We see that
E, 200y  y dy

E. —200x  x dx

Thus,
dy  dx g
y x
and
Iny+Inx =C
Therefore,
xy=0C

The line (or surface) through P is obtained when C; = (2)(—1) = —2. Thus, the
streamline is the trace of another hyperbolic cylinder,

xy=-2

This is also shown on Figure 5.5.

D5.5. Given the potential field in free space, /' = 100 sinh 5x sin5y V, and
apoint P(0.1, 0.2, 0.3), find at P: (a) V; (b) E; (¢) |E[; (d) |ps| if it is known
that P lies on a conductor surface.

Ans. 43.8 V; —474a, — 140.8a, V/m; 495 V/m; 4.38 nC/m?
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5.5 THE METHOD OF IMAGES

One important characteristic of the dipole field that we developed in Chapter 4 is
the infinite plane at zero potential that exists midway between the two charges. Such
a plane may be represented by a vanishingly thin conducting plane that is infinite
in extent. The conductor is an equipotential surface at a potential V' = 0, and the
electric field intensity is therefore normal to the surface. Thus, if we replace the
dipole configuration shown in Figure 5.6a with the single charge and conducting
plane shown in Figure 5.6b, the fields in the upper half of each figure are the same.
Below the conducting plane, all fields are zero, as we have not provided any charges
in that region. Of course, we might also substitute a single negative charge below a
conducting plane for the dipole arrangement and obtain equivalence for the fields in
the lower half of each region.

If we approach this equivalence from the opposite point of view, we begin with a
single charge above a perfectly conducting plane and then see that we may maintain
the same fields above the plane by removing the plane and locating a negative charge
at a symmetrical location below the plane. This charge is called the image of the
original charge, and it is the negative of that value.

If we can do this once, linearity allows us to do it again and again, and thus any
charge configuration above an infinite ground plane may be replaced by an arrange-
ment composed of the given charge configuration, its image, and no conducting plane.
This is suggested by the two illustrations of Figure 5.7. In many cases, the potential
field of the new system is much easier to find since it does not contain the conducting
plane with its unknown surface charge distribution.

As an example of the use of images, let us find the surface charge density at
P(2,5,0) on the conducting plane z = 0 if there is a line charge of 30 nC/m located
at x = 0, z = 3, as shown in Figure 5.8a. We remove the plane and install an
image line charge of —30 nC/m at x = 0, z = —3, as illustrated in Figure 5.8b.
The field at P may now be obtained by superposition of the known fields of the line

%0 0o

+Qe +Qe

Equipotential surface, V=0 Conducting plane, V=0

— Q Y
(@) ®)

Figure 5.6 (a) Two equal but opposite charges may be replaced by (b) a single charge
and a conducting plane without affecting the fields above the V' = O surface.
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—4 ° -4 [
+1® p +1® p
L/ L/
Conducting plane, V=0 Equipotential surface, V'=0
>~
—le
+4e
(@) (%)

Figure 5.7 (a) A given charge configuration above an infinite conducting plane may
be replaced by (b) the given charge configuration plus the image configuration, without
the conducting plane.

charges. The radial vector from the positive line charge to P is R, = 2a, — 3a,,
while R_ = 2a, + 3a,. Thus, the individual fields are

E oL 30 x 1072 2a, — 3a,
= ——a =
+ 27T€0R+ fer 27‘[60\/ 13 V13

and
~30x 1077 2a, + 3a.

T 2neo«/ﬁ V13
Adding these results, we have
—180 x 10~%a,
T 2re(13)

This then is the field at (or just above) P in both the configurations of Figure 5.8, and
it is certainly satisfying to note that the field is normal to the conducting plane, as it
must be. Thus, D = ¢gE = —2.20a, nC/m?, and because this is directed foward the
conducting plane, pg is negative and has a value of —2.20 nC/m? at P.

= —249a, V/m

30 nC/m 30 nC/m

Conducting plane

()
P(2,5,0)

(a) ®)

Figure 5.8 (a) A line charge above a conducting plane. (b) The conductor is
removed, and the image of the line charge is added.
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D5.6. A perfectly conducting plane is located in free space at x = 4, and
a uniform infinite line charge of 40 nC/m lies along the line x = 6, y = 3. Let
V' = 0 at the conducting plane. At P(7, —1,5) find: (a) V; (b) E.

Ans. 317 V; —45.3a, — 99.2a, V/m

5.6 SEMICONDUCTORS

If we now turn our attention to an intrinsic semiconductor material, such as pure
germanium or silicon, two types of current carriers are present, electrons and holes.
The electrons are those from the top of the filled valence band that have received
sufficient energy (usually thermal) to cross the relatively small forbidden band into
the conduction band. The forbidden-band energy gap in typical semiconductors is of
the order of one electronvolt. The vacancies left by these electrons represent unfilled
energy states in the valence band which may also move from atom to atom in the
crystal. The vacancy is called a hole, and many semiconductor properties may be
described by treating the hole as if it had a positive charge of e, a mobility, p;,, and
an effective mass comparable to that of the electron. Both carriers move in an electric
field, and they move in opposite directions; hence each contributes a component of
the total current which is in the same direction as that provided by the other. The
conductivity is therefore a function of both hole and electron concentrations and
mobilities,

0 = —Pelbe + Phlbh (19)

For pure, or intrinsic, silicon, the electron and hole mobilities are 0.12 and 0.025,
respectively, whereas for germanium, the mobilities are, respectively, 0.36 and 0.17.
These values are given in square meters per volt-second and range from 10 to 100
times as large as those for aluminum, copper, silver, and other metallic conductors.®
These mobilities are given for a temperature of 300 K.

The electron and hole concentrations depend strongly on temperature. At 300 K
the electron and hole volume charge densities are both 0.0024 C/m?in magnitude in
intrinsic silicon and 3.0 C/m? in intrinsic germanium. These values lead to conductiv-
ities 0f 0.000 35 S/m in silicon and 1.6 S/m in germanium. As temperature increases,
the mobilities decrease, but the charge densities increase very rapidly. As a result, the
conductivity of silicon increases by a factor of 10 as the temperature increases from
300 to about 330 K and decreases by a factor of 10 as the temperature drops from 300
to about 275 K. Note that the conductivity of the intrinsic semiconductor increases
with temperature, whereas that of a metallic conductor decreases with temperature;
this is one of the characteristic differences between the metallic conductors and the
intrinsic semiconductors.

6 Mobility values for semiconductors are given in References 2, 3, and 5 listed at the end of this chapter.



CHAPTER 5 Conductors and Dielectrics

Intrinsic semiconductors also satisfy the point form of Ohm’s law; that is, the
conductivity is reasonably constant with current density and with the direction of the
current density.

The number of charge carriers and the conductivity may both be increased dramat-
ically by adding very small amounts of impurities. Donor materials provide additional
electrons and form n-type semiconductors, whereas acceptors furnish extra holes and
form p-type materials. The process is known as doping, and a donor concentration in
silicon as low as one part in 107 causes an increase in conductivity by a factor of 10°.

The range of value of the conductivity is extreme as we go from the best insulating
materials to semiconductors and the finest conductors. In siemens per meter, o ranges
from 10~!7 for fused quartz, 107 for poor plastic insulators, and roughly unity for
semiconductors to almost 10 for metallic conductors at room temperature. These
values cover the remarkably large range of some 25 orders of magnitude.

D5.7. Using the values given in this section for the electron and hole mo-
bilities in silicon at 300 K, and assuming hole and electron charge densities
are 0.0029 C/m® and —0.0029 C/m>, respectively, find: () the component of
the conductivity due to holes; (b) the component of the conductivity due to
electrons; (c¢) the conductivity.

Ans. 72.5 1S/m; 348 1S/m; 421 uS/m

5.7 THE NATURE OF DIELECTRIC
MATERIALS

A dielectric in an electric field can be viewed as a free-space arrangement of mi-
croscopic electric dipoles, each of which is composed of a positive and a negative
charge whose centers do not quite coincide.These are not free charges, and they cannot
contribute to the conduction process. Rather, they are bound in place by atomic and
molecular forces and can only shift positions slightly in response to external fields.
They are called bound charges, in contrast to the free charges that determine conduc-
tivity. The bound charges can be treated as any other sources of the electrostatic field.
Therefore, we would not need to introduce the dielectric constant as a new parameter
or to deal with permittivities different from the permittivity of free space; however,
the alternative would be to consider every charge within a piece of dielectric material.
This is too great a price to pay for using all our previous equations in an unmodified
form, and we shall therefore spend some time theorizing about dielectrics in a quali-
tative way; introducing polarization P, permittivity €, and relative permittivity €,; and
developing some quantitative relationships involving these new parameters.

The characteristic that all dielectric materials have in common, whether they are
solid, liquid, or gas, and whether or not they are crystalline in nature, is their ability
to store electric energy. This storage takes place by means of a shift in the relative
positions of the internal, bound positive and negative charges against the normal
molecular and atomic forces.

Interactives
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This displacement against a restraining force is analogous to lifting a weight
or stretching a spring and represents potential energy. The source of the energy is
the external field, the motion of the shifting charges resulting perhaps in a transient
current through a battery that is producing the field.

The actual mechanism of the charge displacement differs in the various dielectric
materials. Some molecules, termed polar molecules, have a permanent displacement
existing between the centers of “gravity” of the positive and negative charges, and
each pair of charges acts as a dipole. Normally the dipoles are oriented in a random
way throughout the interior of the material, and the action of the external field is to
align these molecules, to some extent, in the same direction. A sufficiently strong
field may even produce an additional displacement between the positive and negative
charges.

A nonpolar molecule does not have this dipole arrangement until after a field is
applied. The negative and positive charges shift in opposite directions against their
mutual attraction and produce a dipole that is aligned with the electric field.

Either type of dipole may be described by its dipole moment p, as developed in
Section 4.7, Eq. (36),

p=0d (20)

where Q is the positive one of the two bound charges composing the dipole, and d is
the vector from the negative to the positive charge. We note again that the units of p
are coulomb-meters.
If there are n dipoles per unit volume and we deal with a volume Av, then there
are n Av dipoles, and the total dipole moment is obtained by the vector sum,
nAv

Ptotal = Zpi
i=1

If the dipoles are aligned in the same general direction, py. may have a significant
value. However, a random orientation may cause Py t0 be essentially zero.

We now define the polarization P as the dipole moment per unit volume,

1 n Av
- g S gl
with units of coulombs per square meter. We will treat P as a typical continuous field,
even though it is obvious that it is essentially undefined at points within an atom
or molecule. Instead, we should think of its value at any point as an average value
taken over a sample volume Av—Ilarge enough to contain many molecules (# Av in
number), but yet sufficiently small to be considered incremental in concept.

Our immediate goal is to show that the bound-volume charge density acts like
the free-volume charge density in producing an external field; we will obtain a result
similar to Gauss’s law.

To be specific, assume that we have a dielectric containing nonpolar molecules.
No molecule has a dipole moment, and P = 0 throughout the material. Somewhere in
the interior of the dielectric we select an incremental surface element AS, as shown
in Figure 5.9a, and apply an electric field E. The electric field produces a moment
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Figure 5.9 (a) Anincremental surface element AS is shown in the interior of a
dielectric in which an electric field E is present. (b) The nonpolar molecules form dipole
moments p and a polarization P. There is a net transfer of bound charge across AS.

p = Od in each molecule, such that p and d make an angle 6 with AS, as indicated
in Figure 5.95.

The bound charges will now move across AS. Each of the charges associated
with the creation of a dipole must have moved a distance %d cos in the direction
perpendicular to AS. Thus, any positive charges initially lying below the surface AS
and within the distance %d cos 0 of the surface must have crossed AS going upward.
Also, any negative charges initially lying above the surface and within that distance
(%d cos #) from AS must have crossed AS going downward. Therefore, because there
are n molecules/m?, the net total charge that crosses the elemental surface in an upward
direction is equal to n Qd cos O AS, or

AQy =n0d-AS

where the subscript on Q) reminds us that we are dealing with a bound charge and
not a free charge. In terms of the polarization, we have

AQ, =P-AS

If we interpret AS as an element of a closed surface inside the dielectric material,
then the direction of AS is outward, and the net increase in the bound charge within
the closed surface is obtained through the integral

sz—ﬁp-ds (22)
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This last relationship has some resemblance to Gauss’s law, and we may now gener-
alize our definition of electric flux density so that it applies to media other than free
space. We first write Gauss’s law in terms of €gE and O7, the fotal enclosed charge,
bound plus free:

Or = %eoE-dS (23)
s
where

Or=0,+0

and Q is the total free charge enclosed by the surface S. Note that the free charge
appears without a subscript because it is the most important type of charge and will
appear in Maxwell’s equations.

Combining these last three equations, we obtain an expression for the free charge
enclosed,

Q=QT—Qb=y§S(eoE+P>-ds (24)

D is now defined in more general terms than was done in Chapter 3,

D=¢E+P (25)

There is thus an added term to D that appears when polarizable material is present.
Thus,

Q:ﬁDdS (26)

where Q is the free charge enclosed.
Utilizing the several volume charge densities, we have

Oy =/,0de

Q=ﬁmw

Or :/pTdV

With the help of the divergence theorem, we may therefore transform Egs. (22), (23),
and (26) into the equivalent divergence relationships,

V-P=—py
V- eE = pr

V-D=p, (27)

We will emphasize only Eq. (26) and (27), the two expressions involving the free
charge, in the work that follows.
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In order to make any real use of these new concepts, it is necessary to know the
relationship between the electric field intensity E and the polarization P that results.
This relationship will, of course, be a function of the type of material, and we will
essentially limit our discussion to those isotropic materials for which E and P are
linearly related. In an isotropic material, the vectors E and P are always parallel,
regardless of the orientation of the field. Although most engineering dielectrics are
linear for moderate-to-large field strengths and are also isotropic, single crystals may
be anisotropic. The periodic nature of crystalline materials causes dipole moments to
be formed most easily along the crystal axes, and not necessarily in the direction of
the applied field.

In ferroelectric materials, the relationship between P and E not only is nonlin-
ear, but also shows hysteresis effects; that is, the polarization produced by a given
electric field intensity depends on the past history of the sample. Important examples
of this type of dielectric are barium titanate, often used in ceramic capacitors, and
Rochelle salt.

The linear relationship between P and E is

P= XeGOE (28)

where x. (chi) is a dimensionless quantity called the electric susceptibility of the
material.
Using this relationship in Eq. (25), we have

D = €E + x.€0E = (xc + DeoE
The expression within the parentheses is now defined as
€& = Xe+ 1 (29)

This is another dimensionless quantity, and it is known as the relative permittivity, or
dielectric constant of the material. Thus,

D = ¢y, E =€E (30)

€ = €06, @31
| I

and € is the permittivity. The dielectric constants are given for some representative
materials in Appendix C.

Anisotropic dielectric materials cannot be described in terms of a simple suscep-
tibility or permittivity parameter. Instead, we find that each component of D may be
a function of every component of E, and D = ¢E becomes a matrix equation where
D and E are each 3 x 1 column matrices and € is a 3 x 3 square matrix. Expanding
the matrix equation gives

where

D, = e Ex + nyEy + € E;
D, =¢€,E+e€,E,+¢€,E;
D, =€ E, + 6zyE‘y + e E;
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Note that the elements of the matrix depend on the selection of the coordinate axes in
the anisotropic material. Certain choices of axis directions lead to simpler matrices.’

D and E (and P) are no longer parallel, and although D = ¢)E + P remains
a valid equation for anisotropic materials, we may continue to use D = €E only
by interpreting it as a matrix equation. We will concentrate our attention on linear
isotropic materials and reserve the general case for a more advanced text.

In summary, then, we now have a relationship between D and E that depends on
the dielectric material present,

D=¢E (30)

€ = €€, (31)
[e=ae|

This electric flux density is still related to the free charge by either the point or integral

form of Gauss’s law:
V-D=p, 27)

fn-dszg (26)
S

where

Use of the relative permittivity, as indicated by Eq. (31), makes consideration
of the polarization, dipole moments, and bound charge unnecessary. However, when
anisotropic or nonlinear materials must be considered, the relative permittivity, in the
simple scalar form that we have discussed, is no longer applicable.

We locate a slab of Teflon in the region 0 < x < a, and assume free space where
x < 0 and x > a. Outside the Teflon there is a uniform field E, = Epa, V/m. We
seek values for D, E, and P everywhere.
Solution. The dielectric constant of the Teflon is 2.1, and thus the electric suscepti-
bility is 1.1.

Outside the slab, we have immediately Doy, = €9Epay. Also, as there is no
dielectric material there, P,y = 0. Now, any of the last four or five equations will
enable us to relate the several fields inside the material to each other. Thus

Di, = 2.1¢Ej, 0O <x<a)
Py, = 1.1gE;, 0<x<a)

7 A more complete discussion of this matrix may be found in the Ramo, Whinnery, and Van Duzer
reference listed at the end of this chapter.
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As soon as we establish a value for any of these three fields within the dielectric, the
other two can be found immediately. The difficulty lies in crossing over the boundary
from the known fields external to the dielectric to the unknown ones within it. To do
this we need a boundary condition, and this is the subject of the next section. We will
complete this example then.

In the remainder of this text we will describe polarizable materials in terms of D
and € rather than P and yx.. We will limit our discussion to isotropic materials.

D5.8. A slab of dielectric material has a relative dielectric constant of 3.8 and
contains a uniform electric flux density of 8 nC/m?. If the material is lossless,
find: (a) E; (b) P; (c) the average number of dipoles per cubic meter if the
average dipole moment is 1072°C - m.

Ans. 238 V/m; 5.89 nC/m?; 5.89 x 1020 m—3
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5.8 BOUNDARY CONDITIONS FOR PERFECT
DIELECTRIC MATERIALS

How do we attack a problem in which there are two different dielectrics, or a dielectric
and a conductor? This is another example of a boundary condition, such as the condi-
tion at the surface of a conductor whereby the tangential fields are zero and the normal
electric flux density is equal to the surface charge density on the conductor. Now we
take the first step in solving a two-dielectric problem, or a dielectric-conductor prob-
lem, by determining the behavior of the fields at the dielectric interface.

Let us first consider the interface between two dielectrics having permittivities
€1 and €, and occupying regions 1 and 2, as shown in Figure 5.10. We first examine

DNI

\DNZ

Region 1
€1

tan 1

Region 2

==
/Etan 2 &

Figure 5.10 The boundary between perfect dielectrics of permittivities €1
and e,. The continuity of Dy is shown by the gaussian surface on the right,
and the continuity of E, is shown by the line integral about the closed path
at the left.

i)
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the tangential components by using

fE-dL:O

around the small closed path on the left, obtaining
Etan1 AW — Egna Aw =0

The small contribution to the line integral by the normal component of E along
the sections of length A% becomes negligible as A/ decreases and the closed path
crowds the surface. Immediately, then,

Etanl = EtanZ (32)

Evidently, Kirchhoff’s voltage law is still applicable to this case. Certainly we have
shown that the potential difference between any two points on the boundary that are
separated by a distance Aw is the same immediately above or below the boundary.

If the tangential electric field intensity is continuous across the boundary, then
tangential D is discontinuous, for

Dtanl DtanZ
- Etanl = EtanZ -
€1 €2
or
Duan1 €
ml 2 (33)
DtanZ €2

The boundary conditions on the normal components are found by applying
Gauss’s law to the small “pillbox” shown at the right in Figure 5.10. The sides are
again very short, and the flux leaving the top and bottom surfaces is the difference

DNlAS — DNzAS = AQ = psAS

from which

Dy1 — Dy> = ps (34)

What is this surface charge density? It cannot be a bound surface charge density,
because we are taking the polarization of the dielectric into effect by using a dielectric
constant different from unity; that is, instead of considering bound charges in free
space, we are using an increased permittivity. Also, it is extremely unlikely that any
free charge is on the interface, for no free charge is available in the perfect dielectrics
we are considering. This charge must then have been placed there deliberately, thus
unbalancing the total charge in and on this dielectric body. Except for this special
case, then, we may assume pg is zero on the interface and

Dy = Dy (35)
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or the normal component of D is continuous. It follows that
€1EN1 :EzENz (36)

and normal E is discontinuous.

Equations (32) and (34) can be written in terms of field vectors in any direction,
along with the unit normal to the surface as shown in Figure 5.10. Formally stated,
the boundary conditions for the electric flux density and the electric field strength at
the surface of a perfect dielectric are

(D = Dy) - n = p; (37)
which is the general statement of Eq. (32), and
(E] —Ez) xn=>0 (38)

generally states Eq. (34). This construction was used previously in Egs. (17) and (18)
for a conducting surface, in which the normal or tangential components of the fields
are obtained through the dot product or cross product with the normal, respectively.

These conditions may be used to show the change in the vectors D and
E at the surface. Let D; (and E;) make an angle 0; with a normal to the surface
(Figure 5.11). Because the normal components of D are continuous,

Dy = Djcos6; = Dy cos, = Dy (39)

The ratio of the tangential components is given by (33) as

Dtan 1 D1 sin 91 €1
Dtan 2 D2 sin 92 €

or

Ele Sil’191 = 61D2 Sin92 (40)

Dtanz

Figure 5.11 The refraction of D at a

dielectric interface. For the case shown,
€1 > €»; Eq and E, are directed along D4
and Dy, with D1 > D, and E4 < E».
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and the division of this equation by (39) gives

tan 0, €1

= 41
tan 6, € ( )
In Figure 5.11 we have assumed that €; > €,, and therefore 6, > 6,.
The direction of E on each side of the boundary is identical with the direction of
D, because D = ¢E.
The magnitude of D in region 2 may be found from Eq. (39) and (40),

2
D, = Dl\/ cos? 6, + (6—2) sin® 6, (42)
€]
and the magnitude of E, is
2
) €]
E, = El\/sm 0, + (—) cos? 0; (43)
€2

An inspection of these equations shows that D is larger in the region of larger permit-
tivity (unless 6, = 6, = 0° where the magnitude is unchanged) and that E is larger
in the region of smaller permittivity (unless 8; = 6, = 90°, where its magnitude is
unchanged).

Complete Example 5.4 by finding the fields within the Teflon (¢, = 2.1), given the
uniform external field Eoy = Epa, in free space.

Solution. We recall that we had a slab of Teflon extending from x = 0 to x = a,
as shown in Figure 5.12, with free space on both sides of it and an external field
Eout = Eoa,. We also have D, = €9 Epa, and Py, = 0.

Inside, the continuity of Dy at the boundary allows us to find that D;, = Doy =
€oEoa,. This gives us Ei, = Dy, /e = €9Epa, /(€,€0) = 0.476Ea,. To get the polar-
ization field in the dielectric, we use D = ¢)E + P and obtain

Pin = Din — G()Ein = Eoanx — 0.476€0E03x = 0.524€0E03x

Summarizing then gives

Din = €0 Eoay (0<x<a)
Ei, = 0.476Epa, 0<x<a)
Piy = 0.524¢0 Epay (0<x<a)

A practical problem most often does not provide us with a direct knowledge of
the field on either side of the boundary. The boundary conditions must be used to help
us determine the fields on both sides of the boundary from the other information that
is given.
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/——-\/_\/_\
Teflon
& =2.1
Xe=1.1
E=E;, ——— o—> [£=0.476E, o———> E=E
D=¢yE) @——> o———> D=¢kE, o———> D=¢)k,
P=0eo &—> P =0.524¢4E, o P=0
—_—— ~——
x=0 xX=a

Figure 5.12 A knowledge of the electric field external to the dielectric
enables us to find the remaining external fields first and then to use the
continuity of normal D to begin finding the internal fields.

D5.9. Let Region 1 (z < 0) be composed of a uniform dielectric material
for which €, = 3.2, while Region 2 (z > 0) is characterized by €, = 2. Let
D, = —30a, + 50a, + 70a; nC/m? and find: (a) Dy1; (b) Dy1; (¢) Din; (d) Dy;
(e) 615 (f) P1.

Ans. 70 nC/m?; —30a, + 50a, nC/m?; 58.3 nC/m?; 91.1 nC/m?; 39.8°; —20.6a, +
34.4a, + 48.1a, nC/m?

D5.10. Continue Problem D5.9 by finding: (@) Dy2; (b) Dy (¢) Dy; (d) Py;
(e) 6.

Ans. 70a. nC/m?; —18.75a, + 31.25a, nC/m?; —18.75a, + 31.25a,, + 70a. nC/m?;
—9.38a, + 15.63a, + 35a, nC/m?; 27.5°
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CHAPTER 5 PROBLEMS

5110

521

5310

5410

5510

5610

571

580

Given the current density J = —10*[sin(2x)e">"a, + cos(2x)e~*'a,] kA/m?
(a) Find the total current crossing the plane y = 1 in the a, direction in the
region 0 < x < 1,0 < z < 2. (b) Find the total current leaving the region

0 <x,y < 1,2 <z < 3 by integrating J - S over the surface of the cube.
(c) Repeat part (), but use the divergence theorem.

GivenJ = —10~*(ya, + xa,) A/m?, find the current crossing the y = 0
plane in the —a, direction between z = 0 and 1, and x = 0 and 2.

Let J = 400sin6/(r*> + 4) a, A/m?. (a) Find the total current flowing
through that portion of the spherical surface » = 0.8, bounded by

0.17r <0 < 0.37,0 < ¢ < 27. (b) Find the average value of J over the
defined area.

If volume charge density is given as p, = (cos wt)/r?> C/m? in spherical
coordinates, find J. It is reasonable to assume that J is not a function of 6 or ¢.

LetJ = 25/pa, — 20/(p*> + 0.01) a, A/m?. (a) Find the total current
crossing the plane z = 0.2 in the a, direction for p < 0.4. (b) Calculate
dp,/0t. (c¢) Find the outward current crossing the closed surface defined by
p=0.01,p=04,z=0,and z = 0.2. (d) Show that the divergence
theorem is satisified for J and the surface specified in part (c).

In spherical coordinates, a current density J = —k/(r sin9) ag A/m? exists in
a conducting medium, where £ is a constant. Determine the total current in
the a, direction that crosses a circular disk of radius R, centered on the z axis
and located at (a) z = 0; (b) z = h.

Assuming that there is no transformation of mass to energy or vice versa, it is
possible to write a continuity equation for mass. (a) If we use the continuity
equation for charge as our model, what quantities correspond to J and p,?
(b) Given a cube 1 cm on a side, experimental data show that the rates at
which mass is leaving each of the six faces are 10.25, —9.85, 1.75, —2.00,
—4.05, and 4.45 mg/s. If we assume that the cube is an incremental volume
element, determine an approximate value for the time rate of change of
density at its center.

A truncated cone has a height of 16 cm. The circular faces on the top and
bottom have radii of 2 mm and 0.1 mm, respectively. If the material from
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which this solid cone is constructed has a conductivity of 2 x 10° S/m, use
some good approximations to determine the resistance between the two
circular faces.

591 (a) Using data tabulated in Appendix C, calculate the required diameter for a
2-m-long nichrome wire that will dissipate an average power of 450 W when
120 V rms at 60 Hz is applied to it. (b) Calculate the rms current density in
the wire.

5100 A large brass washer has a 2-cm inside diameter, a 5-cm outside diameter,
and is 0.5 cm thick. Its conductivity is 0 = 1.5 x 107 S/m. The washer is cut
in half along a diameter, and a voltage is applied between the two rectangular
faces of one part. The resultant electric field in the interior of the half-washer
is E = (0.5/p)as V/m in cylindrical coordinates, where the z axis is the axis
of the washer. (¢) What potential difference exists between the two
rectangular faces? (b) What total current is flowing? (c) What is the
resistance between the two faces?

5.111 Two perfectly conducting cylindrical surfaces of length ¢ are located at
p =3 and p = 5 cm. The total current passing radially outward through the
medium between the cylinders is 3 A dc. (a) Find the voltage and resistance
between the cylinders, and E in the region between the cylinders, if a
conducting material having o = 0.05 S/m is present for 3 < p < 5 cm.
(b) Show that integrating the power dissipated per unit volume over the
volume gives the total dissipated power.

5.12§ Two identical conducting plates, each having area 4, are located at z = 0 and
z = d. The region between plates is filled with a material having z-dependent
conductivity, o(z) = ope~?/¢, where oy is a constant. Voltage ¥ is applied to
the plate at z = d; the plate at z = 0 is at zero potential. Find, in terms of the
given parameters, («) the resistance of the material; (b) the total current
flowing between plates; (¢) the electric field intensity E within the material.

5.13 A hollow cylindrical tube with a rectangular cross section has external
dimensions of 0.5 in. by 1 in. and a wall thickness of 0.05 in. Assume that the
material is brass, for which o = 1.5 x 107 S/m. A current of 200 A dc is
flowing down the tube. (¢) What voltage drop is present across a 1 m length
of the tube? (b) Find the voltage drop if the interior of the tube is filled with
a conducting material for which o = 1.5 x 10° S/m.

5.440 A rectangular conducting plate lies in the xy plane, occupying the region
0 <x < a,0 <y < b. An identical conducting plate is positioned directly
above and parallel to the first, at z = d. The region between plates is filled
with material having conductivity o (x) = ope™/“, where oy is a constant.
Voltage V) is applied to the plate at z = d; the plate at z = 0 is at zero
potential. Find, in terms of the given parameters, (a) the electric field
intensity E within the material; (b) the total current flowing between plates;
(c) the resistance of the material.
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5150 Let 1V = 10(p + 1)z2 cos ¢ V in free space. (a) Let the equipotential surface
V' =20V define a conductor surface. Find the equation of the conductor
surface. (b) Find p and E at that point on the conductor surface where ¢ =
0.2m and z = 1.5. (¢) Find | ps]| at that point.

5.16 4 A coaxial transmission line has inner and outer conductor radii @ and b.
Between conductors (a < p < b) lies a conductive medium whose
conductivity is o (p) = oy/p, where oy is a constant. The inner conductor is
charged to potential Vp, and the outer conductor is grounded. (¢) Assuming
dc radial current / per unit length in z, determine the radial current density
field J in A/m?. (b) Determine the electric field intensity E in terms of 7 and
other parameters, given or known. (¢) By taking an appropriate line integral
of E as found in part (), find an expression that relates ; to /. (d) Find an
expression for the conductance of the line per unit length, G.

5.17 1 Given the potential field ¥ = 100xz/(x? 4+ 4) V in free space: (a) Find D at
the surface z = 0. (b) Show that the z = 0 surface is an equipotential surface.
(c) Assume that the z = 0 surface is a conductor and find the total charge on
that portion of the conductor defined by 0 < x <2, -3 <y < 0.

5181 Two parallel circular plates of radius a are located at z = 0 and z = d. The
top plate (z = d) is raised to potential V;; the bottom plate is grounded.
Between the plates is a conducting material having radial-dependent
conductivity, o (p) = oyp, where oy is a constant. (a) Find the p-independent
electric field strength, E, between plates. (b) Find the current density, J
between plates. (c¢) Find the total current, 7, in the structure. (d) Find the
resistance between plates.

5191 Let ¥ = 20x2yz — 1022 V in free space. (a) Determine the equations of the
equipotential surfaces on which ¥ = 0 and 60 V. (b) Assume these are
conducting surfaces and find the surface charge density at that point on the
V = 60V surface where x =2 andz = 1. Itis known that 0 < JV < 60 V is
the field-containing region. (c¢) Give the unit vector at this point that is
normal to the conducting surface and directed toward the V' = 0 surface.

5200 Two point charges of —100m «C are located at (2, —1, 0) and (2, 1, 0). The
surface x = 0 is a conducting plane. (a) Determine the surface charge
density at the origin. (b) Determine pg at P(0, &, 0).

521 Let the surface y = 0 be a perfect conductor in free space. Two uniform
infinite line charges of 30 nC/m each are located at x = 0, y = 1, and
x =0,y =2.(a) Let V = 0 at the plane y = 0, and find V" at P(1, 2, 0).
(b) Find E at P.

5.221 The line segment x = 0, —1 < y < 1,z = 1, carries a linear charge density

pr = 1|yl uC/m. Let z = 0 be a conducting plane and determine the surface
charge density at: (a) (0, 0, 0); () (0, 1, 0).
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5230 A dipole with p = 0.1a, uC - m is located at 4(1, 0, 0) in free space, and the
x = 0 plane is perfectly conducting. (a) Find V" at P(2, 0, 1). (b) Find the
equation of the 200 V equipotential surface in rectangular coordinates.

