


COMPLEX VARIABLES
AND APPLICATIONS

Eighth Edition

James Ward Brown
Professor of Mathematics

The University of Michigan–Dearborn

Ruel V. Churchill
Late Professor of Mathematics

The University of Michigan



COMPLEX VARIABLES AND APPLICATIONS, EIGHTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the
Americas, New York, NY 10020. Copyright  2009 by The McGraw-Hill Companies, Inc. All rights
reserved. Previous editions  2004, 1996, 1990, 1984, 1974, 1960, 1948 No part of this publication may
be reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in
any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside
the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 0 9 8

ISBN 978–0–07–305194–9
MHID 0–07–305194–2

Editorial Director: Stewart K. Mattson
Director of Development: Kristine Tibbetts
Senior Sponsoring Editor: Elizabeth Covello
Developmental Editor: Michelle Driscoll
Editorial Coordinator: Adam Fischer
Senior Marketing Manager: Eric Gates
Project Manager: April R. Southwood
Senior Production Supervisor: Kara Kudronowicz
Associate Design Coordinator: Brenda A. Rolwes
Cover Designer: Studio Montage, St. Louis, Missouri
Project Coordinator: Melissa M. Leick
Compositor: Laserwords Private Limited
Typeface: 10.25/12 Times Roman
Printer: R. R. Donnelly Crawfordsville, IN

Library of Congress Cataloging-in-Publication Data

Brown, James Ward.
Complex variables and applications / James Ward Brown, Ruel V. Churchill.—8th ed.

p. cm.
Includes bibliographical references and index.
ISBN 978–0–07–305194–9—ISBN 0–07–305194–2 (hard copy : acid-free paper) 1. Functions of

complex variables. I. Churchill, Ruel Vance, 1899- II. Title.
QA331.7.C524 2009
515′ .9—dc22

2007043490

www.mhhe.com



ABOUT THE AUTHORS

JAMES WARD BROWN is Professor of Mathematics at The University of
Michigan– Dearborn. He earned his A.B. in physics from Harvard University and his
A.M. and Ph.D. in mathematics from The University of Michigan in Ann Arbor,
where he was an Institute of Science and Technology Predoctoral Fellow. He is
coauthor with Dr. Churchill of Fourier Series and Boundary Value Problems, now
in its seventh edition. He has received a research grant from the National Science
Foundation as well as a Distinguished Faculty Award from the Michigan Associa-
tion of Governing Boards of Colleges and Universities. Dr. Brown is listed in Who’s
Who in the World.

RUEL V. CHURCHILL was, at the time of his death in 1987, Professor Emeritus
of Mathematics at The University of Michigan, where he began teaching in 1922. He
received his B.S. in physics from the University of Chicago and his M.S. in physics
and Ph.D. in mathematics from The University of Michigan. He was coauthor with
Dr. Brown of Fourier Series and Boundary Value Problems, a classic text that he
first wrote almost 70 years ago. He was also the author of Operational Mathematics.
Dr. Churchill held various offices in the Mathematical Association of America and
in other mathematical societies and councils.

iii



To the Memory of My Father
George H. Brown

and of My Long-Time Friend and Coauthor
Ruel V. Churchill

These Distinguished Men of Science for Years Influenced
The Careers of Many People, Including Myself.

JWB



CONTENTS

Preface x

1 Complex Numbers 1

Sums and Products 1

Basic Algebraic Properties 3

Further Properties 5

Vectors and Moduli 9

Complex Conjugates 13

Exponential Form 16

Products and Powers in Exponential Form 18

Arguments of Products and Quotients 20

Roots of Complex Numbers 24

Examples 27

Regions in the Complex Plane 31

2 Analytic Functions 35

Functions of a Complex Variable 35

Mappings 38

Mappings by the Exponential Function 42

Limits 45

Theorems on Limits 48

v



vi contents

Limits Involving the Point at Infinity 50

Continuity 53

Derivatives 56

Differentiation Formulas 60

Cauchy–Riemann Equations 63

Sufficient Conditions for Differentiability 66

Polar Coordinates 68

Analytic Functions 73

Examples 75

Harmonic Functions 78

Uniquely Determined Analytic Functions 83

Reflection Principle 85

3 Elementary Functions 89

The Exponential Function 89

The Logarithmic Function 93

Branches and Derivatives of Logarithms 95

Some Identities Involving Logarithms 98

Complex Exponents 101

Trigonometric Functions 104

Hyperbolic Functions 109

Inverse Trigonometric and Hyperbolic Functions 112

4 Integrals 117

Derivatives of Functions w(t) 117

Definite Integrals of Functions w(t) 119

Contours 122

Contour Integrals 127

Some Examples 129

Examples with Branch Cuts 133

Upper Bounds for Moduli of Contour Integrals 137

Antiderivatives 142

Proof of the Theorem 146

Cauchy–Goursat Theorem 150

Proof of the Theorem 152



contents vii

Simply Connected Domains 156

Multiply Connected Domains 158

Cauchy Integral Formula 164

An Extension of the Cauchy Integral Formula 165

Some Consequences of the Extension 168

Liouville’s Theorem and the Fundamental Theorem of Algebra 172

Maximum Modulus Principle 175

5 Series 181

Convergence of Sequences 181

Convergence of Series 184

Taylor Series 189

Proof of Taylor’s Theorem 190

Examples 192

Laurent Series 197

Proof of Laurent’s Theorem 199

Examples 202

Absolute and Uniform Convergence of Power Series 208

Continuity of Sums of Power Series 211

Integration and Differentiation of Power Series 213

Uniqueness of Series Representations 217

Multiplication and Division of Power Series 222

6 Residues and Poles 229

Isolated Singular Points 229

Residues 231

Cauchy’s Residue Theorem 234

Residue at Infinity 237

The Three Types of Isolated Singular Points 240

Residues at Poles 244

Examples 245

Zeros of Analytic Functions 249

Zeros and Poles 252

Behavior of Functions Near Isolated Singular Points 257



viii contents

7 Applications of Residues 261

Evaluation of Improper Integrals 261

Example 264

Improper Integrals from Fourier Analysis 269

Jordan’s Lemma 272

Indented Paths 277

An Indentation Around a Branch Point 280

Integration Along a Branch Cut 283

Definite Integrals Involving Sines and Cosines 288

Argument Principle 291
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PREFACE

This book is a revision of the seventh edition, which was published in 2004. That
edition has served, just as the earlier ones did, as a textbook for a one-term intro-
ductory course in the theory and application of functions of a complex variable.
This new edition preserves the basic content and style of the earlier editions, the
first two of which were written by the late Ruel V. Churchill alone.

The first objective of the book is to develop those parts of the theory that are
prominent in applications of the subject. The second objective is to furnish an intro-
duction to applications of residues and conformal mapping. With regard to residues,
special emphasis is given to their use in evaluating real improper integrals, finding
inverse Laplace transforms, and locating zeros of functions. As for conformal map-
ping, considerable attention is paid to its use in solving boundary value problems
that arise in studies of heat conduction and fluid flow. Hence the book may be
considered as a companion volume to the authors’ text “Fourier Series and Bound-
ary Value Problems,” where another classical method for solving boundary value
problems in partial differential equations is developed.

The first nine chapters of this book have for many years formed the basis of a
three-hour course given each term at The University of Michigan. The classes have
consisted mainly of seniors and graduate students concentrating in mathematics,
engineering, or one of the physical sciences. Before taking the course, the students
have completed at least a three-term calculus sequence and a first course in ordinary
differential equations. Much of the material in the book need not be covered in the
lectures and can be left for self-study or used for reference. If mapping by elementary
functions is desired earlier in the course, one can skip to Chap. 8 immediately after
Chap. 3 on elementary functions.

In order to accommodate as wide a range of readers as possible, there are foot-
notes referring to other texts that give proofs and discussions of the more delicate
results from calculus and advanced calculus that are occasionally needed. A bibli-
ography of other books on complex variables, many of which are more advanced,
is provided in Appendix 1. A table of conformal transformations that are useful in
applications appears in Appendix 2.

 x



preface xi

The main changes in this edition appear in the first nine chapters. Many of
those changes have been suggested by users of the last edition. Some readers have
urged that sections which can be skipped or postponed without disruption be more
clearly identified. The statements of Taylor’s theorem and Laurent’s theorem, for
example, now appear in sections that are separate from the sections containing
their proofs. Another significant change involves the extended form of the Cauchy
integral formula for derivatives. The treatment of that extension has been completely
rewritten, and its immediate consequences are now more focused and appear together
in a single section.

Other improvements that seemed necessary include more details in arguments
involving mathematical induction, a greater emphasis on rules for using complex
exponents, some discussion of residues at infinity, and a clearer exposition of real
improper integrals and their Cauchy principal values. In addition, some rearrange-
ment of material was called for. For instance, the discussion of upper bounds of
moduli of integrals is now entirely in one section, and there is a separate section
devoted to the definition and illustration of isolated singular points. Exercise sets
occur more frequently than in earlier editions and, as a result, concentrate more
directly on the material at hand.

Finally, there is an Student’s Solutions Manual (ISBN: 978-0-07-333730-2;
MHID: 0-07-333730-7) that is available upon request to instructors who adopt the
book. It contains solutions of selected exercises in Chapters 1 through 7, covering
the material through residues.

In the preparation of this edition, continual interest and support has been pro-
vided by a variety of people, especially the staff at McGraw-Hill and my wife
Jacqueline Read Brown.

James Ward Brown
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C H A P T E R

1
COMPLEX NUMBERS

In this chapter, we survey the algebraic and geometric structure of the complex
number system. We assume various corresponding properties of real numbers to be
known.

1. SUMS AND PRODUCTS

Complex numbers can be defined as ordered pairs (x, y) of real numbers that are to
be interpreted as points in the complex plane, with rectangular coordinates x and y,
just as real numbers x are thought of as points on the real line. When real numbers
x are displayed as points (x, 0) on the real axis, it is clear that the set of complex
numbers includes the real numbers as a subset. Complex numbers of the form (0, y)

correspond to points on the y axis and are called pure imaginary numbers when
y �= 0. The y axis is then referred to as the imaginary axis.

It is customary to denote a complex number (x, y) by z, so that (see Fig. 1)

z = (x, y).(1)

The real numbers x and y are, moreover, known as the real and imaginary parts of
z, respectively; and we write

x = Re z, y = Im z.(2)

Two complex numbers z1 and z2 are equal whenever they have the same real parts
and the same imaginary parts. Thus the statement z1 = z2 means that z1 and z2

correspond to the same point in the complex, or z, plane.

1
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z = (x, y)

i = (0, 1)

x = (x, 0) xO

y

FIGURE 1

The sum z1 + z2 and product z1z2 of two complex numbers

z1 = (x1, y1) and z2 = (x2, y2)

are defined as follows:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),(3)

(x1, y1)(x2, y2) = (x1x2 − y1y2, y1x2 + x1y2).(4)

Note that the operations defined by equations (3) and (4) become the usual operations
of addition and multiplication when restricted to the real numbers:

(x1, 0) + (x2, 0) = (x1 + x2, 0),

(x1, 0)(x2, 0) = (x1x2, 0).

The complex number system is, therefore, a natural extension of the real number
system.

Any complex number z = (x, y) can be written z = (x, 0) + (0, y), and it is
easy to see that (0, 1)(y, 0) = (0, y). Hence

z = (x, 0) + (0, 1)(y, 0);
and if we think of a real number as either x or (x, 0) and let i denote the pure
imaginary number (0,1), as shown in Fig. 1, it is clear that∗

z = x + iy.(5)

Also, with the convention that z2 = zz, z3 = z2z, etc., we have

i2 = (0, 1)(0, 1) = (−1, 0),

or

i2 = −1.(6)

∗In electrical engineering, the letter j is used instead of i.
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Because (x, y) = x + iy, definitions (3) and (4) become

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2),(7)

(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(y1x2 + x1y2).(8)

Observe that the right-hand sides of these equations can be obtained by formally
manipulating the terms on the left as if they involved only real numbers and by
replacing i2 by −1 when it occurs. Also, observe how equation (8) tells us that any
complex number times zero is zero. More precisely,

z · 0 = (x + iy)(0 + i0) = 0 + i0 = 0

for any z = x + iy.

2. BASIC ALGEBRAIC PROPERTIES

Various properties of addition and multiplication of complex numbers are the same
as for real numbers. We list here the more basic of these algebraic properties and
verify some of them. Most of the others are verified in the exercises.

The commutative laws

z1 + z2 = z2 + z1, z1z2 = z2z1(1)

and the associative laws

(z1 + z2) + z3 = z1 + (z2 + z3), (z1z2)z3 = z1(z2z3)(2)

follow easily from the definitions in Sec. 1 of addition and multiplication of complex
numbers and the fact that real numbers obey these laws. For example, if

z1 = (x1, y1) and z2 = (x2, y2),

then
z1 + z2 = (x1 + x2, y1 + y2) = (x2 + x1, y2 + y1) = z2 + z1.

Verification of the rest of the above laws, as well as the distributive law

z(z1 + z2) = zz1 + zz2,(3)

is similar.
According to the commutative law for multiplication, iy = yi. Hence one can

write z = x + yi instead of z = x + iy. Also, because of the associative laws, a
sum z1 + z2 + z3 or a product z1z2z3 is well defined without parentheses, as is the
case with real numbers.
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The additive identity 0 = (0, 0) and the multiplicative identity 1 = (1, 0) for
real numbers carry over to the entire complex number system. That is,

z + 0 = z and z · 1 = z(4)

for every complex number z. Furthermore, 0 and 1 are the only complex numbers
with such properties (see Exercise 8).

There is associated with each complex number z = (x, y) an additive inverse

−z = (−x, −y),(5)

satisfying the equation z + (−z) = 0. Moreover, there is only one additive inverse
for any given z, since the equation

(x, y) + (u, v) = (0, 0)

implies that

u = −x and v = −y.

For any nonzero complex number z = (x, y), there is a number z−1 such that
zz−1 = 1. This multiplicative inverse is less obvious than the additive one. To find
it, we seek real numbers u and v, expressed in terms of x and y, such that

(x, y)(u, v) = (1, 0).

According to equation (4), Sec. 1, which defines the product of two complex num-
bers, u and v must satisfy the pair

xu − yv = 1, yu + xv = 0

of linear simultaneous equations; and simple computation yields the unique solution

u = x

x2 + y2
, v = −y

x2 + y2
.

So the multiplicative inverse of z = (x, y) is

z−1 =
(

x

x2 + y2
,

−y

x2 + y2

)
(z �= 0).(6)

The inverse z−1 is not defined when z = 0. In fact, z = 0 means that x2 + y2 = 0 ;
and this is not permitted in expression (6).
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in Sec. 2. Inasmuch as such properties continue to be anticipated because they
also apply to real numbers, the reader can easily pass to Sec. 4 without serious
disruption.

We begin with the observation that the existence of multiplicative inverses
enables us to show that if a product z1z2 is zero, then so is at least one of the factors
z1 and z2. For suppose that z1z2 = 0 and z1 �= 0. The inverse z−1

1 exists; and any
complex number times zero is zero (Sec. 1). Hence

z2 = z2 · 1 = z2(z1z
−1
1 ) = (z−1

1 z1)z2 = z−1
1 (z1z2) = z−1

1 · 0 = 0.

That is, if z1z2 = 0, either z1 = 0 or z2 = 0; or possibly both of the numbers z1 and
z2 are zero. Another way to state this result is that if two complex numbers z1 and
z2 are nonzero, then so is their product z1z2.

Subtraction and division are defined in terms of additive and multiplicative
inverses:

z1 − z2 = z1 + (−z2),(1)

z1

z2
= z1z

−1
2 (z2 �= 0).(2)

Thus, in view of expressions (5) and (6) in Sec. 2,

z1 − z2 = (x1, y1) + (−x2,−y2) = (x1 − x2, y1 − y2)(3)

and

z1

z2
= (x1, y1)

(
x2

x2
2 + y2

2

,
−y2

x2
2 + y2

2

)
=

(
x1x2 + y1y2

x2
2 + y2

2

,
y1x2 − x1y2

x2
2 + y2

2

)
(4)

(z2 �= 0)

when z1 = (x1, y1) and z2 = (x2, y2).
Using z1 = x1 + iy1 and z2 = x2 + iy2, one can write expressions (3) and (4)

here as

z1 − z2 = (x1 − x2) + i(y1 − y2)(5)

and

z1

z2
= x1x2 + y1y2

x2
2 + y2

2

+ i
y1x2 − x1y2

x2
2 + y2

2

(z2 �= 0).(6)

Although expression (6) is not easy to remember, it can be obtained by writing (see
Exercise 7)

z1

z2
= (x1 + iy1)(x2 − iy2)

(x2 + iy2)(x2 − iy2)
,(7)
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EXERCISES
1. Verify that

(a) (
√

2 − i) − i(1 − √
2i) = −2i; (b) (2,−3)(−2, 1) = (−1, 8);

(c) (3, 1)(3,−1)

(
1

5
,

1

10

)
= (2, 1).

2. Show that

(a) Re(iz) = − Im z; (b) Im(iz) = Re z.

3. Show that (1 + z)2 = 1 + 2z + z2.

4. Verify that each of the two numbers z = 1 ± i satisfies the equation z2 − 2z + 2 = 0.

5. Prove that multiplication of complex numbers is commutative, as stated at the begin-
ning of Sec. 2.

6. Verify

(a) the associative law for addition of complex numbers, stated at the beginning of
Sec. 2;

(b) the distributive law (3), Sec. 2.

7. Use the associative law for addition and the distributive law to show that

z(z1 + z2 + z3) = zz1 + zz2 + zz3.

8. (a) Write (x, y) + (u, v) = (x, y) and point out how it follows that the complex num-
ber 0 = (0, 0) is unique as an additive identity.

(b) Likewise, write (x, y)(u, v) = (x, y) and show that the number 1 = (1, 0) is a
unique multiplicative identity.

9. Use −1 = (−1, 0) and z = (x, y) to show that (−1)z = −z.

10. Use i = (0, 1) and y = (y, 0) to verify that −(iy) = (−i)y. Thus show that the addi-
tive inverse of a complex number z = x + iy can be written −z = −x − iy without
ambiguity.

11. Solve the equation z2 + z + 1 = 0 for z = (x, y) by writing

(x, y)(x, y) + (x, y) + (1, 0) = (0, 0)

and then solving a pair of simultaneous equations in x and y.
Suggestion: Use the fact that no real number x satisfies the given equation to

show that y �= 0.

Ans. z =
(

−1

2
,±

√
3

2

)
.

3. FURTHER PROPERTIES

In this section, we mention a number of other algebraic properties of addition and
multiplication of complex numbers that follow from the ones already described
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multiplying out the products in the numerator and denominator on the right, and
then using the property

z1 + z2

z3
= (z1 + z2)z

−1
3 = z1z

−1
3 + z2z

−1
3 = z1

z3
+ z2

z3
(z3 �= 0).(8)

The motivation for starting with equation (7) appears in Sec. 5.

EXAMPLE. The method is illustrated below:

4 + i

2 − 3i
= (4 + i)(2 + 3i)

(2 − 3i)(2 + 3i)
= 5 + 14i

13
= 5

13
+ 14

13
i.

There are some expected properties involving quotients that follow from the
relation

1

z2
= z−1

2 (z2 �= 0),(9)

which is equation (2) when z1 = 1. Relation (9) enables us, for instance, to write
equation (2) in the form

z1

z2
= z1

(
1

z2

)
(z2 �= 0).(10)

Also, by observing that (see Exercise 3)

(z1z2)(z
−1
1 z−1

2 ) = (z1z
−1
1 )(z2z

−1
2 ) = 1 (z1 �= 0, z2 �= 0),

and hence that z−1
1 z−1

2 = (z1z2)
−1, one can use relation (9) to show that(

1

z1

)(
1

z2

)
= z−1

1 z−1
2 = (z1z2)

−1 = 1

z1z2
(z1 �= 0, z2 �= 0).(11)

Another useful property, to be derived in the exercises, is(
z1

z3

)(
z2

z4

)
= z1z2

z3z4
(z3 �= 0, z4 �= 0).(12)

Finally, we note that the binomial formula involving real numbers remains
valid with complex numbers. That is, if z1 and z2 are any two nonzero complex
numbers, then

(z1 + z2)
n =

n∑
k=0

(n

k

)
zk

1z
n−k
2 (n = 1, 2, . . .)(13)

where (n

k

)
= n!

k!(n − k)!
(k = 0, 1, 2, . . . , n)

and where it is agreed that 0! = 1. The proof is left as an exercise.
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EXERCISES
1. Reduce each of these quantities to a real number:

(a)
1 + 2i

3 − 4i
+ 2 − i

5i
; (b)

5i

(1 − i)(2 − i)(3 − i)
; (c) (1 − i)4.

Ans. (a) −2/5; (b) −1/2; (c) −4.

2. Show that
1

1/z
= z (z �= 0).

3. Use the associative and commutative laws for multiplication to show that

(z1z2)(z3z4) = (z1z3)(z2z4).

4. Prove that if z1z2z3 = 0, then at least one of the three factors is zero.
Suggestion: Write (z1z2)z3 = 0 and use a similar result (Sec. 3) involving two

factors.

5. Derive expression (6), Sec. 3, for the quotient z1/z2 by the method described just after
it.

6. With the aid of relations (10) and (11) in Sec. 3, derive the identity(
z1

z3

) (
z2

z4

)
= z1z2

z3z4
(z3 �= 0, z4 �= 0).

7. Use the identity obtained in Exercise 6 to derive the cancellation law

z1z

z2z
= z1

z2
(z2 �= 0, z �= 0).

8. Use mathematical induction to verify the binomial formula (13) in Sec. 3. More pre-
cisely, note that the formula is true when n = 1. Then, assuming that it is valid
when n = m where m denotes any positive integer, show that it must hold when
n = m + 1.

Suggestion: When n = m + 1, write

(z1 + z2)
m+1 = (z1 + z2)(z1 + z2)

m = (z2 + z1)

m∑
k=0

(
m

k

)
zk

1z
m−k
2

=
m∑

k=0

(
m

k

)
zk

1z
m+1−k
2 +

m∑
k=0

(
m

k

)
zk+1

1 zm−k
2

and replace k by k − 1 in the last sum here to obtain

(z1 + z2)
m+1 = zm+1

2 +
m∑

k=1

[(
m

k

)
+

(
m

k − 1

)]
zk

1z
m+1−k
2 + zm+1

1 .
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Finally, show how the right-hand side here becomes

zm+1
2 +

m∑
k=1

(
m + 1

k

)
zk

1z
m+1−k
2 + zm+1

1 =
m+1∑
k=0

(
m + 1

k

)
zk

1z
m+1−k
2 .

4. VECTORS AND MODULI

It is natural to associate any nonzero complex number z = x + iy with the directed
line segment, or vector, from the origin to the point (x, y) that represents z in the
complex plane. In fact, we often refer to z as the point z or the vector z. In Fig. 2
the numbers z = x + iy and −2 + i are displayed graphically as both points and
radius vectors.

z = (x, y)

z = x + iy
–2 + i

xO–2

(–2, 1)
1

y

FIGURE 2

When z1 = x1 + iy1 and z2 = x2 + iy2, the sum

z1 + z2 = (x1 + x2) + i(y1 + y2)

corresponds to the point (x1 + x2, y1 + y2). It also corresponds to a vector with
those coordinates as its components. Hence z1 + z2 may be obtained vectorially as
shown in Fig. 3.

xO

y

z1

z 1 +
 z 2

z2

z2

FIGURE 3

Although the product of two complex numbers z1 and z2 is itself a complex
number represented by a vector, that vector lies in the same plane as the vectors for
z1 and z2. Evidently, then, this product is neither the scalar nor the vector product
used in ordinary vector analysis.
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The vector interpretation of complex numbers is especially helpful in extending
the concept of absolute values of real numbers to the complex plane. The modulus,
or absolute value, of a complex number z = x + iy is defined as the nonnegative
real number

√
x2 + y2 and is denoted by |z|; that is,

|z| =
√

x2 + y2.(1)

Geometrically, the number |z| is the distance between the point (x, y) and
the origin, or the length of the radius vector representing z. It reduces to the usual
absolute value in the real number system when y = 0. Note that while the inequality
z1 < z2 is meaningless unless both z1 and z2 are real, the statement |z1| < |z2|
means that the point z1 is closer to the origin than the point z2 is.

EXAMPLE 1. Since |− 3 + 2i| = √
13 and |1 + 4i| = √

17, we know that
the point −3 + 2i is closer to the origin than 1 + 4i is.

The distance between two points (x1, y1) and (x2, y2) is |z1 − z2|. This is
clear from Fig. 4, since |z1 − z2| is the length of the vector representing the
number

z1 − z2 = z1 + (−z2);
and, by translating the radius vector z1 − z2, one can interpret z1 − z2 as the directed
line segment from the point (x2, y2) to the point (x1, y1). Alternatively, it follows
from the expression

z1 − z2 = (x1 − x2) + i(y1 − y2)

and definition (1) that

|z1 − z2| =
√

(x1 − x2)
2 + (y1 − y2)

2.

xO

y

z1

|z1 – z2|

z1 – z2

z2

–z2

(x2, y2)

(x1, y1)

FIGURE 4

The complex numbers z corresponding to the points lying on the circle with
center z0 and radius R thus satisfy the equation |z − z0| = R, and conversely. We
refer to this set of points simply as the circle |z − z0| = R.

EXAMPLE 2. The equation |z − 1 + 3i| = 2 represents the circle whose
center is z0 = (1, −3) and whose radius is R = 2.
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It also follows from definition (1) that the real numbers |z|, Re z = x, and
Im z = y are related by the equation

|z|2 = (Re z)2 + (Im z)2.(2)

Thus

Re z ≤ |Re z| ≤ |z| and Im z ≤ |Im z| ≤ |z|.(3)

We turn now to the triangle inequality, which provides an upper bound for the
modulus of the sum of two complex numbers z1 and z2:

|z1 + z2| ≤ |z1| + |z2|.(4)

This important inequality is geometrically evident in Fig. 3, since it is merely a
statement that the length of one side of a triangle is less than or equal to the sum of
the lengths of the other two sides. We can also see from Fig. 3 that inequality (4)
is actually an equality when 0, z1, and z2 are collinear. Another, strictly algebraic,
derivation is given in Exercise 15, Sec. 5.

An immediate consequence of the triangle inequality is the fact that

|z1 + z2| ≥ ||z1| − |z2||.(5)

To derive inequality (5), we write

|z1| = |(z1 + z2) + (−z2)| ≤ |z1 + z2| + |− z2|,
which means that

|z1 + z2| ≥ |z1| − |z2|.(6)

This is inequality (5) when |z1| ≥ |z2|. If |z1| < |z2|, we need only interchange z1

and z2 in inequality (6) to arrive at

|z1 + z2| ≥ −(|z1| − |z2|),
which is the desired result. Inequality (5) tells us, of course, that the length of one
side of a triangle is greater than or equal to the difference of the lengths of the other
two sides.

Because |− z2| = |z2|, one can replace z2 by −z2 in inequalities (4) and (5) to
summarize these results in a particularly useful form:

|z1 ± z2| ≤ |z1| + |z2|,(7)

|z1 ± z2| ≥ ||z1| − |z2||.(8)

When combined, inequalities (7) and (8) become

||z1| − |z2|| ≤ |z1 ± z2| ≤ |z1| + |z2|.(9)
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EXAMPLE 3. If a point z lies on the unit circle |z| = 1 about the origin, it
follows from inequalities (7) and (8) that

|z − 2| ≤ |z| + 2 = 3

and
|z − 2| ≥ ||z| − 2| = 1.

The triangle inequality (4) can be generalized by means of mathematical induc-
tion to sums involving any finite number of terms:

|z1 + z2 + · · · + zn| ≤ |z1| + |z2| + · · · + |zn| (n = 2, 3, . . .).(10)

To give details of the induction proof here, we note that when n = 2, inequality
(10) is just inequality (4). Furthermore, if inequality (10) is assumed to be valid
when n = m, it must also hold when n = m + 1 since, by inequality (4),

|(z1 + z2 + · · · + zm) + zm+1| ≤ |z1 + z2 + · · · + zm| + |zm+1|
≤ (|z1| + |z2| + · · · + |zm|) + |zm+1|.

EXERCISES
1. Locate the numbers z1 + z2 and z1 − z2 vectorially when

(a) z1 = 2i, z2 = 2

3
− i; (b) z1 = (−√

3, 1), z2 = (
√

3, 0);

(c) z1 = (−3, 1), z2 = (1, 4); (d) z1 = x1 + iy1, z2 = x1 − iy1.

2. Verify inequalities (3), Sec. 4, involving Re z, Im z, and |z|.
3. Use established properties of moduli to show that when |z3| �= |z4|,

Re(z1 + z2)

|z3 + z4| ≤ |z1| + |z2|
||z3| − |z4|| .

4. Verify that
√

2 |z| ≥ |Re z| + |Im z|.
Suggestion: Reduce this inequality to (|x| − |y|)2 ≥ 0.

5. In each case, sketch the set of points determined by the given condition:

(a) |z − 1 + i| = 1; (b) |z + i| ≤ 3 ; (c) |z − 4i| ≥ 4.

6. Using the fact that |z1 − z2| is the distance between two points z1 and z2, give a
geometric argument that

(a) |z − 4i| + |z + 4i| = 10 represents an ellipse whose foci are (0,±4) ;
(b) |z − 1| = |z + i| represents the line through the origin whose slope is −1.



Brown-chap01-v3 10/29/07 3:32pm 13

sec. 5 Complex Conjugates 13

5. COMPLEX CONJUGATES

The complex conjugate, or simply the conjugate, of a complex number z = x + iy

is defined as the complex number x − iy and is denoted by z ; that is,

z = x − iy.(1)

The number z is represented by the point (x, −y), which is the reflection in the real
axis of the point (x, y) representing z (Fig. 5). Note that

z = z and |z| = |z|
for all z.

xO

y

z

–z

(x, y)

(x, –y) FIGURE 5

If z1 = x1 + iy1 and z2 = x2 + iy2, then

z1 + z2 = (x1 + x2) − i(y1 + y2) = (x1 − iy1) + (x2 − iy2).

So the conjugate of the sum is the sum of the conjugates:

z1 + z2 = z1 + z2.(2)

In like manner, it is easy to show that

z1 − z2 = z1 − z2,(3)

z1z2 = z1 z2,(4)

and (
z1

z2

)
= z1

z2
(z2 �= 0).(5)

The sum z + z of a complex number z = x + iy and its conjugate z = x − iy

is the real number 2x, and the difference z − z is the pure imaginary number 2iy.
Hence

Re z = z + z

2
and Im z = z − z

2i
.(6)
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An important identity relating the conjugate of a complex number z = x + iy

to its modulus is

z z = |z|2,(7)

where each side is equal to x2 + y2. It suggests the method for determining a
quotient z1/z2 that begins with expression (7), Sec. 3. That method is, of course,
based on multiplying both the numerator and the denominator of z1/z2 by z2, so
that the denominator becomes the real number |z2|2.

EXAMPLE 1. As an illustration,

−1 + 3i

2 − i
= (−1 + 3i)(2 + i)

(2 − i)(2 + i)
= −5 + 5i

|2 − i|2 = −5 + 5i

5
= −1 + i.

See also the example in Sec. 3.

Identity (7) is especially useful in obtaining properties of moduli from properties
of conjugates noted above. We mention that

|z1z2| = |z1||z2|(8)

and ∣∣∣∣z1

z2

∣∣∣∣ = |z1|
|z2| (z2 �= 0).(9)

Property (8) can be established by writing

|z1z2|2 = (z1z2)(z1z2) = (z1z2)(z1 z2) = (z1z1)(z2z2) = |z1|2|z2|2 = (|z1||z2|)2

and recalling that a modulus is never negative. Property (9) can be verified in a
similar way.

EXAMPLE 2. Property (8) tells us that |z2| = |z|2 and |z3| = |z|3. Hence if
z is a point inside the circle centered at the origin with radius 2, so that |z| < 2, it
follows from the generalized triangle inequality (10) in Sec. 4 that

|z3 + 3z2 − 2z + 1| ≤ |z|3 + 3|z|2 + 2|z| + 1 < 25.

EXERCISES
1. Use properties of conjugates and moduli established in Sec. 5 to show that

(a) z + 3i = z − 3i; (b) iz = −iz;

(c) (2 + i)2 = 3 − 4i; (d) |(2z + 5)(
√

2 − i)| = √
3 |2z + 5|.

2. Sketch the set of points determined by the condition

(a) Re(z − i) = 2; (b) |2z + i| = 4.
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3. Verify properties (3) and (4) of conjugates in Sec. 5.

4. Use property (4) of conjugates in Sec. 5 to show that

(a) z1z2z3 = z1 z2 z3 ; (b) z4 = z4.

5. Verify property (9) of moduli in Sec. 5.

6. Use results in Sec. 5 to show that when z2 and z3 are nonzero,

(a)

(
z1

z2z3

)
= z1

z2 z3
; (b)

∣∣∣∣ z1

z2z3

∣∣∣∣ = |z1|
|z2||z3| .

7. Show that
|Re(2 + z + z3)| ≤ 4 when |z| ≤ 1.

8. It is shown in Sec. 3 that if z1z2 = 0, then at least one of the numbers z1 and z2 must
be zero. Give an alternative proof based on the corresponding result for real numbers
and using identity (8), Sec. 5.

9. By factoring z4 − 4z2 + 3 into two quadratic factors and using inequality (8), Sec. 4,
show that if z lies on the circle |z| = 2, then∣∣∣∣ 1

z4 − 4z2 + 3

∣∣∣∣ ≤ 1

3
.

10. Prove that

(a) z is real if and only if z = z;
(b) z is either real or pure imaginary if and only if z2 = z2.

11. Use mathematical induction to show that when n = 2, 3, . . . ,

(a) z1 + z2 + · · · + zn = z1 + z2 + · · · + zn; (b) z1z2 · · · zn = z1 z2 · · · zn.

12. Let a0, a1, a2, . . . , an (n ≥ 1) denote real numbers, and let z be any complex number.
With the aid of the results in Exercise 11, show that

a0 + a1z + a2z2 + · · · + anzn = a0 + a1z + a2z
2 + · · · + anz

n.

13. Show that the equation |z − z0| = R of a circle, centered at z0 with radius R, can be
written

|z|2 − 2 Re(zz0) + |z0|2 = R2.

14. Using expressions (6), Sec. 5, for Re z and Im z, show that the hyperbola x2 − y2 = 1
can be written

z2 + z2 = 2.

15. Follow the steps below to give an algebraic derivation of the triangle inequality (Sec. 4)

|z1 + z2| ≤ |z1| + |z2|.
(a) Show that

|z1 + z2|2 = (z1 + z2)(z1 + z2) = z1z1 + (z1z2 + z1z2) + z2z2.
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(b) Point out why
z1z2 + z1z2 = 2 Re(z1z2) ≤ 2|z1||z2|.

(c) Use the results in parts (a) and (b) to obtain the inequality

|z1 + z2|2 ≤ (|z1| + |z2|)2,

and note how the triangle inequality follows.

6. EXPONENTIAL FORM

Let r and θ be polar coordinates of the point (x, y) that corresponds to a nonzero
complex number z = x + iy. Since x = r cos θ and y = r sin θ , the number z can
be written in polar form as

z = r(cos θ + i sin θ).(1)

If z = 0, the coordinate θ is undefined; and so it is understood that z �= 0 whenever
polar coordinates are used.

In complex analysis, the real number r is not allowed to be negative and is the
length of the radius vector for z ; that is, r = |z|. The real number θ represents the
angle, measured in radians, that z makes with the positive real axis when z is inter-
preted as a radius vector (Fig. 6). As in calculus, θ has an infinite number of possible
values, including negative ones, that differ by integral multiples of 2π . Those values
can be determined from the equation tan θ = y/x, where the quadrant containing the
point corresponding to z must be specified. Each value of θ is called an argument
of z, and the set of all such values is denoted by arg z. The principal value of arg z,
denoted by Arg z, is that unique value � such that −π < � ≤ π . Evidently, then,

arg z = Arg z + 2nπ (n = 0, ±1, ±2, . . .).(2)

Also, when z is a negative real number, Arg z has value π , not −π .

x

y

z = x + iy

r

FIGURE 6

EXAMPLE 1. The complex number −1 − i, which lies in the third quadrant,
has principal argument −3π/4. That is,

Arg(−1 − i) = −3π

4
.
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It must be emphasized that because of the restriction −π < � ≤ π of the principal
argument �, it is not true that Arg(−1 − i) = 5π/4.

According to equation (2),

arg(−1 − i) = −3π

4
+ 2nπ (n = 0, ±1, ±2, . . .).

Note that the term Arg z on the right-hand side of equation (2) can be replaced by
any particular value of arg z and that one can write, for instance,

arg(−1 − i) = 5π

4
+ 2nπ (n = 0, ±1,±2, . . .).

The symbol eiθ , or exp(iθ), is defined by means of Euler’s formula as

eiθ = cos θ + i sin θ,(3)

where θ is to be measured in radians. It enables one to write the polar form (1)
more compactly in exponential form as

z = reiθ .(4)

The choice of the symbol eiθ will be fully motivated later on in Sec. 29. Its use in
Sec. 7 will, however, suggest that it is a natural choice.

EXAMPLE 2. The number −1 − i in Example 1 has exponential form

−1 − i =
√

2 exp

[
i

(
−3π

4

)]
.(5)

With the agreement that e−iθ = ei(−θ), this can also be written −1 − i = √
2 e−i3π/4.

Expression (5) is, of course, only one of an infinite number of possibilities for the
exponential form of −1 − i:

−1 − i =
√

2 exp

[
i

(
−3π

4
+ 2nπ

)]
(n = 0,±1, ±2, . . .).(6)

Note how expression (4) with r = 1 tells us that the numbers eiθ lie on the
circle centered at the origin with radius unity, as shown in Fig. 7. Values of eiθ

are, then, immediate from that figure, without reference to Euler’s formula. It is, for
instance, geometrically obvious that

eiπ = −1, e−iπ/2 = −i, and e−i4π = 1.
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xO

1

y

FIGURE 7

Note, too, that the equation

z = Reiθ (0 ≤ θ ≤ 2π)(7)

is a parametric representation of the circle |z| = R, centered at the origin with radius
R. As the parameter θ increases from θ = 0 to θ = 2π , the point z starts from the
positive real axis and traverses the circle once in the counterclockwise direction.
More generally, the circle |z − z0| = R, whose center is z0 and whose radius is R,
has the parametric representation

z = z0 + Reiθ (0 ≤ θ ≤ 2π).(8)

This can be seen vectorially (Fig. 8) by noting that a point z traversing the circle
|z − z0| = R once in the counterclockwise direction corresponds to the sum of the
fixed vector z0 and a vector of length R whose angle of inclination θ varies from
θ = 0 to θ = 2π .

xO

y

z

z0

FIGURE 8

7. PRODUCTS AND POWERS IN EXPONENTIAL FORM

Simple trigonometry tells us that eiθ has the familiar additive property of the expo-
nential function in calculus:

eiθ1eiθ2 = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= (cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)

= cos(θ1 + θ2) + i sin(θ1 + θ2) = ei(θ1+θ2).
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Thus, if z1 = r1e
iθ1 and z2 = r2e

iθ2 , the product z1z2 has exponential form

z1z2 = r1e
iθ1r2e

iθ2 = r1r2e
iθ1eiθ2 = (r1r2)e

i(θ1+θ2).(1)

Furthermore,

z1

z2
= r1e

iθ1

r2eiθ2
= r1

r2
· eiθ1e−iθ2

eiθ2e−iθ2
= r1

r2
· ei(θ1−θ2)

ei0
= r1

r2
ei(θ1−θ2).(2)

Note how it follows from expression (2) that the inverse of any nonzero complex
number z = reiθ is

z−1 = 1

z
= 1ei0

reiθ
= 1

r
ei(0−θ) = 1

r
e−iθ .(3)

Expressions (1), (2), and (3) are, of course, easily remembered by applying the usual
algebraic rules for real numbers and ex .

Another important result that can be obtained formally by applying rules for
real numbers to z = reiθ is

zn = rneinθ (n = 0, ±1,±2, . . .).(4)

It is easily verified for positive values of n by mathematical induction. To be specific,
we first note that it becomes z = reiθ when n = 1. Next, we assume that it is valid
when n = m, where m is any positive integer. In view of expression (1) for the
product of two nonzero complex numbers in exponential form, it is then valid for
n = m + 1:

zm+1 = zmz = rmeimθ reiθ = (rmr)ei(mθ+θ) = rm+1ei(m+1)θ .

Expression (4) is thus verified when n is a positive integer. It also holds when
n = 0, with the convention that z0 = 1. If n = −1, −2, . . . , on the other hand, we
define zn in terms of the multiplicative inverse of z by writing

zn = (z−1)m where m = −n = 1, 2, . . . .

Then, since equation (4) is valid for positive integers, it follows from the exponential
form (3) of z−1 that

zn =
[

1

r
ei(−θ)

]m

=
(

1

r

)m

eim(−θ) =
(

1

r

)−n

ei(−n)(−θ) = rneinθ

(n = −1,−2, . . .).

Expression (4) is now established for all integral powers.
Expression (4) can be useful in finding powers of complex numbers even when

they are given in rectangular form and the result is desired in that form.
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EXAMPLE 1. In order to put (
√

3 + 1)7 in rectangular form, one need only
write

(
√

3 + i)7 = (2eiπ/6)7 = 27ei7π/6 = (26eiπ )(2eiπ/6) = −64(
√

3 + i).

Finally, we observe that if r = 1, equation (4) becomes

(eiθ )n = einθ (n = 0, ±1,±2, . . .).(5)

When written in the form

(cos θ + i sin θ)n = cos nθ + i sin nθ (n = 0, ±1,±2, . . .),(6)

this is known as de Moivre’s formula. The following example uses a special case
of it.

EXAMPLE 2. Formula (6) with n = 2 tells us that

(cos θ + i sin θ)2 = cos 2θ + i sin 2θ,

or

cos2 θ − sin2 θ + i2 sin θ cos θ = cos 2θ + i sin 2θ.

By equating real parts and then imaginary parts here, we have the familiar trigono-
metric identities

cos 2θ = cos2 θ − sin2 θ, sin 2θ = 2 sin θ cos θ.

(See also Exercises 10 and 11, Sec. 8.)

8. ARGUMENTS OF PRODUCTS AND QUOTIENTS

If z1 = r1e
iθ1 and z2 = r2e

iθ2 , the expression

z1z2 = (r1r2)e
i(θ1+θ2)(1)

in Sec. 7 can be used to obtain an important identity involving arguments:

arg(z1z2) = arg z1 + arg z2.(2)

This result is to be interpreted as saying that if values of two of the three (multiple-
valued) arguments are specified, then there is a value of the third such that the
equation holds.

We start the verification of statement (2) by letting θ1 and θ2 denote any values
of arg z1 and arg z2, respectively. Expression (1) then tells us that θ1 + θ2 is a
value of arg(z1z2). (See Fig. 9.) If, on the other hand, values of arg(z1z2) and
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xO

y z1z2

z1

z2

FIGURE 9

arg z1 are specified, those values correspond to particular choices of n and n1 in the
expressions

arg(z1z2) = (θ1 + θ2) + 2nπ (n = 0,±1, ±2, . . .)

and
arg z1 = θ1 + 2n1π (n1 = 0, ±1,±2, . . .).

Since
(θ1 + θ2) + 2nπ = (θ1 + 2n1π) + [θ2 + 2(n − n1)π],

equation (2) is evidently satisfied when the value

arg z2 = θ2 + 2(n − n1)π

is chosen. Verification when values of arg(z1z2) and arg z2 are specified follows by
symmetry.

Statement (2) is sometimes valid when arg is replaced everywhere by Arg (see
Exercise 6). But, as the following example illustrates, that is not always the case.

EXAMPLE 1. When z1 = −1 and z2 = i,

Arg(z1z2) = Arg(−i) = −π

2
but Arg z1 + Arg z2 = π + π

2
= 3π

2
.

If, however, we take the values of arg z1 and arg z2 just used and select the value

Arg(z1z2) + 2π = −π

2
+ 2π = 3π

2

of arg(z1z2), we find that equation (2) is satisfied.

Statement (2) tells us that

arg

(
z1

z2

)
= arg(z1z

−1
2 ) = arg z1 + arg(z−1

2 );
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and, since (Sec. 7)

z−1
2 = 1

r2
e−iθ2 ,

one can see that

arg(z−1
2 ) = −arg z2.(3)

Hence

arg

(
z1

z2

)
= arg z1 − arg z2.(4)

Statement (3) is, of course, to be interpreted as saying that the set of all values
on the left-hand side is the same as the set of all values on the right-hand side.
Statement (4) is, then, to be interpreted in the same way that statement (2) is.

EXAMPLE 2. In order to find the principal argument Arg z when

z = −2

1 + √
3i

,

observe that
arg z = arg(−2) − arg(1 +

√
3i).

Since
Arg(−2) = π and Arg(1 +

√
3i) = π

3
,

one value of arg z is 2π/3; and, because 2π/3 is between −π and π , we find that
Arg z = 2π/3.

EXERCISES
1. Find the principal argument Arg z when

(a) z = i

−2 − 2i
; (b) z = (

√
3 − i)6.

Ans. (a) −3π/4; (b) π .

2. Show that (a) |eiθ | = 1; (b) eiθ = e−iθ .

3. Use mathematical induction to show that

eiθ1eiθ2 · · · eiθn = ei(θ1+θ2+···+θn) (n = 2, 3, . . .).

4. Using the fact that the modulus |eiθ − 1| is the distance between the points eiθ and 1
(see Sec. 4), give a geometric argument to find a value of θ in the interval 0 ≤ θ < 2π

that satisfies the equation |eiθ − 1| = 2.
Ans. π .
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5. By writing the individual factors on the left in exponential form, performing the needed
operations, and finally changing back to rectangular coordinates, show that

(a) i(1 − √
3i)(

√
3 + i) = 2(1 + √

3i); (b) 5i/(2 + i) = 1 + 2i;

(c) (−1 + i)7 = −8(1 + i); (d) (1 + √
3i)−10 = 2−11(−1 + √

3i).

6. Show that if Re z1 > 0 and Re z2 > 0, then

Arg(z1z2) = Arg z1 + Arg z2,

where principal arguments are used.

7. Let z be a nonzero complex number and n a negative integer (n = −1,−2, . . .). Also,
write z = reiθ and m = −n = 1, 2, . . . . Using the expressions

zm = rmeimθ and z−1 =
(

1

r

)
ei(−θ),

verify that (zm)−1 = (z−1)m and hence that the definition zn = (z−1)m in Sec. 7 could
have been written alternatively as zn = (zm)−1.

8. Prove that two nonzero complex numbers z1 and z2 have the same moduli if and only
if there are complex numbers c1 and c2 such that z1 = c1c2 and z2 = c1c2.

Suggestion: Note that

exp

(
i
θ1 + θ2

2

)
exp

(
i
θ1 − θ2

2

)
= exp(iθ1)

and [see Exercise 2(b)]

exp

(
i
θ1 + θ2

2

)
exp

(
i
θ1 − θ2

2

)
= exp(iθ2).

9. Establish the identity

1 + z + z2 + · · · + zn = 1 − zn+1

1 − z
(z �= 1)

and then use it to derive Lagrange’s trigonometric identity:

1 + cos θ + cos 2θ + · · · + cos nθ = 1

2
+ sin[(2n + 1)θ/2]

2 sin(θ/2)
(0 < θ < 2π).

Suggestion: As for the first identity, write S = 1 + z + z2 + · · · + zn and consider
the difference S − zS. To derive the second identity, write z = eiθ in the first one.

10. Use de Moivre’s formula (Sec. 7) to derive the following trigonometric identities:

(a) cos 3θ = cos3 θ − 3 cos θ sin2 θ ; (b) sin 3θ = 3 cos2 θ sin θ − sin3 θ .



Brown-chap01-v3 10/29/07 3:32pm 24

24 Complex Numbers chap. 1

11. (a) Use the binomial formula (Sec. 3) and de Moivre’s formula (Sec. 7) to write

cos nθ + i sin nθ =
n∑

k=0

(n

k

)
cosn−k θ (i sin θ)k (n = 0, 1, 2, . . .).

Then define the integer m by means of the equations

m =
{
n/2 if n is even,

(n − 1)/2 if nis odd

and use the above summation to show that [compare with Exercise 10(a)]

cos nθ =
m∑

k=0

( n

2k

)
(−1)k cosn−2k θ sin2k θ (n = 0, 1, 2, . . .).

(b) Write x = cos θ in the final summation in part (a) to show that it becomes a
polynomial

Tn(x) =
m∑

k=0

(
n

2k

)
(−1)kxn−2k(1 − x2)k

of degree n (n = 0, 1, 2, . . .) in the variable x.∗

9. ROOTS OF COMPLEX NUMBERS

Consider now a point z = reiθ , lying on a circle centered at the origin with radius
r (Fig. 10). As θ is increased, z moves around the circle in the counterclockwise
direction. In particular, when θ is increased by 2π , we arrive at the original point;
and the same is true when θ is decreased by 2π . It is, therefore, evident from Fig. 10
that two nonzero complex numbers

z1 = r1e
iθ1 and z2 = r2e

iθ2

xO

r

y

FIGURE 10

∗These are called Chebyshev polynomials and are prominent in approximation theory.
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are equal if and only if

r1 = r2 and θ1 = θ2 + 2kπ,

where k is some integer (k = 0,±1, ±2, . . .).
This observation, together with the expression zn = rneinθ in Sec. 7 for integral

powers of complex numbers z = reiθ , is useful in finding the nth roots of any
nonzero complex number z0 = r0e

iθ0 , where n has one of the values n = 2, 3, . . . .

The method starts with the fact that an nth root of z0 is a nonzero number z = reiθ

such that zn = z0, or
rneinθ = r0e

iθ0 .

According to the statement in italics just above, then,

rn = r0 and nθ = θ0 + 2kπ,

where k is any integer (k = 0,±1, ±2, . . .). So r = n
√

r0, where this radical denotes
the unique positive nth root of the positive real number r0, and

θ = θ0 + 2kπ

n
= θ0

n
+ 2kπ

n
(k = 0, ±1, ±2, . . .).

Consequently, the complex numbers

z = n
√

r0 exp

[
i

(
θ0

n
+ 2kπ

n

)]
(k = 0, ±1,±2, . . .)

are the nth roots of z0. We are able to see immediately from this exponential form
of the roots that they all lie on the circle |z| = n

√
r0 about the origin and are equally

spaced every 2π/n radians, starting with argument θ0/n. Evidently, then, all of the
distinct roots are obtained when k = 0, 1, 2, . . . , n − 1, and no further roots arise
with other values of k. We let ck (k = 0, 1, 2, . . . , n − 1) denote these distinct roots
and write

ck = n
√

r0 exp

[
i

(
θ0

n
+ 2kπ

n

)]
(k = 0, 1, 2, . . . , n − 1).(1)

(See Fig. 11.)

xO

y

n

ck–1

ck

√
r0

n

FIGURE 11
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The number n
√

r0 is the length of each of the radius vectors representing the
n roots. The first root c0 has argument θ0/n; and the two roots when n = 2 lie at
the opposite ends of a diameter of the circle |z| = n

√
r0, the second root being −c0.

When n ≥ 3, the roots lie at the vertices of a regular polygon of n sides inscribed
in that circle.

We shall let z
1/n

0 denote the set of nth roots of z0. If, in particular, z0 is a
positive real number r0, the symbol r

1/n

0 denotes the entire set of roots; and the
symbol n

√
r0 in expression (1) is reserved for the one positive root. When the value

of θ0 that is used in expression (1) is the principal value of arg z0 (−π < θ0 ≤ π),
the number c0 is referred to as the principal root. Thus when z0 is a positive real
number r0, its principal root is n

√
r0.

Observe that if we write expression (1) for the roots of z0 as

ck = n
√

r0 exp

(
i
θ0

n

)
exp

(
i
2kπ

n

)
(k = 0, 1, 2, . . . , n − 1),

and also write

ωn = exp

(
i
2π

n

)
,(2)

it follows from property (5), Sec. 7. of eiθ that

ωk
n = exp

(
i
2kπ

n

)
(k = 0, 1, 2, . . . , n − 1)(3)

and hence that

ck = c0ω
k
n (k = 0, 1, 2, . . . , n − 1).(4)

The number c0 here can, of course, be replaced by any particular nth root of z0,
since ωn represents a counterclockwise rotation through 2π/n radians.

Finally, a convenient way to remember expression (1) is to write z0 in its most
general exponential form (compare with Example 2 in Sec. 6)

z0 = r0 ei(θ0+2kπ) (k = 0, ±1, ±2, . . .)(5)

and to formally apply laws of fractional exponents involving real numbers, keeping
in mind that there are precisely n roots:

z
1/n

0 = [
r0 ei(θ0+2kπ)

]1/n = n
√

r0 exp

[
i(θ0 + 2kπ)

n

]
= n

√
r0 exp

[
i

(
θ0

n
+ 2kπ

n

)]

(k = 0, 1, 2, . . . , n − 1).
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The examples in the next section serve to illustrate this method for finding roots of
complex numbers.

10. EXAMPLES

In each of the examples here, we start with expression (5), Sec. 9, and proceed in
the manner described just after it.

EXAMPLE 1. Let us find all values of (−8i)1/3, or the three cube roots of
the number −8i. One need only write

−8i = 8 exp
[
i
(
−π

2
+ 2kπ

)]
(k = 0, ±1, ±2, . . .)

to see that the desired roots are

ck = 2 exp

[
i

(
−π

6
+ 2kπ

3

)]
(k = 0, 1, 2).(1)

They lie at the vertices of an equilateral triangle, inscribed in the circle |z| = 2, and
are equally spaced around that circle every 2π/3 radians, starting with the principal
root (Fig. 12)

c0 = 2 exp
[
i
(
−π

6

)]
= 2

(
cos

π

6
− i sin

π

6

)
=

√
3 − i.

Without any further calculations, it is then evident that c1 = 2i; and, since
c2 is symmetric to c0 with respect to the imaginary axis, we know that
c2 = −√

3 − i.
Note how it follows from expressions (2) and (4) in Sec. 9 that these roots can

be written

c0, c0ω3, c0ω
2
3 where ω3 = exp

(
i
2π

3

)
.

x

y
c1

c0c2

2

FIGURE 12
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EXAMPLE 2. In order to determine the nth roots of unity, we start with

1 = 1 exp[i(0 + 2kπ)] (k = 0, ±1, ±2 . . .)

and find that

11/n = n
√

1 exp

[
i

(
0

n
+ 2kπ

n

)]
= exp

(
i
2kπ

n

)
(k = 0, 1, 2, . . . , n − 1).(2)

When n = 2, these roots are, of course, ±1. When n ≥ 3, the regular polygon at
whose vertices the roots lie is inscribed in the unit circle |z| = 1, with one vertex
corresponding to the principal root z = 1 (k = 0). In view of expression (3), Sec. 9,
these roots are simply

1, ωn, ω
2
n, . . . , ω

n−1
n where ωn = exp

(
i
2π

n

)
.

See Fig. 13, where the cases n = 3, 4, and 6 are illustrated. Note that ωn
n = 1.

x

y

1 x

y

1 x

y

1

FIGURE 13

EXAMPLE 3. The two values ck (k = 0, 1) of (
√

3 + i)1/2, which are the
square roots of

√
3 + i, are found by writing

√
3 + i = 2 exp

[
i
(π

6
+ 2kπ

)]
(k = 0, ±1,±2, . . .)

and (see Fig. 14)

ck =
√

2 exp
[
i
( π

12
+ kπ

)]
(k = 0, 1).(3)

Euler’s formula tells us that

c0 =
√

2 exp
(
i
π

12

)
=

√
2

(
cos

π

12
+ i sin

π

12

)
,

and the trigonometric identities
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x

y

c0

c1 = –c0
2√

FIGURE 14

cos2 α

2
= 1 + cos α

2
, sin2 α

2
= 1 − cos α

2
(4)

enable us to write

cos2 π

12
= 1

2

(
1 + cos

π

6

)
= 1

2

(
1 +

√
3

2

)
= 2 + √

3

4
,

sin2 π

12
= 1

2

(
1 − cos

π

6

)
= 1

2

(
1 −

√
3

2

)
= 2 − √

3

4
.

Consequently,

c0 =
√

2




√
2 + √

3

4
+ i

√
2 − √

3

4


 = 1√

2

(√
2 +

√
3 + i

√
2 −

√
3

)
.

Since c1 = −c0, the two square roots of
√

3 + i are, then,

± 1√
2

(√
2 +

√
3 + i

√
2 −

√
3

)
.(5)

EXERCISES
1. Find the square roots of (a) 2i; (b) 1 − √

3i and express them in rectangular coordi-
nates.

Ans. (a) ± (1 + i); (b) ±
√

3 − i√
2

.

2. In each case, find all the roots in rectangular coordinates, exhibit them as vertices of
certain squares, and point out which is the principal root:

(a) (−16)1/4; (b) (−8 − 8
√

3i)1/4.

Ans. (a) ±√
2(1 + i), ±√

2(1 − i); (b) ±(
√

3 − i), ±(1 + √
3i).
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3. In each case, find all the roots in rectangular coordinates, exhibit them as vertices of
certain regular polygons, and identify the principal root:

(a) (−1)1/3; (b) 81/6.

Ans. (b) ±√
2, ±1 + √

3i√
2

, ±1 − √
3i√

2
.

4. According to Sec. 9, the three cube roots of a nonzero complex number z0 can be
written c0, c0ω3, c0ω

2
3 where c0 is the principal cube root of z0 and

ω3 = exp

(
i
2π

3

)
= −1 + √

3i

2
.

Show that if z0 = −4
√

2 + 4
√

2i, then c0 = √
2(1 + i) and the other two cube roots

are, in rectangular form, the numbers

c0ω3 = −(
√

3 + 1) + (
√

3 − 1)i√
2

, c0ω
2
3 = (

√
3 − 1) − (

√
3 + 1)i√

2
.

5. (a) Let a denote any fixed real number and show that the two square roots of a + i

are

±
√

A exp
(
i
α

2

)
where A = √

a2 + 1 and α = Arg(a + i).
(b) With the aid of the trigonometric identities (4) in Example 3 of Sec. 10, show that

the square roots obtained in part (a) can be written

± 1√
2

(√
A + a + i

√
A − a

)
.

(Note that this becomes the final result in Example 3, Sec. 10, when a = √
3.)

6. Find the four zeros of the polynomial z4 + 4, one of them being

z0 =
√

2 eiπ/4 = 1 + i.

Then use those zeros to factor z2 + 4 into quadratic factors with real coefficients.

Ans. (z2 + 2z + 2)(z2 − 2z + 2).

7. Show that if c is any nth root of unity other than unity itself, then

1 + c + c2 + · · · + cn−1 = 0.

Suggestion: Use the first identity in Exercise 9, Sec. 8.

8. (a) Prove that the usual formula solves the quadratic equation

az2 + bz + c = 0 (a �= 0)

when the coefficients a, b, and c are complex numbers. Specifically, by completing
the square on the left-hand side, derive the quadratic formula

z = −b + (b2 − 4ac)1/2

2a
,

where both square roots are to be considered when b2 − 4ac �= 0,
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(b) Use the result in part (a) to find the roots of the equation z2 + 2z + (1 − i) = 0.

Ans. (b)

(
−1 + 1√

2

)
+ i√

2
,

(
−1 − 1√

2

)
− i√

2
.

9. Let z = reiθ be a nonzero complex number and n a negative integer (n = −1,−2, . . .).

Then define z1/n by means of the equation z1/n = (z−1)1/m where m = −n. By
showing that the m values of (z1/m)−1 and (z−1)1/m are the same, verify that
z1/n = (z1/m)−1. (Compare with Exercise 7, Sec. 8.)

11. REGIONS IN THE COMPLEX PLANE

In this section, we are concerned with sets of complex numbers, or points in the
z plane, and their closeness to one another. Our basic tool is the concept of an
ε neighborhood

|z − z0| < ε(1)

of a given point z0. It consists of all points z lying inside but not on a circle
centered at z0 and with a specified positive radius ε (Fig. 15). When the value of ε

is understood or is immaterial in the discussion, the set (1) is often referred to as just
a neighborhood. Occasionally, it is convenient to speak of a deleted neighborhood,
or punctured disk,

0 < |z − z0| < ε(2)

consisting of all points z in an ε neighborhood of z0 except for the point z0 itself.

x

z

|z – z0|

z0

O

y

ε

FIGURE 15

A point z0 is said to be an interior point of a set S whenever there is some
neighborhood of z0 that contains only points of S; it is called an exterior point of
S when there exists a neighborhood of it containing no points of S. If z0 is neither
of these, it is a boundary point of S. A boundary point is, therefore, a point all of
whose neighborhoods contain at least one point in S and at least one point not in S.
The totality of all boundary points is called the boundary of S. The circle |z| = 1,
for instance, is the boundary of each of the sets

|z| < 1 and |z| ≤ 1.(3)
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A set is open if it contains none of its boundary points. It is left as an exercise
to show that a set is open if and only if each of its points is an interior point. A set
is closed if it contains all of its boundary points, and the closure of a set S is the
closed set consisting of all points in S together with the boundary of S. Note that
the first of the sets (3) is open and that the second is its closure.

Some sets are, of course, neither open nor closed. For a set to be not open,
there must be a boundary point that is contained in the set; and if a set is not closed,
there exists a boundary point not contained in the set. Observe that the punctured
disk 0 < |z| ≤ 1 is neither open nor closed. The set of all complex numbers is, on
the other hand, both open and closed since it has no boundary points.

An open set S is connected if each pair of points z1 and z2 in it can be joined
by a polygonal line, consisting of a finite number of line segments joined end to end,
that lies entirely in S. The open set |z| < 1 is connected. The annulus 1 < |z| < 2
is, of course, open and it is also connected (see Fig. 16). A nonempty open set
that is connected is called a domain. Note that any neighborhood is a domain. A
domain together with some, none, or all of its boundary points is referred to as a
region.

x
z1

z2

O 1 2

y

FIGURE 16

A set S is bounded if every point of S lies inside some circle |z| = R; otherwise,
it is unbounded. Both of the sets (3) are bounded regions, and the half plane Re z ≥ 0
is unbounded.

A point z0 is said to be an accumulation point of a set S if each deleted
neighborhood of z0 contains at least one point of S. It follows that if a set S is
closed, then it contains each of its accumulation points. For if an accumulation
point z0 were not in S, it would be a boundary point of S; but this contradicts the
fact that a closed set contains all of its boundary points. It is left as an exercise to
show that the converse is, in fact, true. Thus a set is closed if and only if it contains
all of its accumulation points.

Evidently, a point z0 is not an accumulation point of a set S whenever there
exists some deleted neighborhood of z0 that does not contain at least one point of S.
Note that the origin is the only accumulation point of the set zn = i/n (n = 1, 2, . . .).
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EXERCISES
1. Sketch the following sets and determine which are domains:

(a) |z − 2 + i| ≤ 1; (b) |2z + 3| > 4;
(c) Im z > 1; (d) Im z = 1;
(e) 0 ≤ arg z ≤ π/4 (z �= 0); (f) |z − 4| ≥ |z|.

Ans. (b), (c) are domains.

2. Which sets in Exercise 1 are neither open nor closed?
Ans. (e).

3. Which sets in Exercise 1 are bounded?
Ans. (a).

4. In each case, sketch the closure of the set:
(a) −π < arg z < π (z �= 0); (b) |Re z| < |z|;

(c) Re

(
1

z

)
≤ 1

2
; (d) Re(z2) > 0.

5. Let S be the open set consisting of all points z such that |z| < 1 or |z − 2| < 1. State
why S is not connected.

6. Show that a set S is open if and only if each point in S is an interior point.

7. Determine the accumulation points of each of the following sets:

(a) zn = in (n = 1, 2, . . .); (b) zn = in/n (n = 1, 2, . . .);

(c) 0 ≤ arg z < π/2 (z �= 0); (d) zn = (−1)n(1 + i)
n − 1

n
(n = 1, 2, . . .).

Ans. (a) None; (b) 0; (d) ±(1 + i).

8. Prove that if a set contains each of its accumulation points, then it must be a closed
set.

9. Show that any point z0 of a domain is an accumulation point of that domain.

10. Prove that a finite set of points z1, z2, . . . , zn cannot have any accumulation points.
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C H A P T E R

2
ANALYTIC FUNCTIONS

We now consider functions of a complex variable and develop a theory of differ-
entiation for them. The main goal of the chapter is to introduce analytic functions,
which play a central role in complex analysis.

12. FUNCTIONS OF A COMPLEX VARIABLE

Let S be a set of complex numbers. A function f defined on S is a rule that assigns
to each z in S a complex number w. The number w is called the value of f at z and
is denoted by f (z); that is, w = f (z). The set S is called the domain of definition
of f .∗

It must be emphasized that both a domain of definition and a rule are needed
in order for a function to be well defined. When the domain of definition is not
mentioned, we agree that the largest possible set is to be taken. Also, it is not
always convenient to use notation that distinguishes between a given function and
its values.

EXAMPLE 1. If f is defined on the set z �= 0 by means of the equation
w = 1/z, it may be referred to only as the function w = 1/z, or simply the func-
tion 1/z.

Suppose that w = u + iv is the value of a function f at z = x + iy, so that

u + iv = f (x + iy).

∗Although the domain of definition is often a domain as defined in Sec. 11, it need not be.

35
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Each of the real numbers u and v depends on the real variables x and y, and it
follows that f (z) can be expressed in terms of a pair of real-valued functions of
the real variables x and y:

f (z) = u(x, y) + iv(x, y).(1)

If the polar coordinates r and θ , instead of x and y, are used, then

u + iv = f (reiθ )

where w = u + iv and z = reiθ . In that case, we may write

f (z) = u(r, θ) + iv(r, θ).(2)

EXAMPLE 2. If f (z) = z2, then

f (x + iy) = (x + iy)2 = x2 − y2 + i2xy.

Hence
u(x, y) = x2 − y2 and v(x, y) = 2xy.

When polar coordinates are used,

f (reiθ ) = (reiθ )2 = r2ei2θ = r2 cos 2θ + ir2 sin 2θ.

Consequently,

u(r, θ) = r2 cos 2θ and v(r, θ) = r2 sin 2θ.

If, in either of equations (1) and (2), the function v always has value zero, then
the value of f is always real. That is, f is a real-valued function of a complex
variable.

EXAMPLE 3. A real-valued function that is used to illustrate some important
concepts later in this chapter is

f (z) = |z|2 = x2 + y2 + i0.

If n is zero or a positive integer and if a0, a1, a2, . . . , an are complex constants,
where an �= 0, the function

P(z) = a0 + a1z + a2z
2 + · · · + anz

n

is a polynomial of degree n. Note that the sum here has a finite number of terms
and that the domain of definition is the entire z plane. Quotients P(z)/Q(z) of
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polynomials are called rational functions and are defined at each point z where
Q(z) �= 0. Polynomials and rational functions constitute elementary, but important,
classes of functions of a complex variable.

A generalization of the concept of function is a rule that assigns more than
one value to a point z in the domain of definition. These multiple-valued func-
tions occur in the theory of functions of a complex variable, just as they do in
the case of a real variable. When multiple-valued functions are studied, usually
just one of the possible values assigned to each point is taken, in a systematic
manner, and a (single-valued) function is constructed from the multiple-valued
function.

EXAMPLE 4. Let z denote any nonzero complex number. We know from
Sec. 9 that z1/2 has the two values

z1/2 = ±√
r exp

(
i
�

2

)
,

where r = |z| and � (−π < � ≤ π) is the principal value of arg z. But, if we
choose only the positive value of ±√

r and write

f (z) = √
r exp

(
i
�

2

)
(r > 0, −π < � ≤ π),(3)

the (single-valued) function (3) is well defined on the set of nonzero numbers in
the z plane. Since zero is the only square root of zero, we also write f (0) = 0. The
function f is then well defined on the entire plane.

EXERCISES
1. For each of the functions below, describe the domain of definition that is understood:

(a) f (z) = 1

z2 + 1
; (b) f (z) = Arg

(
1

z

)
;

(c) f (z) = z

z + z
; (d) f (z) = 1

1 − |z|2 .

Ans. (a) z �= ±i; (c) Re z �= 0.

2. Write the function f (z) = z3 + z + 1 in the form f (z) = u(x, y) + iv(x, y).
Ans. f (z) = (x3 − 3xy2 + x + 1) + i(3x2y − y3 + y).

3. Suppose that f (z) = x2 − y2 − 2y + i(2x − 2xy), where z = x + iy. Use the expres-
sions (see Sec. 5)

x = z + z

2
and y = z − z

2i

to write f (z) in terms of z, and simplify the result.
Ans. f (z) = z2 + 2iz.
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4. Write the function

f (z) = z + 1

z
(z �= 0)

in the form f (z) = u(r, θ) + iv(r, θ).

Ans. f (z) =
(

r + 1

r

)
cos θ + i

(
r − 1

r

)
sin θ .

13. MAPPINGS

Properties of a real-valued function of a real variable are often exhibited by the
graph of the function. But when w = f (z), where z and w are complex, no such
convenient graphical representation of the function f is available because each of
the numbers z and w is located in a plane rather than on a line. One can, however,
display some information about the function by indicating pairs of corresponding
points z = (x, y) and w = (u, v). To do this, it is generally simpler to draw the z

and w planes separately.
When a function f is thought of in this way, it is often referred to as a mapping,

or transformation. The image of a point z in the domain of definition S is the point
w = f (z), and the set of images of all points in a set T that is contained in S is
called the image of T . The image of the entire domain of definition S is called the
range of f . The inverse image of a point w is the set of all points z in the domain
of definition of f that have w as their image. The inverse image of a point may
contain just one point, many points, or none at all. The last case occurs, of course,
when w is not in the range of f .

Terms such as translation, rotation, and reflection are used to convey domi-
nant geometric characteristics of certain mappings. In such cases, it is sometimes
convenient to consider the z and w planes to be the same. For example, the mapping

w = z + 1 = (x + 1) + iy,

where z = x + iy, can be thought of as a translation of each point z one unit to the
right. Since i = eiπ/2, the mapping

w = iz = r exp
[
i
(
θ + π

2

)]
,

where z = reiθ , rotates the radius vector for each nonzero point z through a right
angle about the origin in the counterclockwise direction; and the mapping

w = z = x − iy

transforms each point z = x + iy into its reflection in the real axis.
More information is usually exhibited by sketching images of curves and

regions than by simply indicating images of individual points. In the following
three examples, we illustrate this with the transformation w = z2. We begin by
finding the images of some curves in the z plane.



sec. 13 Mappings 39

EXAMPLE 1. According to Example 2 in Sec. 12, the mapping w = z2 can
be thought of as the transformation

u = x2 − y2, v = 2xy(1)

from the xy plane into the uv plane. This form of the mapping is especially useful
in finding the images of certain hyperbolas.

It is easy to show, for instance, that each branch of a hyperbola

x2 − y2 = c1 (c1 > 0)(2)

is mapped in a one to one manner onto the vertical line u = c1. We start by noting
from the first of equations (1) that u = c1 when (x, y) is a point lying on either
branch. When, in particular, it lies on the right-hand branch, the second of equations
(1) tells us that v = 2y

√
y2 + c1. Thus the image of the right-hand branch can be

expressed parametrically as

u = c1, v = 2y
√

y2 + c1 (−∞ < y < ∞);
and it is evident that the image of a point (x, y) on that branch moves upward along
the entire line as (x, y) traces out the branch in the upward direction (Fig. 17).
Likewise, since the pair of equations

u = c1, v = −2y
√

y2 + c1 (−∞ < y < ∞)

furnishes a parametric representation for the image of the left-hand branch of the
hyperbola, the image of a point going downward along the entire left-hand branch
is seen to move up the entire line u = c1.

xO

y

u

u = c1 > 0

v = c2 > 0

O

v

FIGURE 17
w = z2.

On the other hand, each branch of a hyperbola

2xy = c2 (c2 > 0)(3)

is transformed into the line v = c2, as indicated in Fig. 17. To verify this, we
note from the second of equations (1) that v = c2 when (x, y) is a point on either
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branch. Suppose that (x, y) is on the branch lying in the first quadrant. Then, since
y = c2/(2x), the first of equations (1) reveals that the branch’s image has parametric
representation

u = x2 − c2
2

4x2
, v = c2 (0 < x < ∞).

Observe that
lim
x→0
x>0

u = −∞ and lim
x→∞ u = ∞.

Since u depends continuously on x, then, it is clear that as (x, y) travels down the
entire upper branch of hyperbola (3), its image moves to the right along the entire
horizontal line v = c2. Inasmuch as the image of the lower branch has parametric
representation

u = c2
2

4y2
− y2, v = c2 (−∞ < y < 0)

and since
lim

y→−∞ u = −∞ and lim
y→0
y<0

u = ∞,

it follows that the image of a point moving upward along the entire lower branch
also travels to the right along the entire line v = c2 (see Fig. 17).

We shall now use Example 1 to find the image of a certain region.

EXAMPLE 2. The domain x > 0, y > 0, xy < 1 consists of all points lying
on the upper branches of hyperbolas from the family 2xy = c, where 0 < c < 2
(Fig. 18). We know from Example 1 that as a point travels downward along the
entirety of such a branch, its image under the transformation w = z2 moves to the
right along the entire line v = c. Since, for all values of c between 0 and 2, these
upper branches fill out the domain x > 0, y > 0, xy < 1, that domain is mapped
onto the horizontal strip 0 < v < 2.

xB C

E

A D
D′

A′ B ′ C ′

E′2i

y

u

v

FIGURE 18
w = z2.
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In view of equations (1), the image of a point (0, y) in the z plane is (−y2, 0).
Hence as (0, y) travels downward to the origin along the y axis, its image moves
to the right along the negative u axis and reaches the origin in the w plane. Then,
since the image of a point (x, 0) is (x2, 0), that image moves to the right from the
origin along the u axis as (x, 0) moves to the right from the origin along the x axis.
The image of the upper branch of the hyperbola xy = 1 is, of course, the horizontal
line v = 2. Evidently, then, the closed region x ≥ 0, y ≥ 0, xy ≤ 1 is mapped onto
the closed strip 0 ≤ v ≤ 2, as indicated in Fig. 18.

Our last example here illustrates how polar coordinates can be useful in ana-
lyzing certain mappings.

EXAMPLE 3. The mapping w = z2 becomes

w = r2ei2θ(4)

when z = reiθ . Evidently, then, the image w = ρeiφ of any nonzero point z is found
by squaring the modulus r = |z| and doubling the value θ of arg z that is used:

ρ = r2 and φ = 2θ.(5)

Observe that points z = r0e
iθ on a circle r = r0 are transformed into points

w = r2
0 ei2θ on the circle ρ = r2

0 . As a point on the first circle moves counterclock-
wise from the positive real axis to the positive imaginary axis, its image on the
second circle moves counterclockwise from the positive real axis to the negative
real axis (see Fig. 19). So, as all possible positive values of r0 are chosen, the
corresponding arcs in the z and w planes fill out the first quadrant and the upper
half plane, respectively. The transformation w = z2 is, then, a one to one map-
ping of the first quadrant r ≥ 0, 0 ≤ θ ≤ π/2 in the z plane onto the upper half
ρ ≥ 0, 0 ≤ φ ≤ π of the w plane, as indicated in Fig. 19. The point z = 0 is, of
course, mapped onto the point w = 0.

xO

y

r0 uO

v

r2
0

FIGURE 19
w = z2.

The transformation w = z2 also maps the upper half plane r ≥ 0, 0 ≤ θ ≤ π

onto the entire w plane. However, in this case, the transformation is not one to one
since both the positive and negative real axes in the z plane are mapped onto the
positive real axis in the w plane.
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When n is a positive integer greater than 2, various mapping properties of
the transformation w = zn, or w = rneinθ , are similar to those of w = z2. Such a
transformation maps the entire z plane onto the entire w plane, where each nonzero
point in the w plane is the image of n distinct points in the z plane. The circle
r = r0 is mapped onto the circle ρ = rn

0 ; and the sector r ≤ r0, 0 ≤ θ ≤ 2π/n is
mapped onto the disk ρ ≤ rn

0 , but not in a one to one manner.

Other, but somewhat more involved, mappings by w = z2 appear in Example
1, Sec. 97, and Exercises 1 through 4 of that section.

14. MAPPINGS BY THE EXPONENTIAL FUNCTION

In Chap. 3 we shall introduce and develop properties of a number of elemen-
tary functions which do not involve polynomials. That chapter will start with the
exponential function

ez = exeiy (z = x + iy),(1)

the two factors ex and eiy being well defined at this time (see Sec. 6). Note that
definition (1), which can also be written

ex+iy = exeiy,

is suggested by the familiar additive property

ex1+x2 = ex1ex2

of the exponential function in calculus.
The object of this section is to use the function ez to provide the reader with

additional examples of mappings that continue to be reasonably simple. We begin
by examining the images of vertical and horizontal lines.

EXAMPLE 1. The transformation

w = ez(2)

can be written w = exeiy, where z = x + iy, according to equation (1). Thus, if
w = ρeiφ, transformation (2) can be expressed in the form

ρ = ex, φ = y.(3)

The image of a typical point z = (c1, y) on a vertical line x = c1 has polar
coordinates ρ = exp c1 and φ = y in the w plane. That image moves counterclock-
wise around the circle shown in Fig. 20 as z moves up the line. The image of the
line is evidently the entire circle; and each point on the circle is the image of an
infinite number of points, spaced 2π units apart, along the line.
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FIGURE 20
w = exp z.

A horizontal line y = c2 is mapped in a one to one manner onto the ray
φ = c2. To see that this is so, we note that the image of a point z = (x, c2) has
polar coordinates ρ = ex and φ = c2. Consequently, as that point z moves along the
entire line from left to right, its image moves outward along the entire ray φ = c2,
as indicated in Fig. 20.

Vertical and horizontal line segments are mapped onto portions of circles and
rays, respectively, and images of various regions are readily obtained from obser-
vations made in Example 1. This is illustrated in the following example.

EXAMPLE 2. Let us show that the transformation w = ez maps the rect-
angular region a ≤ x ≤ b, c ≤ y ≤ d onto the region ea ≤ ρ ≤ eb, c ≤ φ ≤ d . The
two regions and corresponding parts of their boundaries are indicated in Fig. 21.
The vertical line segment AD is mapped onto the arc ρ = ea, c ≤ φ ≤ d , which is
labeled A′D′. The images of vertical line segments to the right of AD and join-
ing the horizontal parts of the boundary are larger arcs; eventually, the image of
the line segment BC is the arc ρ = eb, c ≤ φ ≤ d , labeled B ′C′. The mapping is
one to one if d − c < 2π . In particular, if c = 0 and d = π , then 0 ≤ φ ≤ π ; and
the rectangular region is mapped onto half of a circular ring, as shown in Fig. 8,
Appendix 2.
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FIGURE 21
w = exp z.
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Our final example here uses the images of horizontal lines to find the image
of a horizontal strip.

EXAMPLE 3. When w = ez, the image of the infinite strip 0 ≤ y ≤ π is the
upper half v ≥ 0 of the w plane (Fig. 22). This is seen by recalling from Example 1
how a horizontal line y = c is transformed into a ray φ = c from the origin. As the
real number c increases from c = 0 to c = π , the y intercepts of the lines increase
from 0 to π and the angles of inclination of the rays increase from φ = 0 to φ = π .
This mapping is also shown in Fig. 6 of Appendix 2, where corresponding points
on the boundaries of the two regions are indicated.

x
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O

y
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v

FIGURE 22
w = exp z.

EXERCISES
1. By referring to Example 1 in Sec. 13, find a domain in the z plane whose image under

the transformation w = z2 is the square domain in the w plane bounded by the lines
u = 1, u = 2, v = 1, and v = 2. (See Fig. 2, Appendix 2.)

2. Find and sketch, showing corresponding orientations, the images of the hyperbolas

x2 − y2 = c1 (c1 < 0) and 2xy = c2 (c2 < 0)

under the transformation w = z2.

3. Sketch the region onto which the sector r ≤ 1, 0 ≤ θ ≤ π/4 is mapped by the trans-
formation (a) w = z2; (b) w = z3; (c) w = z4.

4. Show that the lines ay = x (a �= 0) are mapped onto the spirals ρ = exp(aφ) under
the transformation w = exp z, where w = ρ exp(iφ).

5. By considering the images of horizontal line segments, verify that the image of the
rectangular region a ≤ x ≤ b, c ≤ y ≤ d under the transformation w = exp z is the
region ea ≤ ρ ≤ eb, c ≤ φ ≤ d , as shown in Fig. 21 (Sec. 14).

6. Verify the mapping of the region and boundary shown in Fig. 7 of Appendix 2, where
the transformation is w = exp z.

7. Find the image of the semi-infinite strip x ≥ 0, 0 ≤ y ≤ π under the transformation
w = exp z, and label corresponding portions of the boundaries.
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8. One interpretation of a function w = f (z) = u(x, y) + iv(x, y) is that of a vector field
in the domain of definition of f . The function assigns a vector w, with components
u(x, y) and v(x, y), to each point z at which it is defined. Indicate graphically the
vector fields represented by (a) w = iz; (b) w = z/|z|.

15. LIMITS

Let a function f be defined at all points z in some deleted neighborhood (Sec. l1)
of z0. The statement that the limit of f (z) as z approaches z0 is a number w0, or
that

lim
z→z0

f (z) = w0,(1)

means that the point w = f (z) can be made arbitrarily close to w0 if we choose
the point z close enough to z0 but distinct from it. We now express the definition
of limit in a precise and usable form.

Statement (1) means that for each positive number ε, there is a positive number
δ such that

|f (z) − w0| < ε whenever 0 < |z − z0| < δ.(2)

Geometrically, this definition says that for each ε neighborhood |w − w0| < ε of
w0, there is a deleted δ neighborhood 0 < |z − z0| < δ of z0 such that every point
z in it has an image w lying in the ε neighborhood (Fig. 23). Note that even though
all points in the deleted neighborhood 0 < |z − z0| < δ are to be considered, their
images need not fill up the entire neighborhood |w − w0| < ε. If f has the constant
value w0, for instance, the image of z is always the center of that neighborhood.
Note, too, that once a δ has been found, it can be replaced by any smaller positive
number, such as δ/2.
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FIGURE 23

It is easy to show that when a limit of a function f (z) exists at a point z0, it is
unique. To do this, we suppose that

lim
z→z0

f (z) = w0 and lim
z→z0

f (z) = w1.

Then, for each positive number ε, there are positive numbers δ0 and δ1 such that

|f (z) − w0| < ε whenever 0 < |z − z0| < δ0
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and
|f (z) − w1| < ε whenever 0 < |z − z0| < δ1.

So if 0 < |z − z0| < δ, where δ is any positive number that is smaller than δ0 and
δ1, we find that

|w1 −w0| = |[f (z)−w0] − [f (z)−w1]| ≤ |f (z)−w0|+ |f (z)−w1| < ε + ε = 2ε.

But |w1 − w0| is a nonnegative constant, and ε can be chosen arbitrarily small.
Hence

w1 − w0 = 0, or w1 = w0.

Definition (2) requires that f be defined at all points in some deleted neigh-
borhood of z0. Such a deleted neighborhood, of course, always exists when z0 is
an interior point of a region on which f is defined. We can extend the definition of
limit to the case in which z0 is a boundary point of the region by agreeing that the
first of inequalities (2) need be satisfied by only those points z that lie in both the
region and the deleted neighborhood.

EXAMPLE 1. Let us show that if f (z) = iz/2 in the open disk |z| < 1, then

lim
z→1

f (z) = i

2
,(3)

the point 1 being on the boundary of the domain of definition of f . Observe that
when z is in the disk |z| < 1,∣∣∣∣f (z) − i

2

∣∣∣∣ =
∣∣∣∣ iz2 − i

2

∣∣∣∣ = |z − 1|
2

.

Hence, for any such z and each positive number ε (see Fig. 24),∣∣∣∣f (z) − i

2

∣∣∣∣ < ε whenever 0 < |z − 1| < 2ε.

Thus condition (2) is satisfied by points in the region |z| < 1 when δ is equal to 2ε

or any smaller positive number.
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FIGURE 24
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If limit (1) exists, the symbol z → z0 implies that z is allowed to approach z0

in an arbitrary manner, not just from some particular direction. The next example
emphasizes this.

EXAMPLE 2. If

f (z) = z

z
,(4)

the limit

lim
z→0

f (z)(5)

does not exist. For, if it did exist, it could be found by letting the point z = (x, y)

approach the origin in any manner. But when z = (x, 0) is a nonzero point on the
real axis (Fig. 25),

f (z) = x + i0

x − i0
= 1;

and when z = (0, y) is a nonzero point on the imaginary axis,

f (z) = 0 + iy

0 − iy
= −1.

Thus, by letting z approach the origin along the real axis, we would find that the
desired limit is 1. An approach along the imaginary axis would, on the other hand,
yield the limit −1. Since a limit is unique, we must conclude that limit (5) does not
exist.

xz = (x, 0)

z = (0, y)

(0, 0)

y

FIGURE 25

While definition (2) provides a means of testing whether a given point w0 is
a limit, it does not directly provide a method for determining that limit. Theorems
on limits, presented in the next section, will enable us to actually find many
limits.
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16. THEOREMS ON LIMITS

We can expedite our treatment of limits by establishing a connection between limits
of functions of a complex variable and limits of real-valued functions of two real
variables. Since limits of the latter type are studied in calculus, we use their definition
and properties freely.

Theorem 1. Suppose that

f (z) = u(x, y) + iv(x, y) (z = x + iy)

and
z0 = x0 + iy0, w0 = u0 + iv0.

Then

lim
z→z0

f (z) = w0(1)

if and only if

lim
(x,y)→(x0,y0)

u(x, y) = u0 and lim
(x,y)→(x0,y0)

v(x, y) = v0.(2)

To prove the theorem, we first assume that limits (2) hold and obtain limit (1).
Limits (2) tell us that for each positive number ε, there exist positive numbers δ1

and δ2 such that

|u − u0| <
ε

2
whenever 0 <

√
(x − x0)

2 + (y − y0)
2 < δ1(3)

and

|v − v0| <
ε

2
whenever 0 <

√
(x − x0)2 + (y − y0)2 < δ2.(4)

Let δ be any positive number smaller than δ1 and δ2. Since

|(u + iv) − (u0 + iv0)| = |(u − u0) + i(v − v0)| ≤ |u − u0| + |v − v0|
and√

(x − x0)2 + (y − y0)2 = |(x − x0) + i(y − y0)| = |(x + iy) − (x0 + iy0)|,
it follows from statements (3) and (4) that

|(u + iv) − (u0 + iv0)| <
ε

2
+ ε

2
= ε

whenever
0 < |(x + iy) − (x0 + iy0)| < δ.

That is, limit (1) holds.
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Let us now start with the assumption that limit (1) holds. With that assump-
tion, we know that for each positive number ε, there is a positive number δ such
that

|(u + iv) − (u0 + iv0)| < ε(5)

whenever

0 < |(x + iy) − (x0 + iy0)| < δ.(6)

But

|u − u0| ≤ |(u − u0) + i(v − v0)| = |(u + iv) − (u0 + iv0)|,
|v − v0| ≤ |(u − u0) + i(v − v0)| = |(u + iv) − (u0 + iv0)|,

and

|(x + iy) − (x0 + iy0)| = |(x − x0) + i(y − y0)| =
√

(x − x0)2 + (y − y0)2.

Hence it follows from inequalities (5) and (6) that

|u − u0| < ε and |v − v0| < ε

whenever
0 <

√
(x − x0)2 + (y − y0)2 < δ.

This establishes limits (2), and the proof of the theorem is complete.

Theorem 2. Suppose that

lim
z→z0

f (z) = w0 and lim
z→z0

F(z) = W0.(7)

Then

lim
z→z0

[f (z) + F(z)] = w0 + W0,(8)

lim
z→z0

[f (z)F (z)] = w0W0 ;(9)

and, if W0 �= 0 ,

lim
z→z0

f (z)

F (z)
= w0

W0
.(10)

This important theorem can be proved directly by using the definition of the
limit of a function of a complex variable. But, with the aid of Theorem 1, it follows
almost immediately from theorems on limits of real-valued functions of two real
variables.
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To verify property (9), for example, we write

f (z) = u(x, y) + iv(x, y), F (z) = U(x, y) + iV (x, y),

z0 = x0 + iy0, w0 = u0 + iv0, W0 = U0 + iV0.

Then, according to hypotheses (7) and Theorem 1, the limits as (x, y) approaches
(x0, y0) of the functions u, v, U , and V exist and have the values u0, v0, U0, and
V0, respectively. So the real and imaginary components of the product

f (z)F (z) = (uU − vV ) + i(vU + uV )

have the limits u0U0 − v0V0 and v0U0 + u0V0, respectively, as (x, y) approaches
(x0, y0). Hence, by Theorem 1 again, f (z)F (z) has the limit

(u0U0 − v0V0) + i(v0U0 + u0V0)

as z approaches z0 ; and this is equal to w0W0. Property (9) is thus established.
Corresponding verifications of properties (8) and (10) can be given.

It is easy to see from definition (2), Sec. 15, of limit that

lim
z→z0

c = c and lim
z→z0

z = z0,

where z0 and c are any complex numbers; and, by property (9) and mathematical
induction, it follows that

lim
z→z0

zn = zn
0 (n = 1, 2, . . .).

So, in view of properties (8) and (9), the limit of a polynomial

P(z) = a0 + a1z + a2z
2 + · · · + anz

n

as z approaches a point z0 is the value of the polynomial at that point:

lim
z→z0

P(z) = P(z0).(11)

17. LIMITS INVOLVING THE POINT AT INFINITY

It is sometimes convenient to include with the complex plane the point at infinity,
denoted by ∞, and to use limits involving it. The complex plane together with this
point is called the extended complex plane. To visualize the point at infinity, one can
think of the complex plane as passing through the equator of a unit sphere centered
at the origin (Fig. 26). To each point z in the plane there corresponds exactly one
point P on the surface of the sphere. The point P is the point where the line through
z and the north pole N intersects the sphere. In like manner, to each point P on the
surface of the sphere, other than the north pole N , there corresponds exactly one
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point z in the plane. By letting the point N of the sphere correspond to the point
at infinity, we obtain a one to one correspondence between the points of the sphere
and the points of the extended complex plane. The sphere is known as the Riemann
sphere, and the correspondence is called a stereographic projection.

Observe that the exterior of the unit circle centered at the origin in the complex
plane corresponds to the upper hemisphere with the equator and the point N deleted.
Moreover, for each small positive number ε, those points in the complex plane
exterior to the circle |z| = 1/ε correspond to points on the sphere close to N . We
thus call the set |z| > 1/ε an ε neighborhood, or neighborhood, of ∞.

Let us agree that in referring to a point z, we mean a point in the finite plane.
Hereafter, when the point at infinity is to be considered, it will be specifically
mentioned.

A meaning is now readily given to the statement

lim
z→z0

f (z) = w0

when either z0 or w0, or possibly each of these numbers, is replaced by the point
at infinity. In the definition of limit in Sec. 15, we simply replace the appropriate
neighborhoods of z0 and w0 by neighborhoods of ∞. The proof of the following
theorem illustrates how this is done.

Theorem. If z0 and w0 are points in the z and w planes, respectively, then

lim
z→z0

f (z) = ∞ if and only if lim
z→z0

1

f (z)
= 0(1)

and

lim
z→∞ f (z) = w0 if and only if lim

z→0
f

(
1

z

)
= w0.(2)

Moreover,

lim
z→∞ f (z) = ∞ if and only if lim

z→0

1

f (1/z)
= 0.(3)
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We start the proof by noting that the first of limits (1) means that for each
positive number ε, there is a positive number δ such that

|f (z)| >
1

ε
whenever 0 < |z − z0| < δ.(4)

That is, the point w = f (z) lies in the ε neighborhood |w| > 1/ε of ∞ whenever
z lies in the deleted neighborhood 0 < |z − z0| < δ of z0. Since statement (4) can
be written ∣∣∣∣ 1

f (z)
− 0

∣∣∣∣ < ε whenever 0 < |z − z0| < δ,

the second of limits (1) follows.
The first of limits (2) means that for each positive number ε, a positive number

δ exists such that

|f (z) − w0| < ε whenever |z| >
1

δ
.(5)

Replacing z by 1/z in statement (5) and then writing the result as∣∣∣∣f
(

1

z

)
− w0

∣∣∣∣ < ε whenever 0 < |z − 0| < δ,

we arrive at the second of limits (2).
Finally, the first of limits (3) is to be interpreted as saying that for each positive

number ε, there is a positive number δ such that

|f (z)| >
1

ε
whenever |z| >

1

δ
.(6)

When z is replaced by 1/z, this statement can be put in the form∣∣∣∣ 1

f (1/z)
− 0

∣∣∣∣ < ε whenever 0 < |z − 0| < δ;

and this gives us the second of limits (3).

EXAMPLES. Observe that

lim
z→−1

iz + 3

z + 1
= ∞ since lim

z→−1

z + 1

iz + 3
= 0

and

lim
z→∞

2z + i

z + 1
= 2 since lim

z→0

(2/z) + i

(1/z) + 1
= lim

z→0

2 + iz

1 + z
= 2.

Furthermore,

lim
z→∞

2z3 − 1

z2 + 1
= ∞ since lim

z→0

(1/z2) + 1

(2/z3) − 1
= lim

z→0

z + z3

2 − z3
= 0.
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18. CONTINUITY

A function f is continuous at a point z0 if all three of the following conditions are
satisfied:

lim
z→z0

f (z) exists,(1)

f (z0) exists,(2)

lim
z→z0

f (z) = f (z0).(3)

Observe that statement (3) actually contains statements (1) and (2), since the exis-
tence of the quantity on each side of the equation there is needed. Statement (3)
says, of course, that for each positive number ε, there is a positive number δ such
that

|f (z) − f (z0)| < ε whenever |z − z0| < δ.(4)

A function of a complex variable is said to be continuous in a region R if it is
continuous at each point in R.

If two functions are continuous at a point, their sum and product are also contin-
uous at that point; their quotient is continuous at any such point if the denominator
is not zero there. These observations are direct consequences of Theorem 2, Sec.
16. Note, too, that a polynomial is continuous in the entire plane because of limit
(11) in Sec. 16.

We turn now to two expected properties of continuous functions whose veri-
fications are not so immediate. Our proofs depend on definition (4) of continuity,
and we present the results as theorems.

Theorem 1. A composition of continuous functions is itself continuous.

A precise statement of this theorem is contained in the proof to follow. We let
w = f (z) be a function that is defined for all z in a neighborhood |z − z0| < δ of a
point z0 , and we let W = g(w) be a function whose domain of definition contains
the image (Sec. 13) of that neighborhood under f . The composition W = g[f (z)]
is, then, defined for all z in the neighborhood |z − z0| < δ. Suppose now that f

is continuous at z0 and that g is continuous at the point f (z0) in the w plane. In
view of the continuity of g at f (z0), there is, for each positive number ε, a positive
number γ such that

|g[f (z)] − g[f (z0)]| < ε whenever |f (z) − f (z0)| < γ.

(See Fig. 27.) But the continuity of f at z0 ensures that the neighborhood |z − z0| < δ

can be made small enough that the second of these inequalities holds. The continuity
of the composition g[f (z)] is, therefore, established.
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Theorem 2. If a function f (z) is continuous and nonzero at a point z0 , then
f (z) �= 0 throughout some neighborhood of that point.

Assuming that f (z) is, in fact, continuous and nonzero at z0, we can prove
Theorem 2 by assigning the positive value |f (z0)|/2 to the number ε in statement
(4). This tells us that there is a positive number δ such that

|f (z) − f (z0)| <
|f (z0)|

2
whenever |z − z0| < δ.

So if there is a point z in the neighborhood |z − z0| < δ at which f (z) = 0, we
have the contradiction

|f (z0)| <
|f (z0)|

2
;

and the theorem is proved.
The continuity of a function

f (z) = u(x, y) + iv(x, y)(5)

is closely related to the continuity of its component functions u(x, y) and v(x, y).
We note, for instance, how it follows from Theorem 1 in Sec. 16 that the function
(5) is continuous at a point z0 = (x0, y0) if and only if its component functions are
continuous there. Our proof of the next theorem illustrates the use of this state-
ment. The theorem is extremely important and will be used often in later chapters,
especially in applications. Before stating the theorem, we recall from Sec. 11 that a
region R is closed if it contains all of its boundary points and that it is bounded if
it lies inside some circle centered at the origin.

Theorem 3. If a function f is continuous throughout a region R that is both
closed and bounded, there exists a nonnegative real number M such that

|f (z)| ≤ M for all points z inR,(6)

where equality holds for at least one such z.
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To prove this, we assume that the function f in equation (5) is continuous and
note how it follows that the function√

[u(x, y)]2 + [v(x, y)]2

is continuous throughout R and thus reaches a maximum value M somewhere in
R.∗ Inequality (6) thus holds, and we say that f is bounded on R.

EXERCISES
1. Use definition (2), Sec. 15, of limit to prove that

(a) lim
z→z0

Re z = Re z0 ; (b) lim
z→z0

z = z0 ; (c) lim
z→0

z2

z
= 0.

2. Let a, b, and c denote complex constants. Then use definition (2), Sec. 15, of limit to
show that
(a) lim

z→z0
(az + b) = az0 + b; (b) lim

z→z0
(z2 + c) = z2

0 + c;

(c) lim
z→1−i

[x + i(2x + y)] = 1 + i (z = x + iy).

3. Let n be a positive integer and let P (z) and Q(z) be polynomials, where Q(z0) �= 0.
Use Theorem 2 in Sec. 16, as well as limits appearing in that section, to find

(a) lim
z→z0

1

zn
(z0 �= 0); (b) lim

z→i

iz3 − 1

z + i
; (c) lim

z→z0

P (z)

Q(z)
.

Ans. (a) 1/zn
0; (b) 0; (c) P (z0)/Q(z0).

4. Use mathematical induction and property (9), Sec. 16, of limits to show that

lim
z→z0

zn = zn
0

when n is a positive integer (n = 1, 2, . . .).

5. Show that the limit of the function

f (z) =
(

z

z

)2

as z tends to 0 does not exist. Do this by letting nonzero points z = (x, 0) and
z = (x, x) approach the origin. [Note that it is not sufficient to simply consider points
z = (x, 0) and z = (0, y), as it was in Example 2, Sec. 15.]

6. Prove statement (8) in Theorem 2 of Sec. 16 using

(a) Theorem 1 in Sec. 16 and properties of limits of real-valued functions of two real
variables;

(b) definition (2), Sec. 15, of limit.

∗See, for instance, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 125–126 and
p. 529, 1983.
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7. Use definition (2), Sec. 15, of limit to prove that

if lim
z→z0

f (z) = w0, then lim
z→z0

|f (z)| = |w0|.

Suggestion: Observe how the first of inequalities (9), Sec. 4, enables one to write

||f (z)| − |w0|| ≤ |f (z) − w0|.
8. Write 	z = z − z0 and show that

lim
z→z0

f (z) = w0 if and only if lim
	z→0

f (z0 + 	z) = w0.

9. Show that
lim
z→z0

f (z)g(z) = 0 if lim
z→z0

f (z) = 0

and if there exists a positive number M such that |g(z)| ≤ M for all z in some
neighborhood of z0.

10. Use the theorem in Sec. 17 to show that

(a) lim
z→∞

4z2

(z − 1)2
= 4; (b) lim

z→1

1

(z − 1)3
= ∞; (c) lim

z→∞
z2 + 1

z − 1
= ∞.

11. With the aid of the theorem in Sec. 17, show that when

T (z) = az + b

cz + d
(ad − bc �= 0),

(a) lim
z→∞ T (z) = ∞ if c = 0;

(b) lim
z→∞ T (z) = a

c
and lim

z→−d/c
T (z) = ∞ if c �= 0.

12. State why limits involving the point at infinity are unique.

13. Show that a set S is unbounded (Sec. 11) if and only if every neighborhood of the
point at infinity contains at least one point in S.

19. DERIVATIVES

Let f be a function whose domain of definition contains a neighborhood |z − z0| < ε

of a point z0. The derivative of f at z0 is the limit

f ′(z0) = lim
z→z0

f (z) − f (z0)

z − z0
,(1)

and the function f is said to be differentiable at z0 when f ′(z0) exists.
By expressing the variable z in definition (1) in terms of the new complex

variable

	z = z − z0 (z �= z0),
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one can write that definition as

f ′(z0) = lim
	z→0

f (z0 + 	z) − f (z0)

	z
.(2)

Because f is defined throughout a neighborhood of z0, the number f (z0 + 	z) is
always defined for |	z| sufficiently small (Fig. 28).

xO

y

z 0

ε

FIGURE 28

When taking form (2) of the definition of derivative, we often drop the subscript
on z0 and introduce the number

	w = f (z + 	z) − f (z),

which denotes the change in the value w = f (z) of f corresponding to a change 	z

in the point at which f is evaluated. Then, if we write dw/dz for f ′(z), equation
(2) becomes

dw

dz
= lim

	z→0

	w

	z
.(3)

EXAMPLE 1. Suppose that f (z) = z2. At any point z,

lim
	z→0

	w

	z
= lim

	z→0

(z + 	z)2 − z2

	z
= lim

	z→0
(2z + 	z) = 2z

since 2z + 	z is a polynomial in 	z. Hence dw/dz = 2z, or f ′(z) = 2z.

EXAMPLE 2. If f (z) = z, then

	w

	z
= z + 	z − z

	z
= z + 	z − z

	z
= 	z

	z
.(4)
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If the limit of 	w/	z exists, it can be found by letting the point
	z = (	x, 	y) approach the origin (0, 0) in the 	z plane in any manner. In par-
ticular, as 	z approaches (0, 0) horizontally through the points (	x, 0) on the real
axis (Fig. 29),

	z = 	x + i0 = 	x − i0 = 	x + i0 = 	z.

In that case, expression (4) tells us that

	w

	z
= 	z

	z
= 1.

Hence if the limit of 	w/	z exists, its value must be unity. However, when 	z

approaches (0, 0) vertically through the points (0, 	y) on the imaginary axis, so that

	z = 0 + i	y = 0 − i	y = −(0 + i	y) = −	z,

we find from expression (4) that

	w

	z
= −	z

	z
= −1.

Hence the limit must be −1 if it exists. Since limits are unique (Sec. 15), it follows
that dw/dz does not exist anywhere.

(0, 0)
FIGURE 29

EXAMPLE 3. Consider the real-valued function f (z) = |z|2. Here

	w

	z
= |z + 	z|2 − |z|2

	z
= (z + 	z)(z + 	z) − zz

	z
= z + 	z + z

	z

	z
.(5)

Proceeding as in Example 2, where horizontal and vertical approaches of 	z toward
the origin gave us

	z = 	z and 	z = −	z,
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respectively, we have the expressions

	w

	z
= z + 	z + z when 	z = (	x, 0)

and

	w

	z
= z − 	z − z when 	z = (0, 	y).

Hence if the limit of 	w/	z exists as 	z tends to zero, the uniqueness of limits,
used in Example 2, tells us that

z + z = z − z,

or z = 0. Evidently, then dw/dz cannot exist when z �= 0.

To show that dw/dz does, in fact, exist at z = 0, we need only observe that
expression (5) reduces to

	w

	z
= 	z

when z = 0. We conclude, therefore, that dw/dz exists only at z = 0, its value
there being 0.

Example 3 shows that a function f (z) = u(x, y) + iv(x, y) can be differen-
tiable at a point z = (x, y) but nowhere else in any neighborhood of that point.
Since

u(x, y) = x2 + y2 and v(x, y) = 0(6)

when f (z) = |z|2, it also shows that the real and imaginary components of a function
of a complex variable can have continuous partial derivatives of all orders at a point
z = (x, y) and yet the function may not be differentiable there.

The function f (z) = |z|2 is continuous at each point in the plane since its
components (6) are continuous at each point. So the continuity of a function at a
point does not imply the existence of a derivative there. It is, however, true that
the existence of the derivative of a function at a point implies the continuity of the
function at that point. To see this, we assume that f ′(z0) exists and write

lim
z→z0

[f (z) − f (z0)] = lim
z→z0

f (z) − f (z0)

z − z0
lim
z→z0

(z − z0) = f ′(z0) · 0 = 0,

from which it follows that
lim
z→z0

f (z) = f (z0).

This is the statement of continuity of f at z0 (Sec. 18).
Geometric interpretations of derivatives of functions of a complex variable are

not as immediate as they are for derivatives of functions of a real variable. We defer
the development of such interpretations until Chap. 9.
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20. DIFFERENTIATION FORMULAS

The definition of derivative in Sec. 19 is identical in form to that of the derivative
of a real-valued function of a real variable. In fact, the basic differentiation formulas
given below can be derived from the definition in Sec. 19 by essentially the same
steps as the ones used in calculus. In these formulas, the derivative of a function f

at a point z is denoted by either

d

dz
f (z) or f ′(z),

depending on which notation is more convenient.
Let c be a complex constant, and let f be a function whose derivative exists

at a point z. It is easy to show that

d

dz
c = 0,

d

dz
z = 1,

d

dz
[cf (z)] = cf ′(z).(1)

Also, if n is a positive integer,

d

dz
zn = nzn−1.(2)

This formula remains valid when n is a negative integer, provided that z �= 0.
If the derivatives of two functions f and g exist at a point z, then

d

dz
[f (z) + g(z)] = f ′(z) + g′(z),(3)

d

dz
[f (z)g(z)] = f (z)g′(z) + f ′(z)g(z) ;(4)

and, when g(z) �= 0,

d

dz

[
f (z)

g(z)

]
= g(z)f ′(z) − f (z)g′(z)

[g(z)]2
.(5)

Let us derive formula (4). To do this, we write the following expression for
the change in the product w = f (z)g(z):

	w = f (z + 	z)g(z + 	z) − f (z)g(z)

= f (z)[g(z + 	z) − g(z)] + [f (z + 	z) − f (z)]g(z + 	z).

Thus

	w

	z
= f (z)

g(z + 	z) − g(z)

	z
+ f (z + 	z) − f (z)

	z
g(z + 	z) ;

and, letting 	z tend to zero, we arrive at the desired formula for the derivative
of f (z)g(z). Here we have used the fact that g is continuous at the point z, since
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g′(z) exists; thus g(z + 	z) tends to g(z) as 	z tends to zero (see Exercise 8,
Sec. 18).

There is also a chain rule for differentiating composite functions. Suppose that
f has a derivative at z0 and that g has a derivative at the point f (z0). Then the
function F(z) = g[f (z)] has a derivative at z0, and

F ′(z0) = g′[f (z0)]f
′(z0).(6)

If we write w = f (z) and W = g(w), so that W = F(z), the chain rule becomes

dW

dz
= dW

dw

dw

dz
.

EXAMPLE. To find the derivative of (2z2 + i)5, write w = 2z2 + i and
W = w5. Then

d

dz
(2z2 + i)5 = 5w44z = 20z(2z2 + i)4.

To start the derivation of formula (6), choose a specific point z0 at which f ′(z0)

exists. Write w0 = f (z0) and also assume that g′(w0) exists. There is, then, some ε

neighborhood |w − w0| < ε of w0 such that for all points w in that neighborhood,
we can define a function 
 having the values 
(w0) = 0 and


(w) = g(w) − g(w0)

w − w0
− g′(w0) when w �= w0.(7)

Note that in view of the definition of derivative,

lim
w→w0


(w) = 0.(8)

Hence 
 is continuous at w0.
Now expression (7) can be put in the form

g(w) − g(w0) = [g′(w0) + 
(w)](w − w0) (|w − w0| < ε),(9)

which is valid even when w = w0; and since f ′(z0) exists and f is therefore
continuous at z0, we can choose a positive number δ such that the point f (z)

lies in the ε neighborhood |w − w0| < ε of w0 if z lies in the δ neighborhood
|z − z0| < δ of z0. Thus it is legitimate to replace the variable w in equation (9) by
f (z) when z is any point in the neighborhood |z − z0| < δ. With that substitution,
and with w0 = f (z0), equation (9) becomes

g[f (z)] − g[f (z0)]

z − z0
= {g′[f (z0)] + 
[f (z)]}f (z) − f (z0)

z − z0
(10)

(0 < |z − z0| < δ),
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where we must stipulate that z �= z0 so that we are not dividing by zero. As already
noted, f is continuous at z0 and 
 is continuous at the point w0 = f (z0). Hence
the composition 
[f (z)] is continuous at z0; and since 
(w0) = 0,

lim
z→z0


[f (z)] = 0.

So equation (10) becomes equation (6) in the limit as z approaches z0.

EXERCISES
1. Use results in Sec. 20 to find f ′(z) when

(a) f (z) = 3z2 − 2z + 4; (b) f (z) = (1 − 4z2)3 ;

(c) f (z) = z − 1

2z + 1
(z �= −1/2); (d) f (z) = (1 + z2)4

z2
(z �= 0).

2. Using results in Sec. 20, show that

(a) a polynomial

P (z) = a0 + a1z + a2z
2 + · · · + anz

n (an �= 0)

of degree n (n ≥ 1) is differentiable everywhere, with derivative

P ′(z) = a1 + 2a2z + · · · + nanz
n−1 ;

(b) the coefficients in the polynomial P (z) in part (a) can be written

a0 = P (0), a1 = P ′(0)

1!
, a2 = P ′′(0)

2!
, . . . , an = P (n)(0)

n!
.

3. Apply definition (3), Sec. 19, of derivative to give a direct proof that

dw

dz
= − 1

z2
when w = 1

z
(z �= 0).

4. Suppose that f (z0) = g(z0) = 0 and that f ′(z0) and g′(z0) exist, where g′(z0) �= 0.
Use definition (1), Sec. 19, of derivative to show that

lim
z→z0

f (z)

g(z)
= f ′(z0)

g′(z0)
.

5. Derive formula (3), Sec. 20, for the derivative of the sum of two functions.

6. Derive expression (2), Sec. 20, for the derivative of zn when n is a positive integer
by using

(a) mathematical induction and formula (4), Sec. 20, for the derivative of the product
of two functions;

(b) definition (3), Sec. 19, of derivative and the binomial formula (Sec. 3).
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7. Prove that expression (2), Sec. 20, for the derivative of zn remains valid when n is a
negative integer (n = −1,−2, . . .), provided that z �= 0.

Suggestion: Write m = −n and use the formula for the derivative of a quotient
of two functions.

8. Use the method in Example 2, Sec. 19, to show that f ′(z) does not exist at any point
z when
(a) f (z) = Re z; (b) f (z) = Im z.

9. Let f denote the function whose values are

f (z) =
{

z2/z when z �= 0,

0 when z = 0.

Show that if z = 0, then 	w/	z = 1 at each nonzero point on the real and imaginary
axes in the 	z, or 	x 	y, plane. Then show that 	w/	z = −1 at each nonzero point
(	x,	x) on the line 	y = 	x in that plane. Conclude from these observations that
f ′(0) does not exist. Note that to obtain this result, it is not sufficient to consider
only horizontal and vertical approaches to the origin in the 	z plane. (Compare with
Example 2, Sec. 19.)

21. CAUCHY–RIEMANN EQUATIONS

In this section, we obtain a pair of equations that the first-order partial derivatives
of the component functions u and v of a function

f (z) = u(x, y) + iv(x, y)(1)

must satisfy at a point z0 = (x0, y0) when the derivative of f exists there. We also
show how to express f ′(z0) in terms of those partial derivatives.

We start by writing

z0 = x0 + iy0, 	z = 	x + i	y,

and

	w = f (z0 + 	z) − f (z0)

= [u(x0 + 	x, y0 + 	y) − u(x0, y0)] + i[v(x0 + 	x, y0 + 	y) − v(x0, y0)].

Assuming that the derivative

f ′(z0) = lim
	z→0

	w

	z
(2)

exists, we know from Theorem 1 in Sec. 16 that

f ′(z0) = lim
(	x,	y)→(0,0)

(
Re

	w

	z

)
+ i lim

(	x,	y)→(0,0)

(
Im

	w

	z

)
.(3)
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Now it is important to keep in mind that expression (3) is valid as (	x, 	y)

tends to (0, 0) in any manner that we may choose. In particular, we let (	x, 	y) tend
to (0, 0) horizontally through the points (	x, 0), as indicated in Fig. 29 (Sec. 19).
Inasmuch as 	y = 0, the quotient 	w/	z becomes

	w

	z
= u(x0 + 	x, y0) − u(x0, y0)

	x
+ i

v(x0 + 	x, y0) − v(x0, y0)

	x
.

Thus

lim
(	x,	y)→(0,0)

(
Re

	w

	z

)
= lim

	x→0

u(x0 + 	x, y0) − u(x0, y0)

	x
= ux(x0, y0)

and

lim
(	x,	y)→(0,0)

(
Im

	w

	z

)
= lim

	x→0

v(x0 + 	x, y0) − v(x0, y0)

	x
= vx(x0, y0),

where ux(x0, y0) and vx(x0, y0) denote the first-order partial derivatives with respect
to x of the functions u and v, respectively, at (x0, y0). Substitution of these limits
into expression (3) tells us that

f ′(z0) = ux(x0, y0) + ivx(x0, y0).(4)

We might have let 	z tend to zero vertically through the points (0, 	y). In
that case, 	x = 0 and

	w

	z
= u(x0, y0 + 	y) − u(x0, y0)

i	y
+ i

v(x0, y0 + 	y) − v(x0, y0)

i	y

= v(x0, y0 + 	y) − v(x0, y0)

	y
− i

u(x0, y0 + 	y) − u(x0, y0)

	y
.

Evidently, then,

lim
(	x,	y)→(0,0)

(
Re

	w

	z

)
= lim

	y→0

v(x0, y0 + 	y) − v(x0, y0)

	y
= vy(x0, y0)

and

lim
(	x,	y)→(0,0)

(
Im

	w

	z

)
= − lim

	y→0

u(x0, y0 + 	y) − u(x0, y0)

	y
= −uy(x0, y0).

Hence it follows from expression (3) that

f ′(z0) = vy(x0, y0) − iuy(x0, y0),(5)

where the partial derivatives of u and v are, this time, with respect to y. Note that
equation (5) can also be written in the form

f ′(z0) = −i[uy(x0, y0) + ivy(x0, y0)].
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Equations (4) and (5) not only give f ′(z0) in terms of partial derivatives of the
component functions u and v, but they also provide necessary conditions for the
existence of f ′(z0). To obtain those conditions, we need only equate the real parts
and then the imaginary parts on the right-hand sides of equations (4) and (5) to see
that the existence of f ′(z0) requires that

ux(x0, y0) = vy(x0, y0) and uy(x0, y0) = −vx(x0, y0).(6)

Equations (6) are the Cauchy–Riemann equations, so named in honor of the French
mathematician A. L. Cauchy (1789–1857), who discovered and used them, and
in honor of the German mathematician G. F. B. Riemann (1826–1866), who made
them fundamental in his development of the theory of functions of a complex
variable.

We summarize the above results as follows.

Theorem. Suppose that

f (z) = u(x, y) + iv(x, y)

and that f ′(z) exists at a point z0 = x0 + iy0. Then the first-order partial derivatives
of u and v must exist at (x0, y0), and they must satisfy the Cauchy–Riemann equations

ux = vy, uy = −vx(7)

there. Also, f ′(z0) can be written

f ′(z0) = ux + ivx,(8)

where these partial derivatives are to be evaluated at (x0, y0).

EXAMPLE 1. In Example 1, Sec. 19, we showed that the function

f (z) = z2 = x2 − y2 + i2xy

is differentiable everywhere and that f ′(z) = 2z. To verify that the Cauchy–Riemann
equations are satisfied everywhere, write

u(x, y) = x2 − y2 and v(x, y) = 2xy.

Thus
ux = 2x = vy, uy = −2y = −vx.

Moreover, according to equation (8),

f ′(z) = 2x + i2y = 2(x + iy) = 2z.
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Since the Cauchy–Riemann equations are necessary conditions for the existence
of the derivative of a function f at a point z0, they can often be used to locate points
at which f does not have a derivative.

EXAMPLE 2. When f (z) = |z|2, we have

u(x, y) = x2 + y2 and v(x, y) = 0.

If the Cauchy–Riemann equations are to hold at a point (x, y), it follows that 2x = 0
and 2y = 0, or that x = y = 0. Consequently, f ′(z) does not exist at any nonzero
point, as we already know from Example 3 in Sec. 19. Note that the theorem just
proved does not ensure the existence of f ′(0). The theorem in the next section will,
however, do this.

22. SUFFICIENT CONDITIONS FOR DIFFERENTIABILITY

Satisfaction of the Cauchy–Riemann equations at a point z0 = (x0, y0) is not suffi-
cient to ensure the existence of the derivative of a function f (z) at that point. (See
Exercise 6, Sec. 23.) But, with certain continuity conditions, we have the following
useful theorem.

Theorem. Let the function

f (z) = u(x, y) + iv(x, y)

be defined throughout some ε neighborhood of a point z0 = x0 + iy0, and suppose
that

(a) the first-order partial derivatives of the functions u and v with respect to x and
y exist everywhere in the neighborhood;

(b) those partial derivatives are continuous at (x0, y0) and satisfy the Cauchy–
Riemann equations

ux = vy, uy = −vx

at (x0, y0).

Then f ′(z0) exists, its value being

f ′(z0) = ux + ivx

where the right-hand side is to be evaluated at (x0, y0).

To prove the theorem, we assume that conditions (a) and (b) in its hypothesis
are satisfied and write 	z = 	x + i	y, where 0 < |	z| < ε, as well as

	w = f (z0 + 	z) − f (z0).
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Thus

	w = 	u + i	v,(1)

where
	u = u(x0 + 	x, y0 + 	y) − u(x0, y0)

and
	v = v(x0 + 	x, y0 + 	y) − v(x0, y0).

The assumption that the first-order partial derivatives of u and v are continuous at
the point (x0, y0) enables us to write∗

	u = ux(x0, y0)	x + uy(x0, y0)	y + ε1	x + ε2	y(2)

and

	v = vx(x0, y0)	x + vy(x0, y0)	y + ε3	x + ε4	y,(3)

where ε1, ε2, ε3, and ε4 tend to zero as (	x, 	y) approaches (0, 0) in the 	z plane.
Substitution of expressions (2) and (3) into equation (1) now tells us that

	w = ux(x0, y0)	x + uy(x0, y0)	y + ε1	x + ε2	y(4)

+ i[vx(x0, y0)	x + vy(x0, y0)	y + ε3	x + ε4	y].

Because the Cauchy–Riemann equations are assumed to be satisfied at (x0, y0),

one can replace uy(x0, y0) by −vx(x0, y0) and vy(x0, y0) by ux(x0, y0) in equation
(4) and then divide through by the quantity 	z = 	x + i	y to get

	w

	z
= ux(x0, y0) + ivx(x0, y0) + (ε1 + iε3)

	x

	z
+ (ε2 + iε4)

	y

	z
.(5)

But |	x| ≤ |	z| and |	y| ≤ |	z|, according to inequalities (3) in Sec. 4, and so∣∣∣∣	x

	z

∣∣∣∣ ≤ 1 and

∣∣∣∣	y

	z

∣∣∣∣ ≤ 1.

Consequently, ∣∣∣∣(ε1 + iε3)
	x

	z

∣∣∣∣ ≤ |ε1 + iε3| ≤ |ε1| + |ε3|

and ∣∣∣∣(ε2 + iε4)
	y

	z

∣∣∣∣ ≤ |ε2 + iε4| ≤ |ε2| + |ε4|;

∗See, for instance, W. Kaplan, “Advanced Calculus,” 5th ed., pp. 86ff, 2003.
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and this means that the last two terms on the right in equation (5) tend to zero
as the variable 	z = 	x + i	y approaches zero. The expression for f ′(z0) in the
statement of the theorem is now established.

EXAMPLE 1. Consider the exponential function

f (z) = ez = exeiy (z = x + iy),

some of whose mapping properties were discussed in Sec. 14. In view of Euler’s
formula (Sec. 6), this function can, of course, be written

f (z) = ex cos y + iex sin y,

where y is to be taken in radians when cos y and sin y are evaluated. Then

u(x, y) = ex cos y and v(x, y) = ex sin y.

Since ux = vy and uy = −vx everywhere and since these derivatives are everywhere
continuous, the conditions in the above theorem are satisfied at all points in the
complex plane. Thus f ′(z) exists everywhere, and

f ′(z) = ux + ivx = ex cos y + iex sin y.

Note that f ′(z) = f (z) for all z.

EXAMPLE 2. It also follows from our theorem that the function f (z) = |z|2,
whose components are

u(x, y) = x2 + y2 and v(x, y) = 0,

has a derivative at z = 0. In fact, f ′(0) = 0 + i0 = 0. We saw in Example 2,
Sec. 21, that this function cannot have a derivative at any nonzero point since
the Cauchy–Riemann equations are not satisfied at such points. (See also Example
3, Sec. 19.)

23. POLAR COORDINATES

Assuming that z0 �= 0, we shall in this section use the coordinate transformation

x = r cos θ, y = r sin θ(1)

to restate the theorem in Sec. 22 in polar coordinates.
Depending on whether we write

z = x + iy or z = reiθ (z �= 0)
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when w = f (z), the real and imaginary components of w = u + iv are expressed
in terms of either the variables x and y or r and θ . Suppose that the first-order
partial derivatives of u and v with respect to x and y exist everywhere in some
neighborhood of a given nonzero point z0 and are continuous at z0. The first-order
partial derivatives of u and v with respect to r and θ also have those properties,
and the chain rule for differentiating real-valued functions of two real variables can
be used to write them in terms of the ones with respect to x and y. More precisely,
since

∂u

∂r
= ∂u

∂x

∂x

∂r
+ ∂u

∂y

∂y

∂r
,

∂u

∂θ
= ∂u

∂x

∂x

∂θ
+ ∂u

∂y

∂y

∂θ
,

one can write

ur = ux cos θ + uy sin θ, uθ = −ux r sin θ + uy r cos θ.(2)

Likewise,

vr = vx cos θ + vy sin θ, vθ = −vx r sin θ + vy r cos θ.(3)

If the partial derivatives of u and v with respect to x and y also satisfy the
Cauchy–Riemann equations

ux = vy, uy = −vx(4)

at z0, equations (3) become

vr = −uy cos θ + ux sin θ, vθ = uy r sin θ + ux r cos θ(5)

at that point. It is then clear from equations (2) and (5) that

rur = vθ , uθ = −rvr(6)

at z0.
If, on the other hand, equations (6) are known to hold at z0, it is straightforward

to show (Exercise 7) that equations (4) must hold there. Equations (6) are, therefore,
an alternative form of the Cauchy–Riemann equations (4).

In view of equations (6) and the expression for f ′(z0) that is found in Exercise 8,
we are now able to restate the theorem in Sec. 22 using r and θ.

Theorem. Let the function

f (z) = u(r, θ) + iv(r, θ)

be defined throughout some ε neighborhood of a nonzero point z0 = r0 exp(iθ0),

and suppose that

(a) the first-order partial derivatives of the functions u and v with respect to r and
θ exist everywhere in the neighborhood;
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(b) those partial derivatives are continuous at (r0, θ0) and satisfy the polar form

rur = vθ , uθ = −rvr

of the Cauchy–Riemann equations at (r0, θ0).

Then f ′(z0) exists, its value being

f ′(z0) = e−iθ (ur + ivr ),

where the right-hand side is to be evaluated at (r0, θ0).

EXAMPLE 1. Consider the function

f (z) = 1

z
= 1

reiθ
= 1

r
e−iθ = 1

r
(cos θ − i sin θ) (z �= 0).

Since

u(r, θ) = cos θ

r
and v(r, θ) = − sin θ

r
,

the conditions in this theorem are satisfied at every nonzero point z = reiθ in the
plane. In particular, the Cauchy–Riemann equations

rur = −cos θ

r
= vθ and uθ = − sin θ

r
= −rvr

are satisfied. Hence the derivative of f exists when z �= 0; and, according to the
theorem,

f ′(z) = e−iθ

(
−cos θ

r2
+ i

sin θ

r2

)
= −e−iθ e−iθ

r2
= − 1

(reiθ )2
= − 1

z2
.

EXAMPLE 2. The theorem can be used to show that when α is a fixed real
number, the function

f (z) = 3
√

reiθ/3 (r > 0, α < θ < α + 2π)

has a derivative everywhere in its domain of definition. Here

u(r, θ) = 3
√

r cos
θ

3
and v(r, θ) = 3

√
r sin

θ

3
.

Inasmush as

rur =
3
√

r

3
cos

θ

3
= vθ and uθ = −

3
√

r

3
sin

θ

3
= −rvr
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and since the other conditions in the theorem are satisfied, the derivative f ′(z) exists
at each point where f (z) is defined. The theorem tells us, moreover, that

f ′(z) = e−iθ

[
1

3( 3
√

r)2
cos

θ

3
+ i

1

3( 3
√

r)2
sin

θ

3

]
,

or

f ′(z) = e−iθ

3( 3
√

r)2
eiθ/3 = 1

3( 3
√

reiθ/3)2
= 1

3[f (z)]2
.

Note that when a specific point z is taken in the domain of definition of f, the
value f (z) is one value of z1/3 (see Sec. 9). Hence this last expression for f ′(z) can
be put in the form

d

dz
z1/3 = 1

3(z1/3)2

when that value is taken. Derivatives of such power functions will be elaborated on
in Chap. 3 (Sec. 33).

EXERCISES
1. Use the theorem in Sec. 21 to show that f ′(z) does not exist at any point if

(a) f (z) = z ; (b) f (z) = z − z ;
(c) f (z) = 2x + ixy2 ; (d) f (z) = exe−iy .

2. Use the theorem in Sec. 22 to show that f ′(z) and its derivative f ′′(z) exist every-
where, and find f ′′(z) when

(a) f (z) = iz + 2; (b) f (z) = e−xe−iy ;
(c) f (z) = z3; (d) f (z) = cos x cosh y − i sin x sinh y.

Ans. (b) f ′′(z) = f (z); (d) f ′′(z) = −f (z).

3. From results obtained in Secs. 21 and 22, determine where f ′(z) exists and find its
value when

(a) f (z) = 1/z; (b) f (z) = x2 + iy2; (c) f (z) = z Im z.

Ans. (a) f ′(z) = −1/z2 (z �= 0); (b) f ′(x + ix) = 2x; (c) f ′(0) = 0.

4. Use the theorem in Sec. 23 to show that each of these functions is differentiable in
the indicated domain of definition, and also to find f ′(z):

(a) f (z) = 1/z4 (z �= 0);

(b) f (z) = √
reiθ/2 (r > 0, α < θ < α + 2π);

(c) f (z) = e−θ cos(ln r) + ie−θ sin(ln r) (r > 0, 0 < θ < 2π).

Ans. (b) f ′(z) = 1

2f (z)
; (c) f ′(z) = i

f (z)

z
.
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5. Show that when f (z) = x3 + i(1 − y)3, it is legitimate to write

f ′(z) = ux + ivx = 3x2

only when z = i.

6. Let u and v denote the real and imaginary components of the function f defined by
means of the equations

f (z) =
{
z2/z when z �= 0,

0 when z = 0.

Verify that the Cauchy–Riemann equations ux = vy and uy = −vx are satisfied at the
origin z = (0, 0). [Compare with Exercise 9, Sec. 20, where it is shown that f ′(0)

nevertheless fails to exist.]

7. Solve equations (2), Sec. 23 for ux and uy to show that

ux = ur cos θ − uθ

sin θ

r
, uy = ur sin θ + uθ

cos θ

r
.

Then use these equations and similar ones for vx and vy to show that in Sec. 23
equations (4) are satisfied at a point z0 if equations (6) are satisfied there. Thus com-
plete the verification that equations (6), Sec. 23, are the Cauchy–Riemann equations
in polar form.

8. Let a function f (z) = u + iv be differentiable at a nonzero point z0 = r0 exp(iθ0).
Use the expressions for ux and vx found in Exercise 7, together with the polar form
(6), Sec. 23, of the Cauchy–Riemann equations, to rewrite the expression

f ′(z0) = ux + ivx

in Sec. 22 as
f ′(z0) = e−iθ (ur + ivr ),

where ur and vr are to be evaluated at (r0, θ0).

9. (a) With the aid of the polar form (6), Sec. 23, of the Cauchy–Riemann equations,
derive the alternative form

f ′(z0) = −i

z0
(uθ + ivθ )

of the expression for f ′(z0) found in Exercise 8.
(b) Use the expression for f ′(z0) in part (a) to show that the derivative of the function

f (z) = 1/z (z �= 0) in Example 1, Sec. 23, is f ′(z) = −1/z2.

10. (a) Recall (Sec. 5) that if z = x + iy, then

x = z + z

2
and y = z − z

2i
.
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By formally applying the chain rule in calculus to a function F(x, y) of two real
variables, derive the expression

∂F

∂z
= ∂F

∂x

∂x

∂z
+ ∂F

∂y

∂y

∂z
= 1

2

(
∂F

∂x
+ i

∂F

∂y

)
.

(b) Define the operator
∂

∂z
= 1

2

(
∂

∂x
+ i

∂

∂y

)
,

suggested by part (a), to show that if the first-order partial derivatives of the
real and imaginary components of a function f (z) = u(x, y) + iv(x, y) satisfy
the Cauchy–Riemann equations, then

∂f

∂z
= 1

2
[(ux − vy) + i(vx + uy)] = 0.

Thus derive the complex form ∂f/∂z = 0 of the Cauchy–Riemann equations.

24. ANALYTIC FUNCTIONS

We are now ready to introduce the concept of an analytic function. A function f of
the complex variable z is analytic at a point z0 if it has a derivative at each point
in some neighborhood of z0.

∗ It follows that if f is analytic at a point z0, it must
be analytic at each point in some neighborhood of z0. A function f is analytic in
an open set if it has a derivative everywhere in that set. If we should speak of a
function f that is analytic in a set S which is not open, it is to be understood that
f is analytic in an open set containing S.

Note that the function f (z) = 1/z is analytic at each nonzero point in the finite
plane. But the function f (z) = |z|2 is not analytic at any point since its derivative
exists only at z = 0 and not throughout any neighborhood. (See Example 3, Sec. 19.)

An entire function is a function that is analytic at each point in the entire finite
plane. Since the derivative of a polynomial exists everywhere, it follows that every
polynomial is an entire function.

If a function f fails to be analytic at a point z0 but is analytic at some point
in every neighborhood of z0, then z0 is called a singular point, or singularity, of
f . The point z = 0 is evidently a singular point of the function f (z) = 1/z. The
function f (z) = |z|2, on the other hand, has no singular points since it is nowhere
analytic.

A necessary, but by no means sufficient, condition for a function f to be
analytic in a domain D is clearly the continuity of f throughout D. Satisfaction
of the Cauchy–Riemann equations is also necessary, but not sufficient. Sufficient
conditions for analyticity in D are provided by the theorems in Secs. 22 and 23.

Other useful sufficient conditions are obtained from the differentiation formulas
in Sec. 20. The derivatives of the sum and product of two functions exist wherever

∗The terms regular and holomorphic are also used in the literature to denote analyticity.
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the functions themselves have derivatives. Thus, if two functions are analytic in
a domain D, their sum and their product are both analytic in D. Similarly, their
quotient is analytic in D provided the function in the denominator does not vanish at
any point in D. In particular, the quotient P(z)/Q(z) of two polynomials is analytic
in any domain throughout which Q(z) �= 0.

From the chain rule for the derivative of a composite function, we find that
a composition of two analytic functions is analytic. More precisely, suppose that a
function f (z) is analytic in a domain D and that the image (Sec. 13) of D under
the transformation w = f (z) is contained in the domain of definition of a function
g(w). Then the composition g[f (z)] is analytic in D, with derivative

d

dz
g[f (z)] = g′[f (z)]f ′(z).

The following property of analytic functions is especially useful, in addition to
being expected.

Theorem. If f ′(z) = 0 everywhere in a domain D, then f (z) must be constant
throughout D.

We start the proof by writing f (z) = u(x, y) + iv(x, y). Assuming that
f ′(z) = 0 in D, we note that ux + ivx = 0 ; and, in view of the Cauchy–Riemann
equations, vy − iuy = 0. Consequently,

ux = uy = 0 and vx = vy = 0

at each point in D.
Next, we show that u(x, y) is constant along any line segment L extending

from a point P to a point P ′ and lying entirely in D. We let s denote the distance
along L from the point P and let U denote the unit vector along L in the direction
of increasing s (see Fig. 30). We know from calculus that the directional derivative
du/ds can be written as the dot product

du

ds
= (grad u) · U,(1)

xO

y

P

DU
L s P′

Q

FIGURE 30
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where grad u is the gradient vector

grad u = ux i + uy j.(2)

Because ux and uy are zero everywhere in D, grad u is evidently the zero vector
at all points on L. Hence it follows from equation (1) that the derivative du/ds is
zero along L; and this means that u is constant on L.

Finally, since there is always a finite number of such line segments, joined end
to end, connecting any two points P and Q in D (Sec. 11), the values of u at P and
Q must be the same. We may conclude, then, that there is a real constant a such that
u(x, y) = a throughout D. Similarly, v(x, y) = b ; and we find that f (z) = a + bi

at each point in D.

25. EXAMPLES

As pointed out in Sec. 24, it is often possible to determine where a given function
is analytic by simply recalling various differentiation formulas in Sec. 20.

EXAMPLE 1. The quotient

f (z) = z3 + 4

(z2 − 3)(z2 + 1)

is evidently analytic throughout the z plane except for the singular points
z = ±√

3 and z = ± i. The analyticity is due to the existence of familiar differ-
entiation formulas, which need to be applied only if the expression for f ′(z) is
wanted.

When a function is given in terms of its component functions u(x, y) and
v(x, y), its analyticity can be demonstrated by direct application of the Cauchy–
Riemann equations.

EXAMPLE 2. If

f (z) = cosh x cos y + i sinh x sin y,

the component functions are

u(x, y) = cosh x cos y and v(x, y) = sinh x sin y.

Because

ux = sinh x cos y = vy and uy = − cosh x sin y = −vx

everywhere, it is clear from the theorem in Sec. 22 that f is entire.
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Finally, we illustrate how the theorem in Sec. 24 can be used to obtain other
properties of analytic functions.

EXAMPLE 3. Suppose that a function

f (z) = u(x, y) + iv(x, y)

and its conjugate
f (z) = u(x, y) − iv(x, y)

are both analytic in a given domain D. It is now easy to show that f (z) must be
constant throughout D.

To do this, we write f (z) as

f (z) = U(x, y) + iV (x, y)

where

U(x, y) = u(x, y) and V (x, y) = −v(x, y).(1)

Because of the analyticity of f (z), the Cauchy–Riemann equations

ux = vy, uy = −vx(2)

hold in D; and the analyticity of f (z) in D tells us that

Ux = Vy, Uy = −Vx.(3)

In view of relations (1), equations (3) can also be written

ux = −vy, uy = vx.(4)

By adding corresponding sides of the first of equations (2) and (4), we find that
ux = 0 in D. Similarly, subtraction involving corresponding sides of the second of
equations (2) and (4) reveals that vx = 0. According to expression (8) in Sec. 21,
then,

f ′(z) = ux + ivx = 0 + i0 = 0 ;
and it follows from the theorem in Sec. 24 that f (z) is constant throughout D.

EXAMPLE 4. As in Example 3, we consider a function f that is analytic
throughout a given domain D. Assuming further that the modulus |f (z)| is constant
throughout D, one can prove that f (z) must be constant there too. This result is
needed to obtain an important result later on in Chap. 4 (Sec. 54).

The proof is accomplished by writing

|f (z)| = c for all z in D,(5)
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where c is a real constant. If c = 0, it follows that f (z) = 0 everywhere in D. If
c �= 0, the fact that (see Sec. 5)

f (z)f (z) = c2

tells us that f (z) is never zero in D. Hence

f (z) = c2

f (z)
for all z in D,

and it follows from this that f (z) is analytic everywhere in D. The main result in
Example 3 just above thus ensures that f (z) is constant throughout D.

EXERCISES
1. Apply the theorem in Sec. 22 to verify that each of these functions is entire:

(a) f (z) = 3x + y + i(3y − x); (b) f (z) = sin x cosh y + i cos x sinh y;

(c) f (z) = e−y sin x − ie−y cos x; (d) f (z) = (z2 − 2)e−xe−iy .

2. With the aid of the theorem in Sec. 21, show that each of these functions is nowhere
analytic:

(a) f (z) = xy + iy; (b) f (z) = 2xy + i(x2 − y2); (c) f (z) = eyeix .

3. State why a composition of two entire functions is entire. Also, state why any linear
combination c1f1(z) + c2f2(z) of two entire functions, where c1 and c2 are complex
constants, is entire.

4. In each case, determine the singular points of the function and state why the function
is analytic everywhere except at those points:

(a) f (z) = 2z + 1

z(z2 + 1)
; (b) f (z) = z3 + i

z2 − 3z + 2
; (c) f (z) = z2 + 1

(z + 2)(z2 + 2z + 2)
.

Ans. (a) z = 0,± i; (b) z = 1, 2 ; (c) z = −2,−1 ± i.

5. According to Exercise 4(b), Sec. 23, the function

g(z) = √
reiθ/2 (r > 0,−π < θ < π)

is analytic in its domain of definition, with derivative

g′(z) = 1

2 g(z)
.

Show that the composite function G(z) = g(2z − 2 + i) is analytic in the half plane
x > 1, with derivative

G′(z) = 1

g(2z − 2 + i)
.

Suggestion: Observe that Re(2z − 2 + i) > 0 when x > 1.
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6. Use results in Sec. 23 to verify that the function

g(z) = ln r + iθ (r > 0, 0 < θ < 2π)

is analytic in the indicated domain of definition, with derivative g′(z) = 1/z. Then
show that the composite function G(z) = g(z2 + 1) is analytic in the quadrant
x > 0, y > 0, with derivative

G′(z) = 2z

z2 + 1
.

Suggestion: Observe that Im(z2 + 1) > 0 when x > 0, y > 0.

7. Let a function f be analytic everywhere in a domain D. Prove that if f (z) is real-
valued for all z in D, then f (z) must be constant throughtout D.

26. HARMONIC FUNCTIONS

A real-valued function H of two real variables x and y is said to be harmonic in a
given domain of the xy plane if, throughout that domain, it has continuous partial
derivatives of the first and second order and satisfies the partial differential equation

Hxx(x, y) + Hyy(x, y) = 0,(1)

known as Laplace’s equation.
Harmonic functions play an important role in applied mathematics. For

example, the temperatures T (x, y) in thin plates lying in the xy plane are often
harmonic. A function V (x, y) is harmonic when it denotes an electrostatic potential
that varies only with x and y in the interior of a region of three-dimensional space
that is free of charges.

EXAMPLE 1. It is easy to verify that the function T (x, y) = e−y sin x is
harmonic in any domain of the xy plane and, in particular, in the semi-infinite
vertical strip 0 < x < π, y > 0. It also assumes the values on the edges of the strip
that are indicated in Fig. 31. More precisely, it satisfies all of the conditions

xO

y

T = 0 Txx + Tyy = 0

T = sin x

T = 0

FIGURE 31
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Txx(x, y) + Tyy(x, y) = 0,

T (0, y) = 0, T (π, y) = 0,

T (x, 0) = sin x, lim
y→∞ T (x, y) = 0,

which describe steady temperatures T (x, y) in a thin homogeneous plate in the
xy plane that has no heat sources or sinks and is insulated except for the stated
conditions along the edges.

The use of the theory of functions of a complex variable in discovering solu-
tions, such as the one in Example 1, of temperature and other problems is described
in considerable detail later on in Chap. 10 and in parts of chapters following it.∗
That theory is based on the theorem below, which provides a source of harmonic
functions.

Theorem 1. If a function f (z) = u(x, y) + iv(x, y) is analytic in a domain D,
then its component functions u and v are harmonic in D.

To show this, we need a result that is to be proved in Chap. 4 (Sec. 52). Namely,
if a function of a complex variable is analytic at a point, then its real and imaginary
components have continuous partial derivatives of all orders at that point.

Assuming that f is analytic in D, we start with the observation that the first-
order partial derivatives of its component functions must satisfy the Cauchy–Riemann
equations throughout D:

ux = vy, uy = −vx.(2)

Differentiating both sides of these equations with respect to x, we have

uxx = vyx, uyx = −vxx.(3)

Likewise, differentiation with respect to y yields

uxy = vyy, uyy = −vxy.(4)

Now, by a theorem in advanced calculus,† the continuity of the partial derivatives
of u and v ensures that uyx = uxy and vyx = vxy . It then follows from equations
(3) and (4) that

uxx + uyy = 0 and vxx + vyy = 0.

That is, u and v are harmonic in D.

∗Another important method is developed in the authors’ “Fourier Series and Boundary Value Prob-
lems,” 7th ed., 2008.
†See, for instance, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 199–201, 1983.
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EXAMPLE 2. The function f (z) = e−y sin x − ie−y cos x is entire, as is
shown in Exercise 1 (c), Sec. 25. Hence its real component, which is the temperature
function T (x, y) = e−y sin x in Example 1, must be harmonic in every domain of
the xy plane.

EXAMPLE 3. Since the function f (z) = i/z2 is analytic whenever z �= 0
and since

i

z2
= i

z2
· z2

z2
= iz2

(zz)2
= iz2

|z|4 = 2xy + i(x2 − y2)

(x2 + y2)2
,

the two functions

u(x, y) = 2xy

(x2 + y2)2
and v(x, y) = x2 − y2

(x2 + y2)2

are harmonic throughout any domain in the xy plane that does not contain the origin.

If two given functions u and v are harmonic in a domain D and their first-order
partial derivatives satisfy the Cauchy–Riemann equations (2) throughout D, then v

is said to be a harmonic conjugate of u. The meaning of the word conjugate here
is, of course, different from that in Sec. 5, where z is defined.

Theorem 2. A function f (z) = u(x, y) + iv(x, y) is analytic in a domain D

if and only if v is a harmonic conjugate of u.

The proof is easy. If v is a harmonic conjugate of u in D, the theorem in Sec.
22 tells us that f is analytic in D. Conversely, if f is analytic in D, we know from
Theorem 1 that u and v are harmonic in D ; furthermore, in view of the theorem in
Sec. 21, the Cauchy–Riemann equations are satisfied.

The following example shows that if v is a harmonic conjugate of u in some
domain, it is not, in general, true that u is a harmonic conjugate of v there. (See
also Exercises 3 and 4.)

EXAMPLE 4. Suppose that

u(x, y) = x2 − y2 and v(x, y) = 2xy.

Since these are the real and imaginary components, respectively, of the entire func-
tion f (z) = z2, we know that v is a harmonic conjugate of u throughout the plane.
But u cannot be a harmonic conjugate of v since, as verified in Exercise 2(b), Sec.
25, the function 2xy + i(x2 − y2) is not analytic anywhere.

In Chap. 9 (Sec. 104) we shall show that a function u which is harmonic
in a domain of a certain type always has a harmonic conjugate. Thus, in such
domains, every harmonic function is the real part of an analytic function. It is also
true (Exercise 2) that a harmonic conjugate, when it exists, is unique except for an
additive constant.
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EXAMPLE 5. We now illustrate one method of obtaining a harmonic con-
jugate of a given harmonic function. The function

u(x, y) = y3 − 3x2y(5)

is readily seen to be harmonic throughout the entire xy plane. Since a harmonic
conjugate v(x, y) is related to u(x, y) by means of the Cauchy–Riemann equations

ux = vy, uy = −vx,(6)

the first of these equations tells us that

vy(x, y) = −6xy.

Holding x fixed and integrating each side here with respect to y, we find that

v(x, y) = −3xy2 + φ(x)(7)

where φ is, at present, an arbitrary function of x. Using the second of equations (6),
we have

3y2 − 3x2 = 3y2 − φ′(x),

or φ′(x) = 3x2. Thus φ(x) = x3 + C, where C is an arbitrary real number. Accord-
ing to equation (7), then, the function

v(x, y) = −3xy2 + x3 + C(8)

is a harmonic conjugate of u(x, y).
The corresponding analytic function is

f (z) = (y3 − 3x2y) + i(−3xy2 + x3 + C).(9)

The form f (z) = i(z3 + C) of this function is easily verified and is suggested by
noting that when y = 0, expression (9) becomes f (x) = i(x3 + C).

EXERCISES
1. Show that u(x, y) is harmonic in some domain and find a harmonic conjugate v(x, y)

when
(a) u(x, y) = 2x(1 − y); (b) u(x, y) = 2x − x3 + 3xy2;
(c) u(x, y) = sinh x sin y; (d) u(x, y) = y/(x2 + y2).

Ans. (a) v(x, y) = x2 − y2 + 2y; (b) v(x, y) = 2y − 3x2y + y3;
(c) v(x, y) = − cosh x cos y; (d) v(x, y) = x/(x2 + y2).

2. Show that if v and V are harmonic conjugates of u(x, y) in a domain D, then v(x, y)

and V (x, y) can differ at most by an additive constant.
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3. Suppose that v is a harmonic conjugate of u in a domain D and also that u is a
harmonic conjugate of v in D. Show how it follows that both u(x, y) and v(x, y)

must be constant throughout D.

4. Use Theorem 2 in Sec. 26 to show that v is a harmonic conjugate of u in a domain
D if and only if −u is a harmonic conjugate of v in D. (Compare with the result
obtained in Exercise 3.)

Suggestion: Observe that the function f (z) = u(x, y) + iv(x, y) is analytic in D

if and only if −if (z) is analytic there.

5. Let the function f (z) = u(r, θ) + iv(r, θ) be analytic in a domain D that does not
include the origin. Using the Cauchy–Riemann equations in polar coordinates (Sec.
23) and assuming continuity of partial derivatives, show that throughout D the function
u(r, θ) satisfies the partial differential equation

r2urr (r, θ) + rur(r, θ) + uθθ (r, θ) = 0,

which is the polar form of Laplace’s equation. Show that the same is true of the
function v(r, θ).

6. Verify that the function u(r, θ) = ln r is harmonic in the domain r > 0, 0 < θ < 2π

by showing that it satisfies the polar form of Laplace’s equation, obtained in Exercise
5. Then use the technique in Example 5, Sec. 26, but involving the Cauchy–Riemann
equations in polar form (Sec. 23), to derive the harmonic conjugate v(r, θ) = θ . (Com-
pare with Exercise 6, Sec. 25.)

7. Let the function f (z) = u(x, y) + iv(x, y) be analytic in a domain D, and consider the
families of level curves u(x, y) = c1 and v(x, y) = c2, where c1 and c2 are arbitrary
real constants. Prove that these families are orthogonal. More precisely, show that if
z0 = (x0, y0) is a point in D which is common to two particular curves u(x, y) = c1
and v(x, y) = c2 and if f ′(z0) �= 0, then the lines tangent to those curves at (x0, y0)

are perpendicular.
Suggestion: Note how it follows from the pair of equations u(x, y) = c1 and

v(x, y) = c2 that

∂u

∂x
+ ∂u

∂y

dy

dx
= 0 and

∂v

∂x
+ ∂v

∂y

dy

dx
= 0.

8. Show that when f (z) = z2, the level curves u(x, y) = c1 and v(x, y) = c2 of the
component functions are the hyperbolas indicated in Fig. 32. Note the orthogonality
of the two families, described in Exercise 7. Observe that the curves u(x, y) = 0 and
v(x, y) = 0 intersect at the origin but are not, however, orthogonal to each other. Why
is this fact in agreement with the result in Exercise 7?

9. Sketch the families of level curves of the component functions u and v when
f (z) = 1/z, and note the orthogonality described in Exercise 7.

10. Do Exercise 9 using polar coordinates.

11. Sketch the families of level curves of the component functions u and v when

f (z) = z − 1

z + 1
,

and note how the result in Exercise 7 is illustrated here.
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27. UNIQUELY DETERMINED ANALYTIC FUNCTIONS

We conclude this chapter with two sections dealing with how the values of an ana-
lytic function in a domain D are affected by its values in a subdomain of D or on a
line segment lying in D. While these sections are of considerable theoretical inter-
est, they are not central to our development of analytic functions in later chapters.
The reader may pass directly to Chap. 3 at this time and refer back when necessary.

Lemma. Suppose that

(a) a function f is analytic throughout a domain D;

(b) f (z) = 0 at each point z of a domain or line segment contained in D.

Then f (z) ≡ 0 in D; that is, f (z) is identically equal to zero throughout D.

To prove this lemma, we let f be as stated in its hypothesis and let z0 be any
point of the subdomain or line segment where f (z) = 0. Since D is a connected
open set (Sec. 11), there is a polygonal line L, consisting of a finite number of
line segments joined end to end and lying entirely in D, that extends from z0 to
any other point P in D. We let d be the shortest distance from points on L to the
boundary of D, unless D is the entire plane; in that case, d may be any positive
number. We then form a finite sequence of points

z0, z1, z2, . . . , zn−1, zn

along L, where the point zn coincides with P (Fig. 33) and where each point is
sufficiently close to adjacent ones that

|zk − zk−1| < d (k = 1, 2, . . . , n).
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FIGURE 33

Finally, we construct a finite sequence of neighborhoods

N0, N1, N2, . . . , Nn−1, Nn,

where each neighborhood Nk is centered at zk and has radius d . Note that these
neighborhoods are all contained in D and that the center zk of any neighborhood
Nk (k = 1, 2, . . . , n) lies in the preceding neighborhood Nk−1.

At this point, we need to use a result that is proved later on in Chap. 6. Namely,
Theorem 3 in Sec. 75 tells us that since f is analytic in N0 and since f (z) = 0 in
a domain or on a line segment containing z0, then f (z) ≡ 0 in N0. But the point z1

lies in N0. Hence a second application of the same theorem reveals that f (z) ≡ 0
in N1; and, by continuing in this manner, we arrive at the fact that f (z) ≡ 0 in Nn.
Since Nn is centered at the point P and since P was arbitrarily selected in D, we
may conclude that f (z) ≡ 0 in D. This completes the proof of the lemma.

Suppose now that two functions f and g are analytic in the same domain D

and that f (z) = g(z) at each point z of some domain or line segment contained in
D. The difference

h(z) = f (z) − g(z)

is also analytic in D, and h(z) = 0 throughout the subdomain or along the line
segment. According to the lemma, then, h(z) ≡ 0 throught D ; that is, f (z) = g(z) at
each point z in D. We thus arrive at the following important theorem.

Theorem. A function that is analytic in a domain D is uniquely determined
over D by its values in a domain, or along a line segment, contained in D.

This theorem is useful in studying the question of extending the domain of
definition of an analytic function. More precisely, given two domains D1 and D2,
consider the intersection D1 ∩ D2, consisting of all points that lie in both D1 and
D2. If D1 and D2 have points in common (see Fig. 34) and a function f1 is analytic
in D1, there may exist a function f2, which is analytic in D2, such that f2(z) = f1(z)

for each z in the intersection D1 ∩ D2. If so, we call f2 an analytic continuation of
f1 into the second domain D2.

Whenever that analytic continuation exists, it is unique, according to the
theorem just proved. That is, not more than one function can be analytic in D2 and
assume the value f1(z) at each point z of the domain D1 ∩ D2 interior to D2. How-
ever, if there is an analytic continuation f3 of f2 from D2 into a domain D3 which
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D1

D1∩ D2

D3

D2

FIGURE 34

intersects D1, as indicated in Fig. 34, it is not necessarily true that f3(z) = f1(z)

for each z in D1 ∩ D3. Exercise 2, Sec. 28, illustrates this.
If f2 is the analytic continuation of f1 from a domain D1 into a domain D2,

then the function F defined by means of the equations

F(z) =
{
f1(z) when z is in D1,

f2(z) when z is in D2

is analytic in the union D1 ∪ D2, which is the domain consisting of all points that
lie in either D1 or D2. The function F is the analytic continuation into D1 ∪ D2 of
either f1 or f2; and f1 and f2 are called elements of F .

28. REFLECTION PRINCIPLE

The theorem in this section concerns the fact that some analytic functions possess
the property that f (z) = f (z) for all points z in certain domains, while others do
not. We note, for example, that the functions z + 1 and z2 have that property when
D is the entire finite plane; but the same is not true of z + i and iz2. The theorem
here, which is known as the reflection principle, provides a way of predicting when
f (z) = f (z).

Theorem. Suppose that a function f is analytic in some domain D which
contains a segment of the x axis and whose lower half is the reflection of the upper
half with respect to that axis. Then

f (z) = f (z)(1)

for each point z in the domain if and only if f (x) is real for each point x on the
segment.

We start the proof by assuming that f (x) is real at each point x on the segment.
Once we show that the function

F(z) = f (z)(2)
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is analytic in D, we shall use it to obtain equation (1). To establish the analyticity
of F(z), we write

f (z) = u(x, y) + iv(x, y), F (z) = U(x, y) + iV (x, y)

and observe how it follows from equation (2) that since

f (z) = u(x, −y) − iv(x, −y),(3)

the components of F(z) and f (z) are related by the equations

U(x, y) = u(x, t) and V (x, y) = −v(x, t),(4)

where t = −y. Now, because f (x + it) is an analytic function of x + it , the
first-order partial derivatives of the functions u(x, t) and v(x, t) are continuous
throughout D and satisfy the Cauchy–Riemann equations∗

ux = vt , ut = −vx.(5)

Furthermore, in view of equations (4),

Ux = ux, Vy = −vt

dt

dy
= vt ;

and it follows from these and the first of equations (5) that Ux = Vy . Similarly,

Uy = ut

dt

dy
= −ut , Vx = −vx;

and the second of equations (5) tells us that Uy = −Vx . Inasmuch as the first-
order partial derivatives of U(x, y) and V (x, y) are now shown to satisfy the
Cauchy–Riemann equations and since those derivatives are continuous, we find
that the function F(z) is analytic in D. Moreover, since f (x) is real on the segment
of the real axis lying in D, we know that v(x, 0) = 0 on the segment; and, in view
of equations (4), this means that

F(x) = U(x, 0) + iV (x, 0) = u(x, 0) − iv(x, 0) = u(x, 0).

That is,

F(z) = f (z)(6)

at each point on the segment. According to the theorem in Sec. 27, which tells
us that an analytic function defined on a domain D is uniquely determined by its

∗See the paragraph immediately following Theorem 1 in Sec. 26.
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values along any line segment lying in D, it follows that equation (6) actually holds
throughout D. Because of definition (2) of the function F(z), then,

f (z) = f (z) ;(7)

and this is the same as equation (1).
To prove the converse in the theorem, we assume that equation (1) holds and

note that in view of expression (3), the form (7) of equation (1) can be written

u(x, −y) − iv(x, −y) = u(x, y) + iv(x, y).

In particular, if (x, 0) is a point on the segment of the real axis that lies in D,

u(x, 0) − iv(x, 0) = u(x, 0) + iv(x, 0);
and, by equating imaginary parts here, we see that v(x, 0) = 0. Hence f (x) is real
on the segment of the real axis lying in D.

EXAMPLES. Just prior to the statement of the theorem, we noted that

z + 1 = z + 1 and z2 = z2

for all z in the finite plane. The theorem tells us, of course, that this is true, since
x + 1 and x2 are real when x is real. We also noted that z + i and iz2 do not have
the reflection property throughout the plane, and we now know that this is because
x + i and ix2 are not real when x is real.

EXERCISES
1. Use the theorem in Sec. 27 to show that if f (z) is analytic and not constant throughout

a domain D, then it cannot be constant throughout any neighborhood lying in D.
Suggestion: Suppose that f (z) does have a constant value w0 throughout some

neighborhood in D.

2. Starting with the function

f1(z) = √
reiθ/2 (r > 0, 0 < θ < π)

and referring to Exercise 4(b), Sec. 23, point out why

f2(z) = √
reiθ/2

(
r > 0,

π

2
< θ < 2π

)
is an analytic continuation of f1 across the negative real axis into the lower half plane.
Then show that the function

f3(z) = √
reiθ/2

(
r > 0, π < θ <

5π

2

)

is an analytic continuation of f2 across the positive real axis into the first quadrant
but that f3(z) = −f1(z) there.
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3. State why the function

f4(z) = √
reiθ/2 (r > 0,−π < θ < π)

is the analytic continuation of the function f1(z) in Exercise 2 across the positive real
axis into the lower half plane.

4. We know from Example 1, Sec. 22, that the function

f (z) = exeiy

has a derivative everywhere in the finite plane. Point out how it follows from the
reflection principle (Sec. 28) that

f (z) = f (z)

for each z. Then verify this directly.

5. Show that if the condition that f (x) is real in the reflection principle (Sec. 28) is
replaced by the condition that f (x) is pure imaginary, then equation (1) in the state-
ment of the principle is changed to

f (z) = −f (z).
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C H A P T E R

3
ELEMENTARY FUNCTIONS

We consider here various elementary functions studied in calculus and define cor-
responding functions of a complex variable. To be specific, we define analytic
functions of a complex variable z that reduce to the elementary functions in calculus
when z = x + i0. We start by defining the complex exponential function and then
use it to develop the others.

29. THE EXPONENTIAL FUNCTION
As anticipated earlier (Sec. 14), we define here the exponential function ez by writing

ez = exeiy (z = x + iy),(1)

where Euler’s formula (see Sec. 6)

eiy = cos y + i sin y(2)

is used and y is to be taken in radians. We see from this definition that ez reduces
to the usual exponential function in calculus when y = 0 ; and, following the con-
vention used in calculus, we often write exp z for ez.

Note that since the positive nth root n
√

e of e is assigned to ex when x = 1/n

(n = 2, 3, . . .), expression (1) tells us that the complex exponential function ez is also
n
√

e when z = 1/n (n = 2, 3, . . .). This is an exception to the convention (Sec. 9) that
would ordinarily require us to interpret e1/n as the set of nth roots of e.

89
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According to definition (1), exeiy = ex+iy ; and, as already pointed out in
Sec. 14, the definition is suggested by the additive property

ex1ex2 = ex1+x2

of ex in calculus. That property’s extension,

ez1ez2 = ez1+z2 ,(3)

to complex analysis is easy to verify. To do this, we write

z1 = x1 + iy1 and z2 = x2 + iy2.

Then
ez1ez2 = (ex1eiy1)(ex2eiy2) = (ex1ex2)(eiy1eiy2).

But x1 and x2 are both real, and we know from Sec. 7 that

eiy1eiy2 = ei(y1+y2).

Hence
ez1ez2 = e(x1+x2)ei(y1+y2);

and, since

(x1 + x2) + i(y1 + y2) = (x1 + iy1) + (x2 + iy2) = z1 + z2,

the right-hand side of this last equation becomes ez1+z2 . Property (3) is now estab-
lished.

Observe how property (3) enables us to write ez1−z2ez2 = ez1 , or

ez1

ez2
= ez1−z2 .(4)

From this and the fact that e0 = 1, it follows that 1/ez = e−z.
There are a number of other important properties of ez that are expected.

According to Example 1 in Sec. 22, for instance,

d

dz
ez = ez(5)

everywhere in the z plane. Note that the differentiability of ez for all z tells us that
ez is entire (Sec. 24). It is also true that

ez �= 0 for any complex number z.(6)

This is evident upon writing definition (1) in the form

ez = ρeiφ where ρ = ex and φ = y,
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which tells us that

|ez| = ex and arg(ez) = y + 2nπ (n = 0,±1, ±2, . . .).(7)

Statement (6) then follows from the observation that |ez| is always positive.
Some properties of ez are, however, not expected. For example, since

ez+2πi = eze2πi and e2πi = 1,

we find that ez is periodic, with a pure imaginary period of 2πi:

ez+2πi = ez.(8)

For another property of ez that ex does not have, we note that while ex is
always positive, ez can be negative. We recall (Sec. 6), for instance, that eiπ = −1.
In fact,

ei(2n+1)π = ei2nπ+iπ = ei2nπeiπ = (1)(−1) = −1 (n = 0, ±1,±2, . . .).

There are, moreover, values of z such that ez is any given nonzero complex number.
This is shown in the next section, where the logarithmic function is developed, and
is illustrated in the following example.

EXAMPLE. In order to find numbers z = x + iy such that

ez = 1 + i,(9)

we write equation (9) as

exeiy =
√

2 eiπ/4.

Then, in view of the statment in italics at the beginning of Sec. 9 regarding the
equality of two nonzero complex numbers in exponential form,

ex =
√

2 and y = π

4
+ 2nπ (n = 0,±1, ±2, . . .).

Because ln(ex) = x, it follows that

x = ln
√

2 = 1

2
ln 2 and y =

(
2n + 1

4

)
π (n = 0,±1, ±2, . . .);

and so

z = 1

2
ln 2 +

(
2n + 1

4

)
πi (n = 0, ±1, ±2, . . .).(10)
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EXERCISES
1. Show that

(a) exp(2 ± 3πi) = −e2; (b) exp

(
2 + πi

4

)
=

√
e

2
(1 + i);

(c) exp(z + πi) = − exp z.

2. State why the function f (z) = 2z2 − 3 − zez + e−z is entire.

3. Use the Cauchy–Riemann equations and the theorem in Sec. 21 to show that the
function f (z) = exp z is not analytic anywhere.

4. Show in two ways that the function f (z) = exp(z2) is entire. What is its derivative?
Ans. f

′
(z) = 2z exp(z2).

5. Write |exp(2z + i)| and |exp(iz2)| in terms of x and y. Then show that

|exp(2z + i) + exp(iz2)| ≤ e2x + e−2xy .

6. Show that |exp(z2)| ≤ exp(|z|2).
7. Prove that |exp(−2z)| < 1 if and only if Re z > 0.

8. Find all values of z such that

(a) ez = −2; (b) ez = 1 + √
3i; (c) exp(2z − 1) = 1.

Ans. (a) z = ln 2 + (2n + 1)πi (n = 0,±1,±2, . . .);

(b) z = ln 2 +
(

2n + 1

3

)
πi (n = 0,±1,±2, . . .);

(c) z = 1

2
+ nπi (n = 0,±1,±2, . . .).

9. Show that exp(iz) = exp(iz) if and only if z = nπ (n = 0,±1,±2, . . .). (Compare
with Exercise 4, Sec. 28.)

10. (a) Show that if ez is real, then Im z = nπ (n = 0,±1,±2, . . .).
(b) If ez is pure imaginary, what restriction is placed on z?

11. Describe the behavior of ez = exeiy as (a) x tends to −∞; (b) y tends to ∞.

12. Write Re(e1/z) in terms of x and y. Why is this function harmonic in every domain
that does not contain the origin?

13. Let the function f (z) = u(x, y) + iv(x, y) be analytic in some domain D. State why
the functions

U(x, y) = eu(x,y) cos v(x, y), V (x, y) = eu(x,y) sin v(x, y)

are harmonic in D and why V (x, y) is, in fact, a harmonic conjugate of U(x, y).

14. Establish the identity

(ez)n = enz (n = 0,±1,±2, . . .)

in the following way.
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(a) Use mathematical induction to show that it is valid when n = 0, 1, 2, . . . .

(b) Verify it for negative integers n by first recalling from Sec. 7 that

zn = (z−1)m (m = −n = 1, 2, . . .)

when z �= 0 and writing (ez)n = (1/ez)m. Then use the result in part (a), together
with the property 1/ez = e−z (Sec. 29) of the exponential function.

30. THE LOGARITHMIC FUNCTION
Our motivation for the definition of the logarithmic function is based on solving the
equation

ew = z(1)

for w, where z is any nonzero complex number. To do this, we note that when z

and w are written z = rei� (−π < � ≤ π) and w = u + iv, equation (1) becomes

eueiv = rei�.

According to the statement in italics at the beginning of Sec. 9 about the equality
of two complex numbers expressed in exponential form, this tells us that

eu = r and v = � + 2nπ

where n is any integer. Since the equation eu = r is the same as u = ln r , it follows
that equation (1) is satisfied if and only if w has one of the values

w = ln r + i(� + 2nπ) (n = 0,±1, ±2, . . .).

Thus, if we write

log z = ln r + i(� + 2nπ) (n = 0, ±1, ±2, . . .),(2)

equation (1) tells us that

elog z = z (z �= 0),(3)

which serves to motivate expression (2) as the definition of the (multiple-valued)
logarithmic function of a nonzero complex variable z = rei�.

EXAMPLE 1. If z = −1 − √
3i, then r = 2 and � = −2π/3. Hence

log(−1 −
√

3i) = ln 2 + i

(
−2π

3
+ 2nπ

)
= ln 2 + 2

(
n − 1

3

)
πi

(n = 0, ±1,±2, . . .).
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It should be emphasized that it is not true that the left-hand side of equation
(3) with the order of the exponential and logarithmic functions reversed reduces to
just z. More precisely, since expression (2) can be written

log z = ln |z| + i arg z

and since (Sec. 29)

|ez| = ex and arg(ez) = y + 2nπ (n = 0, ±1, ±2, . . .)

when z = x + iy, we know that

log(ez) = ln |ez| + i arg(ez) = ln(ex) + i(y + 2nπ) = (x + iy) + 2nπi

(n = 0, ±1,±2, . . .).

That is,

log(ez) = z + 2nπi (n = 0, ±1, ±2, . . .).(4)

The principal value of log z is the value obtained from equation (2) when n = 0
there and is denoted by Log z. Thus

Log z = ln r + i�.(5)

Note that Log z is well defined and single-valued when z �= 0 and that

log z = Log z + 2nπi (n = 0, ±1, ±2, . . .).(6)

It reduces to the usual logarithm in calculus when z is a positive real number z = r .
To see this, one need only write z = rei0, in which case equation (5) becomes
Log z = ln r . That is, Log r = ln r .

EXAMPLE 2. From expression (2), we find that

log 1 = ln 1 + i(0 + 2nπ) = 2nπi (n = 0, ±1,±2, . . .).

As anticipated, Log 1 = 0.

Our final example here reminds us that although we were unable to find loga-
rithms of negative real numbers in calculus, we can now do so.

EXAMPLE 3. Observe that

log(−1) = ln 1 + i(π + 2nπ) = (2n + 1)πi (n = 0, ±1,±2, . . .)

and that Log (−1) = πi.
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31. BRANCHES AND DERIVATIVES OF LOGARITHMS
If z = reiθ is a nonzero complex number, the argument θ has any one of the values
θ = � + 2nπ (n = 0, ±1,±2, . . .), where � = Arg z. Hence the definition

log z = ln r + i(� + 2nπ) (n = 0,±1, ±2, . . .)

of the multiple-valued logarithmic function in Sec. 30 can be written

log z = ln r + iθ.(1)

If we let α denote any real number and restrict the value of θ in expression (1)
so that α < θ < α + 2π, the function

log z = ln r + iθ (r > 0, α < θ < α + 2π),(2)

with components

u(r, θ) = ln r and v(r, θ) = θ,(3)

is single-valued and continuous in the stated domain (Fig. 35). Note that if the
function (2) were to be defined on the ray θ = α, it would not be continuous there.
For if z is a point on that ray, there are points arbitrarily close to z at which the
values of v are near α and also points such that the values of v are near α + 2π .

xO

y

FIGURE 35

The function (2) is not only continuous but also analytic throughout the domain
r > 0, α < θ < α + 2π since the first-order partial derivatives of u and v are con-
tinuous there and satisfy the polar form (Sec. 23)

rur = vθ , uθ = −rvr

of the Cauchy–Riemann equations. Furthermore, according to Sec. 23,

d

dz
log z = e−iθ (ur + ivr) = e−iθ

(
1

r
+ i0

)
= 1

reiθ
;
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that is,

d

dz
log z = 1

z
(|z| > 0, α < arg z < α + 2π).(4)

In particular,

d

dz
Log z = 1

z
(|z| > 0, −π < Arg z < π).(5)

A branch of a multiple-valued function f is any single-valued function F that
is analytic in some domain at each point z of which the value F (z) is one of the
values of f . The requirement of analyticity, of course, prevents F from taking on a
random selection of the values of f . Observe that for each fixed α, the single-valued
function (2) is a branch of the multiple-valued function (1). The function

Log z = ln r + i� (r > 0,−π < � < π)(6)

is called the principal branch.
A branch cut is a portion of a line or curve that is introduced in order to define

a branch F of a multiple-valued function f . Points on the branch cut for F are
singular points (Sec. 24) of F , and any point that is common to all branch cuts of f

is called a branch point. The origin and the ray θ = α make up the branch cut for
the branch (2) of the logarithmic function. The branch cut for the principal branch
(6) consists of the origin and the ray � = π . The origin is evidently a branch point
for branches of the multiple-valued logarithmic function.

Special care must be taken in using branches of the logarithmic function, espe-
cially since expected identities involving logarithms do not always carry over from
calculus.

EXAMPLE. When the principal branch (6) is used, one can see that

Log(i3) = Log(−i) = ln1 − i
π

2
= −π

2
i

and

3 Log i = 3
(
ln1 + i

π

2

)
= 3π

2
i.

Hence

Log(i3) �= 3 Log i.

(See also Exercises 3 and 4.)

In Sec. 32, we shall derive some identities involving logarithms that do carry
over from calculus, sometimes with qualifications as to how they are to be inter-
preted. A reader who wishes to pass to Sec. 33 can simply refer to results in Sec. 32
when needed.
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EXERCISES
1. Show that

(a) Log(−ei) = 1 − π

2
i; (b) Log(1 − i) = 1

2
ln 2 − π

4
i.

2. Show that
(a) log e = 1 + 2nπi (n = 0,±1,±2, . . .);

(b) log i =
(

2n + 1

2

)
πi (n = 0,±1,±2, . . .);

(c) log(−1 + √
3i) = ln 2 + 2

(
n + 1

3

)
πi (n = 0,±1,±2, . . .).

3. Show that

(a) Log(1 + i)2 = 2 Log(1 + i); (b) Log(−1 + i)2 �= 2 Log(−1 + i).

4. Show that

(a) log(i2) = 2 log i when log z = ln r + iθ

(
r > 0,

π

4
< θ <

9π

4

)
;

(b) log(i2) �= 2 log i when log z = ln r + iθ

(
r > 0,

3π

4
< θ <

11π

4

)
.

5. Show that

(a) the set of values of log(i1/2) is(
n + 1

4

)
πi (n = 0,±1,±2, . . .)

and that the same is true of (1/2) log i ;
(b) the set of values of log(i2) is not the same as the set of values of 2 log i.

6. Given that the branch log z = ln r + iθ (r > 0, α < θ < α + 2π) of the logarithmic
function is analytic at each point z in the stated domain, obtain its derivative by
differentiating each side of the identity (Sec. 30)

elog z = z (z �= 0)

and using the chain rule.

7. Find all roots of the equation log z = iπ/2.

Ans. z = i.

8. Suppose that the point z = x + iy lies in the horizontal strip α < y < α + 2π. Show
that when the branch log z = ln r + iθ (r > 0, α < θ < α + 2π) of the logarithmic
function is used, log(ez) = z. [Compare with equation (4), Sec. 30.]

9. Show that
(a) the function f (z) = Log(z − i) is analytic everywhere except on the portion x ≤ 0

of the line y = 1;
(b) the function

f (z) = Log(z + 4)

z2 + i
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is analytic everywhere except at the points ±(1 − i)/
√

2 and on the portion
x ≤ −4 of the real axis.

10. Show in two ways that the function ln(x2 + y2) is harmonic in every domain that does
not contain the origin.

11. Show that

Re [log(z − 1)] = 1

2
ln[(x − 1)2 + y2] (z �= 1).

Why must this function satisfy Laplace’s equation when z �= 1?

32. SOME IDENTITIES INVOLVING LOGARITHMS
If z1 and z2 denote any two nonzero complex numbers, it is straightforward to show
that

log(z1z2) = log z1 + log z2.(1)

This statement, involving a multiple-valued function, is to be interpreted in the same
way that the statement

arg(z1z2) = arg z1 + arg z2(2)

was in Sec. 8. That is, if values of two of the three logarithms are specified, then
there is a value of the third such that equation (1) holds.

The verification of statement (1) can be based on statement (2) in the following
way. Since |z1z2| = |z1||z2| and since these moduli are all positive real numbers,
we know from experience with logarithms of such numbers in calculus that

ln |z1z2| = ln |z1| + ln |z2|.

So it follows from this and equation (2) that

ln |z1z2| + i arg(z1z2) = (ln |z1| + i arg z1) + (ln |z2| + i arg z2).(3)

Finally, because of the way in which equations (1) and (2) are to be interpreted,
equation (3) is the same as equation (1).

EXAMPLE. To illustrate statement (1), write z1 = z2 = −1 and recall from
Examples 2 and 3 in Sec. 30 that

log 1 = 2nπi and log(−1) = (2n + 1)πi,

where n = 0,±1, ±2, . . . . Noting that z1z2 = 1 and using the values

log(z1z2) = 0 and log z1 = πi,



Brown-chap03-v2 10/29/07 3:58pm 99

sec. 32 Some Identities Involving Logarithms 99

we find that equations (1) is satisfied when the value log z2 = −πi is chosen.
If, on the other hand, the principal values

Log 1 = 0 and Log(−1) = πi

are used,

Log(z1z2) = 0 and Log z1 + log z2 = 2πi

for the same numbers z1 and z2. Thus statement (1), which is sometimes true when
log is replaced by Log (see Exercise 1), is not always true when principal values
are used in all three of its terms.

Verification of the statement

log

(
z1

z2

)
= log z1 − log z2,(4)

which is to be interpreted in the same way as statement (1), is left to the exercises.
We include here two other properties of log z that will be of special interest in

Sec. 33. If z is a nonzero complex number, then

zn = en log z (n = 0 ± 1, ±2, . . .)(5)

for any value of log z that is taken. When n = 1, this reduces, of course, to relation
(3), Sec. 30. Equation (5) is readily verified by writing z = reiθ and noting that
each side becomes rneinθ .

It is also true that when z �= 0,

z1/n = exp

(
1

n
log z

)
(n = 1, 2, . . .).(6)

That is, the term on the right here has n distinct values, and those values are the nth
roots of z. To prove this, we write z = r exp(i�), where � is the principal value
of arg z. Then, in view of definition (2), Sec. 30, of log z,

exp

(
1

n
log z

)
= exp

[
1

n
ln r + i(� + 2kπ)

n

]

where k = 0, ±1, ±2, . . . . Thus

exp

(
1

n
log z

)
= n

√
r exp

[
i

(
�

n
+ 2kπ

n

)]
(k = 0, ±1, ±2, . . .).(7)

Because exp(i2kπ/n) has distinct values only when k = 0, 1, . . . , n − 1, the right-
hand side of equation (7) has only n values. That right-hand side is, in fact, an
expression for the nth roots of z (Sec. 9), and so it can be written z1/n. This
establishes property (6), which is actually valid when n is a negative integer too
(see Exercise 5).
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EXERCISES
1. Show that if Re z1 > 0 and Re z2 > 0, then

Log(z1z2) = Log z1 + Log z2.

Suggestion: Write �1 = Arg z1 and �2 = Arg z2. Then observe how it follows
from the stated restrictions on z1 and z2 that −π < �1 + �2 < π.

2. Show that for any two nonzero complex numbers z1 and z2,

Log(z1z2) = Log z1 + Log z2 + 2Nπi

where N has one of the values 0,±1. (Compare with Exercise 1.)

3. Verify expression (4), Sec. 32, for log(z1/z2) by

(a) using the fact that arg(z1/z2) = arg z1 − arg z2 (Sec. 8);
(b) showing that log(1/z) = − log z (z �= 0), in the sense that log(1/z) and − log z

have the same set of values, and then referring to expression (1), Sec. 32, for
log(z1z2).

4. By choosing specific nonzero values of z1 and z2, show that expression (4), Sec. 32,
for log(z1/z2) is not always valid when log is replaced by Log.

5. Show that property (6), Sec. 32, also holds when n is a negative integer. Do this
by writing z1/n = (z1/m)−1 (m = −n), where n has any one of the negative values
n = −1,−2, . . . (see Exercise 9, Sec. 10), and using the fact that the property is
already known to be valid for positive integers.

6. Let z denote any nonzero complex number, written z = rei� (−π < � ≤ π), and let
n denote any fixed positive integer (n = 1, 2, . . .). Show that all of the values of
log(z1/n) are given by the equation

log(z1/n) = 1

n
ln r + i

� + 2(pn + k)π

n
,

where p = 0,±1,±2, . . . and k = 0, 1, 2, . . . , n − 1. Then, after writing

1

n
log z = 1

n
ln r + i

� + 2qπ

n
,

where q = 0,±1,±2, . . . , show that the set of values of log(z1/n) is the same as the set
of values of (1/n) log z. Thus show that log(z1/n) = (1/n) log z where, corresponding
to a value of log(z1/n) taken on the left, the appropriate value of log z is to be selected
on the right, and conversely. [The result in Exercise 5(a), Sec. 31, is a special case of
this one.]

Suggestion: Use the fact that the remainder upon dividing an integer by a positive
integer n is always an integer between 0 and n − 1, inclusive; that is, when a positive
integer n is specified, any integer q can be written q = pn + k, where p is an integer
and k has one of the values k = 0, 1, 2, . . . , n − 1.
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33. COMPLEX EXPONENTS
When z �= 0 and the exponent c is any complex number, the function zc is defined
by means of the equation

zc = ec log z,(1)

where log z denotes the multiple-valued logarithmic function. Equation (1) provides
a consistent definition of zc in the sense that it is already known to be valid (see
Sec. 32) when c = n (n = 0,±1, ±2, . . .) and c = 1/n (n = ±1,±2, . . .). Defini-
tion (1) is, in fact, suggested by those particular choices of c.

EXAMPLE 1. Powers of z are, in general, multiple-valued, as illustrated by
writing

i−2i = exp(−2i log i)

and then

log i = ln 1 + i
(π

2
+ 2nπ

)
=

(
2n + 1

2

)
πi (n = 0, ±1,±2, . . .).

This shows that

i−2i = exp[(4n + 1)π] (n = 0, ±1,±2, . . .).(2)

Note that these values of i−2i are all real numbers.
Since the exponential function has the property 1/ez = e−z (Sec. 29), one can

see that
1

zc
= 1

exp(c log z)
= exp(−c log z) = z−c

and, in particular, that 1/i2i = i−2i . According to expression (2), then,

1

i2i
= exp[(4n + 1)π] (n = 0,±1, ±2, . . .).(3)

If z = reiθ and α is any real number, the branch

log z = ln r + iθ (r > 0, α < θ < α + 2π)

of the logarithmic function is single-valued and analytic in the indicated domain
(Sec. 31). When that branch is used, it follows that the function zc = exp(c log z)

is single-valued and analytic in the same domain. The derivative of such a branch
of zc is found by first using the chain rule to write

d

dz
zc = d

dz
exp(c log z) = c

z
exp(c log z)
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and then recalling (Sec. 30) the identity z = exp(log z). That yields the result

d

dz
zc = c

exp(c log z)

exp(log z)
= c exp[(c − 1) log z],

or

d

dz
zc = czc−1 (|z| > 0, α < arg z < α + 2π).(4)

The principal value of zc occurs when log z is replaced by Log z in defini-
tion (1):

P.V. zc = ec Log z.(5)

Equation (5) also serves to define the principal branch of the function zc on the
domain |z| > 0, −π < Arg z < π .

EXAMPLE 2. The principal value of (−i)i is

exp[i Log(−i)] = exp
[
i
(
ln 1 − i

π

2

)]
= exp

π

2
.

That is,

P.V. (−i)i = exp
π

2
.(6)

EXAMPLE 3. The principal branch of z2/3 can be written

exp

(
2

3
Log z

)
= exp

(
2

3
ln r + 2

3
i�

)
= 3√

r2 exp

(
i
2�

3

)
.

Thus

P.V. z2/3 = 3√
r2 cos

2�

3
+ i

3√
r2 sin

2�

3
.(7)

This function is analytic in the domain r > 0, −π < � < π , as one can see directly
from the theorem in Sec. 23.

While familiar laws of exponents used in calculus often carry over to complex
analysis, there are exceptions when certain numbers are involved.

EXAMPLE 4. Consider the nonzero complex numbers

z1 = 1 + i, z2 = 1 − i, and z3 = −1 − i.
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When principal values of the powers are taken,

(z1z2)
i = 2i = eiLog 2 = ei(ln 2+i0) = ei ln 2

and

zi
1 = eiLog(1+i) = ei(ln

√
2+iπ/4) = e−π/4ei(ln 2)/2,

zi
2 = eiLog(1−i) = ei(ln

√
2−iπ/4) = eπ/4ei(ln 2)/2.

Thus

(z1z2)
i = zi

1z
i
2,(8)

as might be expected.
On the other hand, continuing to use principal values, we see that

(z2z3)
i = (−2)i = eiLog(−2) = ei(ln 2+iπ) = e−πei ln 2

and

zi
3 = eiLog(−1−i) = ei(ln

√
2−i3π/4) = e3π/4ei(ln 2)/2.

Hence

(z2z3)
i = [

eπ/4ei(ln 2)/2] [
e3π/4ei(ln 2)/2] e−2π ,

or

(z2z3)
i = zi

2z
i
3 e−2π .(9)

According to definition (1), the exponential function with base c, where c is
any nonzero complex constant, is written

cz = ez log c.(10)

Note that although ez is, in general, multiple-valued according to definition (10),
the usual interpretation of ez occurs when the principal value of the logarithm is
taken. This is because the principal value of log e is unity.

When a value of log c is specified, cz is an entire function of z. In fact,

d

dz
cz = d

dz
ez log c = ez log c log c ;

and this shows that

d

dz
cz = cz log c.(11)
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EXERCISES
1. Show that

(a) (1 + i)i = exp
(
−π

4
+ 2nπ

)
exp

(
i
ln 2

2

)
(n = 0,±1,±2, . . .);

(b) (−1)1/π = e(2n+1)i (n = 0,±1,±2, . . .).

2. Find the principal value of

(a) ii ; (b)
[ e

2
(−1 − √

3i)
]3πi

; (c) (1 − i)4i .

Ans. (a) exp(−π/2); (b) − exp(2π 2); (c) eπ [cos(2 ln 2) + i sin(2 ln 2)].

3. Use definition (1), Sec. 33, of zc to show that (−1 + √
3i)3/2 = ± 2

√
2.

4. Show that the result in Exercise 3 could have been obtained by writing

(a) (−1 + √
3i)3/2 = [(−1 + √

3i)1/2]3 and first finding the square roots of −1 + √
3i;

(b) (−1 + √
3i)3/2 = [(−1 + √

3i)3]1/2 and first cubing −1 + √
3i.

5. Show that the principal nth root of a nonzero complex number z0 that was defined in
Sec. 9 is the same as the principal value of z

1/n

0 defined by equation (5), Sec. 33.

6. Show that if z �= 0 and a is a real number, then |za | = exp(a ln |z|) = |z|a , where the
principal value of |z|a is to be taken.

7. Let c = a + bi be a fixed complex number, where c �= 0,±1,±2, . . . , and note that
ic is multiple-valued. What additional restriction must be placed on the constant c so
that the values of |ic| are all the same?

Ans. c is real.

8. Let c, c1, c2, and z denote complex numbers, where z �= 0. Prove that if all of the
powers involved are principal values, then

(a) zc1zc2 = zc1+c2; (b)
zc1

zc2
= zc1−c2; (c) (zc)n = zc n (n = 1, 2, . . .).

9. Assuming that f ′(z) exists, state the formula for the derivative of cf (z).

34. TRIGONOMETRIC FUNCTIONS
Euler’s formula (Sec. 6) tells us that

eix = cos x + i sin x and e−ix = cos x − i sin x

for every real number x. Hence

eix − e−ix = 2i sin x and eix + e−ix = 2 cos x.

That is,

sin x = eix − e−ix

2i
and cos x = eix + e−ix

2
.
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It is, therefore, natural to define the sine and cosine functions of a complex variable
z as follows:

sin z = eiz − e−iz

2i
and cos z = eiz + e−iz

2
.(1)

These functions are entire since they are linear combinations (Exercise 3, Sec. 25)
of the entire functions eiz and e−iz. Knowing the derivatives

d

dz
eiz = ieiz and

d

dz
e−iz = −ie−iz

of those exponential functions, we find from equations (1) that

d

dz
sin z = cos z and

d

dz
cos z = − sin z.(2)

It is easy to see from definitions (1) that the sine and cosine functions remain
odd and even, respectively:

sin(−z) = − sin z, cos(−z) = cos z.(3)

Also,

eiz = cos z + i sin z.(4)

This is, of course, Euler’s formula (Sec. 6) when z is real.
A variety of identities carry over from trigonometry. For instance (see Exercises

2 and 3),

sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2,(5)

cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2.(6)

From these, it follows readily that

sin 2z = 2 sin z cos z, cos 2z = cos2 z − sin2 z,(7)

sin
(
z + π

2

)
= cos z, sin

(
z − π

2

)
= − cos z,(8)

and [Exercise 4(a)]

sin2 z + cos2 z = 1.(9)

The periodic character of sin z and cos z is also evident:

sin(z + 2π) = sin z, sin(z + π) = − sin z,(10)

cos(z + 2π) = cos z, cos(z + π) = − cos z.(11)
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When y is any real number, definitions (1) and the hyperbolic functions

sinhy = ey − e−y

2
and coshy = ey + e−y

2

from calculus can be used to write

sin(iy) = i sinhy and cos(iy) = coshy.(12)

Also, the real and imaginary components of sin z and cos z can be displayed in
terms of those hyperbolic functions:

sin z = sin x cosh y + i cos x sinh y,(13)

cos z = cos x cosh y − i sin x sinh y,(14)

where z = x + iy. To obtain expressions (13) and (14), we write

z1 = x and z2 = iy

in identities (5) and (6) and then refer to relations (12). Observe that once expres-
sion (13) is obtained, relation (14) also follows from the fact (Sec. 21) that if the
derivative of a function

f (z) = u(x, y) + iv(x, y)

exists at a point z = (x, y), then

f ′(z) = ux(x, y) + ivx(x, y).

Expressions (13) and (14) can be used (Exercise 7) to show that

| sin z|2 = sin2 x + sinh2 y,(15)

| cos z|2 = cos2 x + sinh2 y.(16)

Inasmuch as sinh y tends to infinity as y tends to infinity, it is clear from these two
equations that sin z and cos z are not bounded on the complex plane, whereas the
absolute values of sin x and cos x are less than or equal to unity for all values of x.
(See the definition of a bounded function at the end of Sec. 18.)

A zero of a given function f (z) is a number z0 such that f (z0) = 0. Since sin z

becomes the usual sine function in calculus when z is real, we know that the real
numbers z = nπ (n = 0, ±1,±2, . . .) are all zeros of sin z. To show that there are
no other zeros, we assume that sin z = 0 and note how it follows from equation (15)
that

sin2 x + sinh2 y = 0.

This sum of two squares reveals that

sin x = 0 and sinh y = 0.
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Evidently, then, x = nπ (n = 0, ±1,±2, . . .) and y = 0 ; that is,

sin z = 0 if and only if z = nπ (n = 0, ±1,±2, . . .).(17)

Since
cos z = − sin

(
z − π

2

)
,

according to the second of identities (8),

cos z = 0 if and only if z = π

2
+ nπ (n = 0, ±1,±2, . . .).(18)

So, as was the case with sin z, the zeros of cos z are all real.
The other four trigonometric functions are defined in terms of the sine and

cosine functions by the expected relations:

tan z = sin z

cos z
, cot z = cos z

sin z
,(19)

sec z = 1

cos z
, csc z = 1

sin z
.(20)

Observe that the quotients tan z and sec z are analytic everywhere except at the
singularities (Sec. 24)

z = π

2
+ nπ (n = 0, ±1,±2, . . .),

which are the zeros of cos z. Likewise, cot z and csc z have singularities at the zeros
of sin z, namely

z = nπ (n = 0, ±1,±2, . . .).

By differentiating the right-hand sides of equations (19) and (20), we obtain the
anticipated differentiation formulas

d

dz
tan z = sec2 z,

d

dz
cot z = − csc2 z,(21)

d

dz
sec z = sec z tan z,

d

dz
csc z = − csc z cot z.(22)

The periodicity of each of the trigonometric functions defined by equations (19) and
(20) follows readily from equations (10) and (11). For example,

tan(z + π) = tan z.(23)

Mapping properties of the transformation w = sin z are especially important
in the applications later on. A reader who wishes at this time to learn some of
those properties is sufficiently prepared to read Sec. 96 (Chap. 8), where they are
discussed.
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EXERCISES
1. Give details in the derivation of expressions (2), Sec. 34, for the derivatives of sin z

and cos z.

2. (a) With the aid of expression (4), Sec. 34, show that

eiz1eiz2 = cos z1 cos z2 − sin z1 sin z2 + i(sin z1 cos z2 + cos z1 sin z2).

Then use relations (3), Sec. 34, to show how it follows that

e−iz1e−iz2 = cos z1 cos z2 − sin z1 sin z2 − i(sin z1 cos z2 + cos z1 sin z2).

(b) Use the results in part (a) and the fact that

sin(z1 + z2) = 1

2i

[
ei(z1+z2) − e−i(z1+z2)

] = 1

2i

(
eiz1eiz2 − e−iz1e−iz2

)
to obtain the identity

sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2

in Sec. 34.

3. According to the final result in Exercise 2(b),

sin(z + z2) = sin z cos z2 + cos z sin z2.

By differentiating each side here with respect to z and then setting z = z1, derive the
expression

cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2

that was stated in Sec. 34.

4. Verify identity (9) in Sec. 34 using

(a) identity (6) and relations (3) in that section;
(b) the lemma in Sec. 27 and the fact that the entire function

f (z) = sin2 z + cos2 z − 1

has zero values along the x axis.

5. Use identity (9) in Sec. 34 to show that

(a) 1 + tan2 z = sec2 z; (b) 1 + cot2 z = csc2 z.

6. Establish differentiation formulas (21) and (22) in Sec. 34.

7. In Sec. 34, use expressions (13) and (14) to derive expressions (15) and (16) for |sin z|2
and |cos z|2.

Suggestion: Recall the identities sin2 x + cos2 x = 1 and cosh2 y − sinh2 y = 1.

8. Point out how it follows from expressions (15) and (16) in Sec. 34 for |sin z|2 and
|cos z|2 that

(a) |sin z| ≥ |sin x|; (b) |cos z| ≥ |cos x|.
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9. With the aid of expressions (15) and (16) in Sec. 34 for |sin z|2 and |cos z|2, show that

(a) |sinh y| ≤ |sin z| ≤ cosh y ; (b) |sinh y| ≤ |cos z| ≤ cosh y.

10. (a) Use definitions (1), Sec. 34, of sin z and cos z to show that

2 sin(z1 + z2) sin(z1 − z2) = cos 2z2 − cos 2z1.

(b) With the aid of the identity obtained in part (a), show that if cos z1 = cos z2, then
at least one of the numbers z1 + z2 and z1 − z2 is an integral multiple of 2π .

11. Use the Cauchy–Riemann equations and the theorem in Sec. 21 to show that neither
sin z nor cos z is an analytic function of z anywhere.

12. Use the reflection principle (Sec. 28) to show that for all z,

(a) sin z = sin z; (b) cos z = cos z.

13. With the aid of expressions (13) and (14) in Sec. 34, give direct verifications of the
relations obtained in Exercise 12.

14. Show that

(a) cos(iz) = cos(iz) for all z;
(b) sin(iz) = sin(iz) if and only if z = nπi (n = 0,±1,±2, . . .).

15. Find all roots of the equation sin z = cosh 4 by equating the real parts and then the
imaginary parts of sin z and cosh 4.

Ans.
(π

2
+ 2nπ

)
± 4i (n = 0,±1,±2, . . .).

16. With the aid of expression (14), Sec. 34, show that the roots of the equaion cos z = 2
are

z = 2nπ + i cosh−1 2 (n = 0,±1,±2, . . .).

Then express them in the form

z = 2nπ ± i ln(2 +
√

3) (n = 0,±1,±2, . . .).

35. HYPERBOLIC FUNCTIONS
The hyperbolic sine and the hyperbolic cosine of a complex variable are defined as
they are with a real variable; that is,

sinh z = ez − e−z

2
, cosh z = ez + e−z

2
.(1)

Since ez and e−z are entire, it follows from definitions (1) that sinh z and cosh z are
entire. Furthermore,

d

dz
sinh z = cosh z,

d

dz
cosh z = sinh z.(2)
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Because of the way in which the exponential function appears in definitions
(1) and in the definitions (Sec. 34)

sin z = eiz − e−iz

2i
, cos z = eiz + e−iz

2

of sin z and cos z, the hyperbolic sine and cosine functions are closely related to
those trigonometric functions:

−i sinh(iz) = sin z, cosh(iz) = cos z,(3)

−i sin(iz) = sinh z, cos(iz) = cosh z.(4)

Some of the most frequently used identities involving hyperbolic sine and
cosine functions are

sinh(−z) = − sinh z, cosh(−z) = cosh z,(5)

cosh2 z − sinh2 z = 1,(6)

sinh(z1 + z2) = sinh z1 cosh z2 + cosh z1 sinh z2,(7)

cosh(z1 + z2) = cosh z1 cosh z2 + sinh z1 sinh z2(8)

and

sinh z = sinh x cos y + i cosh x sin y,(9)

cosh z = cosh x cos y + i sinh x sin y,(10)

|sinh z|2 = sinh2 x + sin2 y,(11)

|cosh z|2 = sinh2 x + cos2 y,(12)

where z = x + iy. While these identities follow directly from definitions (1), they
are often more easily obtained from related trigonometric identities, with the aid of
relations (3) and (4).

EXAMPLE. To illustrate the method of proof just suggested, let us verify
identity (11). According to the first of relations (4), |sinh z|2 = |sin(iz)|2. That is,

|sinh z|2 = |sin(−y + ix)|2,(13)

where z = x + iy. But from equation (15), Sec. 34, we know that

|sin(x + iy)|2 = sin2 x + sinh2 y ;

and this enables us to write equation (13) in the desired form (11).
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In view of the periodicity of sin z and cos z, it follows immediately from relaions
(4) that sinh z and cosh z are periodic with period 2πi. Relations (4), together with
statements (17) and (18) in Sec. 34, also tell us that

sinh z = 0 if and only if z = nπi (n = 0, ±1, ±2, . . .)(14)

and

cosh z = 0 if and only if z =
(π

2
+ nπ

)
i (n = 0, ±1, ±2, . . .).(15)

The hyperbolic tangent of z is defined by means of the equation

tanh z = sinh z

cosh z
(16)

and is analytic in every domain in which cosh z �= 0. The functions coth z, sech z,
and csch z are the reciprocals of tanh z, cosh z, and sinh z, respectively. It is straight-
forward to verify the following differentiation formulas, which are the same as those
established in calculus for the corresponding functions of a real variable:

d

dz
tanh z = sech2z,

d

dz
coth z = −csch2z,(17)

d

dz
sech z = −sech z tanh z,

d

dz
csch z = −csch z coth z.(18)

EXERCISES
1. Verify that the derivatives of sinh z and cosh z are as stated in equations (2), Sec. 35.

2. Prove that sinh 2z = 2 sinh z cosh z by starting with

(a) definitions (1), Sec. 35, of sinh z and cosh z;
(b) the identity sin 2z = 2 sin z cos z (Sec. 34) and using relations (3) in Sec. 35.

3. Show how identities (6) and (8) in Sec. 35 follow from identities (9) and (6), respec-
tively, in Sec. 34.

4. Write sinh z = sinh(x + iy) and cosh z = cosh(x + iy), and then show how expres-
sions (9) and (10) in Sec. 35 follow from identities (7) and (8), respectively, in that
section.

5. Verify expression (12), Sec. 35, for |cosh z|2.

6. Show that |sinh x| ≤ |cosh z| ≤ cosh x by using

(a) identity (12), Sec. 35;
(b) the inequalities |sinh y| ≤ |cos z| ≤ cosh y, obtained in Exercise 9(b), Sec. 34.

7. Show that

(a) sinh(z + πi) = − sinh z; (b) cosh(z + πi) = cosh z;
(c) tanh(z + πi) = tanh z.
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8. Give details showing that the zeros of sinh z and cosh z are as in statements (14) and
(l5), Sec. 35.

9. Using the results proved in Exercise 8, locate all zeros and singularities of the hyper-
bolic tangent function.

10. Derive differentiation formulas (17), Sec. 35.

11. Use the reflection principle (Sec. 28) to show that for all z,

(a) sinh z = sinh z; (b) cosh z = cosh z.

12. Use the results in Exercise 11 to show that tanh z = tanh z at points where cosh z �= 0.

13. By accepting that the stated identity is valid when z is replaced by the real variable x

and using the lemma in Sec. 27, verify that

(a) cosh2 z − sinh2 z = 1; (b) sinh z + cosh z = ez.

[Compare with Exercise 4(b), Sec. 34.]

14. Why is the function sinh(ez) entire? Write its real component as a function of x and
y, and state why that function must be harmonic everywhere.

15. By using one of the identities (9) and (10) in Sec. 35 and then proceeding as in
Exercise 15, Sec. 34, find all roots of the equation

(a) sinh z = i; (b) cosh z = 1

2
.

Ans. (a) z =
(

2n + 1

2

)
πi (n = 0,±1,±2, . . .);

(b) z =
(

2n ± 1

3

)
πi (n = 0,±1,±2, . . .).

16. Find all roots of the equation cosh z = −2. (Compare this exercise with Exercise 16,
Sec. 34.)

Ans. z = ± ln(2 + √
3) + (2n + 1)πi (n = 0,±1,±2, . . .).

36. INVERSE TRIGONOMETRIC AND HYPERBOLIC
FUNCTIONS

Inverses of the trigonometric and hyperbolic functions can be described in terms of
logarithms.

In order to define the inverse sine function sin−1 z, we write

w = sin−1 z when z = sin w.

That is, w = sin−1 z when

z = eiw − e−iw

2i
.