5.24 ) At a certain temperature, the electron and hole mobilities in intrinsic
germanium are given as 0.43 and 0.21 m?/V - s, respectively. If the electron
and hole concentrations are both 2.3 x 10! m~3, find the conductivity at this
temperature.

5.25 Electron and hole concentrations increase with temperature. For pure
silicon, suitable expressions are p, = —p, = 62007 '3e=700/T C/m3.
The functional dependence of the mobilities on temperature is given by
wp =23 x10°T7%7 m?/V-sand p, = 2.1 x 10°T~2° m?/V -s, where the
temperature, 7', is in degrees Kelvin. Find o at: (a) 0°C; (b) 40°C; (c¢) 80°C.

5.26 | A semiconductor sample has a rectangular cross section 1.5 by 2.0 mm, and a
length of 11.0 mm. The material has electron and hole densities of 1.8 x 10'®
and 3.0 x 101" m—3, respectively. If u, = 0.082 m?/V -sand pu;, = 0.0021
m?/ V -s, find the resistance offered between the end faces of the sample.

5.271 Atomic hydrogen contains 5.5 x 10?° atoms/m’at a certain temperature and
pressure. When an electric field of 4 kV/m is applied, each dipole formed by
the electron and positive nucleus has an effective length of 7.1 x 107" m.
(a) Find P. (b) Find ¢,.

5.28 | Find the dielectric constant of a material in which the electric flux density is
four times the polarization.

5.29 4 A coaxial conductor has radiia = 0.8 mm and b = 3 mm and a polystyrene
dielectric for which ¢, = 2.56. If P = (2/p)a, nC/m? in the dielectric, find
(a) D and E as functions of p; (b) Vp and x.. (c) If there are 4 x 10"
molecules per cubic meter in the dielectric, find p(p).

5.30§ Consider a composite material made up of two species, having number
densities Ny and N, molecules/m?, respectively. The two materials are
uniformly mixed, yielding a total number density of N = N; + N,. The
presence of an electric field E induces molecular dipole moments p; and p,
within the individual species, whether mixed or not. Show that the dielectric
constant of the composite material is given by €, = f¢,; + (1 — f)€,2, where
£ is the number fraction of species 1 dipoles in the composite, and where €,
and €,, are the dielectric constants that the unmixed species would have if
each had number density N.

5.31 | The surface x = 0 separates two perfect dielectrics. For x > 0, let ¢, =
€1 = 3, while ¢, = 5 where x < 0. If E; = 80a, — 60a, — 30a, V/m, find
(a) En1; (D) E7y; (¢) Ep; (d) the angle 0; between E; and a normal to the
surface; (e) Dy2; (f) Dra; (g) Da; (h) Py; (i) the angle 6, between E; and a
normal to the surface.
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5320 Two equal but opposite-sign point charges of 3 «C are held x meters apart by
a spring that provides a repulsive force given by F;, = 12(0.5 — x) N.
Without any force of attraction, the spring would be fully extended to 0.5 m.
(a) Determine the charge separation. () What is the dipole moment?

5331 Two perfect dielectrics have relative permittivities €,; = 2 and €,, = 8. The
planar interface between them is the surface x — y + 2z = 5. The origin lies
in region 1. IfFE; = 100a, + 200a, — 50a, V/m, find E;.

5341 Region 1 (x > 0) is a dielectric with €,; = 2, while region 2(x < 0) has
€2 =5.Let E; = 20a, — 10a, + 50a; V/m. (@) Find D,. (b) Find the energy
density in both regions.

5.351 Let the cylindrical surfaces p = 4 cm and p = 9 cm enclose two wedges of
perfect dielectrics, €,y =2 for0 < ¢ < mw/2ande¢,, =5form/2 < ¢ < 2m.
IfE; = (2000/p)a, V/m, find (a) E,; (b) the total electrostatic energy stored
in a 1 m length of each region.



CHAPTER

Capacitance

apacitance measures the capability of energy storage in electrical devices.

It can be deliberately designed for a specific purpose, or it may exist as

an unavoidable by-product of the device structure that one must live with.
Understanding capacitance and its impact on device or system operation is critical in
every aspect of electrical engineering.

A capacitor is a device that stores energy; energy thus stored can either be as-
sociated with accumulated charge or it can be related to the stored electric field,
as was discussed in Section 4.8. In fact, one can think of a capacitor as a device
that stores electric flux, in a similar way that an inductor — an analogous device —
stores magnetic flux (or ultimately magnetic field energy). We will explore this in
Chapter 8. A primary goal in this chapter is to present the methods for calculating
capacitance for a number of cases, including transmission line geometries, and to be
able to make judgments on how capacitance will be altered by changes in materials
or their configuration. M

6.1 CAPACITANCE DEFINED

Consider two conductors embedded in a homogeneous dielectric (Figure 6.1). Con-
ductor M, carries a total positive charge Q, and M| carries an equal negative charge.
There are no other charges present, and the fotal charge of the system is zero.

We now know that the charge is carried on the surface as a surface charge density
and also that the electric field is normal to the conductor surface. Each conductor
is, moreover, an equipotential surface. Because M, carries the positive charge, the
electric flux is directed from M, to M, and M, is at the more positive potential. In
other words, work must be done to carry a positive charge from M, to M,.

Let us designate the potential difference between M, and M, as V). We may now
define the capacitance of this two-conductor system as the ratio of the magnitude
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Figure 6.1 Two oppositely charged
conductors My and M, surrounded by a uniform
dielectric. The ratio of the magnitude of the
charge on either conductor to the magnitude of
the potential difference between them is the
capacitance C.

of the total charge on either conductor to the magnitude of the potential difference
between conductors,

¢ = (1)

9
4

In general terms, we determine O by a surface integral over the positive conductors,
and we find ¥} by carrying a unit positive charge from the negative to the positive
surface,

B $s€E-dS

— [TE-dL @)
The capacitance is independent of the potential and total charge, for their ratio
is constant. If the charge density is increased by a factor of N, Gauss’s law indicates
that the electric flux density or electric field intensity also increases by N, as does the
potential difference. The capacitance is a function only of the physical dimensions of
the system of conductors and of the permittivity of the homogeneous dielectric.
Capacitance is measured in farads (F), where a farad is defined as one coulomb
per volt. Common values of capacitance are apt to be very small fractions of a farad,
and consequently more practical units are the microfarad («F), the nanofarad (nF),
and the picofarad (pF).
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6.2 PARALLEL-PLATE CAPACITOR

We can apply the definition of capacitance to a simple two-conductor system in which
the conductors are identical, infinite parallel planes with separation d (Figure 6.2).
Choosing the lower conducting plane at z = 0 and the upper one at z = d, a uniform
sheet of surface charge +pgs on each conductor leads to the uniform field [Section
2.5, Eq. (18)]

Ps

E=—a,
€

where the permittivity of the homogeneous dielectric is €, and
D = psa,

Note that this result could be obtained by applying the boundary condition at a
conducting surface (Eq. (18), Chapter 5) at either one of the plate surfaces. Referring
to the surfaces and their unit normal vectors in Fig. 6.2, where n, = a, andn, = —a_,
we find on the lower plane:

D-n|_,=D-a.=p, = D=pa.
On the upper plane, we get the same result

D'nu| d:D'(_az):_ps = D=psa,

This is a key advantage of the conductor boundary condition, in that we need to
apply it only to a single boundary to obtain the fotal field there (arising from all other
sources).

The potential difference between lower and upper planes is

lower 0
Voz—/ E-dL:—/ PS g = P54
u d € €

pper
Since the total charge on either plane is infinite, the capacitance is infinite. A more
practical answer is obtained by considering planes, each of area S, whose linear
dimensions are much greater than their separation d. The electric field and charge

Conductor surface —Ps z=d
nu
Uniform surface k
charge density
n,
Conductor surface +Ps z=0

Figure 6.2 The problem of the parallel-plate
capacitor. The capacitance per square meter of
surface area is €/d.
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distribution are then almost uniform at all points not adjacent to the edges, and this
latter region contributes only a small percentage of the total capacitance, allowing us
to write the familiar result

0 =psS
vo = PS4

c==== 3)

More rigorously, we might consider Eq. (3) as the capacitance of a portion of the
infinite-plane arrangement having a surface area S. Methods of calculating the effect
of the unknown and nonuniform distribution near the edges must wait until we are
able to solve more complicated potential problems.

Calculate the capacitance of a parallel-plate capacitor having a mica dielectric, €, = 6,
a plate area of 10 in.2, and a separation of 0.01 in.

Solution. We may find that

S =10 x 0.0254*> = 6.45 x 103 m?
d =0.01 x 0.0254 =2.54 x 10 m

and therefore

6 x 8.854 x 10~12 x 6.45 x 103
c=2= x X O X — 1.349 nF
254 x 104

A large plate area is obtained in capacitors of small physical dimensions by
stacking smaller plates in 50- or 100-decker sandwiches, or by rolling up foil plates
separated by a flexible dielectric.

Table C.1 in Appendix C also indicates that materials are available having di-
electric constants greater than 1000.

Finally, the total energy stored in the capacitor is

S pd 2 2 2
) S pld
WE=§/ eEdv =1 /eiﬁdzdszgﬁsarzge—psz
vol 0 0 € d €
or
1 1 %
WE=—CV§=§QV0=§? 4)

which are all familiar expressions. Equation (4) also indicates that the energy stored
in a capacitor with a fixed potential difference across it increases as the dielectric
constant of the medium increases.
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D6.1. Find the relative permittivity of the dielectric material present in a
parallel-plate capacitor if: (@) S = 0.12m?, d = 80 um, Vy = 12V, and the
capacitor contains 1 uJ of energy; (b) the stored energy density is 100 J/m?3,
Vo =200V, and d = 45 um; (c) E = 200 kV/m and pg = 20 uC/m?.

Ans. 1.05;1.14;11.3
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6.3 SEVERAL CAPACITANCE EXAMPLES

As a first brief example, we choose a coaxial cable or coaxial capacitor of inner
radius a, outer radius b, and length L. No great derivational struggle is required,
because the potential difference is given as Eq. (11) in Section 4.3, and we find the
capacitance very simply by dividing this by the total charge p; L in the length L.
Thus,

. 2mel
"~ In(b/a)

)

Next we consider a spherical capacitor formed of two concentric spherical con-
ducting shells of radius @ and b, b > a. The expression for the electric field was
obtained previously by Gauss’s law,

_ 9
" 4rer?
where the region between the spheres is a dielectric with permittivity €. The expression
for potential difference was found from this by the line integral [Section 4.3, Eq. (12)].

Thus,
o /1 1
Vip = —| — — =
P dme\a b

Here Q represents the total charge on the inner sphere, and the capacitance becomes

E

0 e
T, TT I ©

a b

If we allow the outer sphere to become infinitely large, we obtain the capacitance

of an isolated spherical conductor,
0

For a diameter of 1 cm, or a sphere about the size of a marble,
C = 0.556 pF

in free space.
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1

C=—
i + diz Area, S
€S &S
Conducting & % d
plates
& d

Figure 6.3 A parallel-plate capacitor containing two
dielectrics with the dielectric interface parallel to the conducting
plates.

Coating this sphere with a different dielectric layer, for which € = €, extending
fromr =ator =ry,

D, = 0
4772
= pr—, (a<r<r)
0
= dregr? (i <r)

and the potential difference is

4 Qdr " Qdr
Vo= Voo = _f drer? 4reqr?
r oo 0
1 /1 1 1
drleg\a n €or1

4
C= ®

1 (1 1) 1
— - =)+ —
€] a r €0l

In order to look at the problem of multiple dielectrics a little more thoroughly,
let us consider a parallel-plate capacitor of area S and spacing d, with the usual
assumption that d is small compared to the linear dimensions of the plates. The
capacitance is €;5/d, using a dielectric of permittivity €;. Now replace a part of
this dielectric by another of permittivity €;, placing the boundary between the two
dielectrics parallel to the plates (Figure 6.3).

Some of us may immediately suspect that this combination is effectively two
capacitors in series, yielding a total capacitance of

1
1 1

C1+C2

Therefore,

C =
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where C; = €,5/d, and C, = €,S5/d,. This is the correct result, but we can obtain it
using less intuition and a more basic approach.

Because the capacitance definition, C = Q/V, involves a charge and a voltage,
we may assume either and then find the other in terms of it. The capacitance is not a
function of either, but only of the dielectrics and the geometry. Suppose we assume
a potential difference V), between the plates. The electric field intensities in the two
regions, £, and E;, are both uniform, and Vy = E\d|; + E,d,. At the dielectric
interface, £ is normal, and our boundary condition, Eq. (35) Chapter 5, tells us that
Dy = Dyy,ore E| = €, E;,. This assumes (correctly) that there is no surface charge
at the interface. Eliminating £, in our V} relation, we have

Vo
dy + da(€1/€2)

and the surface charge density on the lower plate therefore has the magnitude

Vo
P51=D1=€1E1=m
_+_

€] €2

E,

Because D = D,, the magnitude of the surface charge is the same on each plate.
The capacitance is then
c O  psS 1 1
V% A & T T
€1 S €2S Cl C2
As an alternate (and slightly simpler) solution, we might assume a charge Q on
one plate, leading to a charge density Q/S and a value of D that is also Q/S. This is
true in both regions, as Dy = Dy and D is normal. Then £, = D/e; = Q/(€1S),
E, = D/e; = Q/(€25), and the potential differences across the regions are V; =
E\dy = 0d,/(e15), and V, = E»d;, = Od,/(€,5). The capacitance is

0 0 1
= — = = 9
V "+ " d T d> ©)
615 €2S

How would the method of solution or the answer change if there were a third
conducting plane along the interface? We would now expect to find surface charge on
each side of this conductor, and the magnitudes of these charges should be equal. In
other words, we think of the electric lines not as passing directly from one outer plate
to the other, but as terminating on one side of this interior plane and then continuing
on the other side. The capacitance is unchanged, provided, of course, that the added
conductor is of negligible thickness. The addition of a thick conducting plate will
increase the capacitance if the separation of the outer plates is kept constant, and this
is an example of a more general theorem which states that the replacement of any
portion of the dielectric by a conducting body will cause an increase in the capacitance.

If the dielectric boundary were placed normal to the two conducting plates and
the dielectrics occupied areas of S; and S, then an assumed potential difference V)
would produce field strengths £; = E, = V,/d. These are tangential fields at the
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interface, and they must be equal. Then we may find in succession Dy, Ds, psi, Ps2,
and Q, obtaining a capacitance

_aSitaS

C
d

=C+G (10)

as we should expect.

At this time we can do very little with a capacitor in which two dielectrics
are used in such a way that the interface is not everywhere normal or parallel to
the fields. Certainly we know the boundary conditions at each conductor and at the
dielectric interface; however, we do not know the fields to which to apply the boundary
conditions. Such a problem must be put aside until our knowledge of field theory has
increased and we are willing and able to use more advanced mathematical techniques.

D6.2. Determine the capacitance of: (a) a 1-ft length of 35B/U coaxial cable,
which has an inner conductor 0.1045 in. in diameter, a polyethylene dielectric
(¢, = 2.26 from Table C.1), and an outer conductor that has an inner diameter of
0.680 in.; (b) a conducting sphere of radius 2.5 mm, covered with a polyethylene
layer 2 mm thick, surrounded by a conducting sphere of radius 4.5 mm; (¢) two
rectangular conducting plates, 1 cm by 4 cm, with negligible thickness, between
which are three sheets of dielectric, each 1 cm by 4 cm, and 0.1 mm thick, having
dielectric constants of 1.5, 2.5, and 6.

Ans. 20.5 pF; 1.41 pF; 28.7 pF

6.4 CAPACITANCE OF A TWO-WIRE LINE

We next consider the problem of the two-wire line. The configuration consists of two
parallel conducting cylinders, each of circular cross section, and we will find complete
information about the electric field intensity, the potential field, the surface-charge-
density distribution, and the capacitance. This arrangement is an important type of
transmission line, as is the coaxial cable.

We begin by investigating the potential field of two infinite line charges. Figure 6.4
shows a positive line charge in the xz plane at x = a and a negative line charge at

x = —a. The potential of a single line charge with zero reference at a radius of R is
R
V= pr In—2
2me R

We now write the expression for the combined potential field in terms of the radial
distances from the positive and negative lines, R; and R;, respectively,

3 Rio Ry oL, RioRs
V=—In——-In— )= —In—-
2me R, R, 2me Ry R
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P(x,y, 0)

—Pr z Y

Figure 6.4 Two parallel infinite line charges carrying opposite
charge. The positive line is at x = a, y = 0, and the negative line
isat x = —a, y = 0. A general point P(x, y, 0) in the xy plane is
radially distant Ry and R, from the positive and negative lines,
respectively. The equipotential surfaces are circular cylinders.

We choose Ry = Ry, thus placing the zero reference at equal distances from each
line. This surface is the x = 0 plane. Expressing R; and R; in terms of x and y,

pr [ +aP+y* _ pp (x+a) +)?
/A M LS N S W e (11)
2me | (x —a) +y*  4dme (x —a)? +)?

In order to recognize the equipotential surfaces and adequately understand the
problem we are going to solve, some algebraic manipulations are necessary. Choosing
an equipotential surface ' = V), we define K| as a dimensionless parameter that is
a function of the potential 77,

K| = eAmeni/or (12)
so that

PO '
(x—a) +

After multiplying and collecting like powers, we obtain

K +1
2 2, 2
-2 =0

X ax Ki—1 +y +a

We next work through a couple of lines of algebra and complete the square,
Ki+1\ 5, (2aJKi\
X—a——| +y ' =\—0""7
Ky —1 Ky —1

This shows that the V' = V| equipotential surface is independent of z (or is a cylinder)
and intersects the xy plane in a circle of radius b,

_ 261\/[{1

b =
K, —1
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which is centered at x = 4, y = 0, where
Ki+1
K 1 — 1
Now let us attack a physical problem by considering a zero-potential conducting
plane located at x = 0, and a conducting cylinder of radius b and potential V with
its axis located a distance 4 from the plane. We solve the last two equations for a and
K in terms of the dimensions b and /,

a=h—p? (13)

=a

and
JE = o “Zzﬁ (14)
But the potential of the cylinder is V), so Eq. (12) leads to
VK, = e2meholn
Therefore,
o= (15)

Thus, given &, b, and V), we may determine a, p;, and the parameter K;. The
capacitance between the cylinder and plane is now available. For a length L in the z
direction, we have

prL 4rel 2mel

Vo WK, InyK,

or
2mel 2mel

C = =
In[(h + +/h2 —b%)/b]  cosh™'(h/b)
The solid line in Figure 6.5 shows the cross section of a cylinder of 5 m radius
at a potential of 100 V in free space, with its axis 13 m distant from a plane at zero
potential. Thus, b = 5, h = 13, V) = 100, and we rapidly find the location of the
equivalent line charge from Eq. (13),
a=Vh—p =132 -5 =12m
the value of the potential parameter K; from Eq. (14),

\/? h+~h?2—b2 13412 s
1: = =

(16)

K, =25
b 5 :
the strength of the equivalent line charge from Eq. (15),
dreVy 4 8.854 x 10712 x 100
pp =20 _ImX . X =3.46nC/m
InK, In25
and the capacitance between cylinder and plane from Eq. (16),
2 27 x 8.854 x 10712
e _ X x — 34.6 pF/m

= cosh '(h/b)  cosh (13/5)
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~ ~
s ~
7/ N
/ / Equivalent N \
/ line charge \
/ \
/ \
| |
| I
\ Center, x =13, |
\ y=0,V= 100/
\ Center,x=18,y=0 /
N radius = 13.42 //
N ;& 7/
~ V=50 -

~ —

Figure 6.5 A numerical example of the
capacitance, linear charge density, position of an
equivalent line charge, and characteristics of the
mid-equipotential surface for a cylindrical
conductor of 5 m radius at a potential of 100V,
parallel to and 13 m from a conducting plane at
zero potential.

We may also identify the cylinder representing the 50 V equipotential surface by
finding new values for K, &, and b. We first use Eq. (12) to obtain

-12 -9
Kl — e47reV1/pL _ e4rr><8.854><10 x50/3.46%x10 = 5.00

Then the new radius is

2ayKi 2% 125

b= = =13.42m
Ky —1 5—-1
and the corresponding value of /# becomes
Ky+1 541
h=aa 1227 _igm

K —1 5-1
This cylinder is shown in color in Figure 6.5.

The electric field intensity can be found by taking the gradient of the potential
field, as given by Eq. (11),

E__ V|: (x+a)2+yi|
dme  (x —a)? + y?
Thus,
|:2(x +a)a, + 2yay _ 2(x —a)ac + 2yay]
 4me (x +a)?+y? (x —a)? +y?
and

D—EE——'O—L|:(X +a)a, + ya, B (x—a)ax+yay:|
(x +a)+)? (x —a)+)?
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If we evaluate D, atx = h — b, y = 0, we may obtain pg max
pL|:h—b+a h—b—a ]

maxz_Dxx=7 =0 = 5 -
Ps, b0 =l —btap  (h—b—a)y

For our example,
346 x 1077 [ 13 —-5+12 13-5—-12
. LA = 0.165 nC/m’
2 (13=5+12)> (13=5—12)
Similarly, pgmin = Dx x=h+b,y=0, and
346 x 107 [13+5+12 134+5-12
2w 302 62

LS, max =

PS8, min = ] = 0.073 nC/m?

Thus,

LS, max = 2-25/)S,min
If we apply Eq. (16) to the case of a conductor for which b < /4, then

In[(h + v'h?> — b?)/b] =In[(h + h)/b] =In(2h/b)
and
_ 2mel
~ In(2h/b)
The capacitance between two circular conductors separated by a distance 24
is one-half the capacitance given by Eqgs. (16) or (17). This last answer is of inter-

est because it gives us an expression for the capacitance of a section of two-wire
transmission line, one of the types of transmission lines studied later in Chapter 13.

(b < h) (17)

D6.3. A conducting cylinder with a radius of 1 cm and at a potential of 20 V is
parallel to a conducting plane which is at zero potential. The plane is 5 cm distant
from the cylinder axis. If the conductors are embedded in a perfect dielectric
for which €, =4.5, find: (a) the capacitance per unit length between cylinder
and plane; (b) ps.max on the cylinder.

Ans. 109.2 pF/m; 42.6 nC/m?

6.5 USING FIELD SKETCHES TO ESTIMATE
CAPACITANCE IN TWO-DIMENSIONAL
PROBLEMS

In capacitance problems in which the conductor configurations cannot be easily de-
scribed using a single coordinate system, other analysis techniques are usually applied.
Such methods typically involve a numerical determination of field or potential values
over a grid within the region of interest. In this section, another approach is described
that involves making sketches of field lines and equipotential surfaces in a manner
that follows a few simple rules. This approach, although lacking the accuracy of more
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elegant methods, allows fairly quick estimates of capacitance while providing a useful
visualization of the field configuration.

The method, requiring only pencil and paper, is capable of yielding good accu-
racy if used skillfully and patiently. Fair accuracy (5 to 10 percent on a capacitance
determination) may be obtained by a beginner who does no more than follow the
few rules and hints of the art. The method to be described is applicable only to fields
in which no variation exists in the direction normal to the plane of the sketch. The
procedure is based on several facts that we have already demonstrated:

1. A conductor boundary is an equipotential surface.

2. The electric field intensity and electric flux density are both perpendicular to the
equipotential surfaces.

3. E and D are therefore perpendicular to the conductor boundaries and possess
zero tangential values.

4. The lines of electric flux, or streamlines, begin and terminate on charge and
hence, in a charge-free, homogeneous dielectric, begin and terminate only on
the conductor boundaries.

We consider the implications of these statements by drawing the streamlines on
a sketch that already shows the equipotential surfaces. In Figure 6.6a, two conductor
boundaries are shown, and equipotentials are drawn with a constant potential differ-
ence between lines. We should remember that these lines are only the cross sections
of the equipotential surfaces, which are cylinders (although not circular). No variation
in the direction normal to the surface of the paper is permitted. We arbitrarily choose
to begin a streamline, or flux line, at 4 on the surface of the more positive conductor.
It leaves the surface normally and must cross at right angles the undrawn but very
real equipotential surfaces between the conductor and the first surface shown. The
line is continued to the other conductor, obeying the single rule that the intersection
with each equipotential must be square.

In a similar manner, we may start at B and sketch another streamline ending
at B’. We need to understand the meaning of this pair of streamlines. The streamline,

Equipotentials

\ B
: A 4
Conductor A4 \__ AL, \4 !
bound: \ /_\ i3
oundaty 2 Conductor e\ oL
boundary ALy
(@) (b)

Figure 6.6 (a) Sketch of the equipotential surfaces between two conductors. The
increment of potential between each of the two adjacent equipotentials is the same.
(b) One flux line has been drawn from A to A’, and a second from B to B'.
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by definition, is everywhere tangent to the electric field intensity or to the electric flux
density. Because the streamline is tangent to the electric flux density, the flux density
is tangent to the streamline, and no electric flux may cross any streamline. In other
words, if there is a charge of 5 uC on the surface between 4 and B (and extending
1 m into the paper), then 5 «C of flux begins in this region, and all must terminate
between A’ and B’. Such a pair of lines is sometimes called a flux fube, because it
physically seems to carry flux from one conductor to another without losing any.

We next construct a third streamline, and both the mathematical and visual in-
terpretations we may make from the sketch will be greatly simplified if we draw this
line starting from some point C chosen so that the same amount of flux is carried in
the tube BC as is contained in AB. How do we choose the position of C?

The electric field intensity at the midpoint of the line joining 4 to B may be
found approximately by assuming a value for the flux in the tube 4B, say AW, which
allows us to express the electric flux density by AW/AL,, where the depth of the tube
into the paper is 1 m and AL, is the length of the line joining 4 to B. The magnitude
of E is then

1 AW
T e AL,

We may also find the magnitude of the electric field intensity by dividing the
potential difference between points A4 and 4, lying on two adjacent equipotential
surfaces, by the distance from 4 to A,. If this distance is designated ALy and an
increment of potential between equipotentials of AV is assumed, then

AV
ALy

This value applies most accurately to the point at the middle of the line segment
from A to A4;, while the previous value was most accurate at the midpoint of the line
segment from A to B. If, however, the equipotentials are close together (A} small)
and the two streamlines are close together (AW small), the two values found for the
electric field intensity must be approximately equal,

1 AV AV
=== (18)
e AL, ALy

Throughout our sketch we have assumed a homogeneous medium (e constant), a
constant increment of potential between equipotentials (A V' constant), and a constant
amount of flux per tube (AW constant). To satisfy all these conditions, Eq. (18) shows
that

AL, 1 AW
—— = constant = —

— 19
ALN e AV ( )

A similar argument might be made at any point in our sketch, and we are therefore
led to the conclusion that a constant ratio must be maintained between the distance
between streamlines as measured along an equipotential, and the distance between
equipotentials as measured along a streamline. It is this ratio that must have the same
value at every point, not the individual lengths. Each length must decrease in regions
of greater field strength, because AV is constant.
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Figure 6.7 The remaining of the
streamlines have been added to

Fig. 6.6b by beginning each new line
normally to the conductor and
maintaining curvilinear squares
throughout the sketch.

The simplest ratio we can use is unity, and the streamline from B to B’ shown in
Figure 6.6b was started at a point for which AL, = AL y. Because the ratio of these
distances is kept at unity, the streamlines and equipotentials divide the field-containing
region into curvilinear squares, a term implying a planar geometric figure that differs
from a true square in having slightly curved and slightly unequal sides but which
approaches a square as its dimensions decrease. Those incremental surface elements
in our three coordinate systems which are planar may also be drawn as curvilinear
squares.

We may now sketch in the remainder of the streamlines by keeping each small
box as square as possible. One streamline is begun, an equipotential line is roughed
in, another streamline is added, forming a curvilinear square, and the map is gradually
extended throughout the desired region. The complete sketch is shown in Figure 6.7.

The construction of a useful field map is an art; the science merely furnishes
the rules. Proficiency in any art requires practice. A good problem for beginners is
the coaxial cable or coaxial capacitor, since all the equipotentials are circles while the
flux lines are straight lines. The next sketch attempted should be two parallel circular
conductors, where the equipotentials are again circles but with different centers. Each
of these is given as a problem at the end of the chapter.

Figure 6.8 shows a completed map for a cable containing a square inner conductor
surrounded by a circular conductor. The capacitance is found from C = Q/V, by
replacing O by NpAQ = NpAW, where Ny is the number of flux tubes joining
the two conductors, and letting Vy = Ny AV, where Ny is the number of potential
increments between conductors,

NoAQ

T NyAV

and then using Eq. (19),

No AL N,
C = —Qe—t = e—Q

= = (20)
Ny ALy Ny
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Conductor
boundary
Repeats

SRSSHRSed %

Conductor ,é_d_,_/
boundary 3

% Repeat

3 epeats

Figure 6.8 An example of a curvilinear-square
field map. The side of the square is two-thirds the
radius of the circle. Ny =4 and Ng = 8 x 3.25

x 26, and therefore C = egNg /Ny = 57.6 pF/m.

since AL,/ALy = 1. The determination of the capacitance from a flux plot merely
consists of counting squares in two directions, between conductors and around either
conductor. From Figure 6.8 we obtain

8 x3.25
C= GOT = 57.6 pF/m

Ramo, Whinnery, and Van Duzer have an excellent discussion with examples
of the construction of field maps by curvilinear squares. They offer the following
suggestions:!

1. Plan on making a number of rough sketches, taking only a minute or so apiece,
before starting any plot to be made with care. The use of transparent paper over
the basic boundary will speed up this preliminary sketching.

2. Divide the known potential difference between electrodes into an equal number
of divisions, say four or eight to begin with.

3. Begin the sketch of equipotentials in the region where the field is known best,
for example, in some region where it approaches a uniform field. Extend the
equipotentials according to your best guess throughout the plot. Note that they
should tend to hug acute angles of the conducting boundary and be spread out
in the vicinity of obtuse angles of the boundary.

! By permission from S. Ramo, J. R. Whinnery, and T. Van Duzer, pp. 51-52. See References at the end

of this chapter. Curvilinear maps are discussed on pp. 50-52.
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Draw in the orthogonal set of field lines. As these are started, they should form
curvilinear squares, but, as they are extended, the condition of orthogonality
should be kept paramount, even though this will result in some rectangles with
ratios other than unity.

Look at the regions with poor side ratios and try to see what was wrong with the
first guess of equipotentials. Correct them and repeat the procedure until
reasonable curvilinear squares exist throughout the plot.

In regions of low field intensity, there will be large figures, often of five or six
sides. To judge the correctness of the plot in this region, these large units should
be subdivided. The subdivisions should be started back away from the region
needing subdivision, and each time a flux tube is divided in half, the potential
divisions in this region must be divided by the same factor.

D6.4. Figure 6.9 shows the cross section of two circular cylinders at potentials
of 0 and 60 V. The axes are parallel and the region between the cylinders is air-
filled. Equipotentials at 20 V and 40 V are also shown. Prepare a curvilinear-
square map on the figure and use it to establish suitable values for: (a) the
capacitance per meter length; (b) E at the left side of the 60 V conductor if its
true radius is 2 mm; (¢) pg at that point.

Ans. 69 pF/m; 60 kV/m; 550 nC/m?

h
(=)

Figure 6.9 See Problem D6.4.
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6.6 POISSON’S AND LAPLACE’S EQUATIONS

In preceding sections, we have found capacitance by first assuming a known charge
distribution on the conductors and then finding the potential difference in terms of
the assumed charge. An alternate approach would be to start with known potentials
on each conductor, and then work backward to find the charge in terms of the known
potential difference. The capacitance in either case is found by the ratio O/ V.

The first objective in the latter approach is thus to find the potential function
between conductors, given values of potential on the boundaries, along with possible
volume charge densities in the region of interest. The mathematical tools that enable
this to happen are Poisson’s and Laplace’s equations, to be explored in the remainder
of this chapter. Problems involving one to three dimensions can be solved either ana-
lytically or numerically. Laplace’s and Poisson’s equations, when compared to other
methods, are probably the most widely useful because many problems in engineering
practice involve devices in which applied potential differences are known, and in
which constant potentials occur at the boundaries.

Obtaining Poisson’s equation is exceedingly simple, for from the point form of
Gauss’s law,

V-D=p, (21
the definition of D,
D =¢E (22)
and the gradient relationship,
E=-VV (23)

by substitution we have
V:D=V.(E)=—-V:(eVV)=p,

or

P
€

V.-VV = (24)
for a homogeneous region in which € is constant.