If we put this equation in the form

(eiw)2 − 2iz(eiw) − 1 = 0,



Brown-chap03-v2 10/29/07 3:58pm 113

sec. 36 Inverse Trigonometric and Hyperbolic Functions 113

which is quadratic in eiw, and solve for eiw [see Exercise 8(a), Sec. 10 ], we find
that

eiw = iz + (1 − z2)1/2(1)

where (1 − z2)1/2 is, of course, a double-valued function of z. Taking logarithms of
each side of equation (1) and recalling that w = sin−1 z, we arrive at the expression

sin−1 z = −i log[iz + (1 − z2)1/2].(2)

The following example emphasizes the fact that sin−1 z is a multiple-valued function,
with infinitely many values at each point z.

EXAMPLE. Expression (2) tells us that

sin−1(−i) = −i log(1 ±
√

2).

But
log(1 +

√
2) = ln(1 +

√
2) + 2nπi (n = 0, ±1, ±2, . . .)

and

log(1 −
√

2) = ln(
√

2 − 1) + (2n + 1)πi (n = 0, ±1,±2, . . .).

Since
ln(

√
2 − 1) = ln

1

1 + √
2

= − ln(1 +
√

2),

then, the numbers

(−1)n ln(1 +
√

2) + nπi (n = 0, ±1,±2, . . .)

constitute the set of values of log(1 ± √
2). Thus, in rectangular form,

sin−1(−i) = nπ + i(−1)n+1 ln(1 +
√

2) (n = 0,±1, ±2, . . .).

One can apply the technique used to derive expression (2) for sin−1 z to show
that

cos−1 z = −i log
[
z + i(1 − z2)1/2](3)

and that

tan−1 z = i

2
log

i + z

i − z
.(4)

The functions cos−1 z and tan−1 z are also multiple-valued. When specific branches
of the square root and logarithmic functions are used, all three inverse functions
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become single-valued and analytic because they are then compositions of analytic
functions.

The derivatives of these three functions are readily obtained from their loga-
rithmic expressions. The derivatives of the first two depend on the values chosen
for the square roots:

d

dz
sin−1 z = 1

(1 − z2)1/2
,(5)

d

dz
cos−1 z = −1

(1 − z2)1/2
.(6)

The derivative of the last one,

d

dz
tan−1 z = 1

1 + z2
,(7)

does not, however, depend on the manner in which the function is made single-
valued.

Inverse hyperbolic functions can be treated in a corresponding manner. It turns
out that

sinh−1 z = log
[
z + (z2 + 1)1/2] ,(8)

cosh−1 z = log
[
z + (z2 − 1)1/2] ,(9)

and

tanh−1 z = 1

2
log

1 + z

1 − z
.(10)

Finally, we remark that common alternative notation for all of these inverse
functions is arcsin z, etc.

EXERCISES
1. Find all the values of

(a) tan−1(2i); (b) tan−1(1 + i); (c) cosh−1(−1); (d) tanh−1 0.

Ans. (a)

(
n + 1

2

)
π + i

2
ln 3 (n = 0,±1,±2, . . .);

(d) nπi (n = 0,±1,±2, . . .).

2. Solve the equation sin z = 2 for z by

(a) equating real parts and then imaginary parts in that equation;
(b) using expression (2), Sec. 36, for sin−1 z.

Ans. z =
(

2n + 1

2

)
π ± i ln(2 + √

3) (n = 0,±1,±2, . . .).
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3. Solve the equation cos z = √
2 for z.

4. Derive formula (5), Sec. 36, for the derivative of sin−1 z.

5. Derive expression (4), Sec. 36, for tan−1 z.

6. Derive formula (7), Sec. 36, for the derivative of tan−1 z.

7. Derive expression (9), Sec. 36, for cosh−1 z.
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C H A P T E R

4
INTEGRALS

Integrals are extremely important in the study of functions of a complex variable.
The theory of integration, to be developed in this chapter, is noted for its mathe-
matical elegance. The theorems are generally concise and powerful, and many of
the proofs are short.

37. DERIVATIVES OF FUNCTIONS w (t)

In order to introduce integrals of f (z) in a fairly simple way, we need to first
consider derivatives of complex-valued functions w of a real variable t . We write

w(t) = u(t) + iv(t),(1)

where the functions u and v are real-valued functions of t . The derivative

w′(t), or
d

dt
w(t),

of the function (1) at a point t is defined as

w′(t) = u′(t) + iv′(t),(2)

provided each of the derivatives u′ and v′ exists at t .
From definition (2), it follows that for every complex constant z0 = x0 + iy0,

d

dt
[z0w(t)] = [(x0 + iy0)(u + iv)]′ = [(x0u − y0v) + i(y0u + x0v)]′

= (x0u − y0v)′ + i(y0u + x0v)′ = (x0u
′ − y0v

′) + i(y0u
′ + x0v

′).

117
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But
(x0u

′ − y0v
′) + i(y0u

′ + x0v
′) = (x0 + iy0)(u

′ + iv′) = z0w
′(t),

and so

d

dt
[z0w(t)] = z0w

′(t).(3)

Another expected rule that we shall often use is

d

dt
ez0t = z0e

z0t,(4)

where z0 = x0 + iy0. To verify this, we write

ez0t = ex0t eiy0t = ex0t cos y0t + iex0t sin y0t

and refer to definition (2) to see that

d

dt
ez0t = (ex0t cos y0t)

′ + i(ex0t sin y0t)
′.

Familiar rules from calculus and some simple algebra then lead us to the expression

d

dt
ez0t = (x0 + iy0)(e

x0t cos y0t + iex0t sin y0t),

or
d

dt
ez0t = (x0 + iy0)e

x0t eiy0t.

This is, of course, the same as equation (4).
Various other rules learned in calculus, such as the ones for differentiating

sums and products, apply just as they do for real-valued functions of t . As was the
case with property (3) and formula (4), verifications may be based on corresponding
rules in calculus. It should be pointed out, however, that not every such rule carries
over to functions of type (1). The following example illustrates this.

EXAMPLE. Suppose that w(t) is continuous on an interval a ≤ t ≤ b; that
is, its component functions u(t) and v(t) are continuous there. Even if w′(t) exists
when a < t < b, the mean value theorem for derivatives no longer applies. To be
precise, it is not necessarily true that there is a number c in the interval a < t < b

such that

w′(c) = w(b) − w(a)

b − a
.

To see this, consider the function w(t) = eit on the interval 0 ≤ t ≤ 2π . When that
function is used, |w′(t)| = |ieit | = 1; and this means that the derivative w′(t) is
never zero, while w(2π) − w(0) = 0.
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38. DEFINITE INTEGRALS OF FUNCTIONS w(t)

When w(t) is a complex-valued function of a real variable t and is written

w(t) = u(t) + iv(t),(1)

where u and v are real-valued, the definite integral of w(t) over an interval a ≤ t ≤ b

is defined as ∫ b

a

w(t) dt =
∫ b

a

u(t) dt + i

∫ b

a

v(t) dt,(2)

provided the individual integrals on the right exist. Thus

Re
∫ b

a

w(t) dt =
∫ b

a

Re[w(t)] dt and Im
∫ b

a

w(t) dt =
∫ b

a

Im[w(t)] dt.(3)

EXAMPLE 1. For an illustration of definition (2),∫ 1

0
(1 + it)2 dt =

∫ 1

0
(1 − t2) dt + i

∫ 1

0
2 t dt = 2

3
+ i.

Improper integrals of w(t) over unbounded intervals are defined in a simi-
lar way.

The existence of the integrals of u and v in definition (2) is ensured if those
functions are piecewise continuous on the interval a ≤ t ≤ b. Such a function is
continuous everywhere in the stated interval except possibly for a finite number of
points where, although discontinuous, it has one-sided limits. Of course, only the
right-hand limit is required at a; and only the left-hand limit is required at b. When
both u and v are piecewise continuous, the function w is said to have that property.

Anticipated rules for integrating a complex constant times a function w(t), for
integrating sums of such functions, and for interchanging limits of integration are
all valid. Those rules, as well as the property∫ b

a

w(t) dt =
∫ c

a

w(t) dt +
∫ b

c

w(t) dt,

are easy to verify by recalling corresponding results in calculus.
The fundamental theorem of calculus, involving antiderivatives, can, moreover,

be extended so as to apply to integrals of the type (2). To be specific, suppose that
the functions

w(t) = u(t) + iv(t) and W(t) = U(t) + iV (t)

are continuous on the interval a ≤ t ≤ b. If W ′(t) = w(t) when a ≤ t ≤ b, then
U ′(t) = u(t) and V ′(t) = v(t). Hence, in view of definition (2),∫ b

a

w(t) dt = U(t)

]b

a

+ iV (t)

]b

a

= [U(b) + iV (b)] − [U(a) + iV (a)].
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That is, ∫ b

a

w(t) dt = W(b) − W(a) = W(t)

]b

a

.(4)

EXAMPLE 2. Since (see Sec. 37)

d

dt

(
eit

i

)
= 1

i

d

dt
eit = 1

i
ieit = eit ,

one can see that∫ π/4

0
eit dt = eit

i

]π/4

0
= eiπ/4

i
− 1

i
= 1

i

(
cos

π

4
+ i sin

π

4
− 1

)

= 1

i

(
1√
2

+ i√
2

− 1

)
= 1√

2
+ 1

i

(
1√
2

− 1

)
.

Then, because 1/i = −i,∫ π/4

o
eit dt = 1√

2
+ i

(
1 − 1√

2

)
.

We recall from the example in Sec. 37 how the mean value theorem for deriva-
tives in calculus does not carry over to complex-valued functions w(t). Our final
example here shows that the mean value theorem for integrals does not carry over
either. Thus special care must continue to be used in applying rules from calculus.

EXAMPLE 3. Let w(t) be a continuous complex-valued function of t defined
on an interval a ≤ t ≤ b. In order to show that it is not necessarily true that there
is a number c in the interval a < t < b such that∫ b

a

w(t) dt = w(c)(b − a),

we write a = 0, b = 2π and use the same function w(t) = eit (0 ≤ t ≤ 2π) as in
the example in Sec. 37. It is easy to see that

∫ b

a

w(t) dt =
∫ 2π

0
eit dt = eit

i

]2π

0
= 0.

But, for any number c such that 0 < c < 2π ,

|w(c)(b − a)| = |eic| 2π = 2π;
and this means that w(c)(b − a) is not zero.
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EXERCISES
1. Use rules in calculus to establish the following rules when

w(t) = u(t) + iv(t)

is a complex-valued function of a real variable t and w′(t) exists:

(a)
d

dt
w(−t) = −w′(−t) where w′(−t) denotes the derivative of w(t) with respect to

t , evaluated at −t ;

(b)
d

dt
[w(t)]2 = 2 w(t)w′(t).

2. Evaluate the following integrals:

(a)
∫ 2

1

(
1

t
− i

)2

dt ; (b)
∫ π/6

0
ei2 t dt ; (c)

∫ ∞

0
e−z t dt (Re z > 0).

Ans. (a) −1

2
− i ln 4 ; (b)

√
3

4
+ i

4
; (c)

1

z
.

3. Show that if m and n are integers,

∫ 2π

0
eimθ e−inθ dθ =

{
0 when m �= n,

2π when m = n.

4. According to definition (2), Sec. 38, of definite integrals of complex-valued functions
of a real variable,∫ π

0
e(1+i)x dx =

∫ π

0
ex cos x dx + i

∫ π

0
ex sin x dx.

Evaluate the two integrals on the right here by evaluating the single integral on the
left and then using the real and imaginary parts of the value found.

Ans. −(1 + eπ )/2, (1 + eπ )/2.

5. Let w(t) = u(t) + iv(t) denote a continuous complex-valued function defined on an
interval −a ≤ t ≤ a.

(a) Suppose that w(t) is even; that is, w(−t) = w(t) for each point t in the given
interval. Show that ∫ a

−a

w(t) dt = 2
∫ a

0
w(t) dt.

(b) Show that if w(t) is an odd function, one where w(−t) = −w(t) for each point
t in the given interval, then ∫ a

−a

w(t) dt = 0.

Suggestion: In each part of this exercise, use the corresponding property of in-
tegrals of real-valued functions of t , which is graphically evident.
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39. CONTOURS

Integrals of complex-valued functions of a complex variable are defined on curves
in the complex plane, rather than on just intervals of the real line. Classes of curves
that are adequate for the study of such integrals are introduced in this section.

A set of points z = (x, y) in the complex plane is said to be an arc if

x = x(t), y = y(t) (a ≤ t ≤ b),(1)

where x(t) and y(t) are continuous functions of the real parameter t . This definition
establishes a continuous mapping of the interval a ≤ t ≤ b into the xy, or z, plane;
and the image points are ordered according to increasing values of t . It is convenient
to describe the points of C by means of the equation

z = z(t) (a ≤ t ≤ b),(2)

where

z(t) = x(t) + iy(t).(3)

The arc C is a simple arc, or a Jordan arc,∗ if it does not cross itself ; that is,
C is simple if z(t1) �= z(t2) when t1 �= t2. When the arc C is simple except for the
fact that z(b) = z(a), we say that C is a simple closed curve, or a Jordan curve.
Such a curve is positively oriented when it is in the counterclockwise direction.

The geometric nature of a particular arc often suggests different notation for
the parameter t in equation (2). This is, in fact, the case in the following examples.

EXAMPLE 1. The polygonal line (Sec. 11) defined by means of the equa-
tions

z =
{
x + ix when 0 ≤ x ≤ 1,

x + i when 1 ≤ x ≤ 2
(4)

and consisting of a line segment from 0 to 1 + i followed by one from 1 + i to
2 + i (Fig. 36) is a simple arc.

x21

1 + i 2 + i
1

O

y

FIGURE 36

∗Named for C. Jordan (1838–1922), pronounced jor-don ′.
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EXAMPLE 2. The unit circle

z = eiθ (0 ≤ θ ≤ 2π)(5)

about the origin is a simple closed curve, oriented in the counterclockwise direction.
So is the circle

z = z0 + Reiθ (0 ≤ θ ≤ 2π),(6)

centered at the point z0 and with radius R (see Sec. 6).

The same set of points can make up different arcs.

EXAMPLE 3. The arc

z = e−iθ (0 ≤ θ ≤ 2π)(7)

is not the same as the arc described by equation (5). The set of points is the same,
but now the circle is traversed in the clockwise direction.

EXAMPLE 4. The points on the arc

z = ei2θ (0 ≤ θ ≤ 2π)(8)

are the same as those making up the arcs (5) and (7). The arc here differs, however,
from each of those arcs since the circle is traversed twice in the counterclockwise
direction.

The parametric representation used for any given arc C is, of course, not unique.
It is, in fact, possible to change the interval over which the parameter ranges to any
other interval. To be specific, suppose that

t = φ(τ) (α ≤ τ ≤ β),(9)

where φ is a real-valued function mapping an interval α ≤ τ ≤ β onto the interval
a ≤ t ≤ b in representation (2). (See Fig. 37.) We assume that φ is continuous with

O

t

b

a ( , a)

(  , b)

FIGURE 37
t = φ (τ)
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a continuous derivative. We also assume that φ′(τ ) > 0 for each τ ; this ensures that
t increases with τ . Representation (2) is then transformed by equation (9) into

z = Z(τ) (α ≤ τ ≤ β),(10)

where

Z(τ) = z[φ(τ)].(11)

This is illustrated in Exercise 3.
Suppose now that the components x′(t) and y ′(t) of the derivative (Sec. 37)

z′(t) = x′(t) + iy′(t)(12)

of the function (3), used to represent C, are continuous on the entire interval a ≤ t ≤ b.
The arc is then called a differentiable arc, and the real-valued function

|z′(t)| =
√

[x′(t)]2 + [y′(t)]2

is integrable over the interval a ≤ t ≤ b. In fact, according to the definition of arc
length in calculus, the length of C is the number

L =
∫ b

a

|z′(t)| dt.(13)

The value of L is invariant under certain changes in the representation for
C that is used, as one would expect. More precisely, with the change of variable
indicated in equation (9), expression (13) takes the form [see Exercise 1(b)]

L =
∫ β

α

|z′[φ(τ)]|φ′(τ ) dτ.

So, if representation (10) is used for C, the derivative (Exercise 4)

Z′(τ ) = z′[φ(τ)]φ′(τ )(14)

enables us to write expression (13) as

L =
∫ β

α

|Z′(τ )| dτ.

Thus the same length of C would be obtained if representation (10) were to be used.
If equation (2) represents a differentiable arc and if z′(t) �= 0 anywhere in the

interval a < t < b, then the unit tangent vector

T = z′(t)
|z′(t)|

is well defined for all t in that open interval, with angle of inclination arg z′(t). Also,
when T turns, it does so continuously as the parameter t varies over the entire interval
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a < t < b. This expression for T is the one learned in calculus when z(t) is inter-
preted as a radius vector. Such an arc is said to be smooth. In referring to a smooth
arc z = z(t) (a ≤ t ≤ b), then, we agree that the derivative z′(t) is continuous on the
closed interval a ≤ t ≤ b and nonzero throughout the open interval a < t < b.

A contour, or piecewise smooth arc, is an arc consisting of a finite number of
smooth arcs joined end to end. Hence if equation (2) represents a contour, z(t) is
continuous, whereas its derivative z′(t) is piecewise continuous. The polygonal line
(4) is, for example, a contour. When only the initial and final values of z(t) are
the same, a contour C is called a simple closed contour. Examples are the circles
(5) and (6), as well as the boundary of a triangle or a rectangle taken in a specific
direction. The length of a contour or a simple closed contour is the sum of the
lengths of the smooth arcs that make up the contour.

The points on any simple closed curve or simple closed contour C are boundary
points of two distinct domains, one of which is the interior of C and is bounded.
The other, which is the exterior of C, is unbounded. It will be convenient to accept
this statement, known as the Jordan curve theorem, as geometrically evident; the
proof is not easy.∗

EXERCISES
1. Show that if w(t) = u(t) + iv(t) is continuous on an interval a ≤ t ≤ b, then

(a)
∫ −a

−b

w(−t) dt =
∫ b

a

w(τ) dτ ;

(b)
∫ b

a

w(t) dt =
∫ β

α

w[φ(τ)]φ′(τ ) dτ , where φ(τ) is the function in equation (9),

Sec. 39.

Suggestion: These identities can be obtained by noting that they are valid for
real-valued functions of t .

2. Let C denote the right-hand half of the circle |z| = 2, in the counterclockwise direction,
and note that two parametric representations for C are

z = z(θ) = 2 eiθ

(
− π

2
≤ θ ≤ π

2

)

and
z = Z(y) =

√
4 − y2 + iy (−2 ≤ y ≤ 2).

Verify that Z(y) = z[φ(y)], where

φ(y) = arctan
y√

4 − y2

(
− π

2
< arctan t <

π

2

)
.

∗See pp. 115–116 of the book by Newman or Sec. 13 of the one by Thron, both of which are cited
in Appendix 1. The special case in which C is a simple closed polygon is proved on pp. 281–285
of Vol. 1 of the work by Hille, also cited in Appendix 1.
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Also, show that this function φ has a positive derivative, as required in the conditions
following equation (9), Sec. 39.

3. Derive the equation of the line through the points (α, a) and (β, b) in the τ t plane that
are shown in Fig. 37. Then use it to find the linear function φ(τ) which can be used in
equation (9), Sec. 39, to transform representation (2) in that section into representation
(10) there.

Ans. φ(τ) = b − a

β − α
τ + aβ − bα

β − α
.

4. Verify expression (14), Sec. 39, for the derivative of Z(τ) = z[φ(τ)].
Suggestion: Write Z(τ) = x[φ(τ)] + iy[φ(τ)] and apply the chain rule for real-

valued functions of a real variable.

5. Suppose that a function f (z) is analytic at a point z0 = z(t0) lying on a smooth arc
z = z(t) (a ≤ t ≤ b). Show that if w(t) = f [z(t)], then

w′(t) = f ′[z(t)]z′(t)

when t = t0.
Suggestion: Write f (z) = u(x, y) + iv(x, y) and z(t) = x(t) + iy(t), so that

w(t) = u[x(t), y(t)] + iv[x(t), y(t)].

Then apply the chain rule in calculus for functions of two real variables to write

w′ = (uxx
′ + uyy

′ ) + i(vxx
′ + vyy

′ ),

and use the Cauchy–Riemann equations.

6. Let y(x) be a real-valued function defined on the interval 0 ≤ x ≤ 1 by means of the
equations

y(x) =
{
x3 sin(π/x) when 0 < x ≤ 1,

0 when x = 0.

(a) Show that the equation

z = x + iy(x) (0 ≤ x ≤ 1)

represents an arc C that intersects the real axis at the points z = 1/n (n = 1, 2, . . .)

and z = 0, as shown in Fig. 38.
(b) Verify that the arc C in part (a) is, in fact, a smooth arc.

Suggestion: To establish the continuity of y(x) at x = 0, observe that

0 ≤
∣∣∣ x3 sin

(π

x

)∣∣∣ ≤ x3

when x > 0. A similar remark applies in finding y′(0) and showing that y′(x) is con-
tinuous at x = 0.
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x

C

1O

y

1–
3

1–
2

FIGURE 38

40. CONTOUR INTEGRALS

We turn now to integrals of complex-valued functions f of the complex variable z.
Such an integral is defined in terms of the values f (z) along a given contour C,
extending from a point z = z1 to a point z = z2 in the complex plane. It is, therefore,
a line integral ; and its value depends, in general, on the contour C as well as on
the function f . It is written

∫
C

f (z) dz or
∫ z2

z1

f (z) dz,

the latter notation often being used when the value of the integral is independent
of the choice of the contour taken between two fixed end points. While the integral
may be defined directly as the limit of a sum, we choose to define it in terms of a
definite integral of the type introduced in Sec. 38.

Suppose that the equation

z = z(t) (a ≤ t ≤ b)(1)

represents a contour C, extending from a point z1 = z(a) to a point z2 = z(b). We
assume that f [z(t)] is piecewise continuous (Sec. 38) on the interval a ≤ t ≤ b and
refer to the function f (z) as being piecewise continuous on C. We then define the
line integral, or contour integral, of f along C in terms of the parameter t :

∫
C

f (z) dz =
∫ b

a

f [z(t)]z′(t) dt.(2)

Note that since C is a contour, z′(t) is also piecewise continuous on a ≤ t ≤ b; and
so the existence of integral (2) is ensured.

The value of a contour integral is invariant under a change in the representation
of its contour when the change is of the type (11), Sec. 39. This can be seen by
following the same general procedure that was used in Sec. 39 to show the invariance
of arc length.
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It follows immediately from definition (2) and properties of integrals of
complex-valued functions w(t) mentioned in Sec. 38 that

∫
C

z0f (z) dz = z0

∫
C

f (z) dz,(3)

for any complex constant z0, and∫
C

[
f (z) + g(z)

]
dz =

∫
C

f (z) dz +
∫

C

g(z) dz.(4)

Associated with the contour C used in integral (2) is the contour −C, consisting
of the same set of points but with the order reversed so that the new contour
extends from the point z2 to the point z1 (Fig. 39). The contour −C has parametric
representation

z = z(−t) (−b ≤ t ≤ −a).

x

z1

z2

C

–C

O

y

FIGURE 39

Hence, in view of Exercise 1(a), Sec. 38,∫
−C

f (z) dz =
∫ −a

−b

f [z(−t)]
d

dt
z(−t) dt = −

∫ −a

−b

f [z(−t)] z′(−t) dt

where z′(−t) denotes the derivative of z(t) with respect to t , evaluated at −t .
Making the substitution τ = −t in this last integral and referring to Exercise 1(a),
Sec. 39, we obtain the expression∫

−C

f (z) dz = −
∫ b

a

f [z(τ )]z′(τ ) dτ,

which is the same as ∫
−C

f (z) dz = −
∫

C

f (z) dz.(5)

Consider now a path C, with representation (1), that consists of a contour C1

from z1 to z2 followed by a contour C2 from z2 to z3, the initial point of C2 being



sec. 41 Some Examples 129

the final point of C1 (Fig. 40). There is a value c of t , where a < c < b, such that
z(c) = z2. Consequently, C1 is represented by

z = z(t) (a ≤ t ≤ c)

and C2 is represented by

z = z(t) (c ≤ t ≤ b).

Also, by a rule for integrals of functions w(t) that was noted in Sec. 38,∫ b

a

f [z(t)]z′(t) dt =
∫ c

a

f [z(t)]z′(t) dt +
∫ b

c

f [z(t)]z′(t) dt.

Evidently, then, ∫
C

f (z) dz =
∫

C1

f (z) dz +
∫

C2

f (z) dz.(6)

Sometimes the contour C is called the sum of its legs C1 and C2 and is denoted by
C1 + C2. The sum of two contours C1 and −C2 is well defined when C1 and C2

have the same final points, and it is written C1 − C2.

x

C1

C2
C

z1

z2

z3

O

y

FIGURE 40
C = C1 + C2

Definite integrals in calculus can be interpreted as areas, and they have other
interpretations as well. Except in special cases, no corresponding helpful interpre-
tation, geometric or physical, is available for integrals in the complex plane.

41. SOME EXAMPLES

The purpose of this and the next section is to provide examples of the definition in
Sec. 40 of contour integrals and to illustrate various properties that were mentioned
there. We defer development of the concept of antiderivatives of the integrands f (z)

of contour integrals until Sec. 44.

EXAMPLE 1. Let us find the value of the integral

I =
∫

C

z dz(1)
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when C is the right-hand half

z = 2 eiθ

(
− π

2
≤ θ ≤ π

2

)

of the circle |z| = 2 from z = −2i to z = 2i (Fig. 41). According to definition (2),
Sec. 40,

I =
∫ π/2

−π/2
2 eiθ (2 eiθ )′ dθ = 4

∫ π/2

−π/2
eiθ (eiθ )′ dθ;

and, since

eiθ = e−iθ and (eiθ )′ = ieiθ ,

this means that

I = 4
∫ π/2

−π/2
e−iθ ieiθ dθ = 4i

∫ π/2

−π/2
dθ = 4πi.

Note that zz = |z|2 = 4 when z is a point on the semicircle C. Hence the result∫
C

z dz = 4πi(2)

can also be written ∫
C

dz

z
= πi.

x

C
2i

–2i

O

y

FIGURE 41

If f (z) is given in the form f (z) = u(x, y) + iv(x, y), where z = x + iy, one
can sometimes apply definition (2), Sec. 40, using one of the variables x and y as
the parameter.

EXAMPLE 2. Here we first let C1 denote the polygonal line OAB shown in
Fig. 42 and evaluate the integral

I1 =
∫

C1

f (z) dz =
∫

OA

f (z) dz +
∫

AB

f (z) dz,(3)
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where

f (z) = y − x − i3x2 (z = x + iy).

The leg OA may be represented parametrically as z = 0 + iy (0 ≤ y ≤ 1); and, since
x = 0 at points on that line segment, the values of f there vary with the parameter
y according to the equation f (z) = y (0 ≤ y ≤ 1). Consequently,∫

OA

f (z) dz =
∫ 1

0
yi dy = i

∫ 1

0
y dy = i

2
.

On the leg AB, the points are z = x + i (0 ≤ x ≤ 1); and, since y = 1 on this
segment,∫

AB

f (z) dz =
∫ 1

0
(1 − x − i3x2) · 1 dx =

∫ 1

0
(1 − x) dx − 3i

∫ 1

0
x2 dx = 1

2
− i.

In view of equation (3), we now see that

I1 = 1 − i

2
.(4)

If C2 denotes the segment OB of the line y = x in Fig. 42, with parametric
representation z = x + ix (0 ≤ x ≤ 1), the fact that y = x on OB enables us to
write

I2 =
∫

C2

f (z) dz =
∫ 1

0
−i3x2(1 + i) dx = 3(1 − i)

∫ 1

0
x2 dx = 1 − i.

Evidently, then, the integrals of f (z) along the two paths C1 and C2 have different
values even though those paths have the same initial and the same final points.

Observe how it follows that the integral of f (z) over the simple closed contour
OABO, or C1 − C2, has the nonzero value

I1 − I2 = −1 + i

2
.

xO

y

1 + ii
A B

C1

C2

FIGURE 42

EXAMPLE 3. We begin here by letting C denote an arbitrary smooth arc
(Sec. 39)

z = z(t) (a ≤ t ≤ b)
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from a fixed point z1 to a fixed point z2 (Fig. 43). In order to evaluate the integral∫
C

z dz =
∫ b

a

z(t)z′(t) dt,

we note that according to Exercise 1(b), Sec. 38,

d

dt

[z(t)]2

2
= z(t)z′(t).

Then, because z(a) = z1 and z(b) = z2, we have∫
C

z dz = [z(t)]2

2

]b

a

= [z(b)]2 − [z(a)]2

2
= z2

2 − z2
1

2
.

Inasmuch as the value of this integral depends only on the end points of C and is
otherwise independent of the arc that is taken, we may write∫ z2

z1

z dz = z2
2 − z2

1

2
.(5)

(Compare with Example 2, where the value of an integral from one fixed point to
another depended on the path that was taken.)

x

Cz1

z2

O

y

FIGURE 43

Expression (5) is also valid when C is a contour that is not necessarily smooth
since a contour consists of a finite number of smooth arcs Ck (k = 1, 2, . . . , n),
joined end to end. More precisely, suppose that each Ck extends from zk to zk+1.
Then ∫

C

z dz =
n∑

k=1

∫
Ck

z dz =
n∑

k=1

∫ zk+1

zk

z dz =
n∑

k=1

z2
k+1 − z2

k

2
= z2

n+1 − z2
1

2
,(6)

where this last summation has telescoped and z1 is the initial point of C and zn+1

is its final point.
It follows from expression (6) that the integral of the function f (z) = z around

each closed contour in the plane has value zero. (Once again, compare with Example
2, where the value of the integral of a given function around a closed contour was
not zero.) The question of predicting when an integral around a closed contour has
value zero will be discussed in Secs. 44, 46, and 48.
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42. EXAMPLES WITH BRANCH CUTS

The path in a contour integral can contain a point on a branch cut of the integrand
involved. The next two examples illustrate this.

EXAMPLE 1. Let C denote the semicircular path

z = 3 eiθ (0 ≤ θ ≤ π)

from the point z = 3 to the point z = −3 (Fig. 44). Although the branch

f (z) = z1/2 = exp

(
1

2
log z

)
(|z| > 0, 0 < arg z < 2π)

of the multiple-valued function z1/2 is not defined at the initial point z = 3 of the
contour C, the integral

I =
∫

C

z1/2 dz(1)

nevertheless exists. For the integrand is piecewise continuous on C. To see that this
is so, we first observe that when z(θ) = 3 eiθ ,

f [z(θ)] = exp

[
1

2
(ln 3 + iθ)

]
=

√
3 eiθ/2.

x

C

O–3 3

y

FIGURE 44

Hence the right-hand limits of the real and imaginary components of the function

f [z(θ)]z′(θ) =
√

3 eiθ/23ieiθ = 3
√

3iei3θ/2 = −3
√

3 sin
3θ

2
+ i3

√
3 cos

3θ

2
(0 < θ ≤ π)

at θ = 0 exist, those limits being 0 and i3
√

3, respectively. This means that
f [z(θ)]z′(θ) is continuous on the closed interval 0 ≤ θ ≤ π when its value at θ = 0
is defined as i3

√
3. Consequently,

I = 3
√

3i

∫ π

0
ei3θ/2 dθ.
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Since ∫ π

0
ei3θ/2 dθ = 2

3i
ei3θ/2

]π

0
= − 2

3i
(1 + i),

we now have the value

I = −2
√

3(1 + i)(2)

of integral (1).

EXAMPLE 2. Suppose that C is the positively oriented circle (Fig. 45)

z = Reiθ (−π ≤ θ ≤ π)

about the origin, and left a denote any nonzero real number. Using the principal
branch

f (z) = za−1 = exp[(a − 1)Log z] (|z| > 0, −π < Arg z < π)

of the power function za−1, let us evaluate the integral

I =
∫

C

za−1 dz.(3)

x–1

y

C

FIGURE 45

When z(θ) = Reiθ , it is easy to see that

f [z(θ)]z′(θ) = iRaeiaθ = −Ra sin aθ + iRa cos aθ,

where the positive value of Ra is to be taken. Inasmuch as this function is piecewise
continuous on −π < θ < π , integral (3) exists. In fact,

I = iRa

∫ π

−π

eiaθ dθ = iRa

[
eiaθ

ia

]π

−π

= i
2Ra

a
· eiaπ − e−iaπ

2i
= i

2Ra

a
sin aπ.(4)
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Note that if a is a nonzero integer n, this result tells us that∫
C

zn−1 dz = 0 (n = ±1, ±2, . . .).(5)

If a is allowed to be zero, we have∫
C

dz

z
=

∫ π

−π

1

Reiθ
iReiθ dθ = i

∫ π

−π

dθ = 2πi.(6)

EXERCISES

For the functions f and contours C in Exercises 1 through 7, use parametric repre-
sentations for C, or legs of C, to evaluate∫

C

f (z) dz.

1. f (z) = (z + 2)/z and C is

(a) the semicircle z = 2 eiθ (0 ≤ θ ≤ π);
(b) the semicircle z = 2 eiθ (π ≤ θ ≤ 2π);
(c) the circle z = 2 eiθ (0 ≤ θ ≤ 2π).

Ans. (a) −4 + 2πi; (b) 4 + 2πi; (c) 4πi.

2. f (z) = z − 1 and C is the arc from z = 0 to z = 2 consisting of

(a) the semicircle z = 1 + eiθ (π ≤ θ ≤ 2π);
(b) the segment z = x (0 ≤ x ≤ 2) of the real axis.

Ans. (a) 0 ; (b) 0.

3. f (z) = π exp(πz) and C is the boundary of the square with vertices at the points 0, 1,
1 + i, and i, the orientation of C being in the counterclockwise direction.

Ans. 4(eπ − 1).

4. f (z) is defined by means of the equations

f (z) =
{

1 when y < 0,

4y when y > 0,

and C is the arc from z = −1 − i to z = 1 + i along the curve y = x3.
Ans. 2 + 3i.

5. f (z) = 1 and C is an arbitrary contour from any fixed point z1 to any fixed point z2
in the z plane.

Ans. z2 − z1.

6. f (z) is the branch

z−1+i = exp[(−1 + i)log z] (|z| > 0, 0 < arg z < 2π)

of the indicated power function, and C is the unit circle z = eiθ (0 ≤ θ ≤ 2π).
Ans. i(1 − e−2π ).
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7. f (z) is the principal branch

zi = exp(iLog z) (|z| > 0,−π < Arg z < π)

of this power function, and C is the semicircle z = eiθ (0 ≤ θ ≤ π).

Ans. −1 + e−π

2
(1 − i).

8. With the aid of the result in Exercise 3, Sec. 38, evaluate the integral∫
C

zm z ndz,

where m and n are integers and C is the unit circle |z| = 1, taken counterclockwise.

9. Evaluate the integral I in Example 1, Sec. 41, using this representation for C:

z =
√

4 − y2 + iy (−2 ≤ y ≤ 2).

(See Exercise 2, Sec. 39.)

10. Let C0 and C denote the circles

z = z0 + Reiθ (−π ≤ θ ≤ π) and z = Reiθ (−π ≤ θ ≤ π),

respectively.

(a) Use these parametric representations to show that∫
C0

f (z − z0) dz =
∫

C

f (z) dz

when f is piecewise continuous on C.
(b) Apply the result in part (a) to integrals (5) and (6) in Sec. 42 to show that∫

C0

(z − z0)
n−1 dz = 0 (n = ±1,±2, . . .) and

∫
C0

dz

z − z0
= 2πi.

11. (a) Suppose that a function f (z) is continuous on a smooth arc C, which has a
parametric representation z = z(t) (a ≤ t ≤ b); that is, f [z(t)] is continuous on
the interval a ≤ t ≤ b. Show that if φ(τ) (α ≤ τ ≤ β) is the function described
in Sec. 39, then ∫ b

a

f [z(t)]z′(t) dt =
∫ β

α

f [Z(τ)]Z′(τ ) dτ

where Z(τ) = z[φ(τ)].
(b) Point out how it follows that the identity obtained in part (a) remains valid when

C is any contour, not necessarily a smooth one, and f (z) is piecewise continuous
on C. Thus show that the value of the integral of f (z) along C is the same when
the representation z = Z(τ) (α ≤ τ ≤ β) is used, instead of the original one.
Suggestion: In part (a), use the result in Exercise 1(b), Sec. 39, and then refer to

expression (14) in that section.



sec. 43 Upper Bounds for Moduli of Contour Integrals 137

43. UPPER BOUNDS FOR MODULI OF CONTOUR
INTEGRALS

We turn now to an inequality involving contour integrals that is extremely important
in various applications. We present the result as a theorem but preface it with a
needed lemma involving functions w(t) of the type encountered in Secs. 37 and 38.

Lemma. If w(t) is a piecewise continuous complex-valued function defined
on an interval a ≤ t ≤ b, then∣∣∣∣

∫ b

a

w(t) dt

∣∣∣∣ ≤
∫ b

a

|w(t)| dt.(1)

This inequality clearly holds when the value of the integral on the left is zero.
Thus, in the verification we may assume that its value is a nonzero complex number
and write ∫ b

a

w(t) dt = r0 eiθ0 .

Solving for r0, we have

r0 =
∫ b

a

e−iθ0w(t) dt.(2)

Now the left-hand side of this equation is a real number, and so the right-hand side
is too. Thus, using the fact that the real part of a real number is the number itself,
we find that

r0 = Re
∫ b

a

e−iθ0w(t) dt,

or

r0 =
∫ b

a

Re[e−iθ0w(t)] dt.(3)

But

Re[e−iθ0w(t)] ≤ |e−iθ0w(t)| = |e−iθ0 | |w(t)| = |w(t)|,
and it follows from equation (3) that

r0 ≤
∫ b

a

|w(t)| dt.

Because r0 is, in fact, the left-hand side of inequality (1), the verification of the
lemma is complete.
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Theorem. Let C denote a contour of length L, and suppose that a function
f (z) is piecewise continuous on C. If M is a nonnegative constant such that

|f (z)| ≤ M(4)

for all points z on C at which f (z) is defined, then∣∣∣∣
∫

C

f (z) dz

∣∣∣∣ ≤ ML.(5)

To prove this, let z = z(t) (a ≤ t ≤ b) be a parametric representation of C.

According to the above lemma,∣∣∣∣
∫

C

f (z) dz

∣∣∣∣ =
∣∣∣∣
∫ b

a

f [z(t)]z′(t) dt

∣∣∣∣ ≤
∫ b

a

|f [z(t)]z′(t)| dt.

Inasmuch as

|f [z(t)]z′(t)| = |f [z(t)]| |z′(t)| ≤ M |z′(t)|
when a ≤ t ≤ b, it follows that∣∣∣∣

∫
C

f (z) dz

∣∣∣∣ ≤ M

∫ b

a

|z′(t)| dt.

Since the integral on the right here represents the length L of C (see Sec. 39),
inequality (5) is established. It is, of course, a strict inequality if inequality (4) is
strict.

Note that since C is a contour and f is piecewise continuous on C, a number M

such as the one appearing in inequality (4) will always exist. This is because the real-
valued function |f [z(t)]| is continuous on the closed bounded interval a ≤ t ≤ b

when f is continuous on C; and such a function always reaches a maximum value
M on that interval.∗ Hence |f (z)| has a maximum value on C when f is continuous
on it. The same is, then, true when f is piecewise continuous on C.

EXAMPLE 1. Let C be the arc of the circle |z| = 2 from z = 2 to z = 2i

that lies in the first quadrant (Fig. 46). Inequality (5) can be used to show that∣∣∣∣
∫

C

z + 4

z3 − 1
dz

∣∣∣∣ ≤ 6π

7
.(6)

This is done by noting first that if z is a point on C, so that |z| = 2, then

|z + 4| ≤ |z| + 4 = 6

∗See, for instance A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 86–90, 1983.
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x

C

O

2i

2

y

FIGURE 46

and
|z3 − 1| ≥ ||z|3 − 1| = 7.

Thus, when z lies on C, ∣∣∣∣ z + 4

z3 − 1

∣∣∣∣ = |z + 4|
|z3 − 1| ≤ 6

7
.

Writing M = 6/7 and observing that L = π is the length of C, we may now use
inequality (5) to obtain inequality (6).

EXAMPLE 2. Here CR is the semicircular path

z = Reiθ (0 ≤ θ ≤ π),

and z1/2 denotes the branch

z1/2 = exp

(
1

2
log z

)
= √

reiθ/2
(

r > 0, −π

2
< θ <

3π

2

)

of the square root function. (See Fig. 47.) Without actually finding the value of the
integral, one can easily show that

lim
R→∞

∫
CR

z1/2

z2 + 1
dz = 0.(7)

For, when |z| = R > 1,
|z1/2| = |

√
Reiθ/2| =

√
R

and
|z2 + 1| ≥ ||z2| − 1| = R2 − 1.

x

CR

O–R R

y

FIGURE 47
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Consequently, at points on CR ,∣∣∣∣ z1/2

z2 + 1

∣∣∣∣ ≤ MR where MR =
√

R

R2 − 1
.

Since the length of CR is the number L = πR, it follows from inequality (5) that∣∣∣∣
∫

CR

z1/2

z2 + 1
dz

∣∣∣∣ ≤ MRL.

But

MRL = πR
√

R

R2 − 1
· 1/R2

1/R2
= π/

√
R

1 − (1/R2)
,

and it is clear that the term on the far right here tends to zero as R tends to infinity.
Limit (7) is, therefore, established.

EXERCISES
1. Without evaluating the integral, show that∣∣∣∣

∫
C

dz

z2 − 1

∣∣∣∣ ≤ π

3

when C is the same arc as the one in Example 1, Sec. 43.

2. Let C denote the line segment from z = i to z = 1. By observing that of all the points
on that line segment, the midpoint is the closest to the origin, show that∣∣∣∣

∫
C

dz

z4

∣∣∣∣ ≤ 4
√

2

without evaluating the integral.

3. Show that if C is the boundary of the triangle with vertices at the points 0, 3i, and −4,
oriented in the counterclockwise direction (see Fig. 48), then∣∣∣∣

∫
C

(ez − z) dz

∣∣∣∣ ≤ 60.

xO– 4

y

3i

C

FIGURE 48
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4. Let CR denote the upper half of the circle |z| = R (R > 2), taken in the counterclock-
wise direction. Show that∣∣∣∣

∫
CR

2z2 − 1

z4 + 5z2 + 4
dz

∣∣∣∣ ≤ πR(2R2 + 1)

(R2 − 1)(R2 − 4)
.

Then, by dividing the numerator and denominator on the right here by R4, show that
the value of the integral tends to zero as R tends to infinity.

5. Let CR be the circle |z| = R (R > 1), described in the counterclockwise direction.
Show that ∣∣∣∣

∫
CR

Log z

z2
dz

∣∣∣∣ < 2π

(
π + ln R

R

)
,

and then use l’Hospital’s rule to show that the value of this integral tends to zero as
R tends to infinity.

6. Let Cρ denote a circle |z| = ρ (0 < ρ < 1), oriented in the counterclockwise direction,
and suppose that f (z) is analytic in the disk |z| ≤ 1. Show that if z−1/2 represents
any particular branch of that power of z, then there is a nonnegative constant M ,
independent of ρ, such that∣∣∣∣∣

∫
Cρ

z−1/2f (z) dz

∣∣∣∣∣ ≤ 2πM
√

ρ.

Thus show that the value of the integral here approaches 0 as ρ tends to 0.
Suggestion: Note that since f (z) is analytic, and therefore continuous, throughout

the disk |z| ≤ 1, it is bounded there (Sec. 18).

7. Apply inequality (1), Sec. 43, to show that for all values of x in the interval −1 ≤ x ≤ 1,
the functions∗

Pn(x) = 1

π

∫ π

0
(x + i

√
1 − x2 cos θ)n dθ (n = 0, 1, 2, . . .)

satisfy the inequality |Pn(x)| ≤ 1.

8. Let CN denote the boundary of the square formed by the lines

x = ±
(

N + 1

2

)
π and y = ±

(
N + 1

2

)
π,

where N is a positive integer and the orientation of CN is counterclockwise.

(a) With the aid of the inequalities

|sin z| ≥ |sin x| and |sin z| ≥ |sinh y|,
obtained in Exercises 8(a) and 9(a) of Sec. 34, show that | sin z| ≥ 1 on the vertical
sides of the square and that |sin z| > sinh(π/2) on the horizontal sides. Thus show
that there is a positive constant A, independent of N, such that |sin z| ≥ A for all
points z lying on the contour CN .

∗These functions are actually polynomials in x. They are known as Legendre polynomials and are
important in applied mathematics. See, for example, Chap. 4 of the book by Lebedev that is listed in
Appendix 1.
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(b) Using the final result in part (a), show that∣∣∣∣
∫

CN

dz

z2 sin z

∣∣∣∣ ≤ 16

(2N + 1)πA

and hence that the value of this integral tends to zero as N tends to infinity.

44. ANTIDERIVATIVES

Although the value of a contour integral of a function f (z) from a fixed point z1

to a fixed point z2 depends, in general, on the path that is taken, there are certain
functions whose integrals from z1 to z2 have values that are independent of path.
(Recall Examples 2 and 3 in Sec. 41.) The examples just cited also illustrate the
fact that the values of integrals around closed paths are sometimes, but not always,
zero. Our next theorem is useful in determining when integration is independent of
path and, moreover, when an integral around a closed path has value zero.

The theorem contains an extension of the fundamental theorem of calculus
that simplifies the evaluation of many contour integrals. The extension involves the
concept on an antiderivative of a continuous function f (z) on a domain D, or a
function F (z) such that F ′(z) = f (z) for all z in D. Note that an antiderivative is, of
necessity, an analytic function. Note, too, that an antiderivative of a given function
f (z) is unique except for an additive constant. This is because the derivative of the
difference F(z) − G(z) of any two such antiderivatives is zero ; and, according to
the theorem in Sec. 24, an analytic function is constant in a domain D when its
derivative is zero throughout D.

Theorem. Suppose that a function f (z) is continuous on a domain D. If any
one of the following statements is true, then so are the others:

(a) f (z) has an antiderivative F(z) throughout D;

(b) the integrals of f (z) along contours lying entirely in D and extending from any
fixed point z1 to any fixed point z2 all have the same value, namely∫ z2

z1

f (z) dz = F(z)

]z2

z1

= F(z2) − F(z1)

where F(z) is the antiderivative in statement (a);

(c) the integrals of f (z) around closed contours lying entirely in D all have value
zero.

It should be emphasized that the theorem does not claim that any of these
statements is true for a given function f (z). It says only that all of them are true or
that none of them is true. The next section is devoted to the proof of the theorem
and can be easily skipped by a reader who wishes to get on with other important
aspects of integration theory. But we include here a number of examples illustrating
how the theorem can be used.
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EXAMPLE 1. The continuous function f (z) = z2 has an antiderivative
F(z) = z3/3 throughout the plane. Hence∫ 1+i

0
z2 dz = z3

3

]1+i

0
= 1

3
(1 + i)3 = 2

3
(−1 + i)

for every contour from z = 0 to z = 1 + i.

EXAMPLE 2. The function f (z) = 1/z2, which is continuous everywhere
except at the origin, has an antiderivative F(z) = −1/z in the domain |z| > 0,
consisting of the entire plane with the origin deleted. Consequently,∫

C

dz

z2
= 0

when C is the positively oriented circle (Fig. 49)

z = 2 eiθ (−π ≤ θ ≤ π)(1)

about the origin.
Note that the integral of the function f (z) = 1/z around the same circle cannot

be evaluated in a similar way. For, although the derivative of any branch F (z) of
log z is 1/z (Sec. 31), F (z) is not differentiable, or even defined, along its branch
cut. In particular, if a ray θ = α from the origin is used to form the branch cut, F ′(z)
fails to exist at the point where that ray intersects the circle C (see Fig. 49). So C

does not lie in any domain throughout which F ′(z) = 1/z, and one cannot make
direct use of an antiderivative. Example 3, just below, illustrates how a combination
of two different antiderivatives can be used to evaluate f (z) = 1/z around C.

x

2i

–2i

O

y

C

FIGURE 49

EXAMPLE 3. Let C1 denote the right half

z = 2 eiθ

(
− π

2
≤ θ ≤ π

2

)
(2)
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of the circle C in Example 2. The principal branch

Log z = ln r + i� (r > 0,−π < � < π)

of the logarithmic function serves as an antiderivative of the function 1/z in the
evaluation of the integral of 1/z along C1 (Fig. 50):

∫
C1

dz

z
=

∫ 2i

−2i

dz

z
= Log z

]2i

−2i

= Log(2i) − Log(−2i)

=
(

ln 2 + i
π

2

)
−

(
ln 2 − i

π

2

)
= πi.

This integral was evaluated in another way in Example 1, Sec. 41, where represen-
tation (2) for the semicircle was used.

x

C1

2i

–2i

O

y

FIGURE 50

Next, let C2 denote the left half

z = 2 eiθ

(
π

2
≤ θ ≤ 3π

2

)
(3)

of the same circle C and consider the branch

log z = ln r + iθ (r > 0, 0 < θ < 2π)

of the logarithmic function (Fig. 51). One can write

x
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FIGURE 51
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∫
C2

dz

z
=

∫ −2i

2i

dz

z
= log z

]−2i

2i

= log(−2i) − log(2i)

=
(

ln 2 + i
3π

2

)
−

(
ln 2 + i

π

2

)
= πi.

The value of the integral of 1/z around the entire circle C = C1 + C2 is thus
obtained: ∫

C

dz

z
=

∫
C1

dz

z
+

∫
C2

dz

z
= πi + πi = 2πi.

EXAMPLE 4. Let us use an antiderivative to evaluate the integral∫
C1

z1/2 dz,(4)

where the integrand is the branch

f (z) = z1/2 = exp

(
1

2
log z

)
= √

reiθ/2 (r > 0, 0 < θ < 2π)(5)

of the square root function and where C1 is any contour from z = −3 to z = 3 that,
except for its end points, lies above the x axis (Fig. 52). Although the integrand is
piecewise continuous on C1, and the integral therefore exists, the branch (5) of z1/2

is not defined on the ray θ = 0, in particular at the point z = 3. But another branch,

f1(z) = √
reiθ/2

(
r > 0,−π

2
< θ <

3π

2

)
,

is defined and continuous everywhere on C1. The values of f1(z) at all points on
C1 except z = 3 coincide with those of our integrand (5); so the integrand can be
replaced by f1(z). Since an antiderivative of f1(z) is the function

F1(z) = 2

3
z3/2 = 2

3
r
√

rei3θ/2
(

r > 0,−π

2
< θ <

3π

2

)
,

x

C1

C2

O

y

–3 3

FIGURE 52
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we can now write∫
C1

z1/2 dz =
∫ 3

−3
f1(z) dz = F1(z)

]3

−3

= 2
√

3(ei0 − ei3π/2) = 2
√

3(1 + i).

(Compare with Example 1 in Sec. 42.)
The integral ∫

C2

z1/2 dz(6)

of the function (5) over any contour C2 that extends from z = −3 to z = 3 below
the real axis can be evaluated in a similar way. In this case, we can replace the
integrand by the branch

f2(z) = √
reiθ/2

(
r > 0,

π

2
< θ <

5π

2

)
,

whose values coincide with those of the integrand at z = −3 and at all points on
C2 below the real axis. This enables us to use an antiderivative of f2(z) to evaluate
integral (6). Details are left to the exercises.

45. PROOF OF THE THEOREM

To prove the theorem in the previous section, it is sufficient to show that statement
(a) implies statement (b), that statement (b) implies statement (c), and finally that
statement (c) implies statement (a).

Let us assume that statement (a) is true, or that f (z) has an antiderivative F (z)
on the domain D being considered. To show how statement (b) follows, we need to
show that integration in independent of path in D and that the fundamental theorem
of calculus can be extended using F (z). If a contour C from z1 to z2 is a smooth
arc lying in D, with parametric representation z = z(t) (a ≤ t ≤ b), we know from
Exercise 5, Sec. 39, that

d

dt
F [z(t)] = F ′[z(t)]z′(t) = f [z(t)]z′(t) (a ≤ t ≤ b).

Because the fundamental theorem of calculus can be extended so as to apply to
complex-valued functions of a real variable (Sec. 38), it follows that

∫
C

f (z) dz =
∫ b

a

f
[
z(t)

]
z′(t) dt = F [z(t)]

]b

a

= F [z(b)] − F [z(a)].

Since z(b) = z2 and z(a) = z1, the value of this contour integral is then

F(z2) − F(z1);
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and that value is evidently independent of the contour C as long as C extends from
z1 to z2 and lies entirely in D. That is,∫ z2

z1

f (z) dz = F(z2) − F(z1) = F(z)

]z2

z1

(1)

when C is smooth. Expression (1) is also valid when C is any contour, not neces-
sarily a smooth one, that lies in D. For, if C consists of a finite number of smooth
arcs Ck (k = 1, 2, . . . , n), each Ck extending from a point zk to a point zk+1, then∫

C

f (z) dz =
n∑

k=1

∫
Ck

f (z) dz =
n∑

k=1

∫ zk+1

zk

f (z) dz =
n∑

k=1

[F(zk+1) − F(zk)].

Because the last sum here telescopes to F(zn+1) − F(z1), we arrive at the expression∫
C

f (z) dz = F(zn+1) − F(z1).

(Compare with Example 3, Sec. 41.) The fact that statement (b) follows from state-
ment (a) is now established.

To see that statement (b) implies statement (c), we now show that the value of
any integral around a closed contour in D is zero when integration is independent
of path there. To do this, we let z1 and z2 denote two points on any closed contour
C lying in D and form two paths C1 and C2, each with initial point z1 and final
point z2, such that C = C1 − C2 (Fig. 53). Assuming that integration is independent
of path in D, one can write∫

C1

f (z) dz =
∫

C2

f (z) dz,(2)

or ∫
C1

f (z) dz +
∫

−C2

f (z) dz = 0.(3)

That is, the integral of f (z) around the closed contour C = C1 − C2 has value zero.
It remains to show statement (c) implies statement (a). That is, we need to

show that if integrals of f (z) around closed contours in D always have value zero,
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FIGURE 53
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then f (z) has an antiderivative on D. Assuming that the values of such integrals
are in fact zero, we start by showing that integration is independent of path in D.
We let C1 and C2 denote any two contours, lying in D, from a point z1 to a point
z2 and observe that since integrals around closed paths lying in D have value zero,
equation (3) holds (see Fig. 53). Thus equation (2) holds. Integration is, therefore,
independent of path in D ; and we can define the function

F(z) =
∫ z

z0

f (s) ds

on D. The proof of the theorem is complete once we show that F ′(z) = f (z)

everywhere in D. We do this by letting z + 	z be any point distinct from z and
lying in some neighborhood of z that is small enough to be contained in D. Then

F(z + 	z) − F(z) =
∫ z+	z

z0

f (s) ds −
∫ z

z0

f (s) ds =
∫ z+	z

z

f (s) ds,

where the path of integration may be selected as a line segment (Fig. 54). Since∫ z+	z

z

ds = 	z

(see Exercise 5, Sec. 42), one can write

f (z) = 1

	z

∫ z+	z

z

f (z) ds;

and it follows that

F(z + 	z) − F(z)

	z
− f (z) = 1

	z

∫ z+	z

z

[f (s) − f (z)] ds.

But f is continuous at the point z. Hence, for each positive number ε, a positive
number δ exists such that

|f (s) − f (z)| < ε whenever |s − z| < δ.

x

Dz0

s
s

z

y

FIGURE 54
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Consequently, if the point z + 	z is close enough to z so that |	z| < δ, then∣∣∣∣F(z + 	z) − F(z)

	z
− f (z)

∣∣∣∣ <
1

|	z|ε|	z| = ε;

that is,

lim
	z→0

F(z + 	z) − F(z)

	z
= f (z),

or F ′(z) = f (z).

EXERCISES
1. Use an antiderivative to show that for every contour C extending from a point z1 to

a point z2, ∫
C

zn dz = 1

n + 1
(zn+1

2 − zn+1
1 ) (n = 0, 1, 2, . . .).

2. By finding an antiderivative, evaluate each of these integrals, where the path is any
contour between the indicated limits of integration:

(a)
∫ i/2

i

eπz dz ; (b)
∫ π+2i

0
cos

(
z

2

)
dz ; (c)

∫ 3

1
(z − 2)3 dz .

Ans. (a) (1 + i)/π ; (b) e + (1/e); (c) 0.

3. Use the theorem in Sec. 44 to show that∫
C0

(z − z0)
n−1 dz = 0 (n = ±1,±2, . . .)

when C0 is any closed contour which does not pass through the point z0. [Compare
with Exercise 10(b), Sec. 42.]

4. Find an antiderivative F2(z) of the branch f2(z) of z1/2 in Example 4, Sec. 44, to show
that integral (6) there has value 2

√
3(−1 + i). Note that the value of the integral of the

function (5) around the closed contour C2 − C1 in that example is, therefore, −4
√

3.

5. Show that ∫ 1

−1
zi dz = 1 + e−π

2
(1 − i),

where the integrand denotes the principal branch

zi = exp(i Log z) (|z| > 0,−π < Arg z < π)

of zi and where the path of integration is any contour from z = −1 to z = 1 that,
except for its end points, lies above the real axis. (Compare with Exercise 7, Sec. 42.)

Suggestion: Use an antiderivative of the branch

zi = exp(i log z)

(
|z| > 0,−π

2
< arg z <

3π

2

)

of the same power function.
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46. CAUCHY–GOURSAT THEOREM

In Sec. 44, we saw that when a continuous function f has an antiderivative in a
domain D, the integral of f (z) around any given closed contour C lying entirely
in D has value zero. In this section, we present a theorem giving other conditions
on a function f which ensure that the value of the integral of f (z) around a simple
closed contour (Sec. 39) is zero. The theorem is central to the theory of functions
of a complex variable; and some modifications of it, involving certain special types
of domains, will be given in Secs. 48 and 49.

We let C denote a simple closed contour z = z(t) (a ≤ t ≤ b), described in the
positive sense (counterclockwise), and we assume that f is analytic at each point
interior to and on C. According to Sec. 40,∫

C

f (z) dz =
∫ b

a

f [z(t)]z′(t) dt;(1)

and if
f (z) = u(x, y) + iv(x, y) and z(t) = x(t) + iy(t),

the integrand f [z(t)]z′(t) in expression (1) is the product of the functions

u[x(t), y(t)] + iv[x(t), y(t)], x′(t) + iy′(t)

of the real variable t . Thus∫
C

f (z) dz =
∫ b

a

(ux′ − vy′) dt + i

∫ b

a

(vx′ + uy′) dt.(2)

In terms of line integrals of real-valued functions of two real variables, then,∫
C

f (z) dz =
∫

C

u dx − v dy + i

∫
C

v dx + u dy.(3)

Observe that expression (3) can be obtained formally by replacing f (z) and dz on
the left with the binomials

u + iv and dx + i dy,

respectively, and expanding their product. Expression (3) is, of course, also valid
when C is any contour, not necessarily a simple closed one, and when f [z(t)] is
only piecewise continuous on it.

We next recall a result from calculus that enables us to express the line inte-
grals on the right in equation (3) as double integrals. Suppose that two real-valued
functions P(x, y) and Q(x, y), together with their first-order partial derivatives, are
continuous throughout the closed region R consisting of all points interior to and
on the simple closed contour C. According to Green’s theorem,∫

C

Pdx + Qdy =
∫ ∫

R

(Qx − Py) dA.
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Now f is continuous in R, since it is analytic there. Hence the functions u and
v are also continuous in R. Likewise, if the derivative f ′ of f is continuous in R,
so are the first-order partial derivatives of u and v. Green’s theorem then enables
us to rewrite equation (3) as∫

C

f (z) dz =
∫ ∫

R

(−vx − uy) dA + i

∫ ∫
R

(ux − vy) dA.(4)

But, in view of the Cauchy–Riemann equations

ux = vy, uy = −vx,

the integrands of these two double integrals are zero throughout R. So when f is
analytic in R and f ′ is continuous there,∫

C

f (z) dz = 0.(5)

This result was obtained by Cauchy in the early part of the nineteenth century.
Note that once it has been established that the value of this integral is zero,

the orientation of C is immaterial. That is, statement (5) is also true if C is taken
in the clockwise direction, since then∫

C

f (z) dz = −
∫

−C

f (z) dz = 0.

EXAMPLE. If C is any simple closed contour, in either direction, then∫
C

exp(z3) dz = 0.

This is because the composite function f (z) = exp(z3) is analytic everywhere and
its derivative f ′(z) = 3z2 exp(z3) is continuous everywhere.

Goursat∗ was the first to prove that the condition of continuity on f ′ can be
omitted. Its removal is important and will allow us to show, for example, that the
derivative f ′ of an analytic function f is analytic without having to assume the
continuity of f ′, which follows as a consequence. We now state the revised form
of Cauchy’s result, known as the Cauchy–Goursat theorem.

Theorem. If a function f is analytic at all points interior to and on a simple
closed contour C, then ∫

C

f (z) dz = 0.

∗E. Goursat (1858–1936), pronounced gour-sah′.
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The proof is presented in the next section, where, to be specific, we assume
that C is positively oriented. The reader who wishes to accept this theorem without
proof may pass directly to Sec. 48.

47. PROOF OF THE THEOREM

We preface the proof of the Cauchy–Goursat theorem with a lemma. We start by
forming subsets of the region R which consists of the points on a positively oriented
simple closed contour C together with the points interior to C. To do this, we draw
equally spaced lines parallel to the real and imaginary axes such that the distance
between adjacent vertical lines is the same as that between adjacent horizontal lines.
We thus form a finite number of closed square subregions, where each point of R lies
in at least one such subregion and each subregion contains points of R. We refer to
these square subregions simply as squares, always keeping in mind that by a square
we mean a boundary together with the points interior to it. If a particular square
contains points that are not in R, we remove those points and call what remains a
partial square. We thus cover the region R with a finite number of squares and partial
squares (Fig. 55), and our proof of the following lemma starts with this covering.

Lemma. Let f be analytic throughout a closed region R consisting of the
points interior to a positively oriented simple closed contour C together with the
points on C itself. For any positive number ε, the region R can be covered with a
finite number of squares and partial squares, indexed by j = 1, 2, . . . , n, such that
in each one there is a fixed point zj for which the inequality∣∣∣∣f (z) − f (zj )

z − zj

− f ′(zj )

∣∣∣∣ < ε(1)

is satisfied by all points other than zj in that square or partial square.

xO

y

C

FIGURE 55
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To start the proof, we consider the possibility that in the covering constructed
just prior to the statement of the lemma, there is some square or partial square in
which no point zj exists such that inequality (1) holds for all other points z in it.
If that subregion is a square, we construct four smaller squares by drawing line
segments joining the midpoints of its opposite sides (Fig. 55). If the subregion is
a partial square, we treat the whole square in the same manner and then let the
portions that lie outside of R be discarded. If in any one of these smaller subre-
gions, no point zj exists such that inequality (1) holds for all other points z in it, we
construct still smaller squares and partial squares, etc. When this is done to each of
the original subregions that requires it, we find that after a finite number of steps,
the region R can be covered with a finite number of squares and partial squares
such that the lemma is true.

To verify this, we suppose that the needed points zj do not exist after subdivid-
ing one of the original subregions a finite number of times and reach a contradiction.
We let σ0 denote that subregion if it is a square; if it is a partial square, we let σ0

denote the entire square of which it is a part. After we subdivide σ0, at least one of
the four smaller squares, denoted by σ1, must contain points of R but no appropriate
point zj . We then subdivide σ1 and continue in this manner. It may be that after a
square σk−1 (k = 1, 2, . . .) has been subdivided, more than one of the four smaller
squares constructed from it can be chosen. To make a specific choice, we take σk

to be the one lowest and then furthest to the left.
In view of the manner in which the nested infinite sequence

σ0, σ1, σ2, . . . , σk−1, σk, . . .(2)

of squares is constructed, it is easily shown (Exercise 9, Sec. 49) that there is a point
z0 common to each σk; also, each of these squares contains points of R other than
possibly z0. Recall how the sizes of the squares in the sequence are decreasing, and
note that any δ neighborhood |z − z0| < δ of z0 contains such squares when their
diagonals have lengths less than δ. Every δ neighborhood |z − z0| < δ therefore con-
tains points of R distinct from z0, and this means that z0 is an accumulation point of
R. Since the region R is a closed set, it follows that z0 is a point in R. (See Sec. 11.)

Now the function f is analytic throughout R and, in particular, at z0. Conse-
quently, f ′(z0) exists, According to the definition of derivative (Sec. 19), there is,
for each positive number ε, a δ neighborhood |z − z0| < δ such that the inequality∣∣∣∣f (z) − f (z0)

z − z0
− f ′(z0)

∣∣∣∣ < ε

is satisfied by all points distinct from z0 in that neighborhood. But the neighborhood
|z − z0| < δ contains a square σK when the integer K is large enough that the length
of a diagonal of that square is less than δ (Fig. 56). Consequently, z0 serves as the
point zj in inequality (1) for the subregion consisting of the square σK or a part
of σK . Contrary to the way in which the sequence (2) was formed, then, it is not
necessary to subdivide σK . We thus arrive at a contradiction, and the proof of the
lemma is complete.
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Continuing with a function f which is analytic throughout a region R consisting
of a positively oriented simple closed contour C and points interior to it, we are
now ready to prove the Cauchy–Goursat theorem, namely that∫

C

f (z) dz = 0.(3)

Given an arbitrary positive number ε, we consider the covering of R in the
statement of the lemma. We then define on the j th square or partial square a function
δj (z) whose values are δj (zj ) = 0, where zj is the fixed point in inequality (1), and

δj (z) = f (z) − f (zj )

z − zj

− f ′(zj ) when z �= zj .(4)

According to inequality (1),

|δj (z)| < ε(5)

at all points z in the subregion on which δj (z) is defined. Also, the function δj (z)

is continuous throughout the subregion since f (z) is continuous there and

lim
z→zj

δj (z) = f ′(zj ) − f ′(zj ) = 0.

Next, we let Cj (j = 1, 2, . . . , n) denote the positively oriented boundaries of
the above squares or partial squares covering R. In view of our definition of δj (z),
the value of f at a point z on any particular Cj can be written

f (z) = f (zj ) − zjf
′(zj ) + f ′(zj )z + (z − zj )δj (z);

and this means that∫
Cj

f (z) dz = [f (zj ) − zjf
′(zj )]

∫
Cj

dz + f ′(zj )

∫
Cj

z dz(6)

+
∫

Cj

(z − zj )δj (z) dz.
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But ∫
Cj

dz = 0 and
∫

Cj

z dz = 0

since the functions 1 and z possess antiderivatives everywhere in the finite plane.
So equation (6) reduces to∫

Cj

f (z) dz =
∫

Cj

(z − zj )δj (z) dz (j = 1, 2, . . . , n).(7)

The sum of all n integrals on the left in equations (7) can be written

n∑
j=1

∫
Cj

f (z) dz =
∫

C

f (z) dz

since the two integrals along the common boundary of every pair of adjacent subre-
gions cancel each other, the integral being taken in one sense along that line segment
in one subregion and in the opposite sense in the other (Fig. 57). Only the integrals
along the arcs that are parts of C remain. Thus, in view of equations (7),∫

C

f (z) dz =
n∑

j=1

∫
Cj

(z − zj )δj (z) dz ;

and so ∣∣∣∣
∫

C

f (z) dz

∣∣∣∣ ≤
n∑

j=1

∣∣∣∣∣
∫

Cj

(z − zj )δj (z) dz

∣∣∣∣∣ .(8)

We now use the theorem in Sec. 43 to find an upper bound for each modulus
on the right in inequality (8). To do this, we first recall that each Cj coincides either
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FIGURE 57
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entirely or partially with the boundary of a square. In either case, we let sj denote
the length of a side of the square. Since, in the j th integral, both the variable z and
the point zj lie in that square,

|z − zj | ≤
√

2sj .

In view of inequality (5), then, we know that each integrand on the right in inequality
(8) satisfies the condition

|(z − zj )δj (z)| = |z − zj | |δj (z)| <
√

2sj ε.(9)

As for the length of the path Cj , it is 4sj if Cj is the boundary of a square. In that
case, we let Aj denote the area of the square and observe that∣∣∣∣∣

∫
Cj

(z − zj )δj (z) dz

∣∣∣∣∣ <
√

2sj ε4sj = 4
√

2Ajε.(10)

If Cj is the boundary of a partial square, its length does not exceed 4sj + Lj , where
Lj is the length of that part of Cj which is also a part of C. Again letting Aj denote
the area of the full square, we find that∣∣∣∣∣

∫
Cj

(z − zj )δj (z) dz

∣∣∣∣∣ <
√

2sj ε(4sj + Lj) < 4
√

2Ajε +
√

2SLjε,(11)

where S is the length of a side of some square that encloses the entire contour C

as well as all of the squares originally used in covering R (Fig. 57). Note that the
sum of all the Aj ’s does not exceed S2.

If L denotes the length of C, it now follows from inequalities (8), (10), and
(11) that ∣∣∣∣

∫
C

f (z) dz

∣∣∣∣ < (4
√

2S2 +
√

2SL)ε.

Since the value of the positive number ε is arbitrary, we can choose it so that
the right-hand side of this last inequality is as small as we please. The left-hand
side, which is independent of ε, must therefore be equal to zero ; and statement (3)
follows. This completes the proof of the Cauchy–Goursat theorem.

48. SIMPLY CONNECTED DOMAINS

A simply connected domain D is a domain such that every simple closed contour
within it encloses only points of D. The set of points interior to a simple closed
contour is an example. The annular domain between two concentric circles is, how-
ever, not simply connected. Domains that are not simply connected are discussed
in the next section.

The closed contour in the Cauchy–Goursat theorem (Sec. 46) need not be
simple when the theorem is adapted to simply connected domains. More precisely,
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the contour can actually cross itself. The following theorem allows for this possi-
bility.

Theorem. If a function f is analytic throughout a simply connected domain
D, then ∫

C

f (z) dz = 0(1)

for every closed contour C lying in D.

The proof is easy if C is a simple closed contour or if it is a closed contour that
intersects itself a finite number of times. For if C is simple and lies in D, the function
f is analytic at each point interior to and on C; and the Cauchy–Goursat theorem
ensures that equation (1) holds. Furthermore, if C is closed but intersects itself a
finite number of times, it consists of a finite number of simple closed contours.
This is illustrated in Fig. 58, where the simple closed contours Ck (k = 1, 2, 3, 4)

make up C. Since the value of the integral around each Ck is zero, according to the
Cauchy–Goursat theorem, it follows that∫

C

f (z) dz =
4∑

k=1

∫
Ck

f (z) dz = 0.

Subtleties arise if the closed contour has an infinite number of self-intersection
points. One method that can sometimes be used to show that the theorem still applies
is illustrated in Exercise 5, Sec. 49.∗
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FIGURE 58

EXAMPLE. If C denotes any closed contour lying in the open disk |z| < 2
(Fig. 59), then ∫

C

z ez

(z2 + 9)5
dz = 0.

∗For a proof of the theorem involving more general paths of finite length, see, for example, Secs.
63–65 in Vol. I of the book by Markushevich that is cited in Appendix 1.
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This is because the disk is a simply connected domain and the two singularities
z = ±3i of the integrand are exterior to the disk.

C

x

y

2O

FIGURE 59

Corollary. A function f that is analytic throughout a simply connected domain
D must have an antiderivative everywhere in D.

We begin the proof of this corollary with the observation that a function f is
continuous on a domain D when it is analytic there. Consequently, since equation
(1) holds for the function in the hypothesis of this corollary and for each closed
contour C in D, f has an antiderivative throughout D, according to the theorem in
Sec. 44. Note that since the finite plane is simply connected, the corollary tells us
that entire functions always possess antiderivatives.

49. MULTIPLY CONNECTED DOMAINS

A domain that is not simply connected (Sec. 48) is said to be multiply connected.
The following theorem is an adaptation of the Cauchy–Goursat theorem to multiply
connected domains.

Theorem. Suppose that

(a) C is a simple closed contour, described in the counterclockwise direction;

(b) Ck (k = 1, 2, . . . , n) are simple closed contours interior to C, all described in
the clockwise direction, that are disjoint and whose interiors have no points in
common (Fig. 60).

If a function f is analytic on all of these contours and throughout the multiply
connected domain consisting of the points inside C and exterior to each Ck, then∫

C

f (z) dz +
n∑

k=1

∫
Ck

f (z) dz = 0.(1)
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Note that in equation (1), the direction of each path of integration is such that
the multiply connected domain lies to the left of that path.

To prove the theorem, we introduce a polygonal path L1, consisting of a finite
number of line segments joined end to end, to connect the outer contour C to the
inner contour C1. We introduce another polygonal path L2 which connects C1 to
C2; and we continue in this manner, with Ln+1 connecting Cn to C. As indicated
by the single-barbed arrows in Fig. 60, two simple closed contours 1 and 2 can
be formed, each consisting of polygonal paths Lk or −Lk and pieces of C and Ck

and each described in such a direction that the points enclosed by them lie to the
left. The Cauchy–Goursat theorem can now be applied to f on 1 and 2, and the
sum of the values of the integrals over those contours is found to be zero. Since the
integrals in opposite directions along each path Lk cancel, only the integrals along
C and the Ck remain; and we arrive at statement (1).

Corollary. Let C1 and C2 denote positively oriented simple closed contours,
where C1 is interior to C2 (Fig. 61). If a function f is analytic in the closed region
consisting of those contours and all points between them, then∫

C2

f (z) dz =
∫

C1

f (z) dz.(2)
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This corollary is known as the principle of deformation of paths since it tells
us that if C1 is continuously deformed into C2, always passing through points at
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which f is analytic, then the value of the integral of f over C1 never changes. To
verify the corollary, we need only write equation (2) as∫

C2

f (z) dz +
∫

−C1

f (z) dz = 0

and apply the theroem.

EXAMPLE. When C is any positively oriented simple closed contour sur-
rounding the origin, the corollary can be used to show that∫

C

dz

z
= 2πi.

This is done by constructing a positively oriented circle C0 with center at the origin and
radius so small that C0 lies entirely inside C (Fig. 62). Since (see Example 2, Sec. 42)∫

C0

dz

z
= 2πi

and since 1/z is analytic everywhere except at z = 0, the desired result follows.
Note that the radius of C0 could equally well have been so large that C lies

entirely inside C0.

x

C0

C

O

y

FIGURE 62

EXERCISES
1. Apply the Cauchy–Goursat theorem to show that∫

C

f (z) dz = 0

when the contour C is the unit circle |z| = 1, in either direction, and when

(a) f (z) = z2

z − 3
; (b) f (z) = z e−z; (c) f (z) = 1

z2 + 2z + 2
;

(d) f (z) = sech z; (e) f (z) = tan z; ( f) f (z) = Log (z + 2).
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2. Let C1 denote the positively oriented boundary of the square whose sides lie along the
lines x = ±1, y = ±1 and let C2 be the positively oriented circle |z| = 4 (Fig. 63).
With the aid of the corollary in Sec. 49, point out why∫

C1

f (z) dz =
∫

C2

f (z) dz

when

(a) f (z) = 1

3z2 + 1
; (b) f (z) = z + 2

sin(z/2)
; (c) f (z) = z

1 − ez
.

x1 4

y

C1

C2

FIGURE 63

3. If C0 denotes a positively oriented circle |z − z0| = R , then∫
C0

(z − z0)
n−1 dz =

{0 when n = ±1,±2, . . . ,

2πi when n = 0,

according to Exercise 10(b), Sec. 42. Use that result and the corollary in Sec. 49 to
show that if C is the boundary of the rectangle 0 ≤ x ≤ 3, 0 ≤ y ≤ 2, described in
the positive sense, then∫

C

(z − 2 − i)n−1 dz =
{

0 when n = ±1,±2, . . . ,

2πi when n = 0.

4. Use the following method to derive the integration formula∫ ∞

0
e−x2

cos 2bx dx =
√

π

2
e−b2

(b > 0).

(a) Show that the sum of the integrals of e−z2
along the lower and upper horizontal

legs of the rectangular path in Fig. 64 can be written

xa

a + bi–a + bi

–a O

y

FIGURE 64
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2
∫ a

0
e−x2

dx − 2eb2
∫ a

0
e−x2

cos 2bx dx

and that the sum of the integrals along the vertical legs on the right and left can
be written

ie−a2
∫ b

0
ey2

e−i2aydy − ie−a2
∫ b

0
ey2

ei2aydy.

Thus, with the aid of the Cauchy–Goursat theorem, show that∫ a

0
e−x2

cos 2bx dx = e−b2
∫ a

0
e−x2

dx + e−(a2+b2)

∫ b

0
ey2

sin 2ay dy.

(b) By accepting the fact that∗ ∫ ∞

0
e−x2

dx =
√

π

2

and observing that ∣∣∣∣
∫ b

0
ey2

sin 2ay dy

∣∣∣∣ ≤
∫ b

0
ey2

dy,

obtain the desired integration formula by letting a tend to infinity in the equation
at the end of part (a).

5. According to Exercise 6, Sec. 39, the path C1 from the origin to the point z = 1 along
the graph of the function defined by means of the equations

y(x) =
{
x3 sin (π/x) when 0 < x ≤ 1,

0 when x = 0

is a smooth arc that intersects the real axis an infinite number of times. Let C2 denote
the line segment along the real axis from z = 1 back to the origin, and let C3 denote
any smooth arc from the origin to z = 1 that does not intersect itself and has only its
end points in common with the arcs C1 and C2 (Fig. 65). Apply the Cauchy–Goursat
theorem to show that if a function f is entire, then∫

C1

f (z) dz =
∫

C3

f (z) dz and
∫

C2

f (z) dz = −
∫

C3

f (z) dz.

Conclude that even though the closed contour C = C1 + C2 intersects itself an infinite
number of times, ∫

C

f (z) dz = 0.

∗The usual way to evaluate this integral is by writing its square as∫ ∞

0
e−x2

dx

∫ ∞

0
e−y2

dy =
∫ ∞

0

∫ ∞

0
e−(x2+y2)dxdy

and then evaluating this iterated integral by changing to polar coordinates. Details are given in, for
example, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 680–681, 1983.
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xO 1

y

C1

C3

C2

1–
3

1–
2

FIGURE 65

6. Let C denote the positively oriented boundary of the half disk 0 ≤ r ≤ 1, 0 ≤ θ ≤ π ,
and let f (z) be a continuous function defined on that half disk by writing f (0) = 0
and using the branch

f (z) = √
reiθ/2

(
r > 0,−π

2
< θ <

3π

2

)

of the multiple-valued function z1/2. Show that∫
C

f (z) dz = 0

by evaluating separately the integrals of f (z) over the semicircle and the two radii
which make up C. Why does the Cauchy–Goursat theorem not apply here?

7. Show that if C is a positively oriented simple closed contour, then the area of the
region enclosed by C can be written

1

2i

∫
C

z dz.

Suggestion: Note that expression (4), Sec. 46, can be used here even though the
function f (z) = z is not analytic anywhere [see Example 2, Sec. 19].

8. Nested Intervals. An infinite sequence of closed intervals an ≤ x ≤ bn (n = 0, 1, 2, . . .)

is formed in the following way. The interval a1 ≤ x ≤ b1 is either the left-hand or
right-hand half of the first interval a0 ≤ x ≤ b0, and the interval a2 ≤ x ≤ b2 is then
one of the two halves of a1 ≤ x ≤ b1, etc. Prove that there is a point x0 which belongs
to every one of the closed intervals an ≤ x ≤ bn.

Suggestion: Note that the left-hand end points an represent a bounded nonde-
creasing sequence of numbers, since a0 ≤ an ≤ an+1 < b0 ; hence they have a limit
A as n tends to infinity. Show that the end points bn also have a limit B. Then show
that A = B, and write x0 = A = B.

9. Nested Squares. A square σ0 : a0 ≤ x ≤ b0, c0 ≤ y ≤ d0 is divided into four equal
squares by line segments parallel to the coordinate axes. One of those four smaller
squares σ1 : a1 ≤ x ≤ b1, c1 ≤ y ≤ d1 is selected according to some rule. It, in turn,
is divided into four equal squares one of which, called σ2, is selected, etc. (see Sec.
47). Prove that there is a point (x0, y0) which belongs to each of the closed regions
of the infinite sequence σ0, σ1, σ2, . . . .

Suggestion: Apply the result in Exercise 8 to each of the sequences of closed
intervals an ≤ x ≤ bn and cn ≤ y ≤ dn (n = 0, 1, 2, . . .).
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50. CAUCHY INTEGRAL FORMULA

Another fundamental result will now be established.

Theorem. Let f be analytic everywhere inside and on a simple closed contour
C, taken in the positive sense. If z0 is any point interior to C, then

f (z0) = 1

2πi

∫
C

f (z) dz

z − z0
.(1)

Formula (1) is called the Cauchy integral formula. It tells us that if a function
f is to be analytic within and on a simple closed contour C, then the values of f

interior to C are completely determined by the values of f on C.
When the Cauchy integral formula is written as∫

C

f (z) dz

z − z0
= 2πif (z0),(2)

it can be used to evaluate certain integrals along simple closed contours.

EXAMPLE. Let C be the positively oriented circle |z| = 2. Since the func-
tion

f (z) = z

9 − z2

is analytic within and on C and since the point z0 = −i is interior to C, formula
(2) tells us that∫

C

z dz

(9 − z2)(z + i)
=

∫
C

z/(9 − z2)

z − (−i)
dz = 2πi

(−i

10

)
= π

5
.

We begin the proof of the theorem by letting Cρ denote a positively oriented
circle |z − z0| = ρ, where ρ is small enough that Cρ is interior to C (see Fig. 66).
Since the quotient f (z)/(z − z0) is analytic between and on the contours Cρ and
C, it follows from the principle of deformation of paths (Sec. 49) that

x

z0

O

y

C C

FIGURE 66
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∫
C

f (z) dz

z − z0
=

∫
Cρ

f (z) dz

z − z0
.

This enables us to write∫
C

f (z) dz

z − z0
− f (z0)

∫
Cρ

dz

z − z0
=

∫
Cρ

f (z) − f (z0)

z − z0
dz.(3)

But [see Exercise 10(b), Sec. 42]∫
Cρ

dz

z − z0
= 2πi;

and so equation (3) becomes∫
C

f (z) dz

z − z0
− 2πif (z0) =

∫
Cρ

f (z) − f (z0)

z − z0
dz.(4)

Now the fact that f is analytic, and therefore continuous, at z0 ensures that
corresponding to each positive number ε, however small, there is a positive number
δ such that

|f (z) − f (z0)| < ε whenever |z − z0| < δ.(5)

Let the radius ρ of the circle Cρ be smaller than the number δ in the second of
these inequalities. Since |z − z0| = ρ < δ when z is on Cρ , it follows that the first
of inequalities (5) holds when z is such a point; and the theorem in Sec. 43, giving
upper bounds for the moduli of contour integrals, tells us that∣∣∣∣∣

∫
Cρ

f (z) − f (z0)

z − z0
dz

∣∣∣∣∣ <
ε

ρ
2πρ = 2πε.

In view of equation (4), then,∣∣∣∣
∫

C

f (z) dz

z − z0
− 2πif (z0)

∣∣∣∣ < 2πε.

Since the left-hand side of this inequality is a nonnegative constant that is less than
an arbitrarily small positive number, it must be equal to zero. Hence equation (2)
is valid, and the theorem is proved.

51. AN EXTENSION OF THE CAUCHY INTEGRAL
FORMULA

The Cauchy integral formula in the theorem in Sec. 50 can be extended so as to
provide an integral representation for derivatives of f at z0. To obtain the extension,
we consider a function f that is analytic everywhere inside and on a simple closed
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contour C, taken in the positive sense. We then write the Cauchy integral formula
as

f (z) = 1

2πi

∫
C

f (s) ds

s − z
,(1)

where z is interior to C and where s denotes points on C. Differentiating formally
with respect to z under the integral sign here, without rigorous justification, we find
that

f ′(z) = 1

2πi

∫
C

f (s) ds

(s − z)2
.(2)

To verify that f ′(z) exists and that expression (2) is in fact valid, we led d

denote the smallest distance from z to points s on C and use expression (1) to write

f (z + 	z) − f (z)

	z
= 1

2πi

∫
C

(
1

s − z − 	z
− 1

s − z

)
f (s)

	z
ds

= 1

2πi

∫
C

f (s) ds

(s − z − 	z)(s − z)
,

where 0 < |	z| < d (see Fig. 67). Evidently, then,

f (z + 	z) − f (z)

	z
− 1

2πi

∫
C

f (s) ds

(s − z)2
= 1

2πi

∫
C

	z f (s) ds

(s − z − 	z)(s − z)2
.(3)

x

z
s

d

|s – z|

O

y

C

FIGURE 67

Next, we let M denote the maximum value of |f (s)| on C and observe that since
|s − z| ≥ d and |	z| < d ,
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|s − z − 	z| = |(s − z) − 	z| ≥ ||s − z| − |	z|| ≥ d − |	z| > 0.

Thus ∣∣∣∣
∫

C

	z f (s) ds

(s − z − 	z)(s − z)2

∣∣∣∣ ≤ |	z|M
(d − |	z|)d2

L,

where L is the length of C. Upon letting 	z tend to zero, we find from this inequality
that the right-hand side of equation (3) also tends to zero. Consequently,

lim
	z→0

f (z + 	z) − f (z)

	z
− 1

2πi

∫
C

f (s) ds

(s − z)2
= 0 ;

and the desired expression for f ′(z) is established.
The same technique can be used to suggest and verify the expression

f ′′(z) = 1

πi

∫
C

f (s) ds

(s − z)3
.(4)

The details, which are outlined in Exercise 9, Sec. 52, are left to the reader. Math-
ematical induction can, moreover, be used to obtain the formula

f (n)(z) = n!

2πi

∫
C

f (s) ds

(s − z)n+1
(n = 1, 2, . . .).(5)

The verification is considerably more involved than for just n = 1 and n = 2, and
we refer the interested reader to other texts for it.∗ Note that with the agreement
that

f (0)(z) = f (z) and 0! = 1,

expression (5) is also valid when n = 0, in which case it becomes the Cauchy
integral formula (1).

When written in the form∫
C

f (z) dz

(z − z0)n+1
= 2πi

n!
f (n)(z0) (n = 0, 1, 2, . . .),(6)

expressions (1) and (5) can be useful in evaluating certain integrals when f is
analytic inside and on a simple closed contour C, taken in the positive sense, and
z0 is any point interior to C. It has already been illustrated in Sec. 50 when n = 0.

EXAMPLE 1. If C is the positively oriented unit circle |z| = 1 and

f (z) = exp(2z),

∗See, for example, pp. 299–301 in Vol. I of the book by Markushevich, cited in Appendix 1.
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then ∫
C

exp(2z) dz

z4
=

∫
C

f (z) dz

(z − 0)3+1
= 2πi

3!
f ′′′(0) = 8πi

3
.

EXAMPLE 2. Let z0 be any point interior to a positively oriented simple
closed contour C. When f (z) = 1, expression (6) shows that∫

C

dz

z − z0
= 2πi

and ∫
C

dz

(z − z0)n+1
= 0 (n = 1, 2, . . .).

(Compare with Exercise 10(b), Sec. 42.)

52. SOME CONSEQUENCES OF THE EXTENSION

We turn now to some important consequences of the extension of the Cauchy integral
formula in the previous section.

Theorem 1. If a function f is analytic at a given point, then its derivatives
of all orders are analytic there too.

To prove this remarkable theorem, we assume that a function f is analytic
at a point z0. There must, then, be a neighborhood |z − z0| < ε of z0 throughout
which f is analytic (see Sec. 24). Consequently, there is a positively oriented circle
C0, centered at z0 and with radius ε/2, such that f is analytic inside and on C0

(Fig. 68). From expression (4), Sec. 51, we know that

f ′′(z) = 1

πi

∫
C0

f (s) ds

(s − z)3

x

z0

z

O

y

C0

/2ε

FIGURE 68
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at each point z interior to C0, and the existence of f ′′(z) throughout the neigh-
borhood |z − z0| < ε/2 means that f ′ is analytic at z0. One can apply the same
argument to the analytic function f ′ to conclude that its derivative f ′′ is analytic,
etc. Theorem 1 is now established.

As a consequence, when a function

f (z) = u(x, y) + iv(x, y)

is analytic at a point z = (x, y), the differentiability of f ′ ensures the continuity of
f ′ there (Sec. 19). Then, since (Sec. 21)

f ′(z) = ux + ivx = vy − iuy,

we may conclude that the first-order partial derivatives of u and v are continuous
at that point. Furthermore, since f ′′ is analytic and continuous at z and since

f ′′(z) = uxx + ivxx = vyx − iuyx,

etc., we arrive at a corollary that was anticipated in Sec. 26, where harmonic func-
tions were introduced.

Corollary. If a function f (z) = u(x, y) + iv(x, y) is analytic at a point
z = (x, y), then the component functions u and v have continuous partial derivatives
of all orders at that point.

The proof of the next theorem, due to E. Morera (1856–1909), depends on
the fact that the derivative of an analytic function is itself analytic, as stated in
Theorem 1.

Theorem 2. Let f be continuous on a domain D. If∫
C

f (z) dz = 0(1)

for every closed contour C in D, then f is analytic throughout D.

In particular, when D is simply connected, we have for the class of continu-
ous functions defined on D the converse of the theorem in Sec. 48, which is the
adaptation of the Cauchy–Goursat theorem to such domains.

To prove the theorem here, we observe that when its hypothesis is satisfied, the
theorem in Sec. 44 ensures that f has an antiderivative in D ; that is, there exists
an analytic function F such that F ′(z) = f (z) at each point in D. Since f is the
derivative of F , it then follows from Theorem 1 that f is analytic in D.

Our final theorem here will be essential in the next section.
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Theorem 3. Suppose that a function f is analytic inside and on a positively
oriented circle CR , centered at z0 and with radius R (Fig. 69). If MR denotes the
maximum value of |f (z)| on CR , then

|f (n)(z0)| ≤ n!MR

Rn
(n = 1, 2, . . .).(2)

x

z

z0

O

y
CR

R

FIGURE 69

Inequality (2) is called Cauchy’s inequality and is an immediate consequence
of the expression

f (n)(z0) = n!

2πi

∫
CR

f (z) dz

(z − z0)n+1
(n = 1, 2, . . .),

which is a slightly different form of equation (6), Sec. 51, when n is a positive
integer. We need only apply the theorem in Sec. 43, which gives upper bounds for
the moduli of the values of contour integrals, to see that

|f (n)(z0)| ≤ n!

2π
.

MR

Rn+1
2πR (n = 1, 2, . . .),

where MR is as in the statement of Theorem 3. This inequality is, of course, the
same as inequality (2).

EXERCISES
1. Let C denote the positively oriented boundary of the square whose sides lie along the

lines x = ± 2 and y = ± 2. Evaluate each of these integrals:

(a)
∫

C

e−z dz

z − (πi/2)
; (b)

∫
C

cos z

z(z2 + 8)
dz ; (c)

∫
C

z dz

2z + 1
;

(d)
∫

C

cosh z

z4
dz ; (e)

∫
C

tan(z/2)

(z − x0)2
dz (−2 < x0 < 2).

Ans. (a) 2π ; (b) πi/4 ; (c) −πi/2; (d) 0 ; (e) iπ sec2(x0/2).

2. Find the value of the integral of g(z) around the circle |z − i| = 2 in the positive sense
when

(a) g(z) = 1

z2 + 4
; (b) g(z) = 1

(z2 + 4)2
.

Ans. (a) π/2 ; (b) π/16.
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3. Let C be the circle |z| = 3, described in the positive sense. Show that if

g(z) =
∫

C

2s2 − s − 2

s − z
ds (|z| �= 3),

then g(2) = 8πi. What is the value of g(z) when |z| > 3?

4. Let C be any simple closed contour, described in the positive sense in the z plane,
and write

g(z) =
∫

C

s3 + 2s

(s − z)3
ds.

Show that g(z) = 6πiz when z is inside C and that g(z) = 0 when z is outside.

5. Show that if f is analytic within and on a simple closed contour C and z0 is not on
C, then ∫

C

f ′(z) dz

z − z0
=

∫
C

f (z) dz

(z − z0)2
.

6. Let f denote a function that is continuous on a simple closed contour C. Following
a procedure used in Sec. 51, prove that the function

g(z) = 1

2πi

∫
C

f (s) ds

s − z

is analytic at each point z interior to C and that

g′(z) = 1

2πi

∫
C

f (s) ds

(s − z)2

at such a point.

7. Let C be the unit circle z = eiθ (−π ≤ θ ≤ π). First show that for any real constant a,∫
C

eaz

z
dz = 2πi.

Then write this integral in terms of θ to derive the integration formula∫ π

0
ea cos θ cos(a sin θ) dθ = π.

8. (a) With the aid of the binomial formula (Sec. 3), show that for each value of n, the
function

Pn(z) = 1

n! 2n

dn

dzn
(z2 − 1)n (n = 0, 1, 2, . . .)

is a polynomial of degree n.∗

∗These are Legendre polynomials, which appear in Exercise 7, Sec. 43, when z = x. See the footnote
to that exercise.
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(b) Let C denote any positively oriented simple closed contour surrounding a fixed
point z. With the aid of the integral representation (5), Sec. 51, for the nth deriva-
tive of a function, show that the polynomials in part (a) can be expressed in the
form

Pn(z) = 1

2n+1πi

∫
C

(s2 − 1)n

(s − z)n+1
ds (n = 0, 1, 2, . . .).

(c) Point out how the integrand in the representation for Pn(z) in part (b) can be
written (s + 1)n/(s − 1) if z = 1. Then apply the Cauchy integral formula to
show that

Pn(1) = 1 (n = 0, 1, 2, . . .).

Similarly, show that

Pn(−1) = (−1)n (n = 0, 1, 2, . . .).

9. Follow these steps below to verify the expression

f ′′(z) = 1

πi

∫
C

f (s) ds

(s − z)3

in Sec. 51.

(a) Use expression (2) in Sec. 51 for f ′(z) to show that

f ′(z + 	z) − f ′(z)
	z

− 1

πi

∫
C

f (s) ds

(s − z)3
= 1

2πi

∫
C

3(s − z)	z − 2(	z)2

(s − z − 	z)2(s − z)3
f (s) ds.

(b) Let D and d denote the largest and smallest distances, respectively, from z to
points on C. Also, let M be the maximum value of |f (s)| on C and L the length
of C. With the aid of the triangle inequality and by referring to the derivation of
expression (2) in Sec. 51 for f ′(z), show that when 0 < |	z| < d , the value of
the integral on the right-hand side in part (a) is bounded from above by

(3D|	z| + 2|	z|2)M
(d − |	z|)2d3

L.

(c) Use the results in parts (a) and (b) to obtain the desired expression for f ′′(z).

10. Let f be an entire function such that |f (z)| ≤ A|z| for all z, where A is a fixed
positive number. Show that f (z) = a1z, where a1 is a complex constant.

Suggestion: Use Cauchy’s inequality (Sec. 52) to show that the second deriva-
tive f ′′(z) is zero everywhere in the plane. Note that the constant MR in Cauchy’s
inequality is less than or equal to A(|z0| + R).

53. LIOUVILLE’S THEOREM AND THE FUNDAMENTAL
THEOREM OF ALGEBRA

Cauchy’s inequality in Theorem 3 of Sec. 52 can be used to show that no entire
function except a constant is bounded in the complex plane. Our first theorem here,
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which is known as Liouville’s theorem, states this result in a somewhat different
way.

Theorem 1. If a function f is entire and bounded in the complex plane, then
f (z) is constant througout the plane.

To start the proof, we assume that f is as stated and note that since f is entire,
Theorem 3 in Sec. 52 can be applied with any choice of z0 and R. In particular,
Cauchy’s inequality (2) in that theorem tells us that when n = 1,

|f ′(z0)| ≤ MR

R
.(1)

Moreover, the boundedness condition on f tells us that a nonnegative constant M

exists such that |f (z)| ≤ M for all z ; and, because the constant MR in inequality
(1) is always less than or equal to M , it follows that∣∣f ′(z0)

∣∣ ≤ M

R
,(2)

where R can be arbitrarily large. Now the number M in inequality (2) is independent
of the value of R that is taken. Hence that inequality holds for arbitrarily large
values of R only if f ′(z0) = 0. Since the choice of z0 was arbitrary, this means that
f ′(z) = 0 everywhere in the complex plane. Consequently, f is a constant function,
according to the theorem in Sec. 24.

The following theorem, called the fundamental theorem of algebra, follows
readily from Liouville’s theorem.

Theorem 2. Any polynomial

P(z) = a0 + a1z + a2z
2 + · · · + anz

n (an �= 0)

of degree n (n ≥ 1) has at least one zero. That is, there exists at least one point z0

such that P(z0) = 0.

The proof here is by contradiction. Suppose that P(z) is not zero for any value
of z. Then the reciprocal

f (z) = 1

P(z)

is clearly entire, and it is also bounded in the complex plane.
To show that its is bounded, we first write

w = a0

zn
+ a1

zn−1
+ a2

zn−2
+ · · · + an−1

z
,(3)

so that

P(z) = (an + w)zn.(4)
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Next, we observe that a sufficiently large positive number R can be found such
that the modulus of each of the quotients in expression (3) is less than the number
|an|/(2n) when |z| > R. The generalized triangle inequality (10), Sec. 4, which
applies to n complex numbers, thus shows that

|w| <
|an|

2
whenever |z| > R.

Consequently,

|an + w| ≥ ||an| − |w|| >
|an|

2
whenever |z| > R.

This inequality and expression (4) enable us to write

|Pn(z)| = |an + w||z|n >
|an|

2
|z|n >

|an|
2

Rn whenever |z| > R.(5)

Evidently, then,

|f (z)| = 1

|P(z)| <
2

|an|Rn
whenever |z| > R.

So f is bounded in the region exterior to the disk |z| ≤ R. But f is continuous in
that closed disk, and this means that f is bounded there too (Sec. 18). Hence f is
bounded in the entire plane.

It now follows from Liouville’s theorem that f (z), and consequently P(z), is
constant. But P(z) is not constant, and we have reached a contradiction.∗

The fundamental theorem tells us that any polynomial P(z) of degree n (n ≥ 1)

can be expressed as a product of linear factors:

P(z) = c(z − z1)(z − z2) · · · (z − zn),(6)

where c and zk (k = 1, 2, . . . , n) are complex constants. More precisely, the theorem
ensures that P(z) has a zero z1. Then, according to Exercise 9, Sec. 54,

P(z) = (z − z1)Q1(z),

where Q1(z) is a polynomial of degree n − 1. The same argument, applied to Q1(z),
reveals that there is a number z2 such that

P(z) = (z − z1)(z − z2)Q2(z),

where Q2(z) is a polynomial of degree n − 2. Continuing in this way, we arrive at
expression (6). Some of the constants zk in expression (6) may, of course, appear
more than once, and it is clear that P(z) can have no more than n distinct zeros.