Equation (24) is Poisson’s equation, but the “double V” operation must be inter-
preted and expanded, at least in rectangular coordinates, before the equation can be
useful. In rectangular coordinates,

V.A=

VV = —a, + —a, + —a;
X y
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a [V a [V o [
V-VV=——)+—|—)+—|—
ax \ 0x ay \ dy dz \ 0z
PV 9’V 9*V
— 4 25
9x?2 * 0y? + 0z2 25)

and therefore

Usually the operation V - V is abbreviated V2 (and pronounced “del squared”), a good
reminder of the second-order partial derivatives appearing in Eq. (5), and we have

vy BV BV 8 py

—_— 4+ — 26
oxz  9yr 922 € (26)

in rectangular coordinates.

If p, = 0, indicating zero volume charge density, but allowing point charges,
line charge, and surface charge density to exist at singular locations as sources of the
field, then

vy =0 7)

which is Laplace’s equation. The V? operation is called the Laplacian of V.
In rectangular coordinates Laplace’s equation is

2V 3%V %V
V2y = Py + B—yz + = 0 (rectangular) (28)

and the form of V2V in cylindrical and spherical coordinates may be obtained by using
the expressions for the divergence and gradient already obtained in those coordinate
systems. For reference, the Laplacian in cylindrical coordinates is

1 0 v 1 /927 2%
VV=——(p—|+=(=—)+—=— (cylindrical) (29)
o dp \" 9p p2 \ 9¢? 022

and in spherical coordinates is

vy L9 (297 + ! 0 sin@aV + ! Sl (spherical)
= = —|PF— _ — —_—
r2 or or r2sinf 06 00 r2sin’ 6§ 9¢? P

(30)

These equations may be expanded by taking the indicated partial derivatives, but it is
usually more helpful to have them in the forms just given; furthermore, it is much easier
to expand them later if necessary than it is to put the broken pieces back together again.

Laplace’s equation is all-embracing, for, applying as it does wherever volume
charge density is zero, it states that every conceivable configuration of electrodes

161



162

ENGINEERING ELECTROMAGNETICS

or conductors produces a field for which V27 = 0. All these fields are different,
with different potential values and different spatial rates of change, yet for each
of them V2V = 0. Because every field (if p, = 0) satisfies Laplace’s equation,
how can we expect to reverse the procedure and use Laplace’s equation to find one
specific field in which we happen to have an interest? Obviously, more information is
required, and we shall find that we must solve Laplace’s equation subject to certain
boundary conditions.

Every physical problem must contain at least one conducting boundary and usu-
ally contains two or more. The potentials on these boundaries are assigned values,
perhaps Vo, Vi, ..., or perhaps numerical values. These definite equipotential sur-
faces will provide the boundary conditions for the type of problem to be solved. In
other types of problems, the boundary conditions take the form of specified values of
E (alternatively, a surface charge density, ps) on an enclosing surface, or a mixture
of known values of /" and E.

Before using Laplace’s equation or Poisson’s equation in several examples, we
must state that if our answer satisfies Laplace’s equation and also satisfies the boundary
conditions, then it is the only possible answer. This is a statement of the Uniqueness
Theorem, the proof of which is presented in Appendix D.

D6.5. Calculate numerical values for ¥ and p, at point P in free space if:

4
@V = 75, at P(L2.3); (B) V = SpPcos2p, at Pp = 3.6 = 3.
X

3
2
2=2);()V = %S"b at P(r = 0.5,0 = 45°, ¢ = 60°).
r

Ans. 12V, —106.2 pC/m3; —22.5V,0;4 V, 0

6.7 EXAMPLES OF THE SOLUTION
OF LAPLACE’S EQUATION

Several methods have been developed for solving Laplace’s equation. The simplest
method is that of direct integration. We will use this technique to work several exam-
ples involving one-dimensional potential variation in various coordinate systems in
this section.

The method of direct integration is applicable only to problems that are “one-
dimensional,” or in which the potential field is a function of only one of the three
coordinates. Since we are working with only three coordinate systems, it might seem,
then, that there are nine problems to be solved, but a little reflection will show that
a field that varies only with x is fundamentally the same as a field that varies only
with y. Rotating the physical problem a quarter turn is no change. Actually, there are
only five problems to be solved, one in rectangular coordinates, two in cylindrical,
and two in spherical. We will solve them all.

First, let us assume that V' is a function only of x and worry later about which
physical problem we are solving when we have a need for boundary conditions.
Laplace’s equation reduces to

?V

dx2
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and the partial derivative may be replaced by an ordinary derivative, since V is not a
function of y or z,

a?v
dx?
We integrate twice, obtaining
dv
T4
dx
and
V =Ax + B 31

where 4 and B are constants of integration. Equation (31) contains two such constants,
as we would expect for a second-order differential equation. These constants can be
determined only from the boundary conditions.

Since the field varies only with x and is not a function of y and z, then V' is a
constant if x is a constant or, in other words, the equipotential surfaces are parallel
planes normal to the x axis. The field is thus that of a parallel-plate capacitor, and as
soon as we specify the potential on any two planes, we may evaluate our constants of
integration.

Start with the potential function, Eq. (31), and find the capacitance of a parallel-plate
capacitor of plate area S, plate separation d, and potential difference V;, between
plates.

Solution. Take V' =0atx = 0and VV = Vj at x = d. Then from Eq. (31),

A= 5y
= —
and
V()x
V=— 32
7 (32)

We still need the total charge on either plate before the capacitance can be found.
We should remember that when we first solved this capacitor problem, the sheet of
charge provided our starting point. We did not have to work very hard to find the
charge, for all the fields were expressed in terms of it. The work then was spent in
finding potential difference. Now the problem is reversed (and simplified).

The necessary steps are these, after the choice of boundary conditions has been
made:

1. Given V,use E = —V/V to find E.

Use D = ¢E to find D.

Evaluate D at either capacitor plate, D = Dy = Dyay.
Recognize that pg = Dy.

AN o

Find O by a surface integration over the capacitor plate, O = |, 5 PsdS.
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Here we have

X
V_Vog
40
E=——a,
d
Vo
D=—-—a,
“d
1%
m_DLf:efm
ay — ay
Dy = GVO—
N = d = pPs
—eW VoS
0= [=fras =12
s d
and the capacitance is
0] S
C===— 33
1) d (33)

We will use this procedure several times in the examples to follow.

Because no new problems are solved by choosing fields which vary only with y or
with z in rectangular coordinates, we pass on to cylindrical coordinates for our next
example. Variations with respect to z are again nothing new, and we next assume
variation with respect to p only. Laplace’s equation becomes

1 9 ( 0 V)
——(p—)=0
p ap\ 9p
Noting the p in the denominator, we exclude p = 0 from our solution and then
multiply by p and integrate,
dv
p—— =4
dp
where a total derivative replaces the partial derivative because V' varies only with p.
Next, rearrange, and integrate again,

V=Alnp+B (34)

The equipotential surfaces are given by p = constant and are cylinders, and the
problem is that of the coaxial capacitor or coaxial transmission line. We choose a
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potential difference of V by letting V' = Vyatp =a,V =0atp =b,b > a, and
obtain

_, In®/p)

= "In(b/a) (35)

from which

14 1

p In(b/a)
€ VO

aln(b/a)

e€Vo2mal

aln(b/a)

a

2mel

~ In(/a) (36)

which agrees with our result in Section 6.3 (Eq. (5)).

EXAMPLE 6.4

Now assume that V' is a function only of ¢ in cylindrical coordinates. We might look
at the physical problem first for a change and see that equipotential surfaces are given
by ¢ = constant. These are radial planes. Boundary conditions might be ' = 0 at
¢ =0and V = Vj at ¢ = «, leading to the physical problem detailed in Figure 6.10.

Insulating
gap 14

Figure 6.10 Two infinite radial planes with an
interior angle «. An infinitesimal insulating gap exists
at p = 0. The potential field may be found by applying
Laplace’s equation in cylindrical coordinates.
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Laplace’s equation is now

p? 3¢?
We exclude p = 0 and have
a’v
7452 =
The solution is
V=A¢+ B

The boundary conditions determine 4 and B, and

v =12 (37)
o

Taking the gradient of Eq. (37) produces the electric field intensity,

Vo ay
ap

E= (38)

and it is interesting to note that £ is a function of p and not of ¢. This does not
contradict our original assumptions, which were restrictions only on the potential
field. Note, however, that the vector field E is in the ¢ direction.

A problem involving the capacitance of these two radial planes is included at the
end of the chapter.

We now turn to spherical coordinates, dispose immediately of variations with respect
to ¢ only as having just been solved, and treat first V' = V' (r).
The details are left for a problem later, but the final potential field is given by

11

y — v X b
T 1 (39)
a b

where the boundary conditions are evidently V' =0atr=>band V=1V, atr = a,
b > a. The problem is that of concentric spheres. The capacitance was found previ-
ously in Section 6.3 (by a somewhat different method) and is

4me

(40)
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EXAMPLE 6.6

In spherical coordinates we now restrict the potential functionto V' = V(9), obtaining

1 d( . dV
r2sin@ %<sm0%) =0
We exclude » = 0 and 6 = 0 or 7 and have
- av. y
sinf— - =

The second integral is then

Ado

V=] —+B

sin 6
which is not as obvious as the previous ones. From integral tables (or a good memory)
we have

0
V=4 ln(tan 5) + B (41)

The equipotential surfaces of Eq. (41) are cones. Figure 6.11 illustrates the case
where V' =0at0 =n/2and V =V atf = o, @ < /2. We obtain

0
In tani
V =Vy—-%
o
In| tan —
2

(42)

Gap
/

V=0

Figure 6.11 Forthe cone § = « at V/y and the
plane 6 = 7/2 at V = 0, the potential field is given by
V = Vylin(tan 6/2)]/[In(tan «/2)].
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In order to find the capacitance between a conducting cone with its vertex sepa-
rated from a conducting plane by an infinitesimal insulating gap and its axis normal
to the plane, we first find the field strength:

—1 Vo
E=-VV=—"—g=—9% 4

ro09 rsin@ln(tan%)

The surface charge density on the cone is then

—€ V()
pbs =
. o
rsing In| tan —
(3)
producing a total charge O,
—ely 7 psina d¢ dr
0- Il

s1na1n<tan )
—2meg V o

Zﬂ/ dr
0

o
ln<tan —)
2

This leads to an infinite value of charge and capacitance, and it becomes necessary to
consider a cone of finite size. Our answer will now be only an approximation because
the theoretical equipotential surface is & = «, a conical surface extending fromr» = 0
to r = oo, whereas our physical conical surface extends only from » = 0 to, say,
r = r;. The approximate capacitance is

2
c= (43)

tn( cot >
n{ cot —
2

If we desire a more accurate answer, we may make an estimate of the capacitance
of the base of the cone to the zero-potential plane and add this amount to our answer.
Fringing, or nonuniform, fields in this region have been neglected and introduce an
additional source of error.

D6.6. Find |E| at P(3, 1, 2) in rectangular coordinates for the field of: (@)
two coaxial conducting cylinders, /' = 50 Vat p = 2 m,and VV = 20 V
at p = 3 m; (b) two radial conducting planes, V' = 50 V at ¢ = 10°, and
V=20V at¢ = 30°.

Ans. 23.4 V/m; 27.2 V/m
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6.8 EXAMPLE OF THE SOLUTION
OF POISSON’S EQUATION: THE P-N
JUNCTION CAPACITANCE

To select a reasonably simple problem that might illustrate the application of Poisson’s
equation, we must assume that the volume charge density is specified. This is not
usually the case, however; in fact, it is often the quantity about which we are seeking
further information. The type of problem which we might encounter later would
begin with a knowledge only of the boundary values of the potential, the electric
field intensity, and the current density. From these we would have to apply Poisson’s
equation, the continuity equation, and some relationship expressing the forces on
the charged particles, such as the Lorentz force equation or the diffusion equation,
and solve the whole system of equations simultaneously. Such an ordeal is beyond
the scope of this text, and we will therefore assume a reasonably large amount of
information.

As an example, let us select a pn junction between two halves of a semiconductor
bar extending in the x direction. We will assume that the region for x < 0 is doped p
type and that the region for x > 0 is n type. The degree of doping is identical on each
side of the junction. To review some of the facts about the semiconductor junction,
we note that initially there are excess holes to the left of the junction and excess
electrons to the right. Each diffuses across the junction until an electric field is built
up in such a direction that the diffusion current drops to zero. Thus, to prevent more
holes from moving to the right, the electric field in the neighborhood of the junction
must be directed to the left; £, is negative there. This field must be produced by a net
positive charge to the right of the junction and a net negative charge to the left. Note
that the layer of positive charge consists of two parts—the holes which have crossed
the junction and the positive donor ions from which the electrons have departed.
The negative layer of charge is constituted in the opposite manner by electrons and
negative acceptor ions.

The type of charge distribution that results is shown in Figure 6.12a, and the
negative field which it produces is shown in Figure 6.12b. After looking at these two
figures, one might profitably read the previous paragraph again.

A charge distribution of this form may be approximated by many different
expressions. One of the simpler expressions is

Py = 2p,0 sech al tanh al (44)
a a
which has a maximum charge density p, u.x = pvo that occurs at x = 0.881a. The
maximum charge density p, is related to the acceptor and donor concentrations N,
and N, by noting that all the donor and acceptor ions in this region (the depletion
layer) have been stripped of an electron or a hole, and thus

Pvo = eN, = eNy
We now solve Poisson’s equation
&

ViV =-—=
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xla

xla

eV, xla
2.0 v0 a2

(©)

Figure 6.12 (a) The charge density, (b) the electric field intensity, and

(c) the potential are plotted for a pn junction as functions of distance from
the center of the junction. The p-type material is on the left, and the n-type
is on the right.
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subject to the charge distribution assumed above,
d 2 14 2pv0

dx?
in this one-dimensional problem in which variations with y and z are not present. We
integrate once,

X X
sech— tanh —
a a

dv 2p,
ar._ = 0asechi + C,
dx a
and obtain the electric field intensity,
2py
E,. =— p 0asech)i - C
€ a

To evaluate the constant of integration C, we note that no net charge density and no
fields can exist far from the junction. Thus, as x — 400, E, must approach zero.
Therefore C; = 0, and

2py
_Zhwd sechf (45)
€ a

E, =
Integrating again,

_ 4'/)v0a2

V tan~' /% + C,

Let us arbitrarily select our zero reference of potential at the center of the junction,
x =0,

4p,0a®
0= Prod z + C,
e 4
and finally,
4p,0a*
y = 2ot <tan—‘ et Z) (46)
€ 4

Figure 6.12 shows the charge distribution (a), electric field intensity (), and the
potential (c), as given by Egs. (44), (45), and (46), respectively.

The potential is constant once we are a distance of about 4a or 5a from the
junction. The total potential difference ¥} across the junction is obtained from Eq. (46),

_ Zﬂpvoaz

Vo =Visoo = Vioscoo = (47)

€
This expression suggests the possibility of determining the total charge on one side of
the junction and then using Eq. (47) to find a junction capacitance. The total positive
charge is

o° X X
0= S/ 2pyosech—tanh — dx = 2p,9aS
0 a a

where S is the area of the junction cross section. If we make use of Eq. (47) to eliminate
the distance parameter a, the charge becomes

0 = 5,/ 2P0t (48)
g
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Because the total charge is a function of the potential difference, we have to be careful

in defining a capacitance. Thinking in “circuit” terms for a moment,
d dV
I = _Q —ci0

dt dt

and thus
4Y
T dn
By differentiating Eq. (48), we therefore have the capacitance

; s
c= [P0 2 (49)
2V 2ma

The first form of Eq. (49) shows that the capacitance varies inversely as the square
root of the voltage. That is, a higher voltage causes a greater separation of the charge
layers and a smaller capacitance. The second form is interesting in that it indicates
that we may think of the junction as a parallel-plate capacitor with a “plate” separation
of 2ra. In view of the dimensions of the region in which the charge is concentrated,
this is a logical result.

Poisson’s equation enters into any problem involving volume charge density.
Besides semiconductor diode and transistor models, we find that vacuum tubes, mag-
netohydrodynamic energy conversion, and ion propulsion require its use in construct-
ing satisfactory theories.

D6.7. In the neighborhood of a certain semiconductor junction, the volume
charge density is given by p, = 750 sech 10°zx tanh 10°mx C/m>. The di-
electric constant of the semiconductor material is 10 and the junction area is
2 x 1077 m?. Find: (a) Vy; (b) C; (c) E at the junction.

Ans. 2,70 V; 8.85 pF; 2.70 MV/m

D6.8. Given the volume charge density p, = —2 x 107€yy/x C/m? in free
space,let ' =0atx =0andlet V¥ =2 Vatx =2.5mm. Atx = | mm, find:
(a) V; (D) Ex.

Ans. 0.302 V; —555 V/m
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CHAPTER 6 PROBLEMS @
| Quizzes |

6.1} Consider a coaxial capacitor having inner radius a, outer radius b, unit
length, and filled with a material with dielectric constant, €,. Compare this to
a parallel-plate capacitor having plate width w, plate separation d, filled with
the same dielectric, and having unit length. Express the ratio »/a in terms of
the ratio d /w, such that the two structures will store the same energy for a
given applied voltage.

628 Lets =100 mm?, d = 3 mm, and €, = 12 for a parallel-plate capacitor.
(a) Calculate the capacitance. (b) After connecting a 6-V battery across the
capacitor, calculate £, D, O, and the total stored electrostatic energy.

(c) With the source still connected, the dielectric is carefully withdrawn
from between the plates. With the dielectric gone, recalculate £, D, O, and
the energy stored in the capacitor. (d) If the charge and energy found in
part (c) are less than the values found in part (b) (which you should have
discovered), what became of the missing charge and energy?

6.31 Capacitors tend to be more expensive as their capacitance and
maximum voltage V. increase. The voltage V. is limited by the field
strength at which the dielectric breaks down, Egp. Which of these dielectrics
will give the largest CV,x product for equal plate areas? (a) Air: €, = 1,
Egp = 3 MV/m. (b) Barium titanate: €, = 1200, Egp = 3 MV/m. (¢) Silicon
dioxide: €, = 3.78, Ezp = 16 MV/m. (d) Polyethylene: €, = 2.26, Ezp =
4.7 MV/m.

640 Anairfilled parallel-plate capacitor with plate separation d and plate
area A is connected to a battery that applies a voltage V; between
plates. With the battery left connected, the plates are moved apart to a
distance of 10d. Determine by what factor each of the following
quantities changes: (a) Vo; (b) C; (¢) E; (d) D; (e) Q; (f) ps; (&) WE.

650 A parallel-plate capacitor is filled with a nonuniform dielectric characterized
by €, =2 4+ 2 x 10°x2, where x is the distance from one plate in meters.
If S = 0.02m? and d = 1 mm, find C.

6.61 Repeat Problem 6.4, assuming the battery is disconnected before the plate
separation is increased.

6.71 Lete,; =2.5for0 <y < 1mm,¢€, =4forl <y <3 mm, and ¢,5 for
3 < y < 5 mm (region 3). Conducting surfaces are present at y = 0 and
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y = 5 mm. Calculate the capacitance per square meter of surface area
if (@) region 3 is air; (b) €,3 = €,1; (¢) €3 = €2; (d) region 3 is silver.

681 A parallel-plate capacitor is made using two circular plates of radius a, with
the bottom plate on the xy plane, centered at the origin. The top plate is
located at z = d, with its center on the z axis. Potential V; is on the top plate;
the bottom plate is grounded. Dielectric having radially dependent
permittivity fills the region between plates. The permittivity is given by
e(p) = eo(1 + p*/a). Find (a) E; (b) D; (c) 05 (d) C.

6.90 Two coaxial conducting cylinders of radius 2 cm and 4 cm have a length
of 1 m. The region between the cylinders contains a layer of dielectric from
p = cto p =d with €, = 4. Find the capacitance if (¢) c =2 cm, d = 3 cm;
(b) d = 4 cm, and the volume of the dielectric is the same as in part (a).

6.10§ A coaxial cable has conductor dimensions of @ = 1.0 mm and b = 2.7 mm.
The inner conductor is supported by dielectric spacers (¢, = 5) in the
form of washers with a hole radius of 1 mm and an outer radius of 2.7 mm,
and with a thickness of 3.0 mm. The spacers are located every 2 cm down
the cable. (@) By what factor do the spacers increase the capacitance per
unit length? () If 100 V is maintained across the cable, find E at all points.

6.11§ Two conducting spherical shells have radii a = 3 cm and b = 6 cm. The
interior is a perfect dielectric for which €, = 8. (a) Find C. (b) A portion of
the dielectric is now removed so thate, = 1.0,0 < ¢ < 7 /2,and ¢, = 8§,
/2 < ¢ < 2m. Again find C.

6.121 (a) Determine the capacitance of an isolated conducting sphere of radius a in
free space (consider an outer conductor existing at » — 00). (b) The sphere is
to be covered with a dielectric layer of thickness d and dielectric contant €,.. If
€, = 3, find d in terms of @ such that the capacitance is twice that of part (a).

6.13 | With reference to Figure 6.5, let b = 6 m, & = 15 m, and the conductor
potential be 250 V. Take € = €. Find values for Ky, p;, a, and C.

6.14 1 Two #16 copper conductors (1.29 mm diameter) are parallel with a separation
d between axes. Determine d so that the capacitance between wires in air
is 30 pF/m.

6.154 A 2-cm-diameter conductor is suspended in air with its axis 5 cm from a
conducting plane. Let the potential of the cylinder be 100 V and that of the
plane be 0 V. (@) Find the surface charge density on the cylinder at a point
nearest the plane. () Plane at a point nearest the cylinder; (¢) find
the capacitance per unit length.

6.16 § Consider an arrangement of two isolated conducting
surfaces of any shape that form a capacitor. Use the definitions of capacitance
(Eq. (2) in this chapter) and resistance (Eq. (14) in Chapter 5) to show
that when the region between the conductors is filled with either conductive
material (conductivity o) or a perfect dielectric (permittivity €), the resulting
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resistance and capacitance of the structures are related through the simple
formula RC = €/o. What basic properties must be true about both the
dielectric and the conducting medium for this condition to hold for certain?

6.17 Construct a curvilinear-square map for a coaxial capacitor of 3 cm inner
radius and 8 cm outer radius. These dimensions are suitable for the drawing.
(a) Use your sketch to calculate the capacitance per meter length, assuming
€, = 1. (b) Calculate an exact value for the capacitance per unit length.

6.18} Construct a curvilinear-square map of the potential field about two
parallel circular cylinders, each of 2.5 cm radius, separated by a center-
to-center distance of 13 cm. These dimensions are suitable for the actual
sketch if symmetry is considered. As a check, compute the capacitance
per meter both from your sketch and from the exact formula. Assume €, = 1.

6.194 Construct a curvilinear-square map of the potential field between two
parallel circular cylinders, one of 4 cm radius inside another of 8 cm radius.
The two axes are displaced by 2.5 cm. These dimensions are suitable for
the drawing. As a check on the accuracy, compute the capacitance per meter
from the sketch and from the exact expression:

. 2me
~ cosh™! [(a® + b* — D?)/(2ab)]

where a and b are the conductor radii and D is the axis separation.

6.20 1 A solid conducting cylinder of 4 cm radius is centered within a rectangular
conducting cylinder with a 12 cm by 20 cm cross section. (a) Make a full-size
sketch of one quadrant of this configuration and construct a curvilinear-square
map for its interior. (b) Assume € = € and estimate C per meter length.

6.21 | The inner conductor of the transmission line shown in Figure 6.13 has a
square cross section 2a x 2a, whereas the outer square is 4a x 5a. The axes
are displaced as shown. (a) Construct a good-sized drawing of this
transmission line, say with @ = 2.5 cm, and then prepare a curvilinear-square
plot of the electrostatic field between the conductors. (b) Use the map to
calculate the capacitance per meter length if € = 1.6¢€¢. (¢) How would your
result to part (b) change if @ = 0.6 cm?

6.22 1 Two conducting plates, each 3 x 6 cm, and three slabs of dielectric, each
1 x 3 x 6 cm, and having dielectric constants of 1, 2, and 3, are assembled
into a capacitor with d = 3 cm. Determine the two values of capacitance
obtained by the two possible methods of assembling the capacitor.

6.23 4 A two-wire transmission line consists of two parallel perfectly conducting
cylinders, each having a radius of 0.2 mm, separated by a center-to-center
distance of 2 mm. The medium surrounding the wires has ¢, =3 and o =
1.5 mS/m. A 100-V battery is connected between the wires. (a) Calculate
the magnitude of the charge per meter length on each wire. (b) Using
the result of Problem 6.16, find the battery current.
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K

Figure 6.13 See Problem 6.21.

6240 A potential field in free space is given in spherical coordinates as

Vi) = {[Po/(6€0)] [3a> =r*] (r <a)
(@®po)/(Beor) (r = a)
where p and a are constants. (@) Use Poisson’s equation to
find the volume charge density everywhere. (b) Find the total charge present.

6.250 Letv = 2xy%z3 and € = €. Given point P(1, 2, —1), find. (a) V at P; (b) E at
P; (c) py at P; (d) the equation of the equipotential surface passing
through P; (e) the equation of the streamline passing through P. (/) Does V'
satisfy Laplace’s equation?

6.26 | Given the spherically symmetric potential field in free space, V = Voe™"/4,
find. (a) p, at ¥ = a; (b) the electric field at » = a; (c) the total charge.

6.271 Let V(x,y) =4e* + f(x) — 3y? in a region of free space where p, = 0.
It is known that both £, and V" are zero at the origin. Find f(x) and V' (x, ).
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6.28 | Show thatin a homogeneous medium of conductivity o, the potential field
V satisfies Laplace’s equation if any volume charge density present does
not vary with time.

6.29 § Given the potential field ' = (4p* + Bp~*)sin4¢: (a) Show that V2V = 0.
(b) Select A and B so that V' = 100 V and |[E| = 500 V/m at P(p =1,
b =225, 2=2).

6.304 A parallel-plate capacitor has plates located at z = 0 and z = d. The region
between plates is filled with a material that contains volume charge of uniform
density pg C/m?® and has permittivity €. Both plates are held at ground
potential. (a) Determine the potential field between plates. (b) Determine the
electric field intensity E between plates. (¢) Repeat parts (a) and (b) for the
case of the plate at z = d raised to potential Vj, with the z = 0 plate grounded.

6.314 Let v = (cos2¢)/p in free space. (a) Find the volume charge density at
point A(0.5, 60°, 1). (b) Find the surface charge density on a conductor
surface passing through the point B(2, 30°, 1).

6.32 1 A uniform volume charge has constant density p, = py C/m> and fills the
region » < a, in which permittivity € is assumed. A conducting spherical
shell is located at » = @ and is held at ground potential. Find (@) the
potential everywhere; (b) the electric field intensity, E, everywhere.

6.33 § The functions Vi(p, ¢, z) and V1(p, ¢, z) both satisfy Laplace’s equation
inthe regiona < p < b,0 < ¢ <27, —L < z < L;each is zero on
the surfaces p = b for —L <z < L; z=—L fora < p < b;and z = L for
a < p < b;and each is 100 V on the surface p = a for —L <z < L. (a) In
the region specified, is Laplace’s equation satisfied by the functions V; + 7,
Vi — Va, V1 + 3, and V, V,? (b) On the boundary surfaces specified, are the
potential values given in this problem obtained from the functions V; + V>,
Vi — Va, Vi + 3, and V1 V5? (c) Are the functions V) + V5, V1 — V3,
Vi + 3, and V1V, identical with V;?

6.34 | Consider the parallel-plate capacitor of Problem 6.30, but this time the
charged dielectric exists only between z = 0 and z = b, where b < d.
Free space fills the region b < z < d. Both plates are at ground
potential. By solving Laplace’s and Poisson’s equations, find (a) V' (z)
for 0 < z < d; (b) the electric field intensity for 0 < z < d.
No surface charge exists at z = b, so both V" and D are continuous there.

6.354 The conducting planes 2x + 3y = 12 and 2x + 3y = 18 are at potentials
of 100 V and 0, respectively. Let € = € and find (a) V at P(5, 2, 6); (b) E
at P.

6.36} The derivation of Laplace’s and Poisson’s equations assumed constant
permittivity, but there are cases of spatially varying permittivity in which the
equations will still apply. Consider the vector identity, V - (Y G) = G- Vi +
YV - G, where ¥ and G are scalar and vector functions, respectively.
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p=12cm
p=1mm
10 cm

Region 2

¢=0.\88,Vj20\’ N

4):0.179’ V:2()0V Region 1

et

Gap

Figure 6.14 See Problem 6.39.

Determine a general rule on the allowed directions in which € may vary
with respect to the local electric field.

6.37 1 Coaxial conducting cylinders are located at p = 0.5 cm and p = 1.2 cm.
The region between the cylinders is filled with a homogeneous perfect
dielectric. If the inner cylinder is at 100 V and the outer at 0 V, find
(a) the location of the 20 V equipotential surface; (b) E, max; (¢) €, if the
charge per meter length on the inner cylinder is 20 nC/m.

6.381 Repeat Problem 6.37, but with the dielectric only partially filling
the volume, within 0 < ¢ < m, and with free space in the remaining volume.

6.39 0 The two conducting planes illustrated in Figure 6.14 are
defined by 0.001 < p < 0.120m, 0 < z < 0.1 m, ¢ = 0.179 and 0.188 rad.
The medium surrounding the planes is air. For Region 1,0.179 < ¢ < 0.188;
neglect fringing and find (a) V' (¢); (b) E(p); (c) D(p); (d) ps on the upper
surface of the lower plane; (e¢) Q on the upper surface of the lower plane.
(f) Repeat parts (a) through (¢) for Region 2 by letting the location of
the upper plane be ¢ = .188 — 27, and then find p,; and Q on the lower
surface of the lower plane. (g) Find the total charge on the lower plane and
the capacitance between the planes.

6400 A parallel-plate capacitor is made using two circular plates
of radius @, with the bottom plate on the xy plane, centered at the origin.
The top plate is located at z = d, with its center on the z axis. Potential V
is on the top plate; the bottom plate is grounded. Dielectric having radially
dependent permittivity fills the region between plates. The permittivity
is given by €(p) = €o(1 + p?/a?). Find (a)V (2); (b) E; (c) O;(d) C.
This is a reprise of Problem 6.8, but it starts with Laplace’s equation.

6.411 Concentric conducting spheres are located at » = 5 mm and » = 20 mm.
The region between the spheres is filled with a perfect dielectric. If
the inner sphere is at 100 V and the outer sphere is at 0 V («) Find the
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location of the 20 V equipotential surface. (b) Find E, . (¢) Find €, if
the surface charge density on the inner sphere is 1.0 £C/m?.

6.421 The hemisphere 0 <r < a,0 < 6 < 7/2, is composed of homogeneous
conducting material of conductivity . The flat side of the hemisphere
rests on a perfectly conducting plane. Now, the material within the
conical region 0 < 0 < o, 0 < r < a is drilled out and replaced with
material that is perfectly conducting. An air gap is maintained between the
r = 0 tip of this new material and the plane. What resistance
is measured between the two perfect conductors? Neglect fringing fields.

6.43 | Two coaxial conducting cones have their vertices at the origin and the z axis
as their axis. Cone A4 has the point A(1, 0, 2) on its surface, while cone B
has the point B(0, 3, 2) on its surface. Let V4 = 100 V and V3 = 20 V. Find
(a) o for each cone; (b) V at P(1, 1, 1).

6.441 A potential field in free space is given as V' = 100 Intan(6/2) 4+ 50 V.
(a) Find the maximum value of |E4| on the surface 8 = 40°
for 0.1 <7 < 0.8m, 60° < ¢ < 90°. (b) Describe the surface ' = 80 V.

6.45 ] In free space, let p, = 200€o/r>*. (a) Use Poisson’s equation to
find V' (r) if it is assumed that #>E, — 0 when» — 0, and also that 7/ — 0
asr — 00. (b) Now find V' (r) by using Gauss’s law and a line integral.

6.461 By appropriate solution of Laplace’s and Poisson’s equations, determine
the absolute potential at the center of a sphere of radius a, containing
uniform volume charge of density py. Assume permittivity €, everywhere.
Hint: What must be true about the potential and the electric
fieldatr =0andatr = a?
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The Steady Magnetic Field

accepted the experimental law of forces existing between two point charges

and defined electric field intensity as the force per unit charge on a test charge
in the presence of a second charge, we have discussed numerous fields. These fields
possess no real physical basis, for physical measurements must always be in terms
of the forces on the charges in the detection equipment. Those charges that are the
source cause measurable forces to be exerted on other charges, which we may think
of as detector charges. The fact that we attribute a field to the source charges and then
determine the effect of this field on the detector charges amounts merely to a division
of the basic problem into two parts for convenience.

We will begin our study of the magnetic field with a definition of the magnetic
field itself and show how it arises from a current distribution. The effect of this field
on other currents, or the second half of the physical problem, will be discussed in
Chapter 8. As we did with the electric field, we confine our initial discussion to free-
space conditions, and the effect of material media will also be saved for discussion
in Chapter 8.

The relation of the steady magnetic field to its source is more complicated than
is the relation of the electrostatic field to its source. We will find it necessary to
accept several laws temporarily on faith alone. The proof of the laws does exist and
is available on the Web site for the disbelievers or the more advanced student.

A t this point, the concept of a field should be a familiar one. Since we first

7.1 BIOT-SAVART LAW

The source of the steady magnetic field may be a permanent magnet, an electric field
changing linearly with time, or a direct current. We will largely ignore the permanent
magnet and save the time-varying electric field for a later discussion. Our present study
will concern the magnetic field produced by a differential dc element in free space.
We may think of this differential current element as a vanishingly small section of
acurrent-carrying filamentary conductor, where a filamentary conductor is the limiting
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Free space
. Ry,
(Point 1) -e P
WG
AR12
I dLy X ap,
% MR

Figure 7.1 The law of Biot-Savart
expresses the magnetic field intensity dH»
produced by a differential current element
[1dL4. The direction of dH> is into the
page.

case of a cylindrical conductor of circular cross section as the radius approaches zero.
We assume a current / flowing in a differential vector length of the filament dL. The
law of Biot-Savart! then states that at any point P the magnitude of the magnetic
field intensity produced by the differential element is proportional to the product of
the current, the magnitude of the differential length, and the sine of the angle lying
between the filament and a line connecting the filament to the point P at which
the field is desired; also, the magnitude of the magnetic field intensity is inversely
proportional to the square of the distance from the differential element to the point P.
The direction of the magnetic field intensity is normal to the plane containing the
differential filament and the line drawn from the filament to the point P. Of the two
possible normals, that one to be chosen is the one which is in the direction of progress
of a right-handed screw turned from dL. through the smaller angle to the line from the
filament to P. Using rationalized mks units, the constant of proportionality is 1/47.

The Biot-Savart law, just described in some 150 words, may be written concisely
using vector notation as

dH:IdeaR :IdeR )

47 R? 47 R3
The units of the magnetic field intensity H are evidently amperes per meter (A/m).
The geometry is illustrated in Figure 7.1. Subscripts may be used to indicate the point
to which each of the quantities in (1) refers. If we locate the current element at point 1

and describe the point P at which the field is to be determined as point 2, then

_ IldLl X ar12

dH
z 47R?,

2

! Biot and Savart were colleagues of Ampére, and all three were professors of physics at the College de
France at one time or another. The Biot-Savart law was proposed in 1820.
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The law of Biot-Savart is sometimes called Ampere’s law for the current element,
but we will retain the former name because of possible confusion with Ampeére’s
circuital law, to be discussed later.

In some aspects, the Biot-Savart law is reminiscent of Coulomb’s law when that
law is written for a differential element of charge,

_ dQiagn
47160sz

Both show an inverse-square-law dependence on distance, and both show a linear
relationship between source and field. The chief difference appears in the direction
of the field.

Itis impossible to check experimentally the law of Biot-Savart as expressed by (1)
or (2) because the differential current element cannot be isolated. We have restricted
our attention to direct currents only, so the charge density is not a function of time.
The continuity equation in Section 5.2, Eq. (5),

dE,

apy
v.ag=_2
ot
therefore shows that
V.J=0

or upon applying the divergence theorem,

%J-dS:O

The total current crossing any closed surface is zero, and this condition may be satisfied
only by assuming a current flow around a closed path. It is this current flowing in a
closed circuit that must be our experimental source, not the differential element.

It follows that only the integral form of the Biot-Savart law can be verified
experimentally,

47 R?

HzfldeaR 3)

Equation (1) or (2), of course, leads directly to the integral form (3), but other
differential expressions also yield the same integral formulation. Any term may be
added to (1) whose integral around a closed path is zero. That is, any conservative field
could be added to (1). The gradient of any scalar field always yields a conservative
field, and we could therefore add a term VG to (1), where G is a general scalar field,
without changing (3) in the slightest. This qualification on (1) or (2) is mentioned
to show that if we later ask some foolish questions, not subject to any experimental
check, concerning the force exerted by one differential current element on another,
we should expect foolish answers.

The Biot-Savart law may also be expressed in terms of distributed sources, such
as current density J and surface current density K. Surface current flows in a sheet of
vanishingly small thickness, and the current density J, measured in amperes per square



CHAPTER 7 The Steady Magnetic Field

Figure 7.2 The total current / within a
transverse width b, in which there is a uniform
surface current density K, is Kb.

meter, is therefore infinite. Surface current density, however, is measured in amperes
per meter width and designated by K. If the surface current density is uniform, the
total current / in any width b is

I =Kb

where we assume that the width b is measured perpendicularly to the direction in which
the current is flowing. The geometry is illustrated by Figure 7.2. For a nonuniform
surface current density, integration is necessary:

= / KdN @)

where dN is a differential element of the path across which the current is flowing.
Thus the differential current element / dL, where dL is in the direction of the current,
may be expressed in terms of surface current density K or current density J,

IdL=KdS =Jdv Q)

and alternate forms of the Biot-Savart law obtained,

K x agdS
H= | —— 6
. 4mR2 ©

and

J x agpdv
H= _ 7
\[01 47TR2 ( )
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(Point 1) |

Free space

pa, (Point 2)

I

Figure 7.3 Aninfinitely long straight filament
carrying a direct current /. The field at point 2 is
H=(//27p)a,.

We illustrate the application of the Biot-Savart law by considering an infinitely
long straight filament. We apply (2) first and then integrate. This, of course, is the
same as using the integral form (3) in the first place.?

Referring to Figure 7.3, we should recognize the symmetry of this field. No
variation with z or with ¢ can exist. Point 2, at which we will determine the field,
is therefore chosen in the z = 0 plane. The field point r is therefore r = pa,. The
source point r’ is given by r' = z’a,, and therefore

Rp=r—1r =pa,—za,
so that
pa, —z'a,
AR = —F—————
/p2 + Z/2
We take dL. = dz’'a, and (2) becomes
JH, — Idz'a; x (pa, — z'a;)
4 (p? + 2232
Because the current is directed toward increasing values of z/, the limits are —oo and
oo on the integral, and we have

H, — /‘X’ ldz'a, x (pa, — Z'a;)
2= . dn(p? + 222

_ L ® pdZag
ax | (p2 + 2232

2 The closed path for the current may be considered to include a return filament parallel to the first
filament and infinitely far removed. An outer coaxial conductor of infinite radius is another theoretical
possibility. Practically, the problem is an impossible one, but we should realize that our answer will be
quite accurate near a very long, straight wire having a distant return path for the current.
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©

Figure 7.4 The streamlines of the
magnetic field intensity about an
infinitely long straight filament
carrying a direct current /. The
direction of / is into the page.

At this point the unit vector a, under the integral sign should be investigated, for it is
not always a constant, as are the unit vectors of the rectangular coordinate system. A
vector is constant when its magnitude and direction are both constant. The unit vector
certainly has constant magnitude, but its direction may change. Here a,; changes with
the coordinate ¢ but not with p or z. Fortunately, the integration here is with respect
to z’, and a, is a constant and may be removed from under the integral sign,

Ipay, [ dz’
Hz—p"’/ z

A o (P2 2P
o0
_ [,oa¢ Z’
- 2 /202
47 0 p-+z o
and
I
H, = —a 8
2= 5™ (3

The magnitude of the field is not a function of ¢ or z, and it varies inversely with
the distance from the filament. The direction of the magnetic-field-intensity vector is
circumferential. The streamlines are therefore circles about the filament, and the field
may be mapped in cross section as in Figure 7.4.

The separation of the streamlines is proportional to the radius, or inversely pro-
portional to the magnitude of H. To be specific, the streamlines have been drawn with
curvilinear squares in mind. As yet, we have no name for the family of lines’ that
are perpendicular to these circular streamlines, but the spacing of the streamlines has

3 If you can’t wait, see Section 7.6.

i)
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been adjusted so that the addition of this second set of lines will produce an array of
curvilinear squares.

A comparison of Figure 7.4 with the map of the electric field about an infinite
line charge shows that the streamlines of the magnetic field correspond exactly to
the equipotentials of the electric field, and the unnamed (and undrawn) perpendicular
family of lines in the magnetic field corresponds to the streamlines of the electric
field. This correspondence is not an accident, but there are several other concepts
which must be mastered before the analogy between electric and magnetic fields can
be explored more thoroughly.

Using the Biot-Savart law to find H is in many respects similar to the use of
Coulomb’s law to find E. Each requires the determination of a moderately complicated
integrand containing vector quantities, followed by an integration. When we were
concerned with Coulomb’s law we solved a number of examples, including the fields
of the point charge, line charge, and sheet of charge. The law of Biot-Savart can be
used to solve analogous problems in magnetic fields, and some of these problems
appear as exercises at the end of the chapter rather than as examples here.

One useful result is the field of the finite-length current element, shown in
Figure 7.5. It turns out (see Problem 7.8 at the end of the chapter) that H is most
easily expressed in terms of the angles «; and «y, as identified in the figure. The
result is

I
H = —(sinay — sinay)ay 9
470

If one or both ends are below point 2, then «; is or both «; and «; are negative.

a
(]
Point 2

Figure 7.5 The magnetic field intensity
caused by a finite-length current filament
on the z axis is (/ /4 p)(Sin o — SiN1)ay.
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Equation (9) may be used to find the magnetic field intensity caused by current
filaments arranged as a sequence of straight-line segments.

As a numerical example illustrating the use of (9), we determine H at P»(0.4, 0.3, 0)
in the field of an 8. A filamentary current is directed inward from infinity to the origin
on the positive x axis, and then outward to infinity along the y axis. This arrangement
is shown in Figure 7.6.

Solution. We first consider the semi-infinite current on the x axis, identifying the
two angles, o), = —90° and o, = tan~'(0.4/0.3) = 53.1°. The radial distance p is
measured from the x axis, and we have p, = 0.3. Thus, this contribution to H, is

8 2 12
Hy(, 53.1°+ Da, = —(1.8)a, = —
20 = g0y S3 1 Dag = G (1.8)ay = Zray

The unit vector a; must also be referred to the x axis. We see that it becomes —a..
Therefore,

12
H2(x) = —;az A/m

For the current on the y axis, we have o, = — tan"'(0.3/0.4) = —36.9°, o, = 90°,
and p, = 0.4. It follows that

8
Hy,) = 4720, 4)(1 +sin36.9°)(—a,) = __az A/m

8A

8A 7, {ﬁy\?zy

P5(0.4,0.3, 0)

Figure 7.6 The individual fields of two semi-infinite
current segments are found by (9) and added to obtain
H2 at Pg.
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Adding these results, we have
20
H, = Hy,) + Hy,) = ——a, = —6.37a. A/m

b4
D7.1. Given the following values for P, P,, and I; AL, calculate AH;:
(a) P1(0,0,2), P»(4,2,0),2ra,uA-m; (b) P1(0,2,0), P,(4,2,3),27ra, LA -m;
(c) Pi(1,2,3), P,(—3,—1,2), 2n(—a, +a, + 2a,)uA-m.
Ans. —8.51a, + 17.01a, nA/m; 16a, nA/m; 18.9a, — 33.9a, + 26.4a; nA/m
D7.2. A current filament carrying 15 A in the a, direction lies along the entire
z axis. Find H in rectangular coordinates at: (a) P4(+/20, 0, 4); (b) Pg(2, —4, 4).

Ans. 0.534a, A/m; 0.477a, + 0.239a,, A/m

7.2 AMPERE’S CIRCUITAL LAW

After solving a number of simple electrostatic problems with Coulomb’s law, we
found that the same problems could be solved much more easily by using Gauss’s
law whenever a high degree of symmetry was present. Again, an analogous procedure
exists in magnetic fields. Here, the law that helps us solve problems more easily is
known as Ampére’s circuital* law, sometimes called Ampére’s work law. This law
may be derived from the Biot-Savart law (see Section 7.7).

Ampere’s circuital law states that the line integral of H about any closed path is
exactly equal to the direct current enclosed by that path,

H-dL=1 (10)
f

We define positive current as flowing in the direction of advance of a right-handed
screw turned in the direction in which the closed path is traversed.

Referring to Figure 7.7, which shows a circular wire carrying a direct current /,
the line integral of H about the closed paths lettered a and b results in an answer of
[; the integral about the closed path ¢ which passes through the conductor gives an
answer less than 7 and is exactly that portion of the total current that is enclosed by
the path c. Although paths a and b give the same answer, the integrands are, of course,
different. The line integral directs us to multiply the component of H in the direction
of the path by a small increment of path length at one point of the path, move along
the path to the next incremental length, and repeat the process, continuing until the
path is completely traversed. Because H will generally vary from point to point, and
because paths a and b are not alike, the contributions to the integral made by, say,

4 The preferred pronunciation puts the accent on “circ-.”



CHAPTER 7 The Steady Magnetic Field

7

Figure 7.7 A conductor has a total current /. The line
integral of H about the closed paths a and b is equal to

/, and the integral around path c is less than /, since the
entire current is not enclosed by the path.

each micrometer of path length are quite different. Only the final answers are the
same.

We should also consider exactly what is meant by the expression “current en-
closed by the path.” Suppose we solder a circuit together after passing the conductor
once through a rubber band, which we use to represent the closed path. Some strange
and formidable paths can be constructed by twisting and knotting the rubber band, but
if neither the rubber band nor the conducting circuit is broken, the current enclosed
by the path is that carried by the conductor. Now replace the rubber band by a circular
ring of spring steel across which is stretched a rubber sheet. The steel loop forms
the closed path, and the current-carrying conductor must pierce the rubber sheet if
the current is to be enclosed by the path. Again, we may twist the steel loop, and
we may also deform the rubber sheet by pushing our fist into it or folding it in any
way we wish. A single current-carrying conductor still pierces the sheet once, and
this is the true measure of the current enclosed by the path. If we should thread the
conductor once through the sheet from front to back and once from back to front, the
total current enclosed by the path is the algebraic sum, which is zero.

In more general language, given a closed path, we recognize this path as the
perimeter of an infinite number of surfaces (not closed surfaces). Any current-carrying
conductor enclosed by the path must pass through every one of these surfaces once.
Certainly some of the surfaces may be chosen in such a way that the conductor pierces
them twice in one direction and once in the other direction, but the algebraic total
current is still the same.

We will find that the nature of the closed path is usually extremely simple and can
be drawn on a plane. The simplest surface is, then, that portion of the plane enclosed
by the path. We need merely find the total current passing through this region of the
plane.

The application of Gauss’s law involves finding the total charge enclosed by a
closed surface; the application of Ampere’s circuital law involves finding the total
current enclosed by a closed path.

189



190

ENGINEERING ELECTROMAGNETICS

Let us again find the magnetic field intensity produced by an infinitely long
filament carrying a current /. The filament lies on the z axis in free space (as in
Figure 7.3), and the current flows in the direction given by a,. Symmetry inspection
comes first, showing that there is no variation with z or ¢. Next we determine which
components of H are present by using the Biot-Savart law. Without specifically using
the cross product, we may say that the direction of dH is perpendicular to the plane
conaining ¢ and R and therefore is in the direction of a;. Hence the only component
of His Hy, and it is a function only of p.

We therefore choose a path, to any section of which H is either perpendicular
or tangential, and along which H is constant. The first requirement (perpendicularity
or tangency) allows us to replace the dot product of Ampere’s circuital law with the
product of the scalar magnitudes, except along that portion of the path where H is
normal to the path and the dot product is zero; the second requirement (constancy)
then permits us to remove the magnetic field intensity from the integral sign. The
integration required is usually trivial and consists of finding the length of that portion
of the path to which H is parallel.

In our example, the path must be a circle of radius p, and Ampére’s circuital law
becomes

2 2w
fH-dL: Hypddp = Hyp dp = Hy2mp =1
0 0

or

as before.

As a second example of the application of Ampere’s circuital law, consider an
infinitely long coaxial transmission line carrying a uniformly distributed total current
I in the center conductor and —/ in the outer conductor. The line is shown in Fig-
ure 7.8a. Symmetry shows that A is not a function of ¢ or z. In order to determine the
components present, we may use the results of the previous example by considering
the solid conductors as being composed of a large number of filaments. No filament
has a z component of H. Furthermore, the //, component at ¢ = 0°, produced by one
filament located at p = p;, ¢ = ¢y, is canceled by the H, component produced by a
symmetrically located filament at p = p;, ¢ = —¢,. This symmetry is illustrated by
Figure 7.8b. Again we find only an H,; component which varies with p.

A circular path of radius p, where p is larger than the radius of the inner conduc-
tor but less than the inner radius of the outer conductor, then leads immediately to

1
H¢=m (a<p<b)
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(a) (®)

Figure 7.8 (a) Cross section of a coaxial cable carrying a uniformly
distributed current / in the inner conductor and —/ in the outer conductor. The
magnetic field at any point is most easily determined by applying Ampere’s
circuital law about a circular path. (b) Current filaments at p = p1, ¢ = ¢4,
produces H, components which cancel. For the total field, H = Hgay.

If we choose p smaller than the radius of the inner conductor, the current
enclosed is

2
0
Iene = 1 —
encl az
and
2
0
2npHy = 1 —
Py P
or

Ip
Hy =g P =9

If the radius p is larger than the outer radius of the outer conductor, no current is
enclosed and

Hy=0 (p>c¢)

Finally, if the path lies within the outer conductor, we have
2 _ g2
p-—>b

I 02 _ p2
H¢:Em b<p<eo)
The magnetic-field-strength variation with radius is shown in Figure 7.9 for
a coaxial cable in which b = 3a, ¢ = 4a. It should be noted that the magnetic
field intensity H is continuous at all the conductor boundaries. In other words, a
slight increase in the radius of the closed path does not result in the enclosure of a
tremendously different current. The value of Hy shows no sudden jumps.

(i)
Mustrations
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71
2ma
3a
1
ima 4a
0
0 2a 3a=b da=c

Figure 7.9 The magnetic field intensity as a function of
radius in an infinitely long coaxial transmission line with
the dimensions shown.

The external field is zero. This, we see, results from equal positive and negative
currents enclosed by the path. Each produces an external field of magnitude //27p,
but complete cancellation occurs. This is another example of “shielding”; such a
coaxial cable carrying large currents would, in principle, not produce any noticeable
effect in an adjacent circuit.

As a final example, let us consider a sheet of current flowing in the positive y
direction and located in the z = 0 plane. We may think of the return current as equally
divided between two distant sheets on either side of the sheet we are considering. A
sheet of uniform surface current density K = K a, is shown in Figure 7.10. H cannot
vary with x or y. If the sheet is subdivided into a number of filaments, it is evident
that no filament can produce an /,, component. Moreover, the Biot-Savart law shows
that the contributions to H. produced by a symmetrically located pair of filaments
cancel. Thus, H. is zero also; only an H, component is present. We therefore choose
the path 1-1’-2'-2-1 composed of straight-line segments that are either parallel or

3‘\
1 \1‘ 3’
1/
A S
; K=Kyay _—
2 —-

"N

Figure 7.10 A uniform sheet of surface current

K= {(yay in the z = 0 plane. H may be found by applying
Ampere’s circuital law about the paths 1-1'-2’-2-1 and
3-3-2/-2-8.
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perpendicular to H,. Ampere’s circuital law gives
HoL + Ho(—L) = K, L
or
Hy — Ho =K,
If the path 3-3’-2’-2-3 is now chosen, the same current is enclosed, and
Hi3—H, =K,
and therefore
Hy; = Hy

It follows that H, is the same for all positive z. Similarly, H, is the same for all
negative z. Because of the symmetry, then, the magnetic field intensity on one side
of the current sheet is the negative of that on the other. Above the sheet,

H,=1K, (z>0)
while below it
H,=—-1K, (z<0)

Letting ay be a unit vector normal (outward) to the current sheet, the result may be
written in a form correct for all z as

H=]Kxay (11)

If a second sheet of current flowing in the opposite direction, K = —K,a,, is
placed at z = &, (11) shows that the field in the region between the current sheets is

H=Kxay (0<z<h)| (12)

and is zero elsewhere,

H=0 (z<0,z>h)] (13)

The most difficult part of the application of Ampere’s circuital law is the deter-
mination of the components of the field that are present. The surest method is the
logical application of the Biot-Savart law and a knowledge of the magnetic fields of
simple form.

Problem 7.13 at the end of this chapter outlines the steps involved in applying
Ampere’s circuital law to an infinitely long solenoid of radius ¢ and uniform current
density K,a,, as shown in Figure 7.11a. For reference, the result is

H=K,a, (p<a) (14a)
H=0 (0 >a) (140)
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H=K,a,p<a H:%Iaz
H=0,p>a . .
’ (well inside coil)
(@) (%)

Figure 7.11 (a) Anideal solenoid of infinite length with a circular
current sheet K = Kza,. (b) An N-turn solenoid of finite length d.

If the solenoid has a finite length d and consists of N closely wound turns of a
filament that carries a current / (Figure 7.11b), then the field at points well within the
solenoid is given closely by

NI
H= 7:12 (well within the solenoid) (15)

The approximation is useful it if is not applied closer than two radii to the open ends,
nor closer to the solenoid surface than twice the separation between turns.

For the toroids shown in Figure 7.12, it can be shown that the magnetic field
intensity for the ideal case, Figure 7.12a, is

—a
H=Kap0

a, (inside toroid) (16a)

H=0 (outside) (16b)

For the N-turn toroid of Figure 7.12b, we have the good approximations,

NI . .

H = —a, (inside toroid) (17a)
2mp

H=0 (outside) (17b)

as long as we consider points removed from the toroidal surface by several times the
separation between turns.

Toroids having rectangular cross sections are also treated quite readily, as you
can see for yourself by trying Problem 7.14.

Accurate formulas for solenoids, toroids, and coils of other shapes are available
in Section 2 of the Standard Handbook for Electrical Engineers (see References for
Chapter 5).
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N turns

K=K,a atp=py—a,z=0

H= % a, (well inside toroid)

H=K, ”Op* % a, (inside toroid)

H=0 (outside)
(@) (b)

Figure 7.12 (a) Anideal toroid carrying a surface current K in the
direction shown. (b) An N-turn toroid carrying a filamentary current /.

D7.3. Express the value of H in rectangular components at P (0, 0.2, 0) in the
field of: (a) a current filament, 2.5 A in the a, direction at x = 0.1, y = 0.3;
(b) a coax, centered on the z axis, witha = 0.3, = 0.5,¢ = 0.6, =2.5A
in the a, direction in the center conductor; (c) three current sheets, 2.7a, A/m
aty =0.1, —1.4a, A/mat y = 0.15, and —1.3a, A/m at y = 0.25.

Ans. 1.989a, — 1.989a, A/m; —0.884a, A/m; 1.300a, A/m

7.3 CURL

We completed our study of Gauss’s law by applying it to a differential volume element
and were led to the concept of divergence. We now apply Ampere’s circuital law to
the perimeter of a differential surface element and discuss the third and last of the
special derivatives of vector analysis, the curl. Our objective is to obtain the point
form of Ampere’s circuital law.

Again we choose rectangular coordinates, and an incremental closed path of sides
Ax and Ay is selected (Figure 7.13). We assume that some current, as yet unspecified,
produces a reference value for H at the center of this small rectangle,

Hy = Hypa, + Hyan + Ha;

The closed line integral of H about this path is then approximately the sum of the four
values of H - AL on each side. We choose the direction of traverse as 1-2-3-4-1, which
corresponds to a current in the a, direction, and the first contribution is therefore

(H-AL);> = H, 1 2Ay

The value of H, on this section of the path may be given in terms of the reference
value H, at the center of the rectangle, the rate of change of H, with x, and the
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H:HOZHVO ax+1{)1oay+l—[zo a;

Figure 7.13 Anincremental closed path in
rectangular coordinates is selected for the
application of Ampere’s circuital law to determine
the spatial rate of change of H.

distance Ax /2 from the center to the midpoint of side 1-2:
Hy 12 = Hy+ 38y (le>
' ; ox \2
Thus

_ 1904,
(H'AL)1,2 = Hy0+ ——AXx Ay
2 ox

Along the next section of the path we have

10H,
(H-AL),_3 = H;p 3(—Ax) = —(on + 2 oy Ay)Ax

Continuing for the remaining two segments and adding the results,

. (0H, 0H,
H-dL = [ — — AxAy
ax ay

By Ampere’s circuital law, this result must be equal to the current enclosed by the
path, or the current crossing any surface bounded by the path. If we assume a general
current density J, the enclosed current is then A/ = J,AxAy, and

. (0H, 0H, .
H-dL = [ — — AxAy = JAxAy
dx ay

or
fH-dL | 0H, dH,
AxAy  ax  dy
As we cause the closed path to shrink, the preceding expression becomes more nearly
exact, and in the limit we have the equality
i §H-dL __0H, 0H;
Ax,Ay—>0 AxAy 0x ay

= J,

—J. (18)
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After beginning with Ampere’s circuital law equating the closed line integral of
H to the current enclosed, we have now arrived at a relationship involving the closed
line integral of H per unit area enclosed and the current per unit area enclosed, or
current density. We performed a similar analysis in passing from the integral form of
Gauss’s law, involving flux through a closed surface and charge enclosed, to the point
form, relating flux through a closed surface per unit volume enclosed and charge per
unit volume enclosed, or volume charge density. In each case a limit is necessary to
produce an equality.

If we choose closed paths that are oriented perpendicularly to each of the re-
maining two coordinate axes, analogous processes lead to expressions for the x and
y components of the current density,

H.-dL 0H. 0H,
f - - i - -]x (19)

im —
Ay, Az—>0 AyAz ay 0z
and

f H-dL 0H, 0H,
m —— = — =J, (20)
Az, Ax—0 Az Ax 0z ox -

Comparing (18)—(20), we see that a component of the current density is given by
the limit of the quotient of the closed line integral of H about a small path in a plane
normal to that component and of the area enclosed as the path shrinks to zero. This
limit has its counterpart in other fields of science and long ago received the name of
curl. The curl of any vector is a vector, and any component of the curl is given by
the limit of the quotient of the closed line integral of the vector about a small path in
a plane normal to that component desired and the area enclosed, as the path shrinks
to zero. It should be noted that this definition of curl does not refer specifically to a
particular coordinate system. The mathematical form of the definition is

H-dL
(curl H)y = lim L

21
ASy—0 ASN ( )

where ASy is the planar area enclosed by the closed line integral. The N subscript
indicates that the component of the curl is that component which is normal to the
surface enclosed by the closed path. It may represent any component in any coordinate
system.

In rectangular coordinates, the definition (21) shows that the x, y, and z compo-
nents of the curl H are given by (18)—(20), and therefore

0H. 0dH, 0H, 0H, 0H, 0H,
curl H = — — Ja, + — a,+|—— a, | (22)
ay 0z 0z ax ax ay
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This result may be written in the form of a determinant,

a, a, a

m= |2 2 2 23
R =% 8y 8z 23)
H, H, H.

and may also be written in terms of the vector operator,

curl H=V x H (24)

Equation (22) is the result of applying the definition (21) to the rectangular coordi-
nate system. We obtained the z component of this expression by evaluating Ampeére’s
circuital law about an incremental path of sides Ax and Ay, and we could have ob-
tained the other two components just as easily by choosing the appropriate paths. Equa-
tion (23) is a neat method of storing the rectangular coordinate expression for curl; the
form is symmetrical and easily remembered. Equation (24) is even more concise and
leads to (22) upon applying the definitions of the cross product and vector operator.

The expressions for curl H in cylindrical and spherical coordinates are derived in
Appendix A by applying the definition (21). Although they may be written in determi-
nant form, as explained there, the determinants do not have one row of unit vectors on
top and one row of components on the bottom, and they are not easily memorized. For
this reason, the curl expansions in cylindrical and spherical coordinates that follow
here and appear inside the back cover are usually referred to whenever necessary.

1 0H.  0H, 0H,  OH.
VxH= - — ap+ — ag

9 9 9z 0
pl; H)Z 10H ) ’ 2
+ (_ﬂ - _—p>az (cylindrical)
P 0dp p ¢
VxHo : (8(Hq;;1n9) ~ %>a l( ’19 z;};l) B 8(;H¢)>a
in 1mn
rs r\s 4 (26)
L(3CHy) _ o, as (spherical)
r\ or a0 )% P

Although we have described curl as a line integral per unit area, this does not
provide everyone with a satisfactory physical picture of the nature of the curl operation,
for the closed line integral itself requires physical interpretation. This integral was
first met in the electrostatic field, where we saw that § E - /L. = 0. Inasmuch as the
integral was zero, we did not belabor the physical picture. More recently we have
discussed the closed line integral of H, § H-dL = I. Either of these closed line
integrals is also known by the name of circulation, a term borrowed from the field of
fluid dynamics.
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R — H
_*
Velocity

* Current

e
— > .
— into page
—
=
=

(@) ()

Figure 7.14 (a) The curl meter shows a component of the curl of the water velocity
into the page. (b) The curl of the magnetic field intensity about an infinitely long filament
is shown.

The circulation of H, or § H-dL, is obtained by multiplying the component
of H parallel to the specified closed path at each point along it by the differential
path length and summing the results as the differential lengths approach zero and as
their number becomes infinite. We do not require a vanishingly small path. Ampere’s
circuital law tells us that if H does possess circulation about a given path, then current
passes through this path. In electrostatics we see that the circulation of E is zero about
every path, a direct consequence of the fact that zero work is required to carry a charge
around a closed path.

We may describe curl as circulation per unit area. The closed path is vanishingly
small, and curl is defined at a point. The curl of E must be zero, for the circulation
is zero. The curl of H is not zero, however; the circulation of H per unit area is the
current density by Ampere’s circuital law [or (18), (19), and (20)].

Skilling® suggests the use of a very small paddle wheel as a “curl meter.” Our
vector quantity, then, must be thought of as capable of applying a force to each blade
of the paddle wheel, the force being proportional to the component of the field normal
to the surface of that blade. To test a field for curl, we dip our paddle wheel into the
field, with the axis of the paddle wheel lined up with the direction of the component of
curl desired, and note the action of the field on the paddle. No rotation means no curl;
larger angular velocities mean greater values of the curl; a reversal in the direction of
spin means a reversal in the sign of the curl. To find the direction of the vector curl and
not merely to establish the presence of any particular component, we should place
our paddle wheel in the field and hunt around for the orientation which produces the
greatest torque. The direction of the curl is then along the axis of the paddle wheel,
as given by the right-hand rule.

As an example, consider the flow of water in a river. Figure 7.14a shows the
longitudinal section of a wide river taken at the middle of the river. The water velocity
is zero at the bottom and increases linearly as the surface is approached. A paddle
wheel placed in the position shown, with its axis perpendicular to the paper, will turn
in a clockwise direction, showing the presence of a component of curl in the direction

3 See the References at the end of the chapter.
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of an inward normal to the surface of the page. If the velocity of water does not change
as we go up- or downstream and also shows no variation as we go across the river
(or even if it decreases in the same fashion toward either bank), then this component
is the only component present at the center of the stream, and the curl of the water
velocity has a direction into the page.

In Figure 7.14b, the streamlines of the magnetic field intensity about an infinitely
long filamentary conductor are shown. The curl meter placed in this field of curved
lines shows that a larger number of blades have a clockwise force exerted on them
but that this force is in general smaller than the counterclockwise force exerted on
the smaller number of blades closer to the wire. It seems possible that if the curvature
of the streamlines is correct and also if the variation of the field strength is just right,
the net torque on the paddle wheel may be zero. Actually, the paddle wheel does not
rotate in this case, for since H = (//2mp)ag, we may substitute into (25) obtaining

0H, 1 9(pH,
curl H = ——d’ap—l—— (0 Hy)
0z p 0p

a, =

As an example of the evaluation of curl H from the definition and of the evaluation of
another line integral, suppose that H = 0.2z%a, for z > 0, and H = 0 elsewhere, as
shown in Figure 7.15. Calculate § H - dL about a square path with side d, centered
at (0, 0, z;) in the y = 0 plane where z; > d/2.