∗For an interesting proof of the fundamental theorem using the Cauchy–Goursat theorem, see R. P.
Boas, Jr., Amer. Math. Monthly, Vol. 71, No. 2, p. 180, 1964.



sec. 54 Maximum Modulus Principle 175

54. MAXIMUM MODULUS PRINCIPLE

In this section, we derive an important result involving maximum values of the
moduli of analytic functions. We begin with a needed lemma.

Lemma. Suppose that |f (z)| ≤ |f (z0)| at each point z in some neighborhood
|z − z0| < ε in which f is analytic. Then f (z) has the constant value f (z0) through-
out that neighborhood.

To prove this, we assume that f satisfies the stated conditions and let z1 be any
point other than z0 in the given neighborhood. We then let ρ be the distance between
z1 and z0. If Cρ denotes the positively oriented circle |z − z0| = ρ, centered at z0

and passing through z1 (Fig. 70), the Cauchy integral formula tells us that

f (z0) = 1

2πi

∫
Cρ

f (z) dz

z − z0
;(1)

and the parametric representation

z = z0 + ρeiθ (0 ≤ θ ≤ 2π)

for Cρ enables us to write equation (1) as

f (z0) = 1

2π

∫ 2π

0
f (z0 + ρeiθ ) dθ.(2)

We note from expression (2) that when a function is analytic within and on a given
circle, its value at the center is the arithmetic mean of its values on the circle. This
result is called Gauss’s mean value theorem.

x

z0

z1

O

y

ε

FIGURE 70

From equation (2), we obtain the inequality

|f (z0)| ≤ 1

2π

∫ 2π

0
|f (z0 + ρeiθ )| dθ.(3)

On the other hand, since

|f (z0 + ρeiθ )| ≤ |f (z0)| (0 ≤ θ ≤ 2π),(4)
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we find that ∫ 2π

0
|f (z0 + ρeiθ )| dθ ≤

∫ 2π

0
|f (z0)| dθ = 2π |f (z0)|.

Thus

|f (z0)| ≥ 1

2π

∫ 2π

0
|f (z0 + ρeiθ )| dθ.(5)

It is now evident from inequalities (3) and (5) that

|f (z0)| = 1

2π

∫ 2π

0
|f (z0 + ρeiθ )| dθ,

or ∫ 2π

0
[|f (z0)| − |f (z0 + ρeiθ )|] dθ = 0.

The integrand in this last integral is continuous in the variable θ ; and, in view of
condition (4), it is greater than or equal to zero on the entire interval 0 ≤ θ ≤ 2π .
Because the value of the integral is zero, then, the integrand must be identically
equal to zero. That is,

|f (z0 + ρeiθ )| = |f (z0)| (0 ≤ θ ≤ 2π).(6)

This shows that |f (z)| = |f (z0)| for all points z on the circle |z − z0| = ρ.
Finally, since z1 is any point in the deleted neighborhood 0 < |z − z0| < ε, we

see that the equation |f (z)| = |f (z0)| is, in fact, satisfied by all points z lying on any
circle |z − z0| = ρ, where 0 < ρ < ε. Consequently, |f (z)| = |f (z0)| everywhere
in the neighborhood |z − z0| < ε. But we know from Example 4. Sec. 25, that when
the modulus of an analytic function is constant in a domain, the function itself is
constant there. Thus f (z) = f (z0) for each point z in the neighborhood, and the
proof of the lemma is complete.

This lemma can be used to prove the following theorem, which is known as
the maximum modulus principle.

Theorem. If a function f is analytic and not constant in a given domain D,
then |f (z)| has no maximum value in D. That is, there is no point z0 in the domain
such that |f (z)| ≤ |f (z0)| for all points z in it.

Given that f is analytic in D, we shall prove the theorem by assuming that
|f (z)| does have a maximum value at some point z0 in D and then showing that
f (z) must be constant throughout D.

The general approach here is similar to that taken in the proof of the lemma
in Sec. 27. We draw a polygonal line L lying in D and extending from z0 to any
other point P in D. Also, d represents the shortest distance from points on L to the



sec. 54 Maximum Modulus Principle 177

boundary of D. When D is the entire plane, d may have any positive value. Next,
we observe that there is a finite sequence of points

z0, z1, z2, . . . , zn−1, zn

along L such that zn coincides with the point P and

|zk − zk−1| < d (k = 1, 2, . . . , n).

In forming a finite sequence of neighborhoods (Fig. 71)

N0, N1, N2, . . . , Nn−1, Nn

where each Nk has center zk and radius d , we see that f is analytic in each of
these neighborhoods, which are all contained in D, and that the center of each
neighborhood Nk (k = 1, 2, . . . , n) lies in the neighborhood Nk−1.

z0

N0
N1

N2 Nn
L

P
z2

zn – 1 znz1

Nn – 1

FIGURE 71

Since |f (z)| was assumed to have a maximum value in D at z0, it also has
a maximum value in N0 at that point. Hence, according to the preceding lemma,
f (z) has the constant value f (z0) throughout N0. In particular, f (z1) = f (z0). This
means that |f (z)| ≤ |f (z1)| for each point z in N1 ; and the lemma can be applied
again, this time telling us that

f (z) = f (z1) = f (z0)

when z is in N1. Since z2 is in N1, then, f (z2) = f (z0). Hence |f (z)| ≤ |f (z2)|
when z is in N2 ; and the lemma is once again applicable, showing that

f (z) = f (z2) = f (z0)

when z is in N2. Continuing in this manner, we eventually reach the neighborhood
Nn and arrive at the fact that f (zn) = f (z0).

Recalling that zn coincides with the point P , which is any point other than z0

in D, we may conclude that f (z) = f (z0) for every point z in D. Inasmuch as f (z)

has now been shown to be constant throughout D, the theorem is proved.
If a function f that is analytic at each point in the interior of a closed bounded

region R is also continuous throughout R, then the modulus |f (z)| has a maximum
value somewhere in R (Sec. 18). That is, there exists a nonnegative constant M such
that |f (z)| ≤ M for all points z in R, and equality holds for at least one such point.
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If f is a constant function, then |f (z)| = M for all z in R. If, however, f (z) is not
constant, then, according to the theorem just proved, |f (z)| �= M for any point z in
the interior of R. We thus arrive at an important corollary.

Corollary. Suppose that a function f is continuous on a closed bounded region
R and that it is analytic and not constant in the interior of R. Then the maximum
value of |f (z)| in R, which is always reached, occurs somewhere on the boundary
of R and never in the interior.

EXAMPLE. Let R denote the rectangular region 0 ≤ x ≤ π, 0 ≤ y ≤ 1. The
corollary tells us that the modulus of the entire function f (z) = sin z has a maximum
value in R that occurs somewhere on the boundary of R and not in its interior. This
can be verified directly by writing (see Sec. 34)

|f (z)| =
√

sin2 x + sinh2 y

and noting that the term sin2 x is greatest when x = π/2 and that the increasing
function sinh2 y is greatest when y = 1. Thus the maximum value of |f (z)| in R

occurs at the boundary point z = (π/2, 1) and at no other point in R (Fig. 72).

xO

1

y

FIGURE 72

When the function f in the corollary is written f (z) = u(x, y) + iv(x, y), the
component function u(x, y) also has a maximum value in R which is assumed on
the boundary of R and never in the interior, where it is harmonic (Sec. 26). This is
because the composite function g(z) = exp[f (z)] is continuous in R and analytic
and not constant in the interior. Hence its modulus |g(z)| = exp[u(x, y)], which is
continuous in R, must assume its maximum value in R on the boundary. In view
of the increasing nature of the exponential function, it follows that the maximum
value of u(x, y) also occurs on the boundary.

Properties of minimum values of |f (z)| and u(x, y) are treated in the exercises.

EXERCISES
1. Suppose that f (z) is entire and that the harmonic function u(x, y) = Re[f (z)] has an

upper bound u0 ; that is, u(x, y) ≤ u0 for all points (x, y) in the xy plane. Show that
u(x, y) must be constant throughout the plane.

Suggestion: Apply Liouville’s theorem (Sec. 53) to the function g(z) = exp[f (z)].



sec. 54 Exercises 179

2. Show that for R sufficiently large, the polynomial P (z) in Theorem 2, Sec. 53, satisfies
the inequality

|P (z)| < 2|an||z|n whenever |z| ≥ R.

[Compare with the first of inequalities (5), Sec. 53.]
Suggestion: Observe that there is a positive number R such that the modulus of

each quotient in expression (3), Sec. 53, is less than |an|/n when |z| > R.

3. Let a function f be continuous on a closed bounded region R, and let it be analytic
and not constant throughout the interior of R. Assuming that f (z) �= 0 anywhere in
R, prove that |f (z)| has a minimum value m in R which occurs on the boundary of R

and never in the interior. Do this by applying the corresponding result for maximum
values (Sec. 54) to the function g(z) = 1/f (z).

4. Use the function f (z) = z to show that in Exercise 3 the condition f (z) �= 0 anywhere
in R is necessary in order to obtain the result of that exercise. That is, show that
|f (z)| can reach its minimum value at an interior point when the minimum value is
zero.

5. Consider the function f (z) = (z + 1)2 and the closed triangular region R with vertices
at the points z = 0, z = 2, and z = i. Find points in R where |f (z)| has its maximum
and minimum values, thus illustrating results in Sec. 54 and Exercise 3.

Suggestion: Interpret |f (z)| as the square of the distance between z and −1.
Ans. z = 2, z = 0.

6. Let f (z) = u(x, y) + iv(x, y) be a function that is continuous on a closed bounded
region R and analytic and not constant throughout the interior of R. Prove that the
component function u(x, y) has a minimum value in R which occurs on the boundary
of R and never in the interior. (See Exercise 3.)

7. Let f be the function f (z) = ez and R the rectangular region 0 ≤ x ≤ 1, 0 ≤ y ≤ π .
Illustrate results in Sec. 54 and Exercise 6 by finding points in R where the component
function u(x, y) = Re[f (z)] reaches its maximum and minimum values.

Ans. z = 1, z = 1 + πi.

8. Let the function f (z) = u(x, y) + iv(x, y) be continuous on a closed bounded
region R, and suppose that it is analytic and not constant in the interior of R.
Show that the component function v(x, y) has maximum and minimum values in
R which are reached on the boundary of R and never in the interior, where it is
harmonic.

Suggestion: Apply results in Sec. 54 and Exercise 6 to the function g(z) = −if (z).

9. Let z0 be a zero of the polynomial

P (z) = a0 + a1z + a2z
2 + · · · + anz

n (an �= 0)

of degree n (n ≥ 1). Show in the following way that

P (z) = (z − z0)Q(z)

where Q(z) is a polynomial of degree n − 1.



180 Integrals chap. 4

(a) Verify that

zk − zk
0 = (z − z0)(z

k−1 + zk−2z0 + · · · + z zk−2
0 + zk−1

0 ) (k = 2, 3, . . .).

(b) Use the factorization in part (a) to show that

P (z) − P (z0) = (z − z0)Q(z)

where Q(z) is a polynomial of degree n − 1, and deduce the desired result from
this.
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5
SERIES

This chapter is devoted mainly to series representations of analytic functions. We
present theorems that guarantee the existence of such representations, and we
develop some facility in manipulating series.

55. CONVERGENCE OF SEQUENCES

An infinite sequence

z1, z2, . . . , zn, . . .(1)

of complex numbers has a limit z if, for each positive number ε, there exists a
positive integer n0 such that

|zn − z| < ε whenever n > n0.(2)

Geometrically, this means that for sufficiently large values of n, the points zn lie in
any given ε neighborhood of z (Fig. 73). Since we can choose ε as small as we please,

x

z

O

y

zn

z2

z3

z1

ε

FIGURE 73

181



182 Series chap. 5

it follows that the points zn become arbitrarily close to z as their subscripts
increase. Note that the value of n0 that is needed will, in general, depend on the
value of ε.

The sequence (1) can have at most one limit. That is, a limit z is unique if it
exists (Exercise 5, Sec. 56). When that limit exists, the sequence is said to converge
to z ; and we write

lim
n→∞ zn = z.(3)

If the sequence has no limit, it diverges.

Theorem. Suppose that zn = xn + iyn (n = 1, 2, . . .) and z = x + iy. Then

lim
n→∞ zn = z(4)

if and only if

lim
n→∞ xn = x and lim

n→∞ yn = y.(5)

To prove this theorem, we first assume that conditions (5) hold and obtain
condition (4) from it. According to conditions (5), there exist, for each positive
number ε, positive integers n1 and n2 such that

|xn − x| <
ε

2
whenever n > n1

and
|yn − y| <

ε

2
whenever n > n2.

Hence if n0 is the larger of the two integers n1 and n2,

|xn − x| <
ε

2
and |yn − y| <

ε

2
whenever n > n0.

Since

|(xn + iyn) − (x + iy)| = |(xn − x) + i(yn − y)| ≤ |xn − x| + |yn − y|,
then,

|zn − z| <
ε

2
+ ε

2
= ε whenever n > n0.

Condition (4) thus holds.
Conversely, if we start with condition (4), we know that for each positive

number ε, there exists a positive integer n0 such that

|(xn + iyn) − (x + iy)| < ε whenever n > n0.
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But
|xn − x| ≤ |(xn − x) + i(yn − y)| = |(xn + iyn) − (x + iy)|

and
|yn − y| ≤ |(xn − x) + i(yn − y)| = |(xn + iyn) − (x + iy)|;

and this means that

|xn − x| < ε and |yn − y| < ε whenever n > n0.

That is, conditions (5) are satisfied.
Note how the theorem enables us to write

lim
n→∞(xn + iyn) = lim

n→∞ xn + i lim
n→∞ yn

whenever we know that both limits on the right exist or that the one on the left
exists.

EXAMPLE 1. The sequence

zn = 1

n3
+ i (n = 1, 2, . . .)

converges to i since

lim
n→∞

(
1

n3
+ i

)
= lim

n→∞
1

n3
+ i lim

n→∞ 1 = 0 + i·1 = i.

Definition (2) can also be used to obtain this result. More precisely, for each positive
number ε,

|zn − i| = 1

n3
< ε whenever n >

1
3
√

ε
.

One must be careful when adapting our theorem to polar coordinates, as the
following example shows.

EXAMPLE 2. When

zn = −2 + i
(−1)n

n2
(n = 1, 2, . . .),

the theorem tells us that

lim
n→∞ zn = lim

n→∞(−2) + i lim
n→∞

(−1)n

n2
= −2 + i · 0 = −2.

If, using polar coordinates, we write

rn = |zn| and �n = Arg zn (n = 1, 2, . . .),
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where Arg zn denotes principal arguments (−π < � ≤ π) of zn, we find that

lim
n→∞ rn = lim

n→∞

√
4 + 1

n4
= 2

but that

lim
n→∞ �2n = π and lim

n→∞ �2n−1 = −π (n = 1, 2, . . .).

Evidently, then, the limit of �n does not exist as n tends to infinity. (See also
Exercise 2, Sec. 56.)

56. CONVERGENCE OF SERIES

An infinite series

∞∑
n=1

zn = z1 + z2 + · · · + zn + · · ·(1)

of complex numbers converges to the sum S if the sequence

SN =
N∑

n=1

zn = z1 + z2 + · · · + zN (N = 1, 2, . . .)(2)

of partial sums converges to S; we then write

∞∑
n=1

zn = S.

Note that since a sequence can have at most one limit, a series can have at most
one sum. When a series does not converge, we say that it diverges.

Theorem. Suppose that zn = xn + iyn (n = 1, 2, . . .) and S = X + iY . Then

∞∑
n=1

zn = S(3)

if and only if

∞∑
n=1

xn = X and
∞∑

n=1

yn = Y.(4)
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This theorem tells us, of course, that one can write

∞∑
n=1

(xn + iyn) =
∞∑

n=1

xn + i

∞∑
n=1

yn

whenever it is known that the two series on the right converge or that the one on
the left does.

To prove the theorem, we first write the partial sums (2) as

SN = XN + iYN,(5)

where

XN =
N∑

n=1

xn and YN =
N∑

n=1

yn.

Now statement (3) is true if and only if

lim
N→∞

SN = S ;(6)

and, in view of relation (5) and the theorem on sequences in Sec. 55, limit (6) holds
if and only if

lim
N→∞

XN = X and lim
N→∞

YN = Y .(7)

Limits (7) therefore imply statement (3), and conversely. Since XN and YN are the
partial sums of the series (4), the theorem here is proved.

This theorem can be useful in showing that a number of familiar properties
of series in calculus carry over to series whose terms are complex numbers. To
illustrate how this is done, we include here two such properties and present them
as corollaries.

Corollary 1. If a series of complex numbers converges, the nth term converges
to zero as n tends to infinity.

Assuming that series (1) converges, we know from the theorem that if

zn = xn + iyn (n = 1, 2, . . .),

then each of the series

∞∑
n=1

xn and
∞∑

n=1

yn(8)
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converges. We know, moreover, from calculus that the nth term of a convergent
series of real numbers approaches zero as n tends to infinity. Thus, by the theorem
in Sec. 55,

lim
n→∞ zn = lim

n→∞ xn + i lim
n→∞ yn = 0 + 0 · i = 0 ;

and the proof of Corollary 1 is complete.
It follows from this corollary that the terms of convergent series are bounded.

That is, when series (1) converges, there exists a positive constant M such that
|zn| ≤ M for each positive integer n. (See Exercise 9.)

For another important property of series of complex numbers that follows from
a corresponding property in calculus, series (1) is said to be absolutely convergent
if the series

∞∑
n=1

|zn| =
∞∑

n=1

√
x2

n + y2
n (zn = xn + iyn)

of real numbers
√

x2
n + y2

n converges.

Corollary 2. The absolute convergence of a series of complex numbers implies
the convergence of that series.

To prove Corollary 2, we assume that series (1) converges absolutely. Since

|xn| ≤
√

x2
n + y2

n and |yn| ≤
√

x2
n + y2

n,

we know from the comparison test in calculus that the two series

∞∑
n=1

|xn| and
∞∑

n=1

|yn|

must converge. Moreover, since the absolute convergence of a series of real num-
bers implies the convergence of the series itself, it follows that the series (8) both
converge. In view of the theorem in this section, then, series (1) converges. This
finishes the proof of Corollary 2.

In establishing the fact that the sum of a series is a given number S, it is often
convenient to define the remainder ρN after N terms, using the partial sums (2) :

ρN = S − SN .(9)

Thus S = SN + ρN ; and, since |SN − S| = |ρN − 0|, we see that a series converges
to a number S if and only if the sequence of remainders tends to zero. We shall
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make considerable use of this observation in our treatment of power series. They
are series of the form

∞∑
n=0

an(z − z0)
n = a0 + a1(z − z0) + a2(z − z0)

2 + · · · + an(z − z0)
n + · · · ,

where z0 and the coefficients an are complex constants and z may be any point in a
stated region containing z0. In such series, involving a variable z, we shall denote
sums, partial sums, and remainders by S(z), SN(z), and ρN(z), respectively.

EXAMPLE. With the aid of remainders, it is easy to verify that

∞∑
n=0

zn = 1

1 − z
whenever |z| < 1.(10)

We need only recall the identity (Exercise 9, Sec. 8)

1 + z + z2 + · · · + zn = 1 − zn+1

1 − z
(z �= 1)

to write the partial sums

SN(z) =
N−1∑
n=0

zn = 1 + z + z2 + · · · + zN−1 (z �= 1)

as

SN(z) = 1 − zN

1 − z
.

If

S(z) = 1

1 − z
,

then,

ρN(z) = S(z) − SN(z) = zN

1 − z
(z �= 1).

Thus

|ρN(z)| = |z|N
|1 − z| ,

and it is clear from this that the remainders ρN(z) tend to zero when |z| < 1 but
not when |z| ≥ 1. Summation formula (10) is, therefore, established.
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EXERCISES
1. Use definition (2), Sec. 55, of limits of sequences to verify the limit of the sequence

zn (n = 1, 2, . . .) found in Example 2, Sec. 55.

2. Let �n (n = 1, 2, . . .) denote the principal arguments of the numbers

zn = 2 + i
(−1)n

n2
(n = 1, 2, . . .).

Point out why

lim
n→∞ �n = 0,

and compare with Example 2, Sec. 55.

3. Use the inequality (see Sec. 4) ||zn| − |z|| ≤ |zn − z| to show that

if lim
n→∞ zn = z , then lim

n→∞ |zn| = |z|.

4. Write z = reiθ , where 0 < r < 1, in the summation formula (10), Sec. 56. Then, with
the aid of the theorem in Sec. 56, show that

∞∑
n=1

rn cos nθ = r cos θ − r2

1 − 2r cos θ + r2
and

∞∑
n=1

rn sin nθ = r sin θ

1 − 2r cos θ + r2

when 0 < r < 1. (Note that these formulas are also valid when r = 0.)

5. Show that a limit of a convergent sequence of complex numbers is unique by appealing
to the corresponding result for a sequence of real numbers.

6. Show that

if
∞∑

n=1

zn = S, then
∞∑

n=1

zn = S.

7. Let c denote any complex number and show that

if
∞∑

n=1

zn = S, then
∞∑

n=1

czn = cS.

8. By recalling the corresponding result for series of real numbers and referring to the
theorem in Sec. 56, show that

if
∞∑

n=1

zn = S and
∞∑

n=1

wn = T , then
∞∑

n=1

(zn + wn) = S + T .

9. Let a sequence zn (n = 1, 2, . . .) converge to a number z. Show that there exists a
positive number M such that the inequality |zn| ≤ M holds for all n. Do this in each
of the following ways.

(a) Note that there is a positive integer n0 such that

|zn| = |z + (zn − z)| < |z| + 1

whenever n > n0.
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(b) Write zn = xn + iyn and recall from the theory of sequences of real numbers that
the convergence of xn and yn (n = 1, 2, . . .) implies that |xn| ≤ M1 and |yn| ≤ M2
(n = 1, 2, . . .) for some positive numbers M1 and M2.

57. TAYLOR SERIES

We turn now to Taylor’s theorem, which is one of the most important results of the
chapter.

Theorem. Suppose thata functionf is analytic throughoutadisk |z − z0| < R0 ,
centered at z0 and with radius R0 (Fig. 74). Then f (z) has the power series represen-
tation

f (z) =
∞∑

n=0

an(z − z0)
n (|z − z0| < R0),(1)

where

an = f (n)(z0)

n!
(n = 0, 1, 2, . . .).(2)

That is, series (1) converges to f (z) when z lies in the stated open disk.

x

z0

R0

O

y

z

FIGURE 74

This is the expansion of f (z) into a Taylor series about the point z0. It is the
familiar Taylor series from calculus, adapted to functions of a complex variable.
With the agreement that

f (0)(z0) = f (z0) and 0! = 1,

series (1) can, of course, be written

f (z) = f (z0) + f ′(z0)

1!
(z − z0) + f ′′(z0)

2!
(z − z0)

2 + · · · (|z − z0| < R0).(3)
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Any function which is analytic at a point z0 must have a Taylor series about z0.
For, if f is analytic at z0, it is analytic throughout some neighborhood |z − z0| < ε

of that point (Sec. 24) ; and ε may serve as the value of R0 in the statement of
Taylor’s theorem. Also, if f is entire, R0 can be chosen arbitrarily large ; and the
condition of validity becomes |z − z0| < ∞. The series then converges to f (z) at
each point z in the finite plane.

When it is known that f is analytic everywhere inside a circle centered at
z0, convergence of its Taylor series about z0 to f (z) for each point z within that
circle is ensured; no test for the convergence of the series is even required. In fact,
according to Taylor’s theorem, the series converges to f (z) within the circle about
z0 whose radius is the distance from z0 to the nearest point z1 at which f fails to
be analytic. In Sec. 65, we shall find that this is actually the largest circle centered
at z0 such that the series converges to f (z) for all z interior to it.

In the following section, we shall first prove Taylor’s theorem when z0 = 0, in
which case f is assumed to be analytic throughout a disk |z| < R0 and series (1)
becomes a Maclaurin series:

f (z) =
∞∑

n=0

f (n)(0)

n!
zn (|z| < R0).(4)

The proof when z0 is arbitrary will follow as an immediate consequence. A reader
who wishes to accept the proof of Taylor’s theorem can easily skip to the examples
in Sec. 59.

58. PROOF OF TAYLOR’S THEOREM

To begin the derivation of representation (4), Sec. 57, we write |z| = r and let
C0 denote and positively oriented circle |z| = r0, where r < r0 < R0 (see Fig. 75).
Since f is analytic inside and on the circle C0 and since the point z is interior to

xR0

C0

r0
r

z
s

O

y

FIGURE 75
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C0, the Cauchy integral formula

f (z) = 1

2πi

∫
C0

f (s) ds

s − z
(1)

applies.
Now the factor 1/(s − z) in the integrand here can be put in the form

1

s − z
= 1

s
· 1

1 − (z/s)
;(2)

and we know from the example in Sec. 56 that

1

1 − z
=

N−1∑
n=0

zn + zN

1 − z
(3)

when z is any complex number other than unity. Replacing z by z/s in expression
(3), then, we can rewrite equation (2) as

1

s − z
=

N−1∑
n=0

1

sn+1
zn + zN 1

(s − z)sN
.(4)

Multiplying through this equation by f (s) and then integrating each side with respect
to s around C0, we find that

∫
C0

f (s) ds

s − z
=

N−1∑
n=0

∫
C0

f (s) ds

sn+1
zn + zN

∫
C0

f (s) ds

(s − z)sN
.

In view of expression (1) and the fact that (Sec. 51)

1

2πi

∫
C0

f (s) ds

sn+1
= f (n)(0)

n!
(n = 0, 1, 2, . . .),

this reduces, after we multiply through by 1/(2πi), to

f (z) =
N−1∑
n=0

f (n)(0)

n!
zn + ρN(z),(5)

where

ρN(z) = zN

2πi

∫
C0

f (s) ds

(s − z)sN
.(6)

Representation (4) in Sec. 57 now follows once it is shown that

lim
N→∞

ρN(z) = 0.(7)
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To accomplish this, we recall that |z| = r and that C0 has radius r0, where r0 > r .
Then, if s is a point on C0, we can see that

|s − z| ≥ ||s| − |z|| = r0 − r.

Consequently, if M denotes the maximum value of |f (s)| on C0,

|ρN(z)| ≤ rN

2π
· M

(r0 − r)rN
0

2πr0 = Mr0

r0 − r

(
r

r0

)N

.

Inasmuch as (r/r0) < 1, limit (7) clearly holds.
To verify the theorem when the disk of radius R0 is centered at an arbitrary point

z0, we suppose that f is analytic when |z − z0| < R0 and note that the composite
function f (z + z0) must be analytic when |(z + z0) − z0| < R0. This last inequality
is, of course, just |z| < R0 ; and, if we write g(z) = f (z + z0), the analyticity of g

in the disk |z| < R0 ensures the existence of a Maclaurin series representation:

g(z) =
∞∑

n=0

g(n)(0)

n!
zn (|z| < R0).

That is,

f (z + z0) =
∞∑

n=0

f (n)(z0)

n!
zn (|z| < R0).

After replacing z by z − z0 in this equation and its condition of validity, we have
the desired Taylor series expansion (1) in Sec. 57.

59. EXAMPLES

In Sec. 66, we shall see that if there are constants an (n = 0, 1, 2, . . .) such that

f (z) =
∞∑

n=0

an(z − z0)
n

for all points z interior to some circle centered at z0, then the power series here must
be the Taylor series for f about z0, regardless of how those constants arise. This
observation often allows us to find the coefficients an in Taylor series in more efficient
ways than by appealing directly to the formula an = f (n)(z0)/n! in Taylor’s theorem.

In the following examples, we use the formula in Taylor’s theorem to find
the Maclaurin series expansions of some fairly simple functions, and we emphasize
the use of those expansions in finding other representations. In our examples, we
shall freely use expected properties of convergent series, such as those verified in
Exercises 7 and 8, Sec. 56.

EXAMPLE 1. Since the function f (z) = ez is entire, it has a Maclaurin
series representation which is valid for all z. Here f (n)(z) = ez (n = 0, 1, 2, . . .) ;
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and, because f (n)(0) = 1 (n = 0, 1, 2, . . .), it follows that

ez =
∞∑

n=0

zn

n!
(|z| < ∞).(1)

Note that if z = x + i0, expansion (1) becomes

ex =
∞∑

n=0

xn

n!
(−∞ < x < ∞).

The entire function z2e3z also has a Maclaurin series expansion. The simplest
way to obtain it is to replace z by 3z on each side of equation (1) and then multiply
through the resulting equation by z2:

z2e3z =
∞∑

n=0

3n

n!
zn+2 (|z| < ∞).

Finally, if we replace n by n − 2 here, we have

z2e3z =
∞∑

n=2

3n−2

(n − 2)!
zn (|z| < ∞).

EXAMPLE 2. One can use expansion (1) and the definition (Sec. 34)

sin z = eiz − e−iz

2i

to find the Maclaurin series for the entire function f (z) = sin z. To give the details,
we refer to expansion (1) and write

sin z = 1

2i

[ ∞∑
n=0

(iz)n

n!
−

∞∑
n=0

(−iz)n

n!

]
= 1

2i

∞∑
n=0

[
1 − (−1)n

] inzn

n!
(|z| < ∞).

But 1 − (−1)n = 0 when n is even, and so we can replace n by 2n + 1 in this last
series:

sin z = 1

2i

∞∑
n=0

[
1 − (−1)2n+1] i2n+1z2n+1

(2n + 1)!
(|z| < ∞).

Inasmuch as

1 − (−1)2n+1 = 2 and i2n+1 = (i2)ni = (−1)ni,

this reduces to

sin z =
∞∑

n=0

(−1)n
z2n+1

(2n + 1)!
(|z| < ∞).(2)
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Term by term differentiation will be justified in Sec. 65. Using that procedure
here, we differentiate each side of equation (2) and write

cos z =
∞∑

n=0

(−1)n

(2n + 1)!

d

dz
z2n+1 =

∞∑
n=0

(−1)n
2n + 1

(2n + 1)!
z2n.

That is,

cos z =
∞∑

n=0

(−1)n
z2n

(2n)!
(|z| < ∞).(3)

EXAMPLE 3. Because sinh z = −i sin(iz) (Sec. 35), we need only replace z

by iz on each side of equation (2) and multiply through the result by −i to see that

sinh z =
∞∑

n=0

z2n+1

(2n + 1)!
(|z| < ∞).(4)

Likewise, since cosh z = cos(iz), it follows from expansion (3) that

cosh z =
∞∑

n=0

z2n

(2n)!
(|z| < ∞).(5)

Observe that the Taylor series for cosh z about the point z0 = −2πi, for
example, is obtained by replacing the variable z by z + 2πi on each side of equation
(5) and then recalling that cosh(z + 2πi) = cosh z for all z:

cosh z =
∞∑

n=0

(z + 2πi)2n

(2n)!
(|z| < ∞).

EXAMPLE 4. Another Maclaurin series representation is

1

1 − z
=

∞∑
n=0

zn (|z| < 1),(6)

since the derivatives of the function f (z) = 1/(1 − z), which fails to be analytic at
z = 1, are

f (n)(z) = n!

(1 − z)n+1
(n = 0, 1, 2, . . .).

In particular, f (n)(0) = n! (n = 0, 1, 2, . . .). Note that expansion (6) gives us the
sum of an infinite geometric series, where z is the common ratio of adjacent terms :

1 + z + z2 + z3 + · · · = 1

1 − z
(|z| < 1).

This is, of course, the summation formula that was found in another way in the
example in Sec. 56.
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If we substitute −z for z in equation (6) and its condition of validity, and note
that |z| < 1 when | − z| < 1, we see that

1

1 + z
=

∞∑
n=0

(−1)nzn (|z| < 1).

If, on the other hand, we replace the variable z in equation (6) by 1 − z, we
have the Taylor series representation

1

z
=

∞∑
n=0

(−1)n(z − 1)n (|z − 1| < 1).

This condition of validity follows from the one associated with expansion (6) since
|1 − z| < 1 is the same as |z − 1| < 1.

EXAMPLE 5. For our final example, let us expand the function

f (z) = 1 + 2z2

z3 + z5
= 1

z3
· 2(1 + z2) − 1

1 + z2
= 1

z3

(
2 − 1

1 + z2

)

into a series involving powers of z. We cannot find a Maclaurin series for f (z)

since it is not analytic at z = 0. But we do know from expansion (6) that

1

1 + z2
= 1 − z2 + z4 − z6 + z8 − · · · (|z| < 1).

Hence, when 0 < |z| < 1,

f (z) = 1

z3
(2 − 1 + z2 − z4 + z6 − z8 + · · ·) = 1

z3
+ 1

z
− z + z3 − z5 + · · · .

We call such terms as 1/z3 and 1/z negative powers of z since they can be written
z−3 and z−1, respectively. The theory of expansions involving negative powers of
z − z0 will be discussed in the next section.

EXERCISES∗

1. Obtain the Maclaurin series representation

z cosh(z2) =
∞∑

n=0

z4n+1

(2n)!
(|z| < ∞).

∗In these and subsequent exercises on series expansions, it is recommended that the reader use, when
possible, representations (1) through (6) in Sec. 59.
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2. Obtain the Taylor series

ez = e

∞∑
n=0

(z − 1)n

n!
(|z − 1| < ∞)

for the function f (z) = ez by

(a) using f (n)(1) (n = 0, 1, 2, . . .); (b) writing ez = ez−1e.

3. Find the Maclaurin series expansion of the function

f (z) = z

z4 + 9
= z

9
· 1

1 + (z4/9)
.

Ans.
∞∑

n=0

(−1)n

32n+2
z4n+1 (|z| <

√
3).

4. Show that if f (z) = sin z, then

f (2n)(0) = 0 and f (2n+1)(0) = (−1)n (n = 0, 1, 2, . . .).

Thus give an alternative derivation of the Maclaurin series (2) for sin z in Sec. 59.

5. Rederive the Maclaurin series (3) in Sec. 59 for the function f (z) = cos z by

(a) using the definition

cos z = eiz + e−iz

2

in Sec. 34 and appealing to the Maclaurin series (1) for ez in Sec. 59 ;
(b) showing that

f (2n)(0) = (−1)n and f (2n+1)(0) = 0 (n = 0, 1, 2, . . .).

6. Use representation (2), Sec. 59, for sin z to write the Maclaurin series for the function

f (z) = sin(z2),

and point out how it follows that

f (4n)(0) = 0 and f (2n+1)(0) = 0 (n = 0, 1, 2, . . .).

7. Derive the Taylor series representation

1

1 − z
=

∞∑
n=0

(z − i)n

(1 − i)n+1
(|z − i| <

√
2).

Suggestion: Start by writing

1

1 − z
= 1

(1 − i) − (z − i)
= 1

1 − i
· 1

1 − (z − i)/(1 − i)
.
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8. With the aid of the identity (see Sec. 34)

cos z = − sin
(
z − π

2

)
,

expand cos z into a Taylor series about the point z0 = π/2.

9. Use the identity sinh(z + πi) = −sinh z, verified in Exercise 7(a), Sec. 35, and the
fact that sinh z is periodic with period 2πi to find the Taylor series for sinh z about
the point z0 = πi.

Ans. −
∞∑

n=0

(z − πi)2n+1

(2n + 1)!
(|z − πi| < ∞).

10. What is the largest circle within which the Maclaurin series for the function tanh z

converges to tanh z? Write the first two nonzero terms of that series.

11. Show that when z �= 0,

(a)
ez

z2
= 1

z2
+ 1

z
+ 1

2!
+ z

3!
+ z2

4!
+ · · · ;

(b)
sin(z2)

z4
= 1

z2
− z2

3!
+ z6

5!
− z10

7!
+ · · · .

12. Derive the expansions

(a)
sinh z

z2
= 1

z
+

∞∑
n=0

z2n+1

(2n + 3)!
(0 < |z| < ∞);

(b) z3 cosh

(
1

z

)
= z

2
+ z3 +

∞∑
n=1

1

(2n + 2)!
· 1

z2n−1
(0 < |z| < ∞).

13. Show that when 0 < |z| < 4,

1

4z − z2
= 1

4z
+

∞∑
n=0

zn

4n+2
.

60. LAURENT SERIES

If a function f fails to be analytic at a point z0, one cannot apply Taylor’s theorem
at that point. It is often possible, however, to find a series representation for f (z)

involving both positive and negative powers of z − z0. (See Example 5, Sec. 59,
and also Exercises 11, 12, and 13 for that section.) We now present the theory of
such representations, and we begin with Laurent’s theorem.

Theorem. Suppose that a function f is analytic throughout an annular domain
R1 < |z − z0| < R2 , centered at z0 , and let C denote any positively oriented simple
closed contour around z0 and lying in that domain (Fig. 76). Then, at each point in
the domain, f (z) has the series representation

f (z) =
∞∑

n=0

an(z − z0)
n +

∞∑
n=1

bn

(z − z0)n
(R1 < |z − z0| < R2),(1)
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where

an = 1

2πi

∫
C

f (z) dz

(z − z0)n+1
(n = 0, 1, 2, . . .)(2)

and

bn = 1

2πi

∫
C

f (z) dz

(z − z0)−n+1
(n = 1, 2, . . .).(3)

x

z0

R2

C

R1

O

y

z

FIGURE 76

Note how replacing n by −n in the second series in representation (1) enables
us to write that series as

−1∑
n=−∞

b−n

(z − z0)−n
,

where

b−n = 1

2πi

∫
C

f (z) dz

(z − z0)n+1
(n = −1, −2, . . .).

Thus

f (z) =
−1∑

n=−∞
b−n(z − z0)

n +
∞∑

n=0

an(z − z0)
n (R1 < |z − z0| < R2).

If

cn =
{
b−n when n ≤ −1,

an when n ≥ 0,

this becomes

f (z) =
∞∑

n=−∞
cn(z − z0)

n (R1 < |z − z0| < R2),(4)
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where

cn = 1

2πi

∫
C

f (z) dz

(z − z0)n+1
(n = 0, ±1,±2, . . .).(5)

In either one of the forms (1) and (4), the representation of f (z) is called a Laurent
series.

Observe that the integrand in expression (3) can be written f (z)(z − z0)
n−1.

Thus it is clear that when f is actually analytic throughout the disk |z − z0| < R2, this
integrand is too. Hence all of the coefficients bn are zero; and, because (Sec. 51)

1

2πi

∫
C

f (z) dz

(z − z0)n+1
= f (n)(z0)

n!
(n = 0, 1, 2, . . .),

expansion (1) reduces to a Taylor series about z0.
If, however, f fails to be analytic at z0 but is otherwise analytic in the disk

|z − z0| < R2, the radius R1 can be chosen arbitrarily small. Representation (1) is
then valid in the punctured disk 0 < |z − z0| < R2. Similarly, if f is analytic at each
point in the finite plane exterior to the circle |z − z0| = R1, the condition of validity
is R1 < |z − z0| < ∞. Note that if f is analytic everywhere in the finite plane except
at z0, series (1) is valid at each point of analyticity, or when 0 < |z − z0| < ∞.

We shall prove Laurent’s theorem first when z0 = 0, which means that the
annulus is centered at the origin. The verification of the theorem when z0 is arbitrary
will follow readily; and, as was the case with Taylor’s theorem, a reader can skip
the entire proof without difficulty.

61. PROOF OF LAURENT’S THEOREM

We start the proof by forming a closed annular region r1 ≤ |z| ≤ r2 that is contained
in the domain R1 < |z| < R2 and whose interior contains both the point z and the
contour C (Fig. 77). We let C1 and C2 denote the circles |z| = r1 and |z| = r2,

R2O R1

C

C1

C2

r1 r2

s s
r

z

x

y

FIGURE 77
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respectively, and we assign them a positive orientation. Observe that f is analytic
on C1 and C2, as well as in the annular domain between them.

Next, we construct a positively oriented circle γ with center at z and small
enough to be contained in the interior of the annular region r1 ≤ |z| ≤ r2, as shown
in Fig. 77. It then follows from the adaptation of the Cauchy–Goursat theorem to
integrals of analytic functions around oriented boundaries of multiply connected
domains (Sec. 49) that∫

C2

f (s) ds

s − z
−

∫
C1

f (s) ds

s − z
−

∫
γ

f (s) ds

s − z
= 0.

But, according to the Cauchy integral formula, the value of the third integral here
is 2πif (z). Hence

f (z) = 1

2πi

∫
C2

f (s) ds

s − z
+ 1

2πi

∫
C1

f (s) ds

z − s
.(1)

Now the factor 1/(s − z) in the first of these integrals is the same as in expres-
sion (1), Sec. 58, where Taylor’s theorem was proved ; and we shall need here the
expansion

1

s − z
=

N−1∑
n=0

1

sn+1
zn + zN 1

(s − z)sN
,(2)

which was used in that earlier section. As for the factor 1/(z − s) in the second
integral, an interchange of s and z in equation (2) reveals that

1

z − s
=

N−1∑
n=0

1

s−n
· 1

zn+1
+ 1

zN
· sN

z − s
.

If we replace the index of summation n here by n − 1, this expansion takes the
form

1

z − s
=

N∑
n=1

1

s−n+1
· 1

zn
+ 1

zN
· sN

z − s
,(3)

which is to be used in what follows.
Multiplying through equations (2) and (3) by f (s)/(2πi) and then integrating

each side of the resulting equations with respect to s around C2 and C1, respectively,
we find from expression (1) that

f (z) =
N−1∑
n=0

anz
n + ρN(z) +

N∑
n=1

bn

zn
+ σN(z),(4)
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where the numbers an (n = 0, 1, 2, . . . , N − 1) and bn (n = 1, 2, . . . , N) are given
by the equations

an = 1

2πi

∫
C2

f (s) ds

sn+1
, bn = 1

2πi

∫
C1

f (s) ds

s−n+1
(5)

and where

ρN(z) = zN

2πi

∫
C2

f (s) ds

(s − z)sN
, σN(z) = 1

2πi zN

∫
C1

sNf (s) ds

z − s
.

As N tends to ∞, expression (4) evidently takes the proper form of a Laurent
series in the domain R1 < |z| < R2, provided that

lim
N→∞

ρN(z) = 0 and lim
N→∞

σN(z) = 0.(6)

These limits are readily established by a method already used in the proof of Taylor’s
theorem in Sec. 58. We write |z| = r , so that r1 < r < r2, and let M denote the
maximum value of |f (s)| on C1 and C2. We also note that if s is a point on C2,
then |s − z| ≥ r2 − r ; and if s is on C1, we have |z − s| ≥ r − r1. This enables us
to write

|ρN(z)| ≤ Mr2

r2 − r

(
r

r2

)N

and |σN(z)| ≤ Mr1

r − r1

( r1

r

)N

.

Since (r/r2) < 1 and (r1/r) < 1, it is now clear that both ρN(z) and σN(z) tend to
zero as N tends to infinity.

Finally, we need only recall the corollary in Sec. 49 to see that the contours
used in integrals (5) here may be replaced by the contour C. This completes the
proof of Laurent’s theorem when z0 = 0 since, if z is used instead of s as the
variable of integration, expressions (5) for the coefficients an and bn are the same
as expressions (2) and (3) in Sec. 60 when z0 = 0 there.

To extend the proof to the general case in which z0 is an arbitrary point in the
finite plane, we let f be a function satisfying the conditions in the theorem; and, just
as we did in the proof of Taylor’s theorem, we write g(z) = f (z + z0). Since f (z) is
analytic in the annulus R1 < |z − z0| < R2, the function f (z + z0) is analytic when
R1 < |(z + z0) − z0| < R2. That is, g is analytic in the annulus R1 < |z| < R2,
which is centered at the origin. Now the simple closed contour C in the statement
of the theorem has some parametric representation z = z(t) (a ≤ t ≤ b), where

R1 < |z(t) − z0| < R2(7)

for all t in the interval a ≤ t ≤ b. Hence if � denotes the path

z = z(t) − z0 (a ≤ t ≤ b),(8)
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� is not only a simple closed contour but, in view of inequalities (7), it lies in the
domain R1 < |z| < R2. Consequently, g(z) has a Laurent series representation

g(z) =
∞∑

n=0

anz
n +

∞∑
n=1

bn

zn
(R1 < |z| < R2),(9)

where

an = 1

2πi

∫
�

g(z) dz

zn+1
(n = 0, 1, 2, . . .),(10)

bn = 1

2πi

∫
�

g(z) dz

z−n+1
(n = 1, 2, . . .).(11)

Representation (1) in Sec. 60 is obtained if we write f (z + z0) instead of g(z)

in equation (9) and then replace z by z − z0 in the resulting equation, as well as in
the condition of validity R1 < |z| < R2. Expression (10) for the coefficients an is,
moreover, the same as expression (2), Sec. 60, since

∫
�

g(z) dz

zn+1
=

∫ b

a

f [z(t)]z′(t)
[z(t) − z0]n+1

dt =
∫

C

f (z) dz

(z − z0)n+1
.

Similarly, the coefficients bn in expression (11) are the same as those in expres-
sion (3), Sec. 60.

62. EXAMPLES

The coefficients in a Laurent series are generally found by means other than appeal-
ing directly to their integral representations. This is illustrated in the following
examples, where it is always assumed that when the annular domain is specified, a
Laurent series for a given function in unique. As was the case with Taylor series,
we defer the proof of such uniqueness until Sec. 66.

EXAMPLE 1. Replacing z by 1/z in the Maclaurin series expansion (Sec. 59)

ez =
∞∑

n=0

zn

n!
= 1 + z

1!
+ z2

2!
+ z3

3!
+ · · · (|z| < ∞),

we have the Laurent series representation

e1/z =
∞∑

n=0

1

n! zn
= 1 + 1

1!z
+ 1

2!z2
+ 1

3!z3
+ · · · (0 < |z| < ∞).
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Note that no positive powers of z appear here, the coefficients of the positive
powers being zero. Note, too, that the coefficient of 1/z is unity; and, according to
Laurent’s theorem in Sec. 60, that coefficient is the number

b1 = 1

2πi

∫
C

e1/z dz,

where C is any positively oriented simple closed contour around the origin. Since
b1 = 1, then, ∫

C

e1/z dz = 2πi.

This method of evaluating certain integrals around simple closed contours will be
developed in considerable detail in Chap. 6.

EXAMPLE 2. The function f (z) = 1/(z − i)2 is already in the form of a
Laurent series, where z0 = i. That is,

1

(z − i)2
=

∞∑
n=−∞

cn(z − i)n (0 < |z − i| < ∞)

where c−2 = 1 and all of the other coefficients are zero. From formula (5), Sec. 60,
for the coefficients in a Laurent series, we know that

cn = 1

2πi

∫
C

dz

(z − i)n+3
(n = 0, ±1,±2, . . .)

where C is, for instance, any positively oriented circle |z − i| = R about the point
z0 = i. Thus [compare with Exercise 10(b), Sec. 42]∫

C

dz

(z − i)n+3
=

{
0 when n �= −2,

2πi when n = −2.

The function

f (z) = −1

(z − 1)(z − 2)
= 1

z − 1
− 1

z − 2
,(1)

which has the two singular points z = 1 and z = 2, is analytic in the domains

|z| < 1, 1 < |z| < 2, and 2 < |z| < ∞.

In each of those domains, denoted by D1, D2, and D3, respectively, in Fig. 78,
f (z) has series representations in powers of z. They can all be found by making
the appropriate replacements for z in the expansion

1

1 − z
=

∞∑
n=0

zn (|z| < 1)(2)

that was obtained in Example 4, Sec. 59. We consider first the domain D1.
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x

D3

D2

D1

O 1 2

y

FIGURE 78

EXAMPLE 3. The representation in D1 is a Maclaurin series. To find it, we
observe that

|z| < 1 and |z/2| < 1

when z is in D1; and so we put expression (1) in the form

f (z) = − 1

1 − z
+ 1

2
· 1

1 − (z/2)
.

This tells us that

f (z) = −
∞∑

n=0

zn +
∞∑

n=0

zn

2n+1
=

∞∑
n=0

(2−n−1 − 1) zn (|z| < 1).(3)

The representations in D2 and D3 are treated in the next two examples.

EXAMPLE 4. Because 1 < |z| < 2 when z is a point in D2, we know that

|1/z| < 1 and |z/2| < 1

for such points. This suggests writing expression (1) as

f (z) = 1

z
· 1

1 − (1/z)
+ 1

2
· 1

1 − (z/2)
.

In view of expansion (2), then,

f (z) =
∞∑

n=0

1

zn+1
+

∞∑
n=0

zn

2n+1
(1 < |z| < 2).
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If we replace the index of summation n in the first of these series by n − 1 and then
interchange the two series, we arrive at an expansion having the same form as the
one in the statement of Laurent’s theorem (Sec. 60):

f (z) =
∞∑

n=0

zn

2n+1
+

∞∑
n=1

1

zn
(1 < |z| < 2).(4)

Since there is only one Laurent series for f (z) in the annulus D2, expansion (4) is,
in fact, the Laurent series for f (z) there.

EXAMPLE 5. The representation of the function (1) in the unbounded
domain D3, where 2 < |z| < ∞, is also a Laurent series. Since |2/z| < 1 when
z is in D3, it is also true that |1/z| < 1. So if we write expression (1) as

f (z) = 1

2
· 1

1 − (1/z)
− 1

z
· 1

1 − (2/z)
,

we find that

f (z) =
∞∑

n=0

1

zn+1
−

∞∑
n=0

2n

zn+1
=

∞∑
n=0

1 − 2n

zn+1
(2 < |z| < ∞).

Replacing n by n − 1 in this last series then gives the standard form

f (z) =
∞∑

n=1

1 − 2n−1

zn
(2 < |z| < ∞)(5)

used in Laurent’s theorem in Sec. 60. Here, of course, all the an’s in that theorem
are zero.

EXERCISES
1. Find the Laurent series that represents the function

f (z) = z2 sin

(
1

z2

)

in the domain 0 < |z| < ∞.

Ans. 1 +
∞∑

n=1

(−1)n

(2n + 1)!
· 1

z4n
.

2. Derive the Laurent series representation

ez

(z + 1)2
= 1

e

[ ∞∑
n=0

(z + 1)n

(n + 2)!
+ 1

z + 1
+ 1

(z + 1)2

]
(0 < |z + 1| < ∞).
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3. Find a representation for the function

f (z) = 1

1 + z
= 1

z
· 1

1 + (1/z)

in negative powers of z that is valid when 1 < |z| < ∞.

Ans.
∞∑

n=1

(−1)n+1

zn
.

4. Give two Laurent series expansions in powers of z for the function

f (z) = 1

z2(1 − z)
,

and specify the regions in which those expansions are valid.

Ans.
∞∑

n=0

zn + 1

z
+ 1

z2
(0 < |z| < 1); −

∞∑
n=3

1

zn
(1 < |z| < ∞).

5. Represent the function

f (z) = z + 1

z − 1

(a) by its Maclaurin series, and state where the representation is valid ;
(b) by its Laurent series in the domain 1 < |z| < ∞ .

Ans. (a) −1 − 2
∞∑

n=1

zn (|z| < 1); (b) 1 + 2
∞∑

n=1

1

zn
.

6. Show that when 0 < |z − 1| < 2,

z

(z − 1)(z − 3)
= −3

∞∑
n=0

(z − 1)n

2n+2
− 1

2(z − 1)
.

7. Write the two Laurent series in powers of z that represent the function

f (z) = 1

z(1 + z2)

in certain domains, and specify those domains.

Ans.
∞∑

n=0

(−1)n+1z2n+1 + 1

z
(0 < |z| < 1);

∞∑
n=1

(−1)n+1

z2n+1
(1 < |z| < ∞).

8. (a) Let a denote a real number, where −1 < a < 1, and derive the Laurent series
representation

a

z − a
=

∞∑
n=1

an

zn
(|a| < |z| < ∞).
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(b) After writing z = eiθ in the equation obtained in part (a), equate real parts and
then imaginary parts on each side of the result to derive the summation formulas

∞∑
n=1

an cos nθ = a cos θ − a2

1 − 2a cos θ + a2
and

∞∑
n=1

an sin nθ = a sin θ

1 − 2a cos θ + a2
,

where −1 < a < 1. (Compare with Exercise 4, Sec. 56.)

9. Suppose that a series
∞∑

n=−∞
x[n]z−n

converges to an analytic function X(z) in some annulus R1 < |z| < R2. That sum X(z)

is called the z-transform of x[n] (n = 0,±1,±2, . . .).∗ Use expression (5), Sec. 60,
for the coefficients in a Laurent series to show that if the annulus contains the unit
circle |z| = 1, then the inverse z-transform of X(z) can be written

x[n] = 1

2π

∫ π

−π

X(eiθ )einθ dθ (n = 0,±1,±2, . . .).

10. (a) Let z be any complex number, and let C denote the unit circle

w = eiφ (−π ≤ φ ≤ π)

in the w plane. Then use that contour in expression (5), Sec. 60, for the coefficients
in a Laurent series, adapted to such series about the origin in the w plane, to show
that

exp

[
z

2

(
w − 1

w

)]
=

∞∑
n=−∞

Jn(z)w
n (0 < |w| < ∞)

where

Jn(z) = 1

2π

∫ π

−π

exp[−i(nφ − z sin φ)] dφ (n = 0,±1,±2, . . .).

(b) With the aid of Exercise 5, Sec. 38, regarding certain definite integrals of even
and odd complex-valued functions of a real variable, show that the coefficients in
part (a) here can be written†

Jn(z) = 1

π

∫ π

0
cos(nφ − z sin φ) dφ (n = 0,±1,±2, . . .).

∗The z-transform arises in studies of discrete-time linear systems. See, for instance, the book by
Oppenheim, Schafer, and Buck that is listed in Appendix 1.
†These coefficients Jn(z) are called Bessel functions of the first kind. They play a prominent role in
certain areas of applied mathematics. See, for example, the authors’ “Fourier Series and Boundary
Value Problems,” 7th ed., Chap. 9, 2008.
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11. (a) Let f (z) denote a function which is analytic in some annular domain about the
origin that includes the unit circle z = eiφ (−π ≤ φ ≤ π). By taking that circle
as the path of integration in expressions (2) and (3), Sec. 60, for the coefficients
an and bn in a Laurent series in powers of z, show that

f (z) = 1

2π

∫ π

−π

f (eiφ) dφ + 1

2π

∞∑
n=1

∫ π

−π

f (eiφ)

[(
z

eiφ

)n

+
(

eiφ

z

)n]
dφ

when z is any point in the annular domain.
(b) Write u(θ) = Re[f (eiθ )] and show how it follows from the expansion in part (a)

that

u(θ) = 1

2π

∫ π

−π

u(φ) dφ + 1

π

∞∑
n=1

∫ π

−π

u(φ) cos[n(θ − φ)] dφ.

This is one form of the Fourier series expansion of the real-valued function
u(θ) on the interval −π ≤ θ ≤ π . The restriction on u(θ) is more severe than is
necessary in order for it to be represented by a Fourier series.∗

63. ABSOLUTE AND UNIFORM CONVERGENCE
OF POWER SERIES

This section and the three following it are devoted mainly to various properties of
power series. A reader who wishes to simply accept the theorems and the corollary
in these sections can easily skip the proofs in order to reach Sec. 67 more quickly.

We recall from Sec. 56 that a series of complex numbers converges absolutely
if the series of absolute values of those numbers converges. The following theorem
concerns the absolute convergence of power series.

Theorem 1. If a power series

∞∑
n=0

an(z − z0)
n(1)

converges when z = z1 (z1 �= z0), then it is absolutely convergent at each point z in
the open disk |z − z0| < R1 where R1 = |z1 − z0| (Fig. 79).

xO

y

z0

z1

R1

z

FIGURE 79

∗For other sufficient conditions, see Secs. 12 and 13 of the book cited in the footnote to Exercise 10.
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We start the proof by assuming that the series

∞∑
n=0

an(z1 − z0)
n (z1 �= z0)

converges. The terms an(z1 − z0)
n are thus bounded ; that is,

|an(z1 − z0)
n| ≤ M (n = 0, 1, 2, . . .)

for some positive constant M (see Sec. 56). If |z − z0| < R1 and if we write

ρ = |z − z0|
|z1 − z0| ,

we can see that

|an(z − z0)
n| = |an(z1 − z0)

n|
( |z − z0|

|z1 − z0|
)n

≤ Mρn (n = 0, 1, 2, . . .).

Now the series
∞∑

n=0

Mρn

is a geometric series, which converges since ρ < 1. Hence, by the comparison test
for series of real numbers,

∞∑
n=0

|an(z − z0)
n|

converges in the open disk |z − z0| < R1. This completes the proof.
The theorem tells us that the set of all points inside some circle centered at z0

is a region of convergence for the power series (1), provided it converges at some
point other than z0. The greatest circle centered at z0 such that series (1) converges
at each point inside is called the circle of convergence of series (1). The series
cannot converge at any point z2 outside that circle, according to the theorem ; for
if it did, it would converge everywhere inside the circle centered at z0 and passing
through z2. The first circle could not, then, be the circle of convergence.

Our next theorem involves terminology that we must first define. Suppose that
the power series (1) has circle of convergence |z − z0| = R, and let S(z) and SN(z)

represent the sum and partial sums, respectively, of that series:

S(z) =
∞∑

n=0

an(z − z0)
n, SN(z) =

N−1∑
n=0

an(z − z0)
n (|z − z0| < R).

Then write the remainder function (see Sec. 56)

ρN(z) = S(z) − SN(z) (|z − z0| < R).(2)
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Since the power series converges for any fixed value of z when |z − z0| < R, we know
that the remainder ρN(z) approaches zero for any such z as N tends to infinity. Accord-
ing to definition (2), Sec. 55, of the limit of a sequence, this means that corresponding
to each positive number ε, there is a positive integer Nε such that

|ρN(z)| < ε whenever N > Nε.(3)

When the choice of Nε depends only on the value of ε and is independent of the
point z taken in a specified region within the circle of convergence, the convergence
is said to be uniform in that region.

Theorem 2. If z1 is a point inside the circle of convergence |z − z0| = R of a
power series

∞∑
n=0

an(z − z0)
n,(4)

then that series must be uniformly convergent in the closed disk |z − z0| ≤ R1, where
R1 = |z1 − z0| (Fig. 80).

xO

y

z0

z1

R1

R

z

FIGURE 80

Our proof of this theorem depends on Theorem 1. Given that z1 is a point lying
inside the circle of convergence of series (4), we note that there are points inside that
circle and farther from z0 than z1 for which the series converges. So, according to
Theorem 1,

∞∑
n=0

|an(z1 − z0)
n|(5)

converges. Letting m and N denote positive integers, where m > N, one can write
the remainders of series (4) and (5) as

ρN(z) = lim
m→∞

m∑
n=N

an(z − z0)
n(6)
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and

σN = lim
m→∞

m∑
n=N

|an(z1 − z0)
n|,(7)

respectively.
Now, in view of Exercise 3, Sec. 56,

|ρN(z)| = lim
m→∞

∣∣∣∣∣
m∑

n=N

an(z − z0)
n

∣∣∣∣∣ ;
and, when |z − z0| ≤ |z1 − z0|,∣∣∣∣∣

m∑
n=N

an(z − z0)
n

∣∣∣∣∣ ≤
m∑

n=N

|an||z − z0|n ≤
m∑

n=N

|an||z1 − z0|n =
m∑

n=N

|an(z1 − z0)
n|.

Consequently,

|ρN(z)| ≤ σN when |z − z0| ≤ R1.(8)

Since σN are the remainders of a convergent series, they tend to zero as N tends to
infinity. That is, for each positive number ε, an integer Nε exists such that

σN < ε whenever N > Nε.(9)

Because of conditions (8) and (9), then, condition (3) holds for all points z in the
disk |z − z0| ≤ R1; and the value of Nε is independent of the choice of z. Hence
the convergence of series (4) is uniform in that disk.

64. CONTINUITY OF SUMS OF POWER SERIES

Our next theorem is an important consequence of uniform convergence, discussed
in the previous section.

Theorem. A power series

∞∑
n=0

an(z − z0)
n(1)

represents a continuous function S(z) at each point inside its circle of convergence
|z − z0| = R.

Another way to state this theorem is to say that if S(z) denotes the sum of
series (1) within its circle of convergence |z − z0| = R and if z1 is a point inside
that circle, then for each positive number ε there is a positive number δ such that

|S(z) − S(z1)| < ε whenever |z − z1| < δ.(2)
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[See definition (4), Sec. 18, of continuity.] The number δ here is small enough so
that z lies in the domain of definition |z − z0| < R of S(z) (Fig. 81).
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FIGURE 81

To prove the theorem, we let Sn(z) denote the sum of the first N terms of series
(1) and write the remainder function

ρN(z) = S(z) − SN(z) (|z − z0| < R).

Then, because
S(z) = SN(z) + ρN(z) (|z − z0| < R),

one can see that

|S(z) − S(z1)| = |SN(z) − SN(z1) + ρN(z) − ρN(z1)|,
or

|S(z) − S(z1)| ≤ |SN(z) − SN(z1)| + |ρN(z)| + |ρN(z1)|.(3)

If z is any point lying in some closed disk |z − z0| ≤ R0 whose radius R0 is greater
than |z1 − z0| but less than the radius R of the circle of convergence of series (1)
(see Fig. 81), the uniform convergence stated in Theorem 2, Sec. 63, ensures that
there is a positive integer Nε such that

|ρN(z)| <
ε

3
whenever N > Nε.(4)

In particular, condition (4) holds for each point z in some neighborhood |z − z1| < δ

of z1 that is small enough to be contained in the disk |z − z0| ≤ R0.
Now the partial sum SN(z) is a polynomial and is, therefore, continuous at z1

for each value of N . In particular, when N = Nε + 1, we can choose our δ so small
that

|SN(z) − SN(z1)| <
ε

3
whenever |z − z1| < δ.(5)
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By writing N = Nε + 1 in inequality (3) and using the fact that statements (4) and
(5) are true when N = Nε + 1, we now find that

|S(z) − S(z1)| <
ε

3
+ ε

3
+ ε

3
whenever |z − z1| < δ.

This is statement (2), and the theorem is now established.
By writing w = 1/(z − z0), one can modify the two theorems in the previous

section and the theorem here so as to apply to series of the type

∞∑
n=1

bn

(z − z0)n
.(6)

If, for instance, series (6) converges at a point z1 (z1 �= z0), the series

∞∑
n=1

bnw
n

must converge absolutely to a continuous function when

|w| <
1

|z1 − z0| .(7)

Thus, since inequality (7) is the same as |z − z0| > |z1 − z0|, series (6) must con-
verge absolutely to a continuous function in the domain exterior to the circle
|z − z0| = R1, where R1 = |z1 − z0|. Also, we know that if a Laurent series repre-
sentation

f (z) =
∞∑

n=0

an(z − z0)
n +

∞∑
n=1

bn

(z − z0)
n

is valid in an annulus R1 < |z − z0| < R2, then both of the series on the right
converge uniformly in any closed annulus which is concentric to and interior to that
region of validity.

65. INTEGRATION AND DIFFERENTIATION OF POWER
SERIES

We have just seen that a power series

S(z) =
∞∑

n=0

an(z − z0)
n(1)

represents a continuous function at each point interior to its circle of convergence.
In this section, we prove that the sum S(z) is actually analytic within that circle.
Our proof depends on the following theorem, which is of interest in itself.
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Theorem 1. Let C denote any contour interior to the circle of convergence of
the power series (1), and let g(z) be any function that is continuous on C. The series
formed by multiplying each term of the power series by g(z) can be integrated term
by term over C; that is,∫

C

g(z)S(z) dz =
∞∑

n=0

an

∫
C

g(z)(z − z0)
n dz.(2)

To prove this theorem, we note that since both g(z) and the sum S(z) of the
power series are continuous on C, the integral over C of the product

g(z)S(z) =
N−1∑
n=0

an g(z)(z − z0)
n + g(z)ρN(z),

where ρN(z) is the remainder of the given series after N terms, exists. The terms
of the finite sum here are also continuous on the contour C, and so their integrals
over C exist. Consequently, the integral of the quantity g(z)ρN(z) must exist; and
we may write

∫
C

g(z)S(z) dz =
N−1∑
n=0

an

∫
C

g(z)(z − z0)
n dz +

∫
C

g(z)ρN(z) dz.(3)

Now let M be the maximum value of |g(z)| on C, and let L denote the length
of C. In view of the uniform convergence of the given power series (Sec. 63), we
know that for each positive number ε there exists a positive integer Nε such that,
for all points z on C,

|ρN(z)| < ε whenever N > Nε.

Since Nε is independent of z, we find that∣∣∣∣
∫

C

g(z)ρN(z) dz

∣∣∣∣ < MεL whenever N > Nε;

that is,

lim
N→∞

∫
C

g(z)ρN(z) dz = 0.

It follows, therefore, from equation (3) that

∫
C

g(z)S(z) dz = lim
N→∞

N−1∑
n=0

an

∫
C

g(z)(z − z0)
n dz.

This is the same as equation (2), and Theorem 1 is proved.
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If g(z) = 1 for each value of z in the open disk bounded by the circle of
convergence of power series (1), the fact that (z − z0)

n is entire when n = 0, 1, 2, . . .

ensures that∫
C

g(z)(z − z0)
n dz =

∫
C

(z − z0)
n dz = 0 (n = 0, 1, 2, . . .)

for every closed contour C lying in that domain. According to equation (2), then,∫
C

S(z) dz = 0

for every such contour ; and, by Morera’s theorem (Sec. 52), the function S(z) is
analytic throughout the domain. We state this result as a corollary.

Corollary. The sum S(z) of power series (1) is analytic at each point z interior
to the circle of convergence of that series.

This corollary is often helpful in establishing the analyticity of functions and
in evaluating limits.

EXAMPLE 1. To illustrate, let us show that the function defined by means
of the equations

f (z) =
{
(ez − 1)/z when z �= 0,

1 when z = 0

is entire. Since the Maclaurin series expansion

ez − 1 =
∞∑

n=1

zn

n!
(4)

represents ez − 1 for every value of z, the representation

f (z) =
∞∑

n=1

zn−1

n!
= 1 + z

2!
+ z2

3!
+ z3

4!
+ · · · ,(5)

obtained by dividing each side of equation (4) by z, is valid when z �= 0. But series
(5) clearly converges to f (0) when z = 0. Hence representation (5) is valid for all
z ; and f is, therefore, an entire function. Note that since (ez − 1)/z = f (z) when
z �= 0 and since f is continuous at z = 0,

lim
z→0

ez − 1

z
= lim

z→0
f (z) = f (0) = 1.
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The first limit here is, of course, also evident if we write it in the form

lim
z→0

(ez − 1) − 0

z − 0
,

which is the definition of the derivative of ez − 1 at z = 0.

We observed in Sec. 57 that the Taylor series for a function f about a point z0

converges to f (z) at each point z interior to the circle centered at z0 and passing
through the nearest point z1 where f fails to be analytic. In view of our corollary
to Theorem 1, we now know that there is no larger circle about z0 such that at each
point z interior to it the Taylor series converges to f (z). For if there were such a
circle, f would be analytic at z1; but f is not analytic at z1.

We now present a companion to Theorem 1.

Theorem 2. The power series (1) can be differentiated term by term. That is,
at each point z interior to the circle of convergence of that series,

S′(z) =
∞∑

n=1

nan(z − z0)
n−1.(6)

To prove this, let z denote any point interior to the circle of convergence of
series (1). Then let C be some positively oriented simple closed contour surrounding
z and interior to that circle. Also, define the function

g(s) = 1

2πi
· 1

(s − z)2
(7)

at each point s on C. Since g(s) is continuous on C, Theorem 1 tells us that∫
C

g(s)S(s) ds =
∞∑

n=0

an

∫
C

g(s)(s − z0)
n ds.(8)

Now S(z) is analytic inside and on C, and this enables us to write∫
C

g(s)S(s) ds = 1

2πi

∫
C

S(s) ds

(s − z)2
= S′(z)

with the aid of the integral representation for derivatives in Sec. 51. Furthermore,∫
C

g(s)(s − z0)
n ds = 1

2πi

∫
C

(s − z0)
n

(s − z)2
ds = d

dz
(z − z0)

n (n = 0, 1, 2, . . .).

Thus equation (8) reduces to

S ′(z) =
∞∑

n=0

an

d

dz
(z − z0)

n,

which is the same as equation (6). This completes the proof.
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EXAMPLE 2. In Example 4, Sec. 59, we saw that

1

z
=

∞∑
n=0

(−1)n(z − 1)n (|z − 1| < 1).

Differentiation of each side of this equation reveals that

− 1

z2
=

∞∑
n=1

(−1)nn(z − 1)n−1 (|z − 1| < 1),

or
1

z2
=

∞∑
n=0

(−1)n(n + 1)(z − 1)n (|z − 1| < 1).

66. UNIQUENESS OF SERIES REPRESENTATIONS

The uniqueness of Taylor and Laurent series representations, anticipated in Secs. 59
and 62, respectively, follows readily from Theorem 1 in Sec. 65. We consider first
the uniqueness of Taylor series representations.

Theorem 1. If a series

∞∑
n=0

an(z − z0)
n(1)

converges to f (z) at all points interior to some circle |z − z0| = R, then it is the
Taylor series expansion for f in powers of z − z0.

To start the proof, we write the series representation

f (z) =
∞∑

n=0

an(z − z0)
n (|z − z0| < R)(2)

in the hypothesis of the theorem using the index of summation m:

f (z) =
∞∑

m=0

am(z − z0)
m (|z − z0| < R).

Then, by appealing to Theorem 1 in Sec. 65, we may write

∫
C

g(z)f (z) dz =
∞∑

m=0

am

∫
C

g(z)(z − z0)
m dz,(3)
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where g(z) is any one of the functions

g(z) = 1

2πi
· 1

(z − z0)n+1
(n = 0, 1, 2, . . .)(4)

and C is some circle centered at z0 and with radius less than R.
In view of the extension (6), Sec. 51, of the Cauchy integral formula (see also

the corollary in Sec. 65), we find that∫
C

g(z)f (z) dz = 1

2πi

∫
C

f (z) dz

(z − z0)n+1
= f (n)(z0)

n!
;(5)

and, since (see Exercise 10, Sec. 42)∫
C

g(z)(z − z0)
m dz = 1

2πi

∫
C

dz

(z − z0)n−m+1
=

{0 when m �= n,

1 when m = n,
(6)

it is clear that

∞∑
m=0

am

∫
C

g(z)(z − z0)
m dz = an.(7)

Because of equations (5) and (7), equation (3) now reduces to

f (n)(z0)

n!
= an.

This shows that series (2) is, in fact, the Taylor series for f about the point z0.
Note how it follows from Theorem 1 that if series (1) converges to zero through-

out some neighborhood of z0, then the coefficients an must all be zero.
Our second theorem here concerns the uniqueness of Laurent series represen-

tations.

Theorem 2. If a series

∞∑
n=−∞

cn(z − z0)
n =

∞∑
n=0

an(z − z0)
n +

∞∑
n=1

bn

(z − z0)n
(8)

converges to f (z) at all points in some annular domain about z0, then it is the
Laurent series expansion for f in powers of z − z0 for that domain.

The method of proof here is similar to the one used in proving Theorem 1. The
hypothesis of this theorem tells us that there is an annular domain about z0 such
that

f (z) =
∞∑

n=−∞
cn(z − z0)

n
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for each point z in it. Let g(z) be as defined by equation (4), but now allow n to
be a negative integer too. Also, let C be any circle around the annulus, centered
at z0 and taken in the positive sense. Then, using the index of summation m and
adapting Theorem 1 in Sec. 65 to series involving both nonnegative and negative
powers of z − z0 (Exercise 10), write∫

C

g(z)f (z) dz =
∞∑

m=−∞
cm

∫
C

g(z)(z − z0)
m dz,

or

1

2πi

∫
C

f (z) dz

(z − z0)n+1
=

∞∑
m=−∞

cm

∫
C

g(z)(z − z0)
m dz.(9)

Since equations (6) are also valid when the integers m and n are allowed to be
negative, equation (9) reduces to

1

2πi

∫
C

f (z) dz

(z − z0)n+1
= cn, (n = 0,±1, ±2, . . .),

which is expression (5), Sec. 60, for coefficients in the Laurent series for f in the
annulus.

EXERCISES
1. By differentiating the Maclaurin series representation

1

1 − z
=

∞∑
n=0

zn (|z| < 1),

obtain the expansions

1

(1 − z)2
=

∞∑
n=0

(n + 1) zn (|z| < 1)

and
2

(1 − z)3
=

∞∑
n=0

(n + 1)(n + 2) zn (|z| < 1).

2. By substituting 1/(1 − z) for z in the expansion

1

(1 − z)2
=

∞∑
n=0

(n + 1) zn (|z| < 1),

found in Exercise 1, derive the Laurent series representation

1

z2
=

∞∑
n=2

(−1)n(n − 1)

(z − 1)n
(1 < |z − 1| < ∞).

(Compare with Example 2, Sec. 65.)
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3. Find the Taylor series for the function

1

z
= 1

2 + (z − 2)
= 1

2
· 1

1 + (z − 2)/2

about the point z0 = 2. Then, by differentiating that series term by term, show that

1

z2
= 1

4

∞∑
n=0

(−1)n(n + 1)

(
z − 2

2

)n

(|z − 2| < 2).

4. With the aid of series, show that the function f defined by means of the equations

f (z) =
{
(sin z)/z when z �= 0,

1 when z = 0

is entire. Use that result to establish the limit

lim
z→0

sin z

z
= 1.

(See Example 1, Sec. 65.)

5. Prove that if

f (z) =




cos z

z2 − (π/2)2
when z �= ±π/2,

− 1

π
when z = ±π/2,

then f is an entire function.

6. In the w plane, integrate the Taylor series expansion (see Example 4, Sec. 59)

1

w
=

∞∑
n=0

(−1)n(w − 1)n (|w − 1| < 1)

along a contour interior to the circle of convergence from w = 1 to w = z to obtain
the representation

Log z =
∞∑

n=1

(−1)n+1

n
(z − 1)n (|z − 1| < 1).

7. Use the result in Exercise 6 to show that if

f (z) = Log z

z − 1
when z �= 1

and f (1) = 1, then f is analytic throughout the domain

0 < |z| < ∞, −π < Arg z < π.

8. Prove that if f is analytic at z0 and f (z0) = f ′(z0) = · · · = f (m)(z0) = 0, then the
function g defined by means of the equations
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g(z) =




f (z)

(z − z0)m+1
when z �= z0,

f (m+1)(z0)

(m + 1)!
when z = z0

is analytic at z0.

9. Suppose that a function f (z) has a power series representation

f (z) =
∞∑

n=0

an(z − z0)
n

inside some circle |z − z0| = R. Use Theorem 2 in Sec. 65, regarding term by term
differentiation of such a series, and mathematical induction to show that

f (n)(z) =
∞∑

k=0

(n + k)!

k!
an+k (z − z0)

k (n = 0, 1, 2, . . .)

when |z−z0| < R. Then, by setting z = z0, show that the coefficients an (n = 0, 1, 2,. . .)

are the coefficients in the Taylor series for f about z0. Thus give an alternative proof of
Theorem 1 in Sec. 66.

10. Consider two series

S1(z) =
∞∑

n=0

an(z − z0)
n, S2(z) =

∞∑
n=1

bn

(z − z0)n
,

which converge in some annular domain centered at z0. Let C denote any contour
lying in that annulus, and let g(z) be a function which is continuous on C. Modify
the proof of Theorem 1, Sec. 65, which tells us that∫

C

g(z)S1(z) dz =
∞∑

n=0

an

∫
C

g(z)(z − z0)
n dz ,

to prove that ∫
C

g(z)S2(z) dz =
∞∑

n=1

bn

∫
C

g(z)

(z − z0)n
dz .

Conclude from these results that if

S(z) =
∞∑

n=−∞
cn(z − z0)

n =
∞∑

n=0

an(z − z0)
n +

∞∑
n=1

bn

(z − z0)n
,

then ∫
C

g(z)S(z) dz =
∞∑

n=−∞
cn

∫
C

g(z)(z − z0)
n dz .

11. Show that the function

f2(z) = 1

z2 + 1
(z �= ± i)
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is the analytic continuation (Sec. 27) of the function

f1(z) =
∞∑

n=0

(−1)nz2n (|z| < 1)

into the domain consisting of all points in the z plane except z = ± i.

12. Show that the function f2(z) = 1/z2 (z �= 0) is the analytic continuation (Sec. 27) of
the function

f1(z) =
∞∑

n=0

(n + 1)(z + 1)n (|z + 1| < 1)

into the domain consisting of all points in the z plane except z = 0.

67. MULTIPLICATION AND DIVISION OF POWER SERIES

Suppose that each of the power series
∞∑

n=0

an(z − z0)
n and

∞∑
n=0

bn(z − z0)
n(1)

converges within some circle |z − z0| = R. Their sums f (z) and g(z), respectively,
are then analytic functions in the disk |z − z0| < R (Sec. 65), and the product of
those sums has a Taylor series expansion which is valid there:

f (z)g(z) =
∞∑

n=0

cn(z − z0)
n (|z − z0| < R).(2)

According to Theorem 1 in Sec. 66, the series (1) are themselves Taylor series.
Hence the first three coefficients in series (2) are given by the equations

c0 = f (z0)g(z0) = a0b0,

c1 = f (z0)g
′(z0) + f ′(z0)g(z0)

1!
= a0b1 + a1b0,

and

c2 = f (z0)g
′′(z0) + 2f ′(z0)g

′(z0) + f ′′(z0)g(z0)

2!
= a0b2 + a1b1 + a2b0.

The general expression for any coefficient cn is easily obtained by referring to
Leibniz’s rule (Exercise 6)

[f (z)g(z)](n) =
n∑

k=0

(n

k

)
f (k)(z)g(n−k)(z) (n = 1, 2, . . .),(3)

where (n

k

)
= n!

k!(n − k)!
(k = 0, 1, 2, . . . , n),



sec. 67 Multiplication and Division of Power Series 223

for the nth derivative of the product of two differentiable functions. As usual,
f (0)(z) = f (z) and 0! = 1. Evidently,

cn =
n∑

k=0

f (k)(z0)

k!
· g(n−k)(z0)

(n − k)!
=

n∑
k=0

akbn−k;

and so expansion (2) can be written

f (z)g(z) = a0b0 + (a0b1 + a1b0)(z − z0)(4)

+ (a0b2 + a1b1 + a2b0)(z − z0)
2 + · · ·

+
(

n∑
k=0

akbn−k

)
(z − z0)

n + · · · (|z − z0| < R).

Series (4) is the same as the series obtained by formally multiplying the two
series (1) term by term and collecting the resulting terms in like powers of z − z0 ;
it is called the Cauchy product of the two given series.

EXAMPLE 1. The function ez/(1 + z) has a singular point at z = −1, and
so its Maclaurin series representation is valid in the open disk |z| < 1. The first
three nonzero terms are easily found by writing

ez

1 + z
= ez 1

1 − (−z)
=

(
1 + z + 1

2
z2 + 1

6
z3 + · · ·

)
(1 − z + z2 − z3 + · · ·)

and multiplying these two series term by term. To be precise, we may multiply each
term in the first series by 1, then each term in that series by −z, etc. The following
systematic approach is suggested, where like powers of z are assembled vertically
so that their coefficients can be readily added:

1 + z + 1

2
z2 + 1

6
z3 + · · ·

−z − z2 − 1

2
z3 − 1

6
z4 − · · ·

z2 + z3 + 1

2
z4 + 1

6
z5 + · · ·

− z3 − z4 − 1

2
z5 − 1

6
z6 − · · ·

...

The desired result is
ez

1 + z
= 1 + 1

2
z2 − 1

3
z3 + · · · (|z| < 1).(5)
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Continuing to let f (z) and g(z) denote the sums of series (1), suppose that
g(z) �= 0 when |z − z0| < R. Since the quotient f (z)/g(z) is analytic throughout
the disk |z − z0| < R, it has a Taylor series representation

f (z)

g(z)
=

∞∑
n=0

dn(z − z0)
n (|z − z0| < R),(6)

where the coefficients dn can be found by differentiating f (z)/g(z) successively
and evaluating the derivatives at z = z0. The results are the same as those found
by formally carrying out the division of the first of series (1) by the second. Since
it is usually only the first few terms that are needed in practice, this method is not
difficult.

EXAMPLE 2. As pointed out in Sec. 35, the zeros of the entire function
sinh z are the numbers z = nπi (n = 0, ±1,±2, . . .). So the quotient

1

z2 sinh z
= 1

z2(z + z3/3! + z5/5! + · · ·) ,

which can be written

1

z2 sinh z
= 1

z3

(
1

1 + z2/3! + z4/5! + · · ·
)

,(7)

has a Laurent series representation in the punctured disk 0 < |z| < π . The denomi-
nator of the fraction in parentheses on the right-hand side of equation (7) is a power
series that converges to (sinh z)/z when z �= 0 and to 1 when z = 0. Thus the sum
of that series is not zero anywhere in the disk |z| < π ; and a power series represen-
tation of the fraction in parentheses can be found by dividing the series into unity
as follows:

1 − 1

3!
z2+

[
1

(3!)2
− 1

5!

]
z4 + · · ·

1 + 1

3!
z2 + 1

5!
z4 + · · ·

)
1

1 + 1

3!
z2 + 1

5!
z4 + · · ·

− 1

3!
z2 − 1

5!
z4 + · · ·

− 1

3!
z2 − 1

(3!)2
z4 − · · ·

[
1

(3!)2
− 1

5!

]
z4 + · · ·[

1

(3!)2
− 1

5!

]
z4 + · · ·
...
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That is,

1

1 + z2/3! + z4/5! + · · · = 1 − 1

3!
z2 +

[
1

(3!)2
− 1

5!

]
z4 + · · · ,

or

1

1 + z2/3! + z4/5! + · · · = 1 − 1

6
z2 + 7

360
z4 + · · · (|z| < π).(8)

Hence

1

z2 sinh z
= 1

z3
− 1

6
· 1

z
+ 7

360
z + · · · (0 < |z| < π).(9)

Although we have given only the first three nonzero terms of this Laurent series,
any number of terms can, of course, be found by continuing the division.

EXERCISES
1. Use multiplication of series to show that

ez

z(z2 + 1)
= 1

z
+ 1 − 1

2
z − 5

6
z2 + · · · (0 < |z| < 1).

2. By writing csc z = 1/ sin z and then using division, show that

csc z = 1

z
+ 1

3!
z +

[
1

(3!)2
− 1

5!

]
z3 + · · · (0 < |z| < π).

3. Use division to obtain the Laurent series representation

1

ez − 1
= 1

z
− 1

2
+ 1

12
z − 1

720
z3 + · · · (0 < |z| < 2π).

4. Use the expansion

1

z2 sinh z
= 1

z3
− 1

6
· 1

z
+ 7

360
z + · · · (0 < |z| < π)

in Example 2, Sec. 67, and the method illustrated in Example 1, Sec. 62, to show that∫
C

dz

z2 sinh z
= −πi

3
,

when C is the positively oriented unit circle |z| = 1.

5. Follow these steps, which illustrate an alternative to straightforward division, to obtain
representation (8) in Example 2, Sec. 67.

(a) Write

1

1 + z2/3! + z4/5! + · · · = d0 + d1z + d2z
2 + d3z

3 + d4z
4 + · · · ,
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where the coefficients in the power series on the right are to be determined by
multiplying the two series in the equation

1 =
(

1 + 1

3!
z2 + 1

5!
z4 + · · ·

)
(d0 + d1z + d2z

2 + d3z
3 + d4z

4 + · · ·).

Perform this multiplication to show that

(d0 − 1) + d1z +
(

d2 + 1

3!
d0

)
z2 +

(
d3 + 1

3!
d1

)
z3

+
(

d4 + 1

3!
d2 + 1

5!
d0

)
z4 + · · · = 0

when |z| < π .
(b) By setting the coefficients in the last series in part (a) equal to zero, find the values

of d0, d1, d2, d3, and d4. With these values, the first equation in part (a) becomes
equation (8), Sec. 67.

6. Use mathematical induction to establish Leibniz’ rule (Sec. 67)

(fg)(n) =
n∑

k=0

(
n

k

)
f (k)g(n−k) (n = 1, 2, . . .)

for the nth derivative of the product of two differentiable functions f (z) and g(z).
Suggestion: Note that the rule is valid when n = 1. Then, assuming that it is

valid when n = m where m is any positive integer, show that

(fg)(m+1) = (fg′)(m) + (f ′g)(m)

= fg(m+1) +
m∑

k=1

[(
m

k

)
+

(
m

k − 1

)]
f (k)g(m+1−k) + f (m+1)g.

Finally, with the aid of the identify(
m

k

)
+

(
m

k − 1

)
=

(
m + 1

k

)

that was used in Exercise 8, Sec. 3, show that

(fg)(m+1) = fg(m+1) +
m∑

k=1

(
m + 1

k

)
f (k)g(m+1−k) + f (m+1)g

=
m+1∑
k=0

(
m + 1

k

)
f (k)g(m+1−k).

7. Let f (z) be an entire function that is represented by a series of the form

f (z) = z + a2z
2 + a3z

3 + · · · (|z| < ∞).
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(a) By differentiating the composite function g(z) = f [f (z)] successively, find the
first three nonzero terms in the Maclaurin series for g(z) and thus show that

f [f (z)] = z + 2 a2z
2 + 2 (a2

2 + a3)z
3 + · · · (|z| < ∞).

(b) Obtain the result in part (a) in a formal manner by writing

f [f (z)] = f (z) + a2[f (z)] 2 + a3[f (z)] 3 + · · · ,

replacing f (z) on the right-hand side here by its series representation, and then
collecting terms in like powers of z.

(c) By applying the result in part (a) to the function f (z) = sin z, show that

sin(sin z) = z − 1

3
z3 + · · · (|z| < ∞).

8. The Euler numbers are the numbers En (n = 0, 1, 2, . . .) in the Maclaurin series
representation

1

cosh z
=

∞∑
n=0

En

n!
zn (|z| < π/2).

Point out why this representation is valid in the indicated disk and why

E2n+1 = 0 (n = 0, 1, 2, . . .).

Then show that

E0 = 1, E2 = −1, E4 = 5, and E6 = −61.
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C H A P T E R

6
RESIDUES AND POLES

The Cauchy–Goursat theorem (Sec. 46) states that if a function is analytic at all
points interior to and on a simple closed contour C, then the value of the integral
of the function around that contour is zero. If, however, the function fails to be
analytic at a finite number of points interior to C, there is, as we shall see in this
chapter, a specific number, called a residue, which each of those points contributes
to the value of the integral. We develop here the theory of residues; and, in Chap. 7,
we shall illustrate their use in certain areas of applied mathematics.

68. ISOLATED SINGULAR POINTS
Recall (Sec. 24) that a point z0 is called a singular point of a function f if f fails
to be analytic at z0 but is analytic at some point in every neighborhood of z0. A
singular point z0 is said to be isolated if, in addition, there is a deleted neighborhood
0 < |z − z0| < ε of z0 throughout which f is analytic.

EXAMPLE 1. The function
z + 1

z3(z2 + 1)

has the three isolated singular points z = 0 and z = ±i.

EXAMPLE 2. The origin is a singular point of the principal branch (Sec. 31)

Log z = ln r + i� (r > 0, −π < � < π)

229
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of the logarithmic function. It is not, however, an isolated singular point since every
deleted ε neighborhood of it contains points on the negative real axis (see Fig. 82)
and the branch is not even defined there. Similar remarks can be made regarding
any branch

log z = ln r + iθ (r > 0, α < θ < α + 2π)

of the logarithmic function.

xO

y

ε

FIGURE 82

EXAMPLE 3. The function
1

sin(π/z)

has the singular points z = 0 and z = 1/n (n = ±1, ±2, . . .), all lying on the seg-
ment of the real axis from z = −1 to z = 1. Each singular point except z = 0 is
isolated. The singular point z = 0 is not isolated because every deleted ε neighbor-
hood of the origin contains other singular points of the function. More precisely,
when a positive number ε is specified and m is any positive integer such that
m > 1/ε, the fact that 0 < 1/m < ε means that the point z = 1/m lies in the deleted
ε neighborhood 0 < |z| < ε (Fig. 83).

x1/mO

y

ε

FIGURE 83
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In this chapter, it will be important to keep in mind that if a function is analytic
everywhere inside a simple closed contour C except for a finite number of singular
points

z1, z2, . . . , zn,

those points must all be isolated and the deleted neighborhoods about them can be
made small enough to lie entirely inside C. To see that this is so, consider any
one of the points zk . The radius ε of the needed deleted neighborhood can be any
positive number that is smaller than the distances to the other singular points and
also smaller than the distance from zk to the closest point on C.

Finally, we mention that it is sometimes convenient to consider the point
at infinity (Sec. 17) as an isolated singular point. To be specific, if there is a
positive number R1 such that f is analytic for R1 < |z| < ∞, then f is said to
have an isolated singular point at z0 = ∞. Such a singular point will be used in
Sec. 71.

69. RESIDUES
When z0 is an isolated singular point of a function f , there is a positive number R2

such that f is analytic at each point z for which 0 < |z − z0| < R2. Consequently,
f (z) has a Laurent series representation

f (z) =
∞∑

n=0

an(z − z0)
n + b1

z − z0
+ b2

(z − z0)2
+ · · ·+ bn

(z − z0)n
+ · · ·(1)

(0 < |z − z0| < R2),

where the coefficients an and bn have certain integral representations (Sec. 60). In
particular,

bn = 1

2πi

∫
C

f (z) dz

(z − z0)−n+1
(n = 1, 2, . . .)

where C is any positively oriented simple closed contour around z0 that lies in
the punctured disk 0 < |z − z0| < R2 (Fig. 84). When n = 1, this expression for bn

becomes ∫
C

f (z) dz = 2πib1.(2)

The complex number b1, which is the coefficient of 1/(z − z0) in expansion (1), is
called the residue of f at the isolated singular point z0, and we shall often write

b1 = Res
z=z0

f (z).
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x

z0

R2C

O

y

FIGURE 84

Equation (2) then becomes ∫
C

f (z) dz = 2πi Res
z=z0

f (z).(3)

Sometimes we simply use B to denote the residue when the function f and the
point z0 are clearly indicated.

Equation (3) provides a powerful method for evaluating certain integrals around
simple closed contours.

EXAMPLE 1. Consider the integral∫
C

z2 sin

(
1

z

)
dz(4)

where C is the positively oriented unit circle |z| = 1 (Fig. 85). Since the integrand
is analytic everywhere in the finite plane except at z = 0, it has a Laurent series
representation that is valid when 0 < |z| < ∞. Thus, according to equation (3), the
value of integral (4) is 2πi times the residue of its integrand at z = 0.

x

y

C

O 1

FIGURE 85
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To determine that residue, we recall (Sec. 59) the Maclaurin series representa-
tion

sin z = z − z3

3!
+ z5

5!
− z7

7!
+ · · · (|z| < ∞)

and use it to write

z2 sin

(
1

z

)
= z − 1

3!
· 1

z
+ 1

5!
· 1

z3
− 1

7!
· 1

z5
+ · · · (0 < |z| < ∞).

The coefficient of 1/z here is the desired residue. Consequently,∫
C

z2 sin

(
1

z

)
dz = 2πi

(
− 1

3!

)
= −πi

3
.

EXAMPLE 2. Let us show that∫
C

exp

(
1

z2

)
dz = 0(5)

when C is the same oriented circle |z| = 1 as in Example 1. Since 1/z2 is analytic
everywhere except at the origin, the same is true of the integrand. The isolated
singular point z = 0 is interior to C, and Fig. 85 in Example 1 can be used here as
well. With the aid of the Maclaurin series representation (Sec. 59)

ez = 1 + z

1!
+ z2

2!
+ z3

3!
+ · · · (|z| < ∞),

one can write the Laurent series expansion

exp

(
1

z2

)
= 1 + 1

1!
· 1

z2
+ 1

2!
· 1

z4
+ 1

3!
· 1

z6
+ · · · (0 < |z| < ∞).

The residue of the integrand at its isolated singular point z = 0 is, therefore, zero
(b1 = 0), and the value of integral (5) is established.

We are reminded in this example that although the analyticity of a function
within and on a simple closed contour C is a sufficient condition for the value of
the integral around C to be zero, it is not a necessary condition.

EXAMPLE 3. A residue can also be used to evaluate the integral∫
C

dz

z(z − 2)4
(6)

where C is the positively oriented circle |z − 2| = 1 (Fig. 86). Since the integrand
is analytic everywhere in the finite plane except at the points z = 0 and z = 2, it has
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a Laurent series representation that is valid in the punctured disk 0 < |z − 2| < 2,
also shown in Fig. 86. Thus, according to equation (3), the value of integral (6) is
2πi times the residue of its integrand at z = 2. To determine that residue, we recall
(Sec. 59) the Maclaurin series expansion

1

1 − z
=

∞∑
n=0

zn (|z| < 1)

and use it to write

1

z(z − 2)4
= 1

(z − 2)4
· 1

2 + (z − 2)

= 1

2(z − 2)4
· 1

1 −
(

−z − 2

2

)

=
∞∑

n=0

(−1)n

2n+1
(z − 2)n−4 (0 < |z − 2| < 2).

In this Laurent series, which could be written in the form (1), the coefficient of
1/(z − 2) is the desired residue, namely −1/16. Consequently,∫

C

dz

z(z − 2)4
= 2πi

(
− 1

16

)
= −πi

8
.

x

C

O 21

y

FIGURE 86

70. CAUCHY’S RESIDUE THEOREM
If, except for a finite number of singular points, a function f is analytic inside a
simple closed contour C, those singular points must be isolated (Sec. 68). The fol-
lowing theorem, which is known as Cauchy’s residue theorem, is a precise statement
of the fact that if f is also analytic on C and if C is positively oriented, then the
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value of the integral of f around C is 2πi times the sum of the residues of f at
the singular points inside C.

Theorem. Let C be a simple closed contour, described in the positive sense.
If a function f is analytic inside and on C except for a finite number of singular
points zk (k = 1, 2, . . . , n) inside C (Fig. 87), then∫

C

f (z) dz = 2πi

n∑
k=1

Res
z=zk

f (z).(1)

x

C1

C2

C

Cn

zn

z2

z1

O

y

FIGURE 87

To prove the theorem, let the points zk (k = 1, 2, . . . , n) be centers of positively
oriented circles Ck which are interior to C and are so small that no two of them have
points in common. The circles Ck , together with the simple closed contour C, form
the boundary of a closed region throughout which f is analytic and whose interior
is a multiply connected domain consisting of the points inside C and exterior to
each Ck. Hence, according to the adaptation of the Cauchy–Goursat theorem to such
domains (Sec. 49), ∫

C

f (z) dz −
n∑

k=1

∫
Ck

f (z) dz = 0.

This reduces to equation (1) because (Sec. 69)∫
Ck

f (z) dz = 2πi Res
z=zk

f (z) (k = 1, 2, . . . , n),

and the proof is complete.

EXAMPLE. Let us use the theorem to evaluate the integral∫
C

5z − 2

z(z − 1)
dz(2)
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where C is the circle |z| = 2, described counterclockwise. The integrand has the
two isolated singularities z = 0 and z = 1, both of which are interior to C. We can
find the residues B1 at z = 0 and B2 at z = 1 with the aid of the Maclaurin series

1

1 − z
= 1 + z + z2 + · · · (|z| < 1).

We observe first that when 0 < |z| < 1 (Fig. 88),

5z − 2

z(z − 1)
= 5z − 2

z
· −1

1 − z
=

(
5 − 2

z

)
(−1 − z − z2 − · · ·);

and, by identifying the coefficient of 1/z in the product on the right here, we find
that B1 = 2. Also, since

5z − 2

z(z − 1)
= 5(z − 1) + 3

z − 1
· 1

1 + (z − 1)

=
(

5 + 3

z − 1

)
[1 − (z − 1) + (z − 1)2 − · · ·]

when 0 < |z − 1| < 1, it is clear that B2 = 3. Thus∫
C

5z − 2

z(z − 1)
dz = 2πi(B1 + B2) = 10πi.

x

C

O 1 2

y

FIGURE 88

In this example, it is actually simpler to write the integrand as the sum of its
partial fractions:

5z − 2

z(z − 1)
= 2

z
+ 3

z − 1
.
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Then, since 2/z is already a Laurent series when 0 < |z| < 1 and since 3/(z − 1)

is a Laurent series when 0 < |z − 1| < 1, it follows that∫
C

5z − 2

z(z − 1)
dz = 2πi(2) + 2πi(3) = 10πi.

71. RESIDUE AT INFINITY
Suppose that a function f is analytic throughout the finite plane except for a finite
number of singular points interior to a positively oriented simple closed contour C.
Next, let R1 denote a positive number which is large enough that C lies inside the
circle |z| = R1 (see Fig. 89). The function f is evidently analytic throughout the
domain R1 < |z| < ∞ and, as already mentioned at the end of Sec. 68, the point at
infinity is then said to be an isolated singular point of f .

x

C0

C

R0R1O

y

FIGURE 89

Now let C0 denote a circle |z| = R0, oriented in the clockwise direction, where
R0 > R1. The residue of f at infinity is defined by means of the equation∫

C0

f (z) dz = 2πi Res
z=∞ f (z).(1)

Note that the circle C0 keeps the point at infinity on the left, just as the singular
point in the finite plane is on the left in equation (3), Sec. 69. Since f is analytic
throughout the closed region bounded by C and C0, the principle of deformation of
paths (Sec. 49) tells us that∫

C

f (z) dz =
∫

−C0

f (z) dz = −
∫

C0

f (z) dz.
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So, in view of definition (1),∫
C

f (z) dz = −2πi Res
z=∞ f (z).(2)

To find this residue, write the Laurent series (see Sec. 60)

f (z) =
∞∑

n=−∞
cn zn (R1 < |z| < ∞),(3)

where

cn = 1

2πi

∫
−C0

f (z) dz

zn+1
(n = 0, ±1, ±2, . . .).(4)

Replacing z by 1/z in expansion (3) and then multiplying through the result by 1/z2,
we see that

1

z2
f

(
1

z

)
=

∞∑
n=−∞

cn

zn+2
=

∞∑
n=−∞

cn−2

zn

(
0 < |z| <

1

R1

)

and

c−1 = Res
z=0

[
1

z2
f

(
1

z

)]
.

Putting n = −1 in expression (4), we now have

c−1 = 1

2πi

∫
−C0

f (z) dz,

or ∫
C0

f (z) dz = −2πi Res
z=0

[
1

z2
f

(
1

z

)]
.(5)

Note how it follows from this and definition (1) that

Res
z=∞ f (z) = − Res

z=0

[
1

z2
f

(
1

z

)]
.(6)

With equations (2) and (6), the following theorem is now established. This theorem
is sometimes more efficient to use than Cauchy’s residue theorem since it involves
only one residue.

Theorem. If a function f is analytic everywhere in the finite plane except for a
finite number of singular points interior to a positively oriented simple closed contour
C, then ∫

C

f (z) dz = 2πi Res
z=0

[
1

z2
f

(
1

z

)]
.(7)
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EXAMPLE. In the example in Sec. 70, we evaluated the integral of

f (z) = 5z − 2

z(z − 1)

around the circle |z| = 2, described counterclockwise, by finding the residues of
f (z) at z = 0 and z = 1. Since

1

z2
f

(
1

z

)
= 5 − 2z

z(1 − z)
= 5 − 2z

z
· 1

1 − z

=
(

5

z
− 2

)
(1 + z + z2 + · · ·)

= 5

z
+ 3 + 3z + · · · (0 < |z| < 1),

we see that the theorem here can also be used, where the desired residue is 5. More
precisely, ∫

C

5z − 2

z(z − 1)
dz = 2πi(5) = 10πi,

where C is the circle in question. This is, of course, the result obtained in the
example in Sec. 70.

EXERCISES
1. Find the residue at z = 0 of the function

(a)
1

z + z2
; (b) z cos

(
1

z

)
; (c)

z − sin z

z
; (d)

cot z

z4
; (e)

sinh z

z4(1 − z2)
.

Ans. (a) 1; (b) −1/2 ; (c) 0 ; (d) −1/45 ; (e) 7/6.

2. Use Cauchy’s residue theorem (Sec. 70) to evaluate the integral of each of these
functions around the circle |z| = 3 in the positive sense:

(a)
exp(−z)

z2
; (b)

exp(−z)

(z − 1)2
; (c) z2 exp

(
1

z

)
; (d)

z + 1

z2 − 2z
.

Ans. (a) −2πi; (b) −2πi/e ; (c) πi/3 ; (d) 2πi.

3. Use the theorem in Sec. 71, involving a single residue, to evaluate the integral of each
of these functions around the circle |z| = 2 in the positive sense:

(a)
z5

1 − z3
; (b)

1

1 + z2
; (c)

1

z
.

Ans. (a) −2πi; (b) 0 ; (c) 2πi.

4. Let C denote the circle |z| = 1, taken counterclockwise, and use the following steps
to show that ∫

C

exp

(
z + 1

z

)
dz = 2πi

∞∑
n=0

1

n! (n + 1)!
.
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(a) By using the Maclaurin series for ez and referring to Theorem 1 in Sec. 65, which
justifies the term by term integration that is to be used, write the above integral as

∞∑
n=0

1

n!

∫
C

zn exp

(
1

z

)
dz.

(b) Apply the theorem in Sec. 70 to evaluate the integrals appearing in part (a) to
arrive at the desired result.

5. Suppose that a function f is analytic throughout the finite plane except for a finite
number of singular points z1, z2, . . . , zn. Show that

Res
z=z1

f (z) + Res
z=z2

f (z) + · · · + Res
z=zn

f (z) + Res
z=∞ f (z) = 0.

6. Let the degrees of the polynomials

P (z) = a0 + a1z + a2z
2 + · · · + anz

n (an �= 0)

and
Q(z) = b0 + b1z + b2z

2 + · · · + bmzm (bm �= 0)

be such that m ≥ n + 2. Use the theorem in Sec. 71 to show that if all of the zeros of
Q(z) are interior to a simple closed contour C, then∫

C

P (z)

Q(z)
dz = 0.

[Compare with Exercise 3(b).]

72. THE THREE TYPES OF ISOLATED SINGULAR POINTS
We saw in Sec. 69 that the theory of residues is based on the fact that if f has an
isolated singular point at z0, then f (z) has a Laurent series representation

f (z) =
∞∑

n=0

an(z − z0)
n + b1

z − z0
+ b2

(z − z0)2
+ · · · + bn

(z − z0)n
+ · · ·(1)

in a punctured disk 0 < |z − z0| < R2. The portion

b1

z − z0
+ b2

(z − z0)2
+ · · · + bn

(z − z0)n
+ · · ·(2)

of the series, involving negative powers of z − z0, is called the principal part of f

at z0. We now use the principal part to identify the isolated singular point z0 as one
of three special types. This classification will aid us in the development of residue
theory that appears in following sections.

If the principal part of f at z0 contains at least one nonzero term but the number
of such terms is only finite, then there exists a positive integer m (m ≥ 1) such that

bm �= 0 and bm+1 = bm+2 = · · · = 0.
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That is, expansion (1) takes the form

f (z) =
∞∑

n=0

an(z − z0)
n + b1

z − z0
+ b2

(z − z0)2
+ · · · + bm

(z − z0)m
(3)

(0 < |z − z0| < R2),

where bm �= 0. In this case, the isolated singular point z0 is called a pole of order
m.∗ A pole of order m = 1 is usually referred to as a simple pole.

EXAMPLE 1. Observe that the function

z2 − 2z + 3

z − 2
= z(z − 2) + 3

z − 2
= z + 3

z − 2
= 2 + (z − 2) + 3

z − 2
(0 < |z − 2| < ∞)

has a simple pole (m = 1) at z0 = 2. Its residue b1 there is 3.

When representation (1) is written in the form (see Sec. 60)

f (z) =
∞∑

n=−∞
cn(z − z0)

n (0 < |z − z0| < R2),

the residue of f at z0 is, of course, the coefficient c−1.

EXAMPLE 2. From the representation

f (z) = 1

z2(1 + z)
= 1

z2
· 1

1 − (−z)
= 1

z2
(1 − z + z2 − z3 + z4 − · · ·)

= 1

z2
− 1

z
+ 1 − z + z2 − · · · (0 < |z| < 1),

one can see that f has a pole of order m = 2 at the origin and that

Res
z=0

f (z) = −1.

EXAMPLE 3. The function

sinh z

z4
= 1

z4

(
z + z3

3!
+ z5

5!
+ z7

7!
+ · · ·

)
= 1

z3
+ 1

3!
· 1

z
+ z

5!
+ z3

7!
+ · · ·

(0 < |z| < ∞)

has a pole of order m = 3 at z0 = 0, with residue B = 1/6.

∗Reasons for the terminology pole are suggested on p. 70 of the book by R. P. Boas that is listed in
Appendix 1.
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There remain two extremes, the case in which every coefficient in the principal
part (2) is zero and the one in which an infinie number of them are nonzero.

When every bn is zero, so that

f (z) =
∞∑

n=0

an(z − z0)
n = a0 + a1(z − z0) + a2(z − z0)

2 + · · ·(4)

(0 < |z − z0| < R2),

z0 is known as a removable singular point. Note that the residue at a removable
singular point is always zero. If we define, or possibly redefine, f at z0 so that
f (z0) = a0, expansion (4) becomes valid throughout the entire disk |z − z0| < R2.
Since a power series always represents an analytic function interior to its circle of
convergence (Sec. 65), it follows that f is analytic at z0 when it is assigned the
value a0 there. The singularity z0 is, therefore, removed.

EXAMPLE 4. The point z0 = 0 is a removable singular point of the function

f (z) = 1 − cos z

z2

because

f (z) = 1

z2

[
1 −

(
1 − z2

2!
+ z4

4!
− z6

6!
+ · · ·

)]
= 1

2!
− z2

4!
+ z4

6!
− · · ·
(0 < |z| < ∞).

When the value f (0) = 1/2 is assigned, f becomes entire.

If an infinite number of the coefficients bn in the principal part (2) are nonzero,
z0 is said to be an essential singular point of f .

EXAMPLE 5. We recall from Example 1 in Sec. 62 that

e1/z =
∞∑

n=0

1

n!
· 1

zn
= 1 + 1

1!
· 1

z
+ 1

2!
· 1

z2
+ · · · (0 < |z| < ∞).

From this we see that e1/z has an essential singular point at z0 = 0, where the
residue b1 is unity.

This example can be used to illustrate (see Exercise 4) an important result known
as Picard’s theorem. It concerns the behavior of a function near an essential singular
point and states that in each neighborhood of an essential singular point, a function
assumes every finite value, with one possible exception, an infinite number of times.∗

∗For a proof of Picard’s theorem, see Sec. 51 in Vol. III of the book by Markushevich, cited in
Appendix 1.
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In the remaining sections of this chapter, we shall develop in greater depth
the theory of the three types of isolated singular points just described. The empha-
sis will be on useful and efficient methods for identifying poles and finding the
corresponding residues.

EXERCISES
1. In each case, write the principal part of the function at its isolated singular point and

determine whether that point is a pole, a removable singular point, or an essential
singular point:

(a) z exp

(
1

z

)
; (b)

z2

1 + z
; (c)

sin z

z
; (d)

cos z

z
; (e)

1

(2 − z)3
.

2. Show that the singular point of each of the following functions is a pole. Determine
the order m of that pole and the corresponding residue B.

(a)
1 − cosh z

z3
; (b)

1 − exp(2z)

z4
; (c)

exp(2z)

(z − 1)2
.

Ans. (a) m = 1, B = −1/2 ; (b) m = 3, B = −4/3 ; (c) m = 2, B = 2e2.

3. Suppose that a function f is analytic at z0, and write g(z) = f (z)/(z − z0). Show that

(a) if f (z0) �= 0, then z0 is a simple pole of g, with residue f (z0);
(b) if f (z0) = 0, then z0 is a removable singular point of g.

Suggestion: As pointed out in Sec. 57, there is a Taylor series for f (z) about z0
since f is analytic there. Start each part of this exercise by writing out a few terms
of that series.

4. Use the fact (see Sec. 29) that ez = −1 when

z = (2n + 1)πi (n = 0,±1,±2, . . .)

to show that e1/z assumes the value −1 an infinite number of times in each neighbor-
hood of the origin. More precisely, show that e1/z = −1 when

z = − i

(2n + 1)π
(n = 0,±1,±2, . . .);

then note that if n is large enough, such points lie in any given ε neighborhood
of the origin. Zero is evidently the exceptional value in Picard’s theorem, stated in
Example 5, Sec. 72.

5. Write the function

f (z) = 8a3z2

(z2 + a2)3
(a > 0)

as

f (z) = φ(z)

(z − ai)3
where φ(z) = 8a3z2

(z + ai)3
.
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Point out why φ(z) has a Taylor series representation about z = ai, and then use it to
show that the principal part of f at that point is

φ′′(ai)/2

z − ai
+ φ′(ai)

(z − ai)2
+ φ(ai)

(z − ai)3
= − i/2

z − ai
− a/2

(z − ai)2
− a2i

(z − ai)3
.

73. RESIDUES AT POLES
When a function f has an isolated singularity at a point z0 , the basic method for
identifying z0 as a pole and finding the residue there is to write the appropriate
Laurent series and to note the coefficient of 1/(z − z0). The following theorem
provides an alternative characterization of poles and a way of finding residues at
poles that is often more convenient.

Theorem. An isolated singular point z0 of a function f is a pole of order m

if and only if f (z) can be written in the form

f (z) = φ(z)

(z − z0)m
,(1)

where φ(z) is analytic and nonzero at z0 . Moreover,

Res
z=z0

f (z) = φ(z0) if m = 1(2)

and

Res
z=z0

f (z) = φ(m−1)(z0)

(m − 1)!
if m ≥ 2.(3)

Observe that expression (2) need not have been written separately since, with
the convention that φ(0)(z0) = φ(z0) and 0! = 1, expression (3) reduces to it when
m = 1.

To prove the theorem, we first assume that f (z) has the form (1) and recall
(Sec. 57) that since φ(z) is analytic at z0, it has a Taylor series representation

φ(z) = φ(z0) + φ′(z0)

1!
(z − z0) + φ′′(z0)

2!
(z − z0)

2 + · · · + φ(m−1)(z0)

(m − 1)!
(z − z0)

m−1

+
∞∑

n=m

φ(n)(z0)

n!
(z − z0)

n

in some neighborhood |z − z0| < ε of z0; and from expression (1) it follows that

f (z) = φ(z0)

(z − z0)m
+ φ′(z0)/1!

(z − z0)m−1
+ φ′′(z0)/2!

(z − z0)m−2
+ · · · + φ(m−1)(z0)/(m − 1)!

z − z0

+
∞∑

n=m

φ(n)(z0)

n!
(z − z0)

n−m
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when 0 < |z − z0| < ε. This Laurent series representation, together with the fact
that φ(z0) �= 0, reveals that z0 is, indeed, a pole of order m of f (z). The coefficient
of 1/(z − z0) tells us, of course, that the residue of f (z) at z0 is as in the statement
of the theorem.

Suppose, on the other hand, that we know only that z0 is a pole of order m of
f , or that f (z) has a Laurent series representation

f (z) =
∞∑

n=0

an(z − z0)
n + b1

z − z0
+ b2

(z − z0)2
+ · · · + bm−1

(z − z0)m−1
+ bm

(z − z0)m

(bm �= 0)

which is valid in a punctured disk 0 < |z − z0| < R2. The function φ(z) defined by
means of the equations

φ(z) =
{
(z − z0)

mf (z) when z �= z0,

bm when z = z0

evidently has the power series representation

φ(z) = bm + bm−1(z − z0) + · · · + b2(z − z0)
m−2 + b1(z − z0)

m−1

+
∞∑

n=0

an(z − z0)
m+n

throughout the entire disk |z − z0| < R2. Consequently, φ(z) is analytic in that disk
(Sec. 65) and, in particular, at z0. Inasmuch as φ(z0) = bm �= 0, expression (1) is
established; and the proof of the theorem is complete.

74. EXAMPLES
The following examples serve to illustrate the use of the theorem in Sec. 73.

EXAMPLE 1. The function

f (z) = z + 1

z2 + 9

has an isolated singular point at z = 3i and can be written

f (z) = φ(z)

z − 3i
where φ(z) = z + 1

z + 3i
.

Since φ(z) is analytic at z = 3i and φ(3i) �= 0, that point is a simple pole of the
function f ; and the residue there is

B1 = φ(3i) = 3i + 1

6i
· −i

−i
= 3 − i

6
.
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The point z = −3i is also a simple pole of f , with residue

B2 = 3 + i

6
.

EXAMPLE 2. If

f (z) = z3 + 2z

(z − i)3
,

then

f (z) = φ(z)

(z − i)3
where φ(z) = z3 + 2z.

The function φ(z) is entire, and φ(i) = i �= 0. Hence f has a pole of order 3 at
z = i, with residue

B = φ′′(i)
2!

= 6i

2!
= 3i.

The theorem can, of course, be used when branches of multiple-valued functions
are involved.

EXAMPLE 3. Suppose that

f (z) = (log z)3

z2 + 1
,

where the branch

log z = ln r + iθ (r > 0, 0 < θ < 2π)

of the logarithmic function is to be used. To find the residue of f at the singularity
z = i, we write

f (z) = φ(z)

z − i
where φ(z) = (log z)3

z + i
.

The function φ(z) is clearly analytic at z = i; and, since

φ(i) = (log i)3

2i
= (ln 1 + iπ/2)3

2i
= −π3

16
�= 0,

f has a simple pole there. The residue is

B = φ(i) = −π3

16
.

While the theorem in Sec. 73 can be extremely useful, the identification of an
isolated singular point as a pole of a certain order is sometimes done most efficiently
by appealing directly to a Laurent series.
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EXAMPLE 4. If, for instance, the residue of the function

f (z) = sinh z

z4

is needed at the singularity z = 0, it would be incorrect to write

f (z) = φ(z)

z4
where φ(z) = sinh z

and to attempt an application of formula (3) in Sec. 73 with m = 4. For it is
necessary that φ(z0) �= 0 if that formula is to be used. In this case, the simplest way
to find the residue is to write out a few terms of the Laurent series for f (z), as was
done in Example 3 of Sec. 72. There it was shown that z = 0 is a pole of the third
order, with residue B = 1/6.

In some cases, the series approach can be effectively combined with the theorem
in Sec. 73.

EXAMPLE 5. Since z(ez − 1) is entire and its zeros are

z = 2nπi (n = 0, ±1,±2, . . .),

the point z = 0 is clearly an isolated singular point of the function

f (z) = 1

z(ez − 1)
.

From the Maclaurin series

ez = 1 + z

1!
+ z2

2!
+ z3

3!
+ · · · (|z| < ∞),

we see that

z(ez − 1) = z

(
z

1!
+ z2

2!
+ z3

3!
+ · · ·

)
= z2

(
1 + z

2!
+ z2

3!
+ · · ·

)
(|z| < ∞).

Thus

f (z) = φ(z)

z2
where φ(z) = 1

1 + z/2! + z2/3! + · · · .

Since φ(z) is analytic at z = 0 and φ(0) = 1 �= 0, the point z = 0 is a pole of the
second order; and, according to formula (3) in Sec. 73, the residue is B = φ ′(0).
Because

φ′(z) = −(1/2! + 2z/3! + · · ·)
(1 + z/2! + z2/3! + · · ·)2

in a neighborhood of the origin, then, B = −1/2.
This residue can also be found by dividing our series for z(ez − 1) into 1, or

by multiplying the Laurent series for 1/(ez − 1) in Exercise 3, Sec. 67, by 1/z.
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EXERCISES
1. In each case, show that any singular point of the function is a pole. Determine the

order m of each pole, and find the corresponding residue B.

(a)
z2 + 2

z − 1
; (b)

(
z

2z + 1

)3

; (c)
exp z

z2 + π2
.

Ans. (a) m = 1, B = 3; (b) m = 3, B = −3/16 ; (c) m = 1, B = ± i/2π .

2. Show that

(a) Res
z=−1

z1/4

z + 1
= 1 + i√

2
(|z| > 0, 0 < arg z < 2π);

(b) Res
z=i

Log z

(z2 + 1)2
= π + 2i

8
;

(c) Res
z=i

z1/2

(z2 + 1)2
= 1 − i

8
√

2
(|z| > 0, 0 < arg z < 2π).

3. Find the value of the integral ∫
C

3z3 + 2

(z − 1)(z2 + 9)
dz ,

taken counterclockwise around the circle (a) |z − 2| = 2 ; (b) |z| = 4.
Ans. (a) πi; (b) 6πi.

4. Find the value of the integral ∫
C

dz

z3(z + 4)
,

taken counterclockwise around the circle (a) |z| = 2 ; (b) |z + 2| = 3.
Ans. (a) πi/32 ; (b) 0 .

5. Evaluate the integral ∫
C

cosh πz

z(z2 + 1)
dz

when C is the circle |z| = 2, described in the positive sense.
Ans. 4πi.

6. Use the theorem in Sec. 71, involving a single residue, to evaluate the integral of f (z)

around the positively oriented circle |z| = 3 when

(a) f (z) = (3z + 2)2

z(z − 1)(2z + 5)
; (b) f (z) = z3(1 − 3z)

(1 + z)(1 + 2z4)
; (c) f (z) = z3e1/z

1 + z3
.

Ans. (a) 9πi; (b) −3πi; (c) 2πi.

7. Let z0 be an isolated singular point of a function f and suppose that

f (z) = φ(z)

(z − z0)m
,

where m is a positive integer and φ(z) is analytic and nonzero at z0. By applying
the extended form (6), Sec. 51, of the Cauchy integral formula to the function φ(z),
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show that

Res
z=z0

f (z) = φ(m−1)(z0)

(m − 1)!
,

as stated in the theorem of Sec. 73.
Suggestion: Since there is a neighborhood |z − z0| < ε throughout which φ(z) is

analytic (see Sec. 24), the contour used in the extended Cauchy integral formula can
be the positively oriented circle |z − z0| = ε/2.

75. ZEROS OF ANALYTIC FUNCTIONS
Zeros and poles of functions are closely related. In fact, we shall see in the next
section how zeros can be a source of poles. We need, however, some preliminary
results regarding zeros of analytic functions.

Suppose that a function f is analytic at a point z0. We know from Sec. 52 that
all of the derivatives f (n)(z) (n = 1, 2, . . .) exist at z0. If f (z0) = 0 and if there
is a positive integer m such that f (m)(z0) �= 0 and each derivative of lower order
vanishes at z0 , then f is said to have a zero of order m at z0. Our first theorem
here provides a useful alternative characterization of zeros of order m.

Theorem 1. Let a function f be analytic at a point z0. It has a zero of order
m at z0 if and only if there is a function g, which is analytic and nonzero at z0 , such
that

f (z) = (z − z0)
mg(z).(1)

Both parts of the proof that follows use the fact (Sec. 57) that if a function is
analytic at a point z0, then it must have a Taylor series representation in powers of
z − z0 which is valid throughout a neighborhood |z − z0| < ε of z0.

We start the first part of the proof by assuming that expression (1) holds and
noting that since g(z) is analytic at z0 , it has a Taylor series representation

g(z) = g(z0) + g′(z0)

1!
(z − z0) + g′′(z0)

2!
(z − z0)

2 + · · ·

in some neighborhood |z − z0| < ε of z0. Expression (1) thus takes the form

f (z) = g(z0)(z − z0)
m + g′(z0)

1!
(z − z0)

m+1 + g′′(z0)

2!
(z − z0)

m+2 + · · ·

when |z − z0| < ε. Since this is actually a Taylor series expansion for f (z), accord-
ing to Theorem 1 in Sec. 66, it follows that

f (z0) = f ′(z0) = f ′′(z0) = · · · = f (m−1)(z0) = 0(2)
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and that

f (m)(z0) = m!g(z0) �= 0.(3)

Hence z0 is a zero of order m of f .
Conversely, if we assume that f has a zero of order m at z0 , the analyticity

of f at z0 and the fact that conditions (2) hold tell us that in some neighborhood
|z − z0| < ε, there is a Taylor series

f (z) =
∞∑

n=m

f (n)(z0)

n!
(z − z0)

n

= (z − z0)
m

[
f (m)(z0)

m!
+ f (m+1)(z0)

(m + 1)!
(z − z0) + f (m+2)(z0)

(m + 2)!
(z − z0)

2 + · · ·
]
.

Consequently, f (z) has the form (1), where

g(z) = f (m)(z0)

m!
+ f (m+1)(z0)

(m + 1)!
(z − z0) + f (m+2)(z0)

(m + 2)!
(z − z0)

2 + · · ·
(|z − z0| < ε).

The convergence of this last series when |z − z0| < ε ensures that g is analytic in
that neighborhood and, in particular, at z0 (Sec. 65). Moreover,

g(z0) = f (m)(z0)

m!
�= 0.

This completes the proof of the theorem.

EXAMPLE 1. The polynomial f (z) = z3 − 8 = (z − 2)(z2 + 2z + 4) has a
zero of order m = 1 at z0 = 2 since

f (z) = (z − 2)g(z),

where g(z) = z2 + 2z + 4, and because f and g are entire and g(2) = 12 �= 0.
Note how the fact that z0 = 2 is a zero of order m = 1 of f also follows from the
observations that f is entire and that

f (2) = 0 and f ′(2) = 12 �= 0.

EXAMPLE 2. The entire function f (z) = z(ez − 1) has a zero of order
m = 2 at the point z0 = 0 since

f (0) = f ′(0) = 0 and f ′′(0) = 2 �= 0.

In this case, expression (1) becomes

f (z) = (z − 0)2g(z),
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where g is the entire function (see Example 1, Sec. 65) defined by means of the
equations

g(z) =
{
(ez − 1)/z when z �= 0,

1 when z = 0.

Our next theorem tells us that the zeros of an analytic function are isolated
when the function is not identically equal to zero.

Theorem 2. Given a function f and a point z0 , suppose that

(a) f is analytic at z0 ;

(b) f (z0) = 0 but f (z) is not identically equal to zero in any neighborhood of z0 .

Then f (z) �= 0 throughout some deleted neighborhood 0 < |z − z0| < ε of z0 .

To prove this, let f be as stated and observe that not all of the derivatives of
f at z0 are zero. If they were, all of the coefficients in the Taylor series for f about
z0 would be zero ; and that would mean that f (z) is identically equal to zero in
some neighborhood of z0 . So it is clear from the definition of zeros of order m at
the beginning of this section that f must have a zero of some finite order m at z0.
According to Theorem 1, then,

f (z) = (z − z0)
mg(z)(4)

where g(z) is analytic and nonzero at z0 .
Now g is continuous, in addition to being nonzero, at z0 because it is ana-

lytic there. Hence there is some neighborhood |z − z0| < ε in which equation (4)
holds and in which g(z) �= 0 (see Sec. 18). Consequently, f (z) �= 0 in the deleted
neighborhood 0 < |z − z0| < ε; and the proof is complete.

Our final theorem here concerns functions with zeros that are not all isolated.
It was referred to earlier in Sec. 27 and makes an interesting contrast to Theorem 2
just above.

Theorem 3. Given a function f and a point z0 , suppose that

(a) f is analytic throughout a neighborhood N0 of z0 ;

(b) f (z) = 0 at each point z of a domain D or line segment L containing z0

(Fig. 90).

Then f (z) ≡ 0 in N0; that is, f (z) is identically equal to zero throughout N0.

We begin the proof with the observation that under the stated conditions,
f (z) ≡ 0 in some neighborhood N of z0. For, otherwise, there would be a deleted
neighborhood of z0 throughout which f (z) �= 0, according to Theorem 2 ; and that
would be inconsistent with the condition that f (z) = 0 everywhere in a domain D
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x

z0

N0

D

L

O

y

FIGURE 90

or on a line segment L containing z0 . Since f (z) ≡ 0 in the neighborhood N , then,
it follows that all of the coefficients

an = f (n)(z0)

n!
(n = 0, 1, 2, . . .)

in the Taylor series for f (z) about z0 must be zero. Thus f (z) ≡ 0 in the neighborhood
N0, since the Taylor series also represents f (z) in N0. This completes the proof.

76. ZEROS AND POLES
The following theorem shows how zeros of order m can create poles of order m.

Theorem 1. Suppose that

(a) two functions p and q are analytic at a point z0 ;

(b) p(z0) �= 0 and q has a zero of order m at z0 .

Then the quotient p(z)/q(z) has a pole of order m at z0 .

The proof is easy. Let p and q be as in the statement of the theorem. Since q has
a zero of order m at z0, we know from Theorem 2 in Sec. 75 that there is a deleted
neighborhood of z0 throughout which q(z) �= 0 ; and so z0 is an isolated singular
point of the quotient p(z)/q(z). Theorem 1 in Sec. 75 tells us, moreover, that

q(z) = (z − z0)
mg(z),

where g is analytic and nonzero at z0 ; and this enables us to write

p(z)

q(z)
= φ(z)

(z − z0)m
where φ(z) = p(z)

g(z)
.(1)

Since φ(z) is analytic and nonzero at z0 , it now follows from the theorem in Sec.
73 that z0 is a pole of order m of p(z)/q(z).



Brown-chap06-v3 10/30/07 3:30pm 253

sec. 76 Zeros and Poles 253

EXAMPLE 1. The two functions

p(z) = 1 and q(z) = z(ez − 1)

are entire; and we know from Example 2 in Sec. 75 that q has a zero of order
m = 2 at the point z0 = 0. Hence it follows from Theorem 1 that the quotient

p(z)

q(z)
= 1

z(ez − 1)

has a pole of order 2 at that point. This was demonstrated in another way in
Example 5, Sec. 74.

Theorem 1 leads us to another method for identifying simple poles and find-
ing the corresponding residues. This method, stated just below as Theorem 2, is
sometimes easier to use than the theorem in Sec. 73.

Theorem 2. Let two functions p and q be analytic at a point z0 . If

p(z0) �= 0, q(z0) = 0, and q ′(z0) �= 0,

then z0 is a simple pole of the quotient p(z)/q(z) and

Res
z=z0

p(z)

q(z)
= p(z0)

q ′(z0)
.(2)

To show this, we assume that p and q are as stated and observe that because of
the conditions on q, the point z0 is a zero of order m = 1 of that function. According
to Theorem 1 in Sec. 75, then,

q(z) = (z − z0)g(z)(3)

where g(z) is analytic and nonzero at z0. Furthermore, Theorem 1 in this section
tells us that z0 is a simple pole of p(z)/q(z); and expression (1) for p(z)/q(z) in
the proof of that theorem becomes

p(z)

q(z)
= φ(z)

z − z0
where φ(z) = p(z)

g(z)
.

Since this φ(z) is analytic and nonzero at z0, we know from the theorem in Sec. 73
that

Res
z=z0

p(z)

q(z)
= p(z0)

g(z0)
.(4)

But g(z0) = q ′(z0), as is seen by differentiating each side of equation (3) and then
setting z = z0. Expression (4) thus takes the form (2).

EXAMPLE 2. Consider the function

f (z) = cot z = cos z

sin z
,
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which is a quotient of the entire functions p(z) = cos z and q(z) = sin z. Its singu-
larities occur at the zeros of q, or at the points

z = nπ (n = 0, ±1, ±2, . . .).

Since

p(nπ) = (−1)n �= 0, q(nπ) = 0, and q ′(nπ) = (−1)n �= 0,

each singular point z = nπ of f is a simple pole, with residue

Bn = p(nπ)

q ′(nπ)
= (−1)n

(−1)n
= 1.

EXAMPLE 3. The residue of the function

f (z) = tanh z

z2
= sinh z

z2 cosh z

at the zero z = πi/2 of cosh z (see Sec. 35) is readily found by writing

p(z) = sinh z and q(z) = z2 cosh z.

Since

p

(
πi

2

)
= sinh

(
πi

2

)
= i sin

π

2
= i �= 0

and

q

(
πi

2

)
= 0, q ′

(
πi

2

)
=

(
πi

2

)2

sinh

(
πi

2

)
= −π2

4
i �= 0,

we find that z = πi/2 is a simple pole of f and that the residue there is

B = p(πi/2)

q ′(πi/2)
= − 4

π2
.

EXAMPLE 4. Since the point

z0 =
√

2eiπ/4 = 1 + i

is a zero of the polynomial z4 + 4 (see Exercise 6, Sec. 10), it is also an isolated
singularity of the function

f (z) = z

z4 + 4
.

Writing p(z) = z and q(z) = z4 + 4, we find that

p(z0) = z0 �= 0, q(z0) = 0, and q ′(z0) = 4z3
0 �= 0



Brown-chap06-v3 10/30/07 3:30pm 255

sec. 76 Exercises 255

and hence that z0 is a simple pole of f . The residue there is, moreover,

B0 = p(z0)

q ′(z0)
= z0

4z3
0

= 1

4z2
0

= 1

8i
= − i

8
.

Although this residue can also be found by the method in Sec. 73, the computation
is somewhat more involved.

There are formulas similar to formula (2) for residues at poles of higher order,
but they are lengthier and, in general, not practical.

EXERCISES
1. Show that the point z = 0 is a simple pole of the function

f (z) = csc z = 1

sin z

and that the residue there is unity by appealing to

(a) Theorem 2 in Sec. 76 ;
(b) the Laurent series for csc z that was found in Exercise 2, Sec. 67.

2. Show that

(a) Res
z=πi

z − sinh z

z2 sinh z
= i

π
;

(b) Res
z=πi

exp(zt)

sinh z
+ Res

z=−πi

exp(zt)

sinh z
= −2 cos (πt).

3. Show that

(a) Res
z=zn

(z sec z) = (−1)n+1 zn where zn = π

2
+ nπ (n = 0,±1,±2, . . .);

(b) Res
z=zn

(tanh z) = 1 where zn =
(π

2
+ nπ

)
i (n = 0,±1,±2, . . .).

4. Let C denote the positively oriented circle |z| = 2 and evaluate the integral

(a)
∫

C

tan z dz; (b)
∫

C

dz

sinh 2z
.

Ans. (a) −4πi; (b) −πi.

5. Let CN denote the positively oriented boundary of the square whose edges lie along
the lines

x = ±
(

N + 1

2

)
π and y = ±

(
N + 1

2

)
π,

where N is a positive integer. Show that

∫
CN

dz

z2 sin z
= 2πi

[
1

6
+ 2

N∑
n=1

(−1)n

n2π2

]
.
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Then, using the fact that the value of this integral tends to zero as N tends to infinity
(Exercise 8, Sec. 43), point out how it follows that

∞∑
n=1

(−1)n+1

n2
= π2

12
.

6. Show that ∫
C

dz

(z2 − 1)2 + 3
= π

2
√

2
,

where C is the positively oriented boundary of the rectangle whose sides lie along the
lines x = ±2, y = 0, and y = 1.

Suggestion: By observing that the four zeros of the polynomial q(z) = (z2 − 1)2 + 3
are the square roots of the numbers 1 ± √

3i, show that the reciprocal 1/q(z) is analytic
inside and on C except at the points

z0 =
√

3 + i√
2

and − z0 = −√
3 + i√
2

.

Then apply Theorem 2 in Sec. 76.

7. Consider the function

f (z) = 1

[q(z)]2

where q is analytic at z0, q(z0) = 0, and q ′(z0) �= 0. Show that z0 is a pole of order
m = 2 of the function f , with residue

B0 = − q ′′(z0)

[q ′(z0)]3
.

Suggestion: Note that z0 is a zero of order m = 1 of the function q, so that

q(z) = (z − z0)g(z)

where g(z) is analytic and nonzero at z0. Then write

f (z) = φ(z)

(z − z0)2
where φ(z) = 1

[g(z)]2
.

The desired form of the residue B0 = φ′(z0) can be obtained by showing that

q ′(z0) = g(z0) and q ′′(z0) = 2g′(z0).

8. Use the result in Exercise 7 to find the residue at z = 0 of the function

(a) f (z) = csc2 z; (b) f (z) = 1

(z + z2)2
.

Ans. (a) 0 ; (b) −2.

9. Let p and q denote functions that are analytic at a point z0 , where p(z0) �= 0 and
q(z0) = 0. Show that if the quotient p(z)/q(z) has a pole of order m at z0 , then z0 is
a zero of order m of q. (Compare with Theorem 1 in Sec. 76.)
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Suggestion: Note that the theorem in Sec. 73 enables one to write

p(z)

q(z)
= φ(z)

(z − z0)m
,

where φ(z) is analytic and nonzero at z0 . Then solve for q(z).

10. Recall (Sec. 11) that a point z0 is an accumulation point of a set S if each deleted neigh-
borhood of z0 contains at least one point of S. One form of the Bolzano–Weierstrass
theorem can be stated as follows: an infinite set of points lying in a closed bounded
region R has at least one accumulation point in R.∗ Use that theorem and Theorem 2
in Sec. 75 to show that if a function f is analytic in the region R consisting of all
points inside and on a simple closed contour C, except possibly for poles inside C,
and if all the zeros of f in R are interior to C and are of finite order, then those zeros
must be finite in number.

11. Let R denote the region consisting of all points inside and on a simple closed contour
C. Use the Bolzano–Weierstrass theorem (see Exercise 10) and the fact that poles are
isolated singular points to show that if f is analytic in the region R except for poles
interior to C, then those poles must be finite in number.

77. BEHAVIOR OF FUNCTIONS NEAR ISOLATED
SINGULAR POINTS

As already indicated in Sec. 72, the behavior of a function f near an isolated singular
point z0 varies, depending on whether z0 is a pole, a removable singular point, or
an essential singular point. In this section, we develop the differences in behavior
somewhat further. Since the results presented here will not be used elsewhere in the
book, the reader who wishes to reach applications of residue theory more quickly
may pass directly to Chap. 7 without disruption.

Theorem 1. If z0 is a pole of a function f , then

lim
z→z0

f (z) = ∞.(1)

To verify limit (1), we assume that f has a pole of order m at z0 and use the
theorem in Sec. 73. It tells us that

f (z) = φ(z)

(z − z0)m
,

where φ(z) is analytic and nonzero at z0. Since

lim
z→z0

1

f (z)
= lim

z→z0

(z − z0)
m

φ(z)
=

lim
z→z0

(z − z0)
m

lim
z→z0

φ(z)
= 0

φ(z0)
= 0,

∗See, for example, A. E. Taylor and W. R. Mann. “Advanced Calculus,” 3d ed., pp. 517 and 521,
1983.
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then, limit (1) holds, according to the theorem in Sec. 17 regarding limits that
involve the point at infinity.

The next theorem emphasizes how the behavior of f near a removable singular
point is fundamentally different from behavior near a pole.

Theorem 2. If z0 is a removable singular point of a functionf , thenf is analytic
and bounded in some deleted neighborhood 0 < |z − z0| < ε of z0 .

The proof is easy and is based on the fact that the function f here is analytic
in a disk |z − z0| < R2 when f (z0) is properly defined ; f is then continuous in
any closed disk |z − z0| ≤ ε where ε < R2. Consequently, f is bounded in that
disk, according to Theorem 3 in Sec. 18; and this means that, in addition to being
analytic, f must be bounded in the deleted neighborhood 0 < |z − z0| < ε.

The proof of our final theorem, regarding the behavior of a function near an
essential singular point, relies on the following lemma, which is closely related to
Theorem 2 and is known as Riemann’s theorem.

Lemma. Suppose that a function f is analytic and bounded in some deleted
neighborhood 0 < |z − z0| < ε of a point z0 . If f is not analytic at z0 , then it has
a removable singularity there.

To prove this, we assume that f is not analytic at z0. As a consequence, the
point z0 must be an isolated singularity of f ; and f (z) is represented by a Laurent
series

f (z) =
∞∑

n=0

an(z − z0)
n +

∞∑
n=1

bn

(z − z0)n
(2)

throughout the deleted neighborhood 0 < |z − z0| < ε. If C denotes a positively
oriented circle |z − z0| = ρ, where ρ < ε (Fig. 91), we know from Sec. 60 that the

x

z0

C

O

y

ε

FIGURE 91
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coefficients bn in expansion (2) can be written

bn = 1

2πi

∫
C

f (z) dz

(z − z0)−n+1
(n = 1, 2, . . .).(3)

Now the boundedness condition on f tells us that there is a positive constant M

such that |f (z)| ≤ M whenever 0 < |z − z0| < ε. Hence it follows from expression
(3) that

|bn| ≤ 1

2π
· M

ρ−n+1
2πρ = Mρn (n = 1, 2, . . .).

Since the coefficients bn are constants and since ρ can be chosen arbitrarily small,
we may conclude that bn = 0 (n = 1, 2, . . .) in the Laurent series (2). This tells us
that z0 is a removable singularity of f , and the proof of the lemma is complete.

We know from Sec. 72 that the behavior of a function near an essential singular
point is quite irregular. The next theorem, regarding such behavior, is related to
Picard’s theorem in that earlier section and is usually referred to as the Casorati–
Weierstrass theorem. It states that in each deleted neighborhood of an essential
singular point, a function assumes values arbitrarily close to any given number.

Theorem 3. Suppose that z0 is an essential singularity of a function f , and
let w0 be any complex number. Then, for any positive number ε, the inequality

|f (z) − w0| < ε(4)

is satisfied at some point z in each deleted neighborhood 0 < |z − z0| < δ of z0

(Fig. 92).

x uO

y

z0z

O

v

w0

f (z)

ε

FIGURE 92

The proof is by contradiction. Since z0 is an isolated singularity of f , there
is a deleted neighborhood 0 < |z − z0| < δ throughout which f is analytic; and we
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assume that condition (4) is not satisfied for any point z there. Thus |f (z) − w0| ≥ ε

when 0 < |z − z0| < δ; and so the function

g(z) = 1

f (z) − w0
(0 < |z − z0| < δ)(5)

is bounded and analytic in its domain of definition. Hence, according to our lemma,
z0 is a removable singularity of g; and we let g be defined at z0 so that it is analytic
there.

If g(z0) �= 0, the function f (z), which can be written

f (z) = 1

g(z)
+ w0(6)

when 0 < |z − z0| < δ, becomes analytic at z0 when it is defined there as

f (z0) = 1

g(z0)
+ w0.

But this means that z0 is a removable singularity of f , not an essential one, and we
have a contradiction.

If g(z0) = 0, the function g must have a zero of some finite order m (Sec. 75)
at z0 because g(z) is not identically equal to zero in the neighborhood |z − z0| < δ.
In view of equation (6), then, f has a pole of order m at z0 (see Theorem 1 in
Sec. 76). So, once again, we have a contradiction; and Theorem 3 here is proved.
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7
APPLICATIONS OF RESIDUES

We turn now to some important applications of the theory of residues, which was
developed in Chap. 6. The applications include evaluation of certain types of def-
inite and improper integrals occurring in real analysis and applied mathematics.
Considerable attention is also given to a method, based on residues, for locating
zeros of functions and to finding inverse Laplace transforms by summing residues.

78. EVALUATION OF IMPROPER INTEGRALS

In calculus, the improper integral of a continuous function f (x) over the semi-
infinite interval 0 ≤ x < ∞ is defined by means of the equation

∫ ∞

0
f (x) dx = lim

R→∞

∫ R

0
f (x) dx.(1)

When the limit on the right exists, the improper integral is said to converge to that
limit. If f (x) is continuous for all x, its improper integral over the infinite interval
−∞ < x < ∞ is defined by writing

∫ ∞

−∞
f (x) dx = lim

R1→∞

∫ 0

−R1

f (x) dx + lim
R2→∞

∫ R2

0
f (x) dx;(2)

and when both of the limits here exist, we say that integral (2) converges to their
sum. Another value that is assigned to integral (2) is often useful. Namely, the

261
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Cauchy principal value (P.V.) of integral (2) is the number

P.V.
∫ ∞

−∞
f (x) dx = lim

R→∞

∫ R

−R

f (x) dx,(3)

provided this single limit exists.
If integral (2) converges, its Cauchy principal value (3) exists; and that value

is the number to which integral (2) converges. This is because

lim
R→∞

∫ R

−R

f (x) dx = lim
R→∞

[∫ 0

−R

f (x) dx +
∫ R

0
f (x) dx

]

= lim
R→∞

∫ 0

−R

f (x) dx + lim
R→∞

∫ R

0
f (x) dx

and these last two limits are the same as the limits on the right in equation (2).
It is not, however, always true that integral (2) converges when its Cauchy

principal value exists, as the following example shows.

EXAMPLE. Observe that

P.V.
∫ ∞

−∞
x dx = lim

R→∞

∫ R

−R

x dx = lim
R→∞

[
x2

2

]R

−R

= lim
R→∞

0 = 0.(4)

On the other hand,∫ ∞

−∞
x dx = lim

R1→∞

∫ 0

−R1

x dx + lim
R2→∞

∫ R2

0
x dx(5)

= lim
R1→∞

[
x2

2

]0

−R1

+ lim
R2→∞

[
x2

2

]R2

0

= − lim
R1→∞

R2
1

2
+ lim

R2→∞
R2

2

2
;

and since these last two limits do not exist, we find that the improper integral (5)
fails to exist.

But suppose that f (x) (−∞ < x < ∞) is an even function, one where

f (−x) = f (x) for all x,

and assume that the Cauchy principal value (3) exists. The symmetry of the graph
of y = f (x) with respect to the y axis tells us that∫ 0

−R1

f (x) dx = 1

2

∫ R1

−R1

f (x) dx
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and ∫ R2

0
f (x) dx = 1

2

∫ R2

−R2

f (x) dx.

Thus ∫ 0

−R1

f (x) dx +
∫ R2

0
f (x) dx = 1

2

∫ R1

−R1

f (x) dx + 1

2

∫ R2

−R2

f (x) dx.

If we let R1 and R2 tend to ∞ on each side here, the fact that the limits on the
right exist means that the limits on the left do too. In fact,∫ ∞

−∞
f (x) dx = P.V.

∫ ∞

−∞
f (x) dx.(6)

Moreover, since ∫ R

0
f (x) dx = 1

2

∫ R

−R

f (x) dx,

it is also true that ∫ ∞

0
f (x) dx = 1

2

[
P.V.

∫ ∞

−∞
f (x) dx

]
.(7)

We now describe a method involving sums of residues, to be illustrated in the
next section, that is often used to evaluate improper integrals of rational functions
f (x) = p(x)/q(x), where p(x) and q(x) are polynomials with real coefficients and
no factors in common. We agree that q(z) has no real zeros but has at least one
zero above the real axis.

The method begins with the identification of all the distinct zeros of the poly-
nomial q(z) that lie above the real axis. They are, of course, finite in number (see
Sec. 53) and may be labeled z1, z2, . . . , zn, where n is less than or equal to the
degree of q(z). We then integrate the quotient

f (z) = p(z)

q(z)
(8)

around the positively oriented boundary of the semicircular region shown in Fig. 93.

x

z1

z2

CR

O–R R

y

zn

FIGURE 93
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That simple closed contour consists of the segment of the real axis from z = −R

to z = R and the top half of the circle |z| = R, described counterclockwise and
denoted by CR . It is understood that the positive number R is large enough so that
the points z1, z2, . . . , zn all lie inside the closed path.

The parametric representation z = x (−R ≤ x ≤ R) of the segment of the real
axis just mentioned and Cauchy’s residue theorem in Sec. 70 can be used to
write ∫ R

−R

f (x) dx +
∫

CR

f (z) dz = 2πi

n∑
k=1

Res
z=zk

f (z),

or ∫ R

−R

f (x) dx = 2πi

n∑
k=1

Res
z=zk

f (z) −
∫

CR

f (z) dz.(9)

If

lim
R→∞

∫
CR

f (z) dz = 0,

it then follows that

P.V.
∫ ∞

−∞
f (x) dx = 2πi

n∑
k=1

Res
z=zk

f (z);(10)

and if f (x) is even, equations (6) and (7) tell us that∫ ∞

−∞
f (x) dx = 2πi

n∑
k=1

Res
z=zk

f (z)(11)

and ∫ ∞

0
f (x) dx = πi

n∑
k=1

Res
z=zk

f (z).(12)

79. EXAMPLE

We turn now to an illustration of the method in Sec. 78 for evaluating improper
integrals.

EXAMPLE. In order to evaluate the integral∫ ∞

0

x2

x6 + 1
dx,
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we start with the observation that the function

f (z) = z2

z6 + 1

has isolated singularities at the zeros of z6 + 1, which are the sixth roots of −1,
and is analytic everywhere else. The method in Sec. 9 for finding roots of complex
numbers reveals that the sixth roots of −1 are

ck = exp

[
i

(
π

6
+ 2kπ

6

)]
(k = 0, 1, 2, . . . , 5),

and it is clear that none of them lies on the real axis. The first three roots,

c0 = eiπ/6, c1 = i, and c2 = ei5π/6,

lie in the upper half plane (Fig. 94) and the other three lie in the lower one.
When R > 1, the points ck (k = 0, 1, 2) lie in the interior of the semicircular region
bounded by the segment z = x (−R ≤ x ≤ R) of the real axis and the upper half
CR of the circle |z| = R from z = R to z = −R. Integrating f (z) counterclockwise
around the boundary of this semicircular region, we see that

∫ R

−R

f (x) dx +
∫

CR

f (z) dz = 2πi(B0 + B1 + B2),(1)

where Bk is the residue of f (z) at ck (k = 0, 1, 2).

x

c2

c1

CR

O–R R

y

c0

FIGURE 94

With the aid of Theorem 2 in Sec. 76, we find that the points ck are simple
poles of f and that

Bk = Res
z=ck

z2

z6 + 1
= c2

k

6c5
k

= 1

6c3
k

(k = 0, 1, 2).
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Thus

2πi(B0 + B1 + B2) = 2πi

(
1

6i
− 1

6i
+ 1

6i

)
= π

3
;

and equation (1) can be put in the form∫ R

−R

f (x) dx = π

3
−

∫
CR

f (z) dz ,(2)

which is valid for all values of R greater than 1.
Next, we show that the value of the integral on the right in equation (2) tends

to 0 as R tends to ∞. To do this, we observe that when |z| = R,

|z2| = |z|2 = R2

and
|z6 + 1| ≥ | |z|6 − 1| = R6 − 1.

So, if z is any point on CR ,

|f (z)| = |z2|
|z6 + 1| ≤ MR where MR = R2

R6 − 1
;

and this means that ∣∣∣∣
∫

CR

f (z) dz

∣∣∣∣ ≤ MR πR,(3)

πR being the length of the semicircle CR . (See Sec. 43.) Since the number

MR πR = πR3

R6 − 1

is a quotient of polynomials in R and since the degree of the numerator is less than
the degree of the denominator, that quotient must tend to zero as R tends to ∞.
More precisely, if we divide both numerator and denominator by R6 and write

MR πR =
π

R3

1 − 1

R6

,

it is evident that MR πR tends to zero. Consequently, in view of inequality (3),

lim
R→∞

∫
CR

f (z) dz = 0.



Brown-chap07-v2 11/01/07 4:03pm 267

sec. 79 Exercises 267

It now follows from equation (2) that

lim
R→∞

∫ R

−R

x2

x6 + 1
dx = π

3
,

or

P.V.
∫ ∞

−∞

x2

x6 + 1
dx = π

3
.

Since the integrand here is even, we know from equation (7) in Sec. 78 that∫ ∞

0

x2

x6 + 1
dx = π

6
.(4)

EXERCISES

Use residues to evaluate the improper integrals in Exercises 1 through 5.

1.
∫ ∞

0

dx

x2 + 1
.

Ans. π/2.

2.
∫ ∞

0

dx

(x2 + 1)2
.

Ans. π/4.

3.
∫ ∞

0

dx

x4 + 1
.

Ans. π/(2
√

2).

4.
∫ ∞

0

x2 dx

(x2 + 1)(x2 + 4)
.

Ans. π/6.

5.
∫ ∞

0

x2 dx

(x2 + 9)(x2 + 4)2
.

Ans. π/200.

Use residues to find the Cauchy principal values of the integrals in Exercises 6
and 7.

6.
∫ ∞

−∞

dx

x2 + 2x + 2
.

7.
∫ ∞

−∞

x dx

(x2 + 1)(x2 + 2x + 2)
.

Ans. −π/5.

8. Use a residue and the contour shown in Fig. 95, where R > 1, to establish the inte-
gration formula ∫ ∞

0

dx

x3 + 1
= 2π

3
√

3
.
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xO R

y

Rei2   /3

FIGURE 95

9. Let m and n be integers, where 0 ≤ m < n. Follow the steps below to derive the
integration formula

∫ ∞

0

x2m

x2n + 1
dx = π

2n
csc

(
2m + 1

2n
π

)
.

(a) Show that the zeros of the polynomial z2n + 1 lying above the real axis are

ck = exp

[
i
(2k + 1)π

2n

]
(k = 0, 1, 2, . . . , n − 1)

and that there are none on that axis.
(b) With the aid of Theorem 2 in Sec. 76, show that

Res
z=ck

z2m

z2n + 1
= − 1

2n
ei(2k+1)α (k = 0, 1, 2, . . . , n − 1)

where ck are the zeros found in part (a) and

α = 2m + 1

2n
π.

Then use the summation formula

n−1∑
k=0

zk = 1 − zn

1 − z
(z �= 1)

(see Exercise 9, Sec. 8) to obtain the expression

2πi

n−1∑
k=0

Res
z=ck

z2m

z2n + 1
= π

n sin α
.

(c) Use the final result in part (b) to complete the derivation of the integration formula.

10. The integration formula∫ ∞

0

dx

[(x2 − a)2 + 1] 2
= π

8
√

2A3
[(2a2 + 3)

√
A + a + a

√
A − a],
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where a is any real number and A = √
a2 + 1, arises in the theory of case-hardening

of steel by means of radio-frequency heating.∗ Follow the steps below to derive it.

(a) Point out why the four zeros of the polynomial

q(z) = (z2 − a)2 + 1

are the square roots of the numbers a ± i. Then, using the fact that the numbers

z0 = 1√
2
(
√

A + a + i
√

A − a)

and −z0 are the square roots of a + i (Exercise 5, Sec. 10), verify that ± z0 are
the square roots of a − i and hence that z0 and −z0 are the only zeros of q(z) in
the upper half plane Im z ≥ 0.

(b) Using the method derived in Exercise 7, Sec. 76, and keeping in mind that z2
0 = a + i

for purposes of simplification, show that the point z0 in part (a) is a pole of order 2
of the function f (z) = 1/[q(z)]2 and that the residue B1 at z0 can be written

B1 = − q ′′(z0)

[q ′(z0)]3
= a − i(2a2 + 3)

16A2z0
.

After observing that q ′(−z) = − q ′(z) and q ′′(−z) = q ′′(z), use the same method
to show that the point −z0 in part (a) is also a pole of order 2 of the function
f (z), with residue

B2 =
{

q ′′(z0)

[q ′(z0)]3

}
= −B1.

Then obtain the expression

B1 + B2 = 1

8A2i
Im

[−a + i(2a2 + 3)

z0

]

for the sum of these residues.
(c) Refer to part (a) and show that |q(z)| ≥ (R − |z0|)4 if |z| = R, where R > |z0|.

Then, with the aid of the final result in part (b), complete the derivation of the
integration formula.

80. IMPROPER INTEGRALS FROM FOURIER ANALYSIS

Residue theory can be useful in evaluating convergent improper integrals of the
form ∫ ∞

−∞
f (x) sin ax dx or

∫ ∞

−∞
f (x) cos ax dx,(1)

∗See pp. 359–364 of the book by Brown, Hoyler, and Bierwirth that is listed in Appendix 1.
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where a denotes a positive constant. As in Sec. 78, we assume that f (x) = p(x)/q(x)

where p(x) and q(x) are polynomials with real coefficients and no factors in common.
Also, q(x) has no zeros on the real axis and at least one zero above it. Integrals of
type (1) occur in the theory and application of the Fourier integral.∗

The method described in Sec. 78 and used in Sec. 79 cannot be applied directly
here since (see Sec. 34)

|sin az|2 = sin2 ax + sinh2 ay

and
|cos az|2 = cos2 ax + sinh2 ay.

More precisely, since

sinh ay = eay − e−ay

2
,

the moduli |sin az| and |cos az| increase like eay as y tends to infinity. The modifi-
cation illustrated in the example below is suggested by the fact that

∫ R

−R

f (x) cos ax dx + i

∫ R

−R

f (x) sin ax dx =
∫ R

−R

f (x)eiax dx,

together with the fact that the modulus

|eiaz| = |eia(x+iy)| = |e−ayeiax | = e−ay

is bounded in the upper half plane y ≥ 0.

EXAMPLE. Let us show that∫ ∞

−∞

cos 3x

(x2 + 1)2
dx = 2π

e3
.(2)

Because the integrand is even, it is sufficient to show that the Cauchy principal
value of the integral exists and to find that value.

We introduce the function

f (z) = 1

(z2 + 1)2
(3)

and observe that the product f (z)ei3z is analytic everywhere on and above the real
axis except at the point z = i. The singularity z = i lies in the interior of the semi-
circular region whose boundary consists of the segment −R ≤ x ≤ R of the real

∗See the authors’ “Fourier Series and Boundary Value Problems,” 7th ed., Chap. 6, 2008.
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axis and the upper half CR of the circle |z| = R (R > 1) from z = R to z = −R

(Fig. 96). Integration of f (z)ei3z around that boundary yields the equation∫ R

−R

ei3x

(x2 + 1)2
dx = 2πiB1 −

∫
CR

f (z)ei3z dz ,(4)

where
B1 = Res

z=i
[f (z)ei3z].

O

y

CR

x–R R

i

FIGURE 96

Since

f (z)ei3z = φ(z)

(z − i)2
where φ(z) = ei3z

(z + i)2
,

the point z = i is evidently a pole of order m = 2 of f (z)ei3z; and

B1 = φ′(i) = 1

ie3
.

By equating the real parts on each side of equation (4), then, we find that∫ R

−R

cos 3x

(x2 + 1)2
dx = 2π

e3
− Re

∫
CR

f (z)ei3z dz.(5)

Finally, we observe that when z is a point on CR ,

|f (z)| ≤ MR where MR = 1

(R2 − 1)2

and that |ei3z| = e−3y ≤ 1 for such a point. Consequently,∣∣∣∣Re
∫

CR

f (z)ei3z dz

∣∣∣∣ ≤
∣∣∣∣
∫

CR

f (z)ei3z dz

∣∣∣∣ ≤ MR πR.(6)
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Since the quantity

MR πR = πR

(R2 − 1)2
·

1

R4

1

R4

=
π

R3(
1 − 1

R2

)2

tends to 0 as R tends to ∞ and because of inequalities (6), we need only let R tend
to ∞ in equation (5) to arrive at the desired result (2).

81. JORDAN’S LEMMA

In the evaluation of integrals of the type treated in Sec. 80, it is sometimes necessary
to use Jordan’s lemma,∗ which is stated just below as a theorem.

Theorem. Suppose that

(a) a function f (z) is analytic at all points in the upper half plane y ≥ 0 that are
exterior to a circle |z| = R0;

(b) CR denotes a semicircle z = Reiθ (0 ≤ θ ≤ π), where R > R0 (Fig. 97);

(c) for all points z on CR, there is a positive constant MR such that

|f (z)| ≤ MR and lim
R→∞

MR = 0.

Then, for every positive constant a,

lim
R→∞

∫
CR

f (z)eiaz dz = 0.

x

CR

O RR0

y

FIGURE 97

∗See the first footnote in Sec 39.
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The proof is based on Jordan’s inequality:∫ π

0
e−R sin θ dθ <

π

R
(R > 0).(1)

To verify it, we first note from the graphs (Fig. 98) of the functions

y = sin θ and y = 2 θ

π

that

sin θ ≥ 2 θ

π
when 0 ≤ θ ≤ π

2
.

y

O

FIGURE 98

Consequently, if R > 0,

e−R sin θ ≤ e−2Rθ/π when 0 ≤ θ ≤ π

2
;

and so ∫ π/2

0
e−R sin θ dθ ≤

∫ π/2

0
e−2Rθ/π dθ = π

2R
(1 − e−R) (R > 0).

Hence ∫ π/2

0
e−R sin θ dθ ≤ π

2R
(R > 0).(2)

But this is just another form of inequality (1), since the graph of y = sin θ is
symmetric with respect to the vertical line θ = π/2 on the interval 0 ≤ θ ≤ π.

Turning now to the proof of the theorem, we accept statements (a)–(c) there
and write ∫

CR

f (z)eiaz dz =
∫ π

0
f (Reiθ ) exp(iaReiθ )Rieiθ dθ.
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Since ∣∣f (Reiθ )
∣∣ ≤ MR and

∣∣exp(iaReiθ )
∣∣ ≤ e−aR sin θ

and in view of Jordan’s inequality (1), it follows that∣∣∣∣
∫

CR

f (z)eiaz dz

∣∣∣∣ ≤ MRR

∫ π

0
e−aR sin θ dθ <

MRπ

a
.

The final limit in the theorem is now evident since MR → 0 as R → ∞.

EXAMPLE. Let us find the Cauchy principal value of the integral∫ ∞

−∞

x sin x dx

x2 + 2x + 2
.

As usual, the existence of the value in question will be established by our actually
finding it.

We write
f (z) = z

z2 + 2z + 2
= z

(z − z1)(z − z1)
,

where z1 = −1 + i. The point z1, which lies above the x axis, is a simple pole of
the function f (z)eiz, with residue

B1 = z1 eiz1

z1 − z1
.(3)

Hence, when R >
√

2 and CR denotes the upper half of the positively oriented
circle |z| = R, ∫ R

−R

xeix dx

x2 + 2x + 2
= 2πiB1 −

∫
CR

f (z)eiz dz ;

and this means that∫ R

−R

x sin x dx

x2 + 2x + 2
= Im(2πiB1) − Im

∫
CR

f (z)eiz dz.(4)

Now ∣∣∣∣Im
∫

CR

f (z)eiz dz

∣∣∣∣ ≤
∣∣∣∣
∫

CR

f (z)eiz dz

∣∣∣∣;(5)

and we note that when z is a point on CR ,

|f (z)| ≤ MR where MR = R

(R − √
2)2

and that |eiz| = e−y ≤ 1 for such a point. By proceeding as we did in the examples
in Secs. 79 and 80, we cannot conclude that the right-hand side of inequality
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(5), and hence its left-hand side, tends to zero as R tends to infinity. For the
quantity

MRπR = πR2

(R − √
2)2

= π(
1 −

√
2

R

)2

does not tend to zero. The above theorem does, however, provide the desired limit,
namely

lim
R→∞

∫
CR

f (z)eiz dz = 0,

since

MR =
1

R(
1 −

√
2

R

)2
→ 0 as R → ∞ .

So it does, indeed, follow from inequality (5) that the left-hand side there tends
to zero as R tends to infinity. Consequently, equation (4), together with expression
(3) for the residue B1, tells us that

P.V.
∫ ∞

−∞

x sin x dx

x2 + 2x + 2
= Im(2πiB1) = π

e
(sin 1 + cos 1).(6)

EXERCISES

Use residues to evaluate the improper integrals in Exercises 1 through 8.

1.
∫ ∞

−∞

cos x dx

(x2 + a2)(x2 + b2)
(a > b > 0).

Ans.
π

a2 − b2

(
e−b

b
− e−a

a

)
.

2.
∫ ∞

0

cos ax

x2 + 1
dx (a > 0).

Ans.
π

2
e−a.

3.
∫ ∞

0

cos ax

(x2 + b2)2
dx (a > 0, b > 0).

Ans.
π

4b3
(1 + ab)e−ab.

4.
∫ ∞

0

x sin 2x

x2 + 3
dx.

Ans.
π

2
exp(−2

√
3).
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5.
∫ ∞

−∞

x sin ax

x4 + 4
dx (a > 0).

Ans.
π

2
e−a sin a.

6.
∫ ∞

−∞

x3 sin ax

x4 + 4
dx (a > 0).

Ans. πe−a cos a.

7.
∫ ∞

−∞

x sin x dx

(x2 + 1)(x2 + 4)
.

8.
∫ ∞

0

x3 sin x dx

(x2 + 1)(x2 + 9)
.

Use residues to find the Cauchy principal values of the improper integrals in
Exercises 9 through 11.

9.
∫ ∞

−∞

sin x dx

x2 + 4x + 5
.

Ans. −π

e
sin 2.

10.
∫ ∞

−∞

(x + 1) cos x

x2 + 4x + 5
dx.

Ans.
π

e
(sin 2 − cos 2).

11.
∫ ∞

−∞

cos x dx

(x + a)2 + b2
(b > 0).

12. Follow the steps below to evaluate the Fresnel integrals, which are important in
diffraction theory: ∫ ∞

0
cos(x2) dx =

∫ ∞

0
sin(x2) dx = 1

2

√
π

2
.

(a) By integrating the function exp(iz2) around the positively oriented boundary of the
sector 0 ≤ r ≤ R, 0 ≤ θ ≤ π/4 (Fig. 99) and appealing to the Cauchy–Goursat
theorem, show that∫ R

0
cos(x2) dx = 1√

2

∫ R

0
e−r2

dr − Re
∫

CR

eiz2
dz

xO R

y

CR

Rei   /4

FIGURE 99
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and ∫ R

0
sin(x2) dx = 1√

2

∫ R

0
e−r2

dr − Im
∫

CR

eiz2
dz,

where CR is the arc z = Reiθ (0 ≤ θ ≤ π/4).
(b) Show that the value of the integral along the arc CR in part (a) tends to zero as

R tends to infinity by obtaining the inequality∣∣∣∣
∫

CR

eiz2
dz

∣∣∣∣ ≤ R

2

∫ π/2

0
e−R2 sin φdφ

and then referring to the form (2), Sec. 81, of Jordan’s inequality.
(c) Use the results in parts (a) and (b), together with the known integration formula∗∫ ∞

0
e−x2

dx =
√

π

2
,

to complete the exercise.

82. INDENTED PATHS

In this and the following section, we illustrate the use of indented paths. We begin
with an important limit that will be used in the example in this section.

Theorem. Suppose that

(a) a function f (z) has a simple pole at a point z = x0 on the real axis, with a Laurent
series representation in a punctured disk 0 < |z − x0| < R2 (Fig. 100) and with
residue B0 ;

(b) Cρ denotes the upper half of a circle |z − x0| = ρ, where ρ < R2 and the clock-
wise direction is taken.

Then

lim
ρ→0

∫
Cρ

f (z) dz = −B0 πi.

xx0O

y

R2

FIGURE 100

∗See the footnote with Exercise 4, Sec. 49.
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Assuming that the conditions in parts (a) and (b) are satisfied, we start the
proof of the theorem by writing the Laurent series in part (a) as

f (z) = g(z) + B0

z − x0
(0 < |z − x0| < R2)

where

g(z) =
∞∑

n=0

an(z − x0)
n (|z − x0| < R2).

Thus ∫
Cρ

f (z) dz =
∫

Cρ

g(z) dz + B0

∫
Cρ

dz

z − x0
.(1)

Now the function g(z) is continuous when |z − x0| < R2, according to the
theorem in Sec. 64. Hence if we choose a number ρ0 such that ρ < ρ0 < R2 (see
Fig. 100), it must be bounded on the closed disk |z − x0| ≤ ρ0, according to Sec.
18. That is, there is a nonnegative constant M such that

|g(z)| ≤ M whenever |z − x0| ≤ ρ0 ;
and since the length L of the path Cρ is L = πρ, it follows that∣∣∣∣∣

∫
Cρ

g(z) dz

∣∣∣∣∣ ≤ ML = Mπρ.

Consequently,

lim
ρ→0

∫
Cρ

g(z) dz = 0.(2)

Inasmuch as the semicircle −Cρ has parametric representation

z = x0 + ρeiθ (0 ≤ θ ≤ π),

the second integral on the right in equation (1) has the value∫
Cρ

dz

z − x0
= −

∫
−Cρ

dz

z − x0
= −

∫ π

0

1

ρeiθ
ρieiθ dθ = −i

∫ π

0
dθ = −iπ.

Thus

lim
ρ→0

∫
Cρ

dz

z − x0
= −iπ.(3)

The limit in the conclusion of the theorem now follows by letting ρ tend to
zero on each side of equation (1) and referring to limits (2) and (3).
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EXAMPLE. Modifying the method used in Secs. 80 and 81, we derive here
the integration formula∗

∫ ∞

0

sin x

x
dx = π

2
(4)

by integrating eiz/z around the simple closed contour shown in Fig. 101. In that
figure, ρ and R denote positive real numbers, where ρ < R; and L1 and L2 represent
the intervals

ρ ≤ x ≤ R and − R ≤ x ≤ −ρ,

respectively, on the real axis. While the semicircle CR is as in Secs. 80 and 81, the
semicircle Cρ is introduced here in order to avoid passing through the singularity
z = 0 of the quotient eiz/z.

x

CR

O R

L1

y

L2

–R –

FIGURE 101

The Cauchy–Goursat theorem tells us that∫
L1

eiz

z
dz +

∫
CR

eiz

z
dz +

∫
L2

eiz

z
dz +

∫
Cρ

eiz

z
dz = 0,

or ∫
L1

eiz

z
dz +

∫
L2

eiz

z
dz = −

∫
Cρ

eiz

z
dz −

∫
CR

eiz

z
dz .(5)

Moreover, since the legs L1 and −L2 have parametric representations

z = rei0 = r (ρ ≤ r ≤ R) and z = reiπ = −r (ρ ≤ r ≤ R),(6)

∗This formula arises in the theory of the Fourier integral. See the authors’ “Fourier Series and
Boundary Value Problems,” 7th ed., pp. 150–152, 2008, where it is derived in a completely different
way.
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respectively, the left-hand side of equation (5) can be written∫
L1

eiz

z
dz −

∫
−L2

eiz

z
dz =

∫ R

ρ

eir

r
dr −

∫ R

ρ

e−ir

r
dr = 2i

∫ R

ρ

sin r

r
dr.

Consequently,

2i

∫ R

ρ

sin r

r
dr = −

∫
Cρ

eiz

z
dz −

∫
CR

eiz

z
dz .(7)

Now, from the Laurent series representation

eiz

z
= 1

z

[
1 + (iz)

1!
+ (iz)2

2!
+ (iz)3

3!
+ · · ·

]
= 1

z
+ i

1!
+ i2

2!
z + i3

3!
z2 + · · ·
(0 < |z| < ∞),

it is clear that eiz/z has a simple pole at the origin, with residue unity. So, according
to the theorem at the beginning of this section,

lim
ρ→0

∫
Cρ

eiz

z
dz = −πi.

Also, since ∣∣∣∣1

z

∣∣∣∣ = 1

|z| = 1

R

when z is a point on CR , we know from Jordan’s lemma in Sec. 81 that

lim
R→∞

∫
CR

eiz

z
dz = 0.

Thus, by letting ρ tend to 0 in equation (7) and then letting R tend to ∞, we arrive
at the result

2i

∫ ∞

0

sin r

r
dr = πi,

which is, in fact, formula (4).

83. AN INDENTATION AROUND A BRANCH POINT

The example here involves the same indented path that was used in the example in
Sec. 82. The indentation is, however, due to a branch point, rather than an isolated
singularity.

EXAMPLE. The integration formula∫ ∞

0

ln x

(x2 + 4)2
dx = π

32
(ln 2 − 1)(1)
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can be derived by considering the branch

f (z) = log z

(z2 + 4)2

(
|z| > 0, −π

2
< arg z <

3π

2

)

of the multiple-valued function (log z)/(z2 + 4)2. This branch, whose branch cut
consists of the origin and the negative imaginary axis, is analytic everywhere in the
stated domain except at the point z = 2i. See Fig. 102, where the same indented
path and the same labels L1, L2, Cρ, and CR as in Fig. 101 are used. In order that
the isolated singularity z = 2i be inside the closed path, we require that ρ < 2 < R.

x

CR

O R−R

L1

y

L2

2i

−

FIGURE 102

According to Cauchy’s residue theorem,∫
L1

f (z) dz +
∫

CR

f (z) dz +
∫

L2

f (z) dz +
∫

Cρ

f (z) dz = 2πi Res
z=2i

f (z).

That is,∫
L1

f (z) dz +
∫

L2

f (z) dz = 2πi Res
z=2i

f (z) −
∫

Cρ

f (z) dz −
∫

CR

f (z) dz.(2)

Since

f (z) = ln r + iθ

(r2ei2θ + 4)2
(z = reiθ ),

the parametric representations

z = rei0 = r (ρ ≤ r ≤ R) and z = reiπ = −r (ρ ≤ r ≤ R)(3)

for the legs L1 and −L2, respectively, can be used to write the left-hand side of
equation (2) as∫

L1

f (z) dz −
∫

−L2

f (z) dz =
∫ R

ρ

ln r

(r2 + 4)2
dr +

∫ R

ρ

ln r + iπ

(r2 + 4)2
dr.
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Also, since

f (z) = φ(z)

(z − 2i)2
where φ(z) = log z

(z + 2i)2
,

the singularity z = 2i of f (z) is a pole of order 2, with residue

φ′(2i) = π

64
+ i

1 − ln 2

32
.

Equation (2) thus becomes

2
∫ R

ρ

ln r

(r2 + 4)2
dr + iπ

∫ R

ρ

dr

(r2 + 4)2
= π

16
(ln 2 − 1) + i

π2

32
(4)

−
∫

Cρ

f (z) dz −
∫

CR

f (z) dz ;

and, by equating the real parts on each side here, we find that

2
∫ R

ρ

ln r

(r2 + 4)2
dr = π

16
(ln 2 − 1) − Re

∫
Cρ

f (z) dz − Re
∫

CR

f (z) dz.(5)

It remains only to show that

lim
ρ→0

Re
∫

Cρ

f (z) dz = 0 and lim
R→∞

Re
∫

CR

f (z) dz = 0.(6)

For, by letting ρ and R tend to 0 and ∞, respectively, in equation (5), we then
arrive at

2
∫ ∞

0

ln r

(r2 + 4)2
dr = π

16
(ln 2 − 1),

which is the same as equation (1).
Limits (6) are established as follows. First, we note that if ρ < 1 and z = ρeiθ

is a point on Cρ , then

|log z| = |ln ρ + iθ | ≤ |ln ρ| + |iθ | ≤ − ln ρ + π

and
|z2 + 4| ≥ | |z|2 − 4| = 4 − ρ2.

As a consequence,∣∣∣∣∣Re
∫

Cρ

f (z) dz

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

Cρ

f (z) dz

∣∣∣∣∣ ≤ − ln ρ + π

(4 − ρ2)2
πρ = π

πρ − ρ ln ρ

(4 − ρ2)2
;
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and, by l’Hospital’s rule, the product ρ ln ρ in the numerator on the far right here
tends to 0 as ρ tends to 0. So the first of limits (6) clearly holds. Likewise, by
writing

∣∣∣∣Re
∫

CR

f (z) dz

∣∣∣∣ ≤
∣∣∣∣
∫

CR

f (z) dz

∣∣∣∣ ≤ ln R + π

(R2 − 4)2
πR = π

π

R
+ ln R

R(
R − 4

R

)2

and using l’Hospital’s rule to show that the quotient (ln R)/R tends to 0 as R tends
to ∞, we obtain the second of limits (6).

Note how another integration formula, namely∫ ∞

0

dx

(x2 + 4)2
= π

32
,(7)

follows by equating imaginary, rather than real, parts on each side of equation (4) :

π

∫ R

ρ

dr

(r2 + 4)2
= π2

32
− Im

∫
Cρ

f (z) dz − Im
∫

CR

f (z) dz.(8)

Formula (7) is then obtained by letting ρ and R tend to 0 and ∞, respectively, since∣∣∣∣∣Im
∫

Cρ

f (z) dz

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

Cρ

f (z) dz

∣∣∣∣∣ and

∣∣∣∣Im
∫

CR

f (z) dz

∣∣∣∣ ≤
∣∣∣∣
∫

CR

f (z) dz

∣∣∣∣.

84. INTEGRATION ALONG A BRANCH CUT

Cauchy’s residue theorem can be useful in evaluating a real integral when part of
the path of integration of the function f (z) to which the theorem is applied lies
along a branch cut of that function.

EXAMPLE. Let x−a , where x > 0 and 0 < a < 1, denote the principal value
of the indicated power of x; that is, x−a is the positive real number exp(−a ln x).
We shall evaluate here the improper real integral∫ ∞

0

x−a

x + 1
dx (0 < a < 1),(1)

which is important in the study of the gamma function.∗ Note that integral (1)
is improper not only because of its upper limit of integration but also because
its integrand has an infinite discontinuity at x = 0. The integral converges when
0 < a < 1 since the integrand behaves like x−a near x = 0 and like x−a−1 as x

∗See, for example, p. 4 of the book by Lebedev cited in Appendix 1.
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tends to infinity. We do not, however, need to establish convergence separately; for
that will be contained in our evaluation of the integral.

We begin by letting Cρ and CR denote the circles |z| = ρ and |z| = R, respec-
tively, where ρ < 1 < R; and we assign them the orientations shown in Fig. 103.
We then integrate the branch

f (z) = z−a

z + 1
(|z| > 0, 0 < arg z < 2π)(2)

of the multiple-valued function z−a/(z + 1), with branch cut arg z = 0, around the
simple closed contour indicated in Fig. 103. That contour is traced out by a point
moving from ρ to R along the top of the branch cut for f (z), next around CR and
back to R, then along the bottom of the cut to ρ, and finally around Cρ back to ρ.

xR–1

y

CR

FIGURE 103

Now θ = 0 and θ = 2π along the upper and lower “edges,” respectively, of
the cut annulus that is formed. Since

f (z) = exp(−a log z)

z + 1
= exp[−a(ln r + iθ)]

reiθ + 1

where z = reiθ , it follows that

f (z) = exp[−a(ln r + i0)]

r + 1
= r−a

r + 1

on the upper edge, where z = rei0, and that

f (z) = exp[−a(ln r + i2π)]

r + 1
= r−ae−i2aπ

r + 1

on the lower edge, where z = rei2π . The residue theorem thus suggests that∫ R

ρ

r−a

r + 1
dr +

∫
CR

f (z) dz −
∫ R

ρ

r−ae−i2aπ

r + 1
dr +

∫
Cρ

f (z) dz(3)

= 2πi Res
z=−1

f (z).
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Our derivation of equation (3) is, of course, only formal since f (z) is not analytic,
or even defined, on the branch cut involved. It is, nevertheless, valid and can be
fully justified by an argument such as the one in Exercise 8 of this section.

The residue in equation (3) can be found by noting that the function

φ(z) = z−a = exp(−a log z) = exp[−a(ln r + iθ)] (r > 0, 0 < θ < 2π)

is analytic at z = −1 and that

φ(−1) = exp[−a(ln 1 + iπ)] = e−iaπ �= 0.

This shows that the point z = −1 is a simple pole of the function (2) and that

Res
z=−1

f (z) = e−iaπ .

Equation (3) can, therefore, be written as

(1 − e−i2aπ )

∫ R

ρ

r−a

r + 1
dr = 2πie−iaπ −

∫
Cρ

f (z) dz −
∫

CR

f (z) dz.(4)

According to definition (2) of f (z),∣∣∣∣∣
∫

Cρ

f (z) dz

∣∣∣∣∣ ≤ ρ−a

1 − ρ
2πρ = 2π

1 − ρ
ρ1−a

and ∣∣∣∣
∫

CR

f (z) dz

∣∣∣∣ ≤ R−a

R − 1
2πR = 2πR

R − 1
· 1

Ra
.

Since 0 < a < 1, the values of these two integrals evidently tend to 0 as ρ and R

tend to 0 and ∞, respectively. Hence, if we let ρ tend to 0 and then R tend to ∞
in equation (4), we arrive at the result

(1 − e−i2aπ )

∫ ∞

0

r−a

r + 1
dr = 2πie−iaπ ,

or ∫ ∞

0

r−a

r + 1
dr = 2πi

e−iaπ

1 − e−i2aπ
· eiaπ

eiaπ
= π

2i

eiaπ − e−iaπ
.

This is, of course, the same as∫ ∞

0

x−a

x + 1
dx = π

sin aπ
(0 < a < 1).(5)
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EXERCISES

In Exercises 1 through 4, take the indented contour in Fig. 101 (Sec. 82).

1. Derive the integration formula∫ ∞

0

cos(ax) − cos(bx)

x2
dx = π

2
(b − a) (a ≥ 0, b ≥ 0).

Then, with the aid of the trigonometric identity 1 − cos(2x) = 2 sin2 x, point out how
it follows that ∫ ∞

0

sin2 x

x2
dx = π

2
.

2. Evaluate the improper integral∫ ∞

0

xa

(x2 + 1)2
dx, where − 1 < a < 3 and xa = exp(a ln x).

Ans.
(1 − a)π

4 cos(aπ/2)
.

3. Use the function

f (z) = z1/3 log z

z2 + 1
= e(1/3) log z log z

z2 + 1

(
|z| > 0,−π

2
< arg z <

3π

2

)

to derive this pair of integration formulas:∫ ∞

0

3
√

x ln x

x2 + 1
dx = π2

6
,

∫ ∞

0

3
√

x

x2 + 1
dx = π√

3
.

4. Use the function

f (z) = (log z)2

z2 + 1

(
|z| > 0,−π

2
< arg z <

3π

2

)

to show that ∫ ∞

0

(ln x)2

x2 + 1
dx = π3

8
,

∫ ∞

0

ln x

x2 + 1
dx = 0.

Suggestion: The integration formula obtained in Exercise 1, Sec. 79, is needed
here.

5. Use the function

f (z) = z1/3

(z + a)(z + b)
= e(1/3) log z

(z + a)(z + b)
(|z| > 0, 0 < arg z < 2π)

and a closed contour similar to the one in Fig. 103 (Sec. 84) to show formally that

∫ ∞

0

3
√

x

(x + a)(x + b)
dx = 2π√

3
·

3
√

a − 3
√

b

a − b
(a > b > 0).
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6. Show that ∫ ∞

0

dx√
x(x2 + 1)

= π√
2

by integrating an appropriate branch of the multiple-valued function

f (z) = z−1/2

z2 + 1
= e(−1/2) log z

z2 + 1

over (a) the indented path in Fig. 101, Sec. 82; (b) the closed contour in Fig. 103,
Sec. 84.

7. The beta function is this function of two real variables:

B(p, q) =
∫ 1

0
tp−1(1 − t)q−1 dt (p > 0, q > 0).

Make the substitution t = 1/(x + 1) and use the result obtained in the example in Sec.
84 to show that

B(p, 1 − p) = π

sin (pπ)
(0 < p < 1).

8. Consider the two simple closed contours shown in Fig. 104 and obtained by dividing
into two pieces the annulus formed by the circles Cρ and CR in Fig. 103 (Sec. 84). The
legs L and −L of those contours are directed line segments along any ray arg z = θ0 ,
where π < θ0 < 3π/2. Also, �ρ and γρ are the indicated portions of Cρ , while �R

and γR make up CR .

xR

L

–1

y

x
R

–L

y

FIGURE 104

(a) Show how it follows from Cauchy’s residue theorem that when the branch

f1(z) = z−a

z + 1

(
|z| > 0,−π

2
< arg z <

3π

2

)

of the multiple-valued function z−a/(z + 1) is integrated around the closed contour
on the left in Fig. 104,∫ R

ρ

r−a

r + 1
dr +

∫
�R

f1(z) dz +
∫

L

f1(z) dz +
∫

�ρ

f1(z) dz = 2πi Res
z=−1

f1(z).



Brown-chap07-v2 11/01/07 4:03pm 288

288 Applications of Residues chap. 7

(b) Apply the Cauchy–Goursat theorem to the branch

f2(z) = z−a

z + 1

(
|z| > 0,

π

2
< arg z <

5π

2

)

of z−a/(z + 1), integrated around the closed contour on the right in Fig. 104, to
show that

−
∫ R

ρ

r−ae−i2aπ

r + 1
dr +

∫
γρ

f2(z) dz −
∫

L

f2(z) dz +
∫

γR

f2(z) dz = 0.

(c) Point out why, in the last lines in parts (a) and (b), the branches f1(z) and f2(z)

of z−a/(z + 1) can be replaced by the branch

f (z) = z−a

z + 1
(|z| > 0, 0 < arg z < 2π).

Then, by adding corresponding sides of those two lines, derive equation (3), Sec.
84, which was obtained only formally there.

85. DEFINITE INTEGRALS INVOLVING
SINES AND COSINES

The method of residues is also useful in evaluating certain definite integrals of the
type ∫ 2π

0
F(sin θ, cos θ) dθ.(1)

The fact that θ varies from 0 to 2π leads us to consider θ as an argument of a point
z on a positively oriented circle C centered at the origin. Taking the radius to be
unity, we use the parametric representation

z = eiθ (0 ≤ θ ≤ 2π)(2)

to describe C (Fig. 105). We then refer to the differentation formula (4), Sec. 37,
to write

dz

dθ
= ieiθ = iz

and recall (Sec. 34) that

sin θ = eiθ − e−iθ

2i
and cos θ = eiθ + e−iθ

2
.

These relations suggest that we make the substitutions

sin θ = z − z−1

2i
, cos θ = z + z−1

2
, dθ = dz

iz
,(3)
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x1O

C

y

FIGURE 105

which transform integral (1) into the contour integral∫
c

F

(
z − z−1

2i
,
z + z−1

2

)
dz

iz
(4)

of a function of z around the circle C. The original integral (1) is, of course, simply
a parametric form of integral (4), in accordance with expression (2), Sec. 40. When
the integrand in integral (4) reduces to a rational function of z , we can evaluate that
integral by means of Cauchy’s residue theorem once the zeros in the denominator
have been located and provided that none lie on C.

EXAMPLE. Let us show that∫ 2π

0

dθ

1 + a sin θ
= 2π√

1 − a2
(−1 < a < 1).(5)

This integration formula is clearly valid when a = 0, and we exclude that case in
our derivation. With substitutions (3), the integral takes the form∫

C

2/a

z2 + (2i/a)z − 1
dz,(6)

where C is the positively oriented circle |z| = 1. The quadratic formula reveals that
the denominator of the integrand here has the pure imaginary zeros

z1 =
(

−1 + √
1 − a2

a

)
i, z2 =

(
−1 − √

1 − a2

a

)
i.

So if f (z) denotes the integrand in integral (6), then

f (z) = 2/a

(z − z1)(z − z2)
.
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Note that because |a| < 1,

|z2| = 1 + √
1 − a2

|a| > 1.

Also, since |z1z2| = 1, it follows that |z1| < 1. Hence there are no singular points
on C, and the only one interior to it is the point z1. The corresponding residue B1

is found by writing

f (z) = φ(z)

z − z1
where φ(z) = 2/a

z − z2
.

This shows that z1 is a simple pole and that

B1 = φ(z1) = 2/a

z1 − z2
= 1

i
√

1 − a2
.

Consequently,

∫
C

2/a

z2 + (2i/a)z − 1
dz = 2πiB1 = 2π√

1 − a2
;

and integration formula (5) follows.

The method just illustrated applies equally well when the arguments of the
sine and cosine are integral multiples of θ . One can use equation (2) to write, for
example,

cos 2θ = ei2θ + e−i2θ

2
= (eiθ )2 + (eiθ )−2

2
= z2 + z−2

2
.

EXERCISES

Use residues to evaluate the definite integrals in Exercises 1 through 7.

1.
∫ 2π

0

dθ

5 + 4 sin θ
.

Ans.
2π

3
.

2.
∫ π

−π

dθ

1 + sin2 θ
.

Ans.
√

2π .

3.
∫ 2π

0

cos2 3θ dθ

5 − 4 cos 2θ
.

Ans.
3π

8
.
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4.
∫ 2π

0

dθ

1 + a cos θ
(−1 < a < 1).

Ans.
2π√

1 − a2
.

5.
∫ π

0

cos 2θ dθ

1 − 2a cos θ + a2
(−1 < a < 1).

Ans.
a2π

1 − a2
.

6.
∫ π

0

dθ

(a + cos θ)2
(a > 1).

Ans.
aπ(√

a2 − 1
)3

.

7.
∫ π

0
sin2n θ dθ (n = 1, 2, . . .).

Ans.
(2n)!

22n(n!)2
π .

86. ARGUMENT PRINCIPLE

A function f is said to be meromorphic in a domain D if it is analytic throughout
D except for poles. Suppose now that f is meromorphic in the domain interior to
a positively oriented simple closed contour C and that it is analytic and nonzero
on C. The image � of C under the transformation w = f (z) is a closed contour,
not necessarily simple, in the w plane (Fig. 106). As a point z traverses C in the
positive direction, its images w traverses � in a particular direction that determines
the orientation of �. Note that since f has no zeros on C, the contour � does not
pass through the origin in the w plane.

x

z0

z

C

y

u

v

w

w0

FIGURE 106

Let w0 and w be points on �, where w0 is fixed and φ0 is a value of arg w0.
Then let arg w vary continuously, starting with the value φ0, as the point w begins
at the point w0 and traverses � once in the direction of orientation assigned to it
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by the mapping w = f (z). When w returns to the point w0, where it started, arg w

assumes a particular value of arg w0, which we denote by φ1. Thus the change in
arg w as w describes � once in its direction of orientation is φ1 − φ0. This change
is, of course, independent of the point w0 chosen to determine it. Since w = f (z),
the number φ1 − φ0 is, in fact, the change in argument of f (z) as z describes C

once in the positive direction, starting with a point z0; and we write

�C arg f (z) = φ1 − φ0.

The value of �C arg f (z) is evidently an integral multiple of 2π , and the integer

1

2π
�C arg f (z)

represents the number of times the point w winds around the origin in the w plane.
For that reason, this integer is sometimes called the winding number of � with
respect to the origin w = 0. It is positive if � winds around the origin in the
counterclockwise direction and negative if it winds clockwise around that point. The
winding number is always zero when � does not enclose the origin. The verification
of this fact for a special case is left to the reader (Exercise 3, Sec. 87).

The winding number can be determined from the number of zeros and poles of
f interior to C. The number of poles is necessarily finite, according to Exercise 11,
Sec. 76. Likewise, with the understanding that f (z) is not identically equal to zero
everywhere else inside C, it is easily shown (Exercise 4, Sec. 87) that the zeros of
f are finite in number and are all of finite order. Suppose now that f has Z zeros
and P poles in the domain interior to C. We agree that f has m0 zeros at a point z0

if it has a zero of order m0 there; and if f has a pole of order mp at z0, that pole is
to be counted mp times. The following theorem, which is known as the argument
principle, states that the winding number is simply the difference Z − P .

Theorem. Let C denote a positively oriented simple closed contour, and sup-
pose that

(a) a function f (z) is meromorphic in the domain interior to C;

(b) f (z) is analytic and nonzero on C;

(c) counting multiplicities, Z is the number of zeros and P the number of poles of
f (z) inside C.

Then
1

2π
�C arg f (z) = Z − P.

To prove this, we evaluate the integral of f ′(z)/f (z) around C in two differ-
ent ways. First, we let z = z(t) (a ≤ t ≤ b) be a parametric representation for C,
so that ∫

C

f ′(z)
f (z)

dz =
∫ b

a

f ′[z(t)]z′(t)
f [z(t)]

dt.(1)
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Since, under the transformation w = f (z), the image � of C never passes through
the origin in the w plane, the image of any point z = z(t) on C can be expressed
in exponential form as w = ρ(t) exp[iφ(t)]. Thus

f [z(t)] = ρ(t)eiφ(t) (a ≤ t ≤ b);(2)

and, along each of the smooth arcs making up the contour �, it follows that (see
Exercise 5, Sec. 39)

f ′[z(t)]z′(t) = d

dt
f [z(t)] = d

dt
[ρ(t)eiφ(t)] = ρ ′(t)eiφ(t) + iρ(t)eiφ(t)φ′(t).(3)

Inasmuch as ρ ′(t) and φ′(t) are piecewise continuous on the interval a ≤ t ≤ b, we
can now use expressions (2) and (3) to write integral (1) as follows:∫

C

f ′(z)
f (z)

dz =
∫ b

a

ρ ′(t)
ρ(t)

dt + i

∫ b

a

φ′(t) dt = ln ρ(t)
]b

a
+ iφ(t)

]b

a
.

But
ρ(b) = ρ(a) and φ(b) − φ(a) = �C arg f (z).

Hence ∫
C

f ′(z)
f (z)

dz = i�C arg f (z).(4)

Another way to evaluate integral (4) is to use Cauchy’s residue theorem. To
be specific, we observe that the integrand f ′(z)/f (z) is analytic inside and on C

except at the points inside C at which the zeros and poles of f occur. If f has a
zero of order m0 at z0, then (Sec. 75)

f (z) = (z − z0)
m0g(z),(5)

where g(z) is analytic and nonzero at z0. Hence

f ′(z0) = m0(z − z0)
m0−1g(z) + (z − z0)

m0g′(z),

or

f ′(z)
f (z)

= m0

z − z0
+ g′(z)

g(z)
.(6)

Since g′(z)/g(z) is analytic at z0, it has a Taylor series representation about that
point ; and so equation (6) tells us that f ′(z)/f (z) has a simple pole at z0 , with
residue m0. If, on the other hand, f has a pole of order mp at z0 , we know from
the theorem in Sec. 73 that

f (z) = (z − z0)
−mpφ(z),(7)

where φ(z) is analytic and nonzero at z0. Because expression (7) has the same form
as expression (5), with the positive integer m0 in equation (5) replaced by −mp,
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it is clear from equation (6) that f ′(z)/f (z) has a simple pole at z0 , with residue
−mp. Applying the residue theorem, then, we find that∫

C

f ′(z)
f (z)

dz = 2πi(Z − P).(8)

The conclusion in the theorem now follows by equating the right-hand sides
of equations (4) and (8).

EXAMPLE. The only singularity of the function 1/z2 is a pole of order 2
at the origin, and there are no zeros in the finite plane. In particular, this function
is analytic and nonzero on the unit circle z = eiθ (0 ≤ θ ≤ 2π). If we let C denote
that positively oriented circle, our theorem tells us that

1

2π
�C arg

(
1

z2

)
= −2.

That is, the image � of C under the transformation w = 1/z2 winds around the
origin w = 0 twice in the clockwise direction. This can be verified directly by
noting that � has the parametric representation w = e−i2θ (0 ≤ θ ≤ 2π).

87. ROUCHÉ’S THEOREM

The main result in this section is known as Rouché’s theorem and is a consequence
of the argument principle, just developed in Sec. 86. It can be useful in locating
regions of the complex plane in which a given analytic function has zeros.

Theorem. Let C denote a simple closed contour, and suppose that

(a) two functions f (z) and g(z) are analytic inside and on C;

(b) |f (z)| > |g(z)| at each point on C.

Then f (z) and f (z) + g(z) have the same number of zeros, counting multiplicities,
inside C.

The orientation of C in the statement of the theorem is evidently immaterial.
Thus, in the proof here, we may assume that the orientation is positive. We begin
with the observation that neither the function f (z) nor the sum f (z) + g(z) has a
zero on C, since

|f (z)| > |g(z)| ≥ 0 and |f (z) + g(z)| ≥ | |f (z)| − |g(z)| | > 0

when z is on C.
If Zf and Zf +g denote the number of zeros, counting multiplicities, of f (z)

and f (z) + g(z), respectively, inside C, we know from the theorem in Sec. 86
that
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Zf = 1

2π
�C arg f (z) and Zf +g = 1

2π
�C arg[f (z) + g(z)].

Consequently, since

�C arg[f (z) + g(z)] = �C arg

{
f (z)

[
1 + g(z)

f (z)

]}

= �C arg f (z) + �C arg

[
1 + g(z)

f (z)

]
,

it is clear that

Zf +g = Zf + 1

2π
�C arg F(z),(1)

where

F(z) = 1 + g(z)

f (z)
.

But

|F(z) − 1| = |g(z)|
|f (z)| < 1;

and this means that under the transformation w = F(z), the image of C lies in the
open disk |w − 1| < 1. That image does not, then, enclose the origin w = 0. Hence
�C arg F(z) = 0 and, since equation (1) reduces to Zf +g = Zf , Rouché’s theorem
is proved.

EXAMPLE 1. In order to determine the number of roots of the equation

z7 − 4z3 + z − 1 = 0(2)

inside the circle |z| = 1, write

f (z) = −4z3 and g(z) = z7 + z − 1.

Then observe that |f (z)| = 4|z|3 = 4 and |g(z)| ≤ |z|7 + |z| + 1 = 3 when |z| = 1.
The conditions in Rouché’s theorem are thus satisfied. Consequently, since f (z) has
three zeros, counting multiplicities, inside the circle |z| = 1, so does f (z) + g(z).
That is, equation (2) has three roots there.

EXAMPLE 2. Rouché’s theorem can be used to give another proof of the
fundamental theorem of algebra (Theorem 2, Sec. 53). To give the detals here, we
consider a polynomial

P(z) = a0 + a1z + a2z
2 + · · · + anz

n (an �= 0)(3)

of degree n (n ≥ 1) and show that it has n zeros, counting multiplicities. We write

f (z) = anz
n, g(z) = a0 + a1z + a2z

2 + · · · + an−1z
n−1
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and let z be any point on a circle |z| = R, where R > 1. When such a point is
taken, we see that

|f (z)| = |an|Rn.

Also,

|g(z)| ≤ |a0| + |a1|R + |a2|R2 + · · · + |an−1|Rn−1.

Consequently, since R > 1,

|g(z)| ≤ |a0|Rn−1 + |a1|Rn−1 + |a2|Rn−1 + · · · + |an−1|Rn−1;
and it follows that

|g(z)|
|f (z)| ≤ |a0| + |a1| + |a2| + · · · + |an−1|

|an|R < 1

if, in addition to being greater than unity,

R >
|a0| + |a1| + |a2| + · · · + |an−1|

|an| .(4)

That is, |f (z)| > |g(z)| when R > 1 and inequality (4) is satisfied. Rouché’s theorem
then tells us that f (z) and f (z) + g(z) have the same number of zeros, namely
n, inside C. Hence we may conclude that P(z) has precisely n zeros, counting
multiplicities, in the plane.

Note how Liouville’s theorem in Sec. 53 only ensured the existence of at least
one zero of a polynomial; but Rouché’s theorem actually ensures the existence of
n zeros, counting multiplicities.

EXERCISES
1. Let C denote the unit circle |z| = 1, described in the positive sense. Use the theorem

in Sec. 86 to determine the value of �C arg f (z) when

(a) f (z) = z2 ; (b) f (z) = (z3 + 2)/z ; (c) f (z) = (2z − 1)7/z3.

Ans. (a) 4π ; (b) −2π ; (c) 8π .

2. Let f be a function which is analytic inside and on a positively oriented simple closed
contour C, and suppose that f (z) is never zero on C. Let the image of C under the
transformation w = f (z) be the closed contour � shown in Fig. 107. Determine the
value of �C arg f (z) from that figure; and, with the aid of the theorem in Sec. 86,
determine the number of zeros, counting multiplicities, of f interior to C.

Ans. 6π ; 3.

3. Using the notation in Sec. 86, suppose that � does not enclose the origin w = 0 and
that there is a ray from that point which does not intersect �. By observing that the
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u

v

FIGURE 107

absolute value of �C arg f (z) must be less than 2π when a point z makes one cycle
around C and recalling that �C arg f (z) is an integral multiple of 2π , point out why
the winding number of � with respect to the origin w = 0 must be zero.

4. Suppose that a function f is meromorphic in the domain D interior to a simple closed
contour C on which f is analytic and nonzero, and let D0 denote the domain consisting
of all points in D except for poles. Point out how it follows from the lemma in Sec. 27
and Exercise 10, Sec. 76, that if f (z) is not identically equal to zero in D0 , then the
zeros of f in D are all of finite order and that they are finite in number.

Suggestion: Note that if a point z0 in D is a zero of f that is not of finite order, then
there must be a neighborhood of z0 throughout which f (z) is identically equal to zero.

5. Suppose that a function f is analytic inside and on a positively oriented simple closed
contour C and that it has no zeros on C. Show that if f has n zeros zk (k = 1, 2, . . . , n)

inside C, where each zk is of multiplicity mk , then∫
C

zf ′(z)
f (z)

dz = 2πi

n∑
k=1

mkzk.

[Compare with equation (8), Sec. 86, when P = 0 there.]

6. Determine the number of zeros, counting multiplicities, of the polynomial

(a) z6 − 5z4 + z3 − 2z ; (b) 2z4 − 2z3 + 2z2 − 2z + 9

inside the circle |z| = 1.
Ans. (a) 4 ; (b) 0.

7. Determine the number of zeros, counting multiplicities, of the polynomial

(a) z4 + 3z3 + 6 ; (b) z4 − 2z3 + 9z2 + z − 1; (c) z5 + 3z3 + z2 + 1

inside the circle |z| = 2.
Ans. (a) 3 ; (b) 2 ; (c) 5.

8. Determine the number of roots, counting multiplicities, of the equation

2z5 − 6z2 + z + 1 = 0

in the annulus 1 ≤ |z| < 2.
Ans. 3.



Brown-chap07-v2 11/01/07 4:03pm 298

298 Applications of Residues chap. 7

9. Show that if c is a complex number such that |c| > e, then the equation czn = ez has
n roots, counting multiplicities, inside the circle |z| = 1.

10. Let two functions f and g be as in the statement of Rouché’s theorem in Sec. 87, and
let the orientation of the contour C there be positive. Then define the function

	(t) = 1

2πi

∫
C

f ′(z) + tg′(z)
f (z) + tg(z)

dz (0 ≤ t ≤ 1)

and follow these steps below to give another proof of Rouché’s theorem.

(a) Point out why the denominator in the integrand of the integral defining 	(t) is
never zero on C. This ensures the existence of the integral.

(b) Let t and t0 be any two points in the interval 0 ≤ t ≤ 1 and show that

|	(t) − 	(t0)| = |t − t0|
2π

∣∣∣∣
∫

C

fg′ − f ′g
(f + tg)(f + t0g)

dz

∣∣∣∣ .

Then, after pointing out why∣∣∣∣ fg′ − f ′g
(f + tg)(f + t0g)

∣∣∣∣ ≤ |fg′ − f ′g|
(|f | − |g|)2

at points on C, show that there is a positive constant A, which is independent of
t and t0, such that

|	(t) − 	(t0)| ≤ A|t − t0|.
Conclude from this inequality that 	(t) is continuous on the interval 0 ≤ t ≤ 1.