Figure 7.15 A square path of side d with its center on the
z axis at z = z¢ is used to evaluate g§ H - dL and find curl H.
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Solution. We evaluate the line integral of H along the four segments, beginning at
the top:

fH.dL=o.2(z1 +1d)d+0-02(z —1d)?d+0

= 0.4z,d>
In the limit as the area approaches zero, we find

. H-dL . 0.4z,d%
(VxH), = al{l_l)l}) y = 51_1)1}) = 0.4z,

The other components are zero, so V. x H = 0.4z;a,.
To evaluate the curl without trying to illustrate the definition or the evaluation of
a line integral, we simply take the partial derivative indicated by (23):

a, a, a
ad 9 9 9 5
ox 9y 0z| = B—Z(O.Zz )a, = 0.4za,

0222 0 0

Vx H=

which checks with the preceding result when z = z;.
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Returning now to complete our original examination of the application of
Ampere’s circuital law to a differential-sized path, we may combine (18)—(20), (22),
and (24),

0H. 0H, 0H,  0H:
curl H=V xH = - — Ja, + - a,
ay 0z az ax

0H,  0H,
+ =% - a,=1J (27)
ox ay

and write the point form of Ampeére’s circuital law,
VxH=1T] (28)

This is the second of Maxwell’s four equations as they apply to non-time-varying
conditions. We may also write the third of these equations at this time; it is the point

form of § E-dL =0, or
VXxE=0 (29)

The fourth equation appears in Section 7.5.
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D7.4. (a) Evaluate the closed line integral of H about the rectangular path
Pi(2,3,4) to Py(4,3,4) to P3(4,3, 1) to P4(2,3,1) to P, given H = 3za, —
2x*a, A/m. (b) Determine the quotient of the closed line integral and the area
enclosed by the path as an approximation to (V x H), . (¢) Determine (V x H),,
at the center of the area.

Ans. 354 A; 59 A/m?; 57 A/m?

D7.5. Calculate the value of the vector current density: (@) in rectangular
coordinates at P4(2,3,4) if H = xzzay — y2xa_; (b) in cylindrical coordi-

2
nates at Pz(1.5,90°, 0.5) if H = —(cos 0.2¢)a,; (c) in spherical coordinates at
P

1
Pc(2,30°,20°) if H= ——a,.
sin @

Ans. —16a, + 9a, + 16a; A/m?; 0.055a; A/m?; ag A/m?

7.4 STOKES’ THEOREM

Although Section 7.3 was devoted primarily to a discussion of the curl operation,
the contribution to the subject of magnetic fields should not be overlooked. From
Ampere’s circuital law we derived one of Maxwell’s equations, V x H = J. This
latter equation should be considered the point form of Ampere’s circuital law and
applies on a “per-unit-area” basis. In this section we shall again devote a major share
of the material to the mathematical theorem known as Stokes’ theorem, but in the
process we will show that we may obtain Ampere’s circuital law from V x H = J.
In other words, we are then prepared to obtain the integral form from the point form
or to obtain the point form from the integral form.

Consider the surface S of Figure 7.16, which is broken up into incremental
surfaces of area AS. If we apply the definition of the curl to one of these incremental
surfaces, then

fH-dLyg
AS
where the N subscript again indicates the right-hand normal to the surface. The
subscript on dL g indicates that the closed path is the perimeter of an incremental
area AS. This result may also be written

fH-dLag
AS

= (V xH)y

= (VxH)-ay
or

%H-dLAS = (VxH)-ayAS=(VxH)-AS
where ay is a unit vector in the direction of the right-hand normal to AS.

Now let us determine this circulation for every AS comprising S and sum the re-
sults. As we evaluate the closed line integral for each A .S, some cancellation will occur
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ay

AS

AS
AS

Figure 7.16 The sum of the closed line integrals
about the perimeter of every AS'is the same as the
closed line integral about the perimeter of S because
of cancellation on every interior path.

because every interior wall is covered once in each direction. The only boundaries
on which cancellation cannot occur form the outside boundary, the path enclosing S.
Therefore we have

H-dL= [ (VxH)-dS (30)
pras)

where dL is taken only on the perimeter of S.
Equation (30) is an identity, holding for any vector field, and is known as Stokes’
theorem.

A numerical example may help to illustrate the geometry involved in Stokes’ theorem.
Consider the portion of a sphere shown in Figure 7.17. The surface is specified by r =
4,0 <6 <0.1wr,0 < ¢ < 0.37, and the closed path forming its perimeter is com-
posed of three circular arcs. We are given the field H = 67 sin ¢a, + 18 sinf cos ¢a
and are asked to evaluate each side of Stokes’ theorem.

Solution. The first path segment is described in spherical coordinates by r = 4, 0 <
0 < 0.1, ¢ = 0; the second one by r = 4,60 = 0.17,0 < ¢ < 0.37; and the third
byr =4,0 <0 <0.1lm, ¢ = 0.37. The differential path element dL is the vector
sum of the three differential lengths of the spherical coordinate system first discussed
in Section 1.9,

dL =dra, +rdfay+rsinfdeay
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Figure 7.17 A portion of a spherical cap is
used as a surface and a closed path to illustrate
Stokes’ theorem.

The first term is zero on all three segments of the path since » = 4 and dr = 0,
the second is zero on segment 2 as 6 is constant, and the third term is zero on both
segments | and 3. Thus,

%H-dL = /ngde +/H¢rsin0d¢+/H9rd9
1 2 3
Because Hy = 0, we have only the second integral to evaluate,
0.37
fH-dL = / [18(4)sin0.17 cos ¢4 sin 0. 1w dp
0

= 288sin% 0.17 sin0.37 = 22.2 A

We next attack the surface integral. First, we use (26) to find
1
sin 6

1 1
VxH=——(36rsinf cosf cosp)a, + — ( 6r cos ¢ — 36r sin6 cos¢>)a9
7 sin @ r
Because dS = r?sin 0 d6 d¢ a,, the integral is
037 p0.17
/(VxH)-dS:/ / (36cos cosp)16sin6 db de¢
s 0 0
0.37 ) 0.17
= / 576 (5 sin”0) ‘0 cos ¢ do
0

= 288sin’ 0.1 sin0.37 =222 A
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Thus, the results check Stokes’ theorem, and we note in passing that a current of
22.2 A is flowing upward through this section of a spherical cap.
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Next, let us see how easy it is to obtain Ampere’s circuital law from V x H = J.
We merely have to dot each side by dS, integrate each side over the same (open)
surface S, and apply Stokes’ theorem:

/(VxH)-dS:/J-dS:?gH-dL
N S

The integral of the current density over the surface S is the total current / passing
through the surface, and therefore

This short derivation shows clearly that the current /, described as being “en-
closed by the closed path,” is also the current passing through any of the infinite
number of surfaces that have the closed path as a perimeter.

Stokes’ theorem relates a surface integral to a closed line integral. It should
be recalled that the divergence theorem relates a volume integral to a closed surface
integral. Both theorems find their greatest use in general vector proofs. As an example,
let us find another expression for V - V x A, where A represents any vector field. The
result must be a scalar (why?), and we may let this scalar be 7', or

V.-VxA=T

Multiplying by dv and integrating throughout any volume v,

/(V-VxA)dv:/ T dv
vol vol

we first apply the divergence theorem to the left side, obtaining

f(VxA)-dS:/ T dv
S vol

The left side is the surface integral of the curl of A over the closed surface
surrounding the volume v. Stokes’ theorem relates the surface integral of the curl of
A over the open surface enclosed by a given closed path. If we think of the path as
the opening of a laundry bag and the open surface as the surface of the bag itself, we
see that as we gradually approach a closed surface by pulling on the drawstrings, the
closed path becomes smaller and smaller and finally disappears as the surface becomes
closed. Hence, the application of Stokes’ theorem to a closed surface produces a zero

result, and we have
f Tdv=0
vol
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Because this is true for any volume, it is true for the differential volume dv,
Tdv=0
and therefore

T=0

V.-VxA=0 31)

Equation (31) is a useful identity of vector calculus.® Of course, it may also be
proven easily by direct expansion in rectangular coordinates.
Let us apply the identity to the non-time-varying magnetic field for which

VxH=1J

or

This shows quickly that
V.J=0

which is the same result we obtained earlier in the chapter by using the continuity
equation.

Before introducing several new magnetic field quantities in the following section,
we may review our accomplishments at this point. We initially accepted the Biot-
Savart law as an experimental result,

f 1dL x ap
H=
4 R?

and tentatively accepted Ampere’s circuital law, subject to later proof,

From Ampeére’s circuital law the definition of curl led to the point form of this same
law,

VxH=J
We now see that Stokes’ theorem enables us to obtain the integral form of Ampere’s

circuital law from the point form.

D7.6. Evaluate both sides of Stokes’ theorem for the field H = 6xya, —
3 yzay A/m and the rectangular path around the region,2 < x <5, -1 <y <
1, z = 0. Let the positive direction of dS be a,.

Ans. —126 A; —126 A

6 This and other vector identities are tabulated in Appendix A.3.
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7.5 MAGNETIC FLUX AND MAGNETIC
FLUX DENSITY

In free space, let us define the magnetic flux density B as

(free space only) (32)

where B is measured in webers per square meter (Wb/m?) or in a newer unit adopted
in the International System of Units, tesla (T). An older unit that is often used for
magnetic flux density is the gauss (G), where 1 T or 1Wb/m? is the same as 10, 000 G.
The constant . is not dimensionless and has the defined value for free space, in henrys
per meter (H/m), of

wo =4m x 107" H/m (33)

The name given to g is the permeability of free space.

We should note that since H is measured in amperes per meter, the weber is
dimensionally equal to the product of henrys and amperes. Considering the henry as
a new unit, the weber is merely a convenient abbreviation for the product of henrys
and amperes. When time-varying fields are introduced, it will be shown that a weber
is also equivalent to the product of volts and seconds.

The magnetic-flux-density vector B, as the name weber per square meter im-
plies, is a member of the flux-density family of vector fields. One of the possible
analogies between electric and magnetic fields’ compares the laws of Biot-Savart and
Coulomb, thus establishing an analogy between H and E. The relations B = uoH
and D = ¢(E then lead to an analogy between B and D. If B is measured in teslas or
webers per square meter, then magnetic flux should be measured in webers. Let us
represent magnetic flux by ® and define ® as the flux passing through any designated
area,

<D=/B-dSWb (34)
S

Our analogy should now remind us of the electric flux ¥, measured in coulombs,
and of Gauss’s law, which states that the total flux passing through any closed surface
is equal to the charge enclosed,

w:in-dszg

The charge Q is the source of the lines of electric flux and these lines begin and
terminate on positive and negative charges, respectively.

7 An alternate analogy is presented in Section 9.2.
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No such source has ever been discovered for the lines of magnetic flux. In the
example of the infinitely long straight filament carrying a direct current 7, the H field
formed concentric circles about the filament. Because B = uoH, the B field is of the
same form. The magnetic flux lines are closed and do not terminate on a “magnetic
charge.” For this reason Gauss’s law for the magnetic field is

jﬁB-dszo (35)
S,

and application of the divergence theorem shows us that
V-B=0 (36)

Equation (36) is the last of Maxwell’s four equations as they apply to static
electric fields and steady magnetic fields. Collecting these equations, we then have
for static electric fields and steady magnetic fields

VD = p,
VxE= 0
(37)
VxH=J
V:-B=0

To these equations we may add the two expressions relating D to E and B to H
in free space,

D = ¢FE (38)

D=cE |
m (39)

We have also found it helpful to define an electrostatic potential,
E=-VJV (40)

and we will discuss a potential for the steady magnetic field in the following section. In
addition, we extended our coverage of electric fields to include conducting materials
and dielectrics, and we introduced the polarization P. A similar treatment will be
applied to magnetic fields in the next chapter.

Returning to (37), it may be noted that these four equations specify the divergence
and curl of an electric and a magnetic field. The corresponding set of four integral



CHAPTER 7 The Steady Magnetic Field

equations that apply to static electric fields and steady magnetic fields is

%D-dS:Q:/ pudv

S vol

%E-dL:O

%H-dL:I:/J-dS
S

%B-dS:O

N

Our study of electric and magnetic fields would have been much simpler if we
could have begun with either set of equations, (37) or (41). With a good knowledge
of vector analysis, such as we should now have, either set may be readily obtained
from the other by applying the divergence theorem or Stokes’ theorem. The various
experimental laws can be obtained easily from these equations.

As an example of the use of flux and flux density in magnetic fields, let us find
the flux between the conductors of the coaxial line of Figure 7.8a. The magnetic field
intensity was found to be

(41)

1

and therefore

B=uH=—a
Mo 271,0¢

The magnetic flux contained between the conductors in a length d is the flux
crossing any radial plane extending from p = a to p = b and from, say, z = 0 to

z=d .

1
@:/B-dS:// &a(p-d,odzad,
s 0Ja 27p
or
d_ b
o=, 2 (42)

2 a

This expression will be used later to obtain the inductance of the coaxial trans-
mission line.

D7.7. A solid conductor of circular cross section is made of a homogeneous
nonmagnetic material. If the radius ¢ = 1 mm, the conductor axis lies on the
z axis, and the total current in the a, directionis 20 A, find: (a) Hg at p = 0.5 mm;
(b) By at p = 0.8 mm; (c) the total magnetic flux per unit length inside the
conductor; (d) the total flux for p < 0.5 mm; (e) the total magnetic flux outside
the conductor.

Ans. 1592 A/m; 3.2 mT; 2 uWb/m; 0.5 uWhb; co
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7.6 THE SCALAR AND VECTOR
MAGNETIC POTENTIALS

The solution of electrostatic field problems is greatly simplified by the use of the
scalar electrostatic potential V. Although this potential possesses a very real physical
significance for us, it is mathematically no more than a stepping-stone which allows
us to solve a problem by several smaller steps. Given a charge configuration, we may
first find the potential and then from it the electric field intensity.

We should question whether or not such assistance is available in magnetic fields.
Can we define a potential function which may be found from the current distribution
and from which the magnetic fields may be easily determined? Can a scalar magnetic
potential be defined, similar to the scalar electrostatic potential? We will show in
the next few pages that the answer to the first question is yes, but the second must
be answered “sometimes.” Let us attack the second question first by assuming the
existence of a scalar magnetic potential, which we designate V),, whose negative
gradient gives the magnetic field intensity

H=-V/V,

The selection of the negative gradient provides a closer analogy to the electric potential
and to problems which we have already solved.

This definition must not conflict with our previous results for the magnetic field,
and therefore

VxH=J=Vx(—VV,)

However, the curl of the gradient of any scalar is identically zero, a vector identity
the proof of which is left for a leisure moment. Therefore, we see that if H is to be
defined as the gradient of a scalar magnetic potential, then current density must be
zero throughout the region in which the scalar magnetic potential is so defined. We
then have

H=-VV, J=0) (43)

Because many magnetic problems involve geometries in which the current-carrying
conductors occupy a relatively small fraction of the total region of interest, it is evident
that a scalar magnetic potential can be useful. The scalar magnetic potential is also
applicable in the case of permanent magnets. The dimensions of ¥}, are obviously
amperes.

This scalar potential also satisfies Laplace’s equation. In free space,

V'B=MOV'H=O
and hence

/’LOV : (_va) =0
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or

V2V, =0 (I=0) (44)

We will see later that V;,, continues to satisfy Laplace’s equation in homogeneous
magnetic materials; it is not defined in any region in which current density is present.

Although we shall consider the scalar magnetic potential to a much greater extent
in Chapter 8, when we introduce magnetic materials and discuss the magnetic circuit,
one difference between V" and V;, should be pointed out now: ¥}, is not a single-valued
function of position. The electric potential V' is single-valued; once a zero reference is
assigned, there is only one value of V" associated with each point in space. Such is not
the case with V,,. Consider the cross section of the coaxial line shown in Figure 7.18.
In the region a < p < b, J = 0, and we may establish a scalar magnetic potential.
The value of H is

C 2mp A

where [ is the total current flowing in the a, direction in the inner conductor. We find
V.n by integrating the appropriate component of the gradient. Applying (43),

1 19V,

2np "l p ag
or

P(p, 7/4,0)

¢

\

Figure 7.18 The scalar magnetic potential V,,, is a
multivalued function of ¢ in the regiona < p < b. The
electrostatic potential is always single valued.
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Thus,

Vi = Iq)
m — 27_[

where the constant of integration has been set equal to zero. What value of potential
do we associate with point P, where ¢ = 7/4? If we let V,, be zero at ¢ = 0 and
proceed counterclockwise around the circle, the magnetic potential goes negative
linearly. When we have made one circuit, the potential is —/, but that was the point
at which we said the potential was zero a moment ago. At P, then, ¢ = /4, 97 /4,
177 /4,...,or =7 /4, —157 /4, =237 /4, ..., or

I
Vmng(Zn—%)n (n=0,+1,42,..))
or
Vap=1(n—%) (n=0%1,£2,...)

The reason for this multivaluedness may be shown by a comparison with the
electrostatic case. There, we know that

VXE =0

fE-dL:O

a
Vap = — [ E-dL
b
is independent of the path. In the magnetostatic case, however,

VxH=0 (wherever J =0)

fH-dL:I

even if J is zero along the path of integration. Every time we make another complete
lap around the current, the result of the integration increases by /. If no current /
is enclosed by the path, then a single-valued potential function may be defined. In
general, however,

and therefore the line integral

but

Vinab = —/ H-.dL (specified path) (45)
b

where a specific path or type of path must be selected. We should remember that the
electrostatic potential 7 is a conservative field; the magnetic scalar potential V,, is
not a conservative field. In our coaxial problem, let us erect a barrier® at ¢ = ; we

8 This corresponds to the more precise mathematical term “branch cut.”
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agree not to select a path that crosses this plane. Therefore, we cannot encircle 7, and
a single-valued potential is possible. The result is seen to be

1

Vn=—5-¢ (-7 <¢<n)
2

v 1 i
mP—_§ ((P_Z)

The scalar magnetic potential is evidently the quantity whose equipotential sur-
faces will form curvilinear squares with the streamlines of H in Figure 7.4. This is
one more facet of the analogy between electric and magnetic fields about which we
will have more to say in the next chapter.

Letus temporarily leave the scalar magnetic potential now and investigate a vector
magnetic potential. This vector field is one which is extremely useful in studying
radiation from antennas (as we will find in Chapter 14) as well as radiation leakage
from transmission lines, waveguides, and microwave ovens. The vector magnetic
potential may be used in regions where the current density is zero or nonzero, and we
shall also be able to extend it to the time-varying case later.

Our choice of a vector magnetic potential is indicated by noting that

and

V:B=0

Next, a vector identity that we proved in Section 7.4 shows that the divergence of the
curl of any vector field is zero. Therefore, we select

B=VxA (46)

where A signifies a vector magnetic potential, and we automatically satisfy the con-
dition that the magnetic flux density shall have zero divergence. The H field is

1
H=—VxA
o

and

VXH:J:LVXVXA
Mo
The curl of the curl of a vector field is not zero and is given by a fairly complicated
expression,” which we need not know now in general form. In specific cases for which
the form of A is known, the curl operation may be applied twice to determine the
current density.

IVxVxA=V(V-A)—V3A.In rectangular coordinates, it may be shown that VZA = VA, a, +
Vsz a, + V2A.a.. In other coordinate systems, V2A may be found by evaluating the second-order
partial derivatives in VA = V(V-A) — V x V x A.
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Equation (46) serves as a useful definition of the vector magnetic potential A.
Because the curl operation implies differentiation with respect to a length, the units
of A are webers per meter.

As yet we have seen only that the definition for A does not conflict with any
previous results. It still remains to show that this particular definition can help us to
determine magnetic fields more easily. We certainly cannot identify A with any easily
measured quantity or history-making experiment.

We will show in Section 7.7 that, given the Biot-Savart law, the definition of B,
and the definition of A, A may be determined from the differential current elements by

1dL
e (47)
TT

The significance of the terms in (47) is the same as in the Biot-Savart law; a direct
current / flows along a filamentary conductor of which any differential length dL is
distant R from the point at which A is to be found. Because we have defined A only
through specification of its curl, it is possible to add the gradient of any scalar field
to (47) without changing B or H, for the curl of the gradient is identically zero. In
steady magnetic fields, it is customary to set this possible added term equal to zero.

The fact that A is a vector magnetic potential is more apparent when (47) is
compared with the similar expression for the electrostatic potential,

v / pLdL

4megR
Each expression is the integral along a line source, in one case line charge and in the
other case line current; each integrand is inversely proportional to the distance from
the source to the point of interest; and each involves a characteristic of the medium

(here free space), the permeability or the permittivity.
Equation (47) may be written in differential form,

_ Mo]dL
" 4nR

if we again agree not to attribute any physical significance to any magnetic fields we
obtain from (48) until the entire closed path in which the current flows is considered.
With this reservation, let us go right ahead and consider the vector magnetic
potential field about a differential filament. We locate the filament at the origin in free
space, as shown in Figure 7.19, and allow it to extend in the positive z direction so
that dL. = dz a,. We use cylindrical coordinates to find dA at the point (p, ¢, z):

dA (48)

JA — ol dz a,
4/ p? + 22
or
wol dz

dA, =

B 4w/ p? + 22

ddy =0 dAd,=0 (49)
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Free space
R= p2+22  P(p, $.7)
IdL=Idz a, \
T
z
\¢/( p

Figure 7.19 The differential current
element | dza, at the origin establishes the
differential vector magnetic potential field,

Id
dA = H0T9% i P g 2).

a2 12

We note that the direction of dA is the same as that of / dL. Each small section
of a current-carrying conductor produces a contribution to the total vector magnetic
potential which is in the same direction as the current flow in the conductor. The
magnitude of the vector magnetic potential varies inversely with the distance to the
current element, being strongest in the neighborhood of the current and gradually
falling off to zero at distant points. Skilling!® describes the vector magnetic potential
field as “like the current distribution but fuzzy around the edges, or like a picture of
the current out of focus.”

In order to find the magnetic field intensity, we must take the curl of (49) in
cylindrical coordinates, leading to

1 1 0dA,
dH=—VXdA=—<— >a¢
Mo o ap

or
ldz P
= an ™
which is easily shown to be the same as the value given by the Biot-Savart law.
Expressions for the vector magnetic potential A can also be obtained for a current
source which is distributed. For a current sheet K, the differential current element
becomes

IdL =KdS
In the case of current flow throughout a volume with a density J, we have

IdL=Jdv

10 See the References at the end of the chapter.

i)
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In each of these two expressions the vector character is given to the current. For the
filamentary element it is customary, although not necessary, to use / dL instead of
IdL. Since the magnitude of the filamentary element is constant, we have chosen
the form which allows us to remove one quantity from the integral. The alternative
expressions for A are then

KdS
A=/“Z - (50)
S TT.
and
d
A:/ proddv (51)
vol 4R

Equations (47), (50), and (51) express the vector magnetic potential as an inte-
gration over all of its sources. From a comparison of the form of these integrals with
those which yield the electrostatic potential, it is evident that once again the zero ref-
erence for A is at infinity, for no finite current element can produce any contribution
as R — o0o. We should remember that we very seldom used the similar expressions
for V; too often our theoretical problems included charge distributions that extended
to infinity, and the result would be an infinite potential everywhere. Actually, we cal-
culated very few potential fields until the differential form of the potential equation
was obtained, V2V = —p, /e, or better yet, V2V = 0. We were then at liberty to
select our own zero reference.

The analogous expressions for A will be derived in the next section, and an
example of the calculation of a vector magnetic potential field will be completed.

D7.8. A current sheet, K = 2.4a, A/m, is present at the surface p = 1.2 in
free space. (a) Find H for p > 1.2. Find V,, at P(p = 1.5, ¢ = 0.67, z = 1) if:
(b) V,y = 0 at ¢ = 0 and there is a barrier at ¢ = 7; (c) V,, = 0at ¢ = 0 and
thereisabarrierat¢p = /2;(d) V,, = 0at¢ = m and thereisabarrierat¢ = 0;
(e) V,u =5V at ¢ = 7 and there is a barrier at ¢ = 0.87.

2.88
Ans. —ay; —543V;12.7V;3.62V; —9.48V
P

D7.9. The value of A within a solid nonmagnetic conductor of radius a car-
rying a total current / in the a, direction may be found easily. Using the
known value of H or B for p < a, then (46) may be solved for A. Select
A = (uol In5)/2m at p = a (to correspond with an example in the next sec-
tion) and find A at p =: (a) 0; (b) 0.25a; (¢) 0.75a; (d) a.

Ans. 0.4227a, uWb/m; 0.4167/a, uWb/m; 0.3667/a, uWb/m; 0.3227a, uWb/m
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7.7 DERIVATION OF THE
STEADY-MAGNETIC-FIELD LAWS

We will now supply the promised proofs of the several relationships between the
magnetic field quantities. All these relationships may be obtained from the definitions

of H,
- i
of B (in free space),
B = p0H (32)
and of A,
B=VxA (46)

Let us first assume that we may express A by the last equation of Section 7.6,

Jd
A=/ HoZ 4V (51)
vol

4R

and then demonstrate the correctness of (51) by showing that (3) follows. First, we
should add subscripts to indicate the point at which the current element is located
(x1, y1, z1) and the point at which A is given (x;, y;, z2). The differential volume
element dv is then written dv; and in rectangular coordinates would be dx| dy; dz;.
The variables of integration are x;, y;, and z;. Using these subscripts, then,

Jid
A, = / podidv (52)
vol  47R12
From (32) and (46) we have
B VxA
H=— = = (53)
o H“o

To show that (3) follows from (52), it is necessary to substitute (52) into (53). This
step involves taking the curl of A,, a quantity expressed in terms of the variables x,
2, and z;, and the curl therefore involves partial derivatives with respect to x;, y», and
z,. We do this, placing a subscript on the del operator to remind us of the variables
involved in the partial differentiation process,

Vz X A2 1 / /,L()Jldl)l

= _VZ X _—

Mo Mo vol 47R12
The order of partial differentiation and integration is immaterial, and (/4 is
constant, allowing us to write

1 J]dU]
Hz = — Vz X
47 Jyol Rz

The curl operation within the integrand represents partial differentiation with
respect to x», y», and z,. The differential volume element dv; is a scalar and a function

H, =

217



218

ENGINEERING ELECTROMAGNETICS

only of x|, y;, and z;. Consequently, it may be factored out of the curl operation as
any other constant, leaving

1 Ji
H2 = — Vz X — d\)l (54)
47 Jyol Rz

The curl of the product of a scalar and a vector is given by an identity which may
be checked by expansion in rectangular coordinates or obtained from Appendix A.3,

Vx(SV)=(VS)xV+ S(VxV) (55)
This identity is used to expand the integrand of (54),
1 1 1

H, = — V,— Ji+—MxJd)|d 56

2= 4o V01|:< 2R12)X 1+R12( 2 X 1)} Vi (56)

The second term of this integrand is zero because V, x J| indicates partial deriva-
tives of a function of x;, v, and z;, taken with respect to the variables x;, y,, and z,;
the first set of variables is not a function of the second set, and all partial derivatives
are zero.

The first term of the integrand may be determined by expressing R, in terms of
the coordinate values,

R =2 —x1)2+ (02— )+ (22— 21)?

and taking the gradient of its reciprocal. Problem 7.42 shows that the result is

1 Ry agi
Voo =05 =5
R Ry, Ry,
Substituting this result into (56), we have

1 agp X J
H, = __/ Rlz2 L,
4 vol R12

Jixa
sz/ 71 ledel
vol 47'L'R12

which is the equivalent of (3) in terms of current density. Replacing J; dv; by I} dL,
we may rewrite the volume integral as a closed line integral,

IidL; x a
szflgl | X agyy

or

471Rf2
Equation (51) is therefore correct and agrees with the three definitions (3), (32),
and (46).
Next we will prove Ampere’s circuital law in point form,
VxH=1J (28)
Combining (28), (32), and (46), we obtain
B 1
VxH=Vx—=—VxVxA (57)

Ko Mo
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We now need the expansion in rectangular coordinates for V x V x A. Performing
the indicated partial differentiations and collecting the resulting terms, we may write
the result as

| VxVxA=V(V-A)- VA | (58)

where

VPA=V’A,a, + V24,8, + V2d.a, (59)

Equation (59) is the definition (in rectangular coordinates) of the Laplacian of a
vector.
Substituting (58) into (57), we have

1
VxH=—[V(V-A)— V?A] (60)
o
and now require expressions for the divergence and the Laplacian of A.

We may find the divergence of A by applying the divergence operation to (52),

o Ji
Vo Ay = — Vo —dv 61
2By = | Ve pdn (61)

and using the vector identity (44) of Section 4.8,
V-(SV)=V-(VS)+ S(V-V)
Thus,
Vi Ay =10 [Jl - (Vzi> T -Jl)}dvl (62)
4 Jyol Ry Ry

The second part of the integrand is zero because J; is not a function of x;, y,,
and z;.

We have already used the result that V5(1/R12) = —R2/R3,, and it is just as
easily shown that

1 R
1= = —%
R R
or that
1 1
Vi = =V, —
Rys Ri»

Equation (62) can therefore be written as

1
Vz'Azz? I:—Jl'(le—)j|dV1
T Jvol 12

and the vector identity applied again,

Ho 1 Ji
Vy, Ay = — — (Vi J) =V | — ) |d 63
2R T gy vol|:R12( t-dy) : <R12)} o (©3)
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Because we are concerned only with steady magnetic fields, the continuity equa-
tion shows that the first term of (63) is zero. Application of the divergence theorem
to the second term gives

AL SR
4 M R] 2

where the surface S; encloses the volume throughout which we are integrating. This
volume must include all the current, for the original integral expression for A was an
integration such as to include the effect of all the current. Because there is no current
outside this volume (otherwise we should have had to increase the volume to include
it), we may integrate over a slightly larger volume or a slightly larger enclosing surface
without changing A. On this larger surface the current density J; must be zero, and
therefore the closed surface integral is zero, since the integrand is zero. Hence the
divergence of A is zero.

In order to find the Laplacian of the vector A, let us compare the x component
of (51) with the similar expression for electrostatic potential,

A — / oJdv V- / Py dv

vol 4mR vol 4megR
We note that one expression can be obtained from the other by a straightforward
change of variable, J, for p,, u for 1/€y, and A4, for V. However, we have derived
some additional information about the electrostatic potential which we shall not have

to repeat now for the x component of the vector magnetic potential. This takes the
form of Poisson’s equation,

vy =2
€0
which becomes, after the change of variables,
VA, = —po s
Similarly, we have
V4, = —poJ,
and
V24, = o)
or
VA = —pod (64)

Returning to (60), we can now substitute for the divergence and Laplacian of A
and obtain the desired answer,

VxH=1J (28)

We have already shown the use of Stokes’ theorem in obtaining the integral form of
Ampere’s circuital law from (28) and need not repeat that labor here.
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We thus have succeeded in showing that every result we have essentially pulled
from thin air'' for magnetic fields follows from the basic definitions of H, B, and A.
The derivations are not simple, but they should be understandable on a step-by-step
basis.