(c) By referring to equation (8), Sec. 86, state why the value of the function 	 is, for
each value of t in the interval 0 ≤ t ≤ 1, an integer representing the number of
zeros of f (z) + tg(z) inside C. Then conclude from the fact that 	 is continuous,
as shown in part (b), that f (z) and f (z) + g(z) have the same number of zeros,
counting multiplicities, inside C.

88. INVERSE LAPLACE TRANSFORMS

Suppose that a function F of the complex variable s is analytic throughout the
finite s plane except for a finite number of isolated singularities. Then let LR denote
a vertical line segment from s = γ − iR to s = γ + iR, where the constant γ is
positive and large enough that the singularities of F all lie to the left of that segment
(Fig. 108). A new function f of the real variable t is defined for positive values of
t by means of the equation

f (t) = 1

2πi
lim

R→∞

∫
LR

estF (s) ds (t > 0),(1)

provided this limit exists. Expression (1) is usually written

f (t) = 1

2πi
P.V.

∫ γ+i∞

γ−i∞
estF (s) ds (t > 0)(2)
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FIGURE 108

[compare with equation (3), Sec. 78], and such an integral is called a Bromwich
integral.

It can be shown that when fairly general conditions are imposed on the functions
involved, f (t) is the inverse Laplace transform of F(s). That is, if F(s) is the
Laplace transform of f (t), defined by means of the equation

F(s) =
∫ ∞

0
e−stf (t) dt,(3)

then f (t) is retrieved by means of equation (2), where the choice of the positive
number γ is immaterial as long as the singularities of F all lie to the left of LR .∗
Laplace transforms and their inverses are important in solving both ordinary and
partial differential equations.

Residues can often be used to evaluate the limit in expression (1) when the
function F(s) is specified. To see how this is done, we let sn (n = 1, 2, . . . , N)

denote the singularities of F(s). We then let R0 denote the largest of their moduli
and consider a semicircle CR with parametric representation

s = γ + Reiθ

(
π

2
≤ θ ≤ 3π

2

)
,(4)

where R > R0 + γ . Note that for each sn,

|sn − γ | ≤ |sn| + γ ≤ R0 + γ < R.

∗For an extensive treatment of such details regarding Laplace transforms, see R. V. Churchill, “Opera-
tional Mathematics,” 3d ed., 1972, where transforms F(s) with an infinite number of isolated singular
points, or with branch cuts, are also discussed.
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Hence the singularities all lie in the interior of the semicircular region bounded by
CR and LR (see Fig. 108), and Cauchy’s residue theorem tells us that

∫
LR

estF (s) ds = 2πi

N∑
n=1

Res
s=sn

[estF (s)] −
∫

CR

estF (s) ds.(5)

Suppose now that, for all points s on CR , there is a positive constant MR such
that |F(s)| ≤ MR , where MR tends to zero as R tends to infinity. We may use the
parametric representation (4) for CR to write∫

CR

estF (s) ds =
∫ 3π/2

π/2
exp(γ t + Rteiθ )F (γ + Reiθ )Rieiθ dθ.

Then, since

| exp(γ t + Rteiθ )| = eγ teRt cos θ and |F(γ + Reiθ )| ≤ MR,

we find that ∣∣∣∣
∫

CR

estF (s) ds

∣∣∣∣ ≤ eγ tMRR

∫ 3π/2

π/2
eRt cos θ dθ.(6)

But the substitution φ = θ − (π/2), together with Jordan’s inequality (1), Sec. 81,
reveals that ∫ 3π/2

π/2
eRt cos θ dθ =

∫ π

0
e−Rt sin φ dφ <

π

Rt
.

Inequality (6) thus becomes∣∣∣∣
∫

CR

estF (s) ds

∣∣∣∣ ≤ eγ tMRπ

t
,(7)

and this shows that

lim
R→∞

∫
CR

estF (s) ds = 0.(8)

Letting R tend to ∞ in equation (5), then, we see that the function f (t), defined
by equation (1), exists and that it can be written

f (t) =
N∑

n=1

Res
s=sn

[estF (s)] (t > 0).(9)

In many applications of Laplace transforms, such as the solution of partial
differential equations arising in studies of heat conduction and mechanical vibrations,
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the function F(s) is analytic for all values of s in the finite plane except for an
infinite set of isolated singular points sn (n = 1, 2, . . .) that lie to the left of some
vertical line Re s = γ . Often the method just described for finding f (t) can then be
modified in such a way that the finite sum (9) is replaced by an infinite series of
residues:

f (t) =
∞∑

n=1

Res
s=sn

[estF (s)] (t > 0).(10)

The basic modification is to replace the vertical line segments LR by vertical line
segments LN (N = 1, 2, . . .) from s = γ − ibN to s = γ + ibN . The circular arcs
CR are then replaced by contours CN (N = 1, 2, . . .) from γ + ibN to γ − ibN

such that, for each N , the sum LN + CN is a simple closed contour enclosing the
singular points s1, s2, . . . , sN . Once it is shown that

lim
N→∞

∫
CN

estF (s) ds = 0,(11)

expression (2) for f (t) becomes expression (10).
The choice of the contours CN depends on the nature of the function F(s).

Common choices include circular or parabolic arcs and rectangular paths. Also, the
simple closed contour LN + CN need not enclose precisely N singularities. When,
for example, the region between LN + CN and LN+1 + CN+1 contains two singular
points of F(s), the pair of corresponding residues of estF (s) are simply grouped
together as a single term in series (10). Since it is often quite tedious to establish
limit (11) in any case, we shall accept it in the examples and related exercises that
involve an infinite number of singularities.∗ Thus our use of expression (10) will
be only formal.

89. EXAMPLES

Calculation of the sums of the residues of estF (s) in expressions (9) and (10),
Sec. 88, is often facilitated by techniques developed in Exercises 12 and 13 of this
section. We preface our examples here with a statement of those techniques.

Suppose that F(s) has a pole of order m at a point s0 and that its Laurent series
representation in a punctured disk 0 < |s − s0| < R2 has principal part

b1

s − s0
+ b2

(s − s0)2
+ · · · + bm

(s − s0)m
(bm �= 0).

∗An extensive treatment of ways to obtain limit (11) appears in the book by R. V. Churchill that is
cited in the footnote earlier in this section. In fact, the inverse transform to be found in Example 3
in the next section is fully verified on pp. 220–226 of that book.
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Exercise 12 tells us that

Res
s=s0

[estF (s)] = es0t

[
b1 + b2

1!
t + · · · + bm

(m − 1)!
tm−1

]
.(1)

When the pole s0 is of the form s0 = α + iβ (β �= 0) and F(s) = F(s) at points of
analyticity of F (s) (see Sec. 28), the conjugate s0 = α − iβ is also a pole of order
m, according to Exercise 13. Moreover,

Res
s=s0

[estF (s)] + Res
s=s0

[estF (s)](2)

= 2eαtRe

{
eiβt

[
b1 + b2

1!
t + · · · + bm

(m − 1)!
tm−1

]}

when t is real. Note that if s0 is a simple pole (m = 1), expressions (1) and (2)
become

Res
s=s0

[estF (s)] = es0tRes
s=s0

F(s)(3)

and

Res
s=s0

[estF (s)] + Res
s=s0

[estF (s)] = 2eαt Re

[
eiβtRes

s=s0
F(s)

]
,(4)

respectively.

EXAMPLE 1. Let us find the function f (t) that corresponds to

F(s) = s

(s2 + a2)2
(a > 0).(5)

The singularities of F(s) are the conjugate points

s0 = ai and s0 = −ai.

Upon writing

F(s) = φ(s)

(s − ai)2
where φ(s) = s

(s + ai)2
,

we see that φ(s) is analytic and nonzero at s0 = ai. Hence s0 is a pole of order
m = 2 of F(s). Furthermore, F(s) = F(s) at points where F(s) is analytic. Con-
sequently, s0 is also a pole of order 2 of F(s); and we know from expression (2)
that

Res
s=s0

[estF (s)] + Res
s=s0

[estF (s)] = 2 Re [eiat (b1 + b2t)],(6)
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where b1 and b2 are the coefficients in the principal part

b1

s − ai
+ b2

(s − ai)2

of F(s) at ai. These coefficients are readily found with the aid of the first two terms
in the Taylor series for φ(s) about s0 = ai:

F(s) = 1

(s − ai)2
φ(s) = 1

(s − ai)2

[
φ(ai) + φ′(ai)

1!
(s − ai) + · · ·

]

= φ(ai)

(s − ai)2
+ φ′(ai)

s − ai
+ · · · (0 < |s − ai| < 2a).

It is straightforward to show that φ(ai) = −i/(4a) and φ′(ai) = 0, and we find that
b1 = 0 and b2 = −i/(4a). Hence expression (6) becomes

Res
s=s0

[estF (s)] + Res
s=s0

[estF (s)] = 2 Re

[
eiat

(
− i

4a
t

)]
= 1

2a
t sin at.

We can, then, conclude that

f (t) = 1

2a
t sin at (t > 0),(7)

provided that F(s) satisfies the boundedness condition stated in italics in Sec. 88.
To verify that boundedness, we let s be any point on the semicircle

s = γ + Reiθ

(
π

2
≤ θ ≤ 3π

2

)
,

where γ > 0 and R > a + γ ; and we note that

|s| = |γ + Reiθ | ≤ γ + R and |s| = |γ + Reiθ | ≥ |γ − R| = R − γ > a.

Since
|s2 + a2| ≥ | |s|2 − a2| ≥ (R − γ )2 − a2 > 0,

it follows that

|F(s)| = |s|
|s2 + a2|2 ≤ MR where MR = γ + R

[(R − γ )2 − a2] 2
.

The desired boundedness is now established, since MR → 0 as R → ∞.

EXAMPLE 2. In order to find f (t) when

F(s) = tanh s

s2
= sinh s

s2 cosh s
,
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we note that F(s) has isolated singularities at s = 0 and at the zeros (Sec. 35)

s =
(π

2
+ nπ

)
i (n = 0, ±1,±2, . . .)

of cosh s. We list those singularities as

s0 = 0 and sn = (2n − 1)π

2
i, sn = − (2n − 1)π

2
i (n = 1, 2, . . .).

Then, formally,

f (t) = Res
s=s0

[estF (s)] +
∞∑

n=1

{
Res
s=sn

[estF (s)] + Res
s=sn

[estF (s)]

}
.(8)

Division of Maclaurin series yields the Laurent series representation

F(s) = 1

s2
· sinh s

cosh s
= 1

s
− 1

3
s + · · ·

(
0 < |s| <

π

2

)
,

which tells us that s0 = 0 is a simple pole of F(s), with residue unity. Thus

Res
s=s0

[estF (s)] = Res
s=s0

F(s) = 1,(9)

according to expression (3).
The residues of F(s) at the points sn (n = 1, 2, . . .) are readily found by apply-

ing the method of Theorem 2 in Sec. 76 for identifying simple poles and determining
the residues at such points. To be specific, we write

F(s) = p(s)

q(s)
where p(s) = sinh s and q(s) = s2 cosh s

and observe that

sinh sn = sinh
[
i
(
nπ − π

2

)]
= i sin

(
nπ − π

2

)
= −i cos nπ = (−1)n+1 i �= 0.

Then, since

p(sn) = sinh sn �= 0, q(sn) = 0, and q ′(sn) = s2
n sinh sn �= 0,

we find that

Res
s=sn

F (s) = p(sn)

q ′(sn)
= 1

s2
n

= − 4

π2
· 1

(2n − 1)2
(n = 1, 2, . . .).
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[Compare with Example 3 in Sec. 76.] The identities

sinh s = sinh s and cosh s = cosh s

(see Exercise 11, Sec. 35) ensure that F(s) = F(s) at points of analyticity of
F(s). Hence sn is also a simple pole of F(s), and expression (4) can be used
to write

Res
s=sn

[
estF (s)

] + Res
s=sn

[
estF (s)

]
(10)

= 2 Re

{
− 4

π2
· 1

(2n − 1)2
exp

[
i
(2n − 1)πt

2

]}

= − 8

π2
· 1

(2n − 1)2
cos

(2n − 1)πt

2
(n = 1, 2, . . .).

Finally, by substituting expressions (9) and (10) into equation (8), we arrive at
the desired result:

f (t) = 1 − 8

π2

∞∑
n=1

1

(2n − 1)2
cos

(2n − 1)πt

2
(t > 0).(11)

EXAMPLE 3. We consider here the function

F(s) = sinh(xs1/2)

s sinh(s1/2)
(0 < x < 1),(12)

where s1/2 denotes any branch of this double-valued function. We agree, however,
to use the same branch in the numerator and denominator, so that

F(s) = xs1/2 + (xs1/2)3/3! + · · ·
s[s1/2 + (s1/2)3/3! + · · ·] = x + x3s/6 + · · ·

s + s2/6 + · · ·(13)

when s is not a singular point of F(s). One such singular point is clearly s = 0. With
the additional agreement that the branch cut of s1/2 does not lie along the negative
real axis, so that sinh(s1/2) is well defined along that axis, the other singular points
occur if s1/2 = ±nπi (n = 1, 2, . . .). The points

s0 = 0 and sn = −n2π2 (n = 1, 2, . . .)

thus constitute the set of singular points of F(s). The problem is now to evaluate
the residues in the formal series representation

f (t) = Res
s=s0

[estF (s)] +
∞∑

n=1

Res
s=sn

[estF (s)].(14)
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Division of the power series on the far right in expression (13) reveals that s0

is a simple pole of F(s), with residue x. So expression (3) tells us that

Res
s=s0

[estF (s)] = x.(15)

As for the residues of F(s) at the singular points sn = −n2π2 (n = 1, 2, . . .),

we write

F(s) = p(s)

q(s)
where p(s) = sinh(xs1/2) and q(s) = s sinh(s1/2).

Appealing to Theorem 2 in Sec. 76, as we did in Example 2, we note that

p(sn) = sinh(xs1/2
n ) �= 0, q(sn) = 0, and q ′(sn) = 1

2
s1/2
n cosh(s1/2

n ) �= 0 ;

and this tells us that each sn is a simple pole of F(s), with residue

Res
s=sn

F (s) = p(sn)

q ′(sn)
= 2

π
· (−1)n

n
sin nπx.

So, in view of expression (3),

Res
s=sn

[estF (s)] = esnt Res
s=sn

F (s) = 2

π
· (−1)n

n
e−n2π2t sin nπx.(16)

Substituting expressions (15) and (16) into equation (14), we arrive at the
function

f (t) = x + 2

π

∞∑
n=1

(−1)n

n
e−n2π2t sin nπx (t > 0).(17)

EXERCISES

In Exercises 1 through 5, use the method described in Sec. 88 and illustrated in
Example 1, Sec. 89, to find the function f (t) corresponding to the given function F(s).

1. F(s) = 2s3

s4 − 4
.

Ans. f (t) = cosh
√

2t + cos
√

2t .

2. F(s) = 2s − 2

(s + 1)(s2 + 2s + 5)
.

Ans. f (t) = e−t (sin 2t + cos 2t − 1).

3. F(s) = 12

s3 + 8
.

Ans. f (t) = e−2t + et (
√

3 sin
√

3t − cos
√

3t).
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4. F(s) = s2 − a2

(s2 + a2)2
(a > 0).

Ans. f (t) = t cos at .

5. F(s) = 8 a3s2

(s2 + a2)3
(a > 0).

Suggestion: Refer to Exercise 5, Sec. 72, for the principal part of F(s) at s = ai.

Ans. f (t) = (1 + a2t2) sin at − at cos at .

In Exercises 6 through 11, use the formal method, involving an infinite series of
residues and illustrated in Examples 2 and 3 in Sec. 89, to find the function f (t)

that corresponds to the given function F(s).

6. F(s) = sinh(xs)

s2 cosh s
(0 < x < 1).

Ans. f (t) = x + 8

π2

∞∑
n=1

(−1)n

(2n − 1)2
sin

(2n − 1)πx

2
cos

(2n − 1)πt

2
.

7. F(s) = 1

s cosh(s1/2)
.

Ans. f (t) = 1 + 4

π

∞∑
n=1

(−1)n

2n − 1
exp

[
− (2n − 1)2π2t

4

]
.

8. F(s) = coth(πs/2)

s2 + 1
.

Ans. f (t) = 2

π
− 4

π

∞∑
n=1

cos 2nt

4n2 − 1
.∗

9. F(s) = sinh(xs1/2)

s2 sinh(s1/2)
(0 < x < 1).

Ans. f (t) = 1

6
x(x2 − 1) + xt + 2

π3

∞∑
n=1

(−1)n+1

n3
e−n2π2t sin nπx.

10. F(s) = 1

s2
− 1

s sinh s
.

Ans. f (t) = 2

π

∞∑
n=1

(−1)n+1

n
sin nπt .

11. F(s) = sinh(xs)

s(s2 + ω2) cosh s
(0 < x < 1),

where ω > 0 and ω �= ωn = (2n − 1)π

2
(n = 1, 2, . . .).

Ans. f (t) = sin ωx sin ωt

ω2 cos ω
+ 2

∞∑
n=1

(−1)n+1

ωn

· sin ωnx sin ωnt

ω2 − ω2
n

.

∗This is actually the rectified sine function f (t) = | sin t |. See the authors’ “Fourier Series and
Boundary Value Problems,” 7th ed., pp. 7–8, 2008.
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12. Suppose that a function F(s) has a pole of order m at s = s0, with a Laurent series
expansion

F(s) =
∞∑

n=0

an(s − s0)
n + b1

s − s0
+ b2

(s − s0)2
+ · · · + bm−1

(s − s0)m−1
+ bm

(s − s0)m

(bm �= 0)

in the punctured disk 0 < |s − s0| < R2, and note that (s − s0)
mF (s) is represented

in that domain by the power series

bm + bm−1(s − s0) + · · · + b2(s − s0)
m−2 + b1(s − s0)

m−1 +
∞∑

n=0

an(s − s0)
m+n.

By collecting the terms that make up the coefficient of (s − s0)
m−1 in the product

(Sec. 67) of this power series and the Taylor series expansion

est = es0t

[
1 + t

1!
(s − s0) + · · · + tm−2

(m − 2)!
(s − s0)

m−2 + tm−1

(m − 1)!
(s − s0)

m−1 + · · ·
]

of the entire function est = es0 t e(s−s0)t , show that

Res
s=s0

[estF (s)] = es0t

[
b1 + b2

1!
t + · · · + bm−1

(m − 2)!
tm−2 + bm

(m − 1)!
tm−1

]
,

as stated at the beginning of Sec. 89.

13. Let the point s0 = α + iβ (β �= 0) be a pole of order m of a function F(s), which has
a Laurent series representation

F(s) =
∞∑

n=0

an(s − s0)
n + b1

s − s0
+ b2

(s − s0)2
+ · · · + bm

(s − s0)m
(bm �= 0)

in the punctured disk 0 < |s − s0| < R2. Also, assume that F(s) = F(s) at points s

where F(s) is analytic.

(a) With the aid of the result in Exercise 6, Sec. 56, point out how it follows that

F(s) =
∞∑

n=0

an(s − s0)
n + b1

s − s0
+ b2

(s − s0)2
+ · · · + bm

(s − s0)m
(bm �= 0)

when 0 < |s − s0| < R2. Then replace s by s here to obtain a Laurent series
representation for F(s) in the punctured disk 0 < |s − s0| < R2, and conclude
that s0 is a pole of order m of F(s).

(b) Use results in Exercise 12 and part (a) to show that

Res
s=s0

[estF (s)] + Res
s=s0

[estF (s)] = 2eαt Re

{
eiβt

[
b1 + b2

1!
t + · · · + bm

(m − 1)!
tm−1

]}

when t is real, as stated just before Example 1 in Sec. 89.
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14. Let F(s) be the function in Exercise 13, and write the nonzero coefficient bm there
in exponential form as bm = rm exp(iθm). Then use the main result in part (b) of
Exercise 13 to show that when t is real, the sum of the residues of estF (s) at
s0 = α + iβ (β �= 0) and s0 contains a term of the type

2rm

(m − 1)!
tm−1eαt cos(βt + θm).

Note that if α > 0, the product tm−1eαt here tends to ∞ as t tends to ∞. When the
inverse Laplace transform f (t) is found by summing the residues of estF (s), the term
displayed just above is, therefore, an unstable component of f (t) if α > 0 ; and it is
said to be of resonance type. If m ≥ 2 and α = 0, the term is also of resonance type.
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C H A P T E R

8
MAPPING BY ELEMENTARY

FUNCTIONS

The geometric interpretation of a function of a complex variable as a mapping, or
transformation, was introduced in Secs. 13 and 14 (Chap. 2). We saw there how
the nature of such a function can be displayed graphically, to some extent, by the
manner in which it maps certain curves and regions.

In this chapter, we shall see further examples of how various curves and regions
are mapped by elementary analytic functions. Applications of such results to physical
problems are illustrated in Chaps. 10 and 11.

90. LINEAR TRANSFORMATIONS

To study the mapping

w = Az ,(1)

where A is a nonzero complex constant and z �= 0, we write A and z in exponential
form:

A = aeiα, z = reiθ .

Then

w = (ar)ei(α+θ),(2)

and we see from equation (2) that transformation (1) expands or contracts the radius
vector representing z by the factor a and rotates it through the angle α about the
origin. The image of a given region is, therefore, geometrically similar to that region.

311
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The mapping

w = z + B,(3)

where B is any complex constant, is a translation by means of the vector representing
B. That is, if

w = u + iv, z = x + iy, and B = b1 + ib2,

then the image of any point (x, y) in the z plane is the point

(u, v) = (x + b1, y + b2)(4)

in the w plane. Since each point in any given region of the z plane is mapped
into the w plane in this manner, the image region is geometrically congruent to the
original one.

The general (nonconstant) linear transformation

w = Az + B (A �= 0)(5)

is a composition of the transformations

Z = Az (A �= 0) and w = Z + B.

When z �= 0, it is evidently an expansion or contraction and a rotation, followed by
a translation.

EXAMPLE. The mapping

w = (1 + i)z + 2(6)

transforms the rectangular region in the z = (x, y) plane of Fig. 109 into the rect-
angular region shown in the w = (u, v) plane there. This is seen by expressing it
as a composition of the transformations

Z = (1 + i)z and w = Z + 2 .(7)

Writing

1 + i =
√

2 exp
(
i
π

4

)
and z = r exp(iθ) ,

one can put the first of transformations (7) in the form

Z = (
√

2r) exp
[
i
(
θ + π

4

)]
.

This first transformation thus expands the radius vector for a nonzero point z by the
factor

√
2 and rotates it counterclockwise π/4 radians about the origin. The second

of transformations (7) is, of course, a translation two units to the right.
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xO A

B B′

A′

y

uO 2

v

XO

Y

1 + 2i

–1 + 3i

B″

A″

1 + 3i

FIGURE 109
w = (1 + i)z + 2.

EXERCISES
1. State why the transformation w = iz is a rotation in the z plane through the angle

π/2. Then find the image of the infinite strip 0 < x < 1.
Ans. 0 < v < 1.

2. Show that the transformation w = iz + i maps the half plane x > 0 onto the half plane
v > 1.

3. Find and sketch the region onto which the half plane y > 0 is mapped by the trans-
formation w = (1 + i)z.

Ans. v > u.

4. Find the image of the half plane y > 1 under the transformation w = (1 − i)z.

5. Find the image of the semi-infinite strip x > 0, 0 < y < 2 when w = iz + 1. Sketch
the strip and its image.

Ans. −1 < u < 1, v < 0.

6. Give a geometric description of the transformation w = A(z + B), where A and B

are complex constants and A �= 0.

91. THE TRANSFORMATION w = 1/z

The equation

w = 1

z
(1)

establishes a one to one correspondence between the nonzero points of the z and the
w planes. Since zz = |z|2, the mapping can be described by means of the successive
transformations

Z = z

|z|2 , w = Z.(2)
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The first of these transformations is an inversion with respect to the unit circle
|z| = 1. That is, the image of a nonzero point z is the point Z with the properties

|Z| = 1

|z| and arg Z = arg z.

Thus the points exterior to the circle |z| = 1 are mapped onto the nonzero points
interior to it (Fig. 110), and conversely. Any point on the circle is mapped onto
itself. The second of transformations (2) is simply a reflection in the real axis.

xO 1

y

w

Z

z

FIGURE 110

If we write transformation (1) as

T (z) = 1

z
(z �= 0),(3)

we can define T at the origin and at the point at infinity so as to be continuous on
the extended complex plane. To do this, we need only refer to Sec. 17 to see that

lim
z→0

T (z) = ∞ since lim
z→0

1

T (z)
= lim

z→0
z = 0(4)

and

lim
z→∞ T (z) = 0 since lim

z→0
T

(
1

z

)
= lim

z→0
z = 0.(5)

In order to make T continuous on the extended plane, then, we write

T (0) = ∞, T (∞) = 0, and T (z) = 1

z
(6)

for the remaining values of z. More precisely, the first of limits (4) and (5) tells us
that the limit

lim
z→z0

T (z) = T (z0),(7)

which is clearly true when z0 �= 0 and when z0 �= ∞, is also true for those two
values of z0. The fact that T is continuous everywhere in the extended plane is now
a consequence of limit (7). (See Sec. 18.) Because of this continuity, when the point
at infinity is involved in any discussion of the function 1/z, we tacitly assume that
T (z) is intended.
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92. MAPPINGS BY 1/z

When a point w = u + iv is the image of a nonzero point z = x + iy in the finite
plane under the transformation w = 1/z , writing

w = z

zz
= z

|z|2
reveals that

u = x

x2 + y2
, v = −y

x2 + y2
.(1)

Also, since

z = 1

w
= w

ww
= w

|w|2 ,

one can see that

x = u

u2 + v2
, y = −v

u2 + v2
.(2)

The following argument, based on these relations between coordinates, shows that
the mapping w = 1/z transforms circles and lines into circles and lines. When A,
B, C, and D are all real numbers satisfying the condition B2 + C2 > 4AD, the
equation

A(x2 + y2) + Bx + Cy + D = 0(3)

represents an arbitrary circle or line, where A �= 0 for a circle and A = 0 for a
line. The need for the condition B2 + C2 > 4AD when A �= 0 is evident if, by the
method of completing the squares, we rewrite equation (3) as

(
x + B

2A

)2

+
(

y + C

2A

)2

=
(√

B2 + C2 − 4AD

2A

)2

.

When A = 0, the condition becomes B2 + C2 > 0, which means that B and C are
not both zero. Returning to the verification of the statement in italics just above, we
observe that if x and y satisfy equation (3), we can use relations (2) to substitute for
those variables. After some simplifications, we find that u and v satisfy the equation
(see also Exercise 14 of this section)

D(u2 + v2) + Bu − Cv + A = 0,(4)

which also represents a circle or line. Conversely, if u and v satisfy equation (4), it
follows from relations (1) that x and y satisfy equation (3).

It is now clear from equations (3) and (4) that

(a) a circle (A �= 0) not passing through the origin (D �= 0) in the z plane is trans-
formed into a circle not passing through the origin in the w plane;
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(b) a circle (A �= 0) through the origin (D = 0) in the z plane is transformed into
a line that does not pass through the origin in the w plane;

(c) a line (A = 0) not passing through the origin (D �= 0) in the z plane is trans-
formed into a circle through the origin in the w plane;

(d) a line (A = 0) through the origin (D = 0) in the z plane is transformed into a
line through the origin in the w plane.

EXAMPLE 1. According to equations (3) and (4), a vertical line x = c1

(c1 �= 0) is transformed by w = 1/z into the circle −c1(u
2 + v2) + u = 0, or(

u − 1

2c1

)2

+ v2 =
(

1

2c1

)2

,(5)

which is centered on the u axis and tangent to the v axis. The image of a typical
point (c1, y) on the line is, by equations (1),

(u, v) =
(

c1

c2
1 + y2

,
−y

c2
1 + y2

)
.

If c1 > 0, the circle (5) is evidently to the right of the v axis. As the point
(c1, y) moves up the entire line, its image traverses the circle once in the clockwise
direction, the point at infinity in the extended z plane corresponding to the origin
in the w plane. This is illustrated in Fig. 111 when c1 = 1/3. Note that v > 0 if
y < 0 ; and as y increases through negative values to 0, one can see that u increases
from 0 to 1/c1. Then, as y increases through positive values, v is negative and u

decreases to 0.
If, on the other hand, c1 < 0, the circle lies to the left of the v axis. As the point

(c1, y) moves upward, its image still makes one cycle, but in the counterclockwise
direction. See Fig. 111, where the case c1 = −1/2 is also shown.

x

y

u

v

c1 = 1–3

c1 = 1–3
c2 = 1–2

c2 = 1–2

c2 = – 1–2

c2 = – 1–2
c1 = – 1–2

c1 = – 1–2

FIGURE 111
w = 1/z.
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EXAMPLE 2. A horizontal line y = c2 (c2 �= 0) is mapped by w = 1/z onto
the circle

u2 +
(

v + 1

2c2

)2

=
(

1

2c2

)2

,(6)

which is centered on the v axis and tangent to the u axis. Two special cases are
shown in Fig. 111, where corresponding orientations of the lines and circles are
also indicated.

EXAMPLE 3. When w = 1/z, the half plane x ≥ c1 (c1 > 0) is mapped
onto the disk (

u − 1

2c1

)2

+ v2 ≤
(

1

2c1

)2

.(7)

For, according to Example 1, any line x = c (c ≥ c1) is transformed into the circle(
u − 1

2c

)2

+ v2 =
(

1

2c

)2

.(8)

Furthermore, as c increases through all values greater than c1, the lines x = c move
to the right and the image circles (8) shrink in size. (See Fig. 112.) Since the lines
x = c pass through all points in the half plane x ≥ c1 and the circles (8) pass through
all points in the disk (7), the mapping is established.

x

x = c1 x = c

O

y

uO 1—
2c

1—
2c1

v

FIGURE 112
w = 1/z.

EXERCISES
1. In Sec. 92, point out how it follows from the first of equations (2) that when w = 1/z,

the inequality x ≥ c1 (c1 > 0) is satisfied if and only if inequality (7) holds. Thus give
an alternative verification of the mapping established in Example 3, Sec. 92.
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2. Show that when c1 < 0, the image of the half plane x < c1 under the transformation
w = 1/z is the interior of a circle. What is the image when c1 = 0 ?

3. Show that the image of the half plane y > c2 under the transformation w = 1/z is the
interior of a circle when c2 > 0. Find the image when c2 < 0 and when c2 = 0.

4. Find the image of the infinite strip 0 < y < 1/(2c) under the transformation w = 1/z.
Sketch the strip and its image.

Ans. u2 + (v + c)2 > c2, v < 0.

5. Find the image of the region x > 1, y > 0 under the transformation w = 1/z.

Ans.

(
u − 1

2

)2

+ v2 <

(
1

2

)2

, v < 0.

6. Verify the mapping, where w = 1/z, of the regions and parts of the boundaries indi-
cated in (a) Fig. 4, Appendix 2; (b) Fig. 5, Appendix 2.

7. Describe geometrically the transformation w = 1/(z − 1).

8. Describe geometrically the transformation w = i/z. State why it transforms circles
and lines into circles and lines.

9. Find the image of the semi-infinite strip x > 0, 0 < y < 1 when w = i/z. Sketch the
strip and its image.

Ans.

(
u − 1

2

)2

+ v2 >

(
1

2

)2

, u > 0, v > 0.

10. By writing w = ρ exp(iφ), show that the mapping w = 1/z transforms the hyperbola
x2 − y2 = 1 into the lemniscate ρ2 = cos 2φ. (See Exercise 14, Sec. 5.)

11. Let the circle |z| = 1 have a positive, or counterclockwise, orientation. Determine the
orientation of its image under the transformation w = 1/z.

12. Show that when a circle is transformed into a circle under the transformation w = 1/z,
the center of the original circle is never mapped onto the center of the image circle.

13. Using the exponential form z = reiθ of z, show that the transformation

w = z + 1

z
,

which is the sum of the identity transformation and the transformation discussed in
Secs. 91 and 92, maps circles r = r0 onto ellipses with parametric representations

u =
(

r0 + 1

r0

)
cos θ, v =

(
r0 − 1

r0

)
sin θ (0 ≤ θ ≤ 2π)

and foci at the points w = ±2. Then show how it follows that this transformation
maps the entire circle |z| = 1 onto the segment −2 ≤ u ≤ 2 of the u axis and the
domain outside that circle onto the rest of the w plane.

14. (a) Write equation (3), Sec. 92, in the form

2Azz + (B − Ci)z + (B + Ci)z + 2D = 0,

where z = x + iy.
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(b) Show that when w = 1/z, the result in part (a) becomes

2Dww + (B + Ci)w + (B − Ci)w + 2A = 0.

Then show that if w = u + iv, this equation is the same as equation (4), Sec. 92.
Suggestion: In part (a), use the relations (see Sec. 5)

x = z + z

2
and y = z − z

2i
.

93. LINEAR FRACTIONAL TRANSFORMATIONS

The transformation

w = az + b

cz + d
(ad − bc �= 0),(1)

where a, b, c, and d are complex constants, is called a linear fractional transfor-
mation, or Möbius transformation. Observe that equation (1) can be written in the
form

Azw + Bz + Cw + D = 0 (AD − BC �= 0);(2)

and, conversely, any equation of type (2) can be put in the form (1). Since this
alternative form is linear in z and linear in w, another name for a linear fractional
transformation is bilinear transformation.

When c = 0, the condition ad − bc �= 0 with equation (1) becomes ad �= 0 ;
and we see that the transformation reduces to a nonconstant linear function. When
c �= 0, equation (1) can be written

w = a

c
+ bc − ad

c
· 1

cz + d
(ad − bc �= 0).(3)

So, once again, the condition ad − bc �= 0 ensures that we do not have a constant
function. The transformation w = 1/z is evidently a special case of transformation
(1) when c �= 0.

Equation (3) reveals that when c �= 0, a linear fractional transformation is a
composition of the mappings.

Z = cz + d, W = 1

Z
, w = a

c
+ bc − ad

c
W (ad − bc �= 0).

It thus follows that, regardless of whether c is zero or nonzero, any linear frac-
tional transformation transforms circles and lines into circles and lines because
these special linear fractional transformations do. (See Secs. 90 and 92.)

Solving equation (1) for z, we find that

z = −dw + b

cw − a
(ad − bc �= 0).(4)
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When a given point w is the image of some point z under transformation (1), the
point z is retrieved by means of equation (4). If c = 0, so that a and d are both
nonzero, each point in the w plane is evidently the image of one and only one
point in the z plane. The same is true if c �= 0, except when w = a/c since the
denominator in equation (4) vanishes if w has that value. We can, however, enlarge
the domain of definition of transformation (1) in order to define a linear fractional
transformation T on the extended z plane such that the point w = a/c is the image
of z = ∞ when c �= 0. We first write

T (z) = az + b

cz + d
(ad − bc �= 0).(5)

We then write

T (∞) = ∞ if c = 0(6)

and

T (∞) = a

c
and T

(
−d

c

)
= ∞ if c �= 0.(7)

In view of Exercise 11, Sec. 18, this makes T continuous on the extended z plane.
It also agrees with the way in which we enlarged the domain of definition of the
transformation w = 1/z in Sec. 91.

When its domain of definition is enlarged in this way, the linear fractional
transformation (5) is a one to one mapping of the extended z plane onto the extended
w plane. That is, T (z1) �= T (z2) whenever z1 �= z2; and, for each point w in the
second plane, there is a point z in the first one such that T (z) = w. Hence, associated
with the transformation T , there is an inverse transformation T −1, which is defined
on the extended w plane as follows:

T −1(w) = z if and only if T (z) = w.

From equation (4), we see that

T −1(w) = −dw + b

cw − a
(ad − bc �= 0).(8)

Evidently, T −1 is itself a linear fractional transformation, where

T −1(∞) = ∞ if c = 0(9)

and

T −1
(a

c

)
= ∞ and T −1(∞) = −d

c
if c �= 0.(10)

If T and S are two linear fractional transformations, then so is the composition
S[T (z)]. This can be verified by combining expressions of the type (5). Note that,
in particular, T −1[T (z)] = z for each point z in the extended plane.
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There is always a linear fractional transformation that maps three given distinct
points z1, z2, and z3 onto three specified distinct points w1, w2, and w3, respectively.
Verification of this will appear in Sec. 94, where the image w of a point z under
such a transformation is given implicitly in terms of z. We illustrate here a more
direct approach to finding the desired transformation.

EXAMPLE 1. Let us find the special case of transformation (1) that maps
the points

z1 = −1, z2 = 0, and z3 = 1

onto the points
w1 = −i, w2 = 1, and w3 = i.

Since 1 is the image of 0, expression (1) tells us that 1 = b/d , or d = b. Thus

w = az + b

cz + b
[b(a − c) �= 0].(11)

Then, since −1 and 1 are transformed into −i and i, respectively, it follows that

ic − ib = −a + b and ic + ib = a + b.

Adding corresponding sides of these equations, we find that c = −ib ; and subtrac-
tion reveals that a = ib. Consequently,

w = ibz + b

−ibz + b
= b(iz + 1)

b(−iz + 1)
.

We can cancel out the nonzero number b in this last fraction and write

w = iz + 1

−iz + 1
.

This is, of course, the same as

w = i − z

i + z
,(12)

which is obtained by assigning the value i to the arbitrary number b.

EXAMPLE 2. Suppose that the points

z1 = 1, z2 = 0, and z3 = −1

are to be mapped onto

w1 = i, w2 = ∞, and w3 = 1.

Since w2 = ∞ corresponds to z2 = 0, we know from equations (6) and (7) that
c �= 0 and d = 0 in equation (1). Hence

w = az + b

cz
(bc �= 0).(13)
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Then, because 1 is to be mapped onto i and −1 onto 1, we have the relations

ic = a + b, −c = −a + b ;
and it follows that

2a = (1 + i)c, 2b = (i − 1)c.

Finally, if we multiply numerator and denominator in the quotient (13) by 2 , make
these substitutions for 2a and 2b, and then cancel out the nonzero number c, we
arrive at

w = (i + 1)z + (i − 1)

2z
.(14)

94. AN IMPLICIT FORM

The equation

(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
= (z − z1)(z2 − z3)

(z − z3)(z2 − z1)
(1)

defines (implicitly) a linear fractional transformation that maps distinct points z1,
z2, and z3 in the finite z plane onto distinct points w1, w2, and w3, respectively, in
the finite w plane.∗ To verify this, we write equation (1) as

(z − z3)(w−w1)(z2 − z1)(w2 − w3) = (z − z1)(w − w3)(z2 − z3)(w2−w1).(2)

If z = z1, the right-hand side of equation (2) is zero ; and it follows that w = w1.
Similarly, if z = z3, the left-hand side is zero and, consequently, w = w3. If z = z2,
we have the linear equation

(w − w1)(w2 − w3) = (w − w3)(w2 − w1),

whose unique solution is w = w2. One can see that the mapping defined by
equation (1) is actually a linear fractional transformation by expanding the products
in equation (2) and writing the result in the form (Sec. 93)

Azw + Bz + Cw + D = 0.(3)

The condition AD − BC �= 0, which is needed with equation (3), is clearly satisfied
since, as just demonstrated, equation (1) does not define a constant function. It is
left to the reader (Exercise 10) to show that equation (1) defines the only linear
fractional transformation mapping the points z1, z2, and z3 onto w1, w2, and w3,
respectively.

∗The two sides of equation (1) are cross ratios, which play an important role in more extensive
developments of linear fractional transformations than in this book. See, for instance, R. P. Boas,
“Invitation to Complex Analysis,” pp. 192–196, 1993 or J. B. Conway, “Functions of One Complex
Variable,” 2d ed., 6th printing, pp. 48–55, 1997.
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EXAMPLE 1. The transformation found in Example 1, Sec. 93, required that

z1 = −1, z2 = 0, z3 = 1 and w1 = −i, w2 = 1, w3 = i.

Using equation (1) to write

(w + i)(1 − i)

(w − i)(1 + i)
= (z + 1)(0 − 1)

(z − 1)(0 + 1)

and then solving for w in terms of z, we arrive at the transformation

w = i − z

i + z
,

found earlier.

If equation (1) is modified properly, it can also be used when the point at infinity
is one of the prescribed points in either the (extended) z or w plane. Suppose, for
instance, that z1 = ∞. Since any linear fractional transformation is continuous on
the extended plane, we need only replace z1 on the right-hand side of equation (1)
by 1/z1, clear fractions, and let z1 tend to zero :

lim
z1→0

(z − 1/z1)(z2 − z3)

(z − z3)(z2 − 1/z1)
· z1

z1
= lim

z1→0

(z1z − 1)(z2 − z3)

(z − z3)(z1z2 − 1)
= z2 − z3

z − z3
.

The desired modification of equation (1) is, then,

(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
= z2 − z3

z − z3
.

Note that this modification is obtained formally by simply deleting the factors involv-
ing z1 in equation (1). It is easy to check that the same formal approach applies
when any of the other prescribed points is ∞.

EXAMPLE 2. In Example 2, Sec. 93, the prescribed points were

z1 = 1, z2 = 0, z3 = −1 and w1 = i, w2 = ∞, w3 = 1.

In this case, we use the modification

w − w1

w − w3
= (z − z1)(z2 − z3)

(z − z3)(z2 − z1)

of equation (1), which tells us that

w − i

w − 1
= (z − 1)(0 + 1)

(z + 1)(0 − 1)
.

Solving here for w, we have the transformation obtained earlier :

w = (i + 1)z + (i − 1)

2z
.
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EXERCISES
1. Find the linear fractional transformation that maps the points z1 = 2, z2 = i, z3 = −2

onto the points w1 = 1, w2 = i, w3 = −1.

Ans. w = 3z + 2i

iz + 6
.

2. Find the linear fractional transformation that maps the points z1 = −i, z2 = 0, z3 = i

onto the points w1 = −1, w2 = i, w3 = 1. Into what curve is the imaginary axis x = 0
transformed?

3. Find the bilinear transformation that maps the points z1 = ∞, z2 = i, z3 = 0 onto the
points w1 = 0, w2 = i, w3 = ∞.

Ans. w = −1/z.

4. Find the bilinear transformation that maps distinct points z1, z2, z3 onto the points
w1 = 0, w2 = 1, w3 = ∞.

Ans. w = (z − z1)(z2 − z3)

(z − z3)(z2 − z1)
.

5. Show that a composition of two linear fractional transformations is again a linear frac-
tional transformation, as stated in Sec. 93. To do this, consider two such transformations

T (z) = a1z + b1

c1z + d1
(a1d1 − b1c1 �= 0)

and

S(z) = a2z + b2

c2z + d2
(a2d2 − b2c2 �= 0).

Then show that the composition S[T (z)] has the form

S[T (z)] = a3z + b3

c3z + d3
,

where

a3d3 − b3c3 = (a1d1 − b1c1)(a2d2 − b2c2) �= 0.

6. A fixed point of a transformation w = f (z) is a point z0 such that f (z0) = z0. Show
that every linear fractional transformation, with the exception of the identity transfor-
mation w = z, has at most two fixed points in the extended plane.

7. Find the fixed points (see Exercise 6) of the transformation

(a) w = z − 1

z + 1
; (b) w = 6z − 9

z
.

Ans. (a) z = ±i; (b) z = 3.

8. Modify equation (1), Sec. 94, for the case in which both z2 and w2 are the point
at infinity. Then show that any linear fractional transformation must be of the form
w = az (a �= 0) when its fixed points (Exercise 6) are 0 and ∞.

9. Prove that if the origin is a fixed point (Exercise 6) of a linear fractional transformation,
then the transformation can be written in the form
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w = z

cz + d
(d �= 0).

10. Show that there is only one linear fractional transformation which maps three given
distinct points z1, z2, and z3 in the extended z plane onto three specified distinct points
w1, w2, and w3 in the extended w plane.

Suggestion: Let T and S be two such linear fractional transformations. Then,
after pointing out why S−1[T (zk)] = zk (k = 1, 2, 3), use the results in Exercises 5
and 6 to show that S−1[T (z)] = z for all z. Thus show that T (z) = S(z) for all z.

11. With the aid of equation (1), Sec. 94, prove that if a linear fractional transformation maps
the points of the x axis onto points of the u axis, then the coefficients in the transformation
are all real, except possibly for a common complex factor. The converse statement is
evident.

12. Let

T (z) = az + b

cz + d
(ad − bc �= 0)

be any linear fractional transformation other than T (z) = z. Show that

T −1 = T if and only if d = −a.

Suggestion: Write the equation T −1(z) = T (z) as

(a + d)[cz2 + (d − a)z − b] = 0.

95. MAPPINGS OF THE UPPER HALF PLANE

Let us determine all linear fractional transformations that map the upper half plane
Im z > 0 onto the open disk |w| < 1 and the boundary Im z = 0 of the half plane
onto the boundary |w| = 1 of the disk (Fig. 113).

u1

v

x

z
z0

z0

|z – z0|

|z – z
0 |

y

FIGURE 113

w = eiα

(
z − z0

z − z0

)
(Im z0 > 0).

Keeping in mind that points on the line Im z = 0 are to be transformed into
points on the circle |w| = 1, we start by selecting the points z = 0, z = 1, and
z = ∞ on the line and determining conditions on a linear fractional transformation

w = az + b

cz + d
(ad − bc �= 0)(1)

which are necessary in order for the images of those points to have unit modulus.
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We note from equation (1) that if |w| = 1 when z = 0, then |b/d| = 1; that is,

|b| = |d| �= 0.(2)

Furthermore, statements (6) and (7) in Sec. 93 tell use that the image of the point
z = ∞ is a finite number only if c �= 0, that finite number being w = a/c. So the
requirement that |w| = 1 when z = ∞ means that |a/c| = 1, or

|a| = |c| �= 0 ;(3)

and the fact that a and c are nonzero enables us to rewrite equation (1) as

w = a

c
· z + (b/a)

z + (d/c)
.(4)

Then, since |a/c| = 1 and ∣∣∣∣ba
∣∣∣∣ =

∣∣∣∣dc
∣∣∣∣ �= 0,

according to relations (2) and (3), equation (4) can be put in the form

w = eiα

(
z − z0

z − z1

)
(|z1| = |z0| �= 0),(5)

where α is a real constant and z0 and z1 are (nonzero) complex constants.
Next, we impose on transformation (5) the condition that |w| = 1 when z = 1.

This tells us that
|1 − z1| = |1 − z0|,

or
(1 − z1)(1 − z1) = (1 − z0)(1 − z0).

But z1z1 = z0z0 since |z1| = |z0|, and the above relation reduces to

z1 + z1 = z0 + z0 ;
that is, Re z1 = Re z0. It follows that either

z1 = z0 or z1 = z0 ,

again since |z1| = |z0|. If z1 = z0, transformation (5) becomes the constant function
w = exp(iα); hence z1 = z0.

Transformation (5), with z1 = z0, maps the point z0 onto the origin w = 0 ;
and, since points interior to the circle |w| = 1 are to be the images of points above
the real axis in the z plane, we may conclude that Im z0 > 0. Any linear fractional
transformation having the mapping property stated in the first paragraph of this
section must, therefore, be of the form

w = eiα

(
z − z0

z − z0

)
(Im z0 > 0),(6)
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where α is real.
It remains to show that, conversely, any linear fractional transformation of the

form (6) has the desired mapping property. This is easily done by taking the modulus
of each side of equation (6) and interpreting the resulting equation,

|w| = |z − z0|
|z − z0| ,

geometrically. If a point z lies above the real axis, both it and the point z0 lie on
the same side of that axis, which is the perpendicular bisector of the line segment
joining z0 and z0. It follows that the distance |z − z0| is less than the distance
|z − z0| (Fig. 113); that is, |w| < 1. Likewise, if z lies below the real axis, the
distance |z − z0| is greater than the distance |z − z0|; and so |w| > 1. Finally, if z is
on the real axis, |w| = 1 because then |z − z0| = |z − z0|. Since any linear fractional
transformation is a one to one mapping of the extended z plane onto the extended
w plane, this shows that transformation (6) maps the half plane Im z > 0 onto the
disk |w| < 1 and the boundary of the half plane onto the boundary of the disk.

Our first example here illustrates the use of the result in italics just above.

EXAMPLE 1. The transformation

w = i − z

i + z
(7)

in Examples 1 in Secs. 93 and 94 can be written

w = eiπ

(
z − i

z − i

)
.

Hence it has the mapping property described in italics. (See also Fig. 13 in
Appendix 2, where corresponding boundary points are indicated.)

Images of the upper half plane Im z ≥ 0 under other types of linear fractional
transformations are often fairly easy to determine by examining the particular trans-
formation in question.

EXAMPLE 2. By writing z = x + iy and w = u + iv, we can readily show
that the transformation

w = z − 1

z + 1
(8)

maps the half plane y > 0 onto the half plane v > 0 and the x axis onto the u axis.
We first note that when the number z is real, so is the number w. Consequently,
since the image of the real axis y = 0 is either a circle or a line, it must be the real
axis v = 0. Furthermore, for any point w in the finite w plane,

v = Im w = Im
(z − 1)(z + 1)

(z + 1)(z + 1)
= 2y

|z + 1|2 (z �= −1).
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The numbers y and v thus have the same sign, and this means that points above the
x axis correspond to points above the u axis and points below the x axis correspond
to points below the u axis. Finally, since points on the x axis correspond to points
on the u axis and since a linear fractional transformation is a one to one mapping of
the extended plane onto the extended plane (Sec. 93), the stated mapping property
of transformation (8) is established.

Our final example involves a composite function and uses the mapping dis-
cussed in Example 2.

EXAMPLE 3. The transformation

w = Log
z − 1

z + 1
,(9)

where the principal branch of the logarithmic function is used, is a composition of
the functions

Z = z − 1

z + 1
and w = Log Z.(10)

According to Example 2, the first of transformations (10) maps the upper half
plane y > 0 onto the upper half plane Y > 0, where z = x + iy and Z = X + iY .
Furthermore, it is easy to see from Fig. 114 that the second of transformations
(10) maps the half plane Y > 0 onto the strip 0 < v < π , where w = u + iv. More
precisely, by writing Z = R exp(i�) and

Log Z = ln R + i� (R > 0, −π < � < π),

we see that as a point Z = R exp(i�0) (0 < �0 < π) moves outward from the origin
along the ray � = �0, its image is the point whose rectangular coordinates in the
w plane are (ln R, �0). That image evidently moves to the right along the entire
length of the horizontal line v = �0. Since these lines fill the strip 0 < v < π as

uO

v

XO

Y

FIGURE 114
w = Log Z.
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the choice of �0 varies between �0 = 0 to �0 = π , the mapping of the half plane
Y > 0 onto the strip is, in fact, one to one.

This shows that the composition (9) of the mappings (10) transforms the
plane y > 0 onto the strip 0 < v < π . Corresponding boundary points are shown
in Fig. 19 of Appendix 2.

EXERCISES
1. Recall from Example 1 in Sec. 95 that the transformation

w = i − z

i + z

maps the half plane Im z > 0 onto the disk |w| < 1 and the boundary of the half plane
onto the boundary of the disk. Show that a point z = x is mapped onto the point

w = 1 − x2

1 + x2
+ i

2x

1 + x2
,

and then complete the verification of the mapping illustrated in Fig. 13, Appendix 2,
by showing that segments of the x axis are mapped as indicated there.

2. Verify the mapping shown in Fig. 12, Appendix 2, where

w = z − 1

z + 1
.

Suggestion: Write the given transformation as a composition of the mappings

Z = iz , W = i − Z

i + Z
, w = −W.

Then refer to the mapping whose verification was completed in Exercise 1.

3. (a) By finding the inverse of the transformation

w = i − z

i + z

and appealing to Fig. 13, Appendix 2, whose verification was completed in
Exercise 1, show that the transformation

w = i
1 − z

1 + z

maps the disk |z| ≤ 1 onto the half plane Im w ≥ 0 .
(b) Show that the linear fractional transformation

w = z − 2

z

can be written

Z = z − 1 , W = i
1 − Z

1 + Z
, w = iW.

Then, with the aid of the result in part (a), verify that it maps the disk |z − 1| ≤ 1
onto the left half plane Re w ≤ 0 .
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4. Transformation (6), Sec. 95, maps the point z = ∞ onto the point w = exp(iα), which
lies on the boundary of the disk |w| ≤ 1. Show that if 0 < α < 2π and the points z = 0
and z = 1 are to be mapped onto the points w = 1 and w = exp(iα/2), respectively,
the transformation can be written

w = eiα

[
z + exp(−iα/2)

z + exp(iα/2)

]
.

5. Note that when α = π/2, the transformation in Exercise 4 becomes

w = iz + exp(iπ/4)

z + exp(iπ/4)
.

Verify that this special case maps points on the x axis as indicated in Fig. 115.

u1
1–1

v

xEDB

B′

D′
C′

E′A′

A C

y

FIGURE 115

w = iz + exp(iπ/4)

z + exp(iπ/4)
.

6. Show that if Im z0 < 0, transformation (6), Sec. 95, maps the lower half plane Im z ≤ 0
onto the unit disk |w| ≤ 1.

7. The equation w = log(z − 1) can be written

Z = z − 1, w = log Z.

Find a branch of log Z such that the cut z plane consisting of all points except those
on the segment x ≥ 1 of the real axis is mapped by w = log(z − 1) onto the strip
0 < v < 2π in the w plane.

96. THE TRANSFORMATION w = sin z

Since (Sec. 34)
sin z = sin x cosh y + i cos x sinh y,

the transformation w = sin z can be written

u = sin x cosh y, v = cos x sinh y.(1)

One method that is often useful in finding images of regions under this trans-
formation is to examine images of vertical lines x = c1. If 0 < c1 < π/2, points on
the line x = c1 are transformed into points on the curve

u = sin c1 cosh y, v = cos c1 sinh y (−∞ < y < ∞),(2)
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which is the right-hand branch of the hyperbola

u2

sin2 c1
− v2

cos2 c1
= 1(3)

with foci at the points

w = ±
√

sin2 c1 + cos2 c1 = ±1.

The second of equations (2) shows that as a point (c1, y) moves upward along the
entire length of the line, its image moves upward along the entire length of the
hyperbola’s branch. Such a line and its image are shown in Fig. 116, where corre-
sponding points are labeled. Note that, in particular, there is a one to one mapping
of the top half (y > 0) of the line onto the top half (v > 0) of the hyperbola’s
branch. If −π/2 < c1 < 0, the line x = c1 is mapped onto the left-hand branch of
the same hyperbola. As before, corresponding points are indicated in Fig. 116.

x

C

B

A

F

E

D

O

y

u

F ′

E ′ B ′

D ′

C ′

A′

O

v

1–1

FIGURE 116
w = sin z.

The line x = 0, or the y axis, needs to be considered separately. According
to equations (1), the image of each point (0, y) is (0, sinh y). Hence the y axis is
mapped onto the v axis in a one to one manner, the positive y axis corresponding
to the positive v axis.

We now illustrate how these observations can be used to establish the images
of certain regions.

EXAMPLE 1. Here we show that the transformation w = sin z is a one to
one mapping of the semi-infinite strip −π/2 ≤ x ≤ π/2, y ≥ 0 in the z plane onto
the upper half v ≥ 0 of the w plane.

To do this, we first show that the boundary of the strip is mapped in a one
to one manner onto the real axis in the w plane, as indicated in Fig. 117. The
image of the line segment BA there is found by writing x = π/2 in equations (1)
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and restricting y to be nonnegative. Since u = cosh y and v = 0 when x = π/2, a
typical point (π/2, y) on BA is mapped onto the point (cosh y, 0) in the w plane;
and that image must move to the right from B ′ along the u axis as (π/2, y) moves
upward from B. A point (x, 0) on the horizontal segment DB has image (sin x, 0),
which moves to the right from D′ to B ′ as x increases from x = −π/2 to x = π/2 ,
or as (x, 0) goes from D to B. Finally, as a point (−π/2, y) on the line segment
DE moves upward from D, its image (−coshy, 0) moves to the left from D′.

x
BCD

E
M L

A

O

y

u

M′

E ′ C ′ B ′D′

L′

A′
O

v

1–1 FIGURE 117
w = sin z.

Now each point in the interior −π/2 < x < π/2, y > 0 of the strip lies on
one of the vertical half lines x = c1, y > 0 (−π/2 < c1 < π/2) that are shown in
Fig. 117. Also, it is important to notice that the images of those half lines are distinct
and constitute the entire half plane v > 0. More precisely, if the upper half L of a
line x = c1 (0 < c1 < π/2) is thought of as moving to the left toward the positive
y axis, the right-hand branch of the hyperbola containing its image L′ is opening up
wider and its vertex (sin c1, 0) is tending toward the origin w = 0. Hence L′ tends
to become the positive v axis, which we saw just prior to this example is the image
of the positive y axis. On the other hand, as L approaches the segment BA of the
boundary of the strip, the branch of the hyperbola closes down around the segment
B ′A′ of the u axis and its vertex (sin c1, 0) tends toward the point w = 1. Similar
statements can be made regarding the half line M and its image M ′ in Fig. 117.
We may conclude that the image of each point in the interior of the strip lies in
the upper half plane v > 0 and, furthermore, that each point in the half plane is the
image of exactly one point in the interior of the strip.

This completes our demonstration that the transformation w = sin z is a one
to one mapping of the strip −π/2 ≤ x ≤ π/2, y ≥ 0 onto the half plane v ≥ 0.
The final result is shown in Fig. 9, Appendix 2. The right-hand half of the strip
is evidently mapped onto the first quadrant of the w plane, as shown in Fig. 10,
Appendix 2.

Another convenient way to find the images of certain regions when w = sin z

is to consider the images of horizontal line segments y = c2 (−π ≤ x ≤ π), where
c2 > 0. According to equations (1), the image of such a line segment is the curve
with parametric representation

u = sin x cosh c2, v = cos x sinh c2 (−π ≤ x ≤ π).(4)
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That curve is readily seen to be the ellipse

u2

cosh2 c2
+ v2

sinh2 c2
= 1,(5)

whose foci lie at the points

w = ±
√

cosh2 c2 − sinh2 c2 = ±1.

The image of a point (x, c2) moving to the right from point A to point E in
Fig. 118 makes one circuit around the ellipse in the clockwise direction. Note that
when smaller values of the positive number c2 are taken, the ellipse becomes smaller
but retains the same foci (±1, 0). In the limiting case c2 = 0, equations (4) become

u = sin x, v = 0 (−π ≤ x ≤ π);
and we find that the interval −π ≤ x ≤ π of the x axis is mapped onto the interval
−1 ≤ u ≤ 1 of the u axis. The mapping is not, however, one to one, as it is when
c2 > 0.

The next example relies on these remarks.

x

A B D EC

O

y

y = c2 > 0

u

E ′
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B ′ D′

A′

O

v

1–1

FIGURE 118
w = sin z.

EXAMPLE 2. The rectangular region −π/2 ≤ x ≤ π/2, 0 ≤ y ≤ b is mapp-
ed by w = sin z in a one to one manner onto the semi-elliptical region that is shown
in Fig. 119, where corresponding boundary points are also indicated. For if L is a
line segment y = c2 (−π/2 ≤ x ≤ π/2), where 0 < c2 ≤ b, its image L′ is the top
half of the ellipse (5). As c2 decreases, L moves downward toward the x axis and the
semi-ellipse L′ also moves downward and tends to become the line segment E′F ′A′
from w = −1 to w = 1. In fact, when c2 = 0, equations (4) become

u = sin x, v = 0
(
−π

2
≤ x ≤ π

2

)
;
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FIGURE 119
w = sin z.

and this is clearly a one to one mapping of the segment EFA onto E′F ′A′. Inasmuch
as any point in the semi-elliptical region in the w plane lies on one and only one of
the semi-ellipses, or on the limiting case E′F ′A′, that point is the image of exactly
one point in the rectangular region in the z plane. The desired mapping, which is
also shown in Fig. 11 of Appendix 2, is now established.

Mappings by various other functions closely related to the sine function are
easily obtained once mappings by the sine function are known.

EXAMPLE 3. One need only recall the identity (Sec. 34)

cos z = sin
(
z + π

2

)
to see that the transformation w = cos z can be written successively as

Z = z + π

2
, w = sin Z.

Hence the cosine transformation is the same as the sine transformation preceded by
a translation to the right through π/2 units.

EXAMPLE 4. According to Sec. 35, the transformation w = sinh z can be
written w = −i sin(iz), or

Z = iz, W = sin Z, w = −iW.

It is, therefore, a combination of the sine transformation and rotations through right
angles. The transformation w = cosh z is, likewise, essentially a cosine transforma-
tion since cosh z = cos(iz).

EXERCISES
1. Show that the transformation w = sin z maps the top half (y > 0) of the vertical line

x = c1 (−π/2 < c1 < 0) in a one to one manner onto the top half (v > 0) of the
left-hand branch of hyperbola (3), Sec. 96, as indicated in Fig. 117 of that section.
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2. Show that under the transformation w = sin z, a line x = c1 (π/2 < c1 < π) is mapped
onto the right-hand branch of hyperbola (3), Sec. 96. Note that the mapping is one to
one and that the upper and lower halves of the line are mapped onto the lower and
upper halves, respectively, of the branch.

3. Vertical half lines were used in Example 1, Sec. 96, to show that the transformation
w = sin z is a one to one mapping of the open region −π/2 < x < π/2, y > 0 onto
the half plane v > 0. Verify that result by using, instead, the horizontal line segments
y = c2 (−π/2 < x < π/2), where c2 > 0.

4. (a) Show that under the transformation w = sin z, the images of the line segments
forming the boundary of the rectangular region 0 ≤ x ≤ π/2, 0 ≤ y ≤ 1 are the
line segments and the arc D′E′ indicated in Fig. 120. The arc D′E′ is a quarter
of the ellipse

u2

cosh2 1
+ v2

sinh2 1
= 1.

(b) Complete the mapping indicated in Fig. 120 by using images of horizontal line
segments to prove that the transformation w = sin z establishes a one to one
correspondence between the interior points of the regions ABDE and A′B ′D′E′.
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  /2 FIGURE 120
w = sin z.

5. Verify that the interior of a rectangular region −π ≤ x ≤ π, a ≤ y ≤ b lying above
the x axis is mapped by w = sin z onto the interior of an elliptical ring which has a
cut along the segment −sinh b ≤ v ≤ −sinh a of the negative real axis, as indicated
in Fig. 121. Note that while the mapping of the interior of the rectangular region is
one to one, the mapping of its boundary is not.
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FIGURE 121
w = sin z.

6. (a) Show that the equation w = cosh z can be written

Z = iz + π

2
, w = sin Z.
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(b) Use the result in part (a), together with the mapping by sin z shown in Fig. 10,
Appendix 2, to verify that the transformation w = cosh z maps the semi-infinite
strip x ≥ 0, 0 ≤ y ≤ π/2 in the z plane onto the first quadrant u ≥ 0, v ≥ 0 of the
w plane. Indicate corresponding parts of the boundaries of the two regions.

7. Observe that the transformation w = cosh z can be expressed as a composition of the
mappings

Z = ez, W = Z + 1

Z
, w = 1

2
W.

Then, by referring to Figs. 7 and 16 in Appendix 2, show that when w = cosh z,
the semi-infinite strip x ≤ 0, 0 ≤ y ≤ π in the z plane is mapped onto the lower half
v ≤ 0 of the w plane. Indicate corresponding parts of the boundaries.

8. (a) Verify that the equation w = sin z can be written

Z = i
(
z + π

2

)
, W = cosh Z, w = −W.

(b) Use the result in part (a) here and the one in Exercise 7 to show that the transfor-
mation w = sin z maps the semi-infinite strip −π/2 ≤ x ≤ π/2, y ≥ 0 onto the
half plane v ≥ 0, as shown in Fig. 9, Appendix 2. (This mapping was verified in
a different way in Example 1, Sec. 96, and in Exercise 3.)

97. MAPPINGS BY z 2 AND BRANCHES OF z 1/2

In Chap 2 (Sec. 13), we considered some fairly simple mappings under the trans-
formation w = z2, written in the form

u = x2 − y2, v = 2xy.(1)

We turn now to a less elementary example and then examine related mappings
w = z1/2, where specific branches of the square root function are taken.

EXAMPLE 1. Let us use equations (1) to show that the image of the ver-
tical strip 0 ≤ x ≤ 1, y ≥ 0, shown in Fig. 122, is the closed semiparabolic region
indicated there.
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FIGURE 122
w = z2.
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When 0 < x1 < 1, the point (x1, y) moves up a vertical half line, labeled L1

in Fig. 122, as y increases from y = 0. The image traced out in the uv plane has,
according to equations (1), the parametric representation

u = x2
1 − y2, v = 2x1y (0 ≤ y < ∞).(2)

Using the second of these equations to substitute for y in the first one, we see that
the image points (u, v) must lie on the parabola

v2 = −4x2
1(u − x2

1),(3)

with vertex at (x2
1 , 0) and focus at the origin. Since v increases with y from v = 0,

according to the second of equations (2), we also see that as the point (x1, y) moves
up L1 from the x axis, its image moves up the top half L′

1 of the parabola from the
u axis. Furthermore, when a number x2 larger than x1 but less than 1 is taken, the
corresponding half line L2 has an image L′

2 that is a half parabola to the right of
L′

1, as indicated in Fig. 122. We note, in fact, that the image of the half line BA in
that figure is the top half of the parabola v2 = −4(u − 1), labeled B ′A′.

The image of the half line CD is found by observing from equations (1) that a
typical point (0, y), where y ≥ 0, on CD is transformed into the point (−y2, 0) in
the uv plane. So, as a point moves up from the origin along CD, its image moves
left from the origin along the u axis. Evidently, then, as the vertical half lines in the
xy plane move to the left, the half parabolas that are their images in the uv plane
shrink down to become the half line C′D′.

It is now clear that the images of all the half lines between and including CD

and BA fill up the closed semiparabolic region bounded by A′B ′C′D′. Also, each
point in that region is the image of only one point in the closed strip bounded by
ABCD. Hence we may conclude that the semiparabolic region is the image of the
strip and that there is a one to one correspondence between points in those closed
regions. (Compare with Fig. 3 in Appendix 2, where the strip has arbitrary width.)

As for mappings by branches of z1/2, we recall from Sec. 9 that the values of
z1/2 are the two square roots of z when z �= 0. According to that section, if polar
coordinates are used and

z = r exp(i�) (r > 0, −π < � ≤ π),

then

z1/2 = √
r exp

i(� + 2kπ)

2
(k = 0, 1),(4)

the principal root occurring when k = 0. In Sec. 32, we saw that z1/2 can also be
written

z1/2 = exp

(
1

2
log z

)
(z �= 0).(5)
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The principal branch F0(z) of the double-valued function z1/2 is then obtained by
taking the principal branch of log z and writing (see Sec. 33)

F0(z) = exp

(
1

2
Log z

)
(|z| > 0, −π < Arg z < π).

Since
1

2
Log z = 1

2
(ln r + i�) = ln

√
r + i�

2

when z = r exp(i�), this becomes

F0(z) = √
r exp

i�

2
(r > 0, −π < � < π).(6)

The right-hand side of this equation is, of course, the same as the right-hand side
of equation (4) when k = 0 and −π < � < π there. The origin and the ray � = π

form the branch cut for F0, and the origin is the branch point.
Images of curves and regions under the transformation w = F0(z) may be

obtained by writing w = ρ exp(iφ), where ρ = √
r and φ = �/2. Arguments are

evidently halved by this transformation, and it is understood that w = 0 when z = 0.

EXAMPLE 2. It is easy to verify that w = F0(z) is a one to one mapping of
the quarter disk 0 ≤ r ≤ 2, 0 ≤ θ ≤ π/2 onto the sector 0 ≤ ρ ≤ √

2, 0 ≤ φ ≤ π/4
in the w plane (Fig. 123). To do this, we observe that as a point z = r exp(iθ1)

moves outward from the origin along a radius R1 of length 2 and with angle of
inclination θ1 (0 ≤ θ1 ≤ π/2), its image w = √

r exp(iθ1/2) moves outward from
the origin in the w plane along a radius R′

1 whose length is
√

2 and angle of
inclination is θ1/2. See Fig. 123, where another radius R2 and its image R′

2 are also
shown. It is now clear from the figure that if the region in the z plane is thought
of as being swept out by a radius, starting with DA and ending with DC, then the
region in the w plane is swept out by the corresponding radius, starting with D′A′
and ending with D′C′. This establishes a one to one correspondence between points
in the two regions.

x

y

C

D A
2

B

R2

R1

u

v

C ′

D ′ A′
2√
–

B ′R ′2
R ′1 FIGURE 123

w = F0(z).
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EXAMPLE 3. The transformation w = F0(sin z) can be written

Z = sin z, w = F0(Z) (|Z| > 0, −π < Arg Z < π).

From a remark at the end of Example 1 in Sec. 96, we know that the first trans-
formation maps the semi-infinite strip 0 ≤ x ≤ π/2, y ≥ 0 onto the first quadrant
of the Z plane. The second transformation, with the understanding that F0(0) = 0,
maps that quadrant onto an octant in the w plane. These successive transformations
are illustrated in Fig. 124, where corresponding boundary points are shown.

x uB

D

C

A

y

B ′ A′ X
1

D′

C ′

Y

B″ A″
1

D″

C″

v

FIGURE 124
w = F0(sin z).

When −π < � < π and the branch

log z = ln r + i(� + 2π)

of the logarithmic function is used, equation (5) yields the branch

F1(z) = √
r exp

i(� + 2π)

2
(r > 0,−π < � < π)(7)

of z1/2, which corresponds to k = 1 in equation (4). Since exp(iπ) = −1, it follows
that F1(z) = −F0(z). The values ±F0(z) thus represent the totality of values of z1/2

at all points in the domain r > 0,−π < � < π . If, by means of expression (6), we
extend the domain of definition of F0 to include the ray � = π and if we write
F0(0) = 0, then the values ±F0(z) represent the totality of values of z1/2 in the
entire z plane.

Other branches of z1/2 are obtained by using other branches of log z in expres-
sion (5). A branch where the ray θ = α is used to form the branch cut is given by
the equation

fα(z) = √
r exp

iθ

2
(r > 0, α < θ < α + 2π).(8)

Observe that when α = −π , we have the branch F0(z) and that when α = π , we
have the branch F1(z). Just as in the case of F0 , the domain of definition of fα can
be extended to the entire complex plane by using expression (8) to define fα at the
nonzero points on the branch cut and by writing fα(0) = 0. Such extensions are,
however, never continuous on the entire complex plane.
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Finally, suppose that n is any positive integer, where n ≥ 2. The values of z1/n

are the nth roots of z when z �= 0 ; and, according to Sec. 32, the multiple-valued
function z1/n can be written

z1/n = exp

(
1

n
log z

)
= n

√
r exp

i(� + 2kπ)

n
(k = 0, 1, 2, . . . , n − 1),(9)

where r = |z| and � = Arg z. The case n = 2 has just been considered. In the
general case, each of the n functions

Fk(z) = n
√

r exp
i(� + 2kπ)

n
(k = 0, 1, 2, . . . , n − 1)(10)

is a branch of z1/n, defined on the domain r > 0, −π < � < π . When w = ρeiφ ,
the transformation w = Fk(z) is a one to one mapping of that domain onto the
domain

ρ > 0,
(2k − 1)π

n
< φ <

(2k + 1)π

n
.

These n branches of z1/n yield the n distinct nth roots of z at any point z in the
domain r > 0, −π < � < π . The principal branch occurs when k = 0, and further
branches of the type (8) are readily constructed.

EXERCISES
1. Show, indicating corresponding orientations, that the mapping w = z2 transforms hor-

izontal lines y = y1 (y1 > 0) into parabolas v2 = 4y2
1 (u + y2

1 ), all with foci at the
origin w = 0. (Compare with Example 1, Sec. 97.)

2. Use the result in Exercise 1 to show that the transformation w = z2 is a one to one
mapping of a horizontal strip a ≤ y ≤ b above the x axis onto the closed region
between the two parabolas

v2 = 4a2(u + a2), v2 = 4b2(u + b2).

3. Point out how it follows from the discussion in Example 1, Sec. 97, that the transfor-
mation w = z2 maps a vertical strip 0 ≤ x ≤ c, y ≥ 0 of arbitrary width onto a closed
semiparabolic region, as shown in Fig. 3, Appendix 2.

4. Modify the discussion in Example 1, Sec. 97, to show that when w = z2, the image
of the closed triangular region formed by the lines y = ±x and x = 1 is the closed
parabolic region bounded on the left by the segment −2 ≤ v ≤ 2 of the v axis and
on the right by a portion of the parabola v2 = −4(u − 1). Verify the corresponding
points on the two boundaries shown in Fig. 125.

5. By referring to Fig. 10, Appendix 2, show that the transformation w = sin2 z maps
the strip 0 ≤ x ≤ π/2, y ≥ 0 onto the half plane v ≥ 0. Indicate corresponding parts
of the boundaries.

Suggestion: See also the first paragraph in Example 3, Sec. 13.
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FIGURE 125
w = z2.

6. Use Fig. 9, Appendix 2, to show that if w = (sin z)1/4 and the principal branch of
the fractional power is taken, then the semi-infinite strip −π/2 < x < π/2, y > 0 is
mapped onto the part of the first quadrant lying between the line v = u and the u axis.
Label corresponding parts of the boundaries.

7. According to Example 2, Sec. 95, the linear fractional transformation

Z = z − 1

z + 1

maps the x axis onto the X axis and the half planes y > 0 and y < 0 onto the half
planes Y > 0 and Y < 0, respectively. Show that, in particular, it maps the segment
−1 ≤ x ≤ 1 of the x axis onto the segment X ≤ 0 of the X axis. Then show that
when the principal branch of the square root is used, the composite function

w = Z1/2 =
(

z − 1

z + 1

)1/2

maps the z plane, except for the segment −1 ≤ x ≤ 1 of the x axis, onto the right
half plane u > 0.

8. Determine the image of the domain r > 0,−π < � < π in the z plane under each of
the transformations w = Fk(z) (k = 0, 1, 2, 3), where Fk(z) are the four branches of
z1/4 given by equation (10), Sec. 97, when n = 4. Use these branches to determine
the fourth roots of i.

98. SQUARE ROOTS OF POLYNOMIALS

We now consider some mappings that are compositions of polynomials and square
roots.

EXAMPLE 1. Branches of the double-valued function (z − z0)
1/2 can be

obtained by noting that it is a composition of the translation Z = z − z0 with the
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double-valued function Z1/2. Each branch of Z1/2 yields a branch of (z − z0)
1/2.

More precisely, when Z = Reiθ , branches of Z1/2 are

Z1/2 =
√

R exp
iθ

2
(R > 0, α < θ < α + 2π),

according to equation (8) in Sec. 97. Hence if we write

R = |z − z0|, � = Arg (z − z0), and θ = arg(z − z0),

two branches of (z − z0)
1/2 are

G0(z) =
√

R exp
i�

2
(R > 0, −π < � < π)(1)

and

g0(z) =
√

R exp
iθ

2
(R > 0, 0 < θ < 2π).(2)

The branch of Z1/2 that was used in writing G0(z) is defined at all points in the
Z plane except for the origin and points on the ray Arg Z = π . The transformation
w = G0(z) is, therefore, a one to one mapping of the domain

|z − z0| > 0, −π < Arg (z − z0) < π

onto the right half Re w > 0 of the w plane (Fig. 126). The transformation w = g0(z)

maps the domain
|z − z0| > 0, 0 < arg(z − z0) < 2π

in a one to one manner onto the upper half plane Im w > 0.

√
–
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R

Y

u

w

v

R

FIGURE 126
w = G0(z).

EXAMPLE 2. For an instructive but less elementary example, we now con-
sider the double-valued function (z2 − 1)1/2. Using established properties of loga-
rithms, we can write

(z2 − 1)1/2 = exp

[
1

2
log(z2 − 1)

]
= exp

[
1

2
log(z − 1) + 1

2
log(z + 1)

]
,
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or

(z2 − 1)1/2 = (z − 1)1/2(z + 1)1/2 (z �= ±1).(3)

Consequently, if f1(z) is a branch of (z − 1)1/2 defined on a domain D1 and f2(z)

is a branch of (z + 1)1/2 defined on a domain D2, the product f (z) = f1(z)f2(z) is
a branch of (z2 − 1)1/2 defined at all points lying in both D1 and D2.

In order to obtain a specific branch of (z2 − 1)1/2, we use the branch of
(z − 1)1/2 and the branch of (z + 1)1/2 given by equation (2). If we write

r1 = |z − 1| and θ1 = arg(z − 1),

that branch of (z − 1)1/2 is

f1(z) = √
r1 exp

iθ1

2
(r1 > 0, 0 < θ1 < 2π).

The branch of (z + 1)1/2 given by equation (2) is

f2(z) = √
r2 exp

iθ2

2
(r2 > 0, 0 < θ2 < 2π),

where
r2 = |z + 1| and θ2 = arg(z + 1).

The product of these two branches is, therefore, the branch f of (z2 − 1)1/2 defined
by means of the equation

f (z) = √
r1r2 exp

i(θ1 + θ2)

2
,(4)

where
rk > 0, 0 < θk < 2π (k = 1, 2).

As illustrated in Fig. 127, the branch f is defined everywhere in the z plane except
on the ray r2 ≥ 0, θ2 = 0, which is the portion x ≥ −1 of the x axis.

x

z

r1

r2

P2 P1

O 1–1

y

FIGURE 127

The branch f of (z2 − 1)1/2 given in equation (4) can be extended to a function

F(z) = √
r1r2 exp

i(θ1 + θ2)

2
,(5)
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where
rk > 0, 0 ≤ θk < 2π (k = 1, 2) and r1 + r2 > 2.

As we shall now see, this function is analytic everywhere in its domain of definition,
which is the entire z plane except for the segment −1 ≤ x ≤ 1 of the x axis.

Since F(z) = f (z) for all z in the domain of definition of F except on the ray
r1 > 0, θ1 = 0, we need only show that F is analytic on that ray. To do this, we
form the product of the branches of (z − 1)1/2 and (z + 1)1/2 which are given by
equation (1). That is, we consider the function

G(z) = √
r1r2 exp

i(�1 + �2)

2
,

where

r1 = |z − 1|, r2 = |z + 1|, �1 = Arg (z − 1), �2 = Arg (z + 1)

and where
rk > 0, −π < �k < π (k = 1, 2).

Observe that G is analytic in the entire z plane except for the ray r1 ≥ 0, �1 = π .
Now F(z) = G(z) when the point z lies above or on the ray r1 > 0, �1 = 0 ; for
then θk = �k (k = 1, 2). When z lies below that ray, θk = �k + 2π (k = 1, 2).
Consequently, exp(iθk/2) = −exp(i�k/2); and this means that

exp
i(θ1 + θ2)

2
=

(
exp

iθ1

2

)(
exp

iθ2

2

)
= exp

i(�1 + �2)

2
.

So again, F(z) = G(z). Since F(z) and G(z) are the same in a domain containing
the ray r1 > 0, �1 = 0 and since G is analytic in that domain, F is analytic there.
Hence F is analytic everywhere except on the line segment P2P1 in Fig. 127.

The function F defined by equation (5) cannot itself be extended to a function
which is analytic at points on the line segment P2P1. This is because the value on
the right in equation (5) jumps from i

√
r1r2 to numbers near −i

√
r1r2 as the point

z moves downward across that line segment, and the extension would not even be
continuous there.

The transformation w = F(z) is, as we shall see, a one to one mapping of the
domain Dz consisting of all points in the z plane except those on the line segment
P2P1 onto the domain Dw consisting of the entire w plane with the exception of
the segment −1 ≤ v ≤ 1 of the v axis (Fig. 128).

Before verifying this, we note that if z = iy (y > 0), then

r1 = r2 > 1 and θ1 + θ2 = π;
hence the positive y axis is mapped by w = F(z) onto that part of the v axis for
which v > 1. The negative y axis is, moreover, mapped onto that part of the v axis
for which v < −1. Each point in the upper half y > 0 of the domain Dz is mapped
into the upper half v > 0 of the w plane, and each point in the lower half y < 0
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w = F(z).

of the domain Dz is mapped into the lower half v < 0 of the w plane. Also, the
ray r1 > 0, θ1 = 0 is mapped onto the positive real axis in the w plane, and the ray
r2 > 0, θ2 = π is mapped onto the negative real axis there.

To show that the transformation w = F(z) is one to one, we observe that if
F(z1) = F(z2), then z2

1 − 1 = z2
2 − 1. From this, it follows that z1 = z2 or z1 = −z2.

However, because of the manner in which F maps the upper and lower halves of the
domain Dz, as well as the portions of the real axis lying in Dz, the case z1 = −z2

is impossible. Thus, if F(z1) = F(z2), then z1 = z2; and F is one to one.
We can show that F maps the domain Dz onto the domain Dw by finding a

function H mapping Dw into Dz with the property that if z = H(w), then w = F(z).
This will show that for any point w in Dw, there exists a point z in Dz such that
F(z) = w; that is, the mapping F is onto. The mapping H will be the inverse of F .

To find H , we first note that if w is a value of (z2 − 1)1/2 for a specific z, then
w2 = z2 − 1; and z is, therefore, a value of (w2 + 1)1/2 for that w. The function H

will be a branch of the double-valued function

(w2 + 1)1/2 = (w − i)1/2(w + i)1/2 (w �= ±i).

Followingourprocedure forobtaining the functionF(z),wewritew − i = ρ1 exp(iφ1)

and w + i = ρ2 exp(iφ2). (See Fig. 128.) With the restrictions

ρk > 0, −π

2
≤ φk <

3π

2
(k = 1, 2) and ρ1 + ρ2 > 2,

we then write

H(w) = √
ρ1ρ2 exp

i(φ1 + φ2)

2
,(6)

the domain of definition being Dw. The transformation z = H(w) maps points of
Dw lying above or below the u axis onto points above or below the x axis, respec-
tively. It maps the positive u axis into that part of the x axis where x > 1 and the
negative u axis into that part of the negative x axis where x < −1. If z = H(w),
then z2 = w2 + 1; and so w2 = z2 − 1. Since z is in Dz and since F(z) and −F(z)

are the two values of (z2 − 1)1/2 for a point in Dz, we see that w = F(z) or
w = −F(z). But it is evident from the manner in which F and H map the upper
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and lower halves of their domains of definition, including the portions of the real
axes lying in those domains, that w = F(z).

Mappings by branches of double-valued functions

w = (z2 + Az + B)1/2 = [(z − z0)
2 − z2

1]1/2 (z1 �= 0),(7)

where A = −2z0 and B = z2
0 = z2

1, can be treated with the aid of the results found
for the function F in Example 2 just above and the successive transformations

Z = z − z0

z1
, W = (Z2 − 1)1/2, w = z1W.(8)

EXERCISES
1. The branch F of (z2 − 1)1/2 in Example 2, Sec. 98, was defined in terms of the coordi-

nates r1, r2, θ1, θ2. Explain geometrically why the conditions r1 > 0, 0 < θ1 + θ2 < π

describe the first quadrant x > 0, y > 0 of the z plane. Then show that w = F(z)

maps that quadrant onto the first quadrant u > 0, v > 0 of the w plane.
Suggestion: To show that the quadrant x > 0, y > 0 in the z plane is described,

note that θ1 + θ2 = π at each point on the positive y axis and that θ1 + θ2 decreases
as a point z moves to the right along a ray θ2 = c (0 < c < π/2).

2. For the mapping w = F(z) of the first quadrant in the z plane onto the first quadrant
in the w plane in Exercise 1, show that

u = 1√
2

√
r1r2 + x2 − y2 − 1 and v = 1√

2

√
r1r2 − x2 + y2 + 1,

where
(r1r2)

2 = (x2 + y2 + 1)2 − 4x2,

and that the image of the portion of the hyperbola x2 − y2 = 1 in the first quadrant is
the ray v = u (u > 0).

3. Show that in Exercise 2 the domain D that lies under the hyperbola and in the first
quadrant of the z plane is described by the conditions r1 > 0, 0 < θ1 + θ2 < π/2.
Then show that the image of D is the octant 0 < v < u. Sketch the domain D and its
image.

4. Let F be the branch of (z2 − 1)1/2 that was defined in Example 2, Sec. 98, and let
z0 = r0 exp(iθ0) be a fixed complex number, where r0 > 0 and 0 ≤ θ0 < 2π . Show
that a branch F0 of (z2 − z2

0)
1/2 whose branch cut is the line segment between the

points z0 and −z0 can be written F0(z) = z0F(Z), where Z = z/z0.

5. Write z − 1 = r1 exp(iθ1) and z + 1 = r2 exp(i�2), where

0 < θ1 < 2π and − π < �2 < π,
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to define a branch of the function

(a) (z2 − 1)1/2 ; (b)

(
z − 1

z + 1

)1/2

.

In each case, the branch cut should consist of the two rays θ1 = 0 and �2 = π .

6. Using the notation in Sec. 98, show that the function

w =
(

z − 1

z + 1

)1/2

=
√

r1

r2
exp

i(θ1 − θ2)

2

is a branch with the same domain of definition Dz and the same branch cut as
the function w = F(z) in that section. Show that this transformation maps Dz onto the
right half plane ρ > 0,−π/2 < φ < π/2, where the point w = 1 is the image of the
point z = ∞. Also, show that the inverse transformation is

z = 1 + w2

1 − w2
(Re w > 0).

(Compare with Exercise 7, Sec. 97.)

7. Show that the transformation in Exercise 6 maps the region outside the unit circle
|z| = 1 in the upper half of the z plane onto the region in the first quadrant of the w

plane between the line v = u and the u axis. Sketch the two regions.

8. Write z = r exp(i�), z − 1 = r1 exp(i�1), and z + 1 = r2 exp(i�2), where the values
of all three arguments lie between −π and π . Then define a branch of the function
[z(z2 − 1)]1/2 whose branch cut consists of the two segments x ≤ −1 and 0 ≤ x ≤ 1
of the x axis.

99. RIEMANN SURFACES

The remaining two sections of this chapter constitute a brief introduction to the
concept of a mapping defined on a Riemann surface, which is a generalization of
the complex plane consisting of more than one sheet. The theory rests on the fact
that at each point on such a surface only one value of a given multiple-valued
function is assigned. The material in these two sections will not be used in the
chapters to follow, and the reader may skip to Chap. 9 without disruption.

Once a Riemann surface is devised for a given function, the function is single-
valued on the surface and the theory of single-valued functions applies there.
Complexities arising because the function is multiple-valued are thus relieved by a
geometric device. However, the description of those surfaces and the arrangement
of proper connections between the sheets can become quite involved. We limit our
attention to fairly simple examples and begin with a surface for log z.

EXAMPLE 1. Corresponding to each nonzero number z, the multiple-valued
function

log z = ln r + iθ(1)
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has infinitely many values. To describe log z as a single-valued function, we replace
the z plane, with the origin deleted, by a surface on which a new point is located
whenever the argument of the number z is increased or decreased by 2π , or an
integral multiple of 2π .

We treat the z plane, with the origin deleted, as a thin sheet R0 which is cut
along the positive half of the real axis. On that sheet, let θ range from 0 to 2π . Let
a second sheet R1 be cut in the same way and placed in front of the sheet R0 . The
lower edge of the slit in R0 is then joined to the upper edge of the slit in R1. On
R1, the angle θ ranges from 2π to 4π ; so, when z is represented by a point on R1,
the imaginary component of log z ranges from 2π to 4π .

A sheet R2 is then cut in the same way and placed in front of R1. The lower
edge of the slit in R1 is joined to the upper edge of the slit in this new sheet, and
similarly for sheets R3, R4, . . . . A sheet R−1 on which θ varies from 0 to −2π is
cut and placed behind R0, with the lower edge of its slit connected to the upper
edge of the slit in R0; the sheets R−2, R−3, . . . are constructed in like manner. The
coordinates r and θ of a point on any sheet can be considered as polar coordinates
of the projection of the point onto the original z plane, the angular coordinate θ

being restricted to a definite range of 2π radians on each sheet.
Consider any continuous curve on this connected surface of infinitely many

sheets. As a point z describes that curve, the values of log z vary continuously
since θ , in addition to r , varies continuously; and log z now assumes just one
value corresponding to each point on the curve. For example, as the point makes a
complete cycle around the origin on the sheet R0 over the path indicated in Fig. 129,
the angle changes from 0 to 2π . As it moves across the ray θ = 2π , the point passes
to the sheet R1 of the surface. As the point completes a cycle in R1, the angle θ varies
from 2π to 4π ; and as it crosses the ray θ = 4π , the point passes to the sheet R2.

xO

y

R1R0

FIGURE 129

The surface described here is a Riemann surface for log z. It is a connected
surface of infinitely many sheets, arranged so that log z is a single-valued function
of points on it.

The transformation w = log z maps the whole Riemann surface in a one to one
manner onto the entire w plane. The image of the sheet R0 is the strip 0 ≤ v ≤ 2π

(see Example 3, Sec. 95). As a point z moves onto the sheet R1 over the arc shown
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FIGURE 130

in Fig. 130, its image w moves upward across the line v = 2π , as indicated in that
figure.

Note that log z, defined on the sheet R1, represents the analytic continuation
(Sec. 27) of the single-valued analytic function

f (z) = ln r + iθ (0 < θ < 2π)

upward across the positive real axis. In this sense, log z is not only a single-valued
function of all points z on the Riemann surface but also an analytic function at all
points there.

The sheets could, of course, be cut along the negative real axis or along any
other ray from the origin, and properly joined along the slits, to form other Riemann
surfaces for log z.

EXAMPLE 2. Corresponding to each point in the z plane other than the
origin, the square root function

z1/2 = √
reiθ/2(2)

has two values. A Riemann surface for z1/2 is obtained by replacing the z plane
with a surface made up of two sheets R0 and R1, each cut along the positive real
axis and with R1 placed in front of R0. The lower edge of the slit in R0 is joined
to the upper edge of the slit in R1, and the lower edge of the slit in R1 is joined to
the upper edge of the slit in R0.

As a point z starts from the upper edge of the slit in R0 and describes a
continuous circuit around the origin in the counterclockwise direction (Fig. 131),

xO

y

R1

R0

R0

FIGURE 131



Brown-chap08-v3 11/01/07 4:29pm 350

350 Mapping by Elementary Functions chap. 8

the angle θ increases from 0 to 2π . The point then passes from the sheet R0 to
the sheet R1, where θ increases from 2π to 4π . As the point moves still further, it
passes back to the sheet R0, where the values of θ can vary from 4π to 6π or from
0 to 2π , a choice that does not affect the value of z1/2, etc. Note that the value of
z1/2 at a point where the circuit passes from the sheet R0 to the sheet R1 is different
from the value of z1/2 at a point where the circuit passes from the sheet R1 to the
sheet R0.

We have thus constructed a Riemann surface on which z1/2 is single-valued for
each nonzero z. In that construction, the edges of the sheets R0 and R1 are joined
in pairs in such a way that the resulting surface is closed and connected. The points
where two of the edges are joined are distinct from the points where the other two
edges are joined. Thus it is physically impossible to build a model of that Riemann
surface. In visualizing a Riemann surface, it is important to understand how we are
to proceed when we arrive at an edge of a slit.

The origin is a special point on this Riemann surface. It is common to both
sheets, and a curve around the origin on the surface must wind around it twice in
order to be a closed curve. A point of this kind on a Riemann surface is called a
branch point.

The image of the sheet R0 under the transformation w = z1/2 is the upper
half of the w plane since the argument of w is θ/2 on R0, where 0 ≤ θ/2 ≤ π .
Likewise, the image of the sheet R1 is the lower half of the w plane. As defined on
either sheet, the function is the analytic continuation, across the cut, of the function
defined on the other sheet. In this respect, the single-valued function z1/2 of points
on the Riemann surface is analytic at all points except the origin.

EXERCISES
1. Describe the Riemann surface for log z obtained by cutting the z plane along the

negative real axis. Compare this Riemann surface with the one obtained in Example 1,
Sec. 99.

2. Determine the image under the transformation w = log z of the sheet Rn, where n is
an arbitrary integer, of the Riemann surface for log z given in Example 1, Sec. 99.

3. Verify that under the transformation w = z1/2, the sheet R1 of the Riemann surface
for z1/2 given in Example 2, Sec. 99, is mapped onto the lower half of the w plane.

4. Describe the curve, on a Riemann surface for z1/2, whose image is the entire circle
|w| = 1 under the transformation w = z1/2.

5. Let C denote the positively oriented circle |z − 2| = 1 on the Riemann surface
described in Example 2, Sec. 99, for z1/2, where the upper half of that circle lies
on the sheet R0 and the lower half on R1. Note that for each point z on C, one can
write

z1/2 = √
reiθ/2 where 4π − π

2
< θ < 4π + π

2
.
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State why it follows that ∫
C

z1/2 dz = 0.

Generalize this result to fit the case of the other simple closed curves that cross from
one sheet to another without enclosing the branch points. Generalize to other functions,
thus extending the Cauchy–Goursat theorem to integrals of multiple-valued functions.

100. SURFACES FOR RELATED FUNCTIONS

We consider here Riemann surfaces for two composite functions involving simple
polynomials and the square root function.

EXAMPLE 1. Let us describe a Riemann surface for the double-valued func-
tion

f (z) = (z2 − 1)1/2 = √
r1r2 exp

i(θ1 + θ2)

2
,(1)

where z − 1 = r1exp(iθ1) and z + 1 = r2 exp(iθ2). A branch of this function, with
the line segment P2P1 between the branch points z = ±1 serving as a branch cut
(Fig. 132), was described in Example 2, Sec. 98. That branch is as written above,
with the restrictions rk > 0, 0 ≤ θk < 2π (k = 1, 2) and r1 + r2 > 2. The branch is
not defined on the segment P2P1.

x

z

r1

r2

1

P2 P1

O–1

y

FIGURE 132

A Riemann surface for the double-valued function (1) must consist of two
sheets R0 and R1. Let both sheets be cut along the segment P2P1. The lower edge
of the slit in R0 is then joined to the upper edge of the slit in R1, and the lower
edge in R1 is joined to the upper edge in R0.

On the sheet R0, let the angles θ1 and θ2 range from 0 to 2π . If a point
on the sheet R0 describes a simple closed curve that encloses the segment P2P1

once in the counterclockwise direction, then both θ1 and θ2 change by the amount
2π upon the return of the point to its original position. The change in (θ1 + θ2)/2 is
also 2π , and the value of f is unchanged. If a point starting on the sheet R0 describes
a path that passes twice around just the branch point z = 1, it crosses from the sheet
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R0 onto the sheet R1 and then back onto the sheet R0 before it returns to its original
position. In this case, the value of θ1 changes by the amount 4π , while the value
of θ2 does not change at all. Similarly, for a circuit twice around the point z = −1,
the value of θ2 changes by 4π , while the value of θ1 remains unchanged. Again, the
change in (θ1 + θ2)/2 is 2π ; and the value of f is unchanged. Thus, on the sheet R0,
the range of the angles θ1 and θ2 may be extended by changing both θ1 and θ2 by
the same integral multiple of 2π or by changing just one of the angles by a multiple
of 4π . In either case, the total change in both angles is an even integral multiple
of 2π .

To obtain the range of values for θ1 and θ2 on the sheet R1, we note that if
a point starts on the sheet R0 and describes a path around just one of the branch
points once, it crosses onto the sheet R1 and does not return to the sheet R0. In this
case, the value of one of the angles is changed by 2π , while the value of the other
remains unchanged. Hence, on the sheet R1, one angle can range from 2π to 4π ,
while the other ranges from 0 to 2π . Their sum then ranges from 2π to 4π , and the
value of (θ1 + θ2)/2, which is the argument of f (z), ranges from π to 2π . Again,
the range of the angles is extended by changing the value of just one of the angles
by an integral multiple of 4π or by changing the value of both angles by the same
integral multiple of 2π .

The double-valued function (1) may now be considered as a single-valued
function of the points on the Riemann surface just constructed. The transformation
w = f (z) maps each of the sheets used in the construction of that surface onto the
entire w plane.

EXAMPLE 2. Consider the double-valued function

f (z) = [z(z2 − 1)]1/2 = √
rr1r2 exp

i(θ + θ1 + θ2)

2
(2)

(Fig. 133). The points z = 0, ±1 are branch points of this function. We note that if
the point z describes a circuit that includes all three of those points, the argument
of f (z) changes by the angle 3π and the value of the function thus changes. Con-
sequently, a branch cut must run from one of those branch points to the point at
infinity in order to describe a single-valued branch of f . Hence the point at infinity
is also a branch point, as one can show by noting that the function f (1/z) has a
branch point at z = 0.

x

z

r1r

L1L2

r2

1–1

y

FIGURE 133
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Let two sheets be cut along the line segment L2 from z = −1 to z = 0 and
along the part L1 of the real axis to the right of the point z = 1. We specify that
each of the three angles θ, θ1, and θ2 may range from 0 to 2π on the sheet R0 and
from 2π to 4π on the sheet R1. We also specify that the angles corresponding to
a point on either sheet may be changed by integral multiples of 2π in such a way
that the sum of the three angles changes by an integral multiple of 4π . The value
of the function f is, therefore, unaltered.

A Riemann surface for the double-valued function (2) is obtained by joining
the lower edges in R0 of the slits along L1 and L2 to the upper edges in R1 of
the slits along L1 and L2, respectively. The lower edges in R1 of the slits along
L1 and L2 are then joined to the upper edges in R0 of the slits along L1 and L2,
respectively. It is readily verified with the aid of Fig. 133 that one branch of the
function is represented by its values at points on R0 and the other branch at points
on R1.

EXERCISES
1. Describe a Riemann surface for the triple-valued function w = (z − 1)1/3, and point

out which third of the w plane represents the image of each sheet of that surface.

2. Corresponding to each point on the Riemann surface described in Example 2, Sec.
100, for the function w = f (z) in that example, there is just one value of w. Show that
corresponding to each value of w, there are, in general, three points on the surface.

3. Describe a Riemann surface for the multiple-valued function

f (z) =
(

z − 1

z

)1/2

.

4. Note that the Riemann surface described in Example 1, Sec. 100, for (z2 − 1)1/2 is
also a Riemann surface for the function

g(z) = z + (z2 − 1)1/2.

Let f0 denote the branch of (z2 − 1)1/2 defined on the sheet R0, and show that the
branches g0 and g1 of g on the two sheets are given by the equations

g0(z) = 1

g1(z)
= z + f0(z).

5. In Exercise 4, the branch f0 of (z2 − 1)1/2 can be described by means of the equation

f0(z) = √
r1r2

(
exp

iθ1

2

)(
exp

iθ2

2

)
,

where θ1 and θ2 range from 0 to 2π and

z − 1 = r1 exp(iθ1), z + 1 = r2 exp(iθ2).
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Note that
2z = r1 exp(iθ1) + r2 exp(iθ2),

and show that the branch g0 of the function g(z) = z + (z2 − 1)1/2 can be written in
the form

g0(z) = 1

2

(√
r1 exp

iθ1

2
+ √

r2 exp
iθ2

2

)2

.

Find g0(z)g0(z) and note that r1 + r2 ≥ 2 and cos[(θ1 − θ2)/2] ≥ 0 for all z, to prove
that |g0(z)| ≥ 1. Then show that the transformation w = z + (z2 − 1)1/2 maps the
sheet R0 of the Riemann surface onto the region |w| ≥ 1, the sheet R1 onto the region
|w| ≤ 1, and the branch cut between the points z = ±1 onto the circle |w| = 1. Note
that the transformation used here is an inverse of the transformation

z = 1

2

(
w + 1

w

)
.
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9
CONFORMAL MAPPING

In this chapter, we introduce and develop the concept of a conformal mapping, with
emphasis on connections between such mappings and harmonic functions (Sec. 26).
Applications to physical problems will follow in Chap. 10.

101. PRESERVATION OF ANGLES

Let C be a smooth arc (Sec. 39), represented by the equation

z = z(t) (a ≤ t ≤ b),

and let f (z) be a function defined at all points z on C. The equation

w = f [z(t)] (a ≤ t ≤ b)

is a parametric representation of the image � of C under the transformation w = f (z).
Suppose that C passes through a point z0 = z(t0) (a < t0 < b) at which f is

analytic and that f ′(z0) �= 0. According to the chain rule verified in Exercise 5,
Sec. 39, if w(t) = f [z(t)] , then

w′(t0) = f ′[z(t0)]z′(t0);(1)

and this means that (see Sec. 8)

arg w′(t0) = arg f ′[z(t0)] + arg z′(t0).(2)

355
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Statement (2) is useful in relating the directions of C and � at the points z0 and
w0 = f (z0), respectively.

To be specific, let θ0 denote a value of arg z′(t0) and let φ0 be a value of
arg w′(t0). According to the discussion of unit tangent vectors T near the end of
Sec. 39, the number θ0 is the angle of inclination of a directed line tangent to
C at z0 and φ0 is the angle of inclination of a directed line tangent to � at the
point w0 = f (z0). (See Fig. 134.) In view of statement (2), there is a value ψ0 of
arg f ′[z(t0)] such that

φ0 = ψ0 + θ0.(3)

Thus φ0 − θ0 = ψ0, and we find that the angles φ0 and θ0 differ by the angle of
rotation

ψ0 = arg f ′(z0).(4)

x

z0 w0

O

y

C

uO

v

FIGURE 134
φ0 = ψ0 + θ0.

Now let C1 and C2 be two smooth arcs passing through z0 , and let θ1 and θ2

be angles of inclination of directed lines tangent to C1 and C2, respectively, at z0 .
We know from the preceding paragraph that the quantities

φ1 = ψ0 + θ1 and φ2 = ψ0 + θ2

are angles of inclination of directed lines tangent to the image curves �1 and �2 ,
respectively, at the point w0 = f (z0). Thus φ2 − φ1 = θ2 − θ1; that is, the angle
φ2 − φ1 from �1 to �2 is the same in magnitude and sense as the angle θ2 − θ1

from C1 to C2. Those angles are denoted by α in Fig. 135.
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FIGURE 135
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Because of this angle-preserving property, a transformation w = f (z) is said
to be conformal at a point z0 if f is analytic there and f ′(z0) �= 0. Such a trans-
formation is actually conformal at each point in some neighborhood of z0. For it
must be analytic in a neighborhood of z0 (Sec. 24); and since its derivative f ′ is
continuous in that neighborhood (Sec. 52), Theorem 2 in Sec. 18 tells us that there
is also a neighborhood of z0 throughout which f ′(z) �= 0.

A transformation w = f (z), defined on a domain D, is referred to as a con-
formal transformation, or conformal mapping, when it is conformal at each point in
D. That is, the mapping is conformal in D if f is analytic in D and its derivative
f ′ has no zeros there. Each of the elementary functions studied in Chap. 3 can be
used to define a transformation that is conformal in some domain.

EXAMPLE 1. The mapping w = ez is conformal throughout the entire z

plane since (ez)′ = ez �= 0 for each z. Consider any two lines x = c1 and y = c2 in
the z plane, the first directed upward and the second directed to the right. According
to Example 1 in Sec. 14, their images under the mapping w = ez are a positively
oriented circle centered at the origin and a ray from the origin, respectively. As illus-
trated in Fig. 20 (Sec. 14), the angle between the lines at their point of intersection
is a right angle in the negative direction, and the same is true of the angle between
the circle and the ray at the corresponding point in the w plane. The conformality
of the mapping w = ez is also illustrated in Figs. 7 and 8 of Appendix 2.

EXAMPLE 2. Consider two smooth arcs which are level curves u(x, y) = c1

and v(x, y) = c2 of the real and imaginary components, respectively, of a function

f (z) = u(x, y) + iv(x, y),

and suppose that they intersect at a point z0 where f is analytic and f ′(z0) �= 0.
The transformation w = f (z) is conformal at z0 and maps these arcs into the lines
u = c1 and v = c2, which are orthogonal at the point w0 = f (z0). According to our
theory, then, the arcs must be orthogonal at z0. This has already been verified and
illustrated in Exercises 7 through 11 of Sec. 26.

A mapping that preserves the magnitude of the angle between two smooth arcs
but not necessarily the sense is called an isogonal mapping.

EXAMPLE 3. The transformation w = z, which is a reflection in the real
axis, is isogonal but not conformal. If it is followed by a conformal transformation,
the resulting transformation w = f (z) is also isogonal but not conformal.

Suppose that f is not a constant function and is analytic at a point z0 . If,
in addition, f ′(z0) = 0, then z0 is called a critical point of the transformation
w = f (z).
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EXAMPLE 4. The point z0 = 0 is a critical point of the transformation

w = 1 + z2,

which is a composition of the mappings

Z = z2 and w = 1 + Z.

A ray θ = α from the point z0 = 0 is evidently mapped onto the ray from the point
w0 = 1 whose angle of inclination is 2α, and the angle between any two rays drawn
from z0 = 0 is doubled by the transformation.

More generally, it can be shown that if z0 is a critical point of a transformation
w = f (z), there is an integer m (m ≥ 2) such that the angle between any two smooth
arcs passing through z0 is multiplied by m under that transformation. The integer
m is the smallest positive integer such that f (m)(z0) �= 0. Verification of these facts
is left to the exercises.

102. SCALE FACTORS

Another property of a transformation w = f (z) that is conformal at a point z0 is
obtained by considering the modulus of f ′(z0). From the definition of derivative
and a property of limits involving moduli that was derived in Exercise 7, Sec. 18,
we know that

|f ′(z0)| =
∣∣∣∣ lim
z→z0

f (z) − f (z0)

z − z0

∣∣∣∣ = lim
z→z0

|f (z) − f (z0)|
|z − z0| .(1)

Now |z − z0| is the length of a line segment joining z0 and z , and |f (z) − f (z0)|
is the length of the line segment joining the points f (z0) and f (z) in the w plane.
Evidently, then, if z is near the point z0 , the ratio

|f (z) − f (z0)|
|z − z0|

of the two lengths is approximately the number |f ′(z0)|. Note that |f ′(z0)| represents
an expansion if it is greater than unity and a contraction if it is less than unity.

Although the angle of rotation arg f ′(z) (Sec. 101) and the scale factor |f ′(z)|
vary, in general, from point to point, it follows from the continuity of f ′ (see
Sec. 52) that their values are approximately arg f ′(z0) and |f ′(z0)| at points z near
z0. Hence the image of a small region in a neighborhood of z0 conforms to the
original region in the sense that it has approximately the same shape. A large region
may, however, be transformed into a region that bears no resemblance to the original
one.

EXAMPLE. When f (z) = z2, the transformation

w = f (z) = x2 − y2 + i2xy
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is conformal at the point z = 1 + i, where the half lines

y = x (x ≥ 0) and x = 1 (y ≥ 0)

intersect. We denote those half lines by C1 and C2 (Fig. 136), with positive sense
upward. Observe that the angle from C1 to C2 is π/4 at their point of intersection.
Since the image of a point z = (x, y) is a point in the w plane whose rectangular
coordinates are

u = x2 − y2 and v = 2xy,

the half line C1 is transformed into the curve �1 with parametric representation

u = 0, v = 2x2 (0 ≤ x < ∞).(2)

Thus �1 is the upper half v ≥ 0 of the v axis. The half line C2 is transformed into
the curve �2 represented by the equations

u = 1 − y2, v = 2y (0 ≤ y < ∞).(3)

Hence �2 is the upper half of the parabola v2 = −4(u − 1). Note that in each case,
the positive sense of the image curve is upward.
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y
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C3

π–4

π–2
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v

Γ3

Γ1

Γ2
π–4

π–2 FIGURE 136
w = z2.

If u and v are the variables in representation (3) for the image curve �2 , then

dv

du
= dv/dy

du/dy
= 2

−2y
= −2

v
.

In particular, dv/du = −1 when v = 2. Consequently, the angle from the image
curve �1 to the image curve �2 at the point w = f (1 + i) = 2i is π/4, as required
by the conformality of the mapping at z = 1 + i. The angle of rotation π/4 at the
point z = 1 + i is, of course, a value of

arg[f ′(1 + i)] = arg[2(1 + i)] = π

4
+ 2nπ (n = 0, ±1, ±2, . . .).

The scale factor at that point is the number

|f ′(1 + i)| = |2(1 + i)| = 2
√

2.
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To illustrate how the angle of rotation and the scale factor can change from
point to point, we note that they are 0 and 2, respectively, at the point z = 1 since
f ′(1) = 2. See Fig. 136, where the curves C2 and �2 are the ones just discussed
and where the nonnegative x axis C3 is transformed into the nonnegative u axis �3.

103. LOCAL INVERSES

A transformation w = f (z) that is conformal at a point z0 has a local inverse
there. That is, if w0 = f (z0), then there exists a unique transformation z = g(w),
which is defined and analytic in a neighborhood N of w0, such that g(w0) = z0 and
f [g(w)] = w for all points w in N . The derivative of g(w) is, moreover,

g′(w) = 1

f ′(z)
.(1)

We note from expression (1) that the transformation z = g(w) is itself conformal
at w0.

Assuming that w = f (z) is, in fact, conformal at z0 , let us verify the existence
of such an inverse, which is a direct consequence of results in advanced calculus.∗
As noted in Sec. 101, the conformality of the transformation w = f (z) at z0 implies
that there is some neighborhood of z0 throughout which f is analytic. Hence if we
write

z = x + iy, z0 = x0 + iy0, and f (z) = u(x, y) + iv(x, y),

we know that there is a neighborhood of the point (x0, y0) throughout which the
functions u(x, y) and v(x, y), along with their partial derivatives of all orders, are
continuous (see Sec. 52).

Now the pair of equations

u = u(x, y), v = v(x, y)(2)

represents a transformation from the neighborhood just mentioned into the uv plane.
Moreover, the determinant

J =
∣∣∣∣ux uy

vx vy

∣∣∣∣ = uxvy − vxuy,

which is known as the Jacobian of the transformation, is nonzero at the point
(x0, y0). For, in view of the Cauchy–Riemann equations ux = vy and uy = −vx ,
one can write J as

J = (ux)
2 + (vx)

2 = |f ′(z)|2 ;
and f ′(z0) �= 0 since the transformation w = f (z) is conformal at z0 . The above
continuity conditions on the functions u(x, y) and v(x, y) and their derivatives,

∗The results from advanced calculus to be used here appear in, for instance, A. E. Taylor and W. R.
Mann, “Advanced Calculus,” 3d ed., pp. 241–247, 1983.
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together with this condition on the Jacobian, are sufficient to ensure the existence
of a local inverse of transformation (2) at (x0, y0). That is, if

u0 = u(x0, y0) and v0 = v(x0, y0),(3)

then there is a unique continuous transformation

x = x(u, v), y = y(u, v),(4)

defined on a neighborhood N of the point (u0, v0) and mapping that point onto
(x0, y0), such that equations (2) hold when equations (4) hold. Also, in addition to
being continuous, the functions (4) have continuous first-order partial derivatives
satisfying the equations

xu = 1

J
vy, xv = − 1

J
uy, yu = − 1

J
vx, yv = 1

J
ux(5)

throughout N .
If we write w = u + iv and w0 = u0 + iv0, as well as

g(w) = x(u, v) + iy(u, v),(6)

the transformation z = g(w) is evidently the local inverse of the original transfor-
mation w = f (z) at z0. Transformations (2) and (4) can be written

u + iv = u(x, y) + iv(x, y) and x + iy = x(u, v) + iy(u, v);
and these last two equations are the same as

w = f (z) and z = g(w),

where g has the desired properties. Equations (5) can be used to show that g is
analytic in N . Details are left to the exercises, where expression (1) for g ′(w) is
also derived.

EXAMPLE. We know from Example 1, Sec. 101, that if f (z) = ez, the
transformation w = f (z) is conformal everywhere in the z plane and, in particular,
at the point z0 = 2πi. The image of this choice of z0 is the point w0 = 1. When
points in the w plane are expressed in the form w = ρ exp(iφ), the local inverse at
z0 can be obtained by writing g(w) = log w, where log w denotes the branch

log w = ln ρ + iφ (ρ > 0, π < θ < 3π)

of the logarithmic function, restricted to any neighborhood of w0 that does not
contain the origin. Observe that

g(1) = ln 1 + i2π = 2πi
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and that when w is in the neighborhood,

f [g(w)] = exp(log w) = w.

Also
g′(w) = d

dw
log w = 1

w
= 1

exp z
,

in accordance with equation (1).
Note that if the point z0 = 0 is chosen, one can use the principal branch

Log w = ln ρ + iφ (ρ > 0, −π < φ < π)

of the logarithmic function to define g. In this case, g(1) = 0.

EXERCISES
1. Determine the angle of rotation at the point z0 = 2 + i when w = z2, and illustrate it

for some particular curve. Show that the scale factor at that point is 2
√

5.

2. What angle of rotation is produced by the transformation w = 1/z at the point

(a) z0 = 1; (b) z0 = i?

Ans. (a) π ; (b) 0.

3. Show that under the transformation w = 1/z , the images of the lines y = x − 1 and
y = 0 are the circle u2 + v2 − u − v = 0 and the line v = 0, respectively. Sketch all
four curves, determine corresponding directions along them, and verify the conformal-
ity of the mapping at the point z0 = 1.

4. Show that the angle of rotation at a nonzero point z0 = r0 exp(iθ0) under the trans-
formation w = zn (n = 1, 2, . . .) is (n − 1)θ0. Determine the scale factor of the trans-
formation at that point.

Ans. nrn−1
0 .

5. Show that the transformation w = sin z is conformal at all points except

z = π

2
+ nπ (n = 0,±1,±2, . . .).

Note that this is in agreement with the mapping of directed line segments shown in
Figs. 9, 10, and 11 of Appendix 2.

6. Find the local inverse of the transformation w = z2 at the point

(a) z0 = 2 ; (b) z0 = −2 ; (c) z0 = −i.

Ans. (a) w1/2 = √
ρ eiφ/2 (ρ > 0,−π < φ < π);

(c) w1/2 = √
ρ eiφ/2 (ρ > 0, 2π < φ < 4π).

7. In Sec. 103, it was pointed out that the components x(u, v) and y(u, v) of the inverse
function g(w) defined by equation (6) there are continuous and have continuous first-
order partial derivatives in a neighborhood N . Use equations (5), Sec. 103, to show
that the Cauchy–Riemann equations xu = yv, xv = −yu hold in N . Then conclude that
g(w) is analytic in that neighborhood.
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8. Show that if z = g(w) is the local inverse of a conformal transformation w = f (z) at
a point z0, then

g′(w) = 1

f ′(z)

at points w in a neighborhood N where g is analytic (Exercise 7) .
Suggestion: Start with the fact that f [g(w)] = w, and apply the chain rule for

differentiating composite functions.

9. Let C be a smooth arc lying in a domain D throughout which a transformation
w = f (z) is conformal , and let � denote the image of C under that transformation.
Show that � is also a smooth arc.

10. Suppose that a function f is analytic at z0 and that

f ′(z0) = f ′′(z0) = · · · = f (m−1)(z0) = 0, f (m)(z0) �= 0

for some positive integer m(m ≥ 1). Also, write w0 = f (z0).

(a) Use the Taylor series for f about the point z0 to show that there is a neighborhood
of z0 in which the difference f (z) − w0 can be written

f (z) − w0 = (z − z0)
m f (m)(z0)

m!
[1 + g(z)] ,

where g(z) is continuous at z0 and g(z0) = 0.
(b) Let � be the image of a smooth arc C under the transformation w = f (z), as

shown in Fig. 134 (Sec. 101), and note that the angles of inclination θ0 and φ0
in that figure are limits of arg(z − z0) and arg[f (z) − w0] , respectively, as z

approaches z0 along the arc C. Then use the result in part (a) to show that θ0 and
φ0 are related by the equation

φ0 = mθ0 + arg f (m)(z0).

(c) Let α denote the angle between two smooth arcs C1 and C2 passing through z0 ,
as shown on the left in Fig. 135 (Sec. 101). Show how it follows from the relation
obtained in part (b) that the corresponding angle between the image curves �1
and �2 at the point w0 = f (z0) is mα. (Note that the transformation is conformal
at z0 when m = 1 and that z0 is a critical point when m ≥ 2.)

104. HARMONIC CONJUGATES

We saw in Sec. 26 that if a function

f (z) = u(x, y) + iv(x, y)

is analytic in a domain D, then the real-valued functions u and v are harmonic in
that domain. That is, they have continuous partial derivatives of the first and second
order in D and satisfy Laplace’s equation there:

uxx + uyy = 0, vxx + vyy = 0.(1)
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We had seen earlier that the first-order partial derivatives of u and v satisfy the
Cauchy–Riemann equations

ux = vy, uy = −vx ;(2)

and, as pointed out in Sec. 26, v is called a harmonic conjugate of u.
Suppose now that u(x, y) is any given harmonic function defined on a simply

connected (Sec. 48) domain D. In this section, we show that u(x, y) always has a
harmonic conjugate v(x, y) in D by deriving an expression for v(x, y).

To accomplish this, we first recall some important facts about line integrals in
advanced calculus.∗ Suppose that P(x, y) and Q(x, y) have continuous first-order
partial derivatives in a simply connected domain D of the xy plane, and let (x0, y0)

and (x, y) be any two points in D. If Py = Qx everywhere in D, then the line
integral ∫

C

P (s, t) ds + Q(s, t) dt

from (x0, y0) to (x, y) is independent of the contour C that is taken as long as
the contour lies entirely in D. Furthermore, when the point (x0, y0) is kept fixed
and (x, y) is allowed to vary throughout D, the integral represents a single-valued
function

F(x, y) =
∫ (x,y)

(x0,y0)

P (s, t) ds + Q(s, t) dt(3)

of x and y whose first-order partial derivatives are given by the equations

Fx(x, y) = P(x, y), Fy(x, y) = Q(x, y).(4)

Note that the value of F is changed by an additive constant when a different starting
point (x0, y0) is taken.

Returning to the given harmonic function u(x, y), observe how it follows from
Laplace’s equation uxx + uyy = 0 that

(−uy)y = (ux)x

everywhere in D. Also, the second-order partial derivatives of u are continuous
in D; and this means that the first-order partial derivatives of −uy and ux are
continuous there. Thus, if (x0, y0) is a fixed point in D, the function

v(x, y) =
∫ (x,y)

(x0,y0)

−ut (s, t) ds + us(s, t) dt(5)

is well defined for all (x, y) in D; and, according to equations (4),

vx(x, y) = −uy(x, y), vy(x, y) = ux(x, y).(6)

∗See, for example, W. Kaplan, “Advanced Mathematics for Engineers,” pp. 546–550, 1992.
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These are the Cauchy–Riemann equations. Since the first-order partial derivatives
of u are continuous, it is evident from equations (6) that those derivatives of v are
also continuous. Hence (Sec. 22) u(x, y) + iv(x, y) is an analytic function in D;
and v is, therefore, a harmonic conjugate of u.

The function v defined by equation (5) is, of course, not the only harmonic
conjugate of u. The function v(x, y) + c, where c is any real constant, is also a
harmonic conjugate of u. [Recall Exercise 2, Sec. 26.]

EXAMPLE. Consider the function u(x, y) = xy, which is harmonic through-
out the entire xy plane. According to equation (5), the function

v(x, y) =
∫ (x,y)

(0,0)

−s ds + t dt

is a harmonic conjugate of u(x, y). The integral here is readily evaluated by inspec-
tion. It can also be evaluated by integrating first along the horizontal path from the
point (0, 0) to the point (x, 0) and then along the vertical path from (x, 0) to the
point (x, y). The result is

v(x, y) = −1

2
x2 + 1

2
y2,

and the corresponding analytic function is

f (z) = xy − i

2
(x2 − y2) = − i

2
z2.

105. TRANSFORMATIONS OF HARMONIC FUNCTIONS

The problem of finding a function that is harmonic in a specified domain and
satisfies prescribed conditions on the boundary of the domain is prominent in applied
mathematics. If the values of the function are prescribed along the boundary, the
problem is known as a boundary value problem of the first kind, or a Dirichlet
problem. If the values of the normal derivative of the function are prescribed on
the boundary, the boundary value problem is one of the second kind, or a Neumann
problem. Modifications and combinations of those types of boundary conditions also
arise.

The domains most frequently encountered in the applications are simply con-
nected; and, since a function that is harmonic in a simply connected domain always
has a harmonic conjugate (Sec. 104), solutions of boundary value problems for such
domains are the real or imaginary components of analytic functions.

EXAMPLE 1. In Example 1, Sec. 26, we saw that the function

T (x, y) = e−y sin x
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satisfies a certain Dirichlet problem for the strip 0 < x < π, y > 0 and noted that it
represents a solution of a temperature problem. The function T (x, y), which is actu-
ally harmonic throughout the xy plane, is the real component of the entire function

−ieiz = e−y sin x − ie−y cos x.

It is also the imaginary component of the entire function eiz.

Sometimes a solution of a given boundary value problem can be discovered
by identifying it as the real or imaginary component of an analytic function. But
the success of that procedure depends on the simplicity of the problem and on
one’s familiarity with the real and imaginary components of a variety of analytic
functions. The following theorem is an important aid.

Theorem. Suppose that an analytic function

w = f (z) = u(x, y) + iv(x, y)(1)

maps a domain Dz in the z plane onto a domain Dw in the w plane. If h(u, v) is a
harmonic function defined on Dw, then the function

H(x, y) = h[u(x, y), v(x, y)](2)

is harmonic in Dz.

We first prove the theorem for the case in which the domain Dw is simply con-
nected. According to Sec. 104, that property of Dw ensures that the given harmonic
function h(u, v) has a harmonic conjugate g(u, v). Hence the function

�(w) = h(u, v) + ig(u, v)(3)

is analytic in Dw. Since the function f (z) is analytic in Dz , the composite function
�[f (z)] is also analytic in Dz. Consequently, the real part h[u(x, y), v(x, y)] of
this composition is harmonic in Dz.

If Dw is not simply connected, we observe that each point w0 in Dw has
a neighborhood |w − w0| < ε lying entirely in Dw. Since that neighborhood is
simply connected, a function of the type (3) is analytic in it. Furthermore, since
f is continuous at a point z0 in Dz whose image is w0 , there is a neighborhood
|z − z0| < δ whose image is contained in the neighborhood |w − w0| < ε. Hence it
follows that the composition �[f (z)] is analytic in the neighborhood |z − z0| < δ,
and we may conclude that h[u(x, y), v(x, y)] is harmonic there. Finally, since w0

was arbitrarily chosen in Dw and since each point in Dz is mapped onto such a
point under the transformation w = f (z), the function h[u(x, y), v(x, y)] must be
harmonic throughout Dz.

The proof of the theorem for the general case in which Dw is not necessarily
simply connected can also be accomplished directly by means of the chain rule
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for partial derivatives. The computations are, however, somewhat involved (see
Exercise 8, Sec. 106).

EXAMPLE 2. The function h(u, v) = e−v sin u is harmonic in the domain
Dw consisting of all points in the upper half plane v > 0 (see Example 1). If the
transformation is w = z2, we have u(x, y) = x2 − y2 and v(x, y) = 2xy; moreover,
the domain Dz consisting of the points in the first quadrant x > 0, y > 0 of the z

plane is mapped onto the domain Dw, as shown in Example 3, Sec. 13. Hence the
function

H(x, y) = e−2xy sin(x2 − y2)

is harmonic in Dz.

EXAMPLE 3. A minor modification of Fig. 114 in Example 3, Sec. 95,
reveals that as a point z = r exp(i�0) (−π/2 < �0 < π/2) travels outward from
the origin along a ray � = �0 in the z plane, its image under the transformation

w = Log z = ln r + i� (r > 0, −π < � < π)

travels along the entire length of the horizontal line v = �0 in the w plane. So the
right half plane x > 0 is mapped onto the horizontal strip −π/2 < v < π/2. By
considering the function

h(u, v) = Im w = v,

which is harmonic in the strip, and writing

Log z = ln
√

x2 + y2 + iarctan
y

x
,

where −π/2 < arctan t < π/2, we find that

H(x, y) = arctan
y

x

is harmonic in the half plane x > 0.

106. TRANSFORMATIONS OF BOUNDARY CONDITIONS

The conditions that a function or its normal derivative have prescribed values along
the boundary of a domain in which it is harmonic are the most common, although
not the only, important types of boundary conditions. In this section, we show that
certain of these conditions remain unaltered under the change of variables associated
with a conformal transformation. These results will be used in Chap. 10 to solve
boundary value problems. The basic technique there is to transform a given boundary
value problem in the xy plane into a simpler one in the uv plane and then to use
the theorems of this and Sec. 105 to write the solution of the original problem in
terms of the solution obtained for the simpler one.
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Theorem. Suppose that a transformation

w = f (z) = u(x, y) + iv(x, y)(1)

is conformal on a smooth arc C, and let � be the image of C under that transfor-
mation. If a function h(u, v) satisfies either of the conditions

h = h0 or
dh

dn
= 0(2)

along � , where h0 is a real constant and dh/dn denotes derivatives normal to �,
then the function

H(x, y) = h[u(x, y), v(x, y)](3)

satisfies the corresponding condition

H = h0 or
dH

dN
= 0(4)

along C, where dH/dN denotes derivatives normal to C.

To show that the condition h = h0 on � implies that H = h0 on C, we note
from equation (3) that the value of H at any point (x, y) on C is the same as the
value of h at the image (u, v) of (x, y) under transformation (1). Since the image
point (u, v) lies on � and since h = h0 along that curve, it follows that H = h0

along C.
Suppose, on the other hand, that dh/dn = 0 on �. From calculus, we know

that

dh

dn
= (grad h) · n,(5)

where grad h denotes the gradient of h at a point (u, v) on � and n is a unit vector
normal to � at (u, v). Since dh/dn = 0 at (u, v), equation (5) tells us that grad h

is orthogonal to n at (u, v). That is, grad h is tangent to � there (Fig. 137). But
gradients are orthogonal to level curves; and, because grad h is tangent to �, we
see that � is orthogonal to a level curve h(u, v) = c passing through (u, v).

xO

y
C

N

grad H

H(x, y) = c 

(x, y)

uO

v

Γ

n
grad h

h(u,v) = c 

(u,v)

FIGURE 137
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Now, according to equation (3), the level curve H(x, y) = c in the z plane can
be written

h[u(x, y), v(x, y)] = c ;
and so it is evidently transformed into the level curve h(u, v) = c under transfor-
mation (1). Furthermore, since C is transformed into � and � is orthogonal to
the level curve h(u, v) = c, as demonstrated in the preceding paragraph, it fol-
lows from the conformality of transformation (1) that C is orthogonal to the level
curve H(x, y) = c at the point (x, y) corresponding to (u, v). Because gradients
are orthogonal to level curves, this means that grad H is tangent to C at (x, y) (see
Fig. 137). Consequently, if N denotes a unit vector normal to C at (x, y), grad H

is orthogonal to N. That is,

(grad H) · N = 0.(6)

Finally, since
dH

dN
= (grad H) · N,

we may conclude from equation (6) that dH/dN = 0 at points on C.
In this discussion, we have tacitly assumed that grad h �= 0. If grad h = 0, it

follows from the identity

|grad H(x, y)| = |grad h(u, v)||f ′(z)|,
derived in Exercise 10(a) of this section, that grad H = 0; hence dh/dn and the
corresponding normal derivative dH/dN are both zero. We have also assumed that

(a) grad h and grad H always exist ;

(b) the level curve H(x, y) = c is smooth when grad h �= 0 at (u, v).

Condition (b) ensures that angles between arcs are preserved by transformation
(1) when it is conformal. In all of our applications, both conditions (a) and (b) will
be satisfied.

EXAMPLE. Consider, for instance, the function h(u, v) = v + 2. The trans-
formation

w = iz2 = −2xy + i(x2 − y2)

is conformal when z �= 0. It maps the half line y = x (x > 0) onto the negative
u axis, where h = 2, and the positive x axis onto the positive v axis, where the
normal derivative hu is 0 (Fig. 138). According to the above theorem, the function

H(x, y) = x2 − y2 + 2

must satisfy the condition H = 2 along the half line y = x (x > 0) and Hy = 0
along the positive x axis, as one can verify directly.
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xB C
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Hy = 0 
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H =

 2 

uB ′

C ′

A′

v

h = 2 FIGURE 138

A boundary condition that is not of one of the two types mentioned in the
theorem may be transformed into a condition that is substantially different from the
original one (see Exercise 6). New boundary conditions for the transformed problem
can be obtained for a particular transformation in any case. It is interesting to note
that under a conformal transformation , the ratio of a directional derivative of H

along a smooth arc C in the z plane to the directional derivative of h along the
image curve � at the corresponding point in the w plane is |f ′(z)|; usually, this
ratio is not constant along a given arc. (See Exercise 10.)

EXERCISES
1. Use expression (5), Sec. 104, to find a harmonic conjugate of the harmonic function

u(x, y) = x3 − 3xy2. Write the resulting analytic function in terms of the complex
variable z.

2. Let u(x, y) be harmonic in a simply connected domain D. By appealing to results
in Secs. 104 and 52, show that its partial derivatives of all orders are continuous
throughout that domain.

3. The transformation w = exp z maps the horizontal strip 0 < y < π onto the upper half
plane v > 0, as shown in Fig. 6 of Appendix 2 ; and the function

h(u, v) = Re(w2) = u2 − v2

is harmonic in that half plane. With the aid of the theorem in Sec. 105, show that the
function H(x, y) = e2x cos 2y is harmonic in the strip. Verify this result directly.

4. Under the transformation w = exp z, the image of the segment 0 ≤ y ≤ π of the y

axis is the semicircle u2 + v2 = 1, v ≥ 0 (see Sec. 14). Also, the function

h(u, v) = Re

(
2 − w + 1

w

)
= 2 − u + u

u2 + v2

is harmonic everywhere in the w plane except for the origin; and it assumes the value
h = 2 on the semicircle. Write an explicit expression for the function H(x, y) in the
theorem of Sec. 106. Then illustrate the theorem by showing directly that H = 2 along
the segment 0 ≤ y ≤ π of the y axis.
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5. The transformation w = z2 maps the positive x and y axes and the origin in the z

plane onto the u axis in the w plane. Consider the harmonic function

h(u, v) = Re(e−w) = e−u cos v,

and observe that its normal derivative hv along the u axis is zero. Then illustrate the
theorem in Sec. 106 when f (z) = z2 by showing directly that the normal derivative
of the function H(x, y) defined in that theorem is zero along both positive axes in the
z plane. (Note that the transformation w = z2 is not conformal at the origin.)

6. Replace the function h(u, v) in Exercise 5 by the harmonic function

h(u, v) = Re(−2iw + e−w) = 2v + e−u cos v.

Then show that hv = 2 along the u axis but that Hy = 4x along the positive x axis
and Hx = 4y along the positive y axis. This illustrates how a condition of the type

dh

dn
= h0 �= 0

is not necessarily transformed into a condition of the type dH/dN = h0.

7. Show that if a function H(x, y) is a solution of a Neumann problem (Sec. 105), then
H(x, y) + A, where A is any real constant, is also a solution of that problem.

8. Suppose that an analytic function w = f (z) = u(x, y) + iv(x, y) maps a domain Dz

in the z plane onto a domain Dw in the w plane; and let a function h(u, v), with
continuous partial derivatives of the first and second order, be defined on Dw . Use the
chain rule for partial derivatives to show that if H(x, y) = h[u(x, y), v(x, y)], then

Hxx(x, y) + Hyy(x, y) = [huu(u, v) + hvv(u, v)] |f ′(z)|2.
Conclude that the function H(x, y) is harmonic in Dz when h(u, v) is harmonic in
Dw . This is an alternative proof of the theorem in Sec. 105, even when the domain
Dw is multiply connected.

Suggestion: In the simplifications, it is important to note that since f is analytic ,
the Cauchy–Riemann equations ux = vy, uy = −vx hold and that the functions u and v

both satisfy Laplace’s equation. Also, the continuity conditions on the derivatives of
h ensure that hvu = huv .

9. Let p(u, v) be a function that has continuous partial derivatives of the first and second
order and satisfies Poisson’s equation

puu(u, v) + pvv(u, v) = �(u, v)

in a domain Dw of the w plane, where � is a prescribed function. Show how it follows
from the identity obtained in Exercise 8 that if an analytic function

w = f (z) = u(x, y) + iv(x, y)

maps a domain Dz onto the domain Dw , then the function

P (x, y) = p[u(x, y), v(x, y)]
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satisfies the Poisson equation

Pxx(x, y) + Pyy(x, y) = �[u(x, y), v(x, y)] |f ′(z)|2

in Dz.

10. Suppose that w = f (z) = u(x, y) + iv(x, y) is a conformal mapping of a smooth arc
C onto a smooth arc � in the w plane. Let the function h(u, v) be defined on �, and
write

H(x, y) = h[u(x, y), v(x, y)].

(a) From calculus, we know that the x and y components of grad H are the partial
derivatives Hx and Hy , respectively; likewise, grad h has components hu and hv .
By applying the chain rule for partial derivatives and using the Cauchy–Riemann
equations, show that if (x, y) is a point on C and (u, v) is its image on �, then

|grad H(x, y)| = |grad h(u, v)||f ′(z)|.

(b) Show that the angle from the arc C to grad H at a point (x, y) on C is equal to
the angle from � to grad h at the image (u, v) of the point (x, y).

(c) Let s and σ denote distance along the arcs C and �, respectively; and let t and
τ denote unit tangent vectors at a point (x, y) on C and its image (u, v), in the
direction of increasing distance. With the aid of the results in parts (a) and (b)
and using the fact that

dH

ds
= (grad H) · t and

dh

dσ
= (grad h) · τ ,

show that the directional derivative along the arc � is transformed as follows:

dH

ds
= dh

dσ
|f ′(z)|.
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APPLICATIONS OF CONFORMAL

MAPPING

We now use conformal mapping to solve a number of physical problems involving
Laplace’s equation in two independent variables. Problems in heat conduction, elec-
trostatic potential, and fluid flow will be treated. Since these problems are intended
to illustrate methods, they will be kept on a fairly elementary level.

107. STEADY TEMPERATURES

In the theory of heat conduction, the flux across a surface within a solid body at a
point on that surface is the quantity of heat flowing in a specified direction normal
to the surface per unit time per unit area at the point. Flux is, therefore, measured
in such units as calories per second per square centimeter. It is denoted here by �,
and it varies with the normal derivative of the temperature T at the point on the
surface:

� = −K
dT

dN
(K > 0).(1)

Relation (1) is known as Fourier’s law and the constant K is called the thermal
conductivity of the material of the solid, which is assumed to be homogeneous.∗

The points in the solid can be assigned rectangular coordinates in three-
dimensional space, and we restrict our attention to those cases in which the temper-
ature T varies with only the x and y coordinates. Since T does not vary with the

∗The law is named for the French mathematical physicist Joseph Fourier (1768–1830). His book,
cited in Appendix 1, is a classic in the theory of heat conduction.

373
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coordinate along the axis perpendicular to the xy plane, the flow of heat is, then,
two-dimensional and parallel to that plane. We agree, moreover, that the flow is in
a steady state; that is, T does not vary with time.

It is assumed that no thermal energy is created or destroyed within the solid.
That is, no heat sources or sinks are present there. Also, the temperature function
T (x, y) and its partial derivatives of the first and second order are continuous at each
point interior to the solid. This statement and expression (1) for the flux of heat are
postulates in the mathematical theory of heat conduction, postulates that also apply
at points within a solid containing a continuous distribution of sources or sinks.

Consider now an element of volume that is interior to the solid and has the
shape of a rectangular prism of unit height perpendicular to the xy plane, with base
�x by �y in the plane (Fig. 139). The time rate of flow of heat toward the right
across the left-hand face is −KTx(x, y)�y ; and toward the right across the right-
hand face, it is −KTx(x + �x, y)�y. Subtracting the first rate from the second,
we obtain the net rate of heat loss from the element through those two faces. This
resultant rate can be written

−K

[
Tx(x + �x, y) − Tx(x, y)

�x

]
�x�y,

or

−KTxx(x, y)�x�y(2)

if �x is very small. Expression (2) is, of course, an approximation whose accuracy
increases as �x and �y are made smaller.

x

(x, y)

y

FIGURE 139

In like manner, the resultant rate of heat loss through the other two faces
perpendicular to the xy plane is found to be

−KTyy(x, y)�x�y.(3)

Heat enters or leaves the element only through these four faces, and the temperatures
within the element are steady. Hence the sum of expressions (2) and (3) is zero;
that is,

Txx(x, y) + Tyy(x, y) = 0.(4)
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The temperature function thus satisfies Laplace’s equation at each interior point of
the solid.

In view of equation (4) and the continuity of the temperature function and its
partial derivatives, T is a harmonic function of x and y in the domain representing
the interior of the solid body.

The surfaces T (x, y) = c1, where c1 is any real constant, are the isotherms
within the solid. They can also be considered as curves in the xy plane ; then
T (x, y) can be interpreted as the temperature at a point (x, y) in a thin sheet of
material in that plane, with the faces of the sheet thermally insulated. The isotherms
are the level curves of the function T .

The gradient of T is perpendicular to an isotherm at each point on it, and the
maximum flux at such a point is in the direction of the gradient there. If T (x, y)

denotes temperatures in a thin sheet and if S is a harmonic conjugate of the function
T , then a curve S(x, y) = c2 has the gradient of T as a tangent vector at each
point where the analytic function T (x, y) + iS(x, y) is conformal (see Exercise 7,
Sec. 26). The curves S(x, y) = c2 are called lines of flow.

If the normal derivative dT /dN is zero along any part of the boundary of the
sheet, then the flux of heat across that part is zero. That is, the part is thermally
insulated and is, therefore, a line of flow.

The function T may also denote the concentration of a substance that is diffus-
ing through a solid. In that case, K is the diffusion constant. The above discussion
and the derivation of equation (4) apply as well to steady-state diffusion.

108. STEADY TEMPERATURES IN A HALF PLANE

Let us find an expression for the steady temperatures T (x, y) in a thin semi-infinite
plate y ≥ 0 whose faces are insulated and whose edge y = 0 is kept at temperature
zero except for the segment −1 < x < 1, where it is kept at temperature unity
(Fig. 140). The function T (x, y) is to be bounded ; this condition is natural if we
consider the given plate as the limiting case of the plate 0 ≤ y ≤ y0 whose upper
edge is kept at a fixed temperature as y0 is increased. In fact, it would be physically
reasonable to stipulate that T (x, y) approach zero as y tends to infinity.

x u

z

A T = 0 T = 0 T = 0

T = 1

C ′ A′D′

C ′ B ′

B ′
T = 1B C D

r1r2

1–1

y v

FIGURE 140

w = log
z − 1

z + 1

(
r1

r2
> 0,−π

2
< θ1 − θ2 <

3π

2

)
.
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The boundary value problem to be solved can be written

Txx(x, y) + Tyy(x, y) = 0 (−∞ < x < ∞, y > 0),(1)

T (x, 0) =
{

1 when |x| < 1,

0 when |x| > 1;(2)

also, |T (x, y)| < M where M is some positive constant. This is a Dirichlet problem
for the upper half of the xy plane. Our method of solution will be to obtain a new
Dirichlet problem for a region in the uv plane. That region will be the image of the
half plane under a transformation w = f (z) that is analytic in the domain y > 0
and conformal along the boundary y = 0 except at the points (±1, 0), where f (z)

is undefined. It will be a simple matter to discover a bounded harmonic function
satisfying the new problem. The two theorems in Chap. 9 will then be applied to
transform the solution of the problem in the uv plane into a solution of the original
problem in the xy plane. Specifically, a harmonic function of u and v will be
transformed into a harmonic function of x and y, and the boundary conditions in
the uv plane will be preserved on corresponding portions of the boundary in the xy

plane. There should be no confusion if we use the same symbol T to denote the
different temperature functions in the two planes.

Let us write

z − 1 = r1 exp(iθ1) and z + 1 = r2 exp(iθ2),

where 0 ≤ θk ≤ π (k = 1, 2). The transformation

w = log
z − 1

z + 1
= ln

r1

r2
+ i(θ1 − θ2)

(
r1

r2
> 0, −π

2
< θ1 − θ2 <

3π

2

)
(3)

is defined on the upper half plane y ≥ 0, except for the two points z = ±1, since
0 ≤ θ1 − θ2 ≤ π when y ≥ 0. (See Fig. 140.) Now the value of the logarithm is the
principal value when 0 ≤ θ1 − θ2 ≤ π , and we recall from Example 3 in Sec. 95
that the upper half plane y > 0 is then mapped onto the horizontal strip 0 < v < π

in the w plane. As already noted in that example, the mapping is shown with
corresponding boundary points in Fig. 19 of Appendix 2. Indeed, it was that figure
which suggested transformation (3) here. The segment of the x axis between z = −1
and z = 1, where θ1 − θ2 = π , is mapped onto the upper edge of the strip ; and the
rest of the x axis, where θ1 − θ2 = 0, is mapped onto the lower edge. The required
analyticity and conformality conditions are evidently satisfied by transformation (3).

A bounded harmonic function of u and v that is zero on the edge v = 0 of the
strip and unity on the edge v = π is clearly

T = 1

π
v ;(4)

it is harmonic since it is the imaginary component of the entire function (1/π)w.
Changing to x and y coordinates by means of the equation

w = ln

∣∣∣∣z − 1

z + 1

∣∣∣∣ + i arg

(
z − 1

z + 1

)
,(5)
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we find that

v = arg

[
(z − 1)(z + 1)

(z + 1)(z + 1)

]
= arg

[
x2 + y2 − 1 + i2y

(x + 1)2 + y2

]
,

or

v = arctan

(
2y

x2 + y2 − 1

)
.

The range of the arctangent function here is from 0 to π since

arg

(
z − 1

z + 1

)
= θ1 − θ2

and 0 ≤ θ1 − θ2 ≤ π . Expression (4) now takes the form

T = 1

π
arctan

(
2y

x2 + y2 − 1

)
(0 ≤ arctan t ≤ π).(7)

Since the function (4) is harmonic in the strip 0 < v < π and since transforma-
tion (3) is analytic in the half plane y > 0, we may apply the theorem in Sec. 105
to conclude that the function (6) is harmonic in that half plane. The boundary con-
ditions for the two harmonic functions are the same on corresponding parts of the
boundaries because they are of the type h = h0, treated in the theorem of Sec. 106.
The bounded function (6) is, therefore, the desired solution of the original problem.
One can, of course, verify directly that the function (6) satisfies Laplace’s equation
and has the values tending to those indicated on the left in Fig. 140 as the point
(x, y) approaches the x axis from above.

The isotherms T (x, y) = c1 (0 < c1 < 1) are arcs of the circles

x2 + (y − cot πc1)
2 = csc2 πc1,

passing through the points (±1, 0) and with centers on the y axis.
Finally, we note that since the product of a harmonic function by a constant is

also harmonic, the function

T = T0

π
arctan

(
2y

x2 + y2 − 1

)
(0 ≤ arctan t ≤ π)

represents steady temperatures in the given half plane when the temperature T = 1
along the segment −1 < x < 1 of the x axis is replaced by any constant temperature
T = T0.

109. A RELATED PROBLEM

Consider a semi-infinite slab in the three-dimensional space bounded by the planes
x = ±π/2 and y = 0 when the first two surfaces are kept at temperature zero and
the third at temperature unity. We wish to find a formula for the temperature T (x, y)

at any interior point of the slab. The problem is also that of finding temperatures in
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a thin plate having the form of a semi-infinite strip −π/2 ≤ x ≤ π/2, y ≥ 0 when
the faces of the plate are perfectly insulated (Fig. 141).

xT = 1

B

A

C

T = 0T = 0

D

y

–
FIGURE 141

The boundary value problem here is

Txx(x, y) + Tyy(x, y) = 0
(
−π

2
< x <

π

2
, y > 0

)
,(1)

T
(
−π

2
, y

)
= T

(π

2
, y

)
= 0 (y > 0),(2)

T (x, 0) = 1
(
−π

2
< x <

π

2

)
,(3)

where T (x, y) is bounded.
In view of Example 1 in Sec. 96, as well as Fig. 9 of Appendix 2, the mapping

w = sin z(4)

transforms this boundary value problem into the one posed in Sec. 108 (Fig. 140).
Hence, according to solution (6) in that section,

T = 1

π
arctan

(
2v

u2 + v2 − 1

)
(0 ≤ arctan t ≤ π).(5)

The change of variables indicated in equation (4) can be written (see Sec. 34)

u = sin x cosh y, v = cos x sinh y ;
and the harmonic function (5) becomes

T = 1

π
arctan

(
2 cos x sinh y

sin2 x cosh2 y + cos2 x sinh2 y − 1

)
.

Since the denominator here reduces to sinh2 y − cos2 x, the quotient can be put in
the form

2 cos x sinh y

sinh2 y − cos2 x
= 2(cos x/ sinh y)

1 − (cos x/ sinh y)2
= tan 2α,
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where tan α = cos x/ sinh y. Hence T = (2/π)α; that is,

T = 2

π
arctan

(
cos x

sinh y

) (
0 ≤ arctan t ≤ π

2

)
.(6)

This arctangent function has the range 0 to π/2 because its argument is nonnegative.
Since sin z is entire and the function (5) is harmonic in the half plane v > 0,

the function (6) is harmonic in the strip −π/2 < x < π/2, y > 0. Also, the function
(5) satisfies the boundary condition T = 1 when |u| < 1 and v = 0, as well as the
condition T = 0 when |u| > 1 and v = 0. The function (6) thus satisfies boundary
conditions (2) and (3). Moreover, |T (x, y)| ≤ 1 throughout the strip. Expression (6)
is, therefore, the temperature formula that is sought.

The isotherms T (x, y) = c1 (0 < c1 < 1) are the portions of the surfaces

cos x = tan
(πc1

2

)
sinh y

within the slab, each surface passing through the points (±π/2, 0) in the xy plane.
If K is the thermal conductivity, the flux of heat into the slab through the surface
lying in the plane y = 0 is

−KTy(x, 0) = 2K

π cos x

(
−π

2
< x <

π

2

)
.

The flux outward through the surface lying in the plane x = π/2 is

−KTx

(π

2
, y

)
= 2K

π sinh y
(y > 0).

The boundary value problem posed in this section can also be solved by the
method of separation of variables. That method is more direct, but it gives the
solution in the form of an infinite series.∗

110. TEMPERATURES IN A QUADRANT

Let us find the steady temperatures in a thin plate having the form of a quadrant if
a segment at the end of one edge is insulated, if the rest of that edge is kept at a
fixed temperature, and if the second edge is kept at another fixed temperature. The
surfaces are insulated, and so the problem is two-dimensional.

∗A similar problem is treated in the authors’ “Fourier Series and Boundary Value Problems,” 7th ed.,
Problem 4, p. 123, 2008. Also, a short discussion of the uniqueness of solutions to boundary value
problems can be found in Chap. 11 of that book.
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The temperature scale and the unit of length can be chosen so that the boundary
value problem for the temperature function T becomes

Txx(x, y) + Tyy(x, y) = 0 (x > 0, y > 0),(1) {
Ty(x, 0) = 0 when 0 < x < 1,

T (x, 0) = 1 when x > 1,
(2)

T (0, y) = 0 (y > 0),(3)

where T (x, y) is bounded in the quadrant. The plate and its boundary conditions
are shown on the left in Fig. 142. Conditions (2) prescribe the values of the normal
derivative of the function T over a part of a boundary line and the values of the
function itself over another part of that line. The separation of variables method
mentioned at the end of Sec. 109 is not adapted to such problems with different
types of conditions along the same boundary line.

xT = 11
C B

D

A

T = 0

y

u
C ′

D ′

B ′

T = 1T = 0

A′

v

FIGURE 142

As indicated in Fig. 10 of Appendix 2, the transformation

z = sin w(4)

is a one to one mapping of the semi-infinite strip 0 ≤ u ≤ π/2, v ≥ 0 onto the quad-
rant x ≥ 0, y ≥ 0. Observe now that the existence of an inverse is ensured by the
fact that the given transformation is both one to one and onto. Since transformation
(4) is conformal throughout the strip except at the point w = π/2, the inverse trans-
formation must be conformal throughout the quadrant except at the point z = 1. That
inverse transformation maps the segment 0 < x < 1 of the x axis onto the base of
the strip and the rest of the boundary onto the sides of the strip as shown in Fig. 142.

Since the inverse of transformation (4) is conformal in the quadrant, except
when z = 1, the solution to the given problem can be obtained by finding a function
that is harmonic in the strip and satisfies the boundary conditions shown on the right
in Fig. 142. Observe that these boundary conditions are of the types h = h0 and
dh/dn = 0 in the theorem of Sec. 106.
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The required temperature function T for the new boundary value problem is
clearly

T = 2

π
u,(5)

the function (2/π)u being the real component of the entire function (2/π)w. We
must now express T in terms of x and y.

To obtain u in terms of x and y, we first note that according to equation (4)
and Sec. 34,

x = sin u cosh v, y = cos u sinh v.(6)

When 0 < u < π/2, both sin u and cos u are nonzero; and, consequently,

x2

sin2 u
− y2

cos2 u
= 1.(7)

Now it is convenient to observe that for each fixed u, hyperbola (7) has foci at the
points

z = ±
√

sin2 u + cos2 u = ±1

and that the length of the transverse axis, which is the line segment joining the
two vertices (± sin u, 0), is 2 sin u. Thus the absolute value of the difference of the
distances between the foci and a point (x, y) lying on the part of the hyperbola in
the first quadrant is√

(x + 1)2 + y2 −
√

(x − 1)2 + y2 = 2 sin u.

It follows directly from equations (6) that this relation also holds when u = 0 or
u = π/2. In view of equation (5), then, the required temperature function is

T = 2

π
arcsin

[√
(x + 1)2 + y2 −

√
(x − 1)2 + y2

2

]
(8)

where, since 0 ≤ u ≤ π/2, the arcsine function has the range 0 to π/2.
If we wish to verify that this function satisfies boundary conditions (2), we must

remember that
√

(x − 1)2 denotes x − 1 when x > 1 and 1 − x when 0 < x < 1,
the square roots being positive. Note, too, that the temperature at any point along
the insulated part of the lower edge of the plate is

T (x, 0) = 2

π
arcsin x (0 < x < 1).

It can be seen from equation (5) that the isotherms T (x, y) = c1 (0 < c1 < 1)

are the parts of the confocal hyperbolas (7), where u = πc1/2, which lie in the first
quadrant. Since the function (2/π)v is a harmonic conjugate of the function (5), the
lines of flow are quarters of the confocal ellipses obtained by holding v constant in
equations (6).
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EXERCISES
1. In the problem of the semi-infinite plate shown on the left in Fig. 140 (Sec. 108),

obtain a harmonic conjugate of the temperature function T (x, y) from equation (5),
Sec. 108, and find the lines of flow of heat. Show that those lines of flow consist of
the upper half of the y axis and the upper halves of certain circles on either side of
that axis, the centers of the circles lying on the segment AB or CD of the x axis.

2. Show that if the function T in Sec. 108 is not required to be bounded, the harmonic
function (4) in that section can be replaced by the harmonic function

T = Im

(
1

π
w + A cosh w

)
= 1

π
v + A sinh u sin v,

where A is an arbitrary real constant. Conclude that the solution of the Dirichlet
problem for the strip in the uv plane (Fig. 140) would not, then, be unique.

3. Suppose that the condition that T be bounded is omitted from the problem for temper-
atures in the semi-infinite slab of Sec. 109 (Fig. 141). Show that an infinite number of
solutions are then possible by noting the effect of adding to the solution found there
the imaginary part of the function A sin z, where A is an arbitrary real constant.

4. Use the function Log z to find an expression for the bounded steady temperatures
in a plate having the form of a quadrant x ≥ 0, y ≥ 0 (Fig. 143) if its faces are
perfectly insulated and its edges have temperatures T (x, 0) = 0 and T (0, y) = 1. Find
the isotherms and lines of flow, and draw some of them.

Ans. T = 2

π
arctan

(y

x

)
.

xT = 0

T = 1

y

FIGURE 143

5. Find the steady temperatures in a solid whose shape is that of a long cylindrical wedge
if its boundary planes θ = 0 and θ = θ0 (0 < r < r0) are kept at constant temperatures
zero and T0, respectively, and if its surface r = r0 (0 < θ < θ0) is perfectly insulated
(Fig. 144).

Ans. T = T0

θ0
arctan

(y

x

)
.

xr0

y

T = T 0

T = 0 FIGURE 144
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6. Find the bounded steady temperatures T (x, y) in the semi-infinite solid y ≥ 0 if T = 0
on the part x < −1 (y = 0) of the boundary, if T = 1 on the part x > 1 (y = 0), and
if the strip −1 < x < 1 (y = 0) of the boundary is insulated (Fig. 145).

Ans. T = 1

2
+ 1

π
arcsin

[√
(x + 1)2 + y2 −

√
(x − 1)2 + y2

2

]

(−π/2 ≤ arcsin t ≤ π/2).

xT = 1

1

T = 0

y

–1

FIGURE 145

7. Find the bounded steady temperatures in the solid x ≥ 0, y ≥ 0 when the boundary
surfaces are kept at fixed temperatures except for insulated strips of equal width at the
corner, as shown in Fig. 146.

Suggestion: This problem can be transformed into the one in Exercise 6.

Ans. T = 1

2
+ 1

π
arcsin

[√
(x2 − y2 + 1)2 + (2xy)2 −

√
(x2 − y2 − 1)2 + (2xy)2

2

]

(−π/2 ≤ arctan t ≤ π/2).

x

i

T = 11

T = 0

y

FIGURE 146

8. Solve the following Dirichlet problem for a semi-infinite strip (Fig. 147):

Hxx(x, y)+Hyy(x, y) = 0 (0 < x < π/2, y > 0),

H(x, 0) = 0 (0 < x < π/2),

H(0, y) = 1, H(π/2, y) = 0 (y > 0),

where 0 ≤ H(x, y) ≤ 1.

Suggestion: This problem can be transformed into the one in Exercise 4.

Ans. H = 2

π
arctan

(
tanh y

tan x

)
.
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x

H = 0

H = 0

H = 1

y

FIGURE 147

9. Derive an expression for temperatures T (r, θ) in a semicircular plate r ≤ 1, 0 ≤ θ ≤ π

with insulated faces if T = 1 along the radial edge θ = 0 (0 < r < 1) and T = 0 on
the rest of the boundary.

Suggestion: This problem can be transformed into the one in Exercise 8.

Ans. T = 2

π
arctan

(
1 − r

1 + r
cot

θ

2

)
.

10. Solve the boundary value problem for the plate x ≥ 0, y ≥ 0 in the z plane when the
faces are insulated and the boundary conditions are those indicated in Fig. 148.

Suggestion: Use the mapping

w = i

z
= iz

|z|2

to transform this problem into the one posed in Sec. 110 (Fig. 142).

x

i

T = 0

T = 1

y

FIGURE 148

11. The portions x < 0 (y = 0) and x < 0 (y = π) of the edges of an infinite horizontal
plate 0 ≤ y ≤ π are thermally insulated, as are the faces of the plate. Also, the con-
ditions T (x, 0) = 1 and T (x, π) = 0 are maintained when x > 0 (Fig. 149). Find the
steady temperatures in the plate.

Suggestion: This problem can be transformed into the one in Exercise 6.

xT = 1

T = 0
y

FIGURE 149
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12. Consider a thin plate, with insulated faces, whose shape is the upper half of the region
enclosed by an ellipse with foci (±1, 0). The temperature on the elliptical part of its
boundary is T = 1. The temperature along the segment −1 < x < 1 of the x axis is
T = 0, and the rest of the boundary along the x axis is insulated. With the aid of
Fig. 11 in Appendix 2, find the lines of flow of heat.

13. According to Sec. 54 and Exercise 6 of that section, if f (z) = u(x, y) + iv(x, y)

is continuous on a closed bounded region R and analytic and not constant in the
interior of R, then the function u(x, y) reaches its maximum and minimum values
on the boundary of R, and never in the interior. By interpreting u(x, y) as a steady
temperature, state a physical reason why that property of maximum and minimum
values should hold true.

111. ELECTROSTATIC POTENTIAL

In an electrostatic force field, the field intensity at a point is a vector representing
the force exerted on a unit positive charge placed at that point. The electrostatic
potential is a scalar function of the space coordinates such that, at each point, its
directional derivative in any direction is the negative of the component of the field
intensity in that direction.

For two stationary charged particles, the magnitude of the force of attraction or
repulsion exerted by one particle on the other is directly proportional to the product
of the charges and inversely proportional to the square of the distance between
those particles. From this inverse-square law, it can be shown that the potential at
a point due to a single particle in space is inversely proportional to the distance
between the point and the particle. In any region free of charges, the potential due
to a distribution of charges outside that region can be shown to satisfy Laplace’s
equation for three-dimensional space.

If conditions are such that the potential V is the same in all planes parallel to
the xy plane, then in regions free of charges V is a harmonic function of just the
two variables x and y:

Vxx(x, y) + Vyy(x, y) = 0.

The field intensity vector at each point is parallel to the xy plane, with x and y

components −Vx(x, y) and −Vy(x, y), respectively. That vector is, therefore, the
negative of the gradient of V (x, y).

A surface along which V (x, y) is constant is an equipotential surface. The
tangential component of the field intensity vector at a point on a conducting sur-
face is zero in the static case since charges are free to move on such a surface.
Hence V (x, y) is constant along the surface of a conductor, and that surface is an
equipotential.

If U is a harmonic conjugate of V , the curves U(x, y) = c2 in the xy plane are
called flux lines. When such a curve intersects an equipotential curve V (x, y) = c1

at a point where the derivative of the analytic function V (x, y) + iU(x, y) is not
zero, the two curves are orthogonal at that point and the field intensity is tangent to
the flux line there.
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Boundary value problems for the potential V are the same mathematical prob-
lems as those for steady temperatures T ; and, as in the case of steady temperatures,
the methods of complex variables are limited to two-dimensional problems. The
problem posed in Sec. 109 (see Fig. 141), for instance, can be interpreted as that of
finding the two-dimensional electrostatic potential in the empty space

−π

2
< x <

π

2
, y > 0

boundedby theconductingplanesx = ±π/2andy = 0, insulatedat their intersections,
when the first two surfaces are kept at potential zero and the third at potential unity.

The potential in the steady flow of electricity in a conducting sheet lying in a
plane is also a harmonic function at points free from sources and sinks. Gravitational
potential is a further example of a harmonic function in physics.

112. POTENTIAL IN A CYLINDRICAL SPACE

A long hollow circular cylinder is made out of a thin sheet of conducting material,
and the cylinder is split lengthwise to form two equal parts. Those parts are separated
by slender strips of insulating material and are used as electrodes, one of which is
grounded at potential zero and the other kept at a different fixed potential. We take
the coordinate axes and units of length and potential difference as indicated on the
left in Fig. 150. We then interpret the electrostatic potential V (x, y) over any cross
section of the enclosed space that is distant from the ends of the cylinder as a
harmonic function inside the circle x2 + y2 = 1 in the xy plane. Note that V = 0
on the upper half of the circle and that V = 1 on the lower half.

ux

y

w

A′
A 1
E

C

B

D
B ′ C ′ D ′ E ′

V = 0V = 1

V = 1

V = 0

1

v

FIGURE 150

A linear fractional transformation that maps the upper half plane onto the
interior of the unit circle centered at the origin, the positive real axis onto the
upper half of the circle, and the negative real axis onto the lower half of the circle
is verified in Exercise 1, Sec. 95. The result is given in Fig. 13 of Appendix 2;
interchanging z and w there, we find that the inverse of the transformation

z = i − w

i + w
(1)
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gives us a new problem for V in a half plane, indicated on the right in Fig. 150.
Now the imaginary component of

1

π
Log w = 1

π
ln ρ + i

π
φ (ρ > 0, 0 ≤ φ ≤ π)(2)

is a bounded function of u and v that assumes the required constant values on the
two parts φ = 0 and φ = π of the u axis. Hence the desired harmonic function for
the half plane is

V = 1

π
arctan

(
v

u

)
,(3)

where the values of the arctangent function range from 0 to π .
The inverse of transformation (1) is

w = i
1 − z

1 + z
,(4)

from which u and v can be expressed in terms of x and y. Equation (3) then becomes

V = 1

π
arctan

(
1 − x2 − y2

2y

)
(0 ≤ arctan t ≤ π).(5)

The function (5) is the potential function for the space enclosed by the cylindrical
electrodes since it is harmonic inside the circle and assumes the required values on
the semicircles. If we wish to verify this solution, we must note that

lim
t→0
t>0

arctan t = 0 and lim
t→0
t<0

arctan t = π.

The equipotential curves V (x, y) = c1 (0 < c1 < 1) in the circular region are
arcs of the circles

x2 + (y + tan πc1)
2 = sec2 πc1,

with each circle passing through the points (±1, 0). Also, the segment of the x axis
between those points is the equipotential V (x, y) = 1/2. A harmonic conjugate U

of V is −(1/π) ln ρ, or the imaginary part of the function −(i/π)Log w. In view
of equation (4), U may be written

U = − 1

π
ln

∣∣∣∣1 − z

1 + z

∣∣∣∣.
From this equation, it can be seen that the flux lines U(x, y) = c2 are arcs of circles
with centers on the x axis. The segment of the y axis between the electrodes is also
a flux line.

EXERCISES
1. The harmonic function (3) of Sec. 112 is bounded in the half plane v ≥ 0 and satisfies

the boundary conditions indicated on the right in Fig. 150. Show that if the imaginary
component of Aew , where A is any real constant, is added to that function, then the
resulting function satisfies all the requirements except for the boundedness condition.
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2. Show that transformation (4) of Sec. 112 maps the upper half of the circular region
shown on the left in Fig. 150 onto the first quadrant of the w plane and the diameter
CE onto the positive v axis. Then find the electrostatic potential V in the space
enclosed by the half cylinder x2 + y2 = 1, y ≥ 0 and the plane y = 0 when V = 0 on
the cylindrical surface and V = 1 on the planar surface (Fig. 151).

Ans. V = 2

π
arctan

(
1 − x2 − y2

2y

)
.

x

y

1–1 V = 1

V = 0

FIGURE 151

3. Find the electrostatic potential V (r, θ) in the space 0 < r < 1, 0 < θ < π/4, bounded
by the half planes θ = 0 and θ = π/4 and the portion 0 ≤ θ ≤ π/4 of the cylindrical
surface r = 1, when V = 1 on the planar surfaces and V = 0 on the cylindrical one.
(See Exercise 2.) Verify that the function obtained satisfies the boundary conditions.

4. Note that all branches of log z have the same real component, which is harmonic
everywhere except at the origin. Then write an expression for the electrostatic potential
V (x, y) in the space between two coaxial conducting cylindrical surfaces x2 + y2 = 1
and x2 + y2 = r2

0 (r0 �= 1) when V = 0 on the first surface and V = 1 on the second.

Ans. V = ln(x2 + y2)

2 ln r0
.

5. Find the bounded electrostatic potential V (x, y) in the space y > 0 bounded by an
infinite conducting plane y = 0 one strip (−a < x < a, y = 0) of which is insu-
lated from the rest of the plane and kept at potential V = 1, while V = 0 on the
rest (Fig. 152). Verify that the function obtained satisfies the stated boundary condi-
tions.

Ans. V = 1

π
arctan

(
2ay

x2 + y2 − a2

)
(0 ≤ arctan t ≤ π).

xV = 0V = 1

a

V = 0

y

–a

FIGURE 152
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6. Derive an expression for the electrostatic potential in a semi-infinite space that is
bounded by two half planes and a half cylinder, as shown in Fig. 153, when V = 1 on
the cylindrical surface and V = 0 on the planar surfaces. Draw some of the equipo-
tential curves in the xy plane.

Ans. V = 2

π
arctan

(
2y

x2 + y2 − 1

)
.

xV = 0

V = 1

1

V = 0

y

–1

FIGURE 153

7. Find the potential V in the space between the planes y = 0 and y = π when V = 0 on
the parts of those planes where x > 0 and V = 1 on the parts where x < 0 (Fig. 154).
Verify that the result satisfies the boundary conditions.

Ans. V = 1

π
arctan

(
sin y

sinh x

)
(0 ≤ arctan t ≤ π).

xV = 0V = 1

V = 0V = 1

y

FIGURE 154

8. Derive an expression for the electrostatic potential V in the space interior to a long
cylinder r = 1 when V = 0 on the first quadrant (r = 1, 0 < θ < π/2) of the cylin-
drical surface and V = 1 on the rest (r = 1, π/2 < θ < 2π) of that surface. (See
Exercise 5, Sec. 95, and Fig. 115 there.) Show that V = 3/4 on the axis of the cylinder.
Verify that the result satisfies the boundary conditions.

9. Using Fig. 20 of Appendix 2, find a temperature function T (x, y) that is harmonic in
the shaded domain of the xy plane shown there and assumes the values T = 0 along
the arc ABC and T = 1 along the line segment DEF. Verify that the function obtained
satisfies the required boundary conditions. (See Exercise 2.)

10. The Dirichlet problem

Vxx(x, y) + Vyy(x, y) = 0 (0 < x < a, 0 < y < b),

V (x, 0) = 0, V (x, b) = 1 (0 < x < a),

V (0, y) = V (a, y) = 0 (0 < y < b)
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for V (x, y) in a rectangle can be solved by the method of separation of variables.∗
The solution is

V = 4

π

∞∑
n=1

sinh(mπy/a)

m sinh(mπb/a)
sin

mπx

a
(m = 2n − 1).

By accepting this result and adapting it to a problem in the uv plane, find the
potential V (r, θ) in the space 1 < r < r0, 0 < θ < π when V = 1 on the part of
the boundary where θ = π and V = 0 on the rest of the boundary. (See Fig. 155.)

Ans. V = 4

π

∞∑
n=1

sinh(αnθ)

sinh(αnπ)
· sin(αn ln r)

2n − 1

[
αn = (2n − 1)π

ln r0

]
.

x
r0

r0

y

u

v

V = 0

V = 0 V = 0

V = 0

V = 1

V = 0

V = 0

V = 1
1

1n

πi

FIGURE 155

w = log z

(
r > 0,−π

2
< θ <

3π

2

)
.

11. With the aid of the solution of the Dirichlet problem for the rectangle

0 ≤ x ≤ a, 0 ≤ y ≤ b

that was used in Exercise 10, find the potential V (r, θ) for the space

1 < r < r0, 0 < θ < π

when V = 1 on the part r = r0, 0 < θ < π of its boundary and V = 0 on the rest
(Fig. 156).

Ans. V = 4

π

∞∑
n=1

(
rm − r−m

rm
0 − r−m

0

)
sin mθ

m
(m = 2n − 1).

x
r0

y

V = 0

V = 0

V = 1

V = 0
1

FIGURE 156

∗See the authors’ “Fourier Series and Boundary Value Problems,” 7th ed., pp. 120–122 and 224–225,
2008.
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113. TWO-DIMENSIONAL FLUID FLOW

Harmonic functions play an important role in hydrodynamics and aerodynamics.
Again, we consider only the two-dimensional steady-state type of problem. That is,
the motion of the fluid is assumed to be the same in all planes parallel to the xy

plane, the velocity being parallel to that plane and independent of time. It is, then,
sufficient to consider the motion of a sheet of fluid in the xy plane.

We let the vector representing the complex number

V = p + iq

denote the velocity of a particle of the fluid at any point (x, y); hence the x and y

components of the velocity vector are p(x, y) and q(x, y), respectively. At points
interior to a region of flow in which no sources or sinks of the fluid occur, the
real-valued functions p(x, y) and q(x, y) and their first-order partial derivatives are
assumed to be continuous.

The circulation of the fluid along any contour C is defined as the line integral
with respect to arc length σ of the tangential component VT (x, y) of the velocity
vector along C: ∫

C

VT (x, y) dσ.(1)

The ratio of the circulation along C to the length of C is, therefore, a mean speed of
the fluid along that contour. It is shown in advanced calculus that such an integral
can be written∗ ∫

C

VT (x, y) dσ =
∫

C

p(x, y) dx + q(x, y) dy.(2)

When C is a positively oriented simple closed contour lying in a simply connected
domain of flow containing no sources or sinks, Green’s theorem (see Sec. 46)
enables us to write∫

C

p(x, y) dx + q(x, y) dy =
∫ ∫

R

[qx(x, y) − py(x, y)] dA,

where R is the closed region consisting of points interior to and on C. Thus∫
C

VT (x, y) dσ =
∫ ∫

R

[qx(x, y) − py(x, y)] dA(3)

for such a contour
A physical interpretation of the integrand on the right in expression (3) for the

circulation along the simple closed contour C is readily given. We let C denote a
circle of radius r which is centered at a point (x0, y0) and taken counterclockwise.

∗Properties of line integrals in advanced calculus that are used in this and the following section are
to be found in, for instance, W. Kaplan, “Advanced Mathematics for Engineers,” Chap. 10, 1992.
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The mean speed along C is then found by dividing the circulation by the circumfer-
ence 2πr , and the corresponding mean angular speed of the fluid about the center
of the circle is obtained by dividing that mean speed by r:

l

πr2

∫ ∫
R

1

2
[qx(x, y) − py(x, y)] dA.

Now this is also an expression for the mean value of the function

ω(x, y) = 1

2
[qx(x, y) − py(x, y)](4)

over the circular region R bounded by C. Its limit as r tends to zero is the value of
ω at the point (x0, y0). Hence the function ω(x, y), called the rotation of the fluid,
represents the limiting angular speed of a circular element of the fluid as the circle
shrinks to its center (x, y), the point at which ω is evaluated.

If ω(x, y) = 0 at each point in some simply connected domain, the flow is
irrotational in that domain. We consider only irrotational flows here, and we also
assume that the fluid is incompressible and free from viscosity. Under our assumption
of steady irrotational flow of fluids with uniform density ρ, it can be shown that the
fluid pressure P(x, y) satisfies the following special case of Bernoulli’s equation:

P

ρ
+ 1

2
|V |2 = c,

where c is a constant. Note that the pressure is greatest where the speed |V | is least.
Let D be a simply connected domain in which the flow is irrotational. Accord-

ing to equation (4), py = qx throughout D. This relation between partial derivatives
implies that the line integral ∫

C

p(s, t) ds + q(s, t) dt

along a contour C lying entirely in D and joining any two points (x0, y0) and (x, y)

in D is actually independent of path. Thus, if (x0, y0) is fixed, the function

φ(x, y) =
∫ (x,y)

(x0,y0)

p(s, t) ds + q(s, t) dt(5)

is well defined on D; and, by taking partial derivatives on each side of this equation,
we find that

φx(x, y) = p(x, y), φy(x, y) = q(x, y).(6)

From equations (6), we see that the velocity vector V = p + iq is the gradient
of φ; and the directional derivative of φ in any direction represents the component
of the velocity of flow in that direction.

The function φ(x, y) is called the velocity potential. From equation (5), it
is evident that φ(x, y) changes by an additive constant when the reference point
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(x0, y0) is changed. The level curves φ(x, y) = c1 are called equipotentials. Because
it is the gradient of φ(x, y), the velocity vector V is normal to an equipotential at
any point where V is not the zero vector.

Just as in the case of the flow of heat, the condition that the incompressible
fluid enter or leave an element of volume only by flowing through the boundary of
that element requires that φ(x, y) must satisfy Laplace’s equation

φxx(x, y) + φyy(x, y) = 0

in a domain where the fluid is free from sources or sinks. In view of equations (6)
and the continuity of the functions p and q and their first-order partial derivatives, it
follows that the partial derivatives of the first and second order of φ are continuous in
such a domain. Hence the velocity potential φ is a harmonic function in that domain.

114. THE STREAM FUNCTION

According to Sec. 113, the velocity vector

V = p(x, y) + iq(x, y)(1)

for a simply connected domain in which the flow is irrotational can be written

V = φx(x, y) + iφy(x, y) = grad φ(x, y),(2)

where φ is the velocity potential. When the velocity vector is not the zero vector, it
is normal to an equipotential passing through the point (x, y). If, moreover, ψ(x, y)

denotes a harmonic conjugate of φ(x, y) (see Sec. 104), the velocity vector is tangent
to a curve ψ(x, y) = c2. The curves ψ(x, y) = c2 are called the streamlines of the
flow, and the function ψ is the stream function. In particular, a boundary across
which fluid cannot flow is a streamline.

The analytic function

F(z) = φ(x, y) + iψ(x, y)

is called the complex potential of the flow. Note that

F ′(z) = φx(x, y) + iψx(x, y)

and, in view of the Cauchy–Riemann equations,

F ′(z) = φx(x, y) − iφy(x, y).

Expression (2) for the velocity thus becomes

V = F ′(z).(3)

The speed, or magnitude of the velocity, is obtained by writing

|V | = |F ′(z)|.
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According to equation (5), Sec. 104, if φ is harmonic in a simply connected
domain D, a harmonic conjugate of φ there can be written

ψ(x, y) =
∫ (x,y)

(x0,y0)

−φt (s, t) ds + φs(s, t) dt,

where the integration is independent of path. With the aid of equations (6), Sec. 113,
we can, therefore, write

ψ(x, y) =
∫

C

−q(s, t) ds + p(s, t) dt,(4)

where C is any contour in D from (x0, y0) to (x, y).
Now it is shown in advanced calculus that the right-hand side of equation (4)

represents the integral with respect to arc length σ along C of the normal compo-
nent VN(x, y) of the vector whose x and y components are p(x, y) and q(x, y),
respectively. So expression (4) can be written

ψ(x, y) =
∫

C

VN(s, t) dσ.(5)

Physically, then, ψ(x, y) represents the time rate of flow of the fluid across C.
More precisely, ψ(x, y) denotes the rate of flow, by volume, across a surface of
unit height standing perpendicular to the xy plane on the curve C.

EXAMPLE. When the complex potential is the function

F(z) = Az ,(6)

where A is a positive real constant,

φ(x, y) = Ax and ψ(x, y) = Ay.(7)

The streamlines ψ(x, y) = c2 are the horizontal lines y = c2/A, and the velocity at
any point is

V = F ′(z) = A.

Here a point (x0, y0) at which ψ(x, y) = 0 is any point on the x axis. If the
point (x0, y0) is taken as the origin, then ψ(x, y) is the rate of flow across any
contour drawn from the origin to the point (x, y) (Fig. 157). The flow is uniform
and to the right. It can be interpreted as the uniform flow in the upper half plane
bounded by the x axis, which is a streamline, or as the uniform flow between two
parallel lines y = y1 and y = y2.

x

V
(x, y)

O

y

FIGURE 157
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The stream function ψ characterizes a definite flow in a region. The question of
whether just one such function exists corresponding to a given region, except possi-
bly for a constant factor or an additive constant, is not examined here. Sometimes,
when the velocity is uniform far from the obstruction or when sources and sinks
are involved (Chap. 11), the physical situation indicates that the flow is uniquely
determined by the conditions given in the problem.

A harmonic function is not always uniquely determined, even up to a constant
factor, by simply prescribing its values on the boundary of a region. In the example
above, the function ψ(x, y) = Ay is harmonic in the half plane y > 0 and has
zero values on the boundary. The function ψ1(x, y) = Bexsiny also satisfies those
conditions. However, the streamline ψ1(x, y) = 0 consists not only of the line y = 0
but also of the lines y = nπ (n = 1, 2, . . .). Here the function F1(z) = Bez is the
complex potential for the flow in the strip between the lines y = 0 and y = π , both
lines making up the streamline ψ(x, y) = 0 ; if B > 0, the fluid flows to the right
along the lower line and to the left along the upper one.

115. FLOWS AROUND A CORNER AND AROUND
A CYLINDER

In analyzing a flow in the xy, or z, plane, it is often simpler to consider a corre-
sponding flow in the uv, or w, plane. Then, if φ is a velocity potential and ψ a
stream function for the flow in the uv plane, results in Secs. 105 and 106 can be
applied to these harmonic functions. That is, when the domain of flow Dw in the
uv plane is the image of a domain Dz under a transformation

w = f (z) = u(x, y) + iv(x, y),

where f is analytic, the functions

φ[u(x, y), v(x, y)] and ψ[u(x, y), v(x, y)]

are harmonic in Dz. These new functions may be interpreted as velocity potential and
stream function in the xy plane. A streamline or natural boundary ψ(u, v) = c2 in the
uv plane corresponds to a streamline or natural boundary ψ[u(x, y), v(x, y)] = c2 in
the xy plane.

In using this technique, it is often most efficient to first write the complex
potential function for the region in the w plane and then obtain from that the
velocity potential and stream function for the corresponding region in the xy plane.
More precisely, if the potential function in the uv plane is

F(w) = φ(u, v) + iψ(u, v),

the composite function

F [f (z)] = φ[u(x, y), v(x, y)] + iψ[u(x, y), v(x, y)]

is the desired complex potential in the xy plane.
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In order to avoid an excess of notation, we use the same symbols F, φ, and ψ

for the complex potential, etc., in both the xy and the uv planes.

EXAMPLE 1. Consider a flow in the first quadrant x > 0, y > 0 that comes in
downward parallel to the y axis but is forced to turn a corner near the origin, as shown in
Fig. 158. To determine the flow, we recall (Example 3, Sec. 13) that the transformation

w = z2 = x2 − y2 + i2xy

maps the first quadrant onto the upper half of the uv plane and the boundary of the
quadrant onto the entire u axis.

xO

y

FIGURE 158

From the example in Sec. 114, we know that the complex potential for a
uniform flow to the right in the upper half of the w plane is F = Aw, where A is
a positive real constant. The potential in the quadrant is, therefore,

F = Az2 = A(x2 − y2) + i2Axy;(1)

and it follows that the stream function for the flow there is

ψ = 2Axy.(2)

This stream function is, of course, harmonic in the first quadrant, and it vanishes
on the boundary.

The streamlines are branches of the rectangular hyperbolas

2Axy = c2.

According to equation (3), Sec. 114, the velocity of the fluid is

V = 2Az = 2A(x − iy).

Observe that the speed
|V | = 2A

√
x2 + y2

of a particle is directly proportional to its distance from the origin. The value of the
stream function (2) at a point (x, y) can be interpreted as the rate of flow across a
line segment extending from the origin to that point.

EXAMPLE 2. Let a long circular cylinder of unit radius be placed in a
large body of fluid flowing with a uniform velocity, the axis of the cylinder being
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perpendicular to the direction of flow. To determine the steady flow around the
cylinder, we represent the cylinder by the circle x2 + y2 = 1 and let the flow distant
from it be parallel to the x axis and to the right (Fig. 159). Symmetry shows that
points on the x axis exterior to the circle may be treated as boundary points, and
so we need to consider only the upper part of the figure as the region of flow.

x1

y

V

FIGURE 159

Theboundaryof this regionofflow, consistingof theupper semicircle and theparts
of the x axis exterior to the circle, is mapped onto the entire u axis by the transformation

w = z + 1

z
.

The region itself is mapped onto the upper half plane v ≥ 0, as indicated in Fig. 17,
Appendix 2. The complex potential for the corresponding uniform flow in that half
plane is F = Aw, where A is a positive real constant. Hence the complex potential
for the region exterior to the circle and above the x axis is

F = A

(
z + 1

z

)
.(3)

The velocity

V = A

(
1 − 1

z2

)
(4)

approaches A as |z| increases. Thus the flow is nearly uniform and parallel to the
x axis at points distant from the circle, as one would expect. From expression (4),
we see that V (z) = V (z); hence that expression also represents velocities of flow
in the lower region, the lower semicircle being a streamline.

According to equation (3), the stream function for the given problem is, in
polar coordinates,

ψ = A

(
r − 1

r

)
sin θ.(5)

The streamlines

A

(
r − 1

r

)
sin θ = c2

are symmetric to the y axis and have asymptotes parallel to the x axis. Note that
when c2 = 0, the streamline consists of the circle r = 1 and the parts of the x axis
exterior to the circle.
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EXERCISES
1. State why the components of velocity can be obtained from the stream function by

means of the equations

p(x, y) = ψy(x, y), q(x, y) = −ψx(x, y).

2. At an interior point of a region of flow and under the conditions that we have assumed,
the fluid pressure cannot be less than the pressure at all other points in a neighborhood
of that point. Justify this statement with the aid of statements in Secs. 113, 114, and 54.

3. For the flow around a corner described in Example 1, Sec. 115, at what point of the
region x ≥ 0, y ≥ 0 is the fluid pressure greatest?

4. Show that the speed of the fluid at points on the cylindrical surface in Example 2,
Sec. 115, is 2A| sin θ | and also that the fluid pressure on the cylinder is greatest at the
points z = ±1 and least at the points z = ±i.

5. Write the complex potential for the flow around a cylinder r = r0 when the velocity
V at a point z approaches a real constant A as the point recedes from the cylinder.

6. Obtain the stream function ψ = Ar4 sin 4θ for a flow in the angular region

r ≥ 0, 0 ≤ θ ≤ π

4
that is shown in Fig. 160. Sketch a few of the streamlines in the interior of that region.

x

y

FIGURE 160

7. Obtain the complex potential F = A sin z for a flow inside the semi-infinite region

−π

2
≤ x ≤ π

2
, y ≥ 0

that is shown in Fig. 161. Write the equations of the streamlines.

x

y

FIGURE 161
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8. Show that if the velocity potential is φ = A ln r (A > 0) for flow in the region r ≥ r0 ,
then the streamlines are the half lines θ = c (r ≥ r0) and the rate of flow outward
through each complete circle about the origin is 2πA, corresponding to a source of
that strength at the origin.

9. Obtain the complex potential

F = A

(
z2 + 1

z2

)

for a flow in the region r ≥ 1, 0 ≤ θ ≤ π/2. Write expressions for V and ψ . Note how
the speed |V | varies along the boundary of the region, and verify that ψ(x, y) = 0 on
the boundary.

10. Suppose that the flow at an infinite distance from the cylinder of unit radius in Example 2,
Sec. 115, is uniform in a direction making an angle α with the x axis; that is,

lim
|z|→∞

V = Aeiα (A > 0).

Find the complex potential.

Ans. F = A

(
ze−iα + 1

z
eiα

)
.

11. Write
z − 2 = r1 exp(iθ1), z + 2 = r2 exp(iθ2),

and

(z2 − 4)1/2 = √
r1r2 exp

(
i
θ1 + θ2

2

)
,

where
0 ≤ θ1 < 2π and 0 ≤ θ2 < 2π.

The function (z2 − 4)1/2 is then single-valued and analytic everywhere except on the
branch cut consisting of the segment of the x axis joining the points z = ±2. We
know, moreover, from Exercise 13, Sec. 92, that the transformation

z = w + 1

w

maps the circle |w| = 1 onto the line segment from z = −2 to z = 2 and that it maps
the domain outside the circle onto the rest of the z plane. Use all of the observations
above to show that the inverse transformation, where |w| > 1 for every point not on
the branch cut, can be written

w = 1

2
[z + (z2 − 4)1/2] = 1

4

(√
r1 exp

iθ1

2
+ √

r2 exp
iθ2

2

)2

.

The transformation and this inverse establish a one to one correspondence between
points in the two domains.



Brown-chap10-v3 11/05/07 4:00pm 400

400 Applications of Conformal Mapping chap. 10

12. With the aid of the results found in Exercises 10 and 11, derive the expression

F = A[z cos α − i(z2 − 4)1/2 sin α]

for the complex potential of the steady flow around a long plate whose width is 4 and
whose cross section is the line segment joining the two points z = ±2 in Fig. 162,
assuming that the velocity of the fluid at an infinite distance from the plate is A exp(iα)

where A > 0. The branch of (z2 − 4)1/2 that is used is the one described in Exercise 11.

x

V

2

–2

y

FIGURE 162

13. Show that if sin α �= 0 in Exercise 12 , then the speed of the fluid along the line
segment joining the points z = ±2 is infinite at the ends and is equal to A| cos α| at
the midpoint.

14. For the sake of simplicity, suppose that 0 < α ≤ π/2 in Exercise 12. Then show that
the velocity of the fluid along the upper side of the line segment representing the plate
in Fig. 162 is zero at the point x = 2 cos α and that the velocity along the lower side
of the segment is zero at the point x = −2 cos α.

15. A circle with its center at a point x0 (0 < x0 < 1) on the x axis and passing through
the point z = −1 is subjected to the transformation

w = z + 1

z
.

Individual nonzero points z can be mapped geometrically by adding the vectors rep-
resenting

z = reiθ and
1

z
= 1

r
e−iθ .

Indicate by mapping some points that the image of the circle is a profile of the type
shown in Fig. 163 and that points exterior to the circle map onto points exterior to the
profile. This is a special case of the profile of a Joukowski airfoil. (See also Exercises
16 and 17 below.)

16. (a) Show that the mapping of the circle in Exercise 15 is conformal except at the
point z = −1.

(b) Let the complex numbers

t = lim
�z→0

�z

|�z| and τ = lim
�w→0

�w

|�w|
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u

w

z

–2 –1 1 2

v

x0

FIGURE 163

represent unit vectors tangent to a smooth directed arc at z = −1 and that arc’s
image, respectively, under the transformation

w = z + 1

z
.

Show that τ = −t2 and hence that the Joukowski profile in Fig. 163 has a cusp
at the point w = −2, the angle between the tangents at the cusp being zero.

17. Find the complex potential for the flow around the airfoil in Exercise 15 when the
velocity V of the fluid at an infinite distance from the origin is a real constant A.
Recall that the inverse of the transformation

w = z + 1

z

used in Exercise 15 is given, with z and w interchanged, in Exercise 11.

18. Note that under the transformation w = ez + z , both halves, where x ≥ 0 and x ≤ 0,
of the line y = π are mapped onto the half line v = π (u ≤ −1). Similarly, the line
y = −π is mapped onto the half line v = −π (u ≤ −1) ; and the strip −π ≤ y ≤ π is
mapped onto the w plane. Also, note that the change of directions, arg(dw/dz), under
this transformation approaches zero as x tends to −∞. Show that the streamlines of
a fluid flowing through the open channel formed by the half lines in the w plane
(Fig. 164) are the images of the lines y = c2 in the strip. These streamlines also
represent the equipotential curves of the electrostatic field near the edge of a parallel-
plate capacitor.

u

v

FIGURE 164
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C H A P T E R

11
THE SCHWARZ–CHRISTOFFEL

TRANSFORMATION

In this chapter, we construct a transformation, known as the Schwarz–Christoffel
transformation, which maps the x axis and the upper half of the z plane onto a
given simple closed polygon and its interior in the w plane. Applications are made
to the solution of problems in fluid flow and electrostatic potential theory.

116. MAPPING THE REAL AXIS ONTO A POLYGON

We represent the unit vector which is tangent to a smooth arc C at a point z0 by
the complex number t , and we let the number τ denote the unit vector tangent to
the image � of C at the corresponding point w0 under a transformation w = f (z).
We assume that f is analytic at z0 and that f ′(z0) �= 0. According to Sec. 101,

arg τ = arg f ′(z0) + arg t.(1)

In particular, if C is a segment of the x axis with positive sense to the right, then
t = 1 and arg t = 0 at each point z0 = x on C. In that case, equation (1) becomes

arg τ = arg f ′(x).(2)

If f ′(z) has a constant argument along that segment, it follows that arg τ is constant.
Hence the image � of C is also a segment of a straight line.

Let us now construct a transformation w = f (z) that maps the whole x axis
onto a polygon of n sides, where x1, x2, . . . , xn−1, and ∞ are the points on that
axis whose images are to be the vertices of the polygon and where

x1 < x2 < · · · < xn−1.

403
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The vertices are the n points wj = f (xj ) (j = 1, 2, . . . , n − 1) and wn = f (∞).
The function f should be such that arg f ′(z) jumps from one constant value to
another at the points z = xj as the point z traces out the x axis (Fig. 165).

x1
x u

w3

w2

w1

wn

w

t x2 x3 xn – 1

z

y v

FIGURE 165

If the function f is chosen such that

f ′(z) = A(z − x1)
−k1(z − x2)

−k2 · · · (z − xn−1)
−kn−1 ,(3)

where A is a complex constant and each kj is a real constant, then the argument of
f ′(z) changes in the prescribed manner as z describes the real axis. This is seen by
writing the argument of the derivative (3) as

arg f ′(z) = arg A − k1 arg(z − x1)(4)

− k2 arg(z − x2) − · · · − kn−1 arg(z − xn−1).

When z = x and x < x1,

arg(z − x1) = arg(z − x2) = · · · = arg(z − xn−1) = π.

When x1 < x < x2, the argument arg(z − x1) is 0 and each of the other arguments
is π . According to equation (4), then, arg f ′(z) increases abruptly by the angle k1π

as z moves to the right through the point z = x1. It again jumps in value, by the
amount k2π , as z passes through the point x2, etc.

In view of equation (2), the unit vector τ is constant in direction as z moves
from xj−1 to xj ; the point w thus moves in that fixed direction along a straight line.
The direction of τ changes abruptly, by the angle kjπ , at the image point wj of
xj , as shown in Fig. 165. Those angles kjπ are the exterior angles of the polygon
described by the point w.

The exterior angles can be limited to angles between −π and π , in which case
−1 < kj < 1. We assume that the sides of the polygon never cross one another and
that the polygon is given a positive, or counterclockwise, orientation. The sum of
the exterior angles of a closed polygon is, then, 2π ; and the exterior angle at the
vertex wn, which is the image of the point z = ∞, can be written

knπ = 2π − (k1 + k2 + · · · + kn−1)π.
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Thus the numbers kj must necessarily satisfy the conditions

k1 + k2 + · · · + kn−1 + kn = 2, −1 < kj < 1 (j = 1, 2, . . . , n).(5)

Note that kn = 0 if

k1 + k2 + · · · + kn−1 = 2.(6)

This means that the direction of τ does not change at the point wn. So wn is not a
vertex, and the polygon has n − 1 sides.

The existence of a mapping function f whose derivative is given by
equation (3) will be established in the next section.

117. SCHWARZ–CHRISTOFFEL TRANSFORMATION

In our expression (Sec. 116)

f ′(z) = A(z − x1)
−k1(z − x2)

−k2 · · · (z − xn−1)
−kn−1(1)

for the derivative of a function that is to map the x axis onto a polygon, let the
factors (z − xj )

−kj (j = 1, 2, . . . , n − 1) represent branches of power functions with
branch cuts extending below that axis. To be specific, write

(z − xj )
−kj = exp[−kj log(z − xj )] = exp[−kj (ln |z − xj | + iθj )]

and then

(z − xj )
−kj = |z − xj |−kj exp(−ikj θj )

(
−π

2
< θj <

3π

2

)
,(2)

where θj = arg(z − xj ) and j = 1, 2, . . . , n − 1. This makes f ′(z) analytic every-
where in the half plane y ≥ 0 except at the n − 1 branch points xj .

If z0 is a point in that region of analyticity, denoted here by R, then the function

F(z) =
∫ z

z0

f ′(s) ds(3)

is single-valued and analytic throughout the same region, where the path of inte-
gration from z0 to z is any contour lying within R. Moreover, F ′(z) = f ′(z) (see
Sec. 44).

To define the function F at the point z = x1 so that it is continuous there, we
note that (z − x1)

−k1 is the only factor in expression (1) that is not analytic at x1.
Hence if φ(z) denotes the product of the rest of the factors in that expression, φ(z)

is analytic at the point x1 and is represented throughout an open disk |z − x1| < R1

by its Taylor series about x1. So we can write

f ′(z) = (z − x1)
−k1φ(z)

= (z − x1)
−k1

[
φ(x1) + φ′(x1)

1!
(z − x1) + φ′′(x1)

2!
(z − x1)

2 + · · ·
]
,
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or

f ′(z) = φ(x1)(z − x1)
−k1 + (z − x1)

1−k1ψ(z),(4)

where ψ is analytic and therefore continuous throughout the entire open disk. Since
1 − k1 > 0, the last term on the right in equation (4) thus represents a continuous
function of z throughout the upper half of the disk, where Im z ≥ 0, if we assign it
the value zero at z = x1. It follows that the integral∫ z

Z1

(s − x1)
1−k1ψ(s) ds

of that last term along a contour from Z1 to z , where Z1 and the contour lie in the
half disk, is a continuous function of z at z = x1. The integral∫ z

Z1

(s − x1)
−k1 ds = 1

1 − k1
[(z − x1)

1−k1 − (Z1 − x1)
1−k1 ]

along the same path also represents a continuous function of z at x1 if we define
the value of the integral there as its limit as z approaches x1 in the half disk. The
integral of the function (4) along the stated path from Z1 to z is, then, continuous
at z = x1; and the same is true of integral (3) since it can be written as an integral
along a contour in R from z0 to Z1 plus the integral from Z1 to z.

The above argument applies at each of the n − 1 points xj to make F contin-
uous throughout the region y ≥ 0.

From equation (1), we can show that for a sufficiently large positive number
R, a positive constant M exists such that if Im z ≥ 0, then

|f ′(z)| <
M

|z|2−kn
whenever |z| > R.(5)

Since 2 − kn > 1, this order property of the integrand in equation (3) ensures the
existence of the limit of the integral there as z tends to infinity; that is, a number
Wn exists such that

lim
z→∞ F(z) = Wn (Im z ≥ 0).(6)

Details of the argument are left to Exercises 1 and 2.
Our mapping function, whose derivative is given by equation (1), can be written

f (z) = F(z) + B, where B is a complex constant. The resulting transformation,

w = A

∫ z

z0

(s − x1)
−k1(s − x2)

−k2 · · · (s − xn−1)
−kn−1 ds + B,(7)

is the Schwarz–Christoffel transformation, named in honor of the two German math-
ematicians H. A. Schwarz (1843–1921) and E. B. Christoffel (1829–1900) who
discovered it independently.

Transformation (7) is continuous throughout the half plane y ≥ 0 and is con-
formal there except for the points xj . We have assumed that the numbers kj satisfy
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conditions (5), Sec. 116. In addition, we suppose that the constants xj and kj are
such that the sides of the polygon do not cross, so that the polygon is a simple closed
contour. Then, according to Sec. 116, as the point z describes the x axis in the posi-
tive direction, its image w describes the polygon P in the positive sense; and there is
a one to one correspondence between points on that axis and points on P . According
to condition (6), the image wn of the point z = ∞ exists and wn = Wn + B.

If z is an interior point of the upper half plane y ≥ 0 and x0 is any point on the
x axis other than one of the xj , then the angle from the vector t at x0 up to the line
segment joining x0 and z is positive and less than π (Fig. 165). At the image w0 of
x0, the corresponding angle from the vector τ to the image of the line segment join-
ing x0 and z has that same value. Thus the images of interior points in the half plane
lie to the left of the sides of the polygon, taken counterclockwise. A proof that the
transformation establishes a one to one correspondence between the interior points
of the half plane and the points within the polygon is left to the reader (Exercise 3).

Given a specific polygon P , let us examine the number of constants in the
Schwarz–Christoffel transformation that must be determined in order to map the x

axis onto P . For this purpose, we may write z0 = 0, A = 1, and B = 0 and simply
require that the x axis be mapped onto some polygon P ′ similar to P . The size
and position of P ′ can then be adjusted to match those of P by introducing the
appropriate constants A and B.

The numbers kj are all determined from the exterior angles at the vertices of P .
The n − 1 constants xj remain to be chosen. The image of the x axis is some polygon
P ′ that has the same angles as P . But if P ′ is to be similar to P , then n − 2 connected
sides must have a common ratio to the corresponding sides of P ; this condition is
expressed by means of n − 3 equations in the n − 1 real unknowns xj . Thus two of
the numbers xj , or two relations between them, can be chosen arbitrarily, provided
those n − 3 equations in the remaining n − 3 unknowns have real-valued solutions.

When a finite point z = xn on the x axis, instead of the point at infinity,
represents the point whose image is the vertex wn, it follows from Sec. 116 that the
Schwarz–Christoffel transformation takes the form

w = A

∫ z

z0

(s − x1)
−k1(s − x2)

−k2 · · · (s − xn)
−kn ds + B,(8)

where k1 + k2 + · · · + kn = 2. The exponents kj are determined from the exterior
angles of the polygon. But, in this case, there are n real constants xj that must
satisfy the n − 3 equations noted above. Thus three of the numbers xj , or three
conditions on those n numbers, can be chosen arbitrarily when transformation (8)
is used to map the x axis onto a given polygon.

EXERCISES
1. Obtain inequality (5), Sec. 117.

Suggestion: Let R be larger than the numbers |xj | (j = 1, 2, . . . , n − 1). Note
that if R is sufficiently large, the inequalities |z|/2 < |z − xj | < 2|z| hold for each xj

when |z| > R. Then use expression (1), Sec. 117, along with conditions (5), Sec. 116.
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2. Use condition (5), Sec. 117, and sufficient conditions for the existence of improper
integrals of real-valued functions to show that F(x) has some limit Wn as x tends
to infinity, where F(z) is defined by equation (3) in that section. Also, show that the
integral of f ′(z) over each arc of a semicircle |z| = R (Im z ≥ 0) approaches 0 as R

tends to ∞. Then deduce that

lim
z→∞ F(z) = Wn (Im z ≥ 0),

as stated in equation (6) of Sec. 117.

3. According to Sec. 86, the expression

N = 1

2πi

∫
C

g′(z)
g(z)

dz

can be used to determine the number (N) of zeros of a function g interior to a
positively oriented simple closed contour C when g(z) �= 0 on C and when C lies in
a simply connected domain D throughout which g is analytic and g′(z) is never zero.
In that expression, write g(z) = f (z) − w0 , where f (z) is the Schwarz–Christoffel
mapping function (7), Sec. 117, and the point w0 is either interior to or exterior to
the polygon P that is the image of the x axis ; thus f (z) �= w0. Let the contour C

consist of the upper half of a circle |z| = R and a segment −R < x < R of the x axis
that contains all n − 1 points xj , except that a small segment about each point xj is
replaced by the upper half of a circle |z − xj | = ρj with that segment as its diameter.
Then the number of points z interior to C such that f (z) = w0 is

NC = 1

2πi

∫
C

f ′(z)
f (z) − w0

dz .

Note that f (z) − w0 approaches the nonzero point Wn − w0 when |z| = R and R

tends to ∞, and recall the order property (5), Sec. 117, for |f ′(z)|. Let the ρj tend
to zero, and prove that the number of points in the upper half of the z plane at which
f (z) = w0 is

N = 1

2πi
lim

R→∞

∫ R

−R

f ′(x)

f (x) − w0
dx.