Finally, let us return to (64) and make use of this formidable second-order vec-
tor partial differential equation to find the vector magnetic potential in one simple
example. We select the field between conductors of a coaxial cable, with radii of a
and b as usual, and current / in the a, direction in the inner conductor. Between the
conductors, J = 0, and therefore

VA =0

We have already been told (and Problem 7.44 gives us the opportunity to check the
results for ourselves) that the vector Laplacian may be expanded as the vector sum of
the scalar Laplacians of the three components in rectangular coordinates,

VA = V?4,a, + V?4,a, + V*4.a,

but such a relatively simple result is not possible in other coordinate systems. That is,
in cylindrical coordinates, for example,

VZA # V24,8, + Vi Apas + V4.2,

However, it is not difficult to show for cylindrical coordinates that the z component
of the vector Laplacian is the scalar Laplacian of the z component of A, or

VZA| = V24, (65)

V4
and because the current is entirely in the z direction in this problem, A has only a
z component. Therefore,

V24, =0

or

19 [ 4. 1 0°4. 94
pop\"op ) " o2 g7 T o2 T
Thinking symmetrical thoughts about (51) shows us that 4. is a function only of p,

and thus
1 d< dAz>
pdp\" dp

We have solved this equation before, and the result is

AZ=C111’1,0+C2

If we choose a zero reference at p = b, then

0
Az:CIh'lZ

11 Free space.
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In order to relate C; to the sources in our problem, we may take the curl of A,

04, C
VxA=— a¢=——la¢=B
ap o
obtain H,
C
H=———a
Hop
and evaluate the line integral,
2w
2nC
ng dL = :f ——Lay-pdpa, = ———"
0 Hop Mo
Thus
Hol
Ci=——
! 27
or
I b
A, =1, 2 (66)
2 0
and
o I
v 270

as before. A plot of A4, versus p for b = 5a is shown in Figure 7.20; the decrease
of |A| with distance from the concentrated current source that the inner conductor
represents is evident. The results of Problem D7.9 have also been added to Figure 7.20.
The extension of the curve into the outer conductor is left as Problem 7.43.

It is also possible to find A4, between conductors by applying a process some of
us informally call “uncurling.” That is, we know H or B for the coax, and we may

ol
JT

A, (Wb/m)
=
QAU

pla

Figure 7.20 The vector magnetic potential is shown
within the inner conductor and in the region between
conductors for a coaxial cable with b = 5a carrying /
in the a; direction. A, = 0O is arbitrarily selected at p = b.
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therefore select the ¢ component of V x A = B and integrate to obtain 4. Try it,
you’ll like it!

D7.10. Equation (66) is obviously also applicable to the exterior of any con-
ductor of circular cross section carrying a current / in the a, direction in free
space. The zero reference is arbitrarily set at p = b. Now consider two con-
ductors, each of 1 cm radius, parallel to the z axis with their axes lying in
the x = 0 plane. One conductor whose axis is at (0,4 cm, z) carries 12 A
in the a, direction; the other axis is at (0, —4 cm, z) and carries 12 A in the
—a, direction. Each current has its zero reference for A located 4 cm from its
axis. Find the total A field at: (a) (0, 0, z); (b) (0, 8 cm, z); (¢) (4cm, 4cm, z);
(d) 2cm, 4 cm, z).

Ans. 0;2.64 uWb/m; 1.93 uWb/m; 3.40 £ Wb/m
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CHAPTER 7 PROBLEMS

7114 (a) Find H in rectangular components at P(2, 3, 4) if there is a current

filament on the z axis carrying 8 mA in the a, direction. (b) Repeat if the
filament is located at x = —1, y = 2. (c¢) Find H if both filaments are present.

720 A filamentary conductor is formed into an equilateral triangle with sides of

length ¢ carrying current /. Find the magnetic field intensity at the center of
the triangle.

7.3} Two semi-infinite filaments on the z axis lie in the regions —00 < z < —a

and a < z < oo. Each carries a current / in the a, direction. (a) Calculate H
as a function of p and ¢ at z = 0. (b) What value of @ will cause the
magnitude of H at p = 1, z = 0, to be one-half the value obtained for an
infinite filament?

7.4} Two circular current loops are centered on the z axis at z = £A. Each loop

has radius a and carries current / in the a4 direction. (a) Find H on the z axis
over the range —h < z < h. Take I = | A and plot |H]| as a function of z/a if

223
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7518

7.68

771

7.81

7918
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Figure 7.21 See Problem 7.5.

(Bb)Yh =a/4;(c) h =a/2;(d) h = a. Which choice for / gives the most
uniform field? These are called Helmholtz coils (of a single turn each in this
case), and are used in providing uniform fields.

The parallel filamentary conductors shown in Figure 7.21 lie in free space.
Plot |H| versus y, —4 < y < 4, along the linex =0,z = 2.

A disk of radius « lies in the xy plane, with the z axis through its center.
Surface charge of uniform density p; lies on the disk, which rotates about
the z axis at angular velocity €2 rad/s. Find H at any point on the z axis.

A filamentary conductor carrying current / in the a, direction extends along
the entire negative z axis. At z = 0 it connects to a copper sheet that fills the
x > 0, y > 0 quadrant of the xy plane. (a) Set up the Biot-Savart law and
find H everywhere on the z axis; (b) repeat part (a), but with the copper sheet
occupying the entire xy plane (Hint: express a4 in terms of a, and a, and
angle ¢ in the integral).

For the finite-length current element on the z axis, as shown in Figure 7.5,
use the Biot-Savart law to derive Eq. (9) of Section 7.1.

A current sheet K = 8a, A/m flows in the region —2 < y < 2 in the plane
z = 0. Calculate H at P(0, 0, 3).

7.10§ A hollow spherical conducting shell of radius a has filamentary connections

made at the top ( = a, 0 = 0) and bottom (» = a, 0 = 7). A direct current /
flows down the upper filament, down the spherical surface, and out the lower
filament. Find H in spherical coordinates (a) inside and (b) outside the
sphere.

711} An infinite filament on the z axis carries 2077 mA in the a, direction. Three

a,-directed uniform cylindrical current sheets are also present: 400 mA/m at
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Air
1.0
é — 10 A/m? ;
0.7
Air
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Air 0

Figure 7.22 See Problem 7.12.

p = 1lcm, —250mA/m at p = 2 cm, and —300 mA/m at p = 3 cm. Calculate
Hgat p =0.5,1.5,2.5,and 3.5 cm.

7124 In Figure 7.22, let the regions 0 < z < 0.3 mand 0.7 < z < 1.0 m be
conducting slabs carrying uniform current densities of 10 A/m? in opposite
directions as shown. Find H at z =: (a) —0.2; (b) 0.2; (¢) 0.4; (d) 0.75;

(e) 1.2 m.

7.13§ A hollow cylindrical shell of radius « is centered on the z axis and carries a
uniform surface current density of K,a,4. (¢) Show that / is not a function of
¢ or z. (b) Show that Hy and H, are everywhere zero. (¢) Show that H, = 0
for p > a. (d) Show that H, = K, for p < a. (e) A second shell, p = b,
carries a current K,a,. Find H everywhere.

7.14 8 A toroid having a cross section of rectangular shape is defined by the
following surfaces: the cylinders p = 2 and p = 3 cm, and the planes z = 1
and z = 2.5 cm. The toroid carries a surface current density of —50a, A/m
on the surface p = 3 cm. Find H at the point P(p, ¢, z): (@) P4(1.5cm, 0,
2cm); (b) Pg(2.1cm, 0, 2cm); (¢) Pc(2.7cm, /2,2 cm); (d) Pp(3.5 cm,
/2,2 cm).

7.15) Assume that there is a region with cylindrical symmetry in which the
conductivity is given by o = 1.5¢713°kS/m. An electric field of 30a, V/m
is present. (@) Find J. (b) Find the total current crossing the surface p < py,
z =0, all ¢. (¢) Make use of Ampere’s circuital law to find H.

7.16} A current filament carrying / in the —a, direction lies along the entire
positive z axis. At the origin, it connects to a conducting sheet that forms the
xy plane. (a) Find K in the conducting sheet. () Use Ampere’s circuital law
to find H everywhere for z > 0; (¢) find H for z < 0.
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7174 A current filament on the z axis carries a current of 7 mA in the a, direction,
and current sheets of 0.5 a, A/m and —0.2 a, A/m are located at p = 1 cm
and p = 0.5 cm, respectively. Calculate H at: (@) p = 0.5 cm; (b) p =
1.5 cm; (¢) p = 4 cm. (d) What current sheet should be located at p = 4 cm
so that H = 0 for all p > 4 cm?

7.181 A wire of 3 mm radius is made up of an inner material (0 < p < 2 mm) for
which 0 = 107 S/m, and an outer material (2 mm < p < 3 mm) for which
o = 4 x 107 S/m. If the wire carries a total current of 100 mA dc, determine
H everywhere as a function of p.

7.190 In spherical coordinates, the surface of a solid conducting cone is described
by 6 = /4 and a conducting plane by 6 = 7r/2. Each carries a total current
1. The current flows as a surface current radially inward on the plane to the
vertex of the cone, and then flows radially outward throughout the cross
section of the conical conductor. (a) Express the surface current density as a
function of 7; (b) express the volume current density inside the cone as a
function of 7; (¢) determine H as a function of  and 6 in the region between
the cone and the plane; (d) determine H as a function of » and 0 inside the
cone.

7.20§ A solid conductor of circular cross section with a radius of S mm has a
conductivity that varies with radius. The conductor is 20 m long, and there is
a potential difference of 0.1 V dc between its two ends. Within the conductor,
H = 10°p?ay A/m. (a) Find o as a function of p. (b) What is the resistance
between the two ends?

7210 A cylindrical wire of radius a is oriented with the z axis down its center line.
The wire carries a nonuniform current down its length of density
J = bp a. A/m? where b is a constant. (a) What total current flows in the
wire? (b) Find H;,, (0 < p < a), as a function of p; (¢) find H,,,(p > a),as a
function of p; (d) verify your results of parts (b) and (c) by using V. x H = J.

7221 A solid cylinder of radius @ and length L, where L > a, contains volume
charge of uniform density py C/m?. The cylinder rotates about its axis (the
z axis) at angular velocity €2 rad/s. (¢) Determine the current density J as a
function of position within the rotating cylinder. () Determine H on-axis by
applying the results of Problem 7.6. (c) Determine the magnetic field
intensity H inside and outside. (d) Check your result of part (c¢) by taking
the curl of H.

7.23 | Given the field H = 20p?as A/m: (a) Determine the current density J.
(b) Integrate J over the circular surface p < 1,0 < ¢ < 2w,z =0, to
determine the total current passing through that surface in the a, direction.
(c) Find the total current once more, this time by a line integral around the
circularpath p = 1,0 < ¢ < 2w,z = 0.

7.241 Infinitely long filamentary conductors are located in the y = 0 plane at x = n
meters where n = 0, =1, &2, ... Each carries 1 A in the a, direction.
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(a) Find H on the y axis. As a help,
> bid 1 b1
Z 2 : 155 "5, T
=y +n 2 2y e —1
(b) Compare your result of part (a) to that obtained if the filaments are
replaced by a current sheet in the y = 0 plane that carries surface current
density K = la, A/m.

7.25 When x, y, and z are positive and less than 5, a certain magnetic field
intensity may be expressed as H = [x2yz/(y + 1)]a, + 3x%z%a, —
[xyz?/(y + 1)]a.. Find the total current in the a, direction that crosses the
stripx = 2,1 <y <4,3 <z <4, by amethod utilizing: (a) a surface
integral; (b) a closed line integral.

7.26} Consider a sphere of radius » = 4 centered at (0, 0, 3). Let S} be that portion
of the spherical surface that lies above the xy plane. Find [ 5,(V x H) -dSif
H = 3p ay in cylindrical coordinates.

7.271 The magnetic field intensity is given in a certain region of space as H =
[(x + 2y)/z2]ay 4+ (2/z)a, A/m. (a) Find V x H. (b) Find J. (c) Use J to find
the total current passing through the surfacez = 4,1 <x <2,3 <z <5,
in the a, direction. (d) Show that the same result is obtained using the other
side of Stokes’ theorem.

7.28 1 Given H = (3r?/ sin@)ag + 54 cosfas A/m in free space: (a) Find the total
current in the ay direction through the conical surface 0 = 20°,0 < ¢ < 27,
0 <r <5, by whatever side of Stokes’ theorem you like the best. (») Check
the result by using the other side of Stokes’ theorem.

7290 A long, straight, nonmagnetic conductor of 0.2 mm radius carries a
uniformly distributed current of 2 A dc. (@) Find J within the conductor.
(b) Use Ampere’s circuital law to find H and B within the conductor.
(c) Show that V x H = J within the conductor. () Find H and B outside the
conductor. (¢) Show that V x H = J outside the conductor.

7301 (An inversion of Problem 7.20.) A solid, nonmagnetic conductor of circular
cross section has a radius of 2 mm. The conductor is inhomogeneous, with
o = 10%(1 + 10°p?) S/m. If the conductor is 1 m in length and has a voltage
of 1 mV between its ends, find: () H inside; (b) the total magnetic flux
inside the conductor.

7.31 0 The cylindrical shell defined by 1 cm < p < 1.4 cm consists of a
nonmagnetic conducting material and carries a total current of 50 A in the a,
direction. Find the total magnetic flux crossing the plane ¢ = 0,0 <z < 1:
(@)0<p<12cm;(b)l.0cm<p <1.4cm;(c)l.4dcem < p <20cm.

7.32§ The free space region defined by 1 <z <4 cmand2 < p < 3 cm is a toroid
of rectangular cross section. Let the surface at p = 3 cm carry a surface
current K = 2a, kA/m. (a) Specify the current densities on the surfaces at
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p=2cm,z=1cm,andz =4 cm. (b) Find H everywhere. (c¢) Calculate
the total flux within the toroid.

7.33 0 Use an expansion in rectangular coordinates to show that the curl of the
gradient of any scalar field G is identically equal to zero.

7340 A filamentary conductor on the z axis carries a current of 16 A in the a,
direction, a conducting shell at p = 6 carries a total current of 12 A in the
—a, direction, and another shell at p = 10 carries a total current of 4 A in
the —a. direction. () Find H for 0 < p < 12. (b) Plot Hy versus p.
(c) Find the total flux & crossing the surface | < p < 7,0 < z < 1, at fixed
0.

7.350 A current sheet, K = 20 a, A/m, is located at p = 2, and a second sheet,
K = —10a, A/m, is located at p = 4. (a) Let V,, =0at P(p =3, ¢ =0,
z = 5) and place a barrier at ¢ = . Find V,,(p, ¢, z) for —m < ¢ < 7.
(b) Let A =0 at P and find A(p, ¢, z) for2 < p < 4.

7360 Let A = 3y — z)a, + 2xza, Wb/m in a certain region of free space.
(a) Show that V- A = 0. (b) At P(2, —1, 3), find A, B, H, and J.

7378 Let N = 1000, I = 0.8 A, pg = 2 cm, and a = 0.8 cm for the toroid shown
in Figure 7.12b. Find V,, in the interior of the toroid if V,,, = 0 at p = 2.5
cm, ¢ = 0.37. Keep ¢ within the range 0 < ¢ < 2.

7380 A square filamentary differential current loop, d L on a side, is centered at the
origin in the z = 0 plane in free space. The current / flows generally in the
ay direction. (a) Assuming that » >> d L, and following a method similar to
that in Section 4.7, show that

I(dL)*sin®
JA = Mo (dL)"sin a
42

(b) Show that

I(dL)*
dH = u (2cosf a, + sin6 ay)
473

The square loop is one form of a magnetic dipole.

7.39 { Planar current sheets of K = 30a, A/m and —30a, A/m are located in free
space at x = 0.2 and x = —0.2, respectively. For the region —0.2 < x < 0.2
(a) find H; (b) obtain an expression for V,, if V,, = 0 at P(0.1, 0.2, 0.3);
(c) find B; (d) obtain an expression for A if A = 0 at P.

7.40 { Show that the line integral of the vector potential A about any closed path is
equal to the magnetic flux enclosed by the path, or { A-dL = [ B-dS.

7.41§ Assume that A = 50p%a. Wb/m in a certain region of free space. (a) Find H
and B. (b) Find J. (c¢) Use J to find the total current crossing the surface
0<p=<1,0=<¢ <2m,z=0.(d) Use the value of Hy at p = 1 to calculate
fH-dLforp=1,z=0.
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7.42 8 Show that V,(1/R5) = —Vi(1/R12) = Ry /R3,.

7431 Compute the vector magnetic potential within the outer conductor for the
coaxial line whose vector magnetic potential is shown in Figure 7.20 if the
outer radius of the outer conductor is 7a. Select the proper zero reference and
sketch the results on the figure.

7.44 1 By expanding Eq. (58), Section 7.7 in rectangular coordinates, show that (59)
is correct.
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Magnetic Forces,
Materials, and
Inductance

e are now ready to undertake the second half of the magnetic field problem,
w that of determining the forces and torques exerted by the magnetic field on

other charges. The electric field causes a force to be exerted on a charge
that may be either stationary or in motion; we will see that the steady magnetic field is
capable of exerting a force only on a moving charge. This result appears reasonable; a
magnetic field may be produced by moving charges and may exert forces on moving
charges; a magnetic field cannot arise from stationary charges and cannot exert any
force on a stationary charge.

This chapter initially considers the forces and torques on current-carrying con-
ductors that may either be of a filamentary nature or possess a finite cross section
with a known current density distribution. The problems associated with the motion
of particles in a vacuum are largely avoided.

With an understanding of the fundamental effects produced by the magnetic
field, we may then consider the varied types of magnetic materials, the analysis
of elementary magnetic circuits, the forces on magnetic materials, and finally, the
important electrical circuit concepts of self-inductance and mutual inductance. M

8.1 FORCE ON A MOVING CHARGE

In an electric field, the definition of the electric field intensity shows us that the force
on a charged particle is

F = QE (1)
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The force is in the same direction as the electric field intensity (for a positive charge)
and is directly proportional to both E and Q. If the charge is in motion, the force at
any point in its trajectory is then given by (1).

A charged particle in motion in a magnetic field of flux density B is found
experimentally to experience a force whose magnitude is proportional to the product
of the magnitudes of the charge Q, its velocity v, and the flux density B, and to the sine
of the angle between the vectors v and B. The direction of the force is perpendicular
to both v and B and is given by a unit vector in the direction of v x B. The force may
therefore be expressed as

F=0QvxB )

A fundamental difference in the effect of the electric and magnetic fields on
charged particles is now apparent, for a force which is always applied in a direc-
tion at right angles to the direction in which the particle is proceeding can never
change the magnitude of the particle velocity. In other words, the acceleration vector
is always normal to the velocity vector. The kinetic energy of the particle remains
unchanged, and it follows that the steady magnetic field is incapable of transfer-
ring energy to the moving charge. The electric field, on the other hand, exerts a
force on the particle which is independent of the direction in which the particle is
progressing and therefore effects an energy transfer between field and particle in
general.

The first two problems at the end of this chapter illustrate the different effects of
electric and magnetic fields on the kinetic energy of a charged particle moving in free
space.

The force on a moving particle arising from combined electric and magnetic
fields is obtained easily by superposition,

F= QO +v xB) 3)

This equation is known as the Lorentz force equation, and its solution is required in
determining electron orbits in the magnetron, proton paths in the cyclotron, plasma
characteristics in a magnetohydrodynamic (MHD) generator, or, in general, charged-
particle motion in combined electric and magnetic fields.

D8.1. Thepointcharge O = 18nChasa velocity of 5 x 10° m/s in the direction
a, = 0.60a, +0.75a, +0.30a.. Calculate the magnitude of the force exerted on
the charge by the field: (¢) B = —3a, +4a, + 6a, mT; (b) E = —3a, +4a, +
6a, kV/m; (c) B and E acting together.

Ans. 660 uN; 140 uN; 670 uN
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8.2 FORCE ON A DIFFERENTIAL
CURRENT ELEMENT

The force on a charged particle moving through a steady magnetic field may be written
as the differential force exerted on a differential element of charge,

dF =dQv xB 4)

Physically, the differential element of charge consists of a large number of very
small, discrete charges occupying a volume which, although small, is much larger
than the average separation between the charges. The differential force expressed
by (4) is thus merely the sum of the forces on the individual charges. This sum, or
resultant force, is not a force applied to a single object. In an analogous way, we might
consider the differential gravitational force experienced by a small volume taken in
a shower of falling sand. The small volume contains a large number of sand grains,
and the differential force is the sum of the forces on the individual grains within the
small volume.

If our charges are electrons in motion in a conductor, however, we can show
that the force is transferred to the conductor and that the sum of this extremely large
number of extremely small forces is of practical importance. Within the conductor,
electrons are in motion throughout a region of immobile positive ions which form
a crystalline array, giving the conductor its solid properties. A magnetic field which
exerts forces on the electrons tends to cause them to shift position slightly and produces
a small displacement between the centers of “gravity” of the positive and negative
charges. The Coulomb forces between electrons and positive ions, however, tend to
resist such a displacement. Any attempt to move the electrons, therefore, results in
an attractive force between electrons and the positive ions of the crystalline lattice.
The magnetic force is thus transferred to the crystalline lattice, or to the conductor
itself. The Coulomb forces are so much greater than the magnetic forces in good
conductors that the actual displacement of the electrons is almost immeasurable. The
charge separation that does result, however, is disclosed by the presence of a slight
potential difference across the conductor sample in a direction perpendicular to both
the magnetic field and the velocity of the charges. The voltage is known as the Hall
voltage, and the effect itself is called the Hall effect.

Figure 8.1 illustrates the direction of the Hall voltage for both positive and neg-
ative charges in motion. In Figure 8.1a, v is in the —a, direction, v x B is in the a,
direction, and Q is positive, causing Fy to be in the a, direction; thus, the positive
charges move to the right. In Figure 8.1b, v is now in the +a, direction, B is still in
the a. direction, v x B is in the —a, direction, and Q is negative; thus, F is again in
the a, direction. Hence, the negative charges end up at the right edge. Equal currents
provided by holes and electrons in semiconductors can therefore be differentiated by
their Hall voltages. This is one method of determining whether a given semiconductor
is n-type or p-type.

Devices employ the Hall effect to measure the magnetic flux density and, in some
applications where the current through the device can be made proportional to the
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_ — 4 + —— 4
- —>Fy + —Fy
+
— —- —
Y + A

(@) (b)

Figure 8.1 Equal currents directed into the material are provided by positive charges
moving inward in (@) and negative charges moving outward in (b). The two cases can be
distinguished by oppositely directed Hall voltages, as shown.

magnetic field across it, to serve as electronic wattmeters, squaring elements, and so
forth.

Returning to (4), we may therefore say that if we are considering an element
of moving charge in an electron beam, the force is merely the sum of the forces on
the individual electrons in that small volume element, but if we are considering an
element of moving charge within a conductor, the total force is applied to the solid
conductor itself. We will now limit our attention to the forces on current-carrying
conductors.

In Chapter 5 we defined convection current density in terms of the velocity of

the volume charge density,
J=p,v

The differential element of charge in (4) may also be expressed in terms of volume
charge density,’

dQ = p,dv
Thus
dF = p,dvv x B

dF =J x Bdv (5)

We saw in Chapter 7 that J dv may be interpreted as a differential current element;
that is,

or

Jdv=KdS =1dL

'Remember that dv is a differential volume element and not a differential increase in velocity.
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and thus the Lorentz force equation may be applied to surface current density,

| dF =K x BdS | (6)

or to a differential current filament,

|dF=IdLx B )

Integrating (5), (6), or (7) over a volume, a surface which may be either open or
closed (why?), or a closed path, respectively, leads to the integral formulations

F:/Jdev 8)
vol
F:/KdeS )
S
and
F:y{]deB:—IfodL (10)

One simple result is obtained by applying (7) or (10) to a straight conductor in a

uniform magnetic field,
F=/LxB (11

The magnitude of the force is given by the familiar equation
F = BILsin0 (12)

where 0 is the angle between the vectors representing the direction of the current flow
and the direction of the magnetic flux density. Equation (11) or (12) applies only to
a portion of the closed circuit, and the remainder of the circuit must be considered in
any practical problem.

As a numerical example of these equations, consider Figure 8.2. We have a square
loop of wire in the z = 0 plane carrying 2 mA in the field of an infinite filament on
the y axis, as shown. We desire the total force on the loop.

Solution. The field produced in the plane of the loop by the straight filament is

I 15
H=_—a . =—a.  A/m
2mx 2mx
Therefore,
3x107°
B=jpuH=4dr x 100H="2"_4a T

X
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Free space

-~ 15A

(1,0, 0) (1,2,0)

(3,0, 0) JmA

Figure 8.2 A square loop of wire in the xy plane carrying 2 mA
is subjected to a nonuniform B field.

We use the integral form (10),
F=-1 f B x dL

Let us assume a rigid loop so that the total force is the sum of the forces on the four
sides. Beginning with the left side:

3 2
F:—2x103x3x106[f %xdxax+/ &xdyav
=1 X y 3 :

=0
1 0
—+—/ d xdxax—}—/ %xdyay]
x=3 X y=2 1
0
(_ax):|
2

3

112
a, + =
L 37

(—ay)+Inx
0

1

—6x107° |:lnx a,+y

3

2 1
—6x107° |:(ln3)ay -3t <ln §> a, + Zax]

= —8a, nN
Thus, the net force on the loop is in the —a, direction.
D8.2. The field B = —2a, + 3a, 4 4a. mT is present in free space. Find the

vector force exerted on a straight wire carrying 12 A in the a 45 direction, given
A(1, 1, 1) and: (@) B(2, 1, 1); (b) B(3, 5, 6).

Ans. —48a, + 36a, mN; 12a, — 216a, + 168a, mN
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D8.3. The semiconductor sample shown in Figure 8.1 is n-type silicon, hav-
ing a rectangular cross section of 0.9 mm by 1.1 cm and a length of 1.3 cm.
Assume the electron and hole mobilities are 0.13 and 0.03 m?/V - s, respectively,
at the operating temperature. Let B = 0.07 T and the electric field intensity in
the direction of the current flow be 800 V/m. Find the magnitude of: (@) the
voltage across the sample length; () the drift velocity; (¢) the transverse force
per coulomb of moving charge caused by B; (d) the transverse electric field
intensity; (e) the Hall voltage.

Ans. 10.40 V; 104.0 m/s; 7.28 N/C; 7.28 V/m; 80.1 mV

EXAMPLE 8.2

8.3 FORCE BETWEEN DIFFERENTIAL
CURRENT ELEMENTS

The concept of the magnetic field was introduced to break into two parts the problem
of finding the interaction of one current distribution on a second current distribution.
It is possible to express the force on one current element directly in terms of a
second current element without finding the magnetic field. Because we claimed that
the magnetic-field concept simplifies our work, it then behooves us to show that
avoidance of this intermediate step leads to more complicated expressions.

The magnetic field at point 2 due to a current element at point 1 was found to be

LidL; x a
dH, = 1aly ! RI2
4nR7,
Now, the differential force on a differential current element is
dF=1dL xB

and we apply this to our problem by letting B be dB, (the differential flux density at
point 2 caused by current element 1), by identifying / dL as I,dL,, and by symbolizing
the differential amount of our differential force on element 2 as d(dF,):

d(sz) = ]zsz X dB2

Because dB, = uodH,, we obtain the force between two differential current
elements,

L
d(dF) = pto-——3dLy x (dL; X ag;2) (13)
4nR7,

As an example that illustrates the use (and misuse) of these results, consider the
two differential current elements shown in Figure 8.3. We seek the differential force
on dL,.
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LdL,
d(dFy)

Free space R, Point 2

<
ndL;

Point 1

Figure 8.3 Given P4(5,2,1), P:(1, 8, 5),
lydLy = =3ay, A-m,and [odL, = —4a, A-m,
the force on /> dL; is 8.56 nN in the a, direction.

Solution. We have /,dL; = —3a,A-m at Pi(5,2, 1), and LdL, = —4a.A-m at
P>(1,8,5). Thus, R|; = —4a, +6a,+4a., and we may substitute these data into (13),
471077 (—4a,) x [(—3a,) x (—4a, + 6a, + 4a,)]

4 (16 +36 + 16)!3
= 8.56a, nN

d(dFy) =

237

Many chapters ago, when we discussed the force exerted by one point charge on
another point charge, we found that the force on the first charge was the negative of
that on the second. That is, the total force on the system was zero. This is not the case
with the differential current elements, and d(dF;) = —12.84a, nN in Example 8.2.
The reason for this different behavior lies with the nonphysical nature of the current
element. Whereas point charges may be approximated quite well by small charges,
the continuity of current demands that a complete circuit be considered. This we shall
now do.

The total force between two filamentary circuits is obtained by integrating twice:

]112 f dLl X aRr12
F; = pno—— dL _—
2 Mo A [ 2 X R%Z

1 1 12 ariy X dL1
M0 [?g R }XdLZ
Equation (14) is quite formidable, but the familiarity gained in Chapter 7 with
the magnetic field should enable us to recognize the inner integral as the integral
necessary to find the magnetic field at point 2 due to the current element at point 1.
Although we shall only give the result, it is not very difficult to use (14) to
find the force of repulsion between two infinitely long, straight, parallel, filamentary

(14)
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St

F -— —_—

1
/ g
Figure 8.4 Two infinite parallel
filaments with separation d and equal
but opposite currents | experience a
repulsive force of ol 2 /(2nd ) N/m.

conductors with separation d, and carrying equal but opposite currents /, as shown
in Figure 8.4. The integrations are simple, and most errors are made in determining
suitable expressions for agj», dL;, and dL,. However, since the magnetic field in-
tensity at either wire caused by the other is already known to be 7/(27d), it is readily
apparent that the answer is a force of /% /(27td) newtons per meter length.

D8.4. Two differential current elements, /;AL; = 3 x 10’6ay A-m at
Pi(1,0,0)and LAL, = 3 x 107%(—0.5a, +0.4a,+0.3a;) A-mat P»(2, 2, 2),
are located in free space. Find the vector force exerted on: (a) [, AL, by /; ALj;
(b) ]1 ALl by IzALz.

Ans. (—1.333a, + 0.333a, — 2.67a.)1072° N; (4.67a, + 0.667a.)1072° N

8.4 FORCE AND TORQUE
ON A CLOSED CIRCUIT

We have already obtained general expressions for the forces exerted on current sys-
tems. One special case is easily disposed of, for if we take our relationship for the
force on a filamentary closed circuit, as given by Eq. (10), Section 8.2,

F=-1 f B x dL
and assume a uniform magnetic flux density, then B may be removed from the integral:
F=—-IBx % dL

However, we discovered during our investigation of closed line integrals in an elec-
trostatic potential field that ¢ L. = 0, and therefore the force on a closed filamentary
circuit in a uniform magnetic field is zero.

If the field is not uniform, the total force need not be zero.
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T T
o o
R F R, F,
/ R2 /
P Py
R
/P2 21

(a) Fy=-F, (b)

Figure 8.5 (a) Given a lever arm R extending from an origin O to a point P where
force F is applied, the torque about O is T =R x F. (b) If F, = —F, then the torque
T = Rpy x Fy is independent of the choice of origin for Ry and R».

This result for uniform fields does not have to be restricted to filamentary circuits
only. The circuit may contain surface currents or volume current density as well. If
the total current is divided into filaments, the force on each one is zero, as we have
shown, and the total force is again zero. Therefore, any real closed circuit carrying
direct currents experiences a total vector force of zero in a uniform magnetic field.

Although the force is zero, the torque is generally not equal to zero.

In defining the torque, or moment, of a force, it is necessary to consider both an
origin at or about which the torque is to be calculated, and the point at which the
force is applied. In Figure 8.5a, we apply a force F at point P, and we establish an
origin at O with a rigid lever arm R extending from O to P. The torque about point
O is a vector whose magnitude is the product of the magnitudes of R, of F, and of
the sine of the angle between these two vectors. The direction of the vector torque T
is normal to both the force F and the lever arm R and is in the direction of progress
of a right-handed screw as the lever arm is rotated into the force vector through the
smaller angle. The torque is expressible as a cross product,

T=RxF

Now assume that two forces, F; at P, and F, at P, having lever arms R; and
R, extending from a common origin O, as shown in Figure 8.5b, are applied to an
object of fixed shape and that the object does not undergo any translation. Then the
torque about the origin is

T=R1 XF1+R2XF2
where

Fi+F,=0
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and therefore
T:(Rl —R2)XF1 :R21 XF1

The vector Ry; = R; — R; joins the point of application of F, to that of F; and is
independent of the choice of origin for the two vectors R; and R;. Therefore, the
torque is also independent of the choice of origin, provided that the total force is zero.
This may be extended to any number of forces.

Consider the application of a vertically upward force at the end of a horizontal
crank handle on an elderly automobile. This cannot be the only applied force, for if it
were, the entire handle would be accelerated in an upward direction. A second force,
equal in magnitude to that exerted at the end of the handle, is applied in a downward
direction by the bearing surface at the axis of rotation. For a 40-N force on a crank
handle 0.3 m in length, the torque is 12 N - m. This figure is obtained regardless of
whether the origin is considered to be on the axis of rotation (leading to 12 N - m plus
0 N - m), at the midpoint of the handle (leading to 6 N - m plus 6 N - m), or at some
point not even on the handle or an extension of the handle.