Deduce that since ∫
P

dw

w − w0
= lim

R→∞

∫ R

−R

f ′(x)

f (x) − w0
dx,

N = 1 if w0 is interior to P and that N = 0 if w0 is exterior to P . Thus show that
the mapping of the half plane Im z > 0 onto the interior of P is one to one.

118. TRIANGLES AND RECTANGLES

The Schwarz–Christoffel transformation is written in terms of the points xj and not
in terms of their images, which are the vertices of the polygon. No more than three
of those points can be chosen arbitrarily; so, when the given polygon has more than
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three sides, some of the points xj must be determined in order to make the given
polygon, or any polygon similar to it, be the image of the x axis. The selection of
conditions for the determination of those constants that are convenient to use often
requires ingenuity.

Another limitation in using the transformation is due to the integration that
is involved. Often the integral cannot be evaluated in terms of a finite number
of elementary functions. In such cases, the solution of problems by means of the
transformation can become quite involved.

If the polygon is a triangle with vertices at the points w1, w2, and w3 (Fig. 166),
the transformation can be written

w = A

∫ z

z0

(s − x1)
−k1(s − x2)

−k2(s − x3)
−k3 ds + B,(1)

where k1 + k2 + k3 = 2. In terms of the interior angles θj ,

kj = 1 − 1

π
θj (j = 1, 2, 3).

Here we have taken all three points xj as finite points on the x axis. Arbitrary
values can be assigned to each of them. The complex constants A and B, which are
associated with the size and position of the triangle, can be determined so that the
upper half plane is mapped onto the given triangular region.

x1
x u

w3 w2

w1

x3

y v

x2

FIGURE 166

If we take the vertex w3 as the image of the point at infinity, the transformation
becomes

w = A

∫ z

z0

(s − x1)
−k1(s − x2)

−k2 ds + B,(2)

where arbitrary real values can be assigned to x1 and x2.
The integrals in equations (1) and (2) do not represent elementary functions

unless the triangle is degenerate with one or two of its vertices at infinity. The
integral in equation (2) becomes an elliptic integral when the triangle is equi-
lateral or when it is a right triangle with one of its angles equal to either π/3
or π/4.
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EXAMPLE 1. For an equilateral triangle, k1 = k2 = k3 = 2/3. It is conve-
nient to write x1 = −1, x2 = 1, and x3 = ∞ and to use equation (2), with z0 = 1,
A = 1, and B = 0. The transformation then becomes

w =
∫ z

1
(s + 1)−2/3(s − 1)−2/3 ds.(3)

The image of the point z = 1 is clearly w = 0 ; that is, w2 = 0. If z = −1 in
this integral, one can write s = x, where −1 < x < 1. Then

x + 1 > 0 and arg(x + 1) = 0,

while
|x − 1| = 1 − x and arg(x − 1) = π.

Hence

w =
∫ −1

1
(x + 1)−2/3(1 − x)−2/3 exp

(
−2πi

3

)
dx(4)

= exp

(
πi

3

)∫ 1

0

2 dx

(1 − x2)2/3

when z = −1. With the substitution x = √
t , the last integral here reduces to a

special case of the one used in defining the beta function (Exercise 7, Sec. 84). Let
b denote its value, which is positive:

b =
∫ 1

0

2 dx

(1 − x2)2/3
=

∫ 1

0
t−1/2(1 − t)−2/3 dt = B

(
1

2
,

1

3

)
.(5)

The vertex w1 is, therefore, the point (Fig. 167)

w1 = b exp
πi

3
.(6)

The vertex w3 is on the positive u axis because

w3 =
∫ ∞

1
(x + 1)−2/3(x − 1)−2/3 dx =

∫ ∞

1

dx

(x2 − 1)2/3
.

xx2 w2 w3

w1

x1
u

b

b1–1

y v

FIGURE 167
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But the value of w3 is also represented by integral (3) when z tends to infinity along
the negative x axis ; that is,

w3 =
∫ −1

1
(|x + 1||x − 1|)−2/3 exp

(
−2πi

3

)
dx

+
∫ −∞

−1
(|x + 1||x − 1|)−2/3 exp

(
−4πi

3

)
dx.

In view of the first of expressions (4) for w1, then,

w3 = w1 + exp

(
−4πi

3

)∫ −∞

−1
(|x + 1||x − 1|)−2/3dx

= b exp
πi

3
+ exp

(
−πi

3

) ∫ ∞

1

dx

(x2 − 1)2/3
,

or

w3 = b exp
πi

3
+ w3 exp

(
−πi

3

)
.

Solving for w3, we find that

w3 = b.(7)

We have thus verified that the image of the x axis is the equilateral triangle of side
b shown in Fig. 167. We can also see that

w = b

2
exp

πi

3
when z = 0.

When the polygon is a rectangle, each kj = 1/2. If we choose ±1 and ±a as
the points xj whose images are the vertices and write

g(z) = (z + a)−1/2(z + 1)−1/2(z − 1)−1/2(z − a)−1/2,(8)

where 0 ≤ arg(z − xj ) ≤ π , the Schwarz–Christoffel transformation becomes

w = −
∫ z

0
g(s) ds,(9)

except for a transformation W = Aw + B to adjust the size and position of the
rectangle. Integral (9) is a constant times the elliptic integral∫ z

0
(1 − s2)−1/2(1 − k2s2)−1/2 ds

(
k = 1

a

)
,
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but the form (8) of the integrand indicates more clearly the appropriate branches of
the power functions involved.

EXAMPLE 2. Let us locate the vertices of the rectangle when a > 1. As
shown in Fig. 168, x1 = −a, x2 = −1, x3 = 1, and x4 = a. All four vertices can
be described in terms of two positive numbers b and c that depend on the value of
a in the following manner :

b =
∫ 1

0
|g(x)| dx =

∫ 1

0

dx√
(1 − x2)(a2 − x2)

,(10)

c =
∫ a

1
|g(x)| dx =

∫ a

1

dx√
(x2 − 1)(a2 − x2)

.(11)

If −1 < x < 0, then

arg(x + a) = arg(x + 1) = 0 and arg(x − 1) = arg(x − a) = π;
hence

g(x) =
[

exp

(
−πi

2

)]2

|g(x)| = −|g(x)|.

If −a < x < −1, then

g(x) =
[

exp

(
−πi

2

)]3

|g(x)| = i|g(x)|.

Thus

w1 = −
∫ −a

0
g(x) dx = −

∫ −1

0
g(x) dx −

∫ −a

−1
g(x) dx

=
∫ −1

0
|g(x)| dx − i

∫ −a

−1
|g(x)| dx = −b + ic.

It is left to the exercises to show that

w2 = −b, w3 = b, w4 = b + ic.(12)

The position and dimensions of the rectangle are shown in Fig. 168.

x w2 w3

w4w1

x2 x4O O u

ic

b–b1 a–a –1

y v

x1 x3 FIGURE 168
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119. DEGENERATE POLYGONS

We now apply the Schwarz–Christoffel transformation to some degenerate polygons
for which the integrals represent elementary functions. For purposes of illustration, the
examples here result in transformations that we have already seen in Chap. 8.

EXAMPLE 1. Let us map the half plane y ≥ 0 onto the semi-infinite strip

−π

2
≤ u ≤ π

2
, v ≥ 0.

We consider the strip as the limiting form of a triangle with vertices w1, w2, and
w3 (Fig. 169) as the imaginary part of w3 tends to infinity.

x u1–1

x1 x2

w3

w1 w2

y v

FIGURE 169

The limiting values of the exterior angles are

k1π = k2π = π

2
and k3π = π.

We choose the points x1 = −1, x2 = 1, and x3 = ∞ as the points whose images
are the vertices. Then the derivative of the mapping function can be written

dw

dz
= A(z + 1)−1/2(z − 1)−1/2 = A′(1 − z2)−1/2.

Hence w = A′ sin−1 z + B. If we write A′ = 1/a and B = b/a, it follows that

z = sin(aw − b).

This transformation from the w to the z plane satisfies the conditions z = −1
when w = −π/2 and z = 1 when w = π/2 if a = 1 and b = 0. The resulting trans-
formation is

z = sin w,

which we verified in Example 1, Sec. 96, as one that maps the strip onto the half
plane.

EXAMPLE 2. Consider the strip 0 < v < π as the limiting form of a rhom-
bus with vertices at the points w1 = πi, w2, w3 = 0, and w4 as the points w2 and
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w4 are moved infinitely far to the left and right, respectively (Fig. 170). In the limit,
the exterior angles become

k1π = 0, k2π = π, k3π = 0, k4π = π.

We leave x1 to be determined and choose the values x2 = 0, x3 = 1, and x4 = ∞.
The derivative of the Schwarz–Christoffel mapping function then becomes

dw

dz
= A(z − x1)

0z−1(z − 1)0 = A

z
;

thus
w = A Log z + B.

x u
1

x1 x3x2 w3

w1

w4w2

y v

FIGURE 170

Now B = 0 because w = 0 when z = 1. The constant A must be real because
the point w lies on the real axis when z = x and x > 0. The point w = πi is the
image of the point z = x1, where x1 is a negative number ; consequently,

πi = A Log x1 = A ln |x1| + Aπi.

By identifying real and imaginary parts here, we see that |x1| = 1 and A = 1. Hence
the transformation becomes

w = Log z ;
also, x1 = −1. We already know from Example 3 in Sec. 95 that this transformation
maps the half plane onto the strip.

The procedure used in these two examples is not rigorous because limiting values
of angles and coordinates were not introduced in an orderly way. Limiting values were
used whenever it seemed expedient to do so. But if we verify the mapping obtained, it
is not essential that we justify the steps in our derivation of the mapping function. The
formal method used here is shorter and less tedious than rigorous methods.

EXERCISES
1. In transformation (1), Sec. 118, write z0 = 0, B = 0, and

A = exp
3πi

4
, x1 = −1, x2 = 0, x3 = 1,

k1 = 3

4
, k2 = 1

2
, k3 = 3

4
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to map the x axis onto an isosceles right triangle. Show that the vertices of that triangle
are the points

w1 = bi, w2 = 0, and w3 = b,

where b is the positive constant

b =
∫ 1

0
(1 − x2)−3/4x−1/2 dx.

Also, show that

2 b = B

(
1

4
,

1

4

)
,

where B is the beta function that was defined in Exercise 7, Sec. 84.

2. Obtain expressions (12) in Sec. 118 for the rest of the vertices of the rectangle shown
in Fig. 168.

3. Show that when 0 < a < 1 in expression (8), Sec. 118, the vertices of the rectangle
are those shown in Fig. 168, where b and c now have the values

b =
∫ a

0
|g(x)| dx, c =

∫ 1

a

|g(x)| dx.

4. Show that the special case

w = i

∫ z

0
(s + 1)−1/2(s − 1)−1/2s−1/2 ds

of the Schwarz–Christoffel transformation (7), Sec. 117, maps the x axis onto the
square with vertices

w1 = bi, w2 = 0, w3 = b, w4 = b + ib,

where the (positive) number b is related to the beta function, used in Exercise 1:

2b = B

(
1

4
,

1

2

)
.

5. Use the Schwarz–Christoffel transformation to arrive at the transformation

w = zm (0 < m < 1),

which maps the half plane y ≥ 0 onto the wedge |w| ≥ 0, 0 ≤ arg w ≤ mπ and trans-
forms the point z = 1 into the point w = 1. Consider the wedge as the limiting case
of the triangular region shown in Fig. 171 as the angle α there tends to 0.

u1

v

FIGURE 171
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6. Refer to Fig. 26, Appendix 2. As the point z moves to the right along the negative
real axis, its image point w is to move to the right along the entire u axis. As z

describes the segment 0 ≤ x ≤ 1 of the real axis, its image point w is to move to the
left along the half line v = πi (u ≥ 1); and, as z moves to the right along that part of
the positive real axis where x ≥ 1, its image point w is to move to the right along the
same half line v = πi (u ≥ 1). Note the changes in direction of the motion of w at
the images of the points z = 0 and z = 1. These changes suggest that the derivative
of a mapping function should be

f ′(z) = A(z − 0)−1(z − 1),

where A is some constant ; thus obtain formally the mapping function

w = πi + z − Log z,

which can be verified as one that maps the half plane Re z > 0 as indicated in the
figure.

7. As the point z moves to the right along that part of the negative real axis where
x ≤ −1, its image point is to move to the right along the negative real axis in the w

plane. As z moves on the real axis to the right along the segment −1 ≤ x ≤ 0 and
then along the segment 0 ≤ x ≤ 1, its image point w is to move in the direction of
increasing v along the segment 0 ≤ v ≤ 1 of the v axis and then in the direction of
decreasing v along the same segment. Finally, as z moves to the right along that part
of the positive real axis where x ≥ 1, its image point is to move to the right along
the positive real axis in the w plane. Note the changes in direction of the motion of
w at the images of the points z = −1, z = 0, and z = 1. A mapping function whose
derivative is

f ′(z) = A(z + 1)−1/2(z − 0)1(z − 1)−1/2,

where A is some constant, is thus indicated. Obtain formally the mapping function

w =
√

z2 − 1 ,

where 0 < arg
√

z2 − 1 < π . By considering the successive mappings

Z = z2, W = Z − 1, and w =
√

W,

verify that the resulting transformation maps the right half plane Re z > 0 onto the
upper half plane Im w > 0, with a cut along the segment 0 < v ≤ 1 of the v axis.

8. The inverse of the linear fractional transformation

Z = i − z

i + z

maps the unit disk |Z| ≤ 1 conformally, except at the point Z = −1, onto the half plane
Im z ≥ 0. (See Fig. 13, Appendix 2.) Let Zj be points on the circle |Z| = 1 whose
images are the points z = xj (j = 1, 2, . . . , n) that are used in the Schwarz–Christoffel
transformation (8), Sec. 117. Show formally, without determining the branches of the
power functions, that



Brown-chap11-v3 11/05/07 2:39pm 417

sec. 120 Fluid Flow in a Channel Through a Slit 417

dw

dZ
= A′(Z − Z1)

−k1(Z − Z2)
−k2 · · · (Z − Zn)

−kn ,

where A′ is a constant. Thus show that the transformation

w = A′
∫ Z

0
(S − Z1)

−k1(S − Z2)
−k2 · · · (S − Zn)

−kn dS + B

maps the interior of the circle |Z| = 1 onto the interior of a polygon, the vertices of
the polygon being the images of the points Zj on the circle.

9. In the integral of Exercise 8, let the numbers Zj (j = 1, 2, . . . , n) be the nth roots
of unity. Write ω = exp(2πi/n) and Z1 = 1, Z2 = ω, . . . , Zn = ωn−1 (see Sec. 9).
Let each of the numbers kj (j = 1, 2, . . . , n) have the value 2/n. The integral in
Exercise 8 then becomes

w = A′
∫ Z

0

dS

(Sn − 1)2/n
+ B.

Show that when A′ = 1 and B = 0, this transformation maps the interior of the unit
circle |Z| = 1 onto the interior of a regular polygon of n sides and that the center of
the polygon is the point w = 0.

Suggestion: The image of each of the points Zj (j = 1, 2, . . . , n) is a vertex of
some polygon with an exterior angle of 2π/n at that vertex. Write

w1 =
∫ 1

0

dS

(Sn − 1)2/n
,

where the path of the integration is along the positive real axis from Z = 0 to Z = 1
and the principal value of the nth root of (Sn − 1)2 is to be taken. Then show that
the images of the points Z2 = ω, . . . , Zn = ωn−1 are the points ωw1, . . . , ω

n−1w1,
respectively. Thus verify that the polygon is regular and is centered at w = 0.

120. FLUID FLOW IN A CHANNEL THROUGH A SLIT

We now present a further example of the idealized steady flow treated in Chap. 10,
an example that will help show how sources and sinks can be accounted for in
problems of fluid flow. In this and the following two sections, the problems are
posed in the uv plane, rather than the xy plane. That allows us to refer directly to
earlier results in this chapter without interchanging the planes.

Consider the two-dimensional steady flow of fluid between two parallel planes
v = 0 and v = π when the fluid is entering through a narrow slit along the line
in the first plane that is perpendicular to the uv plane at the origin (Fig. 172). Let
the rate of flow of fluid into the channel through the slit be Q units of volume
per unit time for each unit of depth of the channel, where the depth is measured
perpendicular to the uv plane. The rate of flow out at either end is, then, Q/2.

The transformation w = Log z is a one to one mapping of the upper half y > 0
of the z plane onto the strip 0 < v < π in the w plane (see Example 2 in Sec. 119).
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uu0u1 O

v

x1O x0x1

y

FIGURE 172

The inverse transformation

z = ew = eueiv(1)

maps the strip onto the half plane (see Example 3, Sec. 14). Under transforma-
tion (1), the image of the u axis is the positive half of the x axis, and the image of
the line v = π is the negative half of the x axis. Hence the boundary of the strip is
transformed into the boundary of the half plane.

The image of the point w = 0 is the point z = 1. The image of a point w = u0 ,
where u0 > 0, is a point z = x0 , where x0 > 1. The rate of flow of fluid across a
curve joining the point w = u0 to a point (u, v) within the strip is a stream function
ψ(u, v) for the flow (Sec. 114). If u1 is a negative real number, then the rate of
flow into the channel through the slit can be written

ψ(u1, 0) = Q.

Now, under a conformal transformation, the function ψ is transformed into a func-
tion of x and y that represents the stream function for the flow in the corresponding
region of the z plane; that is, the rate of flow is the same across corresponding
curves in the two planes. As in Chap. 10, the same symbol ψ is used to represent
the different stream functions in the two planes. Since the image of the point w = u1

is a point z = x1, where 0 < x1 < 1, the rate of flow across any curve connecting
the points z = x0 and z = x1 and lying in the upper half of the z plane is also equal
to Q. Hence there is a source at the point z = 1 equal to the source at w = 0.

The same argument applies in general to show that under a conformal trans-
formation, a source or sink at a given point corresponds to an equal source or sink
at the image of that point.

As Re w tends to −∞, the image of w approaches the point z = 0. A sink of
strength Q/2 at the latter point corresponds to the sink infinitely far to the left in
the strip. To apply the argument in this case, we consider the rate of flow across a
curve connecting the boundary lines v = 0 and v = π of the left-hand part of the
strip and the rate of flow across the image of that curve in the z plane.

The sink at the right-hand end of the strip is transformed into a sink at infinity
in the z plane.

The stream function ψ for the flow in the upper half of the z plane in this case
must be a function whose values are constant along each of the three parts of the x
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axis. Moreover, its value must increase by Q as the point z moves around the point
z = 1 from the position z = x0 to the position z = x1, and its value must decrease
by Q/2 as z moves about the origin in the corresponding manner. We see that the
function

ψ = Q

π

[
Arg (z − 1) − 1

2
Arg z

]

satisfies those requirements. Furthermore, this function is harmonic in the half plane
Im z > 0 because it is the imaginary component of the function

F = Q

π

[
Log (z − 1) − 1

2
Log z

]
= Q

π
Log (z1/2 − z−1/2).

The function F is a complex potential function for the flow in the upper half
of the z plane. Since z = ew, a complex potential function F(w) for the flow in the
channel is

F(w) = Q

π
Log (ew/2 − e−w/2).

By dropping an additive constant, one can write

F(w) = Q

π
Log

(
sinh

w

2

)
.(2)

We have used the same symbol F to denote three distinct functions, once in the z

plane and twice in the w plane.
The velocity vector is

V = F ′(w) = Q

2π
coth

w

2
.(3)

From this, it can be seen that

lim
|u|→∞

V = Q

2π
.

Also, the point w = πi is a stagnation point ; that is, the velocity is zero there.
Hence the fluid pressure along the wall v = π of the channel is greatest at points
opposite the slit.

The stream function ψ(u, v) for the channel is the imaginary component of the
function F(w) given by equation (2). The streamlines ψ(u, v) = c2 are, therefore,
the curves

Q

π
Arg

(
sinh

w

2

)
= c2.

This equation reduces to

tan
v

2
= c tanh

u

2
,(4)

where c is any real constant. Some of these streamlines are indicated in Fig. 172.
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121. FLOW IN A CHANNEL WITH AN OFFSET

To further illustrate the use of the Schwarz–Christoffel transformation, let us find
the complex potential for the flow of a fluid in a channel with an abrupt change in
its breadth (Fig. 173). We take our unit of length such that the breadth of the wide
part of the channel is π units; then hπ , where 0 < h < 1, represents the breadth of
the narrow part. Let the real constant V0 denote the velocity of the fluid far from
the offset in the wide part ; that is,

lim
u→−∞ V = V0,

where the complex variable V represents the velocity vector. The rate of flow per
unit depth through the channel, or the strength of the source on the left and of the
sink on the right, is then

Q = πV0.(1)

u

V0

w2

w3

w1 w4
v

x
1
x3x1

y

x2

FIGURE 173

The cross section of the channel can be considered as the limiting case of the
quadrilateral with the vertices w1, w2, w3, and w4 shown in Fig. 173 as the first
and last of these vertices are moved infinitely far to the left and right, respectively.
In the limit, the exterior angles become

k1π = π, k2π = π

2
, k3π = −π

2
, k4π = π.

As before, we proceed formally, using limiting values whenever it is convenient to
do so. If we write x1 = 0, x3 = 1, x4 = ∞ and leave x2 to be determined, where
0 < x2 < 1, the derivative of the mapping function becomes

dw

dz
= Az−1(z − x2)

−1/2(z − 1)1/2.(2)

To simplify the determination of the constants A and x2 here, we proceed at
once to the complex potential of the flow. The source of the flow in the channel
infinitely far to the left corresponds to an equal source at z = 0 (Sec. 120). The
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entire boundary of the cross section of the channel is the image of the x axis. In
view of equation (1), then, the function

F = V0 Log z = V0 ln r + iV0 θ(3)

is the potential for the flow in the upper half of the z plane, with the required source
at the origin. Here the stream function is ψ = V0 θ . It increases in value from 0 to
V0π over each semicircle z = Reiθ (0 ≤ θ ≤ π) as θ varies from 0 to π . [Compare
with equation (5), Sec. 114, and Exercise 8, Sec. 115.]

The complex conjugate of the velocity V in the w plane can be written

V (w) = dF

dw
= dF

dz

dz

dw
.

Thus, by referring to equations (2) and (3), we can see that

V (w) = V0

A

(
z − x2

z − 1

)1/2

.(4)

At the limiting position of the point w1, which corresponds to z = 0, the veloc-
ity is the real constant V0. So it follows from equation (4) that

V0 = V0

A

√
x2.

At the limiting position of w4, which corresponds to z = ∞, let the real number V4

denote the velocity. Now it seems plausible that as a vertical line segment spanning
the narrow part of the channel is moved infinitely far to the right, V approaches V4

at each point on that segment. We could establish this conjecture as a fact by first
finding w as the function of z from equation (2); but, to shorten our discussion, we
assume that this is true, Then, since the flow is steady,

πhV4 = πV0 = Q,

or V4 = V0/h. Letting z tend to infinity in equation (4), we find that

V0

h
= V0

A
.

Thus

A = h, x2 = h2(5)

and

V (w) = V0

h

(
z − h2

z − 1

)1/2

.(6)
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From equation (6), we know that the magnitude |V | of the velocity becomes
infinite at the corner w3 of the offset since it is the image of the point z = 1. Also,
the corner w2 is a stagnation point, a point where V = 0. Hence, along the boundary
of the channel, the fluid pressure is greatest at w2 and least at w3.

To write the relation between the potential and the variable w, we must integrate
equation (2), which can now be written

dw

dz
= h

z

(
z − 1

z − h2

)1/2

.(7)

By substituting a new variable s, where

z − h2

z − 1
= s2,

one can show that equation (7) reduces to

dw

ds
= 2h

(
1

1 − s2
− 1

h2 − s2

)
.

Hence

w = h Log
1 + s

1 − s
− Log

h + s

h − s
.(8)

The constant of integration here is zero because when z = h2, the quantity s is zero
and so, therefore, is w.

In terms of s, the potential F of equation (3) becomes

F = V0 Log
h2 − s2

1 − s2
;

consequently,

s2 = exp(F/V0) − h2

exp(F/V0) − 1
.(9)

By substituting s from this equation into equation (8), we obtain an implicit relation
that defines the potential F as a function of w.

122. ELECTROSTATIC POTENTIAL ABOUT AN EDGE
OF A CONDUCTING PLATE

Two parallel conducting plates of infinite extent are kept at the electrostatic potential
V = 0, and a parallel semi-infinite plate, placed midway between them, is kept at
the potential V = 1. The coordinate system and the unit of length are chosen so that
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the plates lie in the planes v = 0, v = π , and v = π/2 (Fig. 174). Let us determine
the potential function V (u, v) in the region between those plates.

uV = 0

V = 0

V = 1w2

w3

w1

w4

v

x
1
x3

y

–1
x1 x2

FIGURE 174

The cross section of that region in the uv plane has the limiting form of
the quadrilateral bounded by the dashed lines in Fig. 174 as the points w1 and
w3 move out to the right and w4 to the left. In applying the Schwarz–Christoffel
transformation here, we let the point x4, corresponding to the vertex w4, be the point
at infinity. We choose the points x1 = −1, x3 = 1 and leave x2 to be determined.
The limiting values of the exterior angles of the quadrilateral are

k1π = π, k2π = −π, k3π = k4π = π.

Thus

dw

dz
= A(z + 1)−1(z − x2)(z − 1)−1 = A

(
z − x2

z2 − 1

)
= A

2

(
1 + x2

z + 1
+ 1 − x2

z − 1

)
,

and so the transformation of the upper half of the z plane into the divided strip in
the w plane has the form

w = A

2
[(1 + x2) Log (z + 1) + (1 − x2) Log (z − 1)] + B.(1)

Let A1, A2 and B1, B2 denote the real and imaginary parts of the constants A

and B. When z = x, the point w lies on the boundary of the divided strip ; and,
according to equation (1),

u + iv = A1 + iA2

2
{(1 + x2)[ln |x + 1| + i arg(x + 1)](2)

+ (1 − x2)[ln |x − 1| + i arg(x − 1)]} + B1 + iB2.

To determine the constants here, we first note that the limiting position of the
line segment joining the points w1 and w4 is the u axis. That segment is the image
of the part of the x axis to the left of the point x1 = −1; this is because the line
segment joining w3 and w4 is the image of the part of the x axis to the right of
x3 = 1, and the other two sides of the quadrilateral are the images of the remaining
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two segments of the x axis. Hence when v = 0 and u tends to infinity through
positive values, the corresponding point x approaches the point z = −1 from the
left. Thus

arg(x + 1) = π, arg(x − 1) = π,

and ln|x + 1| tends to −∞. Also, since −1 < x2 < 1, the real part of the quantity
inside the braces in equation (2) tends to −∞. Since v = 0, it readily follows that
A2 = 0 ; for, otherwise, the imaginary part on the right would become infinite. By
equating imaginary parts on the two sides, we now see that

0 = A1

2
[(1 + x2)π + (1 − x2)π] + B2.

Hence

−πA1 = B2, A2 = 0.(3)

The limiting position of the line segment joining the points w1 and w2 is the
half line v = π/2 (u ≥ 0). Points on that half line are images of the points z = x,
where −1 < x ≤ x2; consequently,

arg(x + 1) = 0, arg(x − 1) = π.

Identifying the imaginary parts on the two sides of equation (2), we thus arrive at
the relation

π

2
= A1

2
(1 − x2)π + B2.(4)

Finally, the limiting positions of the points on the line segment joining w3 to
w4 are the points u + πi, which are the images of the points x when x > 1. By
identifying, for those points, the imaginary parts in equation (2), we find that

π = B2.

Then, in view of equations (3) and (4),

A1 = −1, x2 = 0.

Thus x = 0 is the point whose image is the vertex w = πi/2 ; and, upon substituting
these values into equation (2) and identifying real parts, we see that B1 = 0.

Transformation (1) now becomes

w = −1

2
[Log (z + 1) + Log (z − 1)] + πi,(5)

or

z2 = 1 + e−2w.(6)
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Under this transformation, the required harmonic function V (u, v) becomes a
harmonic function of x and y in the half plane y > 0 ; and the boundary conditions
indicated in Fig. 175 are satisfied. Note that x2 = 0 now. The harmonic function
in that half plane which assumes those values on the boundary is the imaginary
component of the analytic function

1

π
Log

z − 1

z + 1
= 1

π
ln

r1

r2
+ i

π
(θ1 − θ2),

where θ1 and θ2 range from 0 to π . Writing the tangents of these angles as functions
of x and y and simplifying, we find that

tan πV = tan(θ1 − θ2) = 2y

x2 + y2 − 1
.(7)

xV = 0 V = 0V = 1 1–1

z
r2

x1 x3x2

r1

v

FIGURE 175

Equation (6) furnishes expressions for x2 + y2 and x2 − y2 in terms of u and
v. Then, from equation (7), we find that the relation between the potential V and
the coordinates u and v can be written

tan πV = 1

s

√
e−4u − s2,(8)

where
s = −1 +

√
1 + 2 e−2u cos 2v + e−4u.

EXERCISES
1. Use the Schwarz–Christoffel transformation to obtain formally the mapping function

given with Fig. 22, Appendix 2.

2. Explain why the solution of the problem of flow in a channel with a semi-infinite
rectangular obstruction (Fig. 176) is included in the solution of the problem treated in
Sec. 121.

FIGURE 176
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3. Refer to Fig. 29, Appendix 2. As the point z moves to the right along the negative part
of the real axis where x ≤ −1, its image point w is to move to the right along the half
line v = h (u ≤ 0). As the point z moves to the right along the segment −1 ≤ x ≤ 1
of the x axis, its image point w is to move in the direction of decreasing v along the
segment 0 ≤ v ≤ h of the v axis. Finally, as z moves to the right along the positive
part of the real axis where x ≥ 1, its image point w is to move to the right along the
positive real axis. Note the changes in the direction of motion of w at the images of
the points z = −1 and z = 1. These changes indicate that the derivative of a mapping
function might be

dw

dz
= A

(
z + 1

z − 1

)1/2

,

where A is some constant. Thus obtain formally the transformation given with the
figure. Verify that the transformation, written in the form

w = h

π
{(z + 1)1/2(z − 1)1/2 + Log [z + (z + 1)1/2(z − 1)1/2]}

where 0 ≤ arg(z ± 1) ≤ π , maps the boundary in the manner indicated in the figure.

4. Let T (u, v) denote the bounded steady-state temperatures in the shaded region of
the w plane in Fig. 29, Appendix 2, with the boundary conditions T (u, h) = 1 when
u < 0 and T = 0 on the rest (B ′C′D′) of the boundary. Using the parameter α, where
0 < α < π/2, show that the image of each point z = i tan α on the positive y axis is
the point

w = h

π

[
ln(tan α + sec α) + i

(π

2
+ sec α

)]
(see Exercise 3) and that the temperature at that point w is

T (u, v) = α

π

(
0 < α <

π

2

)
.

5. Let F(w) denote the complex potential function for the flow of a fluid over a step in
the bed of a deep stream represented by the shaded region of the w plane in Fig. 29,
Appendix 2, where the fluid velocity V approaches a real constant V0 as |w| tends to
infinity in that region. The transformation that maps the upper half of the z plane onto
that region is noted in Exercise 3. Use the chain rule

dF

dw
= dF

dz

dz

dw

to show that
V (w) = V0(z − 1)1/2(z + 1)−1/2;

and, in terms of the points z = x whose images are the points along the bed of the
stream, show that

|V | = |V0|
√∣∣∣∣x − 1

x + 1

∣∣∣∣ .
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Note that the speed increases from |V0| along A′B ′ until |V | = ∞ at B ′, then dimin-
ishes to zero at C′, and increases toward |V0| from C′ to D′; note, too, that the speed
is |V0| at the point

w = i

(
1

2
+ 1

π

)
h,

between B ′ and C′.
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C H A P T E R

12
INTEGRAL FORMULAS
OF THE POISSON TYPE

In this chapter, we develop a theory that enables us to solve a variety of boundary
value problems whose solutions are expressed in terms of definite or improper
integrals. Many of the integrals occurring are then readily evaluated.

123. POISSON INTEGRAL FORMULA

Let C0 denote a positively oriented circle, centered at the origin, and suppose that
a function f is analytic inside and on C0. The Cauchy integral formula (Sec. 50)

f (z) = 1

2πi

∫
C0

f (s) ds

s − z
(1)

expresses the value of f at any point z interior to C0 in terms of the values of f

at points s on C0. In this section, we shall obtain from formula (1) a corresponding
formula for the real component of the function f ; and, in Sec. 124, we shall use
that result to solve the Dirichlet problem (Sec. 105) for the disk bounded by C0.

We let r0 denote the radius of C0 and write z = r exp(iθ), where 0 < r < r0

(Fig. 177). The inverse of the nonzero point z with respect to the circle is the
point z1 lying on the same ray from the origin as z and satisfying the condition
|z1||z| = r2

0 . Because (r0/r) > 1,

|z1| = r2
0

|z| =
(

r0

r

)
r0 > r0 ;

429
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xO r0

z1

z

s

y

C0

FIGURE 177

and this means that z1 is exterior to the circle C0. According to the Cauchy–Goursat
theorem (Sec. 46), then, ∫

C0

f (s) ds

s − z1
= 0.

Hence

f (z) = 1

2πi

∫
C0

(
1

s − z
− 1

s − z1

)
f (s) ds ;

and, using the parametric representation s = r0 exp(iφ) (0 ≤ φ ≤ 2π) for C0, we
have

f (z) = 1

2π

∫ 2π

0

(
s

s − z
− s

s − z1

)
f (s) dφ(2)

where, for convenience, we retain the s to denote r0 exp(iφ). Now

z1 = r2
0

r
eiθ = r2

0

re−iθ
= ss

z
;

and, in view of this expression for z1, the quantity inside the parentheses in equation
(2) can be written

s

s − z
− s

s − s(s/z)
= s

s − z
+ z

s − z
= r2

0 − r2

|s − z|2 .(3)

An alternative form of the Cauchy integral formula (1) is, therefore,

f (reiθ ) = r2
0 − r2

2π

∫ 2π

0

f (r0e
iφ)

|s − z|2 dφ(4)

when 0 < r < r0. This form is also valid when r = 0 ; in that case, it reduces
directly to

f (0) = 1

2π

∫ 2π

0
f (r0e

iφ) dφ,

which is just the parametric form of equation (1) with z = 0.
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The quantity |s − z| is the distance between the points s and z , and the law of
cosines can be used to write (see Fig. 177)

|s − z|2 = r2
0 − 2r0r cos(φ − θ) + r2.(5)

Hence, if u is the real component of the analytic function f , it follows from for-
mula (4) that

u(r, θ) = 1

2π

∫ 2π

0

(r2
0 − r2)u(r0, φ)

r2
0 − 2r0r cos(φ − θ) + r2

dφ (r < r0).(6)

This is the Poisson integral formula for the harmonic function u in the open disk
bounded by the circle r = r0.

Formula (6) defines a linear integral transformation of u(r0, φ) into u(r, θ).
The kernel of the transformation is, except for the factor 1/(2π), the real-valued
function

P(r0, r, φ − θ) = r2
0 − r2

r2
0 − 2r0r cos(φ − θ) + r2

,(7)

which is known as the Poisson kernel. In view of equation (5), we can also write

P(r0, r, φ − θ) = r2
0 − r2

|s − z|2 ;(8)

and, since r < r0, it is clear that P is a positive function. Moreover, since z/(s − z)

and its complex conjugate z/(s − z) have the same real parts , we find from the
second of equations (3) that

P(r0, r, φ − θ) = Re

(
s

s − z
+ z

s − z

)
= Re

(
s + z

s − z

)
.(9)

Thus P(r0, r, φ − θ) is a harmonic function of r and θ interior to C0 for each fixed
s on C0. From equation (7), we see that P(r0, r, φ − θ) is an even periodic function
of φ − θ , with period 2π , and that its value is 1 when r = 0.

The Poisson integral formula (6) can now be written

u(r, θ) = 1

2π

∫ 2π

0
P(r0, r, φ − θ)u(r0, φ) dφ (r < r0).(10)

When f (z) = u(r, θ) = 1, equation (10) shows that P has the property

1

2π

∫ 2π

0
P(r0, r, φ − θ) dφ = 1 (r < r0).(11)

We have assumed that f is analytic not only interior to C0 but also on C0 itself
and that u is, therefore, harmonic in a domain which includes all points on that
circle. In particular, u is continuous on C0. The conditions will now be relaxed.
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124. DIRICHLET PROBLEM FOR A DISK

Let F be a piecewise continuous function (Sec. 38) of θ on the interval 0 ≤ θ ≤ 2π .
The Poisson integral transform of F is defined in terms of the Poisson kernel
P(r0, r, φ − θ), introduced in Sec. 123, by means of the equation

U(r, θ) = 1

2π

∫ 2π

0
P(r0, r, φ − θ)F (φ) dφ (r < r0).(1)

In this section, we shall prove that the function U(r, θ) is harmonic inside the
circle r = r0 and

lim
r→r0
r<r0

U(r, θ) = F(θ)(2)

for each fixed θ at which F is continuous. Thus U is a solution of the Dirichlet
problem for the disk r < r0 in the sense that U(r, θ) approaches the boundary value
F(θ) as the point (r, θ) approaches (r0, θ) along a radius, except at the finite number
of points (r0, θ) where discontinuities of F may occur.

EXAMPLE. Before proving the statement in italics, let us apply it to find
the potential V (r, θ) inside a long hollow circular cylinder of unit radius, split
lengthwise into two equal parts, when V = 1 on one of the parts and V = 0 on
the other. This problem was solved by conformal mapping in Sec. 112 ; and we
recall how it was interpreted there as a Dirichlet problem for the disk r < 1, where
V = 0 on the upper half of the boundary r = 1 and V = 1 on the lower half. (See
Fig. 178.)

xO

V = 0

V = 1

1

y

FIGURE 178

In equation (1), write V for U , r0 = 1, and

F(φ) =
{

0 when 0 < φ < π,

1 when π < φ < 2π
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to obtain

V (r, θ) = 1

2π

∫ 2π

π

P (1, r, φ − θ) dφ,(3)

where

P(1, r, φ − θ) = 1 − r2

1 + r2 − 2r cos(φ − θ)
.

An antiderivative of P(1, r, ψ) is∫
P(1, r, ψ) dψ = 2 arctan

(
1 + r

1 − r
tan

ψ

2

)
,(4)

the integrand here being the derivative with respect to ψ of the function on the right
(see Exercise 3). So it follows from expression (3) that

πV (r, θ) = arctan

(
1 + r

1 − r
tan

2π − θ

2

)
− arctan

(
1 + r

1 − r
tan

π − θ

2

)
.

After simplifying the expression for tan[πV (r, θ)] obtained from this last equation
(see Exercise 4), we find that

V (r, θ) = 1

π
arctan

(
1 − r2

2r sin θ

)
(0 ≤ arctan t ≤ π),(5)

where the stated restriction on the values of the arctangent function is physically
evident. When expressed in rectangular coordinates, the solution here is the same
as solution (5) in Sec. 112.

We turn now to the proof that the function U defined in equation (1) satisfies the
Dirichlet problem for the disk r < r0, as asserted just prior to this example. First of
all, U is harmonic inside the circle r = r0 because P is a harmonic function of r and
θ there. More precisely, since F is piecewise continuous, integral (1) can be written
as the sum of a finite number of definite integrals each of which has an integrand that
is continuous in r , θ , and φ. The partial derivatives of those integrands with respect
to r and θ are also continuous. Since the order of integration and differentiation with
respect to r and θ can, then, be interchanged and since P satisfies Laplace’s equation

r2Prr + rPr + Pθθ = 0

in the polar coordinates r and θ (Exercise 5, Sec. 26), it follows that U satisfies
that equation too.

In order to verify limit (2), we need to show that if F is continuous at θ , there
corresponds to each positive number ε a positive number δ such that

|U(r, θ) − F(θ)| < ε whenever 0 < r0 − r < δ.(6)
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We start by referring to property (11), Sec. 123, of the Poisson kernel and writing

U(r, θ) − F(θ) = 1

2π

∫ 2π

0
P(r0, r, φ − θ) [F(φ) − F(θ)] dφ.

For convenience, we let F be extended periodically, with period 2π , so that the
integrand here is periodic in φ with that same period. Also, we may assume that
0 < r < r0 because of the nature of the limit to be established.

Next, we observe that since F is continuous at θ , there is a small positive
number α such that

|F(φ) − F(θ)| <
ε

2
whenever |φ − θ | ≤ α.(7)

Evidently,

U(r, θ) − F(θ) = I1(r) + I2(r)(8)

where

I1(r) = 1

2π

∫ θ+α

θ−α

P (r0, r, φ − θ) [F(φ) − F(θ)] dφ,

I2(r) = 1

2π

∫ θ−α+2π

θ+α

P (r0, r, φ − θ) [F(φ) − F(θ)] dφ.

The fact that P is a positive function (Sec. 123), together with the first of
inequalities (7) just above and property (11), Sec. 123, of that function, enables us
to write

|I1(r)| ≤ 1

2π

∫ θ+α

θ−α

P (r0, r, φ − θ) |F(φ) − F(θ)| dφ

<
ε

4π

∫ 2π

0
P(r0, r, φ − θ) dφ = ε

2
.

As for the integral I2(r), one can see from Fig. 177 in Sec. 123 that the denomi-
nator |s − z|2 in expression (8) for P(r0, r, φ − θ) in that section has a (positive)
minimum value m as the argument φ of s varies over the closed interval

θ + α ≤ φ ≤ θ − α + 2π.

So, if M denotes an upper bound of the piecewise continuous function |F(φ) − F(θ)|
on the interval 0 ≤ φ ≤ 2π , it follows that

|I2(r)| ≤ (r2
0 − r2)M

2πm
2π <

2Mr0

m
(r0 − r) <

2Mr0

m
δ = ε

2

whenever r0 − r < δ where
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δ = mε

4Mr0
.(9)

Finally, the results in the two preceding paragraphs tell us that

|U(r, θ) − F(θ)| ≤ |I1(r)| + |I2(r)| <
ε

2
+ ε

2
= ε

whenever r0 − r < δ, where δ is the positive number defined by equation (9). That
is, statement (6) holds when that choice of δ is made.

According to expression (1), and since P(r0, 0, φ − θ) = 1,

U(0, θ) = 1

2π

∫ 2π

0
F(φ) dφ.

Thus the value of a harmonic function at the center of the circle r = r0 is the average
of the boundary values on the circle.

It is left to the exercises to prove that P and U can be represented by series
involving the elementary harmonic functions rn cos nθ and rn sin nθ as follows :

P(r0, r, φ − θ) = 1 + 2
∞∑

n=1

(
r

r0

)n

cos n(φ − θ) (r < r0)(10)

and

U(r, θ) = 1

2
a0 +

∞∑
n=1

(
r

r0

)n

(an cos nθ + bn sin nθ) (r < r0),(11)

where

an = 1

π

∫ 2π

0
F(φ) cos nφ dφ, bn = 1

π

∫ 2π

0
F(φ) sin nφ dφ.(12)

EXERCISES
1. Use the Poisson integral transform (1), Sec. 124, to derive the expression

V (x, y) = 1

π
arctan

[
1 − x2 − y2

(x − 1)2 + (y − 1)2 − 1

]
(0 ≤ arctan t ≤ π)

for the electrostatic potential interior to a cylinder x2 + y2 = 1 when V = 1 on the
first quadrant (x > 0, y > 0) of the cylindrical surface and V = 0 on the rest of that
surface. Also, point out why 1 − V is the solution to Exercise 8, Sec. 112.

2. Let T denote the steady temperatures in a disk r ≤ 1, with insulated faces, when
T = 1 on the arc 0 < θ < 2θ0 (0 < θ0 < π/2) of the edge r = 1 and T = 0 on the
rest of the edge. Use the Poisson integral transform (1), Sec. 124, to show that

T (x, y) = 1

π
arctan

[
(1 − x2 − y2)y0

(x − 1)2 + (y − y0)2 − y2
0

]
(0 ≤ arctan t ≤ π),

where y0 = tan θ0 . Verify that this function T satisfies the boundary conditions.
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3. Verify integration formula (4) in the example in Sec. 124 by differentiating the right-
hand side there with respect to ψ.

Suggestion: The trigonometric identities

cos2 ψ

2
= 1 + cos ψ

2
, sin2 ψ

2
= 1 − cos ψ

2
are useful in this verification.

4. With the aid of the trigonometric identities

tan(α − β) = tan α − tan β

1 + tan α tan β
, tan α + cot α = 2

sin 2α
,

show how solution (5) in the example in Sec. 124 is obtained from the expression for
πV (r, θ) just prior to that solution.

5. Let I denote this finite unit impulse function (Fig. 179) :

I (h, θ − θ0) =
{1/h when θ0 ≤ θ ≤ θ0 + h,

0 when 0 ≤ θ < θ0 or θ0 + h < θ ≤ 2π,

where h is a positive number and 0 ≤ θ0 < θ0 + h < 2π . Note that∫ θ0+h

θ0

I (h, θ − θ0) dθ = 1.

O

1–
h

FIGURE 179

With the aid of a mean value theorem for definite integrals, show that∫ 2π

0
P (r0, r, φ − θ) I (h, φ − θ0) dφ = P (r0, r, c − θ)

∫ θ0+h

θ0

I (h, φ − θ0) dφ,

where θ0 ≤ c ≤ θ0 + h, and hence that

lim
h→0
h>0

∫ 2π

0
P (r0, r, φ − θ) I (h, φ − θ0) dφ = P (r0, r, θ − θ0) (r < r0).

Thus the Poisson kernel P (r0, r, θ − θ0) is the limit, as h approaches 0 through positive
values, of the harmonic function inside the circle r = r0 whose boundary values are
represented by the impulse function 2πI (h, θ − θ0).

6. Show that the expression in Exercise 8(b), Sec. 62, for the sum of a certain cosine
series can be written
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1 + 2
∞∑

n=1

an cos nθ = 1 − a2

1 − 2a cos θ + a2
(−1 < a < 1).

Thus show that the Poisson kernel (7), Sec. 123, has the series representation (10),
Sec. 124.

7. Show that the series in representation (10), Sec. 124, for the Poisson kernel converges
uniformly with respect to φ. Then obtain from formula (1) of that section the series
representation (11) for U(r, θ) there.∗

8. Use expressions (11) and (12) in Sec. 124 to find the steady temperatures T (r, θ) in a
solid cylinder r ≤ r0 of infinite length if T (r0, θ) = A cos θ . Show that no heat flows
across the plane y = 0.

Ans. T = A

r0
r cos θ = A

r0
x.

125. RELATED BOUNDARY VALUE PROBLEMS

Details of proofs of results given in this section are left to the exercises. The function
F representing boundary values on the circle r = r0 is assumed to be piecewise
continuous.

Suppose that F(2π − θ) = −F(θ). The Poisson integral transform (1) in Sec.
124 then becomes

U(r, θ) = 1

2π

∫ π

0
[P(r0, r, φ − θ) − P(r0, r, φ + θ)]F(φ) dφ.(1)

This function U has zero values on the horizontal radii θ = 0 and θ = π of the circle,
as one would expect when U is interpreted as a steady temperature. Formula (1)
thus solves the Dirichlet problem for the semicircular region r < r0 , 0 < θ < π ,
where U = 0 on the diameter AB shown in Fig. 180 and

lim
r→r0
r<r0

U(r, θ) = F(θ) (0 < θ < π)(2)

for each fixed θ at which F is continuous.

x

r
r0

A B

y

FIGURE 180

∗This result is obtained when r0 = 1 by the method of separation of variables in the authors’ “Fourier
Series and Boundary Value Problems,” 7th ed., Sec. 43, 2008.
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If F(2π − θ) = F(θ), then

U(r, θ) = 1

2π

∫ π

0
[P(r0, r, φ − θ) + P(r0, r, φ + θ)]F(φ) dφ;(3)

and Uθ(r, θ) = 0 when θ = 0 or θ = π . Hence formula (3) furnishes a function U

that is harmonic in the semicircular region r < r0, 0 < θ < π and satisfies condi-
tion (2) as well as the condition that its normal derivative be zero on the diameter
AB shown in Fig. 180.

The analytic function z = r2
0 /Z maps the circle |Z| = r0 in the Z plane onto

the circle |z| = r0 in the z plane, and it maps the exterior of the first circle onto the
interior of the second (see Sec. 91). Writing

z = reiθ and Z = Reiψ ,

we see that

r = r2
0

R
and θ = 2π − ψ.

The harmonic function U(r, θ) represented by formula (1), Sec 124, is, then, trans-
formed into the function

U

(
r2

0

R
, 2π − ψ

)
= − 1

2π

∫ 2π

0

r2
0 − R2

r2
0 − 2r0R cos(φ + ψ) + R2

F(φ) dφ,

which is harmonic in the domain R > r0. Now, in general, if u(r, θ) is harmonic,
so is u(r, −θ). [See Exercise 4.] Hence the function

H(R, ψ) = U

(
r2

0

R
, ψ − 2π

)
,

or

H(R, ψ) = − 1

2π

∫ 2π

0
P(r0, R, φ − ψ)F(φ) dφ (R > r0),(4)

is also harmonic. For each fixed ψ at which F(ψ) is continuous, we find from
condition (2), Sec. 124, that

lim
R→r0
R>r0

H(R, ψ) = F(ψ).(5)

Thus formula (4) solves the Dirichlet problem for the region exterior to the
circle R = r0 in the Z plane (Fig. 181). We note from expression (8), Sec. 123,
that the Poisson kernel P(r0, R, φ − ψ) is negative when R > r0. Also,

1

2π

∫ 2π

0
P(r0, R, φ − ψ) dφ = −1 (R > r0)(6)
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and

lim
R→∞

H(R, ψ) = 1

2π

∫ 2π

0
F(φ) dφ.(7)

X

Y

r0

FIGURE 181

EXERCISES
1. Obtain the special case

(a) H(R,ψ) = 1

2π

∫ π

0
[P (r0, R, φ + ψ) − P (r0, R, φ − ψ)]F(φ) dφ ;

(b) H(R,ψ) = − 1

2π

∫ π

0
[P (r0, R, φ + ψ) + P (r0, R, φ − ψ)]F(φ) dφ

of formula (4), Sec. 125, for the harmonic function H(R,ψ) in the unbounded region
R > r0, 0 < ψ < π , shown in Fig. 182, if that function satisfies the boundary condi-
tion

lim
R→r0
R>r0

H(R,ψ) = F(ψ) (0 < ψ < π)

on the semicircle and (a) it is zero on the rays BA and DE; (b) its normal derivative
is zero on the rays BA and DE.

XEA B D

C

Y

r0

FIGURE 182

2. Give the details needed in establishing formula (1) in Sec. 125 as a solution of the
Dirichlet problem stated there for the region shown in Fig. 180.

3. Give the details needed in establishing formula (3) in Sec. 125 as a solution of the
boundary value problem stated there.

4. Obtain formula (4), Sec. 125, as a solution of the Dirichlet problem for the region
exterior to a circle (Fig. 181). To show that u(r,− θ) is harmonic when u(r, θ) is
harmonic, use the polar form

r2urr (r, θ) + rur(r, θ) + uθθ (r, θ) = 0

of Laplace’s equation.
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5. State why equation (6), Sec. 125, is valid.

6. Establish limit (7), Sec. 125.

126. SCHWARZ INTEGRAL FORMULA

Let f be an analytic function of z throughout the half plane Im z ≥ 0 such that for
some positive constants a and M, the order property

|zaf (z)| < M (Im z ≥ 0)(1)

is satisfied. For a fixed point z above the real axis, let CR denote the upper half
of a positively oriented circle of radius R centered at the origin, where R > |z|
(Fig. 183). Then, according to the Cauchy integral formula (Sec. 50),

f (z) = 1

2πi

∫
CR

f (s) ds

s − z
+ 1

2πi

∫ R

−R

f (t) dt

t − z
.(2)

x

s

z

R–R t

CR

y

FIGURE 183

We find that the first of these integrals approaches 0 as R tends to ∞ since, in
view of condition (1),∣∣∣∣

∫
CR

f (s) ds

s − z

∣∣∣∣ <
M

Ra(R − |z|)πR = πM

Ra(1 − |z|/R)
.

Thus

f (z) = 1

2πi

∫ ∞

−∞

f (t) dt

t − z
(Im z > 0).(3)

Condition (1) also ensures that the improper integral here converges.∗ The number
to which it converges is the same as its Cauchy principal value (see Sec. 78), and
representation (3) is a Cauchy integral formula for the half plane Im z > 0.

∗See, for instance, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., Chap. 22, 1983.
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When the point z lies below the real axis, the right-hand side of equation (2)
is zero; hence integral (3) is zero for such a point. Thus, when z is above the real
axis, we have the following formula, where c is an arbitrary complex constant:

f (z) = 1

2πi

∫ ∞

−∞

(
1

t − z
+ c

t − z

)
f (t) dt (Im z > 0).(4)

In the two cases c = −1 and c = 1, this reduces, respectively, to

f (z) = 1

π

∫ ∞

−∞

yf (t)

|t − z|2 dt (y > 0)(5)

and

f (z) = 1

πi

∫ ∞

−∞

(t − x)f (t)

|t − z|2 dt (y > 0).(6)

If f (z) = u(x, y) + iv(x, y), it follows from formulas (5) and (6) that the
harmonic functions u and v are represented in the half plane y > 0 in terms of the
boundary values of u by the formulas

u(x, y) = 1

π

∫ ∞

−∞

yu(t, 0)

|t − z|2 dt = 1

π

∫ ∞

−∞

yu(t, 0)

(t − x)2 + y2
dt (y > 0)(7)

and

v(x, y) = 1

π

∫ ∞

−∞

(x − t)u(t, 0)

(t − x)2 + y2
dt (y > 0).(8)

Formula (7) is known as the Schwarz integral formula, or the Poisson integral
formula for the half plane. In the next section, we shall relax the conditions for the
validity of formulas (7) and (8).

127. DIRICHLET PROBLEM FOR A HALF PLANE

Let F denote a real-valued function of x that is bounded for all x and continuous
except for at most a finite number of finite jumps. When y ≥ ε and |x| ≤ 1/ε, where
ε is any positive constant, the integral

I (x, y) =
∫ ∞

−∞

F(t) dt

(t − x)2 + y2

converges uniformly with respect to x and y, as do the integrals of the partial
derivatives of the integrand with respect to x and y. Each of these integrals is
the sum of a finite number of improper or definite integrals over intervals where
F is continuous; hence the integrand of each component integral is a continuous
function of t , x, and y when y ≥ ε. Consequently, each partial derivative of I (x, y)



Brown-chap12-v3 11/06/07 9:52am 442

442 Integral Formulas of the Poisson Type chap. 12

is represented by the integral of the corresponding derivative of the integrand when-
ever y > 0.

If we write

U(x, y) = y

π
I (x, y),

then U is the Schwarz integral transform of F , suggested by expression (7),
Sec. 126:

U(x, y) = 1

π

∫ ∞

−∞

yF (t)

(t − x)2 + y2
dt (y > 0).(1)

Except for the factor 1/π , the kernel here is y/|t − z|2. It is the imaginary component
of the function 1/(t − z), which is analytic in z when y > 0. It follows that the kernel
is harmonic, and so it satisfies Laplace’s equation in x and y. Because the order
of differentiation and integration can be interchanged, the function (1) then satisfies
that equation. Consequently, U is harmonic when y > 0.

To prove that

lim
y→0
y>0

U(x, y) = F(x)(2)

for each fixed x at which F is continuous, we substitute t = x + y tan τ in inte-
gral (1) and write

U(x, y) = 1

π

∫ π/2

−π/2
F(x + y tan τ) dτ (y > 0).(3)

As a consequence, if

G(x, y, τ ) = F(x + y tan τ) − F(x)

and α is some small positive constant,

π[U(x, y) − F(x)] =
∫ π/2

−π/2
G(x, y, τ ) dτ = I1(y) + I2(y) + I3(y)(4)

where

I1(y) =
∫ (−π/2)+α

−π/2
G(x, y, τ ) dτ, I2(y) =

∫ (π/2)−α

(−π/2)+α

G(x, y, τ ) dτ,

I3(y) =
∫ π/2

(π/2)−α

G(x, y, τ ) dτ.

If M denotes an upper bound for |F(x)|, then |G(x, y, τ )| ≤ 2M . For a given
positive number ε, we select α so that 6Mα < ε; and this means that
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|I1(y)| ≤ 2Mα <
ε

3
and |I3(y)| ≤ 2Mα <

ε

3
.

We next show that corresponding to ε, there is a positive number δ such that

|I2(y)| <
ε

3
whenever 0 < y < δ.

To do this, we observe that since F is continuous at x, there is a positive number
γ such that

|G(x, y, τ )| <
ε

3π
whenever 0 < y| tan τ | < γ.

Now the maximum value of | tan τ | as τ ranges from

−π

2
+ α to

π

2
− α

is

tan

(
π

2
− α

)
= cot α.

Hence, if we write δ = γ tan α, it follows that

|I2(y)| <
ε

3π
(π − 2α) <

ε

3
whenever 0 < y < δ.

We have thus shown that

|I1(y)| + |I2(y)| + |I3(y)| < ε whenever 0 < y < δ.

Condition (2) now follows from this result and equation (4).
Formula (1) therefore solves the Dirichlet problem for the half plane y > 0,

with the boundary condition (2). It is evident from the form (3) of expression (1)
that |U(x, y)| ≤ M in the half plane, where M is an upper bound of |F(x)|; that is,
U is bounded. We note that U(x, y) = F0 when F(x) = F0 , where F0 is a constant.

According to formula (8) of Sec. 126, under certain conditions on F the func-
tion

V (x, y) = 1

π

∫ ∞

−∞

(x − t)F (t)

(t − x)2 + y2
dt (y > 0)(5)

is a harmonic conjugate of the function U given by formula (1). Actually, for-
mula (5) furnishes a harmonic conjugate of U if F is everywhere continuous, except
for at most a finite number of finite jumps, and if F satisfies an order property

|xaF (x)| < M (a > 0).

For, under those conditions, we find that U and V satisfy the Cauchy–Riemann
equations when y > 0.

Special cases of formula (1) when F is an odd or an even function are left to
the exercises.
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EXERCISES
1. Obtain as a special case of formula (1), Sec. 127, the expression

U(x, y) = y

π

∫ ∞

0

[
1

(t − x)2 + y2
− 1

(t + x)2 + y2

]
F(t) dt (x > 0, y > 0)

for a bounded function U that is harmonic in the first quadrant and satisfies the
boundary conditions

U(0, y) = 0 (y > 0),

lim
y→0
y>0

U(x, y) = F(x) (x > 0, x �= xj ),

where F is bounded for all positive x and continuous except for at most a finite
number of finite jumps at the points xj (j = 1, 2, . . . , n).

2. Let T (x, y) denote the bounded steady temperatures in a plate x > 0, y > 0, with
insulated faces, when

lim
y→0
y>0

T (x, y) = F1(x) (x > 0),

lim
x→0
x>0

T (x, y) = F2(y) (y > 0)

(Fig. 184). Here F1 and F2 are bounded and continuous except for at most a finite
number of finite jumps. Write x + iy = z and show with the aid of the expression
obtained in Exercise 1 that

T (x, y) = T1(x, y) + T2(x, y) (x > 0, y > 0)

where

T1(x, y) = y

π

∫ ∞

0

(
1

|t − z|2 − 1

|t + z|2
)

F1(t) dt,

T2(x, y) = y

π

∫ ∞

0

(
1

|it − z|2 − 1

|it + z|2
)

F2(t) dt.

x

T = F2(y)

T = F1(x)

y

FIGURE 184

3. Obtain as a special case of formula (1), Sec. 127, the expression

U(x, y) = y

π

∫ ∞

0

[
1

(t − x)2 + y2
+ 1

(t + x)2 + y2

]
F(t) dt (x > 0, y > 0)

for a bounded function U that is harmonic in the first quadrant and satisfies the
boundary conditions



Brown-chap12-v3 11/06/07 9:52am 445

sec. 128 Neumann Problems 445

Ux(0, y) = 0 (y > 0),

lim
y→0
y>0

U(x, y) = F(x) (x > 0, x �= xj ),

where F is bounded for all positive x and continuous except possibly for finite jumps
at a finite number of points x = xj (j = 1, 2, . . . , n).

4. Interchange the x and y axes in Sec. 127 to write the solution

U(x, y) = 1

π

∫ ∞

−∞

xF (t)

(t − y)2 + x2
dt (x > 0)

of the Dirichlet problem for the half plane x > 0. Then write

F(y) =
{

1 when |y| < 1,

0 when |y| > 1,

and obtain these expressions for U and its harmonic conjugate −V :

U(x, y) = 1

π

(
arctan

y + 1

x
− arctan

y − 1

x

)
, V (x, y) = 1

2π
ln

x2 + (y + 1)2

x2 + (y − 1)2

where −π/2 ≤ arctan t ≤ π/2. Also, show that

V (x, y) + iU(x, y) = 1

π
[Log(z + i) − Log(z − i)],

where z = x + iy.

128. NEUMANN PROBLEMS

As in Sec. 123 and Fig. 177, we write

s = r0 exp(iφ) and z = r exp(iθ) (r < r0).

When s is fixed, the function

Q(r0, r, φ − θ) = −2r0 ln|s − z| = −r0 ln[r2
0 − 2r0r cos(φ − θ) + r2](1)

is harmonic interior to the circle |z| = r0 because it is the real component of

−2 r0 log(z − s),

where the branch cut of log(z − s) is an outward ray from the point s. If, moreover,
r �= 0,

Qr(r0, r, φ − θ) = − r0

r

[
2r2 − 2r0r cos(φ − θ)

r2
0 − 2r0r cos(φ − θ) + r2

]
(2)

= r0

r
[P(r0, r, φ − θ) − 1]

where P is the Poisson kernel (7) of Sec. 123.
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These observations suggest that the function Q may be used to write an integral
representation for a harmonic function U whose normal derivative Ur on the circle
r = r0 assumes prescribed values G(θ).

If G is piecewise continuous and U0 is an arbitrary constant, the function

U(r, θ) = 1

2π

∫ 2π

0
Q(r0, r, φ − θ) G(φ) dφ + U0 (r < r0)(3)

is harmonic because the integrand is a harmonic function of r and θ . If the mean
value of G over the circle |z| = r0 is zero, so that∫ 2π

0
G(φ) dφ = 0,(4)

then, in view of equation (2),

Ur(r, θ) = 1

2π

∫ 2π

0

r0

r
[P(r0, r, φ − θ) − 1] G(φ) dφ

= r0

r
· 1

2π

∫ 2π

0
P(r0, r, φ − θ) G(φ) dφ.

Now, according to equations (1) and (2) in Sec. 124,

lim
r→r0
r<r0

1

2π

∫ 2π

0
P(r0, r, φ − θ) G(φ) dφ = G(θ).

Hence

lim
r→r0
r<r0

Ur(r, θ) = G(θ)(5)

for each value of θ at which G is continuous.
When G is piecewise continuous and satisfies condition (4), the formula

U(r, θ) = − r0

2π

∫ 2π

0
ln[r2

0 − 2r0r cos(φ − θ) + r2] G(φ) dφ + U0 (r < r0),(6)

therefore, solves the Neumann problem for the region interior to the circle r = r0 ,
where G(θ) is the normal derivative of the harmonic function U(r, θ) at the bound-
ary in the sense of condition (5). Note how it follows from equations (4) and (6) that
since ln r2

0 is constant, U0 is the value of U at the center r = 0 of the circle r = r0.
The values U(r, θ) may represent steady temperatures in a disk r < r0 with

insulated faces. In that case, condition (5) states that the flux of heat into the
disk through its edge is proportional to G(θ). Condition (4) is the natural phys-
ical requirement that the total rate of flow of heat into the disk be zero, since
temperatures do not vary with time.

A corresponding formula for a harmonic function H in the region exterior to
the circle r = r0 can be written in terms of Q as
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H(R, ψ) = − 1

2π

∫ 2π

0
Q(r0, R, φ − ψ) G(φ) dφ + H0 (R > r0),(7)

where H0 is a constant. As before, we assume that G is piecewise continuous and
that condition (4) holds. Then

H0 = lim
R→∞

H(R, ψ)

and

lim
R→r0
R>r0

HR(R, ψ) = G(ψ)(8)

for each ψ at which G is continuous. Verification of formula (7), as well as special
cases of formula (3) that apply to semicircular regions, is left to the exercises.

Turning now to a half plane, we let G(x) be continuous for all real x, except
possibly for a finite number of finite jumps, and let it satisfy an order property

|xaG(x)| < M (a > 1)(9)

when −∞ < x < ∞. For each fixed real number t , the function Log|z − t | is har-
monic in the half plane Im z > 0. Consequently, the function

U(x, y) = 1

π

∫ ∞

−∞
ln|z − t | G(t) dt + U0(10)

= 1

2π

∫ ∞

−∞
ln[(t − x)2 + y2] G(t) dt + U0 (y > 0),

where U0 is a real constant, is harmonic in that half plane.
Formula (10) was written with the Schwarz integral transform (1), Sec. 127, in

mind ; for it follows from formula (10) that

Uy(x, y) = 1

π

∫ ∞

−∞

y G(t)

(t − x)2 + y2
dt (y > 0).(11)

In view of equations (1) and (2) in Sec. 127, then,

lim
y→0
y>0

Uy(x, y) = G(x)(12)

at each point x where G is continuous.
Integral formula (10) evidently solves the Neumann problem for the half plane

y > 0, with boundary condition (12). But we have not presented conditions on
G which are sufficient to ensure that the harmonic function U is bounded as |z|
increases.

When G is an odd function, formula (10) can be written

U(x, y) = 1

2π

∫ ∞

0
ln

[
(t − x)2 + y2

(t + x)2 + y2

]
G(t) dt (x > 0, y > 0).(13)
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This represents a function that is harmonic in the first quadrant x > 0, y > 0 and
satisfies the boundary conditions

U(0, y) = 0 (y > 0),(14)

lim
y→0
y>0

Uy(x, y) = G(x) (x > 0).(15)

EXERCISES
1. Establish formula (7), Sec. 128, as a solution of the Neumann problem for the region

exterior to a circle r = r0, using earlier results found in that section.

2. Obtain as a special case of formula (3), Sec. 128, the expression

U(r, θ) = 1

2π

∫ π

0
[Q(r0, r, φ − θ) − Q(r0, r, φ + θ)] G(φ) dφ

for a function U that is harmonic in the semicircular region r < r0, 0 < θ < π and
satisfies the boundary conditions

U(r, 0) = U(r, π) = 0 (r < r0),

lim
r→r0
r<r0

Ur(r, θ) = G(θ) (0 < θ < π)

for each θ at which G is continuous.

3. Obtain as a special case of formula (3), Sec. 128, the expression

U(r, θ) = 1

2π

∫ π

0
[Q(r0, r, φ − θ) + Q(r0, r, φ + θ)] G(φ) dφ + U0

for a function U that is harmonic in the semicircular region r < r0, 0 < θ < π and
satisfies the boundary conditions

Uθ(r, 0) = Uθ(r, π) = 0 (r < r0),

lim
r→r0
r<r0

Ur(r, θ) = G(θ) (0 < θ < π)

for each θ at which G is continuous, provided that∫ π

0
G(φ) dφ = 0.

4. Let T (x, y) denote the steady temperatures in a plate x ≥ 0, y ≥ 0. The faces of the
plate are insulated, and T = 0 on the edge x = 0. The flux of heat (Sec. 107) into the
plate along the segment 0 < x < 1 of the edge y = 0 is a constant A, and the rest of
that edge is insulated. Use formula (13), Sec. 128, to show that the flux out of the
plate along the edge x = 0 is

A

π
ln

(
1 + 1

y2

)
.
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2
TABLE OF TRANSFORMATIONS

OF REGIONS
(See Chap. 8)

xD
A

B

C

y

uD ′
A′B ′

C ′

v

FIGURE 1
w = z2.

x
D

AC

B

y

u

C ′

B ′

D ′

A′v

FIGURE 2
w = z2.

452
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xc

y

C

D

B

A

u

v

D ′ C ′
B ′

A′

FIGURE 3
w = z2;
A′B ′ on parabola v2 = −4c2(u − c2).

x
AC

D

B

y

u

v

B ′
C ′

A′
D ′

FIGURE 4
w = 1/z.

xA
C

B

y

u

A′

B′

C ′

v

FIGURE 5
w = 1/z.

xC B A

D E F

y

uF ′
1

E ′D ′ C ′B ′ A′

v

FIGURE 6
w = exp z.
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uD ′ E ′ A′ B ′

C ′

1

v

x

DE

BA

C

y

FIGURE 7
w = exp z.

uD ′ E ′ A′ B ′

C ′

F ′

v

x

D

BA

E

F C

y

FIGURE 8
w = exp z.

xC

E A

D B

y

u
1

E ′ D ′ C ′ B ′ A′

v

FIGURE 9
w = sin z.

x

y

C

D

B

A

u

v

B ′ A′C ′

D ′

1
FIGURE 10
w = sin z.

x

C

F
A

B

E

D

y

uF ′
1

E ′D ′

C ′

B ′A′

v

FIGURE 11
w = sin z; BCD on line y = b (b > 0),

B ′C ′D′ on ellipse
u2

cosh2 b
+ v2

sinh2 b
= 1.
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x

i

A

B

C

D

E

y

u1 A′
E ′

C ′

D ′

B ′

v

FIGURE 12

w = z − 1

z + 1
.

u
1
C ′

E ′
A′

B ′

D ′
v

x
1

EDCBA

y

FIGURE 13

w = i − z

i + z
.

xx1x2

AC GE

F

B

D

y

u

v

F ′

A′ E ′
R0

C ′G ′

D ′

B ′

1 1–1

FIGURE 14

w = z − a

az − 1
; a =

1 + x1x2 +
√

(1 − x2
1 )(1 − x2

2 )

x1 + x2
,

R0 =
1 − x1x2 +

√
(1 − x2

1 )(1 − x2
2 )

x1 − x2
(a > 1 and R0 > 1 when − 1 < x2 < x1 < 1).
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xx1x2

DA C
E

F

B

y

u

v

F ′

E ′

A′D ′
R0

C ′

B ′

1 1

FIGURE 15

w = z − a

az − 1
; a =

1 + x1x2 +
√

(x2
1 − 1)(x2

2 − 1)

x1 + x2
,

R0 =
x1x2 − 1 −

√
(x2

1 − 1)(x2
2 − 1)

x1 − x2
(x2 < a < x1 and 0 < R0 < 1 when 1 < x2 < x1).

x1
D

AE
B

C
y

u2

A′B ′C ′D ′E ′

v

FIGURE 16

w = z + 1

z
.

u
2

E ′ D ′ C ′ B ′ A′

v

x
1

E D

C

B A

y

FIGURE 17

w = z + 1

z
.

x1 b
D E A B

C

F

y

uF ′
2

E ′D ′

C ′

B ′A′

v

FIGURE 18

w = z + 1

z
; B ′C ′D′ on ellipse

u2

(b + 1/b)2
+ v2

(b − 1/b)2
= 1.
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x
1

EDCBA

y

uE ′D ′

C ′

B ′

D ′ B ′

A′

v

FIGURE 19

w = Log
z − 1

z + 1
; z = − coth

w

2
.

x1
C

E FD
A

B

y

u

A′ C ′B ′

F ′ D ′E ′

v

FIGURE 20

w = Log
z − 1

z + 1
;

ABC on circle x2 + (y + cot h)2 = csc2 h (0 < h < π).

xA
C

F
D

B
E

1

y

uc2c1

B ′

C ′

A′

E ′

D ′

F ′
v

v

v

FIGURE 21

w = Log
z + 1

z − 1
; centers of circles at z = coth cn, radii: csch cn (n = 1, 2).
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x u

x1 1–1

E DG CF BA

y

E ′ F ′

D ′ C ′

A′ B ′

G ′

v

FIGURE 22

w = h ln
h

1 − h
+ ln 2(1 − h) + iπ − h Log(z + 1) − (1 − h) Log(z − 1); x1 = 2h − 1 .

u1
E ′

B′A′
C ′

D ′

v

x

y

B

A

C

E

D

FIGURE 23

w =
(

tan
z

2

)2

= 1 − cos z

1 + cos z
.

x

B

A
H

G

y

C D

EF

u

H ′

G ′
B ′

F ′
C ′

E ′ 1
D ′

A′
v

FIGURE 24

w = coth
z

2
= ez + 1

ez − 1
.

x

B

A
H

G

y

C D

EF

u

G′ H′

B′ A′

D′C′
F′ E′

v

FIGURE 25

w = Log

(
coth

z

2

)
.
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x
1

EDCBA

y

uA′ B ′

E ′
C ′D ′

v

FIGURE 26
w = πi + z − Log z.

x
–1

EC DBA

y

u

A′

B ′C ′

D ′ E ′

v

FIGURE 27

w = 2(z + 1)1/2 + Log
(z + 1)1/2 − 1

(z + 1)1/2 + 1
.

x
–h2

CFD E BA

y

1
u

A′F ′

E ′ D ′

C ′O B ′

v

FIGURE 28

w = i

h
Log

1 + iht

1 − iht
+ Log

1 + t

1 − t
; t =

(
z − 1

z + h2

)1/2

.
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xDA CB

y

1–1
u

hi
A′ B ′

D ′C ′

v

FIGURE 29

w = h

π
[(z2 − 1)1/2 + cosh−1 z].∗

xDE BAF

y

1

C

h
u

A′ B ′

D ′

E ′F ′

C ′

v

FIGURE 30

w = cosh−1
(

2z − h − 1

h − 1

)
− 1√

h
cosh−1

[
(h + 1)z − 2h

(h − 1)z

]
.

∗See Exercise 3, Sec. 122.
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Absolute convergence, 186,
208–210

Absolute value, 10
Accumulation points, 32–33
Additive identity, 4
Additive inverse, 4, 6
Aerodynamics, 391
Algebraic properties, of complex

numbers, 3–5
Analytic continuation, 84–85,

87
Analytic functions

Cauchy–Goursat theorem
adopted to integrals of,
200

composition of, 74
derivatives of, 169–170
explanation of, 73–76, 229,

231
isolated, 251
properties of, 74–77
real and imaginary

components of, 366
reflection principle and,

85–87
residue and, 238
simply connected domains

and, 158
uniquely determined, 83–85
zeros of, 249–252, 294

Analyticity, 73, 75–76, 215,
229, 231, 250, 405

Angle of inclination, 124, 356,
358

Angle of rotation, 356, 358–360
Angles, preservation of,

355–358

Antiderivatives
analytic functions and, 158
explanation of, 142–149
fundamental theorem of

calculus and, 119
Arc

differentiable, 124
explanation of, 122
simple, 122
smooth, 125, 131, 146

Argument
principle value of, 16, 17,

37
of products and quotients,

20–24
Argument principle, 291–294
Associative laws, 3

Bernoulli’s equation, 392
Bessel functions, 207n

Beta function, 287
Bierwirth, R. A., 269n

Bilinear transformation,
319–322

Binomial formula, 7, 8, 171
Boas, R. P., Jr., 174n, 241n,

322n

Bolzano–Weierstrass theorem,
257

Boundary conditions, 367–370
Boundary of S, 32
Boundary points, 31–32, 329,

339
Boundary value problems, 365,

366, 376, 378, 379, 381,
437–439

Bounded functions, 173, 174

Bounded sets, 32
Branch cuts

contour integrals and,
133–135

explanation of, 96, 405
integration along, 283–285

Branches
of double-valued function,

338, 341–342, 346
integrands and, 145, 146
of logarithmic function,

95–96, 144, 230, 328,
361

of multiple-values function,
246, 281, 284

principal, 96, 102, 229–230
of square root function,

336–338
Branch point

explanation of, 96, 350
indentation around, 280–283
at infinity, 352

Bromwich integral, 299
Brown, G. H., 269n

Brown, J. W., 79n, 207n, 270n,
279n, 307n, 379n, 390n,
437n

Buck, J. R., 207n

Casorati–Weierstrass theorem,
259

Cauchy, A. L., 65
Cauchy–Goursat theorem

applied to integrals of
analytic functions, 200

applied to multiply connected
domains, 158–160

461
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Cauchy–Goursat theorem
(continued)

applied to simply connected
domains, 156–157

explanation of, 151, 229,
279, 430

proof of, 152–156
residue and, 235–236

Cauchy integral formula
consequences of extension of,

168–170
explanation of, 164–165,

200, 429
extension of, 165–168, 218,

248–249
for half plane, 440

Cauchy principal value, 262,
270, 274

Cauchy product, 223
Cauchy–Riemann equations

analyticity and, 75
in complex form, 73
explanation of, 65–66, 360,

371
harmonic conjugate and, 80,

81, 364, 365, 443
partial derivatives and, 66,

67, 69, 70, 86, 365
in polar form, 70, 95
sufficiency of, 66–68

Cauchy’s inequality, 170, 172
Cauchy’s residue theorem,

234–236, 238, 264, 281,
283, 284, 294

Chain rule, 61, 69, 74, 101, 355,
363, 366–367, 426

Chebyshev polynomials, 24n

Christoffel, E. B., 406
Churchill, R. V., 79n, 207n,

270n, 279n, 299n, 301n,
307n, 379n, 390n, 437n

Circle of convergence, 209, 211,
213–214, 216

Circles
parametric representation of,

18
transformations of, 314–317,

400
Circulation of fluid, 391
Closed contour, simple, 125,

150, 235
Closed disk, 278
Closed polygons, 404

Closed set, 32
Closure, 32
Commutative laws, 3
Complex conjugates, 13–14,

421
Complex exponents, 101–103
Complex numbers

algebraic properties of, 3–5
arguments of products and

quotients of, 20–22
complex conjugates of, 13–14
convergence of series of,

185–186
explanation of, 1
exponential form of, 16–18
imaginary part of, 1
polar form of, 16–17
products and powers in

exponential form of,
18–20

real part of, 1
roots of, 24–29
sums and products of, 1–7
vectors and moduli of, 9–12

Complex plane, 1
extended, 50
point at infinity and, 50–51

Complex potential, 393, 394,
426–427

Complex variables
functions of, 35–38
integrals of complex-valued

functions of, 122
Composition of functions, 74
Conductivity, thermal, 373
Conformal mapping

explanation of, 357, 418
harmonic conjugates and,

363–365
local inverses and, 360–362
preservation of angles and,

355–358
scale factors and, 358–360
transformations of boundary

conditions and, 367–370
transformations of harmonic

functions and, 365–367
Conformal mapping applications

cylindrical space potential
and, 386–387

electrostatic potential and,
385–386

flows around corner and
around cylinder and,
395–397

steady temperatures and,
373–375

steady temperatures in half
plane and, 375–377

stream function and,
393–395

temperatures in quadrant and,
379–381

temperatures in thin plate
and, 377–379

two-dimensional fluid flow
and, 391–393

Conjugates
complex, 13–14, 421
harmonic, 80–81, 363–366,

443
Continuous functions

derivative and, 59
explanation of, 53–56, 406

Contour integrals
branch cuts and, 133–135
evaluation of, 142
examples of, 129–132
explanation of, 127–129
moduli of, 137–140
upper bounds for moduli of,

137–140
Contours

in Cauchy–Goursat theorem,
156–157

explanation of, 125
simple closed, 125, 150

Convergence
absolute, 186, 208–210
circle of, 209, 211, 213–214,

216
of sequences, 181–184
of series, 184–189, 208–213,

250
uniform, 210–213

Conway, J. B., 322n

Cosines, 288–290
Critical point, of

transformations, 357–358
Cross ratios, 322n

Curves
finding images for, 38–39
Jordan, 122, 123
level, 82

Cylindrical space, 386–387
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Definite integrals
of functions, 119–120
involving sines and cosines,

288–290
mean value theorem for, 436

Deformation of paths principle,
159–160, 237–238

Degenerate polygons, 413–414
Deleted neighborhood, 31, 251,

258, 259
de Moivre’s formula, 20, 24
Derivatives

of branch of zc , 101–102
directional, 74
first-order partial, 63–67, 69
of functions, 56–61
of logarithms, 95–96
of mapping function, 413,

416, 426
Differentiability, 66–68
Differentiable arc, 124
Differentiable functions, 56, 59
Differentiation formulas

explanation of, 60–63, 74,
75, 107

verification of, 111
Diffusion, 375
Directional derivative, 74
Dirichlet problem

for disk, 429, 432–435
explanation of, 365, 366
for half plane, 441–443
for rectangle, 389–390
for region exterior to circle,

438–439
for region in half plane, 376
for semicircular region, 438
for semi-infinite strip, 383

Disk
closed, 278
Dirichlet problem for, 429,

432–435
punctured, 31, 224, 240

Distributive law, 3
Division, of power series,

222–225
Domains

of definition of function, 35,
84, 344, 345

explanation of, 32
multiply connected, 158–160
simply connected, 156–158
union of, 85

Double-valued functions
branches of, 338, 341–342,

346
Riemann surfaces for,

351–353

Electrostatic potential
about edge of conducting

plate, 422–425
explanation of, 385–386

Elements of function, 85
Ellipse, 333
Elliptic integral, 409, 411
Entire functions, 73, 173
Equipotentials, 385, 393, 401
Essential singular points, 242
Euler numbers, 227
Euler’s formula, 17, 28, 68, 104
Even functions, 121
Expansion

Fourier series, 208
Maclaurin series, 192–195,

215, 233
Exponential form, of complex

numbers, 16–18
Exponential functions

additive property of, 18–19
with base c,103
explanation of, 89–91
mappings by, 42–45

Extended complex plane, 50
Exterior points, 31

Field intensity, 385
Finite unit impulse function, 436
First-order partial derivatives

Cauchy–Riemann equations
and, 66, 67, 69

explanation of, 63–65
Fixed point, of transformation,

324
Fluid flow

around corner, 395–396
around cylinder, 396–397
in channel through slit,

417–419
in channel with offset,

420–422
circulation of, 391
complex potential of, 393,

394
incompressible, 392
irrotational, 392
in quadrant, 396

two-dimensional, 391–393
velocity of, 392–393

Flux, 373
Flux lines, 385
Formulas

binomial, 7, 8, 171
Cauchy integral, 164–170,

200, 218
de Moivre’s, 20
differentiation, 60–63, 74, 75,

107, 111
Euler’s, 17, 28, 68, 104
integration, 268–269, 279,

280–281, 283, 286, 289
Poisson integral, 429–431
quadratic, 289
Schwarz integral, 440–441
summation, 187, 194

Fourier, Joseph, 373n

Fourier integral, 270, 279n

Fourier series, 208
Fourier series expansion, 208
Fourier’s law, 373
Fractional transformations,

linear, 319–323,
325–327, 341, 416

Fresnel integrals, 276
Functions. See also specific types

of functions
analytic, 73–77, 83–87, 158,

169–170, 200, 231, 238,
249–252, 294

antiderivative of, 158
Bessel, 207n

beta, 287
bounded, 173, 174
branch of, 96, 229–230
Cauchy–Riemann equations

and, 63–66
of complex variables, 35–38
composition of, 74
conditions for differentiability

and, 66–68
continuous, 53–56, 59, 406
definite integrals of, 119–120
derivatives of, 56–61,

117–118
differentiable, 56, 59
differentiation formulas and,

60–63
domain of definition of, 35,

84, 344, 345
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Functions. See also specific types
of functions (continued)

double-valued, 338, 341–342,
346, 351–353

elements of, 85
entire, 73, 173
even, 121
exponential, 18–19, 42–45,

103
finite unit impulse, 436
gamma, 283
graphs of, 38
harmonic, 78–81, 365–367,

435, 437, 438, 442, 443
holomorphic, 73n

hyperbolic, 106, 109–114
inverse, 112–114
limits of, 45–52
logarithmic, 93–96, 98–99,

144
meromorphic, 291
multiple-valued, 37, 246, 281,

284
near isolated singular points,

257–260
odd, 121
piecewise continuous, 119,

127, 137–138, 432–435
polar coordinates and,

68–73
principal part of, 240
range of, 38
rational, 37, 263
real-valued, 36–38, 58–60,

125, 208
regular, 73n

single-valued, 347–349,
399

square root, 349–350
stream, 393–395, 418–419
trigonometric, 104–107,

111–114
zeros of, 106–107

Fundamental theorem of algebra,
173, 174, 295

Fundamental theorem of
calculus, 119, 142, 146

Gamma function, 283
Gauss’s mean value theorem,

175
Geometric series, 194
Goursat, E., 151

Graphs, of functions, 38
Green’s theorem, 150–151

Half plane
Cuchy integral formula in,

440
Dirichlet problem in,

441–443
harmonic function in, 425
mappings of upper, 325–329
Poisson integral formula for,

441
steady temperatures in,

375–377
Harmonic conjugates

explanation of, 80, 363–365
harmonic functions and,

80–81, 366
method to obtain, 81, 443

Harmonic functions
applications for, 78–80, 391,

442, 443
bounded, 376
explanation of, 78–79, 382,

432
in half plane, 425
harmonic conjugate and,

80–81, 366
product of, 377
in semicircular region, 437,

438
theories as source of, 79–80
transformations of, 365–367,

438
values of, 395, 435

Heat conduction, 373. See also
Steady temperatures

Hille, E., 125n

Holomorphic functions, 73n

Hoyler, C. N., 269n

Hydrodynamics, 391
Hyperbolas, 39–41, 331, 381
Hyperbolic functions

explanation of, 106, 109–111
identities involving, 110
inverse of, 112–114

Identities
additive, 4
involving logarithms, 98–99
Lagrange’s trigonometric, 23
multiplicative, 4

Image of point, 38
Imaginary axis, 1

Improper integrals
evaluation of, 262–264
explanation of, 261–262
from Fourier analysis,

269–272
Impulse function, finite unit, 436
Incompressible fluid, 392
Indented paths, 277–280
Independence of path, 142, 147,

394
Inequality

Cauchy’s, 170, 172
involving contour integrals,

137–138
Jordan’s, 273, 274
triangle, 11–12, 174

Infinite sequences, 181
Infinite series

explanation of, 184
of residues, 301, 307

Infinite sets, 301
Infinity

branch point at, 352
limits involving point at,

50–52, 314
residue at, 237–239

Integral formulas
Cauchy, 164–168
Poisson, 429–431
Schwarz, 440–441

Integrals
antiderivatives and, 142–149
Bromwich, 299
Cauchy–Goursat theorem

and, 150–156
Cauchy integral formula and,

164–170, 200, 218
Cauchy principal value of,

262, 270, 274
contour, 127–135, 137–140,

142
definite, 119–120, 288–290
elliptic, 409, 411
Fourier, 270
Fresnel, 276
improper, 261–264,

269–272
line, 127, 364
Liouville’s theorem and

fundamental theorem of
algebra and, 173–174

maximum modulus principle
and, 176–178
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Integrals (continued)
mean value theorem for, 120
multiply connected domains

and, 158–160
simply connected domains

and, 156–158
theory of, 117

Integral transformation, 432,
437, 442

Integration, along branch cuts,
283–285

Integration formulas, 268–269,
279, 280–281, 283, 286,
289

Interior points, 31
Inverse

of linear fractional
transforms, 416

local, 360–362
Inverse functions, 112–114
Inverse hyperbolic functions,

112–114
Inverse image, of point, 38
Inverse Laplace transforms,

298–301, 309
Inverse transform, 301n

Inverse transformation, 320,
347, 354, 387, 401, 418

Inverse trigonometric functions,
112–114

Inverse z-transform, 207
Irrotational flow, 392
Isogonal mapping, 357
Isolated analytic functions, 251
Isolated singular points

behavior of functions near,
257–260

explanation of, 229–231,
240–244, 247

Isolated zeros, 251
Isotherms, 375, 377

Jacobian, 360, 361
Jordan, C., 122n

Jordan curve, 122, 123
Jordan curve theorem, 125
Jordan’s inequality, 273, 274
Jordan’s lemma, 272–275
Joukowski airfoil, 400

Kaplan, W., 67n, 364n, 391n

Lagrange’s trigonometric
identity, 23

Laplace’s equation

harmonic conjugates and,
363, 364

harmonic functions and, 78,
377

polar form of, 82, 439
Laplace transforms

applications of, 300–301
explanation of, 299
inverse, 298–301, 309

Laurent series
coefficients in, 202–205,

207
examples illustrating, 224,

225, 231, 237, 245, 246,
278, 280

explanation of, 199, 201–202
residue and, 238, 240, 247
uniqueness of, 218–219

Laurent’s theorem
explanation of, 197–198, 203
proof of, 199–202

Lebedev, N. N., 141n, 283n

Legendre polynomials, 141n,
171n

Leibniz’s rule, 222, 226
Level curves, 82
l’Hospital’s rule, 283
Limits

of function, 45–47
involving point at infinity,

50–52, 314
of sequence, 181, 184
theorems on, 48–50

Linear combination, 77
Linear transformations

explanation of, 311–313
fractional, 319–323,

325–327, 341, 416
Line integral, 127, 364
Lines of flow, 375
Liouville’s theorem, 173–174,

296
Local inverses, 360–362
Logarithmic functions

branches and derivatives of,
95–96, 144, 230, 361

explanation of, 93–95
identities involving, 98–99
mapping by, 328, 339
principal value of, 94
Riemann surface for,

348–349

Maclaurin series
examples illustrating, 227,

233, 236, 247
explanation of, 190, 204
Taylor’s theorem and,

192–195
Maclaurin series expansion,

192–195, 215, 233
Mann, W. R., 55n, 79n, 138n,

162n, 257n, 360n, 440n

Mappings. See also
Transformations

of circles, 400
conformal, 355–370, 418

(See also Conformal
mapping)

derivative of, 413, 416, 426
explanation of, 38–42
by exponential function,

42–45
isogonal, 357
linear fractional

transformations as,
327–328

by logarithmic function, 328,
339

one to one, 39, 41–43, 320,
327, 331, 332, 334, 338,
342, 345

polar coordinates to analyze,
41–42

of real axis onto polygon,
403–405

on Riemann surfaces,
347–350

of square roots of
polynomials, 341–346

by trigonometric functions,
330–331

of upper half plane, 325–329
by 1/z,315–317
by z2 and branches of z1/2,

336–340
Markushevich, A. I., 157n,

167n, 242n

Maximum and minimum values,
176–178

Maximum modulus principle,
176–178

Mean value theorem, 120, 436
Meromorphic functions, 291
Möbius transformation,

319–322
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Moduli
of contour integrals, 137–140
explanation of, 10–12
unit, 325

Morera, E., 169
Morera’s theorem, 169, 215
Multiple-valued functions, 37,

246, 281, 284
Multiplication, of power series,

222–225
Multiplicative identity, 4
Multiplicative inverse, 4, 6, 19
Multiply connected domain,

158–160

Negative powers, 195
Neighborhood

deleted, 31, 251, 258, 259
explanation of, 31, 32
of point at infinity, 51–52

Nested intervals, 163
Nested squares, 163
Neumann problems, 445–448

explanation of, 365
Newman, M.H.A., 125n

Nonempty open set, 32
Numbers

complex, 1–28
pure imaginary, 1
real, 101
winding, 292

Odd functions, 121
One to one mapping, 39, 41–43,

320, 327, 331, 332, 334,
338, 342, 345

Open set
analytic in, 73
connected, 83
explanation of, 32

Oppenheim, A. V., 207n

Parabolas, 337
Partial derivatives

Cauchy–Riemann equations
and, 66, 67, 69, 70, 79,
86

first-order, 63–65
second-order, 364

Partial sums, sequence of, 184
Picard’s theorem, 242
Piecewise continuous functions,

119, 127, 137–138,
432–435

Point at infinity
limits involving, 50–52, 314
neighborhood of, 51–52
residue at, 237–239

Poisson integral formula
for disk, 431
explanation of, 429–431
for half plane, 441

Poisson integral transform, 432,
437

Poisson kernel, 431, 436
Poisson’s equation, 371, 372
Polar coordinates

to analyze mappings, 41–42,
337

convergence of sequences
and, 183–184

explanation of, 16
functions and, 36, 68–73
Laplace’s equation in, 433

Polar form
of Cauchy–Riemann

equations, 70, 95
of complex numbers, 16–17
of Laplace’s equation, 82,

439
Poles

of functions, 249
of order m,241
residues at, 244–247, 253
simple, 241, 253, 302
zeros and, 249, 252–255

Polygonal lines, 32
Polygons

closed, 404
degenerate, 413–417
mapping real axis onto,

403–405
Polynomials

Chebyshev, 24n

of degree n, 36
as entire function, 73
fundamental theorem of

algebra and, 173, 174
Legendre, 141n, 171n

quotients of, 36–37
square roots of, 341–346
zeros of, 173, 174, 268,

296
Positively oriented curve, 122
Potential

complex, 393, 394, 426–427
in cylindrical space, 386–387

electrostatic, 385–386,
422–425

velocity, 392–393
Powers, of complex numbers, 19
Power series

absolute and uniform
convergence of, 208–211

continuity of sums of,
211–213

explanation of, 187
integration and differentiation

of, 213–217
multiplication and division of,

222–225
Principal branch

of double-valued function,
338

of function, 96, 229–230
of logarithmic function, 362
of zc , 102

Principal part of function, 240
Principal root, 26
Principal value

of argument, 16, 17, 37
Cauchy, 262, 270, 274
of logarithm, 94
of powers, 102, 103

Punctured disk, 31, 224, 240
Pure imaginary numbers, 1
Pure imaginary zeros, 289

Quadrant, temperatures in,
379–381

Quadratic formula, 289

Radio-frequency heating, 269
Range of function, 38
Rational functions

explanation of, 37
improper integrals of, 263

Ratios, cross, 322n

Real axis, 1
Real numbers, 101
Real-valued functions

derivative of, 60
example of, 58–59
explanation of, 36–37
Fourier series expansion of,

208
identities and, 125
properties of, 38

Rectangles
Dirichlet problem for,

389–390
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Rectangles (continued)
Schwarz–Christoffel

transformation and,
412–413

Rectangular form, powers of
complex numbers in,
19–20

Reflection, 38
Reflection principle, 85–87
Regions

in complex plane, 31–33
explanation of, 32
table of transformations of,

452–460
Regular functions, 73n

Removable singular point, 242,
258

Residue applications
argument principle and,

291–294
convergent improper integral

evaluation and, 269–272
definite integrals involving

sines and cosines and,
288–290

examples of, 301–306
improper integral evaluation

and, 261–267
indentation around branch

point and, 280–283
indented paths and, 277–280
integration around branch cut

and, 283–285
inverse Laplace transforms

and, 298–301, 309
Jordan’s lemma and,

272–275
Rouché’s theorem and,

294–296
Residues

Cauchy’s theorem of,
234–236, 238, 264, 281,
283, 284, 294

explanation of, 229, 231–234
infinite series of, 301, 307
at infinity, 237–239
at poles, 244–247
poles and, 253–255
sums of, 263

Resonance, 309
Riemann, G. F. B., 65
Riemann sphere, 51
Riemann’s theorem, 258

Riemann surfaces
for composite functions,

351–353
for double-valued function,

351–353
explanation of, 347–350

Roots
of complex numbers, 24–29
principal, 26
of unity, 28, 30

Rotation, 38
Rouché’s theorem, 294–296

Scale factors, 358–360
Schafer, R. W., 207n

Schwarz, H. A., 406
Schwarz–Christoffel

transformation

degenerate polygons and,
413–417

electrostatic potential about
edge of conducting plate
and, 422–425

explanation of, 405–407
fluid flow in channel through

slit and, 417–419
fluid flow in channel with

offset and, 420–422
triangles and rectangles and,

408–413
Schwarz integral formula,

440–441
Schwarz integral transform, 442
Second-order partial derivatives,

364
Separation of variables method,

379
Sequences

convergence of, 181–184
explanation of, 181
limit of, 181, 184

Series. See also specific type of
series

convergence of, 184–189,
208–213, 250

explanation of, 184
Laurent, 199, 201–205, 207,

218–219, 224, 225, 231,
237

Maclaurin, 190, 192–195,
204, 215, 233, 236

power, 187, 208–217,
222–225

Taylor, 189–190, 192–195,
217–218, 224

uniqueness of representations
of, 217–219

Simple arc, 122
Simple closed contour, 125, 150,

235
Simple poles

explanation of, 241, 253
residue at, 302

Simply connected domains,
156–158

Single-valued functions,
347–349, 399

Singular points
essential, 242
isolated, 229–231, 240–244,

247, 257–260
removable, 242, 258

Sink, 417, 418, 420
Smooth arc, 125, 131, 146
Sphere, Riemann, 51
Square root function, 349–350
Square roots, of polynomials,

341–346
Squares, 152
Stagnation point, 419
Steady temperatures

conformal mapping and,
373–375

in half plane, 375–377
Stereographic projection, 51
Stream function, 393–397,

418–419
Streamlines, 393–395, 397, 401,

419
Summation formula, 187, 194
Sums

of power series, 211–213
of residues, 263

Taylor, A. E., 55n, 79n, 138n,
162n, 257n, 360n, 440n

Taylor series
examples illustrating,

192–195, 224, 250, 252,
405

explanation of, 189–190
uniqueness of, 217–218

Taylor series expansion, 189,
192, 222

Taylor’s theorem
explanation of, 189
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Taylor’s theorem (continued)
to find Maclaurin series

expansions, 192–195
proof of, 190–192, 201

Temperatures
in half plane, 375–377
in quadrant, 379–381
steady, 373–377
in thin plate, 377–379

Thermal conductivity, 373
Thron, W. J., 125n

Transformations. See also
Mappings

argument principle and, 291
bilinear, 319
of boundary conditions,

367–370
of circles, 314–317, 400
conformal, 355–370, 418

(See also Conformal
mapping)

critical point of, 357–358
explanation of, 38
fixed point of, 324
of harmonic functions,

365–367, 438
integral, 432, 437, 442
inverse of, 320, 347, 354,

387, 401, 418
kernel of, 431
linear, 311–313
linear fractional, 319–323,

325–327, 341, 416

Schwarz–Christoffel,
405–425 (See also
Schwarz–Christoffel
transformation)

table of, 452–460
w = sine z, 330–334
w = 1/z, 313–317

Transforms
inverse, 301n

inverse z-, 207
Laplace, 298–301, 309
Poisson integral, 432, 437
Schwarz integral, 442
z-, 207

Translation, 38
Triangle inequality, 11–12,

174
Triangles, 409–410
Trigonometric functions

definite integrals involving,
288–290

explanation of, 104–107
identities for, 105–107
inverse of, 112–114
mapping by, 330–331
periodicity of, 107, 111
zeros of, 106–107

Two-dimensional fluid flow,
391–393

Unbounded sets, 32
Uniform convergence, 210–213

Unity
nth roots of, 28, 30
radius, 17

Unstable component, 309

Value
absolute, 10
maximum and minimum,

176–178
Vector field, 45
Vectors, 9–12
Velocity potential, 392–393
Viscosity, 392

Winding number, 292

Zero of order m, 249–250, 252,
253, 256

Zeros
of analytic functions,

249–252, 294
isolated, 251
poles and, 249, 252–255
of polynomials, 173, 174,

268, 296
pure imaginary, 289
in trigonometric functions,

106–107
z-transform

explanation of, 207
inverse, 207
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