We may therefore choose the most convenient origin, and this is usually on the
axis of rotation and in the plane containing the applied forces if the several forces
are coplanar.

With this introduction to the concept of torque, let us now consider the torque
on a differential current loop in a magnetic field B. The loop lies in the xy plane
(Figure 8.6); the sides of the loop are parallel to the x and y axes and are of length
dx and dy. The value of the magnetic field at the center of the loop is taken as By.

Figure 8.6 A differential current loop in a magnetic field B.
The torque on the loop is d T = / (dx dya,) x Bo = 1dS x B.
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Since the loop is of differential size, the value of B at all points on the loop may be
taken as By. (Why was this not possible in the discussion of curl and divergence?)
The total force on the loop is therefore zero, and we are free to choose the origin for
the torque at the center of the loop.

The vector force on side 1 is

dFlzldxaxXB()

or
dF] =1 dx(Boyaz — B()Zay)
For this side of the loop the lever arm R extends from the origin to the midpoint
of the side, R; = — %d 'y a,, and the contribution to the total torque is

dT) = R; x dF,

= —%dy a, x I dx(Boya. — Bo:a,)

= —%dx dy I Byyay
The torque contribution on side 3 is found to be the same,

dT3 = Ry x dF; = 1dya, x (=] dx a, x By)
= —1dxdy IBya, = dT,

and

dT| 4+ dT3 = —dx dy IBg,a,

Evaluating the torque on sides 2 and 4, we find
dT, 4+ dT4 = dx dy IBy,a,

and the total torque is then

dT = I dx dy(Bo.a, — Boy,a,)
The quantity within the parentheses may be represented by a cross product,

dT = I dx dy(a, x By)

or

dT = 1dS x B (15)

where dS is the vector area of the differential current loop and the subscript on By
has been dropped.

We now define the product of the loop current and the vector area of the loop as
the differential magnetic dipole moment dm, with units of A - m?. Thus

dm = 1dS (16)
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and

dT =dm x B (17)

If we extend the results we obtained in Section 4.7 for the differential electric
dipole by determining the torque produced on it by an electric field, we see a similar
result,

dT =dp x E

Equations (15) and (17) are general results that hold for differential loops of any
shape, not just rectangular ones. The torque on a circular or triangular loop is also
given in terms of the vector surface or the moment by (15) or (17).

Because we selected a differential current loop so that we might assume B was
constant throughout it, it follows that the torque on a planar loop of any size or shape
in a uniform magnetic field is given by the same expression,

T=ISxB=mxB (18)

We should note that the torque on the current loop always tends to turn the loop
so as to align the magnetic field produced by the loop with the applied magnetic field
that is causing the torque. This is perhaps the easiest way to determine the direction
of the torque.

To illustrate some force and torque calculations, consider the rectangular loop shown
in Figure 8.7. Calculate the torque by using T = /S x B.

Solution. The loop has dimensions of 1 m by 2 m and lies in the uniform field
By = —0.6a, + 0.8a.T. The loop current is 4 mA, a value that is sufficiently small to
avoid causing any magnetic field that might affect By.

We have

T =4 x 107°[(1)(2)a.] x (—0.6a, + 0.8a,) = 4.8a, mN - m

Thus, the loop tends to rotate about an axis parallel to the positive x axis. The small
magnetic field produced by the 4 mA loop current tends to line up with By.

EXAMPLE 8.4

Now let us find the torque once more, this time by calculating the total force and
torque contribution for each side.

Solution. On side 1 we have
F; = IL; x Bg =4 x 107(1a,) x (—0.6a, + 0.8a,)
—3.2a, — 2.4a, mN
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By=-0.6a,+0.8a T

oA (1,2,0)

Figure 8.7 A rectangular loop is located in a uniform
magnetic flux density Byp.

On side 3 we obtain the negative of this result,
F; =3.2a, + 2.4a. mN
Next, we attack side 2:

F, = L, x By = 4 x 107°(2a,) x (—0.6a, + 0.8a,)
= 6.4a, mN

with side 4 again providing the negative of this result,
F, = —6.4a, mN

Because these forces are distributed uniformly along each of the sides, we treat
each force as if it were applied at the center of the side. The origin for the torque may
be established anywhere since the sum of the forces is zero, and we choose the center
of the loop. Thus,

T=T,+T,+T:3+T4=R; xF;+ Ry xF, + R3; x F; + R4y x F4
= (—1la,) x (=3.2a, — 2.4a.) + (0.5a,) x (6.4a,)
+(la,) x (3.2a, + 2.4a.) + (—0.5a,) x (—6.4a,)
=24a, +24a, =4.8a, mN -m
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Crossing the loop moment with the magnetic flux density is certainly easier.
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D8.5. A conducting filamentary triangle joins points 4(3, 1, 1), B(5, 4, 2),
and C(1, 2, 4). The segment A B carries a current of 0.2 A in the a 45 direction.
There is present a magnetic field B = 0.2a, — 0.1a, 4 0.3a, T. Find: (a) the
force on segment BC; (b) the force on the triangular loop; (c) the torque on the
loop about an origin at 4; (d) the torque on the loop about an origin at C.

Ans. —0.08a, +0.32a,, 4 0.16a, N; 0; —0.16a, — 0.08a, +0.08a, N - m; —0.16a, —
0.08a,, + 0.08a; N-m

8.5 THE NATURE OF MAGNETIC MATERIALS

We are now in a position to combine our knowledge of the action of a magnetic field
on a current loop with a simple model of an atom and obtain some appreciation of
the difference in behavior of various types of materials in magnetic fields.

Although accurate quantitative results can only be predicted through the use
of quantum theory, the simple atomic model, which assumes that there is a central
positive nucleus surrounded by electrons in various circular orbits, yields reasonable
quantitative results and provides a satisfactory qualitative theory. An electron in an
orbit is analogous to a small current loop (in which the current is directed oppositely
to the direction of electron travel) and, as such, experiences a torque in an external
magnetic field, the torque tending to align the magnetic field produced by the orbiting
electron with the external magnetic field. If there were no other magnetic moments to
consider, we would then conclude that all the orbiting electrons in the material would
shift in such a way as to add their magnetic fields to the applied field, and thus that
the resultant magnetic field at any point in the material would be greater than it would
be at that point if the material were not present.

A second moment, however, is attributed to electron spin. Although it is tempting
to model this phenomenon by considering the electron as spinning about its own axis
and thus generating a magnetic dipole moment, satisfactory quantitative results are
not obtained from such a theory. Instead, it is necessary to digest the mathematics of
relativistic quantum theory to show that an electron may have a spin magnetic moment
of about 9 x 1072* A - m?; the plus and minus signs indicate that alignment aiding
or opposing an external magnetic field is possible. In an atom with many electrons
present, only the spins of those electrons in shells which are not completely filled will
contribute to a magnetic moment for the atom.

A third contribution to the moment of an atom is caused by nuclear spin. Although
this factor provides a negligible effect on the overall magnetic properties of materials,
it is the basis of the nuclear magnetic resonance imaging (MRI) procedure provided
by many of the larger hospitals.

Thus each atom contains many different component moments, and their com-
bination determines the magnetic characteristics of the material and provides its
general magnetic classification. We describe briefly six different types of material:
diamagnetic, paramagnetic, ferromagnetic, antiferromagnetic, ferrimagnetic, and
superparamagnetic.
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Let us first consider atoms in which the small magnetic fields produced by the
motion of the electrons in their orbits and those produced by the electron spin combine
to produce a net field of zero. Note that we are considering here the fields produced
by the electron motion itself in the absence of any external magnetic field; we might
also describe this material as one in which the permanent magnetic moment mg of
each atom is zero. Such a material is termed diamagnetic. It would seem, therefore,
that an external magnetic field would produce no torque on the atom, no realignment
of the dipole fields, and consequently an internal magnetic field that is the same as the
applied field. With an error that only amounts to about one part in a hundred thousand,
this is correct.

Let us select an orbiting electron whose moment m is in the same direction as
the applied field By (Figure 8.8). The magnetic field produces an outward force on
the orbiting electron. Since the orbital radius is quantized and cannot change, the
inward Coulomb force of attraction is also unchanged. The force unbalance created
by the outward magnetic force must therefore be compensated for by a reduced orbital
velocity. Hence, the orbital moment decreases, and a smaller internal field results.

If we had selected an atom for which m and B were opposed, the magnetic force
would be inward, the velocity would increase, the orbital moment would increase, and
greater cancellation of By would occur. Again a smaller internal field would result.

Metallic bismuth shows a greater diamagnetic effect than most other diamag-
netic materials, among which are hydrogen, helium, the other “inert” gases, sodium
chloride, copper, gold, silicon, germanium, graphite, and sulfur. We should also re-
alize that the diamagnetic effect is present in all materials, because it arises from an
interaction of the external magnetic field with every orbiting electron; however, it is
overshadowed by other effects in the materials we shall consider next.

Now consider an atom in which the effects of the electron spin and orbital motion
do not quite cancel. The atom as a whole has a small magnetic moment, but the random
orientation of the atoms in a larger sample produces an average magnetic moment
of zero. The material shows no magnetic effects in the absence of an external field.

v

Figure 8.8 An orbiting electron is shown having
a magnetic moment m in the same direction as an
applied field Bg.
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When an external field is applied, however, there is a small torque on each atomic
moment, and these moments tend to become aligned with the external field. This
alignment acts to increase the value of B within the material over the external value.
However, the diamagnetic effect is still operating on the orbiting electrons and may
counteract the increase. If the net result is a decrease in B, the material is still called
diamagnetic. However, if there is an increase in B, the material is termed paramag-
netic. Potassium, oxygen, tungsten, and the rare earth elements and many of their salts,
such as erbium chloride, neodymium oxide, and yttrium oxide, one of the materials
used in masers, are examples of paramagnetic substances.

The remaining four classes of material, ferromagnetic, antiferromagnetic, fer-
rimagnetic, and superparamagnetic, all have strong atomic moments. Moreover, the
interaction of adjacent atoms causes an alignment of the magnetic moments of the
atoms in either an aiding or exactly opposing manner.

In ferromagnetic materials, each atom has a relatively large dipole moment,
caused primarily by uncompensated electron spin moments. Interatomic forces cause
these moments to line up in a parallel fashion over regions containing a large number
of atoms. These regions are called domains, and they may have a variety of shapes
and sizes ranging from one micrometer to several centimeters, depending on the size,
shape, material, and magnetic history of the sample. Virgin ferromagnetic materials
will have domains which each have a strong magnetic moment; the domain moments,
however, vary in direction from domain to domain. The overall effect is therefore one
of cancellation, and the material as a whole has no magnetic moment. Upon application
of an external magnetic field, however, those domains which have moments in the
direction of the applied field increase their size at the expense of their neighbors,
and the internal magnetic field increases greatly over that of the external field alone.
When the external field is removed, a completely random domain alignment is not
usually attained, and a residual, or remnant, dipole field remains in the macroscopic
structure. The fact that the magnetic moment of the material is different after the
field has been removed, or that the magnetic state of the material is a function of its
magnetic history, is called hysteresis, a subject which will be discussed again when
magnetic circuits are studied in Section 8.8.

Ferromagnetic materials are not isotropic in single crystals, and we will therefore
limit our discussion to polycrystalline materials, except for mentioning that one of the
characteristics of anisotropic magnetic materials is magnetostriction, or the change
in dimensions of the crystal when a magnetic field is impressed on it.

The only elements that are ferromagnetic at room temperature are iron, nickel,
and cobalt, and they lose all their ferromagnetic characteristics above a temperature
called the Curie temperature, which is 1043 K (770°C) for iron. Some alloys of these
metals with each other and with other metals are also ferromagnetic, as for example
alnico, an aluminum-nickel-cobalt alloy with a small amount of copper. At lower
temperatures some of the rare earth elements, such as gadolinium and dysprosium,
are ferromagnetic. It is also interesting that some alloys of nonferromagnetic metals
are ferromagnetic, such as bismuth-manganese and copper-manganese-tin.

In antiferromagnetic materials, the forces between adjacent atoms cause the
atomic moments to line up in an antiparallel fashion. The net magnetic moment is
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Table 8.1 Characteristics of magnetic materials

Classification Magnetic Moments B Values Comments

Diamagnetic Mo + Mgpin = 0 Bint < Bappl  Bint = Bappl
Paramagnetic Morh + Mgpin = small  Bing > Bappl ~ Bint = Bappl
Ferromagnetic [Mgpin| > [Morp| Bint > Bappi Domains
Antiferromagnetic  [mgpin| > M| Bint = Bappl  Adjacent moments oppose
Ferrimagnetic [Mgpin| > (M| Bint > Bappt  Unequal adjacent moments

oppose; low o

Superparamagnetic  [Mgpin| > [Moyp | Bint > Bappi  Nonmagnetic matrix;
recording tapes

zero, and antiferromagnetic materials are affected only slightly by the presence of
an external magnetic field. This effect was first discovered in manganese oxide, but
several hundred antiferromagnetic materials have been identified since then. Many
oxides, sulfides, and chlorides are included, such as nickel oxide (NiO), ferrous sulfide
(FeS), and cobalt chloride (CoCl,). Antiferromagnetism is only present at relatively
low temperatures, often well below room temperature. The effect is not of engineering
importance at present.

The ferrimagnetic substances also show an antiparallel alignment of adjacent
atomic moments, but the moments are not equal. A large response to an exter-
nal magnetic field therefore occurs, although not as large as that in ferromagnetic
materials. The most important group of ferrimagnetic materials are the ferrites, in
which the conductivity is low, several orders of magnitude less than that of semi-
conductors. The fact that these substances have greater resistance than the ferro-
magnetic materials results in much smaller induced currents in the material when
alternating fields are applied, as for example in transformer cores that operate at
the higher frequencies. The reduced currents (eddy currents) lead to lower ohmic
losses in the transformer core. The iron oxide magnetite (Fe;O4), a nickel-zinc fer-
rite (Ni;/2Zn;»Fe;04), and a nickel ferrite (NiFe,O4) are examples of this class of
materials. Ferrimagnetism also disappears above the Curie temperature.

Superparamagnetic materials are composed of an assembly of ferromagnetic
particles in a nonferromagnetic matrix. Although domains exist within the individual
particles, the domain walls cannot penetrate the intervening matrix material to the
adjacent particle. An important example is the magnetic tape used in audiotape or
videotape recorders.

Table 8.1 summarizes the characteristics of the six types of magnetic materials
we have discussed.

8.6 MAGNETIZATION AND PERMEABILITY

To place our description of magnetic materials on a more quantitative basis, we will
now devote a page or so to showing how the magnetic dipoles act as a distributed
source for the magnetic field. Our result will be an equation that looks very much like
Ampere’s circuital law, 9? H - dL = I. The current, however, will be the movement of
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bound charges (orbital electrons, electron spin, and nuclear spin), and the field, which
has the dimensions of H, will be called the magnetization M. The current produced
by the bound charges is called a bound current or Amperian current.

Let us begin by defining the magnetization M in terms of the magnetic dipole
moment m. The bound current 7, circulates about a path enclosing a differential area
dS, establishing a dipole moment (A - m?),

m = [,dS

If there are n magnetic dipoles per unit volume and we consider a volume Av, then
the total magnetic dipole moment is found by the vector sum
nAv

Myota] = Z m; (19)
i=1

Each of the m; may be different. Next, we define the magnetization M as the magnetic
dipole moment per unit volume,
nAv

= Jim, 3y
and see that its units must be the same as for H, amperes per meter.

Now let us consider the effect of some alignment of the magnetic dipoles as
the result of the application of a magnetic field. We shall investigate this alignment
along a closed path, a short portion of which is shown in Figure 8.9. The figure shows
several magnetic moments m that make an angle 6 with the element of path dL; each
moment consists of a bound current /, circulating about an area dS. We are therefore
considering a small volume, dS cos 6dL, or dS - dL, within which there are ndS - dLL
magnetic dipoles. In changing from a random orientation to this partial alignment,
the bound current crossing the surface enclosed by the path (to our left as we travel in
the a; direction in Figure 8.9) has increased by 7, for each of the ndS - dL dipoles.
Thus the differential change in the net bound current /5 over the segment dL will be

dIg =nl,dS-dL = M-dL (20)

and within an entire closed contour,

@:fMdL 1)

Surface defined

/ by closed path

mzlde

dL

Figure 8.9 A section dL of a closed path along which magnetic dipoles have been
partially aligned by some external magnetic field. The alignment has caused the bound
current crossing the surface defined by the closed path to increase by n/,dS - dL A.
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Equation (21) merely says that if we go around a closed path and find dipole moments
going our way more often than not, there will be a corresponding current composed
of, for example, orbiting electrons crossing the interior surface.

This last expression has some resemblance to Ampeére’s circuital law, and we
may now generalize the relationship between B and H so that it applies to media
other than free space. Our present discussion is based on the forces and torques on
differential current loops in a B field, and we therefore take B as our fundamental
quantity and seek an improved definition of H. We thus write Ampére’s circuital law
in terms of the fotal current, bound plus free,

B
—.dL = Iy (22)
Mo
where
Ir=Ig+1

and [ is the total free current enclosed by the closed path. Note that the free current
appears without subscript since it is the most important type of current and will be
the only current appearing in Maxwell’s equations.

Combining these last three equations, we obtain an expression for the free current

enclosed,
B
I:[T—IB:¢<——M>-dL (23)
H“o
We may now define H in terms of B and M,
B
H=—-M (24)
o

and we see that B = poH in free space where the magnetization is zero. This rela-
tionship is usually written in a form that avoids fractions and minus signs:

B = po(H+M) | (25)

We may now use our newly defined H field in (23),

1=?§H.dL (26)

obtaining Ampere’s circuital law in terms of the free currents.
Using the several current densities, we have

= [ 3a-as
N

IT=/JT-dS
S

Iz/J-dS
s
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With the help of Stokes’ theorem, we may therefore transform (21), (26), and (22)
into the equivalent curl relationships:

VXMZJB
B

VX—:JT
Ho

@

We will emphasize only (26) and (27), the two expressions involving the free
charge, in the work that follows.

The relationship between B, H, and M expressed by (25) may be simplified for
linear isotropic media where a magnetic susceptibility x,, can be defined:

M = x,H (28)
Thus we have
B = puo(H+ x»nH)
= poprH
where
Mr =14 X (29)
is defined as the relative permeability j,. We next define the permeability w:
W= ofr (30)
and this enables us to write the simple relationship between B and H,

B=uH 31)

EXAMPLE 8.5

Given a ferrite material that we shall specify to be operating in a linear mode with
B = 0.05T, let us assume u, = 50, and calculate values for x,,, M, and H.

Solution. Because i, = 1 + x,,, we have
Xm =ty —1 =49
Also,
B = urpoH

and
0.05

- _ 796 A/
50 x 47 x 107 m
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The magnetization is M = x,, H, or 39, 000 A/m. The alternate ways of relating B
and H are, first,

B = po(H + M)
or
0.05 = 47 x 1077(796 + 39, 000)

showing that Amperian currents produce 49 times the magnetic field intensity that
the free charges do; and second,

B = purpuoH
or
0.05 =50 x 47 x 1077 x 796

where we use a relative permeability of 50 and let this quantity account completely
for the notion of the bound charges. We shall emphasize the latter interpretation in
the chapters that follow.
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The first two laws that we investigated for magnetic fields were the Biot-Savart
law and Ampere’s circuital law. Both were restricted to free space in their application.
We may now extend their use to any homogeneous, linear, isotropic magnetic material
that may be described in terms of a relative permeability w,.

Just as we found for anisotropic dielectric materials, the permeability of an
anisotropic magnetic material must be given as a 3 x 3 matrix, and B and H are
both 3 x 1 matrices. We have

By = px He + MxyHy + xz M
By = pyx Hy + pyy Hy + py- H:
B, = uxHy + l‘LzyHy + o H,

For anisotropic materials, then, B = pH is a matrix equation; however, B =
no(H 4+ M) remains valid, although B, H, and M are no longer parallel in general.
The most common anisotropic magnetic material is a single ferromagnetic crystal,
although thin magnetic films also exhibit anisotropy. Most applications of ferromag-
netic materials, however, involve polycrystalline arrays that are much easier to make.

Our definitions of susceptibility and permeability also depend on the assumption
of linearity. Unfortunately, this is true only in the less interesting paramagnetic and
diamagnetic materials for which the relative permeability rarely differs from unity
by more than one part in a thousand. Some typical values of the susceptibility for
diamagnetic materials are hydrogen, —2 x 1073; copper, —0.9 x 10~>; germanium,
—0.8 x 1073; silicon, —0.3 x 107>; and graphite,—12 x 107>. Several representative
paramagnetic susceptibilities are oxygen, 2 x 107%; tungsten, 6.8 x 1073; ferric oxide
(Fe;03), 1.4 x 1073; and yttrium oxide (Y,03), 0.53 x 107°. If we simply take the
ratio of B to uoH as the relative permeability of a ferromagnetic material, typical
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values of u, would range from 10 to 100, 000. Diamagnetic, paramagnetic, and
antiferromagnetic materials are commonly said to be nonmagnetic.

D8.6. Find the magnetization in a magnetic material where: (a) © = 1.8 x
10> H/m and H = 120 A/m; (b) u, = 22, there are 8.3 x 10%® atoms/m?, and
each atom has a dipole moment of 4.5 x 10727 A-m?; (¢) B = 300 uT and
Xm = 15.

Ans. 1599 A/m; 374 A/m; 224 A/m

D8.7. The magnetization in a magnetic material for which x,, = 8 is given in
a certain region as 150z%a, A/m. Atz = 4 cm, find the magnitude of: (a) Jr;

() J; (¢) Ip.

Ans. 13.5 A/m?; 1.5 A/m?; 12 A/m?

8.7 MAGNETIC BOUNDARY CONDITIONS

We should have no difficulty in arriving at the proper boundary conditions to apply to
B, H, and M at the interface between two different magnetic materials, for we have
solved similar problems for both conducting materials and dielectrics. We need no
new techniques.

Figure 8.10 shows a boundary between two isotropic homogeneous linear materi-
als with permeabilities 11 and p,. The boundary condition on the normal components

2 A H,
\ \ /
Area AS \
o ay
Ho
By,

Figure 8.10 A gaussian surface and a closed path are
constructed at the boundary between media 1 and 2, having
permeabilities of w1 and wo, respectively. From this we determine the
boundary conditions Byt = By and Hyy — Hio = K, the component
of the surface current density directed into the page.
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is determined by allowing the surface to cut a small cylindrical gaussian surface.
Applying Gauss’s law for the magnetic field from Section 7.5,

fB-dS:O
s

we find that
By1AS — By AS =0
or
By = By (32)
Thus
Hy, = ﬂ1"11\/1 (33)
“2

The normal component of B is continuous, but the normal component of H is discon-
tinuous by the ratio wu;/u;.

The relationship between the normal components of M, of course, is fixed once
the relationship between the normal components of H is known. For linear magnetic
materials, the result is written simply as

1231 Xm2 b
My, = XmZM_HNl = LMy, (34)
2

Xm1 2

Next, Ampere’s circuital law

%H-dL:I

is applied about a small closed path in a plane normal to the boundary surface, as
shown to the right in Figure 8.10. Taking a clockwise trip around the path, we find
that

HyAL — HpAL = KAL

where we assume that the boundary may carry a surface current K whose component
normal to the plane of the closed path is K. Thus

Hy—Hp=K (35)

The directions are specified more exactly by using the cross product to identify the
tangential components,

(H; —Hy) xayi2 =K

where ay1; is the unit normal at the boundary directed from region 1 to region 2. An
equivalent formulation in terms of the vector tangential components may be more
convenient for H:

H,; —Hp =ayp xK
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For tangential B, we have
By Ba
23 2

—K (36)

The boundary condition on the tangential component of the magnetization for linear
materials is therefore

Xm2

M, = M — xm2K (37)

ml
The last three boundary conditions on the tangential components are much sim-
pler, of course, if the surface current density is zero. This is a free current density,
and it must be zero if neither material is a conductor.

To illustrate these relationships with an example, let us assume that u = ©; = 4 uH/m
inregion 1 wherez > 0, whereas 1, = 7 uH/minregion 2 whereverz < 0. Moreover,
let K = 80a, A/m on the surface z = 0. We establish a field, B; = 2a, — 3a, +
a, mT, in region 1 and seek the value of B,.

Solution. The normal component of B is
By = (Bi -ayip)ayiy = [(2a, — 3a, +a;)-(—a.)](—a;) = a. mT
Thus,
By, =By =a, mT
We next determine the tangential components:

B,] = B[ — BNl = 2ax — 3ay mT

and
H, = % = % = 500a, — 750a, A/m
Thus,
H,; = H;; —ay;p x K=1500a, — 750a, — (—a;) x 80a,
= 500a, — 750a, + 80a, = 500a, — 670a, A/m
and
By, = uoHpp = 7 x 107°(500a, — 670a,) = 3.5a, — 4.69a, mT

Therefore,

B, =By, + By, =3.5a, —4.69a, +a, mT
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D8.8. Let the permittivity be 5 «H/m in region 4 where x < 0, and 20 xH/m
in region B where x > 0. If there is a surface current density K = 150a, —
200a, A/matx = 0, and if H4 = 300a, —400a, + 500a, A/m, find: (a) [H, 4[;
(0) Hnals (¢) [Higl; (d) [Hysgl.

Ans. 640 A/m; 300 A/m; 695 A/m; 75 A/m

8.8 THE MAGNETIC CIRCUIT

In this section, we digress briefly to discuss the fundamental techniques involved in
solving a class of magnetic problems known as magnetic circuits. As we will see
shortly, the name arises from the great similarity to the dc-resistive-circuit analysis
with which it is assumed we are all familiar. The only important difference lies in the
nonlinear nature of the ferromagnetic portions of the magnetic circuit; the methods
which must be adopted are similar to those required in nonlinear electric circuits which
contain diodes, thermistors, incandescent filaments, and other nonlinear elements.

As a convenient starting point, let us identify those field equations on which
resistive circuit analysis is based. At the same time we will point out or derive the
analogous equations for the magnetic circuit. We begin with the electrostatic potential
and its relationship to electric field intensity,

E=-VV (38a)
The scalar magnetic potential has already been defined, and its analogous relation to

the magnetic field intensity is

H=-VV, (38b)

In dealing with magnetic circuits, it is convenient to call V,, the magnetomotive force,
or mmf, and we shall acknowledge the analogy to the electromotive force, or emf,
by doing so. The units of the mmf are, of course, amperes, but it is customary to
recognize that coils with many turns are often employed by using the term “ampere-
turns.” Remember that no current may flow in any region in which ¥}, is defined.
The electric potential difference between points A and B may be written as

B
Vis =/ E.dL (394)
A

and the corresponding relationship between the mmf and the magnetic field intensity,

B
Vipas = / H-dL (39b)
A

was developed in Chapter 7, where we learned that the path selected must not cross
the chosen barrier surface.
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Ohm’s law for the electric circuit has the point form
J=0E (40a)
and we see that the magnetic flux density will be the analog of the current density,
B=uH (400)
To find the total current, we must integrate:
= /S J-dS (41a)

A corresponding operation is necessary to determine the total magnetic flux flowing
through the cross section of a magnetic circuit:

= .dS 41b
@ /SB (41b)

We then defined resistance as the ratio of potential difference and current, or
V =1IR (42a)

and we shall now define reluctance as the ratio of the magnetomotive force to the
total flux; thus

\ — o0 | (42b)

where reluctance is measured in ampere-turns per weber (A - t/Wb). In resistors that
are made of a linear isotropic homogeneous material of conductivity o and have a
uniform cross section of area S and length d, the total resistance is

d

R=— 43
o5 (43a)

If we are fortunate enough to have such a linear isotropic homogeneous magnetic
material of length d and uniform cross section S, then the total reluctance is

d

=3 (43b)

The only such material to which we shall commonly apply this relationship is air.
Finally, let us consider the analog of the source voltage in an electric circuit. We
know that the closed line integral of E is zero,

fE-dL:O

In other words, Kirchhoff’s voltage law states that the rise in potential through the
source is exactly equal to the fall in potential through the load. The expression for
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magnetic phenomena takes on a slightly different form,

fﬁ H-dL = Lo

for the closed line integral is not zero. Because the total current linked by the path
is usually obtained by allowing a current / to flow through an N-turn coil, we may
express this result as

?{H-dL = NI (44)

In an electric circuit, the voltage source is a part of the closed path; in the magnetic
circuit, the current-carrying coil will surround or link the magnetic circuit. In tracing
a magnetic circuit, we will not be able to identify a pair of terminals at which the
magnetomotive force is applied. The analogy is closer here to a pair of coupled circuits
in which induced voltages exist (and in which we will see in Chapter 9 that the closed
line integral of E is also not zero).

Let us try out some of these ideas on a simple magnetic circuit. In order to avoid
the complications of ferromagnetic materials at this time, we will assume that we
have an air-core toroid with 500 turns, a cross-sectional area of 6 cm?, a mean radius
of 15 cm, and a coil current of 4 A. As we already know, the magnetic field is confined
to the interior of the toroid, and if we consider the closed path of our magnetic circuit
along the mean radius, we link 2000 A - t,

Vm, source = 2000 A - t
Although the field in the toroid is not quite uniform, we may assume that it is, for all
practical purposes, and calculate the total reluctance of the circuit as
d 27(0.15)

N=— = =1.25%x 10" A-t/Wb
uS  4x1077 x 6 x 10~

Thus
Vs 2000

b — =1.6x107° Wb
"N 1.25x 10°

b =

This value of the total flux is in error by less than % percent, in comparison with the
value obtained when the exact distribution of flux over the cross section is used.

Hence
o) 1.6 x 107 3
B=—=———=267x107"T
S 6 x 10~
and finally,
B 2.67x1073
H=—=———=2120A-t/m
m 47107

Asacheck, we may apply Ampere’s circuital law directly in this symmetrical problem,

Hy2mr = NI

257
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and obtain

NI 500 x 4

Hy=—=——"=2120 A/m
2w 6.28 x 0.15

at the mean radius.

Our magnetic circuit in this example does not give us any opportunity to find the
mmf across different elements in the circuit, for there is only one type of material.
The analogous electric circuit is, of course, a single source and a single resistor. We
could make it look just as long as the preceding analysis, however, if we found the
current density, the electric field intensity, the total current, the resistance, and the
source voltage.

More interesting and more practical problems arise when ferromagnetic materials
are present in the circuit. Let us begin by considering the relationship between B and
H in such a material. We may assume that we are establishing a curve of B versus
H for a sample of ferromagnetic material which is completely demagnetized; both
B and H are zero. As we begin to apply an mmf, the flux density also rises, but not
linearly, as the experimental data of Figure 8.11 show near the origin. After H reaches
avalue of about 100 A - t/m, the flux density rises more slowly and begins to saturate
when H is several hundred A - t/m. Having reached partial saturation, let us now turn
to Figure 8.12, where we may continue our experiment at point x by reducing H. As
we do so, the effects of hysteresis begin to show, and we do not retrace our original
curve. Even after H is zero, B = B, the remnant flux density. As H is reversed,
then brought back to zero, and the complete cycle traced several times, the hysteresis
loop of Figure 8.12 is obtained. The mmf required to reduce the flux density to zero
is identified as H,, the coercive “force.” For smaller maximum values of H, smaller

0 100 300 500 700 900
H (A-t/m)

Figure 8.11 Magnetization curve of a sample of silicon sheet
steel.
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Figure 8.12 A hysteresis loop for silicon steel. The
coercive force H, and remnant flux density B, are
indicated.

hysteresis loops are obtained, and the locus of the tips is about the same as the virgin
magnetization curve of Figure 8.11.

259

EXAMPLE 8.7

Letus use the magnetization curve for silicon steel to solve a magnetic circuit problem
that is slightly different from our previous example. We use a steel core in the toroid,
except for an air gap of 2 mm. Magnetic circuits with air gaps occur because gaps
are deliberately introduced in some devices, such as inductors, which must carry
large direct currents, because they are unavoidable in other devices such as rotating
machines, or because of unavoidable problems in assembly. There are still 500 turns
about the toroid, and we ask what current is required to establish a flux density of 1 T
everywhere in the core.

Solution. This magnetic circuitis analogous to an electric circuit containing a voltage
source and two resistors, one of which is nonlinear. Because we are given the “current,”
it is easy to find the “voltage” across each series element, and hence the total “emf.”
In the air gap,

air 2x 1073

Roir = —= =
TS T 471077 x 6 x 104

=2.65 x 10° A-t/Wb

Knowing the total flux,

®=BS=1(6x10"*)=6x 107* Wb
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which is the same in both steel and air, we may find the mmf required for the gap,
Vipair = (6 x 1074)(2.65 x 10°) = 1590 A-t

Referring to Figure 8.11, a magnetic field strength of 200 A - t/m is required to produce
a flux density of 1 T in the steel. Thus,

Hgeel = 200 A-t
Vm,steel = Hteeldsieel = 200 x 0.307
= 188 At

The total mmf is therefore 1778 A-t, and a coil current of 3.56 A is required.

EXAMPLE 8.8

We have made several approximations in obtaining this answer. We have already
mentioned the lack of a completely uniform cross section, or cylindrical symmetry;
the path of every flux line is not of the same length. The choice of a “mean” path
length can help compensate for this error in problems in which it may be more
important than it is in our example. Fringing flux in the air gap is another source of
error, and formulas are available by which we may calculate an effective length and
cross-sectional area for the gap which will yield more accurate results. There is also
a leakage flux between the turns of wire, and in devices containing coils concentrated
on one section of the core, a few flux lines bridge the interior of the toroid. Fringing
and leakage are problems that seldom arise in the electric circuit because the ratio
of the conductivities of air and the conductive or resistive materials used is so high.
In contrast, the magnetization curve for silicon steel shows that the ratio of H to B
in the steel is about 200 up to the “knee” of the magnetization curve; this compares
with a ratio in air of about 800, 000. Thus, although flux prefers steel to air by the
commanding ratio of 4000 to 1, this is not very close to the ratio of conductivities of,
say, 10'3 for a good conductor and a fair insulator.

As a last example, let us consider the reverse problem. Given a coil current of 4 A in
the magnetic circuit of Example 8.7, what will the flux density be?

Solution. First let us try to linearize the magnetization curve by a straight line from
the originto B = 1, H = 200. We then have B = H /200 in steel and B = o H in air.
The two reluctances are found to be 0.314 x 10° for the steel path and 2.65 x 10° for the
air gap, or 2.96 x 10°A - t/Wb total. Since V,, is 2000 A - t, the flux is 6.76 x 10~* Wb,
and B = 1.13 T. A more accurate solution may be obtained by assuming several values
of B and calculating the necessary mmf. Plotting the results enables us to determine
the true value of B by interpolation. With this method we obtain B = 1.10 T. The good
accuracy of the linear model results from the fact that the reluctance of the air gap
in a magnetic circuit is often much greater than the reluctance of the ferromagnetic
portion of the circuit. A relatively poor approximation for the iron or steel can thus
be tolerated.
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L;=8cm
Ly L,=16cm

PE——————=————-—~ N Material: silicon steel
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Figure 8.13 See Problem D8.9.

D8.9. Given the magnetic circuit of Figure 8.13, assume B = 0.6 T at the
midpoint of the left leg and find: (@) V} air; () Vin steel; (¢) the current required
in a 1300-turn coil linking the left leg.

Ans. 3980 A-t; 72 A-t;3.12 A

D8.10. The magnetization curve for material X under normal operating con-
ditions may be approximated by the expression B = (H/160)(0.25 4 ¢~ #/320),
where H is in A/m and B is in 7. If a magnetic circuit contains a 12 cm length
of material X, as well as a 0.25-mm air gap, assume a uniform cross section
of 2.5 cm? and find the total mmf required to produce a flux of (a) 10 Wb
(b) 100 £ Whb.

Ans. 858 A-t;86.7A-t
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8.9 POTENTIAL ENERGY AND FORCES
ON MAGNETIC MATERIALS

In the electrostatic field we first introduced the point charge and the experimental law
of force between point charges. After defining electric field intensity, electric flux
density, and electric potential, we were able to find an expression for the energy in an
electrostatic field by establishing the work necessary to bring the prerequisite point
charges from infinity to their final resting places. The general expression for energy is

1
WE=—/ D-Edv (45)
2 vol
where a linear relationship between D and E is assumed.
This is not as easily done for the steady magnetic field. It would seem that we
might assume two simple sources, perhaps two current sheets, find the force on one
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due to the other, move the sheet a differential distance against this force, and equate
the necessary work to the change in energy. If we did, we would be wrong, because
Faraday’s law (coming up in Chapter 9) shows that there will be a voltage induced
in the moving current sheet against which the current must be maintained. Whatever
source is supplying the current sheet turns out to receive half the energy we are putting
into the circuit by moving it.

In other words, energy density in the magnetic field may be determined more
easily after time-varying fields are discussed. We will develop the appropriate expres-
sion in discussing Poynting’s theorem in Chapter 11.

An alternate approach would be possible at this time, however, for we might
define a magnetostatic field based on assumed magnetic poles (or “magnetic
charges”). Using the scalar magnetic potential, we could then develop an energy
expression by methods similar to those used in obtaining the electrostatic energy
relationship. These new magnetostatic quantities we would have to introduce would
be too great a price to pay for one simple result, and we will therefore merely present
the result at this time and show that the same expression arises in the Poynting the-
orem later. The total energy stored in a steady magnetic field in which B is linearly
related to H is

1
WH:—/ B-Hdv (46)
2 vol

Letting B = pH, we have the equivalent formulations

1
Wy =~ / wH*dv (47)
2 vol
or
1 [ B?
Wiy = - / —dv (48)
2 vol M

It is again convenient to think of this energy as being distributed throughout the
volume with an energy density of %B - H J/m? although we have no mathematical
justification for such a statement.

In spite of the fact that these results are valid only for linear media, we may use
them to calculate the forces on nonlinear magnetic materials if we focus our attention
on the linear media (usually air) which may surround them. For example, suppose
that we have a long solenoid with a silicon-steel core. A coil containing » turns/m
with a current / surrounds it. The magnetic field intensity in the core is therefore
nlA-t/m, and the magnetic flux density can be obtained from the magnetization
curve for silicon steel. Let us call this value By. Suppose that the core is composed of
two semi-infinite cylinders? that are just touching. We now apply a mechanical force
to separate these two sections of the core while keeping the flux density constant. We
apply a force F over a distance dL, thus doing work F dL. Faraday’s law does not

2 A semi-infinite cylinder is a cylinder of infinite length having one end located in finite space.
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apply here, for the fields in the core have not changed, and we can therefore use the
principle of virtual work to determine that the work we have done in moving one core
appears as stored energy in the air gap we have created. By (48), this increase is

1 BZ
dWy =FdL = -—=SdL
2 1o
where S is the core cross-sectional area. Thus
_ BiS
2po
If, for example, the magnetic field intensity is sufficient to produce saturation in the
steel, approximately 1.4 T, the force is

F=780x10S N
or about 1131b /in’.

D8.11. (a) What force is being exerted on the pole faces of the circuit de-
scribed in Problem D8.9 and Figure 8.13? (b) Is the force trying to open or close
the air gap?

Ans. 1194 N; as Wilhelm Eduard Weber would put it, “schliessen”

8.10 INDUCTANCE AND MUTUAL
INDUCTANCE

Inductance is the last of the three familiar parameters from circuit theory that we are
defining in more general terms. Resistance was defined in Chapter 5 as the ratio of
the potential difference between two equipotential surfaces of a conducting material
to the total current crossing either equipotential surface. The resistance is a function
of conductor geometry and conductivity only. Capacitance was defined in the same
chapter as the ratio of the total charge on either of two equipotential conducting
surfaces to the potential difference between the surfaces. Capacitance is a function
only of the geometry of the two conducting surfaces and the permittivity of the
dielectric medium between or surrounding them.

As a prelude to defining inductance, we first need to introduce the concept of flux
linkage. Let us consider a toroid of N turns in which a current / produces a total flux
®. We assume first that this flux links or encircles each of the N turns, and we also
see that each of the N turns links the total flux ®. The flux linkage N ® is defined as
the product of the number of turns N and the flux ® linking each of them.? For a coil
having a single turn, the flux linkage is equal to the total flux.

3 The symbol A is commonly used for flux linkages. We will only occasionally use this concept,
however, and we will continue to write it as N ®.

(i)
Mustations
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We now define inductance (or self-inductance) as the ratio of the total flux link-
ages to the current which they link,

L=~ (49)

The current / flowing in the N-turn coil produces the total flux ® and N ® flux
linkages, where we assume for the moment that the flux & links each turn. This
definition is applicable only to magnetic media which are linear, so that the flux is
proportional to the current. If ferromagnetic materials are present, there is no single
definition of inductance which is useful in all cases, and we shall restrict our attention
to linear materials.

The unit of inductance is the henry (H), equivalent to one weber-turn per ampere.

Let us apply (49) in a straightforward way to calculate the inductance per meter
length of a coaxial cable of inner radius ¢ and outer radius b. We may take the
expression for total flux developed as Eq. (42) in Chapter 7,

and obtain the inductance rapidly for a length d,

d. b
L=E%mn2n
2r  a
or, on a per-meter basis,
b
L="1%2 wm (50)
2r  a

In this case, N = 1 turn, and all the flux links all the current.
In the problem of a toroidal coil of N turns and a current /, as shown in Fig-
ure 7.12b, we have

NI
By = Mo

2mp

If the dimensions of the cross section are small compared with the mean radius of the
toroid py, then the total flux is

NIS
®— Mo
27 po

where S is the cross-sectional area. Multiplying the total flux by N, we have the flux

linkages, and dividing by /, we have the inductance

N2S
= B2 (51)
21 po

Once again we have assumed that all the flux links all the turns, and this is a
good assumption for a toroidal coil of many turns packed closely together. Suppose,
however, that our toroid has an appreciable spacing between turns, a short part of
which might look like Figure 8.14. The flux linkages are no longer the product of the
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Figure 8.14 A portion of a coil showing partial flux
linkages. The total flux linkages are obtained by adding
the fluxes linking each turn.

flux at the mean radius times the total number of turns. In order to obtain the total
flux linkages we must look at the coil on a turn-by-turn basis.

(N®)otal = D1+ Do+ + D + -+ Dy

N
= Zq;,.
i=1

where @; is the flux linking the 7th turn. Rather than doing this, we usually rely on
experience and empirical quantities called winding factors and pitch factors to adjust
the basic formula to apply to the real physical world.

An equivalent definition for inductance may be made using an energy point
of view,

2W,
LA
[2

(52)

where [ is the total current flowing in the closed path and Wj is the energy in the

magnetic field produced by the current. After using (52) to obtain several other general

expressions for inductance, we will show that it is equivalent to (49). We first express

the potential energy Wy in terms of the magnetic fields,
J.B-Hdv

— vol [2 (5 3)

and then replace B by V x A,

1
L:—/ H-(V x A)dv
I? vol
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The vector identity
V- AxH)=H-(VxA) —A-(VxH) (54)

may be proved by expansion in rectangular coordinates. The inductance is then

L:%[/le.(AxH)dqu/vo]A-(VxH)dv] (55)

After applying the divergence theorem to the first integral and letting V x H = J in
the second integral, we have

1
L=— [%(AXH)’dS*F/ A-Jdv]
I N vol

The surface integral is zero, as the surface encloses the volume containing all the
magnetic energy, and this requires that A and H be zero on the bounding surface. The
inductance may therefore be written as

1
L:ﬁ/;OIAonv (56)

Equation (56) expresses the inductance in terms of an integral of the values of
A and J at every point. Because current density exists only within the conductor, the
integrand is zero at all points outside the conductor, and the vector magnetic potential
need not be determined there. The vector potential is that which arises from the current
J, and any other current source contributing a vector potential field in the region of
the original current density is to be ignored for the present. Later we will see that this
leads to a mutual inductance.

The vector magnetic potential A due to J is given by Eq. (51), Chapter 7,

J
A= 'u—dv
vol 4R

and the inductance may therefore be expressed more basically as a rather formidable
double volume integral,

| J
L= —/ / A ) c3av (57)
12 vol vol 4R

A slightly simpler integral expression is obtained by restricting our attention to
current filaments of small cross section for which J dv may be replaced by 7 dL and
the volume integral by a closed line integral along the axis of the filament,

L=i7§ ?g“]dL TdL

2 47R

- 2 (%d—L>dL
4 R

Our only present interest in Eqs. (57) and (58) lies in their implication that the
inductance is a function of the distribution of the current in space or the geometry of
the conductor configuration.

To obtain our original definition of inductance (49), let us hypothesize a uniform
current distribution in a filamentary conductor of small cross section so that Jdv

(58)
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in (56) becomes / dL,
1
L= 7 ‘(fA -dL (59)

For a small cross section, dL. may be taken along the center of the filament. We now
apply Stokes’ theorem and obtain

1
L:—/WxAy%
I'Js

or
1
L:—/BwlS
I Js
or
=2 (60)
I

Retracing the steps by which (60) is obtained, we should see that the flux @ is
that portion of the total flux that passes through any and every open surface whose
perimeter is the filamentary current path.

If we now let the filament make N identical turns about the total flux, an idealiza-
tion that may be closely realized in some types of inductors, the closed line integral
must consist of NV laps about this common path, and (60) becomes

L Ne 61
== (61)
The flux @ is now the flux crossing any surface whose perimeter is the path occupied
by any one of the N turns. The inductance of an N-turn coil may still be obtained
from (60), however, if we realize that the flux is that which crosses the complicated
surface* whose perimeter consists of all N turns.

Use of any of the inductance expressions for a true filamentary conductor (having
zero radius) leads to an infinite value of inductance, regardless of the configuration
of the filament. Near the conductor, Ampere’s circuital law shows that the magnetic
field intensity varies inversely with the distance from the conductor, and a simple
integration soon shows that an infinite amount of energy and an infinite amount of
flux are contained within any finite cylinder about the filament. This difficulty is
eliminated by specifying a small but finite filamentary radius.

The interior of any conductor also contains magnetic flux, and this flux links a
variable fraction of the total current, depending on its location. These flux linkages
lead to an internal inductance, which must be combined with the external inductance
to obtain the total inductance. The internal inductance of a long, straight wire of
circular cross section, radius a, and uniform current distribution is

Lom= 3 Hm (62)

a result requested in Problem 8.43 at the end of this chapter.

4 Somewhat like a spiral ramp.
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In Chapter 11, we will see that the current distribution in a conductor at high
frequencies tends to be concentrated near the surface. The internal flux is reduced, and
it is usually sufficient to consider only the external inductance. At lower frequencies,
however, internal inductance may become an appreciable part of the total inductance.

We conclude by defining the mutual inductance between circuits 1 and 2, M,,
in terms of mutual flux linkages,

M = (63)

where @, signifies the flux produced by /; which links the path of the filamentary
current I, and N, is the number of turns in circuit 2. The mutual inductance, there-
fore, depends on the magnetic interaction between two currents. With either current
alone, the total energy stored in the magnetic field can be found in terms of a single
inductance, or self-inductance; with both currents having nonzero values, the total
energy is a function of the two self-inductances and the mutual inductance. In terms
of a mutual energy, it can be shown that (63) is equivalent to

1
M12 = —/ (B] 'Hz)dl) (64)
L Jyol
or
1
M=o [ sy (65)
L Jyl

where B is the field resulting from /; (with I = 0) and Hj is the field arising from
I (with I} = 0). Interchange of the subscripts does not change the right-hand side of

(65), and therefore
My, = My (66)

Mutual inductance is also measured in henrys, and we rely on the context to allow
us to differentiate it from magnetization, also represented by M.

Calculate the self-inductances of and the mutual inductances between two coaxial
solenoids of radius R; and R,, R, > R, carrying currents /; and [, with n; and
n, turns/m, respectively.

Solution. We first attack the mutual inductances. From Eq. (15), Chapter 7, we let
ny = N/d, and obtain

H, =n1a, (0<p<R))
=0 (o> Ry)
and
Hy =mba, (0<p <Ry
=0 (p>Ry)
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Thus, for this uniform field
@1y = poni 1R}
and
M, = MonlnzﬂR%
Similarly,
®yy = pona LR}
My = poninywR} = My,
If ny = 50 turns/cm, n, = 80 turns/cm, R; = 2 cm, and R, = 3 c¢m, then
My = My = 47 x 1077(5000)(8000)7 (0.02%) = 63.2 mH/m
The self-inductances are easily found. The flux produced in coil 1 by /; is
1y = poni [1RT
and thus
L= ,uonfSld H
The inductance per unit length is therefore
L= ,uon%Sl H/m
or
Ly =39.5 mH/m
Similarly,

Ly = pon3S; = 22.7 mH/m

We see, therefore, that there are many methods available for the calculation of
self-inductance and mutual inductance. Unfortunately, even problems possessing a
high degree of symmetry present very challenging integrals for evaluation, and only

a few problems are available for us to try our skill on.
Inductance will be discussed in circuit terms in Chapter 10.

D8.12. Calculate the self-inductance of: («) 3.5 m of coaxial cable with a =
0.8 mm and » = 4 mm, filled with a material for which w, = 50; () a toroidal
coil of 500 turns, wound on a fiberglass form having a 2.5 x 2.5 cm square
cross section and an inner radius of 2 cm; (¢) a solenoid having 500 turns about
a cylindrical core of 2 cm radius in which u, = 50 for 0 < p < 0.5 cm and

w, = 1 for 0.5 < p < 2 cm; the length of the solenoid is 50 cm.

Ans. 56.3 uH; 1.01 mH; 3.2 mH
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D8.13. A solenoid is 50 cm long, 2 cm in diameter, and contains 1500 turns.
The cylindrical core has a diameter of 2 cm and a relative permeability of 75.
This coil is coaxial with a second solenoid, also 50 cm long, but with a 3 cm
diameter and 1200 turns. Calculate: (a) L for the inner solenoid; (b) L for the
outer solenoid; (¢) M between the two solenoids.

Ans. 133.2 mH; 192 mH; 106.6 mH
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CHAPTER 8 PROBLEMS

8.10

820

8310

8.410

8.50

A point charge, Q = —0.3 uC and m = 3 x 107! kg, is moving through
the field E = 30a, V/m. Use Eq. (1) and Newton’s laws to develop the
appropriate differential equations and solve them, subject to the initial
conditions at ¢ = 0, v = 3 x 10°a, m/s at the origin. At ¢ = 3 us, find (a) the
position P(x, y, z) of the charge; () the velocity v; (c¢) the kinetic energy of
the charge.

Compare the magnitudes of the electric and magnetic forces on an electron
that has attained a velocity of 107 m/s. Assume an electric field intensity of
10° V/m, and a magnetic flux density associated with that of the Earth’s
magnetic field in temperate latitudes, 0.5 gauss.

A point charge for which Q =2 x 107'® Cand m = 5 x 1072° kg is moving
in the combined fields E = 100a, — 200a, + 300a. V/m and B = —3a, +
2a, — a. mT. If the charge velocity at t = 0 is v(0) = (2a, — 3a, —

4a.)10° m/s (a) give the unit vector showing the direction in which the
charge is accelerating at ¢ = 0; (b) find the kinetic energy of the charge at
t=0.

Show that a charged particle in a uniform magnetic field describes a circular
orbit with an orbital period that is independent of the radius. Find the
relationship between the angular velocity and magnetic flux density for an
electron (the cyclotron frequency).

A rectangular loop of wire in free space joins point 4(1, 0, 1) to point
B(3,0, 1) to point C(3, 0, 4) to point D(1, 0, 4) to point 4. The wire carries a
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current of 6 mA, flowing in the a, direction from B to C. A filamentary
current of 15 A flows along the entire z axis in the a, direction. () Find F on
side BC. (b) Find F on side 4 B. (c¢) Find Fy, on the loop.

8.60 Show that the differential work in moving a current element /dL through a
distance d1 in a magetic field B is the negative of that done in moving the
element /d1 through a distance dL in the same field.

8.70 Uniform current sheets are located in free space as follows: 8a, A/m at
y=0,—4a, A/maty = 1, and —4a, A/m at y = —1. Find the vector force
per meter length exerted on a current filament carrying 7 mA in the a;
direction if the filament is located at (a) x =0, y = 0.5,and a; = a_;
b)y=0.5,z=0,anda; =a,;(c)x =0,y =1.5anda; = a,.

881 Two conducting strips, having infinite length in the z direction, lie in the xz
plane. One occupies the region d/2 < x < b + d/2 and carries surface
current density K = Kya,; the other is situated at —(b + d/2) < x < —d/2
and carries surface current density —Kya,. (@) Find the force per unit length
in z that tends to separate the two strips. (b) Let b approach zero while
maintaining constant current, / = Kb, and show that the force per unit
length approaches /% /(2 d) N/m.

890 A current of —100a, A/m flows on the conducting cylinder p = 5 mm, and
+500a, A/m is present on the conducting cylinder p = 1 mm. Find the
magnitude of the total force per meter length that is acting to split the outer
cylinder apart along its length.

8.100 A planar transmission line consists of two conducting planes of width b
separated d m in air, carrying equal and opposite currents of 7 A. If b > d,
find the force of repulsion per meter of length between the two conductors.

8.114 (a) Use Eq. (14), Section 8.3, to show that the force of attraction per unit
length between two filamentary conductors in free space with currents /;a,
atx =0,y =d/2,and ha,atx =0,y = —d/2,1s uol1 I, /(2nd). (b) Show
how a simpler method can be used to check your result.

8.12 ] Two circular wire rings are parallel to each other, share the same axis, are of
radius a, and are separated by distance d, where d << a. Each ring carries
current /. Find the approximate force of attraction and indicate the relative
orientations of the currents.

8.134 A current of 6 A flows from M(2,0,5)to N(5,0,5) in a straight, solid
conductor in free space. An infinite current filament lies along the z axis
and carries 50 A in the a, direction. Compute the vector torque on the wire
segment using an origin at: (a) (0, 0, 5); (b) (0, 0, 0); (¢) (3, 0, 0).

8.14} A solenoid is 25 cm long, 3 cm in diameter, and carries 4 A dc in its 400
turns. Its axis is perpendicular to a uniform magnetic field of 0.8 Wb/m? in
air. Using an origin at the center of the solenoid, calculate the torque acting
on it.
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8.154 A solid conducting filament extends from x = —b to x = b along the line
y = 2,z = 0. This filament carries a current of 3 A in the a, direction. An
infinite filament on the z axis carries 5 A in the a. direction. Obtain an
expression for the torque exerted on the finite conductor about an origin
located at (0, 2, 0).

8.16 I Assume that an electron is describing a circular orbit of radius a about a
positively charged nucleus. (@) By selecting an appropriate current and area,
show that the equivalent orbital dipole moment is ea’w/2, where w is the
electron’s angular velocity. (5) Show that the torque produced by a magnetic
field parallel to the plane of the orbit is ea>wB /2. (c) By equating the
Coulomb and centrifugal forces, show that w is (Amegmea’/e*)~ /%, where
m, is the electron mass. (d) Find values for the angular velocity, torque,
and the orbital magnetic moment for a hydrogen atom, where a is about
6x107"'m;let B=05T.

8.171 The hydrogen atom described in Problem 8.16 is now subjected to a
magnetic field having the same direction as that of the atom. Show that the
forces caused by B result in a decrease of the angular velocity by e B /(2m.)
and a decrease in the orbital moment by e’a®B/(4m,). What are these
decreases for the hydrogen atom in parts per million for an external magnetic
flux density of 0.5 T?

8.18§ Calculate the vector torque on the square loop shown in Figure 8.15 about
an origin at A4 in the field B, given (a) 4(0, 0, 0) and B = 100a, mT;
(b) A(0,0,0) and B = 200a, + 100a, mT; (c) A(1, 2, 3) and B = 200a, +
100a, — 300a, mT; (d) A(1, 2, 3) and B = 200a, + 100a, — 300a, mT
for x > 2 and B = 0 elsewhere.

8.19 { Given a material for which xm = 3.1 and within which B = 0.4ya, T, find
(a)H; (b) s (¢) prs (d) M (e) I (/) I35 (8) 7

8.20 § Find H in a material where (a) u, = 4.2, there are 2.7 x 10* atoms/m?, and
each atom has a dipole moment of 2.6 x 10’30ay A-m?; (b)) M = 270a, A/m
and u = 2u H/m; (¢) x,» = 0.7 and B = 2a, T. (d) Find M in a material
where bound surface current densities of 12a, A/m and —9a, A/m exist at
p = 0.3 mand 0.4 m, respectively.

8.21{ Find the magnitude of the magnetization in a material for which (a) the
magnetic flux density is 0.02 Wb/m?; (b) the magnetic field intensity is
1200 A/m and the relative permeability is 1.005; (c) there are 7.2 x 10
atoms per cubic meter, each having a dipole moment of 4 x 10739 A.m?
in the same direction, and the magnetic susceptibility is 0.003.

8.22 | Under some conditions, it is possible to approximate the effects of
ferromagnetic materials by assuming linearity in the relationship of B and
H. Let p, = 1000 for a certain material of which a cylindrical wire of
radius 1 mm is made. If / = 1 A and the current distribution is uniform,
find (a) B, (b) H, (¢) M, (d) J, and (e) Jz within the wire.
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=2,-2,0) =2,2,0)

2,-2,0
@.-2.0) 2,2,0)

Figure 8.15 See Problem 8.18.

8.23 | Calculate values for Hg, By, and M, at p = c for a coaxial cable with
a = 2.5mm and » = 6 mm if it carries a current / = 12 A in the center
conductor, and u = 3uH/m for 2.5mm < p < 3.5mm, u = 5 uH/m for
3.5mm < p < 4.5mm, and © = 10 uH/m for 4.5mm < p < 6 mm. Use
¢ =:(a) 3 mm; (b) 4 mm; (c¢) 5 mm.

8.24 | Two current sheets, Kpa, A/matz = 0 and —Kpa, A/matz =d, are
separated by an inhomogeneous material for which u, = az + 1, where a is
a constant. (a) Find expressions for H and B in the material. (b) Find the total
flux that crosses a 1m? area on the yz plane.

8250 A conducting filament at z = 0 carries 12 A in the a, direction. Let u, = 1
forp <lem,u, =6forl < p <2cm,and i, = 1 for p > 2 cm. Find:
(a) H everywhere; (b) B everywhere.

8261 A long solenoid has a radius of 3 cm, 5000 turns/m, and carries current
I =0.25 A. The region 0 < p < a within the solenoid has x, = 5, whereas
u, = 1fora < p < 3 cm. Determine a so that (a) a total flux of 10 uWb is
present; (b) the flux is equally divided between the regions 0 < p < a and
a<p<3cm

8271 Let W1 = 2 inregion 1, defined by 2x + 3y — 4z > 1, while y,», =5
in region 2 where 2x + 3y — 4z < 1. Inregion 1, H; = 50a, — 30a, +
20a, A/m. Find (@) Hy1; (b) Hyy1; (¢) Hyp; (d) Hygp; (e) 6y, the angle between
H; and ay;;; (f) 65, the angle between H; and ayy;.

8.28 | For values of B below the knee on the magnetization curve for silicon steel,
approximate the curve by a straight line with © = 5 mH/m. The core shown
in Figure 8.16 has areas of 1.6 cm? and lengths of 10 cm in each outer leg,
and an area of 2.5 cm? and a length of 3 cm in the central leg. A coil of
1200 turns carrying 12 mA is placed around the central leg. Find B in the
(a) center leg; (b) center leg if a 0.3 mm air gap is present in the center leg.
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i

Figure 8.16 See Problem 8.28.

8.29 | In Problem 8.28, the linear approximation suggested in the statement of the
problem leads to flux density of 0.666 T in the central leg. Using this value
of B and the magnetization curve for silicon steel, what current is required in
the 1200-turn coil?

8.300 A rectangular core has fixed permeability u, >> 1, a square cross section of
dimensions a x a, and has centerline dimensions around its perimeter of b
and d. Coils 1 and 2, having turn numbers N; and N,, are wound on the core.
Consider a selected core cross-sectional plane as lying within the xy plane,
such that the surface is defined by 0 < x < a,0 < y < a. (a) With current /;
in coil 1, use Ampere’s circuital law to find the magnetic flux density as a
function of position over the core cross-section. (b) Integrate your result of
part (a) to determine the total magnetic flux within the core. (c¢) Find the
self-inductance of coil 1. (d) Find the mutual inductance between coils 1
and 2.

8.31 1 A toroid is constructed of a magnetic material having a cross-sectional area
of 2.5 cm? and an effective length of 8 cm. There is also a short air gap of
0.25 mm length and an effective area of 2.8 cm?. An mmf of 200 A -t is
applied to the magnetic circuit. Calculate the total flux in the toroid if the
magnetic material: (a) is assumed to have infinite permeability; () is
assumed to be linear with p, = 1000; (¢) is silicon steel.

8.321 (a) Find an expression for the magnetic energy stored per unit length in a
coaxial transmission line consisting of conducting sleeves of negligible
thickness, having radii a and . A medium of relative permeability pu, fills
the region between conductors. Assume current / flows in both conductors in
opposite directions. (b) Obtain the inductance, L, per unit length of line by
equating the energy to (1/2)L1>.

8.331 A toroidal core has a square cross section, 2.5cm < p < 3.5cm, —0.5cm <
z < 0.5 cm. The upper half of the toroid, 0 < z < 0.5 cm, is constructed of a
linear material for which w, = 10, while the lower half, —0.5cm <z < 0,
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Figure 8.17 See Problem 8.35.

has 1, = 20. An mmf of 150 A - t establishes a flux in the ay direction.
For z > 0, find: (a) Hy(p); (b) Bg(p); (¢) P-~0. (d) Repeat for z > 0.
(e) Find <I)total-

8.34 | Determine the energy stored per unit length in the internal magnetic field of
an infinitely long, straight wire of radius a, carrying uniform current /.

8.35) The cones 6 = 21° and 6 = 159° are conducting surfaces and carry total
currents of 40 A, as shown in Figure 8.17. The currents return on a spherical
conducting surface of 0.25 m radius. (a) Find H in the region 0 < » < 0.25,
21° < 0 < 159°,0 < ¢ < 2m. (b) How much energy is stored in this region?

8.36 | The dimensions of the outer conductor of a coaxial cable are b and ¢, where
¢ > b. Assuming u = p, find the magnetic energy stored per unit length
in the region b < p < c for a uniformly distributed total current 7 flowing
in opposite directions in the inner and outer conductors.

8.37 | Find the inductance of the cone-sphere configuration described in
Problem 8.35 and Figure 8.17. The inductance is that offered at the origin
between the vertices of the cone.

8.38 A toroidal core has a rectangular cross section defined by the surfaces
p=2cm, p=3cm,z=4cm,and z = 4.5 cm. The core material has a
relative permeability of 80. If the core is wound with a coil containing 8000
turns of wire, find its inductance.

8.391 Conducting planes in air at z = 0 and z = d carry surface currents of
+Kpa, A/m. (a) Find the energy stored in the magnetic field per unit length
(0 <x < 1)inawidth w(0 < y < w). (b) Calculate the inductance per unit
length of this transmission line from Wy = %LI 2, where I is the total current
in a width w in either conductor. (¢) Calculate the total flux passing through
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the rectangle 0 < x < 1,0 < z < d, in the plane y = 0, and from this result
again find the inductance per unit length.

8.40 § A coaxial cable has conductor radii a and b, where a < b. Material of
permeability u, # 1 exists in the region a < p < ¢, whereas the region
¢ < p < bisair filled. Find an expression for the inductance per unit length.

8410 A rectangular coil is composed of 150 turns of a filamentary conductor. Find
the mutual inductance in free space between this coil and an infinite straight
filament on the z axis if the four corners of the coil are located at: («) (0, 1, 0),
(0,3,0),(0,3,1),and (0, 1, 1); () (1, 1,0), (1, 3,0), (1, 3, 1), and (1, 1, 1).

8.42 | Find the mutual inductance between two filaments forming circular rings of
radii a and Aa, where Aa < a. The field should be determined by
approximate methods. The rings are coplanar and concentric.

8.431 (a) Use energy relationships to show that the internal inductance of a
nonmagnetic cylindrical wire of radius a carrying a uniformly distributed
current 7 is o /(87) H/m. (b) Find the internal inductance if the portion of
the conductor for which p < ¢ < a is removed.

8.44 | Show that the external inductance per unit length of a two-wire transmission
line carrying equal and opposite currents is approximately (u/7) In(d/a)
H/m, where a is the radius of each wire and d is the center-to-center wire
spacing. On what basis is the approximation valid?
